WorldWideScience

Sample records for mediobasal hypothalamic leucine

  1. Hypothalamic leucine metabolism regulates liver glucose production.

    Science.gov (United States)

    Su, Ya; Lam, Tony K T; He, Wu; Pocai, Alessandro; Bryan, Joseph; Aguilar-Bryan, Lydia; Gutiérrez-Juárez, Roger

    2012-01-01

    Amino acids profoundly affect insulin action and glucose metabolism in mammals. Here, we investigated the role of the mediobasal hypothalamus (MBH), a key center involved in nutrient-dependent metabolic regulation. Specifically, we tested the novel hypothesis that the metabolism of leucine within the MBH couples the central sensing of leucine with the control of glucose production by the liver. We performed either central (MBH) or systemic infusions of leucine in Sprague-Dawley male rats during basal pancreatic insulin clamps in combination with various pharmacological and molecular interventions designed to modulate leucine metabolism in the MBH. We also examined the role of hypothalamic ATP-sensitive K(+) channels (K(ATP) channels) in the effects of leucine. Enhancing the metabolism of leucine acutely in the MBH lowered blood glucose through a biochemical network that was insensitive to rapamycin but strictly dependent on the hypothalamic metabolism of leucine to α-ketoisocaproic acid and, further, insensitive to acetyl- and malonyl-CoA. Functional K(ATP) channels were also required. Importantly, molecular attenuation of this central sensing mechanism in rats conferred susceptibility to developing hyperglycemia. We postulate that the metabolic sensing of leucine in the MBH is a previously unrecognized mechanism for the regulation of hepatic glucose production required to maintain glucose homeostasis.

  2. The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting

    Directory of Open Access Journals (Sweden)

    Bharath K. Mani

    2017-08-01

    Conclusions: These results suggest that 1 activation of GHSR-expressing neurons in the MBH is required for the normal feeding responses following both peripheral administration of ghrelin and fasting, 2 activation of MBH GHSR-expressing neurons is sufficient to induce feeding, and 3 axonal projections to a subset of hypothalamic and/or extra-hypothalamic regions likely mediate these responses. The Ghsr-IRES-Cre line should serve as a valuable tool to further our understanding of the functional significance of ghrelin-responsive/GHSR-expressing neurons and the neuronal circuitry within which they act.

  3. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure.

    Science.gov (United States)

    Ciriello, J; Caverson, M M; McMurray, J C; Bruckschwaiger, E B

    2013-10-10

    Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo

  4. Hypothalamic eIF2α Signaling Regulates Food Intake

    Directory of Open Access Journals (Sweden)

    Anne-Catherine Maurin

    2014-02-01

    Full Text Available The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demonstrate that the sole phosphorylation of eIF2α in the MBH is sufficient to regulate food intake. eIF2α signaling being at the crossroad of stress pathways activated in several pathological states, our study indicates that hypothalamic eIF2α phosphorylation could play a critical role in the onset of anorexia associated with certain diseases.

  5. Nutrient-sensing hypothalamic TXNIP links nutrient excess to energy imbalance in mice.

    Science.gov (United States)

    Blouet, Clémence; Schwartz, Gary J

    2011-04-20

    Nutrient excess in obesity and diabetes is emerging as a common putative cause for multiple deleterious effects across diverse cell types, responsible for a variety of metabolic dysfunctions. The hypothalamus is acknowledged as an important regulator of whole-body energy homeostasis, through both detection of nutrient availability and coordination of effectors that determine nutrient intake and utilization, thus preventing cellular and whole-body nutrient excess. However, the mechanisms underlying hypothalamic nutrient detection and its impact on peripheral nutrient utilization remain poorly understood. Recent data suggest a role for thioredoxin-interacting protein (TXNIP) as a molecular nutrient sensor important in the regulation of energy metabolism, but the role of hypothalamic TXNIP in the regulation of energy balance has not been evaluated. Here we show in mice that TXNIP is expressed in nutrient-sensing neurons of the mediobasal hypothalamus, responds to hormonal and nutrient signals, and regulates adipose tissue metabolism, fuel partitioning, and glucose homeostasis. Hypothalamic expression of TXNIP is induced by acute nutrient excess and in mouse models of obesity and diabetes, and downregulation of mediobasal hypothalamic TXNIP expression prevents diet-induced obesity and insulin resistance. Thus, mediobasal hypothalamic TXNIP plays a critical role in nutrient sensing and the regulation of fuel utilization.

  6. Leucine aminopeptidase blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003559.htm Leucine aminopeptidase blood test To use the sharing features on this page, ... Alternative Names Serum leucine aminopeptidase; LAP - serum Images Blood test References Chernecky CC, Berger BJ. Leucine aminopeptidase (LAP) - ...

  7. Effect of parenteral glutamate treatment on the localization of neurotransmitters in the mediobasal hypothalamus

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I.; Fonnum, F.

    1978-01-01

    The localization of cholinergic, aminergic and amino acid-ergic neurones in the mediobasal hypothalamus has been studied in normal rat brain and in brains where neurones in nucleus arcuatus were destroyed by repeated administration of 2 mg/g body weight monosodium glutamate to newborn animals. In normal animals acetylcholinesterase staining, choline acetyltransferase and aromatic L-amino acid decarboxylase were concentrated in the median eminence and the arcuate nucleus. Glutamate decarboxylase was concentrated at the boundary between the ventromedial and the arcuate nuclei, with lower activity in the arcuate nucleus and very low activity in the median eminence. Nucleus arcuatus contained an intermediate level of high affinity glutamate uptake. In the lesioned animals, there were significant decreases in choline acetyltransferase, acetylcholinesterase staining and glutamate decarboxylase in the median eminence, whereas choline acetyltransferase activity and acetylcholinesterase staining, but not glutamate decarboxylase activity, were decreased in nucleus arcuatus. Aromatic L-amino acid decarboxylase was unchanged in all regions studied. The high affinity uptakes of glutamate, dopamine and noradrenaline, and the endogenous amino acid levels were also unchanged in the treated animals. The results indicate the existence of acetylcholine- and GABA-containing elements in the tuberoinfundibular tract. They further indicate that the dopamine cells in the arcuate nucleus are less sensitive to the toxic effect of glutamate than other cell types, possibly because they contain less glutamate receptors.

  8. Surface properties of aqueous amino acid solutions II. Leucine-leucine hydrochloride and leucine-sodium leucinate mixtures.

    Science.gov (United States)

    Matubayasi, Norihiro; Matsuyama, Shohei; Akizuki, Ryosuke

    2005-08-15

    To understand the distinction between the effects of zwitterionic, anionic, and cationic l-leucine upon adsorption and lateral interactions at air/water surface, the surface tensions of aqueous solutions of l-leucine-l-leucine hydrochloride and l-leucine-sodium l-leucinate mixtures were measured as a function of concentration and composition at 25 degrees C. The surface activity decreases in the order l-leucine >l-leucine hydrochloride > sodium l-leucinate. Both l-leucine hydrochloride and sodium l-leucinate form gaseous adsorbed films through the experimentally accessible concentration range, while the adsorbed film of zwitterionic l-leucine shows a transition between gaseous and expanded film.

  9. Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J.; Park, Sung-min; Cai, Dongsheng

    2011-01-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance. PMID:21814490

  10. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2011-07-01

    Full Text Available Hypoxia-inducible factor (HIF is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  11. Oral leucine supplementation is sensed by the brain but neither reduces food intake nor induces an anorectic pattern of gene expression in the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Thais T Zampieri

    Full Text Available Leucine activates the intracellular mammalian target of the rapamycin (mTOR pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity.

  12. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus.

    Science.gov (United States)

    Guilding, Clare; Hughes, Alun T L; Brown, Timothy M; Namvar, Sara; Piggins, Hugh D

    2009-08-27

    In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN) enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc) now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH), a site pivotal for optimal internal homeostatic regulation. Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc) and dorsomedial nuclei (DMH). Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT). A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism.

  13. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus

    Directory of Open Access Journals (Sweden)

    Guilding Clare

    2009-08-01

    Full Text Available Abstract Background In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH, a site pivotal for optimal internal homeostatic regulation. Results Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc and dorsomedial nuclei (DMH. Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT. A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. Conclusion Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism.

  14. Abordaje supracerebeloso transtentorial suprameatal a la totalidad de la región mediobasal del lóbulo temporal

    OpenAIRE

    Quilis Quesada, Vicent

    2015-01-01

    La región mediobasal del lóbulo temporal (RMT), por su compleja anatomía y su localización, constituye a día de hoy un reto neuroquirúrgico de primer orden. El desarrollo de la cirugía microquirúrgica de base craneal y los nuevos horizontes de la cirugía endoscópica siguen sin ofrecer un abordaje óptimo para aquellas lesiones asentadas en la totalidad de la RMT (principalmente oncológicas y vasculares). La exposición parcial de la RMT y el compromiso de estructuras neurovasculares no implica...

  15. The neurobiology of abnormal manifestations of aggression--a review of hypothalamic mechanisms in cats, rodents, and humans.

    Science.gov (United States)

    Haller, Jozsef

    2013-04-01

    Aggression research was for long dominated by the assumption that aggression-related psychopathologies result from the excessive activation of aggression-promoting brain mechanisms. This assumption was recently challenged by findings with models of aggression that mimic etiological factors of aggression-related psychopathologies. Subjects submitted to such procedures show abnormal attack features (mismatch between provocation and response, disregard of species-specific rules, and insensitivity toward the social signals of opponents). We review here 12 such laboratory models and the available human findings on the neural background of abnormal aggression. We focus on the hypothalamus, a region tightly involved in the execution of attacks. Data show that the hypothalamic mechanisms controlling attacks (general activation levels, local serotonin, vasopressin, substance P, glutamate, GABA, and dopamine neurotransmission) undergo etiological factor-dependent changes. Findings suggest that the emotional component of attacks differentiates two basic types of hypothalamic mechanisms. Aggression associated with increased arousal (emotional/reactive aggression) is paralleled by increased mediobasal hypothalamic activation, increased hypothalamic vasopressinergic, but diminished hypothalamic serotonergic neurotransmission. In aggression models associated with low arousal (unemotional/proactive aggression), the lateral but not the mediobasal hypothalamus is over-activated. In addition, the anti-aggressive effect of serotonergic neurotransmission is lost and paradoxical changes were noticed in vasopressinergic neurotransmission. We conclude that there is no single 'neurobiological road' to abnormal aggression: the neural background shows qualitative, etiological factor-dependent differences. Findings obtained with different models should be viewed as alternative mechanisms rather than conflicting data. The relevance of these findings for understanding and treating of aggression

  16. Hypothalamic control of seasonal changes in food intake and body weight.

    Science.gov (United States)

    Ebling, Francis J P

    2015-04-01

    Seasonal cycles of fattening and body weight reflecting changes in both food intake and energy expenditure are a core aspect of the biology of mammals that have evolved in temperate and arctic latitudes. Identifying the neuroendocrine mechanisms that underlie these cycles has provided new insights into the hypothalamic control of appetite and fuel oxidation. Surprisingly, seasonal cycles do not result from changes in the leptin-responsive and homeostatic pathways located in the mediobasal and lateral hypothalamus that regulate meal timing and compensatory responses to starvation or caloric restriction. Rather, they result from changes in tanycyte function, which locally regulates transport and metabolism of thyroid hormone and retinoic acid. These signals are crucial for the initial development of the brain, so it is hypothesized that seasonal neuroendocrine cycles reflect developmental mechanisms in the adult hypothalamus, manifest as changes in neurogenesis and plasticity of connections. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Alteration of hypothalamic glucose and lactate sensing in 48h hyperglycemic rats.

    Science.gov (United States)

    Allard, Camille; Carneiro, Lionel; Collins, Stephan C; Chrétien, Chloé; Grall, Sylvie; Pénicaud, Luc; Leloup, Corinne

    2013-02-08

    Hypothalamic detection of nutrients is involved in the control of energy metabolism and is altered in metabolic disorders. Although hypothalamic detection of blood lactate lowers hepatic glucose production and food intake, it is unknown whether it also modulates insulin secretion. To address this, a lactate injection via the right carotid artery (cephalad) was performed in Wistar rats. This triggered a transient increase in insulin secretion. Rats made hyperglycemic for 48h exhibited prolonged insulin secretion in response to a glucose injection via the carotid artery, but lactate injection induced two types of responses: half of the HG rats showed no difference compared to controls and the other half had markedly decreased insulin secretion. Astroglial monocarboxylates transporters MCT1 and MCT4 isoforms transfer lactate from blood to astrocytes and release lactate to the extracellular space, whilst the neuronal MCT2 isoform permits neuronal lactate uptake. We found that astroglial MCT1 and MCT4, and neuronal MCT2 protein levels in the medio-basal hypothalamus (MBH) were not modified by 48h-hyperglycemia. Together, these results indicate that hypothalamic sensing of circulating lactate triggers insulin secretion. Both glucose and lactate sensing are altered in a model of hyperglycemia, without alteration of MBH MCTs protein levels. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. The leucine-rich repeat structure.

    Science.gov (United States)

    Bella, J; Hindle, K L; McEwan, P A; Lovell, S C

    2008-08-01

    The leucine-rich repeat is a widespread structural motif of 20-30 amino acids with a characteristic repetitive sequence pattern rich in leucines. Leucine-rich repeat domains are built from tandems of two or more repeats and form curved solenoid structures that are particularly suitable for protein-protein interactions. Thousands of protein sequences containing leucine-rich repeats have been identified by automatic annotation methods. Three-dimensional structures of leucine-rich repeat domains determined to date reveal a degree of structural variability that translates into the considerable functional versatility of this protein superfamily. As the essential structural principles become well established, the leucine-rich repeat architecture is emerging as an attractive framework for structural prediction and protein engineering. This review presents an update of the current understanding of leucine-rich repeat structure at the primary, secondary, tertiary and quaternary levels and discusses specific examples from recently determined three-dimensional structures.

  19. Binge Drinking Induces Whole-Body Insulin Resistance by Impairing Hypothalamic Insulin Action

    Science.gov (United States)

    Lindtner, Claudia; Scherer, Thomas; Zielinski, Elizabeth; Filatova, Nika; Fasshauer, Martin; Tonks, Nicholas K.; Puchowicz, Michelle; Buettner, Christoph

    2013-01-01

    Individuals with a history of binge drinking have an increased risk of developing the metabolic syndrome and type 2 diabetes. Whether binge drinking impairs glucose homeostasis and insulin action is unknown. To test this, we treated Sprague-Dawley rats daily with alcohol (3 g/kg) for three consecutive days to simulate human binge drinking and found that these rats developed and exhibited insulin resistance even after blood alcohol concentrations had become undetectable. The animals were resistant to insulin for up to 54 hours after the last dose of ethanol, chiefly a result of impaired hepatic and adipose tissue insulin action. Because insulin regulates hepatic glucose production and white adipose tissue lipolysis, in part through signaling in the central nervous system, we tested whether binge drinking impaired brain control of nutrient partitioning. Rats that had consumed alcohol exhibited impaired hypothalamic insulin action, defined as the ability of insulin infused into the mediobasal hypothalamus to suppress hepatic glucose production and white adipose tissue lipolysis. Insulin signaling in the hypothalamus, as assessed by insulin receptor and AKT phosphorylation, decreased after binge drinking. Quantitative polymerase chain reaction showed increased hypothalamic inflammation and expression of protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling. Intracerebroventricular infusion of CPT-157633, a small-molecule inhibitor of PTP1B, prevented binge drinking–induced glucose intolerance. These results show that, in rats, binge drinking induces systemic insulin resistance by impairing hypothalamic insulin action and that this effect can be prevented by inhibition of brain PTP1B. PMID:23363978

  20. Effects of "Bioactive" amino acids leucine, glutamate, arginine and tryptophan on feed intake and mRNA expression of relative neuropeptides in broiler chicks

    Directory of Open Access Journals (Sweden)

    Wang Songbo

    2012-08-01

    Full Text Available Abstract Feed intake control is vital to ensuring optimal nutrition and achieving full potential for growth and development in poultry. The aim of the present study was to investigate the effects of L-leucine, L-glutamate, L-tryptophan and L-arginine on feed intake and the mRNA expression levels of hypothalamic Neuropeptide involved in feed intake regulation in broiler chicks. Leucine, glutamate, tryptophan or arginine was intra-cerebroventricularly (ICV administrated to 4d-old broiler chicks respectively and the feed intake were recorded at various time points. Quantitative PCR was performed to determine the hypothalamic mRNA expression levels of Neuropeptide Y (NPY, agouti related protein (AgRP, pro-opiomelanocortin (POMC, melanocortin receptor 4 (MC4R and corticotrophin releasing factor (CRF. Our results showed that ICV administration of L-leucine (0.15 or 1.5  μmol significantly (P P 

  1. Medical therapy of hypothalamic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Werder, K. von; Mueller, O.A. (Muenchen Univ. (Germany, F.R.). Medizinische Klinik 1)

    1985-01-01

    Hormonal disturbances caused by hypothalamic pathology can be treated effectively by target hormone replacement in the case of failure of glandotropic hormone secretion. Hyposomatotropism in children has to be substituted by parenteral administration of growth hormone. In addition gonadotropins respectively gonadotropin releasing factor have to be given in order to restore fertility in hypothalamic hypogonadism. Posterior pituitary failure can be adequately replaced by administration of analogues of antidiuretic hormone. Hypothalamic pathology causing hypersecretion of anterior pituitary hormones may also be accessable to medical treatment. This pertains particularly to hyperprolactinemia and precocious puberty. However, there is no medical therapy so far for hypothalamic disturbances leading to veterative dysfunction like disturbances of temperature regulation and control of thirst and polyphagia. In this situation symptomatic correction of the abnormality represents the only possibility to keep these patients alive.

  2. Effects of leucine, isoleucine, or threonine infusion on leucine metabolism in humans

    International Nuclear Information System (INIS)

    Schwenk, W.F.; Haymond, M.W.

    1987-01-01

    Leucine and/or its α-keto acid, α-ketoisocaproate (KIC), have been reported to spare protein in humans. To determine whether specific amino acid infusions affect whole-body protein metabolism as estimated by changes in leucine flux and oxidation, five groups of normal subjects were infused with saline, leucine, isoleucine, or threonine. Independent estimates of leucine metabolism were obtained using simultaneous infusions of [ 3 H]-leucine and α-[ 14 C]ketoisocaproate. Nearly identical results were obtained using either tracer compared with the saline controls. Compared with the saline controls, leucine infusion (1) had no effect on estimated rates of appearance of endogenous leucine, (2) stimulated leucine oxidation, (3) decreased plasma concentrations of other amino acids, and (4) stimulated nonoxidized leucine disappearance in a dose-dependent fashion. In contrast, isoleucine and threonine infusions had no effect on leucine metabolism. Assuming the validity of the isotope model employed, these data suggest that the purported anabolic effect of leucine infusion on whole-body protein metabolism is mediated via stimulation of protein synthesis rather than decreased proteolysis

  3. Leucine metabolism in patients with Hepatic Encephalopathy

    International Nuclear Information System (INIS)

    McGhee, A.S.; Kassouny, M.E.; Matthews, D.E.; Millikan, W.

    1986-01-01

    A primed continuous infusion of [ 15 N, 1- 13 C]leucine was used to determine whether increased oxidation and/or protein synthesis of leucine occurs in patients with cirrhosis. Five controls and patients were equilibrated on a metabolic balance diet [0.6 g protein per kg ideal body weight (IBW)]. An additional four patients were equilibrated in the same manner with the same type of diet with a protein level of 0.75 g per kg IBW. Plasma leucine and breath CO 2 enrichments were measured by mass spectrometry. Protein synthesis and leucine metabolism were identical in controls and patients when both were fed a diet with 0.6 g protein/kg IBW. Results indicate that systemic derangements of leucine metabolism are not the cause of Hepatic Encephalopathy

  4. [Functional hypothalamic amenorrhea].

    Science.gov (United States)

    Stárka, Luboslav; Dušková, Michaela

    2015-10-01

    Functional hypothalamic amenorrhea (FHA) besides pregnancy and syndrome of polycystic ovary is one of the most common causes of secondary amenorrhea. FHA results from the aberrations in pulsatile gonadotropin-releasing hormone (GnRH) secretion, which in turn causes impairment of the gonadotropins (follicle-stimulating hormone and luteinizing hormone). FHA is a form of the defence of organism in situations where life functions are more important than reproductive function. FHA is reversible; it can be normalized after ceasing the stress situation. There are three types of FHA: weight loss related, stress-related, and exercise-related amenorrhea. The final consequences are complex hormonal changes manifested by profound hypoestrogenism. Additionally, these patients present mild hypercortisolemia, low serum insulin levels, low insulin-like growth factor 1 (IGF-1) and low total triiodothyronine. Women health in this disorder is disturbed in several aspects including the skeletal system, cardiovascular system, and mental problems. Patients manifest a decrease in bone mass density, which is related to an increase in fracture risk. Therefore, osteopenia and osteoporosis are the main long-term complications of FHA. Cardiovascular complications include endothelial dysfunction and abnormal changes in the lipid profile. FHA patients present significantly higher depression and anxiety and also sexual problems compared to healthy subjects.

  5. Changes in leucine kinetics during meal absorption: effects of dietary leucine availability

    International Nuclear Information System (INIS)

    Nissen, S.; Haymond, M.W.

    1986-01-01

    Whole-body leucine and α/-ketoisocaproate (KIC) metabolism were estimated in mature dogs fed a complete meal, a meal devoid of branched-chain amino acids, and a meal devoid of all amino acids. Using a constant infusion of [4,5- 3 H]leucine and α-[1- 14 C]ketoisocaproate (KIC), combined with dietary [5,5,5- 2 H 3 ]leucine, the rate of whole-body proteolysis, protein synthesis, leucine oxidation, and interconversion leucine and KIC were estimated along with the rate of leucine absorption. Digestion of the complete meal resulted in a decrease in the rate of endogenous proteolysis, a small increase in the estimated rate of leucine entering protein, and a twofold increase in the rate of leucine oxidation. Ingestion of either the meal devoid of branched-chain amino acids or devoid of all amino acids resulted in a decrease in estimates of whole-body rates of proteolysis and protein synthesis, decreased leucine oxidation, and a decrease in the interconversion of leucine and KIC. The decrease in whole-body proteolysis was closely associated with the rise in plasma insulin concentrations following meal ingestion. Together these data suggest that the transition from tissue metabolism to anabolism is the result, at least in part, of decreased whole-body proteolysis. This meal-related decrease in proteolysis is independent of the dietary amino acid composition or content. In contrast, the rate of protein synthesis was sustained only when the meal complete in all amino acids was provided, indicating an overriding control of protein synthesis by amino acid availability

  6. Leucine uptake and bacteriophage adsorption a Vibrio strain

    International Nuclear Information System (INIS)

    Robb, F.T.; Robb, S.M.; Mothibeli, M.A.; Woods, D.R.

    1982-01-01

    Vibrio mutants with altered leucine transport systems were isolated as part of a study on the physiological characteristics of stationary phase Vibrio cells. The strains are investigated and show that mutants which are defective in leucine uptake are unable to adsorb phage α3a. Elevated leucine transport produces a concomitant increase in the rate of phage adsorption. Phage adsortpion and L-leucine transport experiments indicated that there was a correlation between phage α3a adsorption and leucine uptake. The results suggest that the transport of L-leucine and phage α3 are linked

  7. A fatty acid-dependent hypothalamic-DVC neurocircuitry that regulates hepatic secretion of triglyceride-rich lipoproteins.

    Science.gov (United States)

    Yue, Jessica T Y; Abraham, Mona A; LaPierre, Mary P; Mighiu, Patricia I; Light, Peter E; Filippi, Beatrice M; Lam, Tony K T

    2015-01-12

    The brain emerges as a regulator of hepatic triglyceride-rich very-low-density lipoproteins (VLDL-TG). The neurocircuitry involved as well as the ability of fatty acids to trigger a neuronal network to regulate VLDL-TG remain unknown. Here we demonstrate that infusion of oleic acid into the mediobasal hypothalamus (MBH) activates a MBH PKC-δ→KATP-channel signalling axis to suppress VLDL-TG secretion in rats. Both NMDA receptor-mediated transmissions in the dorsal vagal complex (DVC) and hepatic innervation are required for lowering VLDL-TG, illustrating a MBH-DVC-hepatic vagal neurocircuitry that mediates MBH fatty acid sensing. High-fat diet (HFD)-feeding elevates plasma TG and VLDL-TG secretion and abolishes MBH oleic acid sensing to lower VLDL-TG. Importantly, HFD-induced dysregulation is restored with direct activation of either MBH PKC-δ or KATP-channels via the hepatic vagus. Thus, targeting a fatty acid sensing-dependent hypothalamic-DVC neurocircuitry may have therapeutic potential to lower hepatic VLDL-TG and restore lipid homeostasis in obesity and diabetes.

  8. Bariatric Surgery in Hypothalamic Obesity

    OpenAIRE

    Bingham, Nathan C.; Rose, Susan R.; Inge, Thomas H.

    2012-01-01

    Craniopharyngiomas (CP) are epithelial neoplasms generally found in the area of the pituitary and hypothalamus. Despite benign histology, these tumors and/or their treatment often result in significant, debilitating disorders of endocrine, neurological, behavioral, and metabolic systems. Severe obesity is observed in a high percentage of patients with CP resulting in significant comorbidities and negatively impacting quality of life. Obesity occurs as a result of hypothalamic damage and disru...

  9. Role of leucine in hepatic ketogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kulaylat, M.N.; Frexes-Steed, M.; Geer, R.; Williams, P.E.; Abumrad, N.N.

    1988-03-01

    Isolated hepatocyte studies demonstrated that leucine can be a precursor of ketone bodies. In this study we examine the relative contribution of leucine to hepatic ketogenesis in vivo. Three groups of conscious dogs with long-term indwelling catheters in the femoral artery, hepatic vein, and portal vein were studied. Group I (n = 3) animals were fasted overnight for 24 hours, and those in groups II and III (n = 4, each) were fasted for 62 to 68 hours (designated 3-day fast). Groups I and III received intravenous saline solution (0.9%) and served as controls. In group II selective acute insulin deficiency (SAID) was induced by a peripheral intravenous somatostatin (SRIF) infusion and intraportal glucagon (0.55 ng/body weight/min). Net hepatic production (NHP) of ketone bodies (kb) and leucine (leu) was measured by the arteriovenous difference technique. Hepatic conversion of leucine to ketone bodies was measured by continuous infusion of L-U-(/sup 14/C)-leucine and by determination of the appearance of (/sup 14/C)-ketone bodies across the liver. In the group fasted overnight NHPleu was 0.02 +/- 0.01 mumol/kg/min, a value not different from zero. NHPkb was 3.1 +/- 0.1 mumol/kg/min and hepatic conversion of leucine to ketone bodies accounted for 3.5% of NHPkb. Insulin deficiency after 3 day's fasting resulted in a near 70% increase in NHPleu (from basal values of 0.31 +/- 0.1 mumol/kg/min to 0.52 +/- 0.06 mumol/kg/min during SAID, p less than 0.01). NHPkb increased from 11.0 +/- 1.0 to 15.5 mumol/kg/min (p less than 0.05). The rate of leucine conversion to ketone bodies (L-C) increased from 1.1 +/- 0.25 to 2.4 +/- 0.3 mumol/kg/min (p less than 0.01) with SAID.

  10. Role of leucine in hepatic ketogenesis

    International Nuclear Information System (INIS)

    Kulaylat, M.N.; Frexes-Steed, M.; Geer, R.; Williams, P.E.; Abumrad, N.N.

    1988-01-01

    Isolated hepatocyte studies demonstrated that leucine can be a precursor of ketone bodies. In this study we examine the relative contribution of leucine to hepatic ketogenesis in vivo. Three groups of conscious dogs with long-term indwelling catheters in the femoral artery, hepatic vein, and portal vein were studied. Group I (n = 3) animals were fasted overnight for 24 hours, and those in groups II and III (n = 4, each) were fasted for 62 to 68 hours (designated 3-day fast). Groups I and III received intravenous saline solution (0.9%) and served as controls. In group II selective acute insulin deficiency (SAID) was induced by a peripheral intravenous somatostatin (SRIF) infusion and intraportal glucagon (0.55 ng/body weight/min). Net hepatic production (NHP) of ketone bodies (kb) and leucine (leu) was measured by the arteriovenous difference technique. Hepatic conversion of leucine to ketone bodies was measured by continuous infusion of L-U-[ 14 C]-leucine and by determination of the appearance of [ 14 C]-ketone bodies across the liver. In the group fasted overnight NHPleu was 0.02 +/- 0.01 mumol/kg/min, a value not different from zero. NHPkb was 3.1 +/- 0.1 mumol/kg/min and hepatic conversion of leucine to ketone bodies accounted for 3.5% of NHPkb. Insulin deficiency after 3 day's fasting resulted in a near 70% increase in NHPleu (from basal values of 0.31 +/- 0.1 mumol/kg/min to 0.52 +/- 0.06 mumol/kg/min during SAID, p less than 0.01). NHPkb increased from 11.0 +/- 1.0 to 15.5 mumol/kg/min (p less than 0.05). The rate of leucine conversion to ketone bodies (L-C) increased from 1.1 +/- 0.25 to 2.4 +/- 0.3 mumol/kg/min (p less than 0.01) with SAID

  11. Long-day suppressed expression of type 2 deiodinase gene in the mediobasal hypothalamus of the Saanen goat, a short-day breeder: implication for seasonal window of thyroid hormone action on reproductive neuroendocrine axis.

    Science.gov (United States)

    Yasuo, Shinobu; Nakao, Nobuhiro; Ohkura, Satoshi; Iigo, Masayuki; Hagiwara, Satoko; Goto, Akemitsu; Ando, Hiroshi; Yamamura, Takashi; Watanabe, Miwa; Watanabe, Tsuyoshi; Oda, Sen-ichi; Maeda, Kei-ichiro; Lincoln, Gerald A; Okamura, Hiroaki; Ebihara, Shizufumi; Yoshimura, Takashi

    2006-01-01

    In most animals that live in temperate regions, reproduction is under photoperiodic control. In long-day breeders such as Japanese quail and Djungarian hamsters, type 2 deiodinase (Dio2) plays an important role in the mediobasal hypothalamus, catalyzing the conversion of prohormone T4 to bioactive T3 to regulate the photoperiodic response of the gonads. However, the molecular basis for seasonal reproduction in short-day breeders remains unclear. Because thyroid hormones are also known to be involved in short-day breeders, we examined the effect of an artificial long-day stimulus on Dio2 expression in the male Saanen goat (Capra hircus), a short-day breeder. Dio2 expression was observed in the caudal continuation of the arcuate nucleus, known as the target site for both melatonin and T4 action. In addition, expression of Dio2 and T3 content in the mediobasal hypothalamus was suppressed by artificial long-day conditions, which is the opposite of the results of long-day breeders. Thyroid hormone action on the development of neuroendocrine anestrus is known to be limited to a specific seasonal window. This long-day suppression of Dio2 may provide a mechanism that accounts for the lack of responsiveness to thyroxine during the mid to late anestrus.

  12. Bariatric surgery in hypothalamic obesity

    Directory of Open Access Journals (Sweden)

    Nathan eBingham

    2012-02-01

    Full Text Available Craniopharyngiomas (CP are epithelial neoplasms generally found in the area of the pituitary and hypothalamus. Despite benign histology, these tumors and/or their treatment often result in significant, debilitating disorders of endocrine, neurological, behavioral, and metabolic systems. Severe obesity is observed in a high percentage of patients with CP resulting in significant comorbidities and negatively impacting quality of life. Obesity occurs as a result of hypothalamic damage and disruption of normal homeostatic mechanisms regulating energy balance. Such pathological weight gain, termed hypothalamic obesity (HyOb, is often severe and refractory to therapy.Unfortunately, neither lifestyle intervention nor pharmacotherapy has proven truly effective in the treatment of CP-HyOb. Given the limited choices and poor results of these treatments, several groups have examined bariatric surgery as a treatment alternative for patients with CP-HyOb. While a large body of evidence exists supporting the use of bariatric surgery in the treatment of exogenous obesity and its comorbidities, its role in the treatment of HyOb has yet to be well defined. To date, the existing literature on bariatric surgery in CP-HyOb is largely limited to case reports and series with short term follow-up. Here we review the current reports on the use of bariatric surgery in the treatment of CP-HyOb. We also compare these results to those reported for other populations of HyOb, including Prader-Willi Syndrome and patients with melanocortin signaling defects. While initial reports of bariatric surgery in CP-HyOb are promising, their limited scope makes it difficult to draw any substantial conclusions as to the long term safety and efficacy of bariatric surgery in CP-HyOb. There continues to be a need for more robust, controlled, prospective trials with long term follow-up in order to better define the role of bariatric surgery in the treatment of all types of hypothalamic

  13. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward

    Directory of Open Access Journals (Sweden)

    Radomska Katarzyna J

    2009-10-01

    Full Text Available Abstract Background Polymorphism in the FTO gene is strongly associated with obesity, but little is known about the molecular bases of this relationship. We investigated whether hypothalamic FTO is involved in energy-dependent overconsumption of food. We determined FTO mRNA levels in rodent models of short- and long-term intake of palatable fat or sugar, deprivation, diet-induced increase in body weight, baseline preference for fat versus sugar as well as in same-weight animals differing in the inherent propensity to eat calories especially upon availability of diverse diets, using quantitative PCR. FTO gene expression was also studied in organotypic hypothalamic cultures treated with anorexigenic amino acid, leucine. In situ hybridization (ISH was utilized to study FTO signal in reward- and hunger-related sites, colocalization with anorexigenic oxytocin, and c-Fos immunoreactivity in FTO cells at initiation and termination of a meal. Results Deprivation upregulated FTO mRNA, while leucine downregulated it. Consumption of palatable diets or macronutrient preference did not affect FTO expression. However, the propensity to ingest more energy without an effect on body weight was associated with lower FTO mRNA levels. We found that 4-fold higher number of FTO cells displayed c-Fos at meal termination as compared to initiation in the paraventricular and arcuate nuclei of re-fed mice. Moreover, ISH showed that FTO is present mainly in hunger-related sites and it shows a high degree of colocalization with anorexigenic oxytocin. Conclusion We conclude that FTO mRNA is present mainly in sites related to hunger/satiation control; changes in hypothalamic FTO expression are associated with cues related to energy intake rather than feeding reward. In line with that, neurons involved in feeding termination express FTO. Interestingly, baseline FTO expression appears linked not only with energy intake but also energy metabolism.

  14. High calorie diet triggers hypothalamic angiopathy

    NARCIS (Netherlands)

    Yi, Chun-Xia; Gericke, Martin; Krüger, Martin; Alkemade, Anneke; Kabra, Dhiraj G.; Hanske, Sophie; Filosa, Jessica; Pfluger, Paul; Bingham, Nathan; Woods, Stephen C.; Herman, James; Kalsbeek, Andries; Baumann, Marcus; Lang, Richard; Stern, Javier E.; Bechmann, Ingo; Tschöp, Matthias H.

    2012-01-01

    Obesity, type 2 diabetes, and related diseases represent major health threats to modem society. Related pathophysiology of impaired neuronal function in hypothalamic control centers regulating metabolism and body weight has been dissected extensively and recent studies have started focusing on

  15. Protein and leucine metabolism in maple syrup urine disease

    International Nuclear Information System (INIS)

    Thompson, G.N.; Bresson, J.L.; Pacy, P.J.; Bonnefont, J.P.; Walter, J.H.; Leonard, J.V.; Saudubray, J.M.; Halliday, D.

    1990-01-01

    Constant infusions of [13C]leucine and [2H5]phenylalanine were used to trace leucine and protein kinetics, respectively, in seven children with maple syrup urine disease (MSUD) and eleven controls matched for age and dietary protein intake. Despite significant elevations of plasma leucine (mean 351 mumol/l, range 224-477) in MSUD subjects, mean whole body protein synthesis [3.78 +/- 0.42 (SD) g.kg-1. 24 h-1] and catabolism (4.07 +/- 0.46) were similar to control values (3.69 +/- 0.50 and 4.09 +/- 0.50, respectively). The relationship between phenylalanine and leucine fluxes was also similar in MSUD subjects (mean phenylalanine-leucine flux ratio 0.35 +/- 0.07) and previously reported adult controls (0.33 +/- 0.02). Leucine oxidation was undetectable in four of the MSUD subjects and very low in the other three (less than 4 mumol.kg-1.h-1; controls 13-20). These results show that persistent elevation in leucine concentration has no effect on protein synthesis. The marked disturbance in leucine metabolism in MSUD did not alter the relationship between rates of catabolism of protein to phenylalanine and leucine, which provides further support for the validity of the use of a single amino acid to trace whole body protein metabolism. The minimal leucine oxidation in MSUD differs from findings in other inborn metabolic errors and indicates that in patients with classical MSUD there is no significant route of leucine disposal other than through protein synthesis

  16. Antidopaminergic-induced hypothalamic LHRH release and pituitary gonadotrophin secretion in 12 day-old female and male rats.

    Science.gov (United States)

    Lacau-Mengido, I M; Becú-Villalobos, D; Thyssen, S M; Rey, E B; Lux-Lantos, V A; Libertun, C

    1993-12-01

    In previous studies we have shown that the developing rat provides an interesting physiologic model in which the dopaminergic control of both LH and FSH is well defined in contrast to the controversial results obtained in adult rats. We wished to establish the role of testosterone in antidopaminergic induced gonadotrophins release in 12 day-old male and female rats, and evaluate the effect of antidopaminergic drugs at the hypothalamic level during this developmental stage. Haloperidol, an antidopaminergic drug, increased both LH and FSH in female 12 day-old rats but not in male littermates. The effect was blocked by bromocriptine and not by phentolamine indicating that haloperidol acted on the dopaminergic receptor, and that unspecific stimulation of the noradrenergic system was not involved. Haloperidol was ineffective when female rats were previously ovariectomized and injected with testosterone propionate at 9 days of age. If females were treated on the day of birth with testosterone propionate, haloperidol-induced FSH and LH release was also abolished. In control males haloperidol had no effect on the release of LH or FSH. But if males were orchidectomized at birth or at 9 days of age, haloperidol released both LH and FSH during the infantile period. In an attempt to establish the site of action of antidopaminergic drugs on gonadotrophin release, hypothalami (mediobasal and preoptic-suprachiasmatic area) from 12 day-old infant female rats were perifused with either haloperidol or domperidone (2*10(-6) M). Both drugs increased LHRH release into the perifusate. Besides haloperidol did not modify the release of LH or FSH from adenohypophyseal cells incubated in vitro. We therefore conclude that antidopaminergic-induced gonadotrophins release is modulated by serum testosterone concentrations, and that the site of action is probably the LHRH-secreting neuron of the hypothalamus.

  17. Effect of stage of development and sex on gonadotropin-releasing hormone secretion in in vitro hypothalamic perifusion.

    Science.gov (United States)

    Lacau-Mengido, I M; González Iglesias, A; Díaz-Torga, G; Thyssen-Cano, S; Libertun, C; Becú-Villalobos, D

    1998-04-01

    Marked sexual and ontogenic differences have been described in gonadotropin regulation in the rat. These could arise from events occurring both at the hypothalamic or hypophyseal levels. The present experiments were designed to evaluate the capacity of the hypothalamus in releasing GnRH in vitro, basally and in response to depolarization with KCl, during ontogeny in the rat. To that end we chose two well-defined developmental ages that differ markedly in sexual and ontogenic characteristics of gonadotropin regulation, 15 and 30 days. We compared GnRH release from hypothalami of females, neonatal androgenized females and males. Mediobasal hypothalami were perifused in vitro, and GnRH measured in the effluent. Basal secretion of the decapeptide increased with age in the three groups with no sexual differences encountered. When studying GnRH release induced by membrane depolarization, no differences within sex or age were encountered. On the other hand FSH serum levels decreased with age in females and increased in males, and in neonatal androgenized females followed a similar pattern to that of females. LH levels were higher in infantile females than in age-matched males or androgenized females. Such patterns of gonadotropin release were therefore not correlated to either basal or K+-induced GnRH release from the hypothalamus. We conclude that sexual and ontogenic differences in gonadotropin secretion in the developing rat are not dependent on the intrinsic capability of the hypothalamus to release GnRH in response to membrane depolarization. The hormonal differences observed during development and between sexes are probably related to differences in the sensitivity of the GnRH neuron to specific secretagogue and neurotransmitter regulation, and/or to differences in hypophyseal GnRH receptors and gonadotrope sensitivity.

  18. Small leucine-rich proteoglycans in the aging skeleton

    DEFF Research Database (Denmark)

    Young, M F; Bi, Y; Ameye, L

    2006-01-01

    Small Leucine-Rich Proteoglyans (SLRPs) are major skeletal extracellular matrix (ECM) components that comprise a family of 13 members containing repeats of a leucine-rich motif. To examine SLRP function, we generated mice deficient in one or more member and analyzed them at the tissue, cell and m...

  19. The effect of a dietary leucine excess on the immunoresponsiveness ...

    African Journals Online (AJOL)

    occurred with a leucine-overloaded, balanced diet (18% casein), or with a 4% casein diet supplemented with leucine. Chevalier & Aschkenasy (1977) reported that rats need consume only a small amount of protein in order to maintain an almost normal immunological response, provided that the food consumed is balanced ...

  20. Small leucine-rich proteoglycans in the aging skeleton

    DEFF Research Database (Denmark)

    Young, M F; Bi, Y; Ameye, L

    2006-01-01

    Small Leucine-Rich Proteoglyans (SLRPs) are major skeletal extracellular matrix (ECM) components that comprise a family of 13 members containing repeats of a leucine-rich motif. To examine SLRP function, we generated mice deficient in one or more member and analyzed them at the tissue, cell...

  1. Dietary sugars, not lipids, drive hypothalamic inflammation.

    Science.gov (United States)

    Gao, Yuanqing; Bielohuby, Maximilian; Fleming, Thomas; Grabner, Gernot F; Foppen, Ewout; Bernhard, Wagner; Guzmán-Ruiz, Mara; Layritz, Clarita; Legutko, Beata; Zinser, Erwin; García-Cáceres, Cristina; Buijs, Ruud M; Woods, Stephen C; Kalsbeek, Andries; Seeley, Randy J; Nawroth, Peter P; Bidlingmaier, Martin; Tschöp, Matthias H; Yi, Chun-Xia

    2017-08-01

    The hypothalamus of hypercaloric diet-induced obese animals is featured by a significant increase of microglial reactivity and its associated cytokine production. However, the role of dietary components, in particular fat and carbohydrate, with respect to the hypothalamic inflammatory response and the consequent impact on hypothalamic control of energy homeostasis is yet not clear. We dissected the different effects of high-carbohydrate high-fat (HCHF) diets and low-carbohydrate high-fat (LCHF) diets on hypothalamic inflammatory responses in neurons and non-neuronal cells and tested the hypothesis that HCHF diets induce hypothalamic inflammation via advanced glycation end-products (AGEs) using mice lacking advanced glycation end-products (AGEs) receptor (RAGE) and/or the activated leukocyte cell-adhesion molecule (ALCAM). We found that consumption of HCHF diets, but not of LCHF diets, increases microgliosis as well as the presence of N(ε)-(Carboxymethyl)-Lysine (CML), a major AGE, in POMC and NPY neurons of the arcuate nucleus. Neuron-secreted CML binds to both RAGE and ALCAM, which are expressed on endothelial cells, microglia, and pericytes. On a HCHF diet, mice lacking the RAGE and ALCAM genes displayed less microglial reactivity and less neovasculature formation in the hypothalamic ARC, and this was associated with significant improvements of metabolic disorders induced by the HCHF diet. Combined overconsumption of fat and sugar, but not the overconsumption of fat per se , leads to excessive CML production in hypothalamic neurons, which, in turn, stimulates hypothalamic inflammatory responses such as microgliosis and eventually leads to neuronal dysfunction in the control of energy metabolism.

  2. A Genetic Basis for Functional Hypothalamic Amenorrhea

    Science.gov (United States)

    Caronia, Lisa M.; Martin, Cecilia; Welt, Corrine K.; Sykiotis, Gerasimos P.; Quinton, Richard; Thambundit, Apisadaporn; Avbelj, Magdalena; Dhruvakumar, Sadhana; Plummer, Lacey; Hughes, Virginia A.; Seminara, Stephanie B.; Boepple, Paul A.; Sidis, Yisrael; Crowley, William F.; Martin, Kathryn A.; Hall, Janet E.; Pitteloud, Nelly

    2011-01-01

    BACKGROUND Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. METHODS We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. RESULTS Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kall-mann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. CONCLUSIONS Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.) PMID:21247312

  3. Hypothalamic dysfunction following whole-brain irradiation

    International Nuclear Information System (INIS)

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-01-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage

  4. Hypothalamic dysfunction following whole-brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mechanick, J.I.; Hochberg, F.H.; LaRocque, A.

    1986-10-01

    The authors describe 15 cases with evidence of hypothalamic dysfunction 2 to 9 years following megavoltage whole-brain x-irradiation for primary glial neoplasm. The patients received 4000 to 5000 rads in 180- to 200-rad fractions. Dysfunction occurred in the absence of computerized tomography-delineated radiation necrosis or hypothalamic invasion by tumor, and antedated the onset of dementia. Fourteen patients displayed symptoms reflecting disturbances of personality, libido, thirst, appetite, or sleep. Hyperprolactinemia (with prolactin levels up to 70 ng/ml) was present in all of the nine patients so tested. Of seven patients tested with thyrotropin-releasing hormone, one demonstrated an abnormal pituitary gland response consistent with a hypothalamic disorder. Seven patients developed cognitive abnormalities. Computerized tomography scans performed a median of 4 years after tumor diagnosis revealed no hypothalamic tumor or diminished density of the hypothalamus. Cortical atrophy was present in 50% of cases and third ventricular dilatation in 58%. Hypothalamic dysfunction, heralded by endocrine, behavioral, and cognitive impairment, represents a common, subtle form of radiation damage.

  5. Orexin receptor expression in the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes of free-living European beavers (Castor fiber L.) in different periods of the reproductive cycle.

    Science.gov (United States)

    Czerwinska, Joanna; Chojnowska, Katarzyna; Kaminski, Tadeusz; Bogacka, Iwona; Smolinska, Nina; Kaminska, Barbara

    2017-01-01

    Orexins are hypothalamic neuropeptides acting via two G protein-coupled receptors in mammals: orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R). In European beavers, which are seasonally breeding animals, the presence and functions of orexins and their receptors remain unknown. Our study aimed to determine the expression of OXR mRNAs and the localization of OXR proteins in hypothalamic-pituitary-adrenal/gonadal (HPA/HPG) axes in free-living beavers. The expression of OXR genes (OX1R, OX2R) and proteins was found in all analysed tissues during three periods of beavers' reproductive cycle (April, July, November). The expression of OXR mRNAs in the beaver HPA axis varied seasonally (P<0.05). The levels of OX1R mRNA also differed between the sexes (P<0.05). In the mediobasal hypothalamus, OX1R transcript content increased in pregnant females in April (P<0.05) and OX2R expression increased in males in July (P<0.05). In the pituitary and adrenals, OX1R mRNA levels were relatively constant in females and peaked in July in males (P<0.05), whereas the OX2R was most highly expressed in males in November and in females in April (P<0.05). In gonads, OX1R expression did not fluctuate between seasons or sexes, but transcript levels were elevated in the testes in November and in the ovaries in July (P<0.05). In turn, OX2R mRNA levels varied between the sexes (P<0.05) and were higher in females (July and November) than in males (P<0.05). The circannual variations in OXR mRNA levels in HPA and HPG axes suggest that the expression of these receptors is associated with sex-specific changes in beavers' reproductive activity and their environmental adaptations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat

    DEFF Research Database (Denmark)

    Larsen, P J; Hay-Schmidt, Anders; Mikkelsen, J D

    1994-01-01

    , iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin were delivered into distinct areas of the lateral hypothalamic region. Neurons of the intermediate hypothalamic area projected mainly to the PVN subnuclei, which contained parvicellular neuroendocrine cells. In contrast...

  7. Sexual behavior reduces hypothalamic androgen receptor immunoreactivity

    NARCIS (Netherlands)

    Fernandez-Guasti, Alonso; Swaab, Dick; Rodríguez-Manzo, Gabriela

    2003-01-01

    Male sexual behavior is regulated by limbic areas like the medial preoptic nucleus (MPN), the bed nucleus of the stria terminalis (BST), the nucleus accumbens (nAcc) and the ventromedial hypothalamic nucleus (VMN). Neurons in these brain areas are rich in androgen receptors (AR) and express

  8. Role of developmental factors in hypothalamic function

    Directory of Open Access Journals (Sweden)

    Jakob eBiran

    2015-04-01

    Full Text Available The hypothalamus is a brain region which regulates homeostasis by mediating endocrine, autonomic and behavioral functions. It is comprised of several nuclei containing distinct neuronal populations producing neuropeptides and neurotransmitters that regulate fundamental body functions including temperature and metabolic rate, thirst and hunger, sexual behavior and reproduction, circadian rhythm, and emotional responses. The identity, number and connectivity of these neuronal populations are established during the organism’s development and are of crucial importance for normal hypothalamic function. Studies have suggested that developmental abnormalities in specific hypothalamic circuits can lead to obesity, sleep disorders, anxiety, depression and autism. At the molecular level, the development of the hypothalamus is regulated by transcription factors, secreted growth factors, neuropeptides and their receptors. Recent studies in zebrafish and mouse have demonstrated that some of these molecules maintain their expression in the adult brain and subsequently play a role in the physiological functions that are regulated by hypothalamic neurons. Here, we summarize the involvement of some of the key developmental factors in hypothalamic development and function by focusing on the mouse and zebrafish genetic model organisms.

  9. Hyperprolactinemia from radiation-induced hypothalamic hypopituitarism

    International Nuclear Information System (INIS)

    Corkill, G.; Hanson, F.W.; Gold, E.M.; White, V.A.

    1980-01-01

    In 1975 Samaan et al., described the effects of radiation damage of the hypothalamus in 15 patients with head and neck cancer. Shalet et al., in 1977 described endocrine morbidity in adults who as children had been irradiated for brain tumors. This report describes instances of hyperprolactinemia and associated hypothalamic, pituitary, and thyroid dysfunction following irradiation of a young adult female for brain neoplasia

  10. Dietary sugars, not lipids, drive hypothalamic inflammation

    NARCIS (Netherlands)

    Gao, Yuanqing; Bielohuby, Maximilian; Fleming, Thomas; Grabner, Gernot F; Foppen, Ewout; Bernhard, Wagner; Guzmán-Ruiz, Mara; Layritz, Clarita; Legutko, Beata; Zinser, Erwin; García-Cáceres, Cristina; Buijs, Ruud M; Woods, Stephen C; Kalsbeek, A.; Seeley, Randy J; Nawroth, Peter P; Bidlingmaier, Martin; Tschöp, Matthias H; Yi, Chun-Xia

    OBJECTIVE: The hypothalamus of hypercaloric diet-induced obese animals is featured by a significant increase of microglial reactivity and its associated cytokine production. However, the role of dietary components, in particular fat and carbohydrate, with respect to the hypothalamic inflammatory

  11. Dietary sugars, not lipids, drive hypothalamic inflammation

    NARCIS (Netherlands)

    Gao, Yuanqing; Bielohuby, Maximilian; Fleming, Thomas; Grabner, Gernot F.; Foppen, Ewout; Bernhard, Wagner; Guzmán-Ruiz, Mara; Layritz, Clarita; Legutko, Beata; Zinser, Erwin; García-Cáceres, Cristina; Buijs, Ruud M.; Woods, Stephen C.; Kalsbeek, Andries; Seeley, Randy J.; Nawroth, Peter P.; Bidlingmaier, Martin; Tschöp, Matthias H.; Yi, Chun-Xia

    2017-01-01

    Objective: The hypothalamus of hypercaloric diet-induced obese animals is featured by a significant increase of microglial reactivity and its associated cytokine production. However, the role of dietary components, in particular fat and carbohydrate, with respect to the hypothalamic inflammatory

  12. Leucine and valine requirements of the growing germfree chicks

    International Nuclear Information System (INIS)

    Ishibashi, Teru; Kametaka, Masao; Ozaki, Akira; Yamamoto, Tetsuzo; Mitsuoka, Tomotari.

    1977-01-01

    To compare the requirements of leucine and valine of the growing germfree and conventional chicks, 7-day-old chicks were fed a diet with graded levels of leucine or valine for 7 days. Daily gains of body weight of the germfree chicks were greater than those of the conventional chicks when the dietary leucine or valine level was higher than the requirement level. Adversely, daily gains of body weight of the germfree chicks were less than those of the conventional chicks when the dietary leucine or valine level was very low. Leucine and valine requirements for maximum growth, however, was the same and estimated to be 0.95 and 0.78%, repectively, of the diet for both groups. After the feeding test, the chicks were injected with L-leucine- and L-valine-U- 14 C and expired carbon dioxide was collected for 2 and 3 hours, respectively. From the percentage of recovery of 14 C in the expired carbon dioxide, the leucine and valine requirements were found to be 0.80 and 0.53% of the diet for both groups, respectively. Three hours after feeding test, the plasma free valine concentration was estimated in the chicks which was not injected the isotope. The requirement of valine was estimated to be 0.59% for the germfree chicks and 0.54% for the conventional chicks. From the above data, it may be concluded that no difference, or very small if any, is found in the requirements of leucine and valine between the germfree chicks and those of the conventional chicks. (auth.)

  13. Paraneoplastic limbic encephalitis with associated hypothalamitis mimicking a hyperdense hypothalamic tumor: a case report

    International Nuclear Information System (INIS)

    Bataduwaarachchi, Vipula R.; Tissera, Nirmali

    2016-01-01

    Paraneoplastic limbic encephalitis is an uncommon association of common malignancies such as small cell lung carcinoma, testicular teratoma, and breast carcinoma. The nonspecific nature of the clinical presentation, lack of freely available diagnostic markers, and requirement for advanced imaging techniques pose a great challenge in the diagnosis of this disease in resource-poor settings. A 64-year-old previously healthy Sri Lankan man was admitted to the general medical unit with subacute memory impairment regarding recent events that had occurred during the previous 3 weeks. Initial noncontrast computed tomography of the brain revealed a hyperdensity in the hypothalamic region surrounded by hypodensities extending toward the bilateral temporal lobes; these findings were consistent with a possible hypothalamic tumor with perilesional edema. The patient later developed cranial diabetes insipidus, which was further suggestive of hypothalamic disease. Interestingly, gadolinium-enhanced magnetic resonance imaging of the brain showed no such lesions; instead, it showed prominent T2-weighted signals in the inner mesial region, characteristic of encephalitis. The possibility of tuberculosis and viral encephalitis was excluded based on cerebrospinal fluid analysis results. Limbic encephalitis with predominant hypothalamitis was suspected based on the radiological pattern. Subsequent screening for underlying malignancy revealed a mass lesion in the right hilum on chest radiographs. Histological examination of the lesion showed small cell lung cancer of the “oat cell” variety. We suggest that the initial appearance of a hyperdensity in the hypothalamus region on noncontrast computed tomography is probably due to hyperemia caused by hypothalamitis. If hypothalamitis is predominant in a patient with paraneoplastic limbic encephalitis, magnetic resonance imaging will help to differentiate it from a hypothalamic secondary deposit. Limbic encephalitis should be considered in

  14. Effect of exercise training on leucine oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hendrix, M.K.; Layman, D.K.

    1986-03-01

    Oxidation of the BCAA leucine is increased during a bout of exhaustive exercise. The purpose of this study was to determine the effects of exercise training on leu oxidation during aerobic exercise. Female Sprague-Dawley rats were fed a commercial diet ad lib and divided into sedentary and two trained groups. Animals were trained to run on a treadmill with a 10/sup 0/ incline at 28 m/min for 5 wks for either 50 or 120 min/day. There were no differences in food intake or body weight. After a 12 hr fast, animals were run for 50 or 120 min and changes in leu catabolism determined by measurement of in vivo leu oxidation and activity of branched chain keto acid dehydrogenase (BCKAD). For measurement of leu oxidation, rats were injected IP with 4 ..mu..Ci 1-/sup 14/C-leu during the last 15 min of exercise, placed in glass metabolic chambers, and /sup 14/CO/sub 2/ collected in 1 N NaOH for 30 min periods. Leu oxidation was increased by 40% after 50 min of exercise and by 79% after 120 min of exercise. Five weeks of training reduced the rate of leu oxidation during an exercise bout. The activity of the BCKAD was not increased in the trained animals after either 50 or 120 min of exercise. These data indicate that the rate of leu oxidation during exercises is dependent on the duration of the exercise and that training will reduce the magnitude of this effect.

  15. MECHANISMS IN ENDOCRINOLOGY: Hypothalamic inflammation and nutrition.

    Science.gov (United States)

    Araujo, Eliana P; Moraes, Juliana C; Cintra, Dennys E; Velloso, Licio A

    2016-09-01

    Selected subpopulations of hypothalamic neurons play important roles in the regulation of whole body energy homeostasis. Studies have shown that the saturated fats present in large amounts in western diets can activate an inflammatory response in the hypothalamus, affecting the capacity of such neurons to respond appropriately to satiety and adipostatic signals. In the first part of this review, we will explore the mechanisms behind saturated fatty acid-induced hypothalamic dysfunction. Next, we will present and discuss recent studies that have identified the mechanisms that mediate some of the anti-inflammatory actions of unsaturated fatty acids in the hypothalamus and the potential for exploring these mechanisms to prevent or treat obesity. © 2016 European Society of Endocrinology.

  16. Lymphocytic hypophysitis and hypothalamitis - a case report

    International Nuclear Information System (INIS)

    Stelmachowska, M.; Bolko, P.; Wasko, R.; Sowinski, J.; Kosinski, D.; Towpik, I.

    2006-01-01

    Lymphocytic hypophysitis is an unusual disorder that nearly exclusively affects women. We present a case of 69 year-old female patient who developed the symptoms of diabetes insipidus and partial insufficiency of the anterior pituitary gland. Magnetic resonance imaging of the brain revealed a mass involving the sella and suprasellar region. After exclusion of other causes of infiltrate in this region and due to evident reaction to glucocorticoid treatment the diagnosis of lymphocytic hypophisitis and hypothalamitis was established. (author)

  17. Circadian secretion patterns of ß-endorphin and leucine enkephalin

    Directory of Open Access Journals (Sweden)

    E. H. de Wet

    1992-07-01

    Full Text Available ß-endorphin and leucine enkephalin are neuropeptides with potent opioid activity. In a study to investigate the circadian secretion patterns of the above-mentioned, blood samples were collected hourly from 12 healthy males who were subjected to the experiment for 24 hours. Radioimmunoassays were used in the analysis of plasma samples for ß-endorphin and leucine enkephalin. Peak concentrations of ß-endorphin were demonstrated from 08:00-09:00, while peak concentrations of leucine enkephalin occured from 23:00-07:00. Trough concentrations of ß-endorphin occurred from 24:00-05:00, while trough con­centrations of leucine enkephalin were demonstrated from 09:00-12:00. The illustrated circadian secretion pattern for ß-endorphin simulates the well-known circadian rhythm of cortisol. The answer to this may be in the fact that ß-endorphin and corticotropin stem from the same precursor. The illustrated circadian secretion pattern for leucine enkephalin simulates that of melatonin. The reason for this is unclear.

  18. Leucine metabolism in cirrhotic patients with hepatic encephalopathy

    International Nuclear Information System (INIS)

    McGhee, A.S.

    1985-01-01

    The purpose of this study was to determine whether increased oxidation of or protein synthesis requiring leucine occurs in cirrhotic patients. Five control subjects and four subjects with cirrhosis were equilibrated on a baseline diet (0.6 g protein per kg ideal body weight [IBW]) with sufficient nonprotein calories to preclude negative nitrogen balance. An additional four patients were equilibrated on the same type of diet with a higher protein level (0.75 g per kg IBW). Control subjects and the patients were then studied during continuous infusion of L-[ 15 N, 1- 13 C] leucine in the fasted state and, in the fed state, with a Propac diet which had the same distribution of energy nutrients as the baseline diets. Plasma levels of L-[ 15 N, 1- 13 C], L-[1- 13 C] and L-[ 15 N] leucine were measured during isotopic steady state by gas chromatography-mass spectrometry and fractional excretion of 13 CO 2 in breath samples were analyzed by isotopic ratio mass spectrometry. During the fasted and fed states leucine metabolism was measured to quantitate rates of nitrogen flux (Q/sub N/), carbon flux (Q/sub c/) and oxidation to carbon dioxide and water (C). From these measured values, proteins breakdown (B), protein synthesis (S), deamination (X 0 ) and reamination (X/sub N/) were calculated. The results showed that protein synthesis and leucine metabolism were identical in controls and patients when both were fed a diet with 0.6 g protein/kg IBW and maintenance level of nonprotein calories. The data also showed that leucine metabolism can be quantitatively and reproducibly measured in subjects with cirrhosis

  19. Dietary leucine requirement of juvenile Japanese seabass ( Lateolabrax japonicus)

    Science.gov (United States)

    Li, Yan; Cheng, Zhenyan; Mai, Kangsen; Ai, Qinghui

    2015-02-01

    A 56-day feeding trial was conducted to examine the dietary leucine requirement of juvenile Japanese seabass in seawater floating net cages (1.5 m × 1.5 m × 2.0 m). Six isonitrogenous (crude protein 40%) and isoenergetic (gross energy 20 kJ g-1) diets were formulated to contain different concentrations of leucine (0.9%, 1.49%, 2.07%, 2.70%, 3.30% and 3.88% of dry matter). Crystalline L-amino acids were supplemented to simulate the whole body amino acid pattern of Japanese seabass except for leucine. Three groups (30 fish individuals each, 8.0 g ± 0.20 g in initial weight) were fed to apparent satiation at 5:00 and 17:30 every day. During the experimental period, the water temperature ranged from 26 to 32δC and salinity from 26 to 30, and the dissolved oxygen was maintained at 7 mg L-1. The results showed that weight gain ( WG), nitrogen retention ( NR), feed efficiency ( FE) and protein efficiency ratio ( PER) were significantly increased when dietary leucine was increased from 0.90% to 2.70% of dry matter, and then declined. WG was the highest when fish were fed D4 containing 2.70% of leucine. No significant differences were observed in body composition among dietary treatments ( P > 0.05). Considering the change of WG, the optimum dietary leucine requirement of juvenile Japanese seabass was either 2.39% of dry matter or 5.68% of dietary protein.

  20. [Preparation of leucine-methyl glutamate-glutamic acid copolymers].

    Science.gov (United States)

    Pan, S; Shi, F; Huang, L; Zhou, Q; Lin, Z; Yi, W

    1997-06-01

    The method for preparing leucine-methyl glutamate-glutamic acid copolymer was studied. In the first place benzyl glutamate and methyl glutamate were synthesized respectively. Then N-carboxy anhydrides (NCA) of leucine, benzyl glutamate or methyl glutamate were prepared in a closed container by phosgene-toluene solution method. After copolymerization the copolymers were debenzylated and demethylated by anhydrous hydrogen bromide. The free carboxyl group mole content in side chains of the copolymer was controlled by various standing periods following bubbling HBr. Analysis of infrared spectrogram and ultraviolet asorbance of copolymers indicated that this procedure resulted in the loss of almost all benzyl groups and some methyl groups.

  1. Hypothalamic glucose sensing: making ends meet

    Directory of Open Access Journals (Sweden)

    Vanessa eRouth

    2014-12-01

    Full Text Available The neuroendocrine system governs essential survival and homeostatic functions. For example, growth is needed for development. Thermoregulation maintains optimal core temperature in a changing environment. Reproduction ensures species survival. Stress and immune responses enable an organism to overcome external and internal threats. The circadian system regulates arousal and sleep such that vegetative and active functions do not overlap. All of these functions require a significant portion of the body’s energy. As the integrator of the neuroendocrine system, the hypothalamus carefully assesses the energy status of the body in order to appropriately partition resources to provide for each system without compromising the others. While doing so the hypothalamus must ensure that adequate glucose levels are preserved for brain function since glucose is the primary fuel of the brain. To this end, the hypothalamus contains specialized glucose sensing neurons which are scattered throughout the nuclei controlling distinct neuroendocrine functions. We hypothesize that these neurons play a key role in enabling the hypothalamus to partition energy to meet these peripheral survival needs without endangering the brain’s glucose supply. The goal of this review is to describe the varied mechanisms underlying glucose sensing in neurons within discrete hypothalamic nuclei. We will then evaluate the way in which peripheral energy status regulates glucose sensitivity. For example, during energy deficit such as fasting specific hypothalamic glucose sensing neurons become sensitized to decreased glucose. This increases the gain of the information relay when glucose availability is a greater concern for the brain. Finally, changes in glucose sensitivity under pathological conditions (e.g., recurrent insulin-hypoglycemia, diabetes will be addressed. The overall goal of this review is to place glucose sensing neurons within the context of hypothalamic control of

  2. Quantitative role of splanchnic region in leucine metabolism: L-(1-13C,15N)leucine and substrate balance studies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.M.; Wagner, D.A.; Tredget, E.E.; Walaszewski, J.A.; Burke, J.F.; Young, V.R. (Shriners Burns Institute, MA (USA))

    1990-07-01

    The role of the splanchnic region (Sp) in whole body leucine metabolism was assessed in six chronically catheterized fasting mongrel dogs and in eight dogs during constant enteral feeding of a complete amino acid solution (0.24 g.kg-1.h-1). We used primed continuous intravenous infusions of L-(1-13C,15N)leucine and L-(1-14C)leucine and measurements of arteriovenous isotope and leucine balance across the gut, liver, and Sp. In the fasted condition, 3.5% of arterial leucine supply was oxidized in the Sp, accounting for 13% of total body leucine oxidation, with 10% by liver. With amino acid feeding (1) leucine carbon and nitrogen fluxes and oxidation were increased (P less than 0.01) at the whole body level; (2) the percent of whole body leucine oxidation occurring in the Sp and liver increased (P less than 0.01) to 41 and 27%, respectively; (3) fractional metabolic utilization of leucine delivered to the Sp was reduced (P less than 0.01) from 47 to 35%; (4) the deamination rate of leucine in the gut was increased (P less than 0.05), along with an increased reamination rate of alpha-ketoisocaproic acid in the Sp (P less than 0.05). These findings reveal that the Sp accounts for a small fraction of whole body leucine oxidation during the fasting condition, but it plays a quantitatively important role in total body leucine oxidation during amino acid feeding; the gut and liver play cooperative roles in controlling leucine supply to peripheral tissues.

  3. 21 CFR 862.1460 - Leucine aminopeptidase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leucine aminopeptidase test system. 862.1460 Section 862.1460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  4. Leucine supplementation in the management of protein energy ...

    African Journals Online (AJOL)

    Background: Wasting accounts for 4.7% of all deaths of children under five years of age globally. Currently there is no standard for treatment of moderate wasting in children resulting in high variability of treatment methods and low predictability if recovery outcomes. Leucine, a branched chain amino acid,has recently ...

  5. Kinetics and mechanism of oxidation of L-leucine by alkaline ...

    Indian Academy of Sciences (India)

    The kinetics of oxidation of L-leucine by diperiodatocuprate (III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.10mol dm-3 was studied spectrophotometrically. The reaction between L-leucine and DPC in alkaline medium exhibits 1:4 stoichiometry (L-leucine: DPC). The reaction is of first order in [DPC] ...

  6. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells

    OpenAIRE

    Merkle, Florian T.; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F.

    2015-01-01

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin...

  7. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  8. Radiation and the hypothalamic-pituitary axis

    International Nuclear Information System (INIS)

    Littley, M.D.; Shalet, S.M.; Beardwell, C.G.

    1991-01-01

    This paper reports on radiation therapy which is an essential treatment in the management of many conditions. It is important to appreciate the high incidence of subsequent endocrine morbidity, however, if the hypothalamic pituitary region is within the radiation fields. This is very much more common with external radiation therapy than with other forms of radiation treatment. The dose and fractional of administered radiation are important determinants of the endocrine deficits, their time on onset, and severity. Irradiation of large volumes of brain and hypothalamus may increase the risk of hormonal abnormalities as may preceding surgery in the treatment of pituitary disease. The phenomena observed in children and adults illustrate that there may be damage to pituitary, hypothalamus, and higher centers. In patients who have received a significant radiation dose to the hypothalamic-pituitary region, regular follow-up is mandatory. In adults, surveillance will include pituitary function testing on an annual basis for at least 10 years. In children careful monitoring of growth and pubertal development and early treatment of radiation-induced GH deficiency are vital

  9. Differential effects of leucine and leucine-enriched whey protein on skeletal muscle protein synthesis in aged mice

    NARCIS (Netherlands)

    Dijk, Francina J.; Dijk, van Miriam; Walrand, Stéphane; Loon, van Luc J.C.; Norren, van Klaske; Luiking, Yvette C.

    2018-01-01

    Background & aims: It has been suggested that anabolic resistance, or a blunted protein synthetic response to anabolic stimuli, contributes to the failure of muscle mass maintenance in older adults. The amino acid leucine is one of the most prominent food-related anabolic stimuli. However, data

  10. Leucine kinetics from [2H3]- and [13C]leucine infused simultaneously by gut and vein

    International Nuclear Information System (INIS)

    Hoerr, R.A.; Matthews, D.E.; Bier, D.M.; Young, V.R.

    1991-01-01

    In amino acid tracer kinetic studies of the fed state, ingested amino acid may be taken up during its initial transit through splanchnic tissues and thus not enter the plasma compartment where tracer is infused. To investigate this possibility, adult human subjects received simultaneous intravenous (iv) and intragastric (ig) leucine tracer infusions, first during a postabsorptive (PA) 4-h primed continuous ig infusion of L-[1-13C]-leucine and L-[5,5,5-2H3]leucine iv, followed on a separate day by a fed infusion, in which an ig infusion of a liquid formula was started 2 h before the tracer infusion and continued throughout the tracer study. Subjects were accustomed to a constant experimental diet supplying 1.5 g protein.kg-1.day-1 and 41-45 kcal.kg-1.day-1 for 7 and 12 days before the PA and fed studies, respectively. For the PA study, plasma enrichment for the ig tracer was 3.34 +/- 0.27 (SE) mol + excess and for the iv tracer it was 4.18 +/- 0.10 (P less than 0.02). Enrichments of alpha-keto-isocaproic acid (KIC) were 3.24 +/- 0.16 (ig) and 3.02 +/- 0.14 (iv), respectively [not significant (NS)]. For the fed study, plasma leucine enrichment for the ig tracer was 2.15 +/- 0.14 and for the iv tracer was 2.84 +/- 0.09 (P less than 0.02). KIC enrichments were 2.02 +/- 0.08 (ig) and 2.24 +/- 0.08 (iv), respectively (NS). In the PA study, the ratio of the plasma leucine enrichments for the ig and iv tracers was 0.80 +/- 0.06 and in the fed experiment, 0.76 +/- 0.05, respectively

  11. Leucine kinetics from (2H3)- and ( sup 13 C)leucine infused simultaneously by gut and vein

    Energy Technology Data Exchange (ETDEWEB)

    Hoerr, R.A.; Matthews, D.E.; Bier, D.M.; Young, V.R. (Massachusetts Institute of Technology, Cambridge (USA))

    1991-01-01

    In amino acid tracer kinetic studies of the fed state, ingested amino acid may be taken up during its initial transit through splanchnic tissues and thus not enter the plasma compartment where tracer is infused. To investigate this possibility, adult human subjects received simultaneous intravenous (iv) and intragastric (ig) leucine tracer infusions, first during a postabsorptive (PA) 4-h primed continuous ig infusion of L-(1-13C)-leucine and L-(5,5,5-2H3)leucine iv, followed on a separate day by a fed infusion, in which an ig infusion of a liquid formula was started 2 h before the tracer infusion and continued throughout the tracer study. Subjects were accustomed to a constant experimental diet supplying 1.5 g protein.kg-1.day-1 and 41-45 kcal.kg-1.day-1 for 7 and 12 days before the PA and fed studies, respectively. For the PA study, plasma enrichment for the ig tracer was 3.34 +/- 0.27 (SE) mol + excess and for the iv tracer it was 4.18 +/- 0.10 (P less than 0.02). Enrichments of alpha-keto-isocaproic acid (KIC) were 3.24 +/- 0.16 (ig) and 3.02 +/- 0.14 (iv), respectively (not significant (NS)). For the fed study, plasma leucine enrichment for the ig tracer was 2.15 +/- 0.14 and for the iv tracer was 2.84 +/- 0.09 (P less than 0.02). KIC enrichments were 2.02 +/- 0.08 (ig) and 2.24 +/- 0.08 (iv), respectively (NS). In the PA study, the ratio of the plasma leucine enrichments for the ig and iv tracers was 0.80 +/- 0.06 and in the fed experiment, 0.76 +/- 0.05, respectively.

  12. Risk factors for mortality caused by hypothalamic obesity in children with hypothalamic tumours.

    Science.gov (United States)

    Haliloglu, B; Atay, Z; Guran, T; Abalı, S; Bas, S; Turan, S; Bereket, A

    2016-10-01

    Hypothalamic obesity (HyOb) is a common complication of childhood hypothalamic tumours. Patients with HyOb probably have a higher mortality rate than those with other types of obesity due in many cases to obstructive sleep apnoea/hypoventilation. To identify predictive factors for mortality caused by HyOb in children. Twenty children with HyOb secondary to hypothalamic tumours that were followed-up for ≥3 years and aged 6 years at diagnosis (3.71 ± 1.96 vs. 0.83 ± 0.73, P  1 SDS after 6 months of therapy (RR: 8.4, P obesity-related mortality rates were higher in the patients aged  0.05). The mortality rate was also 3.7-fold higher in the patients with a maximum BMI SDS ≥ 3 at any time during the first 3 years after therapy(P > 0.05). An increase in BMI SDS after 6 months of therapy was observed to be a risk factor for mortality caused by HyOb. In addition, age obesity is required. © 2015 World Obesity.

  13. Hypothalamic inflammation: a double-edged sword to nutritional diseases

    Science.gov (United States)

    Cai, Dongsheng; Liu, Tiewen

    2015-01-01

    The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and non-neuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from overnutrition-induced intracellular stresses or disease-associated systemic inflammatory factors, extracellular and intracellular environments of hypothalamic cells are disrupted, leading to central metabolic dysregulations and various diseases. Recent research has begun to elucidate the effects of hypothalamic inflammation in causing diverse components of metabolic syndrome leading to diabetes and cardiovascular disease. These new understandings have provocatively expanded previous knowledge on the cachectic roles of brain inflammatory response in diseases, such as infections and cancers. This review describes the molecular and cellular characteristics of hypothalamic inflammation in metabolic syndrome and related diseases as opposed to cachectic diseases, and also discusses concepts and potential applications of inhibiting central/hypothalamic inflammation to treat nutritional diseases. PMID:22417140

  14. Increased hypothalamic serotonin turnover in inflammation-induced anorexia.

    Science.gov (United States)

    Dwarkasing, J T; Witkamp, R F; Boekschoten, M V; Ter Laak, M C; Heins, M S; van Norren, K

    2016-05-20

    Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.

  15. Management of optic chiasmatic/hypothalamic astrocytomas in children

    Energy Technology Data Exchange (ETDEWEB)

    Steinbok, P.; Hentschel, S.; Almqvist, P.; Cochrane, D.D. [Univ. of British Columbia, British Columbia' s Children' s Hospital, Div. of Pediatric Neurosurgery, Dept. of Surgery, Vancouver, British Columbia (Canada); Poskitt, K. [Univ. of British Columbia, British Columbia' s Children' s Hospital, Dept. of Radiology, Vancouver, British Columbia (Canada)

    2002-05-01

    The management of optic chiasmatic gliomas is controversial, partly related to failure to separate out those tumors involving the optic chiasm only (chiasmatic tumors) from those also involving the hypothalamus (chiasmatic/hypothalamic tumors). The purpose of this study was: (i) to analyze the outcomes of chiasmatic and chiasmatic/hypothalamic tumors separately; and (ii) to determine the appropriateness of recommending radical surgical resection for the chiasmatic/hypothalamic tumors. A retrospective chart review of all newly diagnosed tumors involving the optic chiasm from 1982-1996 at British Columbia's Children's Hospital was performed. There were 32 patients less than 16 years of age, 14 with chiasmatic and 18 with chiasmatic/hypothalamic astrocytomas, with an average duration of follow-up of 5.8 years and 6.3 years, respectively. Ten of the patients with chiasmatic tumors and none with chiasmatic/hypothalamic tumors had neurofibromatosis I. Thirteen of the 14 chiasmatic tumors were managed with observation only, and none had progression requiring active intervention. For the chiasmatic/hypothalamic tumors. eight patients had subtotal resections (>95% resection), six had partial resections (50-95%), three had limited resections (<50%), and one had no surgery. There were fewer complications associated with the limited resections, especially with respect to hypothalamic dysfunction. There was no correlation between the extent of resection (subtotal, partial, or limited) and the time to tumor progression (average 18 months). In conclusion, chiasmatic and chiasmatic/hypothalamic tumors are different entities, which should be separated out for the Purposes of any study. For the chiasmatic/hypothalamic tumors, there was more morbidity and no prolongation of time to progression when radical resections were compared to more limited resections. Therefore, if surgery is performed, it may be appropriate to do a surgical procedure that strives only to provide a

  16. Can leucine supplementation attenuate muscle atrophy? A literature review

    OpenAIRE

    Amaral, Rafael Bruno; Martins, Carlos Eduardo Carvalho; Lancha Junior, Antonio Herbert; Painelli, Vitor de Salles

    2015-01-01

    Abstract Currently, there has been new expectations in studying strategies with the potential to mitigate the skeletal muscle atrophy that characterizes conditions such as aging, disuse, cancer, and the use of certain medications. Among them, amino acid leucine has received special attention due to its potential to stimulate specific pathways of protein synthesis in skeletal muscle. Due to the wide spread use of this amino acid by the media, several studies have been aimed at investigating th...

  17. Identification and characterization of Paragonimus westermani leucine aminopeptidase.

    Science.gov (United States)

    Song, Su-Min; Park, Joon-Hyung; Kim, Jin; Kim, Suk-Il; Hong, Yeon-Chul; Kong, Hyun-Hee; Chung, Dong-Il

    2008-09-01

    Paragonimus westermani is a tissue-invading trematode parasite that causes inflammatory lung disease as well as systemic infections including cerebral invasion in carnivorous mammals. While aminopeptidases play important roles in trematodes in the catabolism of host hemoglobin, an essential source of nutrient for the parasite, little is known about aminopeptidase in Paragonimus. Presently, we isolated a cDNA encoding a 58 kDa P. westermani leucine aminopeptidase (PwLAP). Deduced amino acid sequence of PwLAP exhibited significant sequence homology with LAP from Schistosoma spp. and Fasciola hepatica. Biochemical analysis of the recombinant PwLAP protein demonstrated preferential substrate specificity for Leu-NHMec and inhibition by EDTA, 1,10-phenanthroline, and bestatin, which are conserved characteristics of the M17 family of leucine aminopeptidase. PwLAP exhibited relatively higher enzyme activity in the presence of Mn2+ compared to Schistosoma mansoni LAP. Based on the biochemical properties and immunohistochemical analysis, PwLAP is concluded to represent a leucine aminopeptidase. The enzyme is most likely responsible for the catabolism of host hemoglobin, and, hence, represents a potential target of Paragonimus chemotherapy.

  18. The Effect of Oral Leucine on Protein Metabolism in Adolescents with Type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Wilson ThomasA

    2010-11-01

    Full Text Available Lack of insulin results in a catabolic state in subjects with insulin-dependent diabetes mellitus which is reversed by insulin treatment. Amino acid supply, especially branched chain amino acids such as leucine, enhances protein synthesis in both animal and human studies. This small study was undertaken to assess the acute effect of supplemental leucine on protein metabolism in adolescents with type 1 diabetes. L-[1-13C] Leucine was used to assess whole-body protein metabolism in six adolescent females (16–18 yrs with type 1 diabetes during consumption of a basal diet (containing 58 μmoles leucine/kg/h and the basal diet with supplemental leucine (232 μmoles leucine/kg/h. Net leucine balance was significantly higher with supplemental leucine ( μmoles leucine/kg body weight/hr than with the basal diet (, due to reduced protein degradation ( μmoles leucine/kg body weight/hr compared to the basal diet (, .

  19. Indirect evidence for decreased hypothalamic somatostatinergic tone in anorexia nervosa

    DEFF Research Database (Denmark)

    Stoving, R.K.; Andersen, M.; Flyvbjerg, A.

    2002-01-01

    in the central feeding mechanism in anorexia nervosa (AN). Peripheral administration of pyridostigmine (PD) minimizes the release of hypothalamic SRIH. DESIGN: To study the influence of hypothalamic somatostatinergic inhibition on the exaggerated somatotroph responsiveness to GHRH in patients with severe AN, two...... indirectly to greater SRIH withdrawal and greater GHRH release in anorexia nervosa. Moreover, hypothalamic SRIH activity seems to be inversely related to cortisol levels, indirectly supporting the hypothesis that SRIH and CRH neuronal activity are inversely related in anorexia nervosa. Leptin, which...... is believed to act on hypothalamic feeding mechanisms, seems to be positively related to SRIH activity. Finally, the present data demonstrate that the potentiating effect of pyridostigmine in anorexia nervosa is related to body mass index and increases upon weight gain, suggesting that the low...

  20. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Merkle, Florian T; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F

    2015-02-15

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases. © 2015. Published by The Company of Biologists Ltd.

  1. Course and forecast of the hypothalamic pubertal syndrome

    International Nuclear Information System (INIS)

    Kayusheva, I.V.

    1987-01-01

    A total of 223 patients with the hypothalamic pubertal syndrome (HPS) were followed up for 1 to 22 years. The course of HPS was regressive, stable , recurrent or progressive and dependent on the initial depth and spread of hypothalamic lesion, repeated unfavourable hypothalamic exposures, and timely and regular treatment. HPS outcomes were followed up in 190 cases. The recovery was complete in 21.05%, obesity alone persisted in 10.53%, vegetovascular dystonia was persistent in 7.36%, and polycystic ovaries in 5.79%. Neuroendocrine hypothalamic syndrome was the most common (50.53%) HPS outcome. Hormone levels in blood were investigated using radioimmunoassay in patients with neuroendocrine form of HPS

  2. Gelastic epilepsy associated with lesions other than hypothalamic hamartoma

    Directory of Open Access Journals (Sweden)

    Panagariya Ashok

    2007-01-01

    Full Text Available Gelastic epilepsy is a rare but well recognized epileptic syndrome typically manifesting in early childhood. It is characterized by recurrent brief seizures with initial laughter or grimacing. Also known as "laughing" seizures, their association with hypothalamic hamartomas is well known in children and adults; however other structural causes have also been implicated. This study reports three cases of gelastic seizures, one each of Tuberous sclerosis, Left temporal gliosis and Hypothalamic Hamartoma with neuronal migration defect respectively. Though these seizures are usually pharmacoresistant and may end up as a severe epileptic encephalopathy and catastrophic epilepsy of childhood, all of our cases responded well to antiepileptic medication (carbamazepine and valproate. This study underscores the fact that certain brain abnormalities other than hypothalamic tumors are also associated with gelastic seizures. The clinical characteristic of seizures in these patients is different than those of isolated hypothalamic hamartomas and that these seizures can be well controlled with antiepileptic drugs.

  3. Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake.

    Science.gov (United States)

    Renguet, Edith; Ginion, Audrey; Gélinas, Roselle; Bultot, Laurent; Auquier, Julien; Robillard Frayne, Isabelle; Daneault, Caroline; Vanoverschelde, Jean-Louis; Des Rosiers, Christine; Hue, Louis; Horman, Sandrine; Beauloye, Christophe; Bertrand, Luc

    2017-08-01

    High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with [ 13 C]leucine ascertained its metabolism to ketone bodies (KBs), which had a similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated the global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insights into the establishment of insulin resistance in the heart. NEW & NOTEWORTHY Catabolism of the branched-chain amino acid leucine into ketone bodies efficiently inhibits cardiac glucose uptake through decreased translocation of glucose transporter 4 to the plasma membrane. Leucine increases protein acetylation. Pharmacological inhibition of acetylation

  4. Comparison of the fates of ingested leucine and ingested 2-ketoisocaproate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Imura, K.; Walser, M. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1990-05-01

    We previously reported that the ratio, R, of 14C to 3H in the leucine of whole body protein, measured 6 h after ingestion of (3H)leucine and (1-14C)2-ketoisocaproate is equal to ratio of the dose of leucine to the dose of 2-ketoisocaproate (KIC) (on a leucine-free diet) required to achieve the same rate of growth. To determine whether R is dependent on the interval between injection and sampling, R was measured at intervals in purified whole body protein after oral injection of these isotopes in groups of rats; it was constant from 1 h onward for 1 wk, averaging 0.64 +/- 0.01 (means +/- SEM). Thus, the extent of incorporation into the leucine of whole body protein of ingested KIC remains close to 64% of the incorporation of ingested leucine administered as such simultaneously, from 1 h onward for at least 1 wk.

  5. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit

    DEFF Research Database (Denmark)

    Larsen, P J; Seier, V; Fink-Jensen, A

    2003-01-01

    Cocaine- and amphetamine-regulated transcript (CART) is present in a number of hypothalamic nuclei. Besides actions in circuits regulating feeding behaviour and stress responses, the hypothalamic functions of CART are largely unknown. We report that CART immunoreactivity is present in hypothalamic...

  6. Hypothalamic Circuits for Predation and Evasion.

    Science.gov (United States)

    Li, Yi; Zeng, Jiawei; Zhang, Juen; Yue, Chenyu; Zhong, Weixin; Liu, Zhixiang; Feng, Qiru; Luo, Minmin

    2018-02-21

    The interactions between predator and prey represent some of the most dramatic events in nature and constitute a matter of life and death for both sides. The hypothalamus has been implicated in driving predation and evasion; however, the exact hypothalamic neural circuits underlying these behaviors remain poorly defined. Here, we demonstrate that inhibitory and excitatory projections from the mouse lateral hypothalamus (LH) to the periaqueductal gray (PAG) in the midbrain drive, respectively, predation and evasion. LH GABA neurons were activated during predation. Optogenetically stimulating PAG-projecting LH GABA neurons drove strong predatory attack, and inhibiting these cells reversibly blocked predation. In contrast, LH glutamate neurons were activated during evasion. Stimulating PAG-projecting LH glutamate neurons drove evasion and inhibiting them impeded predictive evasion. Therefore, the seemingly opposite behaviors of predation and evasion are tightly regulated by two dissociable modular command systems within a single neural projection from the LH to the PAG. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Knudsen, P; Kofod, Hans; Lernmark, A

    1983-01-01

    , a cloned rat islet tumor cell line. A twofold increase in islet glutamate dehydrogenase activity was induced by 5 mmol/liter L-leucine OMe, a larger effect than that of L-leucine (P less than 0.02), whereas L-arginine OMe had a small inhibitory effect. We conclude that L-leucine OMe is a potent stimulus...... of insulin secretion and that its effect on the beta-cells may be exerted by activating islet glutamate dehydrogenase....

  8. Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats

    International Nuclear Information System (INIS)

    Ventrucci, Gislaine; Mello, Maria Alice Roston de; Gomes-Marcondes, Maria Cristina Cintra

    2002-01-01

    It is known that amino acid oxidation is increased in tumor-bearing rat muscles and that leucine is an important ketogenic amino acid that provides energy to the skeletal muscle. To evaluate the effects of a leucine supplemented diet on the intestinal absorption alterations produced by Walker 256, growing pregnant rats were distributed into six groups. Three pregnant groups received a normal protein diet (18% protein): pregnant (N), tumor-bearing (WN), pair-fed rats (Np). Three other pregnant groups were fed a diet supplemented with 3% leucine (15% protein plus 3% leucine): leucine (L), tumor-bearing (WL) and pair-fed with leucine (Lp). Non pregnant rats (C), which received a normal protein diet, were used as a control group. After 20 days, the animals were submitted to intestinal perfusion to measure leucine, methionine and glucose absorption. Tumor-bearing pregnant rats showed impairment in food intake, body weight gain and muscle protein content, which were less accentuated in WL than in WN rats. These metabolic changes led to reduction in both fetal and tumor development. Leucine absorption slightly increased in WN group. In spite of having a significant decrease in leucine and methionine absorption compared to L, the WL group has shown a higher absorption rate of methionine than WN group, probably due to the ingestion of the leucine supplemented diet inducing this amino acid uptake. Glucose absorption was reduced in both tumor-bearing groups. Leucine supplementation during pregnancy in tumor-bearing rats promoted high leucine absorption, increasing the availability of the amino acid for neoplasic cells and, mainly, for fetus and host utilization. This may have contributed to the better preservation of body weight gain, food intake and muscle protein observed in the supplemented rats in relation to the non-supplemented ones

  9. Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats

    Directory of Open Access Journals (Sweden)

    de Mello Maria

    2002-04-01

    Full Text Available Abstract Background It is known that amino acid oxidation is increased in tumor-bearing rat muscles and that leucine is an important ketogenic amino acid that provides energy to the skeletal muscle. Methods To evaluate the effects of a leucine supplemented diet on the intestinal absorption alterations produced by Walker 256, growing pregnant rats were distributed into six groups. Three pregnant groups received a normal protein diet (18% protein: pregnant (N, tumor-bearing (WN, pair-fed rats (Np. Three other pregnant groups were fed a diet supplemented with 3% leucine (15% protein plus 3% leucine: leucine (L, tumor-bearing (WL and pair-fed with leucine (Lp. Non pregnant rats (C, which received a normal protein diet, were used as a control group. After 20 days, the animals were submitted to intestinal perfusion to measure leucine, methionine and glucose absorption. Results Tumor-bearing pregnant rats showed impairment in food intake, body weight gain and muscle protein content, which were less accentuated in WL than in WN rats. These metabolic changes led to reduction in both fetal and tumor development. Leucine absorption slightly increased in WN group. In spite of having a significant decrease in leucine and methionine absorption compared to L, the WL group has shown a higher absorption rate of methionine than WN group, probably due to the ingestion of the leucine supplemented diet inducing this amino acid uptake. Glucose absorption was reduced in both tumor-bearing groups. Conclusions Leucine supplementation during pregnancy in tumor-bearing rats promoted high leucine absorption, increasing the availability of the amino acid for neoplasic cells and, mainly, for fetus and host utilization. This may have contributed to the better preservation of body weight gain, food intake and muscle protein observed in the supplemented rats in relation to the non-supplemented ones.

  10. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    Science.gov (United States)

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  11. Hypothalamic control of amino acid appetite.

    Science.gov (United States)

    Torii, K; Kondoh, T; Mori, M; Ono, T

    1998-11-30

    Preference for umami taste materials, such as monosodium L-glutamate (MSG) and the 5'-ribonucleotides, inosine 5'-monophosphate (IMP) and guanosine 5'-monophosphate (GMP), varies as a consequence of protein nutrition. Rats fed diets deficient in dietary protein or an essential L-amino acid (AA), L-lysine (Lys), avidly consumed Lys, glycine and NaCl but not umami substances. However, when the rats' protein nutrition was normal or when they were recovering from deficiency, a preference for umami substances was evident. These data suggest that the central mechanism for recognition of protein malnutrition may be coupled with umami taste preference. To test this, Lys-deficient and normal rats were employed as a model for taste preference changes. AA levels in plasma and brain remain essentially unchanged throughout the day while the rat is on standard chow but are altered during Lys deficiency. The recognition site for the deficit in the rats' brains was localized to the ventromedial (VMH) and lateral (LHA) hypothalamus as determined by functional magnetic resonance imaging (fMRI, 4.7 Telsa). Studies of single neuron activity in the LHA of Lys-deficient rats suggested that neuronal plasticity occurred. Following Lys deficiency, cells responded specifically to Lys, both iontophoretically applied and during ingestion of AA. Other LHA neurons of nondeficient rats differentially responded to MSG. The present results suggest that the LHA and probably the VMH play important roles in recognition of deficient nutrients. Neural plasticity of hypothalamic cells helps maintain AA homeostasis. Furthermore, a preference for umami substances may be an indicator that the organism (rat or human) is free of protein malnutrition.

  12. Dietary leucine requirement for juvenile large yellow croaker Pseudosciaena crocea (Richardson, 1846)

    Science.gov (United States)

    Li, Yan; Ai, Qinghui; Mai, Kangsen; Xu, Wei; Cheng, Zhenyan; He, Zhigang

    2010-12-01

    Dietary leucine requirement for juvenile large yellow croaker, Pseudosciaena crocea Richardson 1846 (initial body weight 6.0 g ± 0.1 g) was determined using dose-response method. Six isonitogenous (crude protein 43%) and isoenergetic (19 kJ g-1) practical diets containing six levels of leucine (Diets 1-6) ranging from 1.23% to 4.80% (dry matter) were made at about 0.7% increment of leucine. Equal amino acid nitrogen was maintained by replacing leucine with glutamic acid. Triplicate groups of 60 individuals were fed to apparent satiation by hand twice daily (05:00 and 17:30). The water temperature was 26-32°C, salinity 26-30 and dissolved oxygen approximately 7 mg L-1 during the experimental period. Final weight (FW) of large yellow croaker initially increased with increasing level of dietary leucine but then decreased at further higher level of leucine. The highest FW was obtained in fish fed diet with 3.30% Leucine (Diet 4). FW of fish fed the diet with 4.80% Leucine (Diet 6) was significantly lower than those fed Diet 4. However, no significant differences were observed between the other dietary treatments. Feed efficiency (FE) and whole body composition were independent of dietary leucine contents ( P > 0.05). The results indicated that leucine was essential for growth of juvenile large yellow croaker. On the basis of FW, the optimum dietary leucine requirement for juvenile large yellow croaker was estimated to be 2.92% of dry matter (6.79% of dietary protein).

  13. Surgical therapy of lesions within the hypothalamic region

    International Nuclear Information System (INIS)

    Fahlbusch, R.; Schrell, U.

    1985-01-01

    On one hand pituitary microadenomas with autonomous character and those, which had been influenced by hypothalamic disorders, are summarized and discussed. On the other hand, the neurosurgical management of tumours, adjacent to our involved with the hypothalamus, are described. Endocrinologically active pituitary adenomas are characterized by their hormone excess of ACTH, GH, and prolactin. In Cushing's disease endocrine and clinical remission occurred in 74%. 3 patients out of this group showed a reincrease of ACTH after a period of remission, indicating a possible hypothalamic influence. In acromegaly the hypothalamic influence is also discussed. One patient with an ectopic GRF-producing tumour showing a reincrease of GH levels after successful transsphenoidal adenomectomy has been described. In microprolactinomas, 7 patients out of 45 showed a reincrease of prolactin-levels after a period of normalization, we also discussed hypothalamic disorders. Tumours with suprasellar extension such as macroadenomas without endocrine activity and meningiomas are removed nowadays with minimal risk for the life of the patients. In craniopharyngiomas radical excision is accompanied by a high risk of hypothalamic defects caused by mechanical lesions and possible secondary vasospasm. Finally the excision of a hamartoma growing from the floor of the third ventricle into the interpeduncular cistern is discussed. Up to now the successful excision could be documented by endocrinological data, which give no sign of further growth of the hamartoma. (Author)

  14. Leucine Modulates Mitochondrial Biogenesis and SIRT1-AMPK Signaling in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Chunzi Liang

    2014-01-01

    Full Text Available Previous studies from this laboratory demonstrate that dietary leucine protects against high fat diet-induced mitochondrial impairments and stimulates mitochondrial biogenesis and energy partitioning from adipocytes to muscle cells through SIRT1-mediated mechanisms. Moreover, β-hydroxy-β-methyl butyrate (HMB, a metabolite of leucine, has been reported to activate AMPK synergistically with resveratrol in C2C12 myotubes. Therefore, we hypothesize that leucine-induced activation of SIRT1 and AMPK is the central event that links the upregulated mitochondrial biogenesis and fatty acid oxidation in skeletal muscle. Thus, C2C12 myotubes were treated with leucine (0.5 mM, alanine (0.5 mM, valine (0.5 mM, EX527 (SIRT1 inhibitor, 25 μM, and Compound C (AMPK inhibitor, 25 μM alone or in combination to determine the roles of AMPK and SIRT1 in leucine-modulation of energy metabolism. Leucine significantly increased mitochondrial content, mitochondrial biogenesis-related genes expression, fatty acid oxidation, SIRT1 activity and gene expression, and AMPK phosphorylation in C2C12 myotubes compared to the controls, while EX527 and Compound C markedly attenuated these effects. Furthermore, leucine treatment for 24 hours resulted in time-dependent increases in cellular NAD+, SIRT1 activity, and p-AMPK level, with SIRT1 activation preceding that of AMPK, indicating that leucine activation of SIRT1, rather than AMPK, is the primary event.

  15. Kinetics and mechanism of oxidation of L-leucine by alkaline ...

    Indian Academy of Sciences (India)

    forms active sites of enzymes and helps in maintain- ing their proper conformation by keeping them in proper ionic states. So, oxidation of L-leucine may help in understanding some aspects of enzyme kinet- ics. Recent research has discovered that L-leucine acts in a unique way: it can help burn fat without burning muscle.

  16. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy

    NARCIS (Netherlands)

    Lorin, Séverine; Tol, Marc J.; Bauvy, Chantal; Strijland, Anneke; Poüs, Christian; Verhoeven, Arthur J.; Codogno, Patrice; Meijer, Alfred J.

    2013-01-01

    Amino acids, leucine in particular, are known to inhibit autophagy, at least in part by their ability to stimulate MTOR-mediated signaling. Evidence is presented showing that glutamate dehydrogenase, the central enzyme in amino acid catabolism, contributes to leucine sensing in the regulation of

  17. Effect of preeclampsia in the mother on the leucine metabolism in the newborn infant.

    NARCIS (Netherlands)

    Saenz De Pipaon Marcos, M.; Wattimena, D.J.; Beek, R.H. van; Lotgering, F.K.; Sauer, P.J.J.

    2002-01-01

    The leucine turnover in newborn infants is influenced by factors such as nutritional state and corticosteroid treatment. Little is known about maternal factors influencing the leucine turnover in the newborn. In order to approach the effect of preeclampsia in the mother on neonatal protein turnover,

  18. Effect of preeclampsia in the mother on the leucine metabolism in the newborn infant

    NARCIS (Netherlands)

    Marcos, MSD; Wattimena, DJL; Van Beek, RHT; Lotgering, FK; Sauer, PJJ

    2002-01-01

    The leucine turnover in newborn infants is influenced by factors such as nutritional state and corticosteroid treatment. Little is known about maternal factors influencing the leucine turnover in the newborn. In order to approach the effect of preeclampsia in the mother on neonatal protein turnover,

  19. SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion

    DEFF Research Database (Denmark)

    Anderson, Kristin A; Huynh, Frank K; Fisher-Wellman, Kelsey

    2017-01-01

    in leucine oxidation, and we show a primary role for SIRT4 in controlling this pathway in mice. Furthermore, we find that dysregulated leucine metabolism in SIRT4KO mice leads to elevated basal and stimulated insulin secretion, which progressively develops into glucose intolerance and insulin resistance...

  20. Hypothalamic Obesity in Craniopharyngioma Patients: Disturbed Energy Homeostasis Related to Extent of Hypothalamic Damage and Its Implication for Obesity Intervention

    Directory of Open Access Journals (Sweden)

    Christian L. Roth

    2015-09-01

    Full Text Available Hypothalamic obesity (HO occurs in patients with tumors and lesions in the medial hypothalamic region. Hypothalamic dysfunction can lead to hyperinsulinemia and leptin resistance. This review is focused on HO caused by craniopharyngiomas (CP, which are the most common childhood brain tumors of nonglial origin. Despite excellent overall survival rates, CP patients have substantially reduced quality of life because of significant long-term sequelae, notably severe obesity in about 50% of patients, leading to a high rate of cardiovascular mortality. Recent studies reported that both hyperphagia and decreased energy expenditure can contribute to severe obesity in HO patients. Recognized risk factors for severe obesity include large hypothalamic tumors or lesions affecting several medial and posterior hypothalamic nuclei that impact satiety signaling pathways. Structural damage in these nuclei often lead to hyperphagia, rapid weight gain, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue. To date, most efforts to treat HO have shown disappointing long-term success rates. However, treatments based on the distinct pathophysiology of disturbed energy homeostasis related to CP may offer options for successful interventions in the future.

  1. The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis

    Directory of Open Access Journals (Sweden)

    Jan Bakos

    2016-01-01

    Full Text Available The hypothalamus is a source of neural progenitor cells which give rise to different populations of specialized and differentiated cells during brain development. Newly formed neurons in the hypothalamus can synthesize and release various neuropeptides. Although term neuropeptide recently undergoes redefinition, small-size hypothalamic neuropeptides remain major signaling molecules mediating short- and long-term effects on brain development. They represent important factors in neurite growth and formation of neural circuits. There is evidence suggesting that the newly generated hypothalamic neurons may be involved in regulation of metabolism, energy balance, body weight, and social behavior as well. Here we review recent data on the role of hypothalamic neuropeptides in adult neurogenesis and neuritogenesis with special emphasis on the development of food intake and social behavior related brain circuits.

  2. Hypocretin/orexin loss changes the hypothalamic immune response.

    Science.gov (United States)

    Tanaka, Susumu; Takizawa, Nae; Honda, Yoshiko; Koike, Taro; Oe, Souichi; Toyoda, Hiromi; Kodama, Tohru; Yamada, Hisao

    2016-10-01

    Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy. Copyright © 2016 Elsevier Inc. All

  3. Self Assembly of Poly(ethylene oxide-b-lysine-b-leucine) in Dilute Aqueous Solution

    Science.gov (United States)

    Machado, Craig; Barnes, Brooke; Bentz, Kyle; Savin, Daniel

    In general, the self-assembly of amphiphilic block polymers is dictated by the balance of three thermodynamic parameters. When one or more of the blocks exhibits a specific interaction, this balance can be shifted. In this study, the self-assembly of block polypeptides in dilute aqueous solution is examined via light scattering and transmission electron microscopy (TEM). Triblock polymers of poly(ethylene oxide-b-lysine-b-leucine) (PEO-Lys-Leu) with varying lengths of the poly(leucine) block were synthesized in order to study the effect of poly(leucine) block length on assembly behavior. It was observed that the presence of the leucine block facilitates formation of elongated structures such as nanotubes, hydrogels and hierarchical fractal assemblies. In all cases, radius of gyration (Rg) was greater than the hydrodynamic radius (Rh). A clear increase in size of the aggregates can be seen with increasing degree of polymerization of the poly(leucine) block.

  4. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L

    1998-01-01

    Many integral membrane proteins contain leucine-based motifs within their cytoplasmic domains that mediate internalization and intracellular sorting. Two types of leucine-based motifs have been identified. One type is dependent on phosphorylation, whereas the other type, which includes an acidic...... amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  5. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2018-01-01

    Conclusions: Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism.

  6. Leucine improves protein nutritional status and regulates hepatic lipid metabolism in calorie-restricted rats.

    Science.gov (United States)

    Pedroso, João Alfredo B; Nishimura, Luciana Sigueta; de Matos-Neto, Emídio Marques; Donato, Jose; Tirapegui, Julio

    2014-06-01

    Several studies have highlighted the potential of leucine supplementation for the treatment of metabolic diseases including type 2 diabetes and obesity. Caloric restriction is a common approach to improve the health in diabetic and obese subjects. However, very few studies assessed the effects of leucine supplementation in calorie-restricted animals. Rats were subjected to a 30% calorie-restricted diet for 6 weeks to study the effects of leucine supplementation on protein status markers and lipid metabolism. Caloric restriction reduced the body weight. However, increased leucine intake preserved body lean mass and protein mass and improved protein anabolism as indicated by the increased circulating levels of albumin and insulin-like growth factor-1 (IGF-1), and the liver expression of albumin and IGF-1 messenger RNA. Leucine supplementation also increased the circulating levels of interleukin-6 and leptin but did not affect the tumour necrosis factor-α and monocyte chemotactic protein-1 concentrations. Ketone bodies were increased in rats consuming a leucine-rich diet, but we observed no changes in cholesterol or triglycerides concentrations. Caloric restriction reduced the liver expression of peroxisome proliferator activated receptor-α and glucose-6-phosphatase, whereas leucine supplementation increased the liver expression of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA) reductase and sterol regulatory element-binding transcription factor 1. A leucine-rich diet during caloric restriction preserved whole body protein mass and improved markers of protein anabolism. In addition, leucine modulated the hepatic lipid metabolism. These results indicate that increased leucine intake may be useful in preventing excessive protein waste in conditions of large weight loss. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Hypothalamic obesity after treatment for craniopharyngioma: the importance of the home environment

    NARCIS (Netherlands)

    Meijneke, Ruud W. H.; Schouten-van Meeteren, Antoinette Y. N.; de Boer, Nienke Y.; van Zundert, Suzanne; van Trotsenburg, Paul A. S.; Stoelinga, Femke; van Santen, Hanneke M.

    2015-01-01

    Abstract Hypothalamic obesity after treatment for craniopharyngioma is a well-recognized, severe problem. Treatment of hypothalamic obesity is difficult and often frustrating for the patient, the parents and the professional care-giver. Because hypothalamic obesity is caused by an underlying medical

  8. Hypothalamic leptin action is mediated by histone deacetylase 5

    DEFF Research Database (Denmark)

    Kabra, Dhiraj G; Pfuhlmann, Katrin; García-Cáceres, Cristina

    2016-01-01

    Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and...

  9. Functional MRI of human hypothalamic responses following glucose ingestion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Graaf, C. de; Stafleu, A.; Osch, M.J.P. van; Grond, J. van der

    2005-01-01

    The hypothalamus is intimately involved in the regulation of food intake, integrating multiple neural and hormonal signals. Several hypothalamic nuclei contain glucose-sensitive neurons, which play a crucial role in energy homeostasis. Although a few functional magnetic resonance imaging (fMRI)

  10. Effect of Songyu Anshen Fang on expression of hypothalamic GABA ...

    African Journals Online (AJOL)

    hypothalamic GABA and GABA(B) receptor proteins in insomniac rats induced by para-chlorophenylalanine. Xueai Zeng, Junshan Huang, Chunquan Zhou, Xiufeng Wang, Yu Zhang, Yifan. Zhang. Fujian Academy of Traditional Chinese Medicine, Fujian Key Laboratory of Sleep Medicine of Traditional Chinese Medicine,.

  11. MANF regulates hypothalamic control of food intake and body weight.

    Science.gov (United States)

    Yang, Su; Yang, Huiming; Chang, Renbao; Yin, Peng; Yang, Yang; Yang, Weili; Huang, Shanshan; Gaertig, Marta A; Li, Shihua; Li, Xiao-Jiang

    2017-09-18

    The hypothalamus has a vital role in controlling food intake and energy homeostasis; its activity is modulated by neuropeptides and endocrine factors. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor that is also localized in the endoplasmic reticulum (ER) in neurons. Here we show that MANF is highly enriched in distinct nuclei of the mouse hypothalamus, and that MANF expression in the hypothalamus is upregulated in response to fasting. Increasing or decreasing hypothalamic MANF protein levels causes hyperphagia or hypophagia, respectively. Moreover, MANF triggers hypothalamic insulin resistance by enhancing the ER localization and activity of PIP4k2b, a kinase known to regulate insulin signaling. Our findings indicate that MANF influences food intake and body weight by modulating hypothalamic insulin signaling.MANF is a neurotrophic factor that is secreted but also mediates the unfolded protein response acting intracellularly. Here, the authors show that MANF expression in the brain is influenced by nutritional cues, and hypothalamic MANF influences food intake and systemic energy homeostasis.

  12. Increased hypothalamic serotonin turnover in inflammation-induced anorexia

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Witkamp, R.F.; Boekschoten, M.V.; Laak, ter M.C.; Heins, M.S.; Norren, van K.

    2016-01-01

    Background: Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections

  13. Hypothalamic control of energy metabolism via the autonomic nervous system

    NARCIS (Netherlands)

    Kalsbeek, A.; Bruinstroop, E.; Yi, C. X.; Klieverik, L. P.; La Fleur, S. E.; Fliers, E.

    2010-01-01

    The hypothalamic control of hepatic glucose production is an evident aspect of energy homeostasis. In addition to the control of glucose metabolism by the circadian timing system, the hypothalamus also serves as a key relay center for (humoral) feedback information from the periphery, with the

  14. L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Knudsen, P; Kofod, Hans; Lernmark, A

    1983-01-01

    Column perifusion of collagenase-isolated mouse pancreatic islets was used to study the dynamics of insulin release in experiments lasting for several hours. The methyl esters of L-leucine and L-arginine were synthesized. Whereas L-arginine methyl ester (L-arginine OMe) had no effect, L-leucine OMe...... stimulated the release of insulin. The effect of L-leucine OMe was maximal at 5 mmol/liter. Whereas the Km for glucose-stimulated insulin release was unaffected by 1 mmol/liter L-leucine OMe, the maximal release of D-glucose was increased by the amino acid derivative that appeared more effective than L-leucine....... L-Leucine OMe was also a potent stimulus of insulin release from the perfused mouse pancreas. In the presence of 10 mmol/liter L-glutamine, 1 mmol/liter L-leucine OMe induced a 50- to 75-fold increase in insulin release. A similar stimulatory effect was also observed in column-perifused RIN 5F cells...

  15. Leucine Supplementation Accelerates Connective Tissue Repair of Injured Tibialis Anterior Muscle

    Directory of Open Access Journals (Sweden)

    Marcelo G. Pereira

    2014-09-01

    Full Text Available This study investigated the effect of leucine supplementation on the skeletal muscle regenerative process, focusing on the remodeling of connective tissue of the fast twitch muscle tibialis anterior (TA. Young male Wistar rats were supplemented with leucine (1.35 g/kg per day; then, TA muscles from the left hind limb were cryolesioned and examined after 10 days. Although leucine supplementation induced increased protein synthesis, it was not sufficient to promote an increase in the cross-sectional area (CSA of regenerating myofibers (p > 0.05 from TA muscles. However, leucine supplementation reduced the amount of collagen and the activation of phosphorylated transforming growth factor-β receptor type I (TβR-I and Smad2/3 in regenerating muscles (p < 0.05. Leucine also reduced neonatal myosin heavy chain (MyHC-n (p < 0.05, increased adult MyHC-II expression (p < 0.05 and prevented the decrease in maximum tetanic strength in regenerating TA muscles (p < 0.05. Our results suggest that leucine supplementation accelerates connective tissue repair and consequent function of regenerating TA through the attenuation of TβR-I and Smad2/3 activation. Therefore, future studies are warranted to investigate leucine supplementation as a nutritional strategy to prevent or attenuate muscle fibrosis in patients with several muscle diseases.

  16. Leucine elicits myotube hypertrophy and enhances maximal contractile force in tissue engineered skeletal muscle in vitro.

    Science.gov (United States)

    Martin, Neil R W; Turner, Mark C; Farrington, Robert; Player, Darren J; Lewis, Mark P

    2017-10-01

    The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP-1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co-incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly-controlled investigations into nutritional regulation of muscle physiology. © 2017 The Authors. Journal of Cellular Physiology Published by wiley periodicals, Inc.

  17. Effect of burn and first-pass splanchnic leucine extraction on protein kinetics in rats

    International Nuclear Information System (INIS)

    Karlstad, M.D.; DeMichele, S.J.; Istfan, N.; Blackburn, G.L.; Bistrian, B.R.

    1988-01-01

    The effects of burn and first-pass splanchnic leucine extraction (FPE) on protein kinetics and energy expenditure were assessed by measuring O 2 consumption, CO 2 production, nitrogen balance, leucine kinetics, and tissue fractional protein synthetic rates (FSR-%/day) in enterally fed rats. Anesthetized male rats (200 g) were scalded on their dorsum with boiling water (25-30% body surface area) and enterally fed isovolemic diets that provided 60 kcal/day and 2.4 g of amino acids/day for 3 days. Controls were not burned. An intravenous or intragastric infusion of L-[1- 14 C]leucine was used to assess protein kinetics on day 3. FPE was taken as the ratio of intragastric to intravenous plasma leucine specific activity. There was a 69% reduction in cumulative nitrogen balance (P less than 0.001) and a 17-19% increase in leucine oxidation (P less than 0.05) and total energy expenditure (P less than 0.01) in burned rats. A 15% decrease in plasma leucine clearance (P less than 0.05) was accompanied by a 20% increase in plasma [leucine] (P less than 0.01) in burned rats. Burn decreased rectus muscle FSR from 5.0 +/- 0.4 to 3.5 +/- 0.5 (P less than 0.05) and increased liver FSR from 19.0 +/- 0.5 to 39.2 +/- 3.4 (P less than 0.01). First pass extraction of dietary leucine by the splanchnic bed was 8% in controls and 26% in burned rats. Leucine kinetics corrected for FPE showed increased protein degradation with burn that was not evident without FPE correction. This hypermetabolic burn model can be useful in the design of enteral diets that optimize rates of protein synthesis and degradation

  18. Reduction in plasma leucine after sprint exercise is greater in males than in females

    DEFF Research Database (Denmark)

    Esbjörnsson, M; Rooyackers, O; Norman, B

    2012-01-01

    There is a pronounced gender difference in the accumulation of plasma ammonia after sprint exercise. Ammonia is a key intermediate in amino acid metabolism, which implies that gender-related differences in plasma and muscle amino acid concentrations after sprint exercise exist. To study this, thr...... bouts of 30-s sprint exercise were performed by healthy females (n=8) and males (n=6). Blood leucine and muscle leucine were collected over the exercise period. Basal arterial plasma and skeletal muscle leucine were 40% higher in males than females (P...

  19. Low affinity hypothalamic [3H]mazindol binding: a probe for hypothalamic body weight regulation?

    Science.gov (United States)

    Gleiter, C H; Linnoila, M; Nutt, D J

    1989-04-01

    It has been previously suggested that low affinity [3H]mazindol binding in the hypothalamus correlates with body weight and obesity. Low affinity [3H]mazindol binding in hypothalamic crude synaptosome preparations was carried out in normoglycemic obese mice (C57 B1/6J ob/ob) as well as in their lean littermates (C57 B1/6J +/?). NIH Swiss mice were used as additional controls. Furthermore the effect on this binding site of repeated electroconvulsive shock (ECS), a treatment known to change body weight gain, was studied in rats. Neither Bmax nor Kd were altered in obese mice compared with their lean littermates or NIH Swiss mice. The obese mice had a significantly greater body weight and weight gain than either control group. Once-daily ECS over 10 days (which significantly reduced weight gain in rats) did not change binding parameters for [3H]mazindol in hypothalami. The present data do not appear to support the hypothesis that this low affinity binding site has a physiological function in the control of body weight and obesity, at least in the examined paradigm.

  20. Radiobiological half-lives for carbon-14 and hydrogen-3 leucine in man

    International Nuclear Information System (INIS)

    Classic, K.L.; Schwenk, W.F.; Haymond, M.W.

    1986-01-01

    In vivo estimates of protein metabolism in many are often made by oral or intravenous administration of leucine or its ∼-ketoacid, ∼-ketoisocaproate, labeled with 14 C or 3 H. Previous estimates of radiation dose from such tracers have been based on the measurement of 14 CO 2 in breath. Using measurements of the decay of 3 H or 14 C leucine from plasma proteins, longer biological half-lives for these compounds were obtained. The estimated total-body radiation absorbed dose is 0.97 mrad/uCi for [1- 14 C]KIC (or [1- 14 C]leucine) and 0.11 mrad/ + Ci for ]4,5- 3 H]leucine (or [ 3 H]KIC). Assuming administered doses of 100 μCi each, the total-body radiation absorbed dose is still well within the limits set by the FDA for Radioactive Drug Research Committees. 12 references, 3 figures, 3 tables

  1. Isovalerianeacidæmi--en sjælden og alvorlig defekt i nedbrydningen af leucin

    DEFF Research Database (Denmark)

    Lund, Ann-Britt Kiholm; Lund, Allan

    2011-01-01

    Isovaleric acidaemia (IVA) is an organic acidemia caused by deficient metabolism of the essential amino acid leucine. We describe the biochemistry, diagnostics, and treatment of IVA, and present the known Danish patients....

  2. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, David; Strom, Joshua; Chen, Qin M., E-mail: qchen@email.arizona.edu

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  3. Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase.

    Science.gov (United States)

    Tomita, Takeo; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2011-10-28

    Glutamate dehydrogenase (GDH) catalyzes reversible conversion between glutamate and 2-oxoglutarate using NAD(P)(H) as a coenzyme. Although mammalian GDH is regulated by GTP through the antenna domain, little is known about the mechanism of allosteric activation by leucine. An extremely thermophilic bacterium, Thermus thermophilus, possesses GDH with a unique subunit configuration composed of two different subunits, GdhA (regulatory subunit) and GdhB (catalytic subunit). T. thermophilus GDH is unique in that the enzyme is subject to allosteric activation by leucine. To elucidate the structural basis for leucine-induced allosteric activation of GDH, we determined the crystal structures of the GdhB-Glu and GdhA-GdhB-Leu complexes at 2.1 and 2.6 Å resolution, respectively. The GdhB-Glu complex is a hexamer that binds 12 glutamate molecules: six molecules are bound at the substrate-binding sites, and the remaining six are bound at subunit interfaces, each composed of three subunits. The GdhA-GdhB-Leu complex is crystallized as a heterohexamer composed of four GdhA subunits and two GdhB subunits. In this complex, six leucine molecules are bound at subunit interfaces identified as glutamate-binding sites in the GdhB-Glu complex. Consistent with the structure, replacement of the amino acid residues of T. thermophilus GDH responsible for leucine binding made T. thermophilus GDH insensitive to leucine. Equivalent amino acid replacement caused a similar loss of sensitivity to leucine in human GDH2, suggesting that human GDH2 also uses the same allosteric site for regulation by leucine.

  4. Isovalerianeacidæmi--en sjælden og alvorlig defekt i nedbrydningen af leucin

    DEFF Research Database (Denmark)

    Lund, Ann-Britt Kiholm; Lund, Allan

    2011-01-01

    Isovaleric acidaemia (IVA) is an organic acidemia caused by deficient metabolism of the essential amino acid leucine. We describe the biochemistry, diagnostics, and treatment of IVA, and present the known Danish patients.......Isovaleric acidaemia (IVA) is an organic acidemia caused by deficient metabolism of the essential amino acid leucine. We describe the biochemistry, diagnostics, and treatment of IVA, and present the known Danish patients....

  5. Metabolic Mechanism for l-Leucine-Induced Metabolome To Eliminate Streptococcus iniae.

    Science.gov (United States)

    Du, Chao-Chao; Yang, Man-Jun; Li, Min-Yi; Yang, Jun; Peng, Bo; Li, Hui; Peng, Xuan-Xian

    2017-05-05

    Crucial metabolites that modulate hosts' metabolome to eliminate bacterial pathogens have been documented, but the metabolic mechanisms are largely unknown. The present study explores the metabolic mechanism for l-leucine-induced metabolome to eliminate Streptococcus iniae in tilapia. GC-MS-based metabolomics was used to investigate the tilapia liver metabolic profile in the presence of exogenous l-leucine. Thirty-seven metabolites of differential abundance were determined, and 11 metabolic pathways were enriched. Pattern recognition analysis identified serine and proline as crucial metabolites, which are the two metabolites identified in survived tilapias during S. iniae infection, suggesting that the two metabolites play crucial roles in l-leucine-induced elimination of the pathogen by the host. Exogenous l-serine reduces the mortality of tilapias infected by S. iniae, providing a robust proof supporting the conclusion. Furthermore, exogenous l-serine elevates expression of genes IL-1β and IL-8 in tilapia spleen, but not TNFα, CXCR4 and Mx, suggesting that the metabolite promotes a phagocytosis role of macrophages, which is consistent with the finding that l-leucine promotes macrophages to kill both Gram-positive and Gram-negative bacterial pathogens. Therefore, the ability of phagocytosis enhanced by exogenous l-leucine is partly attributed to elevation of l-serine. These results demonstrate a metabolic mechanism by which exogenous l-leucine modulates tilapias' metabolome to enhance innate immunity and eliminate pathogens.

  6. Nutritional efficiency of alpha-ketoisocaproate relative to leucine, assessed isotopically

    Energy Technology Data Exchange (ETDEWEB)

    Kang, C.W.; Walser, M.

    1985-10-01

    The efficiency of alpha-ketoisocaproate as a dietary substitute for leucine was assessed in rats by two techniques: first, the minimal dose of alpha-ketoisocaproate required, as a supplement to a leucine-free diet, to achieve a growth rate as great as animals receiving leucine was found to be between 2.2 and 4.4 times larger. Therefore the nutritional efficiency of alpha-ketoisocaproate lies between 0.23 and 0.46. Second, alpha-(1- UC)-ketoisocaproate and (TH)leucine were administered orally and the ratio of UC/TH incorporated into the leucine of whole-body protein and fibrin was measured. This ratio, divided by the ratio UC/TH injected, was the same in fibrin as in whole-body protein and averaged 0.39. Thus both techniques yield the same value, within the error of measurement, for the relative nutritional efficiency of alpha-ketoisocaproate. The authors also found that alpha-ketoisocaproate feeding at varying dosage did not alter this ratio in whole-body protein, suggesting that neither wide variations in growth rate nor exposure for 10 days to alpha-ketoisocaproate alters the relative rates of utilization (or oxidation) of alpha-ketoisocaproate vs. leucine.

  7. Leucine nutrition in animals and humans: mTOR signaling and beyond.

    Science.gov (United States)

    Li, Fengna; Yin, Yulong; Tan, Bie; Kong, Xiangfeng; Wu, Guoyao

    2011-11-01

    Macronutrients, such as protein or amino acid, not only supply calories but some components may also play as signaling molecules to affect feeding behavior, energy balance, and fuel efficiency. Leucine, a branched-chain amino acid is a good example. After structural roles are satisfied, the ability of leucine to function as signal and oxidative substrate is based on a sufficient intracellular concentration. Therefore, leucine level must be sufficiently high to play the signaling and metabolic roles. Leucine is not only a substrate for protein synthesis of skeletal muscle, but also plays more roles beyond that. Leucine activates signaling factor of mammalian target of rapamycin (mTOR) to promote protein synthesis in skeletal muscle and in adipose tissue. It is also a major regulator of the mTOR sensitive response of food intake to high protein diet. Meanwhile, leucine regulates blood glucose level by promoting gluconeogenesis and aids in the retention of lean mass in a hypocaloric state. It is beneficial to animal nutrition and clinical application and extrapolation to humans.

  8. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    Directory of Open Access Journals (Sweden)

    Antonio eZorzano

    2015-06-01

    Full Text Available Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1 cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy. Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

  9. Differential sensitivity to nicotine among hypothalamic magnocellular neurons

    DEFF Research Database (Denmark)

    Mikkelsen, J D; Jacobsen, Julie; Kiss, Adrian Emil

    2012-01-01

    The magnocellular neurons in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) either contain vasopressin or oxytocin. Even though both hormones are released after systemic administration of nicotine, the mechanism through which the two populations of neurons are activated...... is not known. This study was carried out in the rat to investigate the effect of increasing doses of nicotine on subsets of magnocellular neurons containing either oxytocin or vasopressin....

  10. Regulation of Prolactin in Mice with Altered Hypothalamic Melanocortin Activity

    Science.gov (United States)

    Dutia, Roxanne; Kim, Andrea J.; Mosharov, Eugene; Savontaus, Eriika; Chua, Streamson C.; Wardlaw, Sharon L.

    2012-01-01

    This study used two mouse models with genetic manipulation of the melanocortin system to investigate prolactin regulation. Mice with overexpression of the melanocortin receptor (MC-R) agonist, α-melanocyte-stimulating hormone (Tg-MSH) or deletion of the MC-R antagonist agouti-related protein (AgRP KO) were studied. Male Tg-MSH mice had lower blood prolactin levels at baseline (2.9±0.3 vs 4.7±0.7 ng/ml) and after restraint stress(68 ±6.5 vs 117±22 ng/ml) versus WT (pprolactin content was not different. Blood prolactin was also decreased in male AgRP KO mice at baseline (4.2±0.5 vs 7.6±1.3 ng/ml) and after stress (60±4.5 vs 86.1±5.7 ng/ml) vs WT (p prolactin content was lower in male AgRP KO mice (4.3±0.3 vs 6.7±0.5 μg/pituitary, p prolactin levels were observed in female AgRP KO mice versus WT. Hypothalamic dopamine activity was assessed as the potential mechanism responsible for changes in prolactin levels. Hypothalamic tyrosine hydroxylase mRNA was measured in both genetic models versus WT mice and hypothalamic dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) content were measured in male AgRP KO and WT mice but neither were significantly different. However, these results do not preclude changes in dopamine activity as dopamine turnover was not directly investigated. This is the first study to show that baseline and stress-induced prolactin release and pituitary prolactin content are reduced in mice with genetic alterations of the melanocortin system and suggests that changes in hypothalamic melanocortin activity may be reflected in measurements of serum prolactin levels. PMID:22800691

  11. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines

    Directory of Open Access Journals (Sweden)

    Ophélia Le Thuc

    2017-08-01

    Full Text Available The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.

  12. Tryptophan availability modulates serotonin release from rat hypothalamic slices

    Science.gov (United States)

    Schaechter, Judith D.; Wurtman, Richard J.

    1989-01-01

    The relationship between the tryptophan availability and serononin release from rat hypothalamus was investigated using a new in vitro technique for estimating rates at which endogenous serotonin is released spontaneously or upon electrical depolarization from hypothalamic slices superfused with a solution containing various amounts of tryptophan. It was found that the spontaneous, as well as electrically induced, release of serotonin from the brain slices exhibited a dose-dependent relationship with the tryptophan concentration of the superfusion medium.

  13. Functional hypothalamic amenorrhoea — diagnostic challenges, monitoring, and treatment.

    Science.gov (United States)

    Sowińska-Przepiera, Elżbieta; Andrysiak-Mamos, Elżbieta; Jarząbek-Bielecka, Grażyna; Walkowiak, Aleksandra; Osowicz-Korolonek, Lilianna; Syrenicz, Małgorzata; Kędzia, Witold; Syrenicz, Anhelli

    2015-01-01

    Functional hypothalamic amenorrhoea (FHA) is associated with functional inhibition of the hypothalamic-pituitary-ovarian axis. Causes of FHA can be classified into the three groups: 1) stress-related factors, 2) consequences of weight loss and/or underweight, and 3) consequences of physical exercise or practicing sports. Diagnosis of FHA should be based on a history of menstrual disorders. During physical examination, patients with FHA present with secondary and tertiary sex characteristics specific for the pubertal stage preceding development of the condition and with the signs of hypoestrogenism. Laboratory results determine further management of patients with amenorrhea, and thus their correct interpretation is vital for making appropriate therapeutic decisions. Treatment of chronic anovulation, menstrual disorders, and secondary amenorrhea resulting from hypothalamic disorders should be aimed at the elimination of the primary cause, i.e. a decrease in psycho-emotional strain, avoidance of chronic stressors, reduction of physical exercise level, or optimisation of BMI in patients who lose weight. If menses do not resume after a period of six months or primary causative treatment is not possible, neutralisation of hypoestrogenism consequences, especially unfavourable effects on bone metabolism, become the main issue. Previous studies have shown that oestroprogestagen therapy is useful in both the treatment of menstrual disorders and normalisation of bone mineral density. Hormonal preparations should be introduced into therapeutic protocol on an individualised basis.

  14. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Science.gov (United States)

    Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.

    2018-01-01

    The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362

  15. Central apelin-13 administration modulates hypothalamic control of feeding.

    Science.gov (United States)

    Ferrante, C; Orlando, G; Recinella, L; Leone, S; Chiavaroli, A; Di Nisio, C; Shohreh, R; Manippa, F; Ricciuti, A; Vacca, M; Brunetti, L

    2016-01-01

    The 77 amino prepropeptide apelin has been isolated from bovine stomach tissue and several smaller fragments, including apelin-13, showed high affinity for the orphan APJ receptor. The distribution of apelinergic fibers and receptors in the hypothalamus may suggest a role of apelin-13 on energy balance regulation, albeit the studies reporting the acute effects of apelin on feeding control are inconsistent. Considering the possible involvement of apelinergic system on hypothalamic appetite controlling network, in the present study we evaluated in the rat the effects of intrahypothalamic apelin-13 injection on food intake and the involvement of orexigenic and anorexigenic hypothalamic peptides and neurotransmitters. Eighteen rats (6 for each group of treatment) were injected into the ARC with either vehicle or apelin-13 (1-2 μg/rat). Food intake and hypothalamic peptide and neurotransmitter levels were evaluated 2 and 24 h after injection. Compared to vehicle, apelin-13 administration increased food intake both 2 and 24 h following treatment. This effect could be related to inhibited cocaine- and amphetamine-regulated transcript (CART) gene expression and serotonin (5-hydroxytryptamine, 5-HT) synthesis and release, and increased orexin A gene expression in the hypothalamus.

  16. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Directory of Open Access Journals (Sweden)

    Lucy A. Heap

    2018-01-01

    Full Text Available The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC/stratum griseum periventriculare (SPV, and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.

  17. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs

    KAUST Repository

    Alam, Tanvir

    2014-05-29

    LD motifs (leucine-aspartic acidmotifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs. © 2014 Biochemical Society.

  18. Aminotransferases and Leucine Aminopeptidase Activity in Blood Plasma of Chickens

    International Nuclear Information System (INIS)

    Kraljevic, P.; Stojevic, Z.; Milinkovic-Tur, S.; Simpraga, M.; Miljanic, S.

    1998-01-01

    It has been reported that irradiation of mammals by gama-rays cause increase of some enzyme activity in their blood plasma (Miller and Gates 1949; Milch and Albaum 1959; Hughes 1958; Miholjcic et al. 1979). In our previous papers (Kraljevic et al., 1982; Kraljevic and Emanovic 1993) it has been shown that activities of some enzymes in the blood plasma of chickens after an intramuscular injection of radioactive isotope 32 P. In this paper an attempt has been made to investigate the influence of gamma-ray irradiation of the whole body of chickens upon activity of some enzymes in their blood plasma. We also wanted to investigate whether the activity of aspartate-aminotransferase (AST), alanine aminotransferase (ALT) and leucine-aminopeptidase (LAP) may serve as an additional test for functional liver damage in chickens caused by gamma-ray. Fifty day old hybrid male chickens of heavy Jata breeds were irradiated by gamma-ray in the dose of 7,23±0,95 Gy. Blood samples were taken from the wing vein on days 1, 3, 5, 7, 9 and 15 after irradiation. Activity of AST, ALT, and LAP in the blood plasma were determined spectrophotometrically using Boehringer Mannheim GmbH optimized kits. At the end of the experiment all birds were sacrificed and, as well as died birds were photomorphologically and histologically investigated. The obtained results showed decrease of activity of all three enzymes during the whole period of investigation, but significant decrease showed only AST and LAP. It seems that both enzymes may serve as additional test for functional liver damage in chickens by external gamma-rays. (author)

  19. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins

    Science.gov (United States)

    Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P.

    2016-01-01

    Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422

  20. Hypothalamic obesity in patients with craniopharyngioma: Profound changes of several weight regulatory circuits

    Directory of Open Access Journals (Sweden)

    Christian eRoth

    2011-10-01

    Full Text Available One of the most striking examples of dysfunctional hypothalamic signaling of energy homeostasis is observed in patients with hypothalamic lesions leading to hypothalamic obesity (HO. This drastic condition is frequently seen in patients with craniopharyngioma (CP, an embryological tumor located in the hypothalamic and/or pituitary region, frequently causing not only hypopituitarism, but also leading to damage of medial hypothalamic nuclei due to the tumor and its treatment. HO syndrome in CP patients is characterized by fatigue, decreased physical activity, uncontrolled appetite, and morbid obesity, and is associated with insulin and leptin resistance. Mechanisms leading to the profoundly disturbed energy homeostasis are complex. This review summarizes different aspects of important clinical studies as well as data obtained in rodent studies. In addition a model is provided describing how medial hypothalamic lesion can interact simultaneously with several weight regulating circuitries.

  1. Role and metabolism of free leucine in skeletal muscle in protein sparing action of dietary carbohydrate and fat

    International Nuclear Information System (INIS)

    Nakano, Kiwao; Ishikawa, Tamotsu

    1977-01-01

    Feeding rats with either a carbohydrate meal or a fat meal to the previously fasted rats caused significant decrease in urinary output of urea and total nitrogen. The content of free leucine in skeletal muscle decreased in the rats fed either a carbohydrate meal or a fat meal. Feeding of either a carbohydrate meal or a fat meal stimulated incorporation of L-leucine-1- 14 C into protein fraction of skeletal muscle and reduced its oxidation to 14 CO 2 . These results suggest that the metabolism of leucine is under nutritional regulation and that the decrease in content of free leucine in skeletal muscle might be caused by enhanced reutilization of leucine into protein by the feeding of a carbohydrate meal or a fat meal. The role of free leucine in skeletal muscle as a regulator of protein turnover in the tissue are discussed in relation to the metabolism of this branched chain amino acid. (auth.)

  2. Differentiation of hypothalamic-like neurons from human pluripotent stem cells.

    Science.gov (United States)

    Wang, Liheng; Meece, Kana; Williams, Damian J; Lo, Kinyui Alice; Zimmer, Matthew; Heinrich, Garrett; Martin Carli, Jayne; Leduc, Charles A; Sun, Lei; Zeltser, Lori M; Freeby, Matthew; Goland, Robin; Tsang, Stephen H; Wardlaw, Sharon L; Egli, Dieter; Leibel, Rudolph L

    2015-02-01

    The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) obtained from patients with monogenetic forms of obesity. Combined early activation of sonic hedgehog signaling followed by timed NOTCH inhibition in human ESCs/iPSCs resulted in efficient conversion into hypothalamic NKX2.1+ precursors. Application of a NOTCH inhibitor and brain-derived neurotrophic factor (BDNF) further directed the cells into arcuate nucleus hypothalamic-like neurons that express hypothalamic neuron markers proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AGRP), somatostatin, and dopamine. These hypothalamic-like neurons accounted for over 90% of differentiated cells and exhibited transcriptional profiles defined by a hypothalamic-specific gene expression signature that lacked pituitary markers. Importantly, these cells displayed hypothalamic neuron characteristics, including production and secretion of neuropeptides and increased p-AKT and p-STAT3 in response to insulin and leptin. Our results suggest that these hypothalamic-like neurons have potential for further investigation of the neurophysiology of body weight regulation and evaluation of therapeutic targets for obesity.

  3. Reviewing the Effects of l-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    João A.B. Pedroso

    2015-05-01

    Full Text Available Leucine is a well-known activator of the mammalian target of rapamycin (mTOR. Because mTOR signaling regulates several aspects of metabolism, the potential of leucine as a dietary supplement for treating obesity and diabetes mellitus has been investigated. The objective of the present review was to summarize and discuss the available evidence regarding the mechanisms and the effects of leucine supplementation on the regulation of food intake, energy balance, and glucose homeostasis. Based on the available evidence, we conclude that although central leucine injection decreases food intake, this effect is not well reproduced when leucine is provided as a dietary supplement. Consequently, no robust evidence indicates that oral leucine supplementation significantly affects food intake, although several studies have shown that leucine supplementation may help to decrease body adiposity in specific conditions. However, more studies are necessary to assess the effects of leucine supplementation in already-obese subjects. Finally, although several studies have found that leucine supplementation improves glucose homeostasis, the underlying mechanisms involved in these potential beneficial effects remain unknown and may be partially dependent on weight loss.

  4. Leucine Differentially Regulates Gene-Specific Translation in Mouse Skeletal Muscle.

    Science.gov (United States)

    Drummond, Micah J; Reidy, Paul T; Baird, Lisa M; Dalley, Brian K; Howard, Michael T

    2017-09-01

    Background: Amino acids, especially leucine, are particularly effective in promoting protein synthesis. Leucine is known to increase the rate of protein synthesis in skeletal muscle through the mechanistic target of rapamycin complex 1-dependent, as well as -independent, signaling pathways. However, the overall translation program is poorly defined, and it is unknown how the activation of these pathways differentially controls the translation of specific mRNAs. Objective: Ribosome profiling and RNA sequencing were used to precisely define the translational program activated by an acute oral dose of leucine. Methods: Adult male C57BL/6 mice were deprived of food overnight before the delivery of an acute dose of l-leucine (9.4 mg) ( n = 6) or vehicle ( n = 5) and tissues collected 30 min later. Ribosome footprints and total RNA were isolated and subjected to deep sequencing. Changes in gene-specific mRNA abundance and ribosome occupancy were determined between the leucine-treated and control groups by aligning sequence reads to Reference Sequence database mRNAs and applying statistical features of the Bioconductor package edgeR. Results: Our data revealed mRNA features that confer translational control of skeletal muscle mRNAs in response to an acute dose of leucine. The subset of skeletal muscle mRNAs that are activated consists largely of terminal oligopyrimidine mRNAs (false discovery rate: translation had 5' untranslated regions with increased length. Only the small nuclear RNAs, which are required for ribosome biogenesis, were significantly altered in RNA abundance. The inferred functional translational program activated by dietary leucine includes increased protein synthesis capacity and energy metabolism, upregulation of sarcomere-binding proteins, modulation of circadian rhythm, and suppression of select immune components. Conclusions: These results clarify the translation program acutely stimulated by leucine in mouse skeletal muscle and establish new

  5. Infusion and sampling site effects on two-pool model estimates of leucine metabolism

    International Nuclear Information System (INIS)

    Helland, S.J.; Grisdale-Helland, B.; Nissen, S.

    1988-01-01

    To assess the effect of site of isotope infusion on estimates of leucine metabolism infusions of alpha-[4,5-3H]ketoisocaproate (KIC) and [U- 14 C]leucine were made into the left or right ventricles of sheep and pigs. Blood was sampled from the opposite ventricle. In both species, left ventricular infusions resulted in significantly lower specific radioactivities (SA) of [ 14 C]leucine and [ 3 H]KIC. [ 14 C]KIC SA was found to be insensitive to infusion and sampling sites. [ 14 C]KIC was in addition found to be equal to the SA of [ 14 C]leucine only during the left heart infusions. Therefore, [ 14 C]KIC SA was used as the only estimate for [ 14 C]SA in the equations for the two-pool model. This model eliminated the influence of site of infusion and blood sampling on the estimates for leucine entry and reduced the impact on the estimates for proteolysis and oxidation. This two-pool model could not compensate for the underestimation of transamination reactions occurring during the traditional venous isotope infusion and arterial blood sampling

  6. Endocrine responses and acute mTOR pathway phosphorylation to resistance exercise with leucine and whey

    Directory of Open Access Journals (Sweden)

    MT Lane

    2017-02-01

    Full Text Available Leucine ingestion reportedly activates the mTOR pathway in skeletal muscle, contributing to a hypertrophy response. The purpose of the study was to compare the post-resistance exercise effects of leucine and whey protein supplementation on endocrine responses and muscle mTOR pathway phosphorylation. On visit 1, subjects (X±SD; n=20; age=27.8±2.8yrs provided baseline blood samples for analysis of cortisol, glucose and insulin; a muscle biopsy of the vastus lateralis muscle to assess mTOR signaling pathway phosphorylation; and were tested for maximum strength on the leg press and leg extension exercises. For visits 2 and 3, subjects were randomized in a double-blind crossover design to ingest either leucine and whey protein (10g+10g; supplement or a non-caloric placebo. During these visits, 5 sets of 10 repetitions were performed on both exercises, immediately followed by ingestion of the supplement or placebo. Blood was sampled 30 min post-, and a muscle biopsy 45 min post-exercise. Western blots quantified total and phosphorylated proteins. Insulin increased (α<.05 with supplementation with no change in glucose compared to placebo. Relative phosphorylation of AKT and rpS6 were greater with leucine and whey supplementation compared to placebo. Supplementation of leucine and whey protein immediately after heavy resistance exercise increases anabolic signaling in human skeletal muscle.

  7. Hypothalamic-pituitary-adrenal axis suppression in asthmatic school children.

    Science.gov (United States)

    Zöllner, Ekkehard Werner; Lombard, Carl J; Galal, Ushma; Hough, F Stephen; Irusen, Elvis M; Weinberg, Eugene

    2012-12-01

    Hypothalamic-pituitary-adrenal axis suppression (HPAS) when treating children with corticosteroids is thought to be rare. Our objective was to determine the prevalence of and predictive factors for various degrees of HPAS. Clinical features of HPAS, doses, adherence, asthma score, and lung functions were recorded in 143 asthmatic children. The overnight metyrapone test was performed if morning cortisol was >83 nmol/L. Spearman correlations coefficients (r) were calculated between 3 postmetyrapone outcomes and each continuous variable. A multiple linear regression model of √postmetyrapone adrenocorticotropic hormone (ACTH) and a logistic regression model for HPAS were developed. Hypocortisolemia was seen in 6.1% (1.8-10.5), hypothalamic-pituitary suppression (HPS) in 22.2% (14.5-29.9), adrenal suppression in 32.3% (23.7-40.9), HPAS in 16.3% (9.3-23.3), and any hypothalamic-pituitary-adrenal axis dysfunction in 65.1% (56.5-72.9). Log daily nasal steroid (NS) dose/m(2) was associated with HPAS in the logistic regression model (odds ratio = 3.7 [95% confidence interval: 1.1-13.6]). Daily inhaled corticosteroids (ICSs) + NS dose/m(2) predicted HPAS in the univariate logistic regression model (P = .038). Forced expiratory volume in 1 second/forced vital capacity HPAS (odds ratio = 4.1 [95% confidence interval: 1.0-14.8]). Daily ICS + NS/m(2) dose was correlated with the postmetyrapone ACTH (r = -0.29, P HPAS are NS use, BMI, and adherence to ICS and NS.

  8. Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis.

    Science.gov (United States)

    Hillard, Cecilia J; Beatka, Margaret; Sarvaideo, Jenna

    2016-12-06

    The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system. A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity. The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain. We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress. We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists. We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine. We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol. These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized. © 2017 American Physiological Society. Compr Physiol 7:1-15, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  9. Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center.

    Science.gov (United States)

    Siemens, Jan; Kamm, Gretel B

    2018-01-27

    Temperature affects all aspects of life down to the diffusion rates of biologically active molecules and reaction rates of enzymes. The reciprocal argument holds true as well and every biological process down to enzymatic reactions influences temperature. In order to assure biological stability, mammalian organisms possess the remarkable ability to maintain internal body temperature within a narrow range, which in humans and mice is close to 37 °C, despite wide environmental temperature variations and different rates of internal heat production. Nevertheless, body temperature is not a static property but adaptively regulated upon physiological demands and in the context of pathological conditions. The brain region that has been primarily associated with internal temperature regulation is the preoptic area and the anterior portion of the hypothalamus. Similar to a thermostat, this brain area detects deep brain temperature, integrates temperature information from peripheral body sensors, and-based on these inputs--controls body temperature homeostasis. Discovered more than a century ago, we still know comparatively little about the molecular and cellular make-up of the hypothalamic thermoregulatory center. After a brief historic outline that led to the discovery of the thermoregulatory center, we here review recent studies that have considerably advanced our understanding of hypothalamic thermoregulation. We touch upon proposed mechanisms of intrinsic deep brain temperature detection and focus on newly identified hypothalamic cell populations that mediate thermoregulatory responses and that provide novel entry points not only to shed light on the mechanistic underpinnings of the thermoregulatory center but also to probe its therapeutic value.

  10. Methamphetamine and the hypothalamic-pituitary-adrenal axis

    Directory of Open Access Journals (Sweden)

    Damian Gabriel Zuloaga

    2015-05-01

    Full Text Available Psychostimulants such as methamphetamine (MA induce significant alterations in the function of the hypothalamic-pituitary-adrenal (HPA axis. These changes in HPA axis function are associated with altered stress-related behaviors and might contribute to addictive processes such as relapse. In this mini-review we discuss acute and chronic effects of MA (adult and developmental exposure on the HPA axis, including effects on HPA axis associated genes/proteins, brain regions, and behaviors such as anxiety and depression. A better understanding of the mechanisms through which MA affects the HPA axis may lead to more effective treatment strategies for MA addiction.

  11. [Hypothalamic-hypophyseal-gonadal axis in chronic alcoholic patients].

    Science.gov (United States)

    Rallo, R; Fermoso, J; Ramos, F; González-Calvo, V; Marañón, Y A

    1979-01-01

    Eleven male chronic alcoholics without cirrhosis but with clinical features of alcoholism were studied. Ten healthy men of similar age served as controls. After suppressing hormone (FSH), luteinizing hormone (LH), 17-beta-oestradiol (E2) and testosterone were determined in basal conditions and after administration of clomiphene citrate in each case. Basal levels of FSH, LH and E2 were higher and the testosterone level lower in the alcoholic group. After stimulation, there was no difference in gonadal hormone levels between both groups, suggesting a normal hypothalamic-pituitary axis with an adequate gonadal response.

  12. Use of the [14C]Leucine Incorporation Technique To Measure Bacterial Production in River Sediments and the Epiphyton

    Science.gov (United States)

    Fischer, Helmut; Pusch, Martin

    1999-01-01

    Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [14C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 μM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 μM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined. PMID:10508068

  13. Impaired intracortical transmission in G2019S leucine rich-repeat kinase Parkinson patients.

    Science.gov (United States)

    Ponzo, Viviana; Di Lorenzo, Francesco; Brusa, Livia; Schirinzi, Tommaso; Battistini, Stefania; Ricci, Claudia; Sambucci, Manolo; Caltagirone, Carlo; Koch, Giacomo

    2017-05-01

    A mutation in leucine-rich repeat kinase 2 is the most common cause of hereditary Parkinson's disease (PD), yet the neural mechanisms and the circuitry potentially involved are poorly understood. We used different transcranial magnetic stimulation protocols to explore in the primary motor cortex the activity of intracortical circuits and cortical plasticity (long-term potentiation) in patients with the G2019S leucine-rich repeat kinase 2 gene mutation when compared with idiopathic PD patients and age-matched healthy subjects. Paired pulse transcranial magnetic stimulation was used to investigate short intracortical inhibition and facilitation and short afferent inhibition. Intermittent theta burst stimulation, a form of repetitive transcranial magnetic stimulation, was used to test long-term potentiation-like cortical plasticity. Leucine-rich repeat kinase 2 and idiopathic PD were tested both in ON and in OFF l-dopa therapy. When compared with idiopathic PD and healthy subjects, leucine-rich repeat kinase 2 PD patients showed a remarkable reduction of short intracortical inhibition in both ON and in OFF l-dopa therapy. This reduction was paralleled by an increase of intracortical facilitation in OFF l-dopa therapy. Leucine-rich repeat kinase 2 PD showed abnormal long-term potentiation-like cortical plasticity in ON l-dopa therapy. The motor cortex in leucine-rich repeat kinase 2 mutated PD patients is strongly disinhibited and hyperexcitable. These abnormalities could be a result of an impairment of inhibitory (gamma-Aminobutyric acid) transmission eventually related to altered neurotransmitter release. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  14. Measurement of L-[1-14C]leucine kinetics in splanchnic and leg tissues in humans. Effect of amino acid infusion

    International Nuclear Information System (INIS)

    Gelfand, R.A.; Glickman, M.G.; Castellino, P.; Louard, R.J.; DeFronzo, R.A.

    1988-01-01

    Although whole-body leucine flux is widely measured to study body protein turnover in humans, the contribution of specific tissues to the total-body measurement remains unknown. By combining the organ-balance technique with the systemic infusion of L-[1-14C]leucine, we quantitated leucine production and disposal by splanchnic and leg tissues and by the whole body, simultaneously, in six normal men before and during amino acid infusion. At steady state, disposal of arterial leucine by splanchnic and leg tissues was calculated from the percent extraction (E) of L-[1-14C]leucine counts: uptake = E x [Leu]a x flow. Tissue release of cold leucine (from protein turnover) into vein was calculated as the difference between leucine uptake and the net tissue leucine balance. In the postabsorptive state, despite substantial (P less than .01) extraction of L-[1-14C]leucine by splanchnic (23 +/- 1%) and leg (18 +/- 2%) tissues, net leucine balance across both tissue beds was small, indicating active simultaneous disposal and production of leucine at nearly equivalent rates. Splanchnic tissues accounted for approximately 50% of the measured total-body leucine flux. During amino acid infusion, the net leucine balance across splanchnic and leg tissues became positive, reflecting not only an increase in leucine uptake but also a marked suppression (by approximately 50%, P less than .02) of cold leucine release. This reduction in splanchnic and leg leucine release was indicated by a sharp decline in whole-body endogenous leucine flux

  15. EFFECT OF ANESTHETIZING THE REGION OF THE PARAVENTRICULAR HYPOTHALAMIC NUCLEI ON ENERGY-METABOLISM DURING EXERCISE IN THE RAT

    NARCIS (Netherlands)

    VANDIJK, G; VISSING, J; STEFFENS, AB; GALBO, H

    The ventromedial and posterior hypothalamic nuclei are known to influence glucoregulation during exercise. The extensive projections of the paraventricular hypothalamic nucleus (PVN) to the sympathetic nervous system suggest that the PVN also may be involved in glucoregulation during exercise. The

  16. Hepatic vagotomy alters limbic and hypothalamic neuropeptide responses to insulin-dependent diabetes and voluntary lard ingestion

    NARCIS (Netherlands)

    la Fleur, Susanne E.; Manalo, Sotara L.; Roy, Monica; Houshyar, Hani; Dallman, Mary F.

    2005-01-01

    Hypothalamic anorexigenic [corticotropin-releasing factor (CRF) and proopiomelanocortin] peptides decrease and the orexigen, neuropeptide Y, increases with diabetic hyperphagia. However, when diabetic rats are allowed to eat lard (saturated fat) as well as chow, both caloric intake and hypothalamic

  17. Synthesis of (S)-leucine-13C3 and its metabolites

    International Nuclear Information System (INIS)

    Yuan, S.S.; Foos, J.

    1981-01-01

    A synthesis for (S)-2-amino-4-methyl- 13 C-pentanoic-2,5- 13 C 2 acid ((S)-leucine- 13 C 3 ) is described. The alkyl chain was constructed by condensing acetone-1,3- 13 C 2 with triethyl phosphonacetate-1- 13 C to form 3-methyl- 13 C-2-butenoic-1,4- 13 C 2 acid (beta-methylcrotonic- 13 C 3 acid) and this was reduced to 3-methyl- 13 C-butanal-1,4- 13 C 2 (isovaleryl aldehyde- 13 C 3 ). Conversion to (S)-leucine- 13 C 3 was accomplished via the Strecker synthesis followed by enzymatic resolution. (author)

  18. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Kim, Young-Mo; Wei, Siwei

    2017-01-01

    correlation was observed between the responses on the transcript and protein levels. Combination of DGA1 overexpression with nitrogen limitation resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular......, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered...

  19. Surgical excision of hypothalamic hamartoma in a twenty months old boy with precocious puberty

    Directory of Open Access Journals (Sweden)

    Rajesh K Ghanta

    2011-01-01

    Full Text Available A twenty months old boy presented to our department with true precocious puberty due to hypothalamic hamartoma. Total surgical excision of pedunculated hypothalamic hamartoma was done successfully by the pterional trans-sylvian approach as he could not afford medical management. Patient had uneventful post-operative course with normalization of serum testosterone levels and regression of secondary sexual characters.

  20. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Vidarsdottir, S.; Graaf, de C.; Stafleu, A.; Osch, M.J.P.; Viergever, M.A.; Pijl, H.; Grond, van der J.

    2007-01-01

    Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am J Physiol Endocrinol Metab 293: E754-E758, 2007. First published June 12, 2007; doi:10.1152/ajpendo.00231.2007. - We previously showed that hypothalamic neuronal activity, as measured by the blood

  1. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion

    NARCIS (Netherlands)

    Smeets, P.A.M.; Vidarsdottir, S.; Graaf, C. de; Stafleu, A.; Osch, M.J.P. van; Viergever, M.A.; Pijl, H.; Grond, J. van der

    2007-01-01

    We previously showed that hypothalamic neuronal activity, as measured by the blood oxygen level-dependent (BOLD) functional MRI signal, declines in response to oral glucose intake. To further explore the mechanism driving changes in hypothalamic neuronal activity in response to an oral glucose load,

  2. Hypothalamic signaling in anorexia induced by indispensable amino acid deficiency.

    Science.gov (United States)

    Zhu, Xinxia; Krasnow, Stephanie M; Roth-Carter, Quinn R; Levasseur, Peter R; Braun, Theodore P; Grossberg, Aaron J; Marks, Daniel L

    2012-12-15

    Animals exhibit a rapid and sustained anorexia when fed a diet that is deficient in a single indispensable amino acid (IAA). The chemosensor for IAA deficiency resides within the anterior piriform cortex (APC). Although the cellular and molecular mechanisms by which the APC detects IAA deficiency are well established, the efferent neural pathways that reduce feeding in response to an IAA-deficient diet remain to be fully characterized. In the present work, we investigated whether 1) central melanocortin signaling is involved in IAA deficiency-induced anorexia (IAADA) and 2) IAADA engages other key appetite-regulating neuronal populations in the hypothalamus. Rats and mice that consumed a valine-deficient diet (VDD) for 2-3 wk exhibited marked reductions in food intake, body weight, fat and lean body mass, body temperature, and white adipose tissue leptin gene expression, as well as a paradoxical increase in brown adipose tissue uncoupling protein-1 mRNA. Animals consuming the VDD had altered hypothalamic gene expression, typical of starvation. Pharmacological and genetic blockade of central melanocortin signaling failed to increase long-term food intake in this model. Chronic IAA deficiency was associated with a marked upregulation of corticotropin-releasing hormone expression in the lateral hypothalamus, particularly in the parasubthalamic nucleus, an area heavily innervated by efferent projections from the APC. Our observations indicate that the hypothalamic melanocortin system plays a minor role in acute, but not chronic, IAADA and suggest that the restraint on feeding is analogous to that observed after chronic dehydration.

  3. Interictal spike EEG source analysis in hypothalamic hamartoma epilepsy.

    Science.gov (United States)

    Leal, Alberto J R; Passão, Vitorina; Calado, Eulália; Vieira, José P; Silva Cunha, João P

    2002-12-01

    The epilepsy associated with the hypothalamic hamartomas constitutes a syndrome with peculiar seizures, usually refractory to medical therapy, mild cognitive delay, behavioural problems and multifocal spike activity in the scalp electroencephalogram (EEG). The cortical origin of spikes has been widely assumed but not specifically demonstrated. We present results of a source analysis of interictal spikes from 4 patients (age 2-25 years) with epilepsy and hypothalamic hamartoma, using EEG scalp recordings (32 electrodes) and realistic boundary element models constructed from volumetric magnetic resonance imaging (MRIs). Multifocal spike activity was the most common finding, distributed mainly over the frontal and temporal lobes. A spike classification based on scalp topography was done and averaging within each class performed to improve the signal to noise ratio. Single moving dipole models were used, as well as the Rap-MUSIC algorithm. All spikes with good signal to noise ratio were best explained by initial deep sources in the neighbourhood of the hamartoma, with late sources located in the cortex. Not a single patient could have his spike activity explained by a combination of cortical sources. Overall, the results demonstrate a consistent origin of spike activity in the subcortical region in the neighbourhood of the hamartoma, with late spread to cortical areas.

  4. The hypothalamic neuropeptide FF network is impaired in hypertensive patients.

    Science.gov (United States)

    Goncharuk, Valeri D; Buijs, Ruud M; Jhamandas, Jack H; Swaab, Dick F

    2014-07-01

    The human hypothalamus contains the neuropeptide FF (NPFF) neurochemical network. Animal experiments demonstrated that NPFF is implicated in the central cardiovascular regulation. We therefore studied expression of this peptide in the hypothalamus of individuals who suffered from essential hypertension (n = 8) and died suddenly due to acute myocardial infarction (AMI), and compared to that of healthy individuals (controls) (n = 6) who died abruptly due to mechanical trauma of the chest. The frozen right part of the hypothalamus was cut coronally into serial sections of 20 μm thickness, and each tenth section was stained immunohistochemically using antibody against NPFF. The central section through each hypothalamic nucleus was characterized by the highest intensity of NPFF immunostaining and thus was chosen for quantitative densitometry. In hypertensive patients, the area occupied by NPFF immunostained neuronal elements in the central sections through the suprachiasmatic nucleus (SCh), paraventricular hypothalamic nucleus (Pa), bed nucleus of the stria terminalis (BST), perinuclear zone (PNZ) of the supraoptic nucleus (SON), dorso- (DMH), ventromedial (VMH) nuclei, and perifornical nucleus (PeF) was dramatically decreased compared to controls, ranging about six times less in the VMH to 15 times less in the central part of the BST (BSTC). The NPFF innervation of both nonstained neuronal profiles and microvasculature was extremely poor in hypertensive patients compared to control. The decreased NPFF expression in the hypothalamus of hypertensive patients might be a cause of impairment of its interaction with other neurochemical systems, and thereby might be involved in the pathogenesis of the disease.

  5. A treasure trove of hypothalamic neurocircuitries governing body weight homeostasis.

    Science.gov (United States)

    Vianna, Claudia R; Coppari, Roberto

    2011-01-01

    Changes in physical activities and feeding habits have transformed the historically rare disease of obesity into a modern metabolic pandemic. Obesity occurs when energy intake exceeds energy expenditure over time. This energy imbalance significantly increases the risk for cardiovascular disease and type 2 diabetes mellitus and as such represents an enormous socioeconomic burden and health threat. To combat obesity, a better understanding of the molecular mechanisms and neurocircuitries underlying normal body weight homeostasis is required. In the 1940s, pioneering lesion experiments unveiled the importance of medial and lateral hypothalamic structures. In the 1980s and 1990s, several neuropeptides and peripheral hormones critical for appropriate feeding behavior, energy expenditure, and hence body weight homeostasis were identified. In the 2000s, results from metabolic analyses of genetically engineered mice bearing mutations only in selected neuronal groups greatly advanced our knowledge of the peripheral/brain feedback-loop modalities by which central neurons control energy balance. In this review, we will summarize these recent progresses with particular emphasis on the biochemical identities of hypothalamic neurons and molecular components underlying normal appetite, energy expenditure, and body weight homeostasis. We will also parse which of those neurons and molecules are critical components of homeostatic adaptive pathways against obesity induced by hypercaloric feeding.

  6. Glutamate and GABA as rapid effectors of hypothalamic peptidergic neurons

    Directory of Open Access Journals (Sweden)

    Cornelia eSchöne

    2012-11-01

    Full Text Available Vital hypothalamic neurons regulating hunger, wakefulness, reward-seeking, and body weight are often defined by unique expression of hypothalamus-specific neuropeptides. Gene-ablation studies show that some of these peptides, notably orexin/hypocretin (hcrt/orx, are themselves critical for stable states of consciousness and metabolic health. However, neuron-ablation studies often reveal more severe phenotypes, suggesting key roles for co-expressed transmitters. Indeed, most hypothalamic neurons, including hcrt/orx cells, contain fast transmitters glutamate and GABA, as well as several neuropeptides. What are the roles and relations between different transmitters expressed by the same neuron? Here, we consider signaling codes for releasing different transmitters in relation to transmitter and receptor diversity in behaviorally-defined, widely-projecting peptidergic neurons, such as hcrt/orx cells. We then discuss latest optogenetic studies of endogenous transmitter release from defined sets of axons in situ, which suggest that recently-characterized vital peptidergic neurons (e.g. hcrt/orx, proopiomelanocortin , and agouti-related peptide cells, as well as classical modulatory neurons (e.g. dopamine and acetylcholine cells, all use fast transmitters to control their postsynaptic targets. These optogenetic insights are complemented by recent observations of behavioral deficiencies caused by genetic ablation of fast transmission from specific neuropeptidergic and aminergic neurons. Powerful and fast (millisecond-scale GABAergic and glutamatergic signaling from neurons previously considered to be primarily modulatory raises new questions about the roles of slower co-transmitters they co-express.

  7. MRI of the hypothalamic-pituitary axis in children

    Energy Technology Data Exchange (ETDEWEB)

    Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Kiortsis, Dimitrios Nikiforos [University of Ioannina, Department of Physiology, Medical School, Ioannina (Greece)

    2005-11-01

    In childhood, the MR characteristics of the normal pituitary gland are well established. During the first 2 months of life the adenohypophysis demonstrates high signal. Pituitary gland height (PGH) decreases during the 1st year of life and then increases, reaching a plateau after puberty. The magnetization transfer ratio (MTR) increases in both sexes up to the age of 20 years. On dynamic contrast-enhanced studies, the posterior pituitary lobe enhances simultaneously with the straight sinus, and the adenohypophysis later, but within 30 s. In genetically determined dysfunctional states, the adenohypophysis may be normal, hypoplastic, or enlarged. Pituitary enlargement, observed in Prop 1 gene mutations, is characterized by a mass interposed between the anterior and posterior lobes. An ectopic posterior lobe (EPP), associated with a hypoplastic or absent pituitary stalk, may be observed in patients with hypopituitarism. Tumors of the hypothalamic-pituitary (HP) axis may be the origin of adenohypophyseal deficiencies. A small hypointense adenohypophysis is found in iron overload states and is often associated with hypogonadotrophic hypogonadism. Absence of the posterior lobe bright signal, with or without a thick pituitary stalk or a mass at any site from the median eminence to the posterior pituitary lobe, may be found in diabetes insipidus. Hydrocephalus, suprasellar arachnoid cysts, hypothalamic hamartomas and craniopharyngiomas may result in central precocious puberty (CPP). Increased PGH in girls with idiopathic CPP is useful for its differential diagnosis from premature thelarche (PT). Pituitary adenomas, observed mainly in adolescents, present the same MR characteristics as those in adults. (orig.)

  8. Functional hypothalamic amenorrhea and its influence on women's health.

    Science.gov (United States)

    Meczekalski, B; Katulski, K; Czyzyk, A; Podfigurna-Stopa, A; Maciejewska-Jeske, M

    2014-11-01

    Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea. There are three types of FHA: weight loss-related, stress-related, and exercise-related amenorrhea. FHA results from the aberrations in pulsatile gonadotropin-releasing hormone (GnRH) secretion, which in turn causes impairment of the gonadotropins (follicle-stimulating hormone and luteinizing hormone). The final consequences are complex hormonal changes manifested by profound hypoestrogenism. Additionally, these patients present mild hypercortisolemia, low serum insulin levels, low insulin-like growth factor 1 (IGF-1) and low total triiodothyronine. The aim of this work is to review the available data concerning the effects of FHA on different aspects of women's health. Functional hypothalamic amenorrhea is related to profound impairment of reproductive functions including anovulation and infertility. Women's health in this disorder is disturbed in several aspects including the skeletal system, cardiovascular system, and mental problems. Patients manifest a decrease in bone mass density, which is related to an increase in fracture risk. Therefore, osteopenia and osteoporosis are the main long-term complications of FHA. Cardiovascular complications include endothelial dysfunction and abnormal changes in the lipid profile. FHA patients present significantly higher depression and anxiety and also sexual problems compared to healthy subjects. FHA patients should be carefully diagnosed and properly managed to prevent both short- and long-term medical consequences.

  9. Cloning and characterization of an aromatic amino acid and leucine permease of Penicillium chrysogenum

    NARCIS (Netherlands)

    Trip, Hein; Evers, Melchior E.; Konings, Wil N.; Driessen, Arnold J.M.

    2002-01-01

    The gene encoding the amino acid permease ArlP (Aromatic and leucine Permease) was isolated from the filamentous fungus Penicillium chrysogenum after PCR using degenerated oligonucleotides based on conserved regions of fungal amino acid permeases. The cDNA clone was used for expression of the

  10. Kinetics and mechanism of oxidation of L-leucine by alkaline ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 124, No. 4, July 2012, pp. 809–819. c Indian Academy of Sciences. Kinetics and mechanism of oxidation of L-leucine by alkaline ... Post Graduate Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India e-mail: ... anism of this drug by DPC, there was a need for under- standing the ...

  11. 3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers

    Science.gov (United States)

    Meyer, Scott C.

    2015-01-01

    An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…

  12. An EThcD-Based Method for Discrimination of Leucine and Isoleucine Residues in Tryptic Peptides

    Science.gov (United States)

    Zhokhov, Sergey S.; Kovalyov, Sergey V.; Samgina, Tatiana Yu.; Lebedev, Albert T.

    2017-08-01

    An EThcD-based approach for the reliable discrimination of isomeric leucine and isoleucine residues in peptide de novo sequencing procedure has been proposed. A multistage fragmentation of peptide ions was performed with Orbitrap Elite mass spectrometer in electrospray ionization mode. At the first stage, z-ions were produced by ETD or ETcaD fragmentation of doubly or triply charged peptide precursor ions. These primary ions were further fragmented by HCD with broad-band ion isolation, and the resulting w-ions showed different mass for leucine and isoleucine residues. The procedure did not require manual isolation of specific z-ions prior to HCD stage. Forty-three tryptic peptides (3 to 27 residues) obtained by trypsinolysis of human serum albumin (HSA) and gp188 protein were analyzed. To demonstrate a proper solution for radical site migration problem, three non-tryptic peptides were also analyzed. A total of 93 leucine and isoleucine residues were considered and 83 of them were correctly identified. The developed approach can be a reasonable substitution for additional Edman degradation procedure, which is still used in peptide sequencing for leucine and isoleucine discrimination.

  13. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast.

    Science.gov (United States)

    Aris, John P; Alvers, Ashley L; Ferraiuolo, Roy A; Fishwick, Laura K; Hanvivatpong, Amanda; Hu, Doreen; Kirlew, Christine; Leonard, Michael T; Losin, Kyle J; Marraffini, Michelle; Seo, Arnold Y; Swanberg, Veronica; Westcott, Jennifer L; Wood, Michael S; Leeuwenburgh, Christiaan; Dunn, William A

    2013-10-01

    We have previously shown that autophagy is required for chronological longevity in the budding yeast Saccharomyces cerevisiae. Here we examine the requirements for autophagy during extension of chronological life span (CLS) by calorie restriction (CR). We find that autophagy is upregulated by two CR interventions that extend CLS: water wash CR and low glucose CR. Autophagy is required for full extension of CLS during water wash CR under all growth conditions tested. In contrast, autophagy was not uniformly required for full extension of CLS during low glucose CR, depending on the atg allele and strain genetic background. Leucine status influenced CLS during CR. Eliminating the leucine requirement in yeast strains or adding supplemental leucine to growth media extended CLS during CR. In addition, we observed that both water wash and low glucose CR promote mitochondrial respiration proficiency during aging of autophagy-deficient yeast. In general, the extension of CLS by water wash or low glucose CR was inversely related to respiration deficiency in autophagy-deficient cells. Also, autophagy is required for full extension of CLS under non-CR conditions in buffered media, suggesting that extension of CLS during CR is not solely due to reduced medium acidity. Thus, our findings show that autophagy is: (1) induced by CR, (2) required for full extension of CLS by CR in most cases (depending on atg allele, strain, and leucine availability) and, (3) promotes mitochondrial respiration proficiency during aging under CR conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Lipid-protein interactions. The leucine transport system of Lactococcus lactis.

    NARCIS (Netherlands)

    Veld, Geertruida Elisabeth in 't

    1992-01-01

    In summary, it is concluded, that a functionally reconstituted leucine transport system of L. lactis is affected by bilayer features in the following order of importance: lipid headgroup (H+-bonding) › acyl chain carbon number (thickness) › cholesterol (fluidity) › acyl chain unsaturation (indirect

  15. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, A M; Lauritsen, F R

    2004-01-01

    Staphylococcus xylosus is an important starter culture in the production of flavours from the branched-chain amino acids leucine, valine and isoleucine in fermented meat products. The sensorially most important flavour compounds are the branched-chain aldehydes and acids derived from...

  16. Gibberellic acid, amino acids (glycine and L-leucine), vitamin B2 ...

    African Journals Online (AJOL)

    SAM

    2014-03-14

    Mar 14, 2014 ... The combined effects of zinc, gibberellic acid, vitamin B2, amino acids (glycine and L-leucine) on pigment production were evaluated in a liquid culture of Monascus purpureus. In this study, response surface design was used to optimize each parameter. The data were analyzed using Minitab 14 software.

  17. Gibberellic acid, amino acids (glycine and L-leucine), vitamin B 2 ...

    African Journals Online (AJOL)

    The combined effects of zinc, gibberellic acid, vitamin B2, amino acids (glycine and L-leucine) on pigment production were evaluated in a liquid culture of Monascus purpureus. In this study, response surface design was used to optimize each parameter. The data were analyzed using Minitab 14 software. Five parameters ...

  18. Dose-dependent effects of leucine supplementation on preservation of muscle mass in cancer cachectic mice

    NARCIS (Netherlands)

    Peters, S.J.; Helvoort, van A.; Kegler, D.; Argiles, J.M.; Luiking, Y.C.; Laviano, A.; Bergenhenegouwen, van J.; Deutz, N.E.P.; Haagsman, H.P.; Gorselink, M.; Norren, van K.

    2011-01-01

    Cancer cachexia, which is characterized by muscle wasting, is associated with increased morbidity and mortality. Because muscle protein synthesis may be increased and protein breakdown reduced by leucine supplementation, we used the C26 tumor-bearing cachectic mouse model to assess the effects of

  19. Positive selection in the leucine-rich repeat domain of Gro1 genes in ...

    Indian Academy of Sciences (India)

    Positive selection in the leucine-rich repeat domain of Gro1 genes in. Solanum species. Valentino Ruggieri, Angelina Nunziata and Amalia Barone. J. Genet. 93, 755–765. Rank of templates representing the top ten threading templates used by I-TASSER. Rank. PDB hit. Iden1. Iden2. Cov. Norm. Z-score. 1. 4mn8A. 0.22.

  20. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1996-01-01

    Several cell surface receptors including the T cell receptor (TCR) are phosphorylated and down-regulated following activation of protein kinases. We have recently shown that both phosphorylation of Ser-126 and the presence of the di-leucine sequence Leu-131 and Leu-132 in CD3 gamma are required...

  1. Leucine-protein supplemented recovery feeding enhances subsequent cycling performance in well-trained men.

    Science.gov (United States)

    Thomson, Jasmine S; Ali, Ajmol; Rowlands, David S

    2011-04-01

    The purpose of this study was to determine whether a practical leucine-protein, high-carbohydrate postexercise feeding regimen could improve recovery, as measured by subsequent cycling performance and mechanistic markers, relative to control feeding. In a crossover, 10 male cyclists performed 2- to 2.5-h interval training bouts on 3 consecutive evenings, ingesting either leucine-protein, high-carbohydrate nutrition (0.1/0.4/1.2/0.2 g·kg(-1)·h(-1); leucine, protein, carbohydrate, fat, respectively) or isocaloric control (0.06/1.6/0.2 g·kg(-1)·h(-1); protein, carbohydrate, fat, respectively) nutrition for 1.5 h postexercise. Throughout the experimental period diet was controlled, energy and macronutrient intake balanced, and protein intake clamped at 1.6 g·kg(-1)·day(-1). The alternate supplement was provided the next morning, thereby isolating the postexercise nutrition effect. Following 39 h of recovery, cyclists performed a repeat-sprint performance test. Postexercise leucine-protein ingestion improved mean sprint power by 2.5% (99% confidence limit, ±2.6%; p = 0.013) and reduced perceived overall tiredness during the sprints by 13% (90% confidence limit, ±9.2%), but perceptions of leg tiredness and soreness were unaffected. Before exercise, creatine-kinase concentration was lowered by 19% (90% confidence limits, ±18%), but lactate dehydrogenase and pressure-pain threshold were unaltered. There was a small reduction in anger (25% ± 18%), but other moods were unchanged. Plasma leucine (3-fold) and essential amino acid (47%) concentrations were elevated postexercise. Net nitrogen balance trended mildly negative in both conditions (mean ± SD: leucine-protein, -20 ± 46 mg·kg(-1) per 24 h; control, -25 ± 36 mg·kg(-1) per 24 h). The ingestion of a leucine-protein supplement along with other high-carbohydrate food following intense training on consecutive days enhances subsequent high-intensity endurance performance and may attenuate

  2. Dietary leucine--an environmental modifier of insulin resistance acting on multiple levels of metabolism.

    Directory of Open Access Journals (Sweden)

    Yazmin Macotela

    Full Text Available Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor--leucine--can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or high fat diet (HFD. Dietary leucine was doubled by addition to the drinking water. mRNA, protein and complete metabolomic profiles were assessed in the major insulin sensitive tissues and serum, and correlated with changes in glucose homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest changes in a single environmental/nutrient factor can modify multiple metabolic and signaling pathways and modify HFD induced metabolic syndrome by acting at a systemic level on multiple tissues. These data also suggest that increasing dietary leucine may provide an adjunct in the management of obesity-related insulin resistance.

  3. Hypothalamic obesity after craniopharyngioma: mechanisms, diagnosis, and treatment

    Directory of Open Access Journals (Sweden)

    Robert H. Lustig

    2011-11-01

    Full Text Available Obesity is a common complication after craniopharyngioma therapy, occurring in up to 75% of survivors. Its weight gain is unlike that of normal obesity, in that it occurs even with caloric restriction, and attempts at lifestyle modification are useless to prevent or treat the obesity. The pathogenesis of this condition involves the inability to transduce afferent hormonal signals of adiposity, in effect mimicking a state of CNS starvation. Efferent sympathetic activity drops, resulting in malaise and reduced energy expenditure, and vagal activity increases, resulting in increased insulin secretion and adipogenesis. Lifestyle intervention is essentially useless in this syndrome, termed hypothalamic obesity. Pharmacologic treatment is also difficult, consisting of adrenergics to mimic sympathetic activity, or suppression of insulin secretion with octreotide, or both. Recently, bariatric surgery (Roux-en-Y gastric bypass, laparoscopic gastric banding, truncal vagotomy have also been attempted with variable results. Early and intensive management is required to mitigate the obesity and its negative consequences.

  4. Idiopathic hypothalamic hypogonadotropic hypogonadism with polyostotic fibrous dysplasia.

    Science.gov (United States)

    Shires, R; Whyte, M P; Avioli, L V

    1979-10-01

    A 22-year-old woman had polyostotic fibrous dysplasia (POFD) and idiopathic hypothalamic hypogonadotropic hypogonadism (isolated gonadotropin deficiency). Recurrent fracture of dysplastic bone during childhood was associated with primary amenorrhea, clinical and laboratory evidence of estrogen deficiency, and subnormal circulating and urinary gonadotropin levels during adolescence. Gonadorelin (luteinizing hormone-releasing hormone) stimulation initially showed a luteinizing hormone (LH) response but absent follicle-stimulating hormone (FSH) response. After three months without estrogen and progesterone and after four days of gonadorelin "priming," a subsequent gonadorelin infusion produced an enhanced LH and FSH response. All other tests of peripheral and trophic hormone levels and pituitary trophic hormone reserves were normal. Whereas POFD is known to occur with sexual precocity and other endocrinopathies, to our knowledge this is the first report of its association with isolated gonadotropin deficiency.

  5. Hypothalamic digoxin, hemispheric dominance, and neurobiology of love and affection.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-05-01

    The human hypothalamus produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neuronal transmission. The digoxin status and neurotransmitter patterns were studied in individuals with a predilection to fall in love. It was also studied in individuals with differing hemispheric dominance to find out the role of cerebral dominance in this respect. In individuals with a predilection to fall in love there was decreased digoxin synthesis, increased membrane Na+-K+ ATPase activity, decreased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern correlated with that obtained in left hemispheric chemical dominance. Hemispheric dominance and hypothalamic digoxin could regulate the predisposition to fall in love.

  6. Effects of mazindol on rat lateral hypothalamic neurons.

    Science.gov (United States)

    Sikdar, S K; Oomura, Y; Inokuchi, A

    1985-07-01

    In order to elucidate the mechanism of action of the anorectic drug, mazindol, effects of electrophoretically applied mazindol were examined on glucose-sensitive and non glucose-sensitive neurons in the rat lateral hypothalamic area (LHA), which is functionally important in food intake control. Mazindol was found to significantly suppress the firing rate of glucose-sensitive neurons. Ouabain a Na-K pump inhibitor, attenuated mazindol induced suppression of neuronal firing rate. Intracellular recordings revealed hyperpolarization of the membrane with no change in membrane conductance by perfusion of brain slice with 0.1 mM mazindol in bath. This was similar to the effect of 30 mM glucose. Results suggest that the inhibitory action of mazindol is mediated by activation of the Na-K pump. Spiroperidol, a dopamine antagonist, did not affect the inhibitory response to mazindol, suggesting direct action of mazindol on LHA neurons, independent of dopamine.

  7. Desipramine inhibits histamine H1 receptor-induced Ca2+ signaling in rat hypothalamic cells.

    Directory of Open Access Journals (Sweden)

    Ji-Ah Kang

    Full Text Available The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca(2+ evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca(2+ increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca(2+ increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants.

  8. Desipramine inhibits histamine H1 receptor-induced Ca2+ signaling in rat hypothalamic cells.

    Science.gov (United States)

    Kang, Ji-Ah; Lee, Keimin; Lee, Kwang Min; Cho, Sukhee; Seo, Jinsoo; Hur, Eun-Mi; Park, Chul-Seung; Baik, Ja-Hyun; Choi, Se-Young

    2012-01-01

    The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca(2+) evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca(2+) increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca(2+) increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants.

  9. Pathophysiology and clinical characteristics of hypothalamic obesity in children and adolescents

    Directory of Open Access Journals (Sweden)

    Ja Hye Kim

    2013-12-01

    Full Text Available The hypothalamus plays a key role in the regulation of body weight by balancing the intake of food, energy expenditure, and body fat stores, as evidenced by the fact that most monogenic syndromes of morbid obesity result from mutations in genes expressed in the hypothalamus. Hypothalamic obesity is a result of impairment in the hypothalamic regulatory centers of body weight and energy expenditure, and is caused by structural damage to the hypothalamus, radiotherapy, Prader-Willi syndrome, and mutations in the LEP, LEPR, POMC, MC4R and CART genes. The pathophysiology includes loss of sensitivity to afferent peripheral humoral signals, such as leptin, dysregulated insulin secretion, and impaired activity of the sympathetic nervous system. Dysregulation of 11β-hydroxysteroid dehydrogenase 1 activity and melatonin may also have a role in the development of hypothalamic obesity. Intervention of this complex entity requires simultaneous targeting of several mechanisms that are deranged in patients with hypothalamic obesity. Despite a great deal of theoretical understanding, effective treatment for hypothalamic obesity has not yet been developed. Therefore, understanding the mechanisms that control food intake and energy homeostasis and pathophysiology of hypothalamic obesity can be the cornerstone of the development of new treatments options. Early identification of patients at-risk can relieve the severity of weight gain by the provision of dietary and behavioral modification, and antiobesity medication. This review summarizes recent advances of the pathophysiology, endocrine characteristics, and treatment strategies of hypothalamic obesity.

  10. Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK.

    Science.gov (United States)

    Liu, M; Alimov, A P; Wang, H; Frank, J A; Katz, W; Xu, M; Ke, Z-J; Luo, J

    2014-05-16

    Obesity and eating disorders are prevailing health concerns worldwide. It is important to understand the regulation of food intake and energy metabolism. Thiamine (vitamin B1) is an essential nutrient. Thiamine deficiency (TD) can cause a number of disorders in humans, such as Beriberi and Wernicke-Korsakoff syndrome. We demonstrated here that TD caused anorexia in C57BL/6 mice. After feeding a TD diet for 16days, the mice displayed a significant decrease in food intake and an increase in resting energy expenditure (REE), which resulted in a severe weight loss. At the 22nd day, the food intake was reduced by 69% and 74% for male and female mice, respectively in TD group. The REE increased by ninefolds in TD group. The loss of body weight (17-24%) was similar between male and female animals and mainly resulted from the reduction of fat mass (49% decrease). Re-supplementation of thiamine (benfotiamine) restored animal's appetite, leading to a total recovery of body weight. The hypothalamic adenosine monophosphate-activated protein kinase (AMPK) is a critical regulator of food intake. TD inhibited the phosphorylation of AMPK in the arcuate nucleus (ARN) and paraventricular nucleus (PVN) of the hypothalamus without affecting its expression. TD-induced inhibition of AMPK phosphorylation was reversed once thiamine was re-supplemented. In contrast, TD increased AMPK phosphorylation in the skeletal muscle and upregulated the uncoupling protein (UCP)-1 in brown adipose tissues which was consistent with increased basal energy expenditure. Re-administration of thiamine stabilized AMPK phosphorylation in the skeletal muscle as well as energy expenditure. Taken together, TD may induce anorexia by inhibiting hypothalamic AMPK activity. With a simultaneous increase in energy expenditure, TD caused an overall body weight loss. The results suggest that the status of thiamine levels in the body may affect food intake and body weight. Copyright © 2014 IBRO. Published by Elsevier Ltd

  11. Nano spray-dried pyrazinamide-L-leucine dry powders, physical properties and feasibility used as dry powder aerosols.

    Science.gov (United States)

    Kaewjan, Kanogwan; Srichana, Teerapol

    2016-01-01

    The aim of this study was to investigate the effect of adding L-leucine and using an ethanolic solvent on the physicochemical properties and aerodynamic behavior of nano spray-dried pyrazinamide (PZA)-L-leucine powders. A nano spray dryer was employed to prepare PZA-L-leucine powders. The physicochemical properties were evaluated using a scanning electron microscope (SEM), differential scanning calorimetry and X-ray diffraction. The Andersen cascade impactor was used to evaluate the in vitro aerosolization performance of the sprayed powders. The incorporation of L-leucine at 10% improved the percentage fine particle fraction (%FPF) in all ethanolic solvent formulations by up to nearly twofold (20.0-23.4%) compared to the normal spray-dried PZA of (8.8-13.0%). Changes in the particle density and morphology were also observed. The dense solid particles of PZA were completely converted to bulk hollow particles with a thin shell by increasing the L-leucine content up to 50%. Higher ethanol concentration resulted in larger dimensions of the hollow particle but did not directly affect the aerosolization performance. The co-spray dried PZA with 20% L-leucine in a 10% ethanol feed solvent gave the best aerosolization performance (FPF = 33.0%). The co-spray dried PZA with a suitable L-leucine content using a nano spray drying technique could be applied to formulate the PZA DPI.

  12. Long-term leucine supplementation reduces fat mass gain without changing body protein status of aging rats.

    Science.gov (United States)

    Vianna, Daiana; Resende, Gabriela Fulin Teodoro; Torres-Leal, Francisco Leonardo; Pantaleão, Lucas Carminatti; Donato, Jose; Tirapegui, Julio

    2012-02-01

    Aging is characterized by alterations in body composition such as an increase in body fat and decreases in muscle mass (sarcopenia) and bone density (osteopenia). Leucine supplementation has been shown to acutely stimulate protein synthesis and to decrease body fat. However, the long-term effect of consistent leucine supplementation is not well defined. This study investigated the effect of leucine supplementation during aging. Six-month-old rats were divided into three groups: an adult group (n = 10) euthanized at 6 mo of age, a leucine group (n = 16) that received a diet supplemented with 4% leucine for 40 wk, and a control group (n = 19) that received the control diet for 40 wk. The following parameters were evaluated: body weight, food intake, chemical carcass composition, indicators of acquired chronic diseases, and indicators of protein nutritional status. Body weight and fat were lower in the leucine group after 40 wk of supplementation compared with the control group but still higher than in the adult group. The lipid and glycemic profiles were equally altered in the control and leucine groups because of aging. In addition, leucine supplementation did not affect the changes in protein status parameters associated with aging, such as decreases in body and muscle protein and total serum protein. The results indicate that leucine supplementation attenuates body fat gain during aging but does not affect risk indicators of acquired chronic diseases. Furthermore, supplemented animals did not show signs of a prevention of the decrease in lean mass associated with aging. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus in the rat: role of the hypothalamic paraventricular nucleus.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kawabe

    Full Text Available The mechanism of cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus (ARCN was studied in urethane-anesthetized adult male Wistar rats. At the baseline mean arterial pressure (BLMAP close to normal, ARCN stimulation elicited decreases in MAP and sympathetic nerve activity (SNA. The decreases in MAP elicited by ARCN stimulation were attenuated by either gamma-aminobutyric acid (GABA, neuropeptide Y (NPY, or beta-endorphin receptor blockade in the ipsilateral hypothalamic paraventricular nucleus (PVN. Combined blockade of GABA-A, NPY1 and opioid receptors in the ipsilateral PVN converted the decreases in MAP and SNA to increases in these variables. Conversion of inhibitory effects on the MAP and SNA to excitatory effects following ARCN stimulation was also observed when the BLMAP was decreased to below normal levels by an infusion of sodium nitroprusside. The pressor and tachycardic responses to ARCN stimulation at below normal BLMAP were attenuated by blockade of melanocortin 3/4 (MC3/4 receptors in the ipsilateral PVN. Unilateral blockade of GABA-A receptors in the ARCN increased the BLMAP and heart rate (HR revealing tonic inhibition of the excitatory neurons in the ARCN. ARCN stimulation elicited tachycardia regardless of the level of BLMAP. ARCN neurons projecting to the PVN were immunoreactive for glutamic acid decarboxylase 67 (GAD67, NPY, and beta-endorphin. These results indicated that: 1 at normal BLMAP, decreases in MAP and SNA induced by ARCN stimulation were mediated via GABA-A, NPY1 and opioid receptors in the PVN, 2 lowering of BLMAP converted decreases in MAP following ARCN stimulation to increases in MAP, and 3 at below normal BLMAP, increases in MAP and HR induced by ARCN stimulation were mediated via MC3/4 receptors in the PVN. These results provide a base for future studies to explore the role of ARCN in cardiovascular diseases.

  14. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity.

    Science.gov (United States)

    Oyola, Mario G; Handa, Robert J

    2017-09-01

    Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.

  15. Leucine supplementation improves acquired growth hormone resistance in rats with protein-energy malnutrition.

    Science.gov (United States)

    Gao, Xuejin; Tian, Feng; Wang, Xinying; Zhao, Jie; Wan, Xiao; Zhang, Li; Wu, Chao; Li, Ning; Li, Jieshou

    2015-01-01

    Protein-energy malnutrition (PEM) can lead to growth hormone (GH) resistance. Leucine supplementation diets have been shown to increase protein synthesis in muscles. Our study aimed at investigating if long-term leucine supplementation could modulate GH-insulin-like growth factor (IGF)-1 system function and mammalian target of rapamycin (mTOR)-related signal transduction in skeletal muscles in a rat model of severe malnutrition. Male Sprague-Dawley rats (n = 50; weight, 302 ± 5 g) were divided into 5 treatment groups, including 2 control groups (a normal control group that was fed chow and ad libitum water [CON, n = 10] and a malnourished control group [MC, n = 10] that was fed a 50% chow diet). After undergoing a weight loss stage for 4 weeks, rats received either the chow diet (MC-CON, n = 10), the chow diet supplemented with low-dose leucine (MC-L, n = 10), or the chow diet supplemented with high-dose leucine (MC-H, n = 10) for 2 weeks. The muscle masses of the gastrocnemius, soleus, and extensor digitorum longus were significantly reduced in the MC group. Re-feeding increased muscle mass, especially in the MC-L and MC-H groups. In the MC group, serum IGF-1, IGF-binding protein (IGFBP)-3, and hepatic growth hormone receptor (GHR) levels were significantly decreased and phosphorylation of the downstream anabolic signaling effectors protein kinase B (Akt), mTOR, and ribosomal protein S6 kinase 1 (S6K1) were significantly lower than in other groups. However, serum IGF-1 and IGF binding protein (IGFBP)-3 concentrations and hepatic growth hormone receptor (GHR) levels were significantly higher in the MC-L and MC-H groups than in the MC-CON group, and serum IGFBP-1 levels was significantly reduced in the MC-L and MC-H groups. These changes were consistent with those observed for hepatic mRNA expression levels. Phosphorylation of the downstream anabolic signaling effectors Akt, mTOR, and S6K1 were also significantly higher in the MC-L and MC-H groups than in the MC

  16. Neonatal GLP1R activation limits adult adiposity by durably altering hypothalamic architecture

    Directory of Open Access Journals (Sweden)

    Andrea V. Rozo

    2017-07-01

    Conclusion: These observations suggest that the acute activation of GLP1R in neonates durably alters hypothalamic architecture to limit adult weight gain and adiposity, identifying GLP1R as a therapeutic target for obesity prevention.

  17. Effects of inhaled (S)-linalool on hypothalamic gene expression in rats under restraint stress.

    Science.gov (United States)

    Yamamoto, Naoto; Fujiwara, Satoshi; Saito-Iizumi, Kana; Kamei, Asuka; Shinozaki, Fumika; Watanabe, Yuki; Abe, Keiko; Nakamura, Akio

    2013-01-01

    Linalool has two enantiomers, (R)-linalool and (S)-linalool. Both are known to possess several biological activities in stressed animals. Our previous work revealed that inhalation of (R)-linalool altered hypothalamic gene expression in rats under stress. In the present study, we monitored hypothalamic gene expression in restrained rats with and without (S)-linalool inhalation by DNA microarray. The entire gene expression profile showed that inhalation of (S)-linalool significantly changed the expression levels of 316 hypothalamic genes in the restrained rats. The differentially expressed genes (e.g., App, Avp, Igf2, Igfbp2, Sst and Syt5) were found to relate to cell-to-cell signaling and nervous system development. These results indicate that (S)-linalool influences hypothalamic gene expression in restrained rats, and that inhalation of (S)-linalool under the stressed condition has some effects on stress-related biological responses.

  18. Obesity, overeating, and rapid gastric emptying in rats with ventromedial hypothalamic lesions.

    Science.gov (United States)

    Duggan, J P; Booth, D A

    1986-02-07

    Measurements confirm the quantitative theoretical prediction that the autonomic nonendocrine abnormality of rapid daytime gastric emptying is the major primary cause of the obesity resulting from ventromedial hypothalamic lesions in rats. Therapy for obesity could include slowing of stomach emptying.

  19. HPG-axis hormones during puberty : A study on the association with hypothalamic and pituitary volumes

    NARCIS (Netherlands)

    Peper, Jiska S.; Brouwer, Rachel M.; van Leeuwen, Marieke; Schnack, Hugo G.; Boomsma, Dorret I.; Kahn, Rene S.; Pol, Hilleke E. Hulshoff

    Objective: During puberty, the hypothalamus-pituitary-gonadal (HPG) axis is activated, leading to increases in luteinizing hormone (LH), follicle stimulating hormone (FSH) and sex steroids (testosterone and estradiol) levels. We aimed to study the association between hypothalamic and pituitary

  20. Differentiation of hypothalamic-like neurons from human pluripotent stem cells

    OpenAIRE

    Wang, Liheng; Meece, Kana; Williams, Damian J.; Lo, Kinyui Alice; Zimmer, Matthew; Heinrich, Garrett; Martin Carli, Jayne; Leduc, Charles A.; Sun, Lei; Zeltser, Lori M.; Freeby, Matthew; Goland, Robin; Tsang, Stephen H.; Wardlaw, Sharon L.; Egli, Dieter

    2015-01-01

    The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs...

  1. Prokineticin 2 Is a Hypothalamic Neuropeptide That Potently Inhibits Food Intake

    OpenAIRE

    Gardiner, JV; Bataveljic, A; Patel, NA; Bewick, GA; Roy, D; Campbell, D; Greenwood, HC; Murphy, KG; Hameed, S; Jethwa, PH; Ebling, FJP; Vickers, SP; Cheetham, S; Ghatei, MA; Bloom, SR

    2009-01-01

    OBJECTIVE Prokineticin 2 (PK2) is a hypothalamic neuropeptide expressed in central nervous system areas known to be involved in food intake. We therefore hypothesized that PK2 plays a role in energy homeostasis. RESEARCH DESIGN AND METHODS We investigated the effect of nutritional status on hypothalamic PK2 expression and effects of PK2 on the regulation of food intake by intracerebroventricular (ICV) injection of PK2 and anti-PK2 antibody. Subsequently, we investigated the potential mechanis...

  2. Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells

    Science.gov (United States)

    Wicht, Kristina; Boekhoff, Ingrid; Glas, Evi; Lauffer, Lisa; Mückter, Harald; Gudermann, Thomas

    2016-01-01

    Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction. PMID:27144291

  3. Hypothalamic 2-arachidonoylglycerol regulates multistage process of high-fat diet preferences.

    Directory of Open Access Journals (Sweden)

    Sei Higuchi

    Full Text Available In this study, we examined alterations in the hypothalamic reward system related to high-fat diet (HFD preferences. We previously reported that hypothalamic 2-arachidonoylglycerol (2-AG and glial fibrillary acid protein (GFAP were increased after conditioning to the rewarding properties of a HFD. Here, we hypothesized that increased 2-AG influences the hypothalamic reward system.The conditioned place preference test (CPP test was used to evaluate HFD preferences. Hypothalamic 2-AG was quantified by gas chromatography-mass spectrometry. The expression of GFAP was examined by immunostaining and western blotting.Consumption of a HFD over either 3 or 7 days increased HFD preferences and transiently increased hypothalamic 2-AG levels. HFD consumption over 14 days similarly increased HFD preferences but elicited a long-lasting increase in hypothalamic 2-AG and GFAP levels. The cannabinoid 1 receptor antagonist O-2050 reduced preferences for HFDs after 3, 7, or 14 days of HFD consumption and reduced expression of GFAP after 14 days of HFD consumption. The astrocyte metabolic inhibitor Fluorocitrate blocked HFD preferences after 14 days of HFD consumption.High levels of 2-AG appear to induce HFD preferences, and activate hypothalamic astrocytes via the cannabinoid system. We propose that there may be two distinct stages in the development of HFD preferences. The induction stage involves a transient increase in 2-AG, whereas the maintenance stage involves a long lasting increase in 2-AG levels and activation of astrocytes. Accordingly, hypothalamic 2-AG may influence the development of HFD preferences.

  4. Papain-Catalyzed Chemoenzymatic Synthesis of Telechelic Polypeptides Using Bis(Leucine Ethyl Ester) Initiator.

    Science.gov (United States)

    Tsuchiya, Kousuke; Numata, Keiji

    2016-07-01

    In order to construct unique polypeptide architectures, a novel telechelic-type initiator with two leucine ethyl ester units is designed for chemoenzymatic polymerization. Glycine or alanine ethyl ester is chemoenzymatically polymerized using papain in the presence of the initiator, and the propagation occurs at each leucine ethyl ester unit to produce the telechelic polypeptide. The formation of the telechelic polypeptides is confirmed by (1) H NMR and MALDI-TOF mass spectroscopies. It is revealed by AFM observation that long nanofibrils are formed from the telechelic polyalanine, whereas a conventional linear polyalanine with a similar degree of polymerization shows granule-like structures. The telechelic polyglycine and polyalanine show the crystalline structures of Polyglycine II and antiparallel β-sheet, respectively. It is demonstrated that this method to synthesize telechelic-type polypeptides potentially opens up a pathway to construct novel hierarchical structures by self-assembly. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Further observations on incorporation of the 14C-leucine into proteins by freshly secreted milk

    International Nuclear Information System (INIS)

    Singh, L.N.

    1976-01-01

    Using freshly secreted bovine milk, no incorporation of DL (1- 14 C)-leucine was observed in the total milk proteins and acid precipitated casein, when these protein fractions were isolated from skim milk. A significant portion of the radioactivity however, remained associated with the heat coagulable whey proteins and proteose-peptone fractions. This association was shown to be due to non enzymatic physical sequestering of the radioactive amino acid or its metabolites with these proteins. Most of the radioactivity was associated with the cream layer proteins and the cellular fraction. The results obtained using filtered milk, incubated milk and certain antibiotics also indicated that the incorporation of 14 C leucine into proteins by freshly secreted milk may be a purely microbial process and physical sequestering of an amino acids with milk proteins. (author)

  6. Parkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies

    Directory of Open Access Journals (Sweden)

    José M. Bravo-San Pedro

    2012-01-01

    Full Text Available Parkinson's disease is the second common neurodegenerative disorder, after Alzheimer's disease. It is a clinical syndrome characterized by loss of dopamine-generating cells in the substancia nigra, a region of the midbrain. The etiology of Parkinson's disease has long been through to involve both genetic and environmental factors. Mutations in the leucine-rich repeat kinase 2 gene cause late-onset Parkinson's disease with a clinical appearance indistinguishable from Parkinson's disease idiopathic. Autophagy is an intracellular catabolic mechanism whereby a cell recycles or degrades damage proteins and cytoplasmic organelles. This degradative process has been associated with cellular dysfunction in neurodegenerative processes including Parkinson's disease. We discuss the role of leucine-rich repeat kinase 2 in autophagy, and how the deregulations of this degradative mechanism in cells can be implicated in the Parkinson's disease etiology.

  7. Parkinson's disease: leucine-rich repeat kinase 2 and autophagy, intimate enemies.

    Science.gov (United States)

    Bravo-San Pedro, José M; Gómez-Sánchez, Rubén; Pizarro-Estrella, Elisa; Niso-Santano, Mireia; González-Polo, Rosa A; Fuentes Rodríguez, José M

    2012-01-01

    Parkinson's disease is the second common neurodegenerative disorder, after Alzheimer's disease. It is a clinical syndrome characterized by loss of dopamine-generating cells in the substancia nigra, a region of the midbrain. The etiology of Parkinson's disease has long been through to involve both genetic and environmental factors. Mutations in the leucine-rich repeat kinase 2 gene cause late-onset Parkinson's disease with a clinical appearance indistinguishable from Parkinson's disease idiopathic. Autophagy is an intracellular catabolic mechanism whereby a cell recycles or degrades damage proteins and cytoplasmic organelles. This degradative process has been associated with cellular dysfunction in neurodegenerative processes including Parkinson's disease. We discuss the role of leucine-rich repeat kinase 2 in autophagy, and how the deregulations of this degradative mechanism in cells can be implicated in the Parkinson's disease etiology.

  8. Proliferative hypothalamic neurospheres express NPY, AGRP, POMC, CART and Orexin-A and differentiate to functional neurons.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Some pathological conditions with feeding pattern alterations, including obesity and Huntington disease (HD are associated with hypothalamic dysfunction and neuronal cell death. Additionally, the hypothalamus is a neurogenic region with the constitutive capacity to generate new cells of neuronal lineage, in adult rodents. The aim of the present work was to evaluate the expression of feeding-related neuropeptides in hypothalamic progenitor cells and their capacity to differentiate to functional neurons which have been described to be affected by hypothalamic dysfunction. Our study shows that hypothalamic progenitor cells from rat embryos grow as floating neurospheres and express the feeding-related neuropeptides Neuropeptide Y (NPY, Agouti-related Protein (AGRP, Pro-OpioMelanocortin (POMC, Cocaine-and-Amphetamine Responsive Transcript (CART and Orexin-A/Hypocretin-1. Moreover the relative mRNA expression of NPY and POMC increases during the expansion of hypothalamic neurospheres in proliferative conditions.Mature neurons were obtained from the differentiation of hypothalamic progenitor cells including NPY, AGRP, POMC, CART and Orexin-A positive neurons. Furthermore the relative mRNA expression of NPY, CART and Orexin-A increases after the differentiation of hypothalamic neurospheres. Similarly to the adult hypothalamic neurons the neurospheres-derived neurons express the glutamate transporter EAAT3. The orexigenic and anorexigenic phenotype of these neurons was identified by functional response to ghrelin and leptin hormones, respectively. This work demonstrates the presence of appetite-related neuropeptides in hypothalamic progenitor cells and neurons obtained from the differentiation of hypothalamic neurospheres, including the neuronal phenotypes that have been described by others as being affected by hypothalamic neurodegeneration. These in vitro models can be used to study hypothalamic progenitor cells aiming a therapeutic intervention to

  9. Lean body mass change over 6 years is associated with dietary leucine intake in an older Danish population

    DEFF Research Database (Denmark)

    McDonald, Cameron Keith; Ankarfeldt, Mikkel Z.; Capra, Sandra

    2016-01-01

    Higher protein intake, and particularly higher leucine intake, is associated with attenuated loss of lean body mass (LBM) over time in older individuals. Dietary leucine is thought to be a key mediator of anabolism. This study aimed to assess this relationship over 6 years among younger and older...... adult Danes. Dietary leucine intake was assessed at baseline and after 6 years in men and women, aged 35-65 years, participating in the Danish cohort of the WHO-MONICA (Multinational MONItoring of trends and determinants in CArdiovascular disease) study (n 368). Changes in LBM over the 6 years were...... measured by bioelectrical impedance using equations developed for this Danish population. The association between leucine and LBM changes was examined using multivariate linear regression and ANCOVA analyses adjusted for potential confounders. After adjustment for baseline LBM, sex, age, energy intake...

  10. Activation of Strychnine-Sensitive Glycine Receptors by Shilajit on Preoptic Hypothalamic Neurons of Juvenile Mice.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu

    2016-02-29

    Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically.

  11. Role of Hypothalamic VGF in Energy Balance and Metabolic Adaption to Environmental Enrichment in Mice

    Science.gov (United States)

    Foglesong, Grant D.; Huang, Wei; Liu, Xianglan; Slater, Andrew M.; Siu, Jason; Yildiz, Vedat; Salton, Stephen R. J.

    2016-01-01

    Environmental enrichment (EE), a housing condition providing complex physical, social, and cognitive stimulation, leads to improved metabolic health and resistance to diet-induced obesity and cancer. One underlying mechanism is the activation of the hypothalamic-sympathoneural-adipocyte axis with hypothalamic brain-derived neurotrophic factor (BDNF) as the key mediator. VGF, a peptide precursor particularly abundant in the hypothalamus, was up-regulated by EE. Overexpressing BDNF or acute injection of BDNF protein to the hypothalamus up-regulated VGF, whereas suppressing BDNF signaling down-regulated VGF expression. Moreover, hypothalamic VGF expression was regulated by leptin, melanocortin receptor agonist, and food deprivation mostly paralleled to BDNF expression. Recombinant adeno-associated virus-mediated gene transfer of Cre recombinase to floxed VGF mice specifically decreased VGF expression in the hypothalamus. In contrast to the lean and hypermetabolic phenotype of homozygous germline VGF knockout mice, specific knockdown of hypothalamic VGF in male adult mice led to increased adiposity, decreased core body temperature, reduced energy expenditure, and impaired glucose tolerance, as well as disturbance of molecular features of brown and white adipose tissues without effects on food intake. However, VGF knockdown failed to block the EE-induced BDNF up-regulation or decrease of adiposity indicating a minor role of VGF in the hypothalamic-sympathoneural-adipocyte axis. Taken together, our results suggest hypothalamic VGF responds to environmental demands and plays an important role in energy balance and glycemic control likely acting in the melanocortin pathway downstream of BDNF. PMID:26730934

  12. Adrenalectomy stimulates hypothalamic proopiomelanocortin expression but does not correct diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Beasley Joe

    2003-06-01

    Full Text Available Abstract Background Elevated glucocorticoid production and reduced hypothalamic POMC mRNA can cause obese phenotypes. Conversely, adrenalectomy can reverse obese phenotypes caused by the absence of leptin, a model in which glucocorticoid production is elevated. Adrenalectomy also increases hypothalamic POMC mRNA in leptin-deficient mice. However most forms of human obesity do not appear to entail elevated plasma glucocorticoids. It is therefore not clear if reducing glucocorticoid production would be useful to treat these forms of obesity. We hypothesized that adrenalectomy would increase hypothalamic POMC mRNA and reverse obese phenotypes in obesity due to a high-fat diet as it does in obesity due to leptin deficiency. Results Retired breeder male mice were placed on a high-fat diet or a low-fat diet for two weeks, then adrenalectomized or sham-adrenalectomized. The high-fat diet increased body weight, adiposity, and plasma leptin, led to impaired glucose tolerance, and slightly stimulated hypothalamic proopiomelanocortin (POMC expression. Adrenalectomy of mice on the high-fat diet significantly reduced plasma corticosterone and strikingly increased both pituitary and hypothalamic POMC mRNA, but failed to reduce body weight, adiposity or leptin, although slight improvements in glucose tolerance and metabolic rate were observed. Conclusion These data suggest that neither reduction of plasma glucocorticoid levels nor elevation of hypothalamic POMC expression is effective to significantly reverse diet-induced obesity.

  13. Gelastic seizures associated with hypothalamic hamartomas. An update in the clinical presentation, diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    José F. Tellez-Zenteno

    2008-10-01

    Full Text Available José F. Tellez-Zenteno1, Cesar Serrano-Almeida2, Farzad Moien-Afshari11Division of Neurology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; 2Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, CanadaAbstract: Gelastic seizures are epileptic events characterized by bouts of laughter. Laughter-like vocalization is usually combined with facial contraction in the form of a smile. Autonomic features such as flushing, tachycardia, and altered respiration are widely recognized. Conscious state may not be impaired, although this is often difficult to asses particularly in young children. Gelastic seizures have been associated classically to hypothalamic hamartomas, although different extrahypothalamic localizations have been described. Hypothalamic hamartomas are rare congenital lesions presenting with the classic triad of gelastic epilepsy, precocious puberty and developmental delay. The clinical course of patients with gelastic seizures associated with hypothalamic hamartomas is progressive, commencing with gelastic seizures in infancy, deteriorating into more complex seizure disorder resulting in intractable epilepsy. Electrophysiological, radiological, and pathophysiological studies have confirmed the intrinsic epileptogenicity of the hypothalamic hamartoma. Currently the most effective surgical approach is the trancallosal anterior interforniceal approach, however newer approaches including the endoscopic and other treatment such as radiosurgery and gamma knife have been used with success. This review focuses on the syndrome of gelastic seizures associated with hypothalamic hamartomas, but it also reviews other concepts such as status gelasticus and some aspects of gelastic seizures in other locations.Keywords: epilepsy, gelastic seizures, epilepsy surgery, hypothalamic hamartoma, intractable epilepsy

  14. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1996-01-01

    Several cell surface receptors including the T cell receptor (TCR) are phosphorylated and down-regulated following activation of protein kinases. We have recently shown that both phosphorylation of Ser-126 and the presence of the di-leucine sequence Leu-131 and Leu-132 in CD3 gamma are required f...... are important. 2) Recognition of phosphorylated CD3 gamma by molecules involved in receptor internalization. In this process Ser(P)-126, Asp-127, Leu-131, and Leu-132 are important....

  15. Systemic D-Phenylalanine and D-Leucine for Effective Treatment of Pain in the Horse

    OpenAIRE

    McKibbin, L. S.; Cheng, R. S. S.

    1982-01-01

    This study showed that subcutaneous injection of a solution of D-amino acids produced effective analgesia in horses. It is postulated that systemic D-phenylalanine and D-leucine may become one of the safe, effective and nonaddictive drugs for acute and chronic pain treatment. These D-amino acids cause analgesia by presumably preserving brain endorphins. They may bind reversibly to enkephalinases and prevent enzymatic degradation of enkephalins.

  16. Site reactivity in the free radicals induced damage to leucine residues: a theoretical study.

    Science.gov (United States)

    Medina, M E; Galano, A; Alvarez-Idaboy, J R

    2015-02-21

    Several recent computational studies have tried to explain the observed selectivity in radical damage to proteins. In this work we use Density Functional Theory and Transition State Theory including tunnelling corrections, reaction path degeneracy, the effect of diffusion, and the role of free radicals to get further insights into this important topic. The reaction between a leucine derivative and free radicals of biological significance, in aqueous and lipid media, has been investigated. Both thermochemical and kinetic analyses, in both hydrophilic and hydrophobic environments, have been carried out. DPPH, ˙OOH, ˙OOCH3, ˙OOCH2Cl, ˙OOCHCl2 and ˙OOCHCH2 radicals do not react with the target molecule. The reactions are proposed to be kinetically controlled. The leucine gamma site was the most reactive for the reactions with ˙N3, ˙OOCCl3, ˙OCH3, ˙OCH2Cl, and ˙OCHCl2 radicals, with rate constants equal to 1.97 × 10(5), 3.24 × 10(4), 6.68 × 10(5), 5.98 × 10(6) and 8.87 × 10(8) M(-1) s(-1), respectively, in aqueous solution. The ˙Cl, ˙OH and ˙OCCl3 radicals react with leucine at the beta, gamma, and delta positions at rates close to the diffusion limit with the alpha position which is the slowest path and the most thermodynamically favored. The presented results confirm that the Bell-Evans-Polanyi principle does not apply for the reactions between amino acid residues and free radicals. Regarding the influence of the environment on the reactivity of the studied series of free radicals towards leucine residues, it is concluded that hydrophilic media slightly lower the reactivity of the studied radicals, compared to hydrophobic ones, albeit the trends in reactivity are very similar.

  17. Unusual activity pattern of leucine aminopeptidase inhibitors based on phosphorus containing derivatives of methionine and norleucine

    Czech Academy of Sciences Publication Activity Database

    Pícha, Jan; Liboska, Radek; Buděšínský, Miloš; Jiráček, Jiří; Pawelczak, M.; Mucha, A.

    2011-01-01

    Roč. 26, č. 2 (2011), s. 155-161 ISSN 1475-6366 R&D Projects: GA ČR GA203/06/1405; GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z40550506 Keywords : aminophosphonates * aminophospinates * methionine * norleucine * phosphorus containing dipeptides * cytosolic leucine aminopeptidase * inhibitors Subject RIV: CC - Organic Chemistry Impact factor: 1.617, year: 2011

  18. Les besoins en isoleucine, valine et leucine chez le porcelet entre 7 et 15 kg

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham; van Milgen, Jaap; Sloth, Niels Morten

    2015-01-01

    La réduction des teneurs en protéines des aliments pour porcelets peut se faire uniquement sous contrôle des apports en acides aminés (AA) indispensables tels que les AA ramifies (AAR) valine (Val), isoleucine (Ile) et leucine (Leu) susceptibles d’être déficitaires et d’altérer les performances de...

  19. Impact of leucine supplementation on exercise training induced anti-cardiac remodeling effect in heart failure mice.

    Science.gov (United States)

    de Moraes, Wilson Max Almeida Monteiro; Melara, Thaís Plasti; de Souza, Pamella Ramona Moraes; Guimarães, Fabiana de Salvi; Bozi, Luiz Henrique Marchesi; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-05-15

    Leucine supplementation potentiates the effects of aerobic exercise training (AET) on skeletal muscle; however, its potential effects associated with AET on cardiac muscle have not been clarified yet. We tested whether leucine supplementation would potentiate the anti-cardiac remodeling effect of AET in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CARKO). Mice were assigned to five groups: wild type mice treated with placebo and sedentary (WT, n = 11), α2A/α2CARKO treated with placebo and sedentary (KO, n = 9), α2A/α2CARKO treated with leucine and sedentary (KOL, n = 11), α2A/α2CARKO treated with placebo and AET (KOT, n = 12) or α2A/α2CARKO treated with leucine and AET (KOLT, n = 12). AET consisted of four weeks on a treadmill with 60 min sessions (six days/week, 60% of maximal speed) and administration by gavage of leucine (1.35 g/kg/day) or placebo (distilled water). The AET significantly improved exercise capacity, fractional shortening and re-established cardiomyocytes' diameter and collagen fraction in KOT. Additionally, AET significantly prevented the proteasome hyperactivity, increased misfolded proteins and HSP27 expression. Isolated leucine supplementation displayed no effect on cardiac function and structure (KOL), however, when associated with AET (KOLT), it increased exercise tolerance to a higher degree than isolated AET (KOT) despite no additional effects on AET induced anti-cardiac remodeling. Our results provide evidence for the modest impact of leucine supplementation on cardiac structure and function in exercised heart failure mice. Leucine supplementation potentiated AET effects on exercise tolerance, which might be related to its recognized impact on skeletal muscle.

  20. Leucine-rich diet alters the eukaryotic translation initiation factors expression in skeletal muscle of tumour-bearing rats

    International Nuclear Information System (INIS)

    Ventrucci, Gislaine; Mello, Maria Alice R; Gomes-Marcondes, Maria Cristina C

    2007-01-01

    Cancer-cachexia induces a variety of metabolic disorders on protein turnorver, decreasing protein synthesis and increasing protein degradation. Controversly, insulin, other hormones, and branched-chain amino acids, especially leucine, stimulate protein synthesis and modulate the activity of translation initiation factors involved in protein synthesis. Since the tumour effects are more pronounced when associated with pregnancy, ehancing muscle-wasting proteolysis, in this study, the influence of a leucine-rich diet on the protein synthesis caused by cancer were investigated. Pregnant rats with or without Walker 256 tumour were distributed into six groups. During 20 days of experiment, three groups were fed with a control diet: C – pregnant control, W – tumour-bearing, and P – pair-fed, which received the same amount of food as ingested by the W group; three other groups of pregnant rats were fed a leucine-rich diet: L – pregnant leucine, WL – tumour-bearing, and PL – pair-fed, which received the same amount of food as ingested by the WL group. The gastrocnemius muscle of WL rats showed increased incorporation of leucine in protein compared to W rats; the leucine-rich diet also prevented the decrease in plasma insulin normally seen in W. The expression of translation initiation factors increased when tumour-bearing rats fed leucine-rich diet, with increase of ~35% for eIF2α and eIF5, ~17% for eIF4E and 20% for eIF4G; the expression of protein kinase S6K1 and protein kinase C was also highly enhanced. The results suggest that a leucine-rich diet increased the protein synthesis in skeletal muscle in tumour-bearing rats possibly through the activation of eIF factors and/or the S6kinase pathway

  1. Hypertrophy-Promoting Effects of Leucine Supplementation and Moderate Intensity Aerobic Exercise in Pre-Senescent Mice

    OpenAIRE

    Xia, Zhi; Cholewa, Jason; Zhao, Yan; Yang, Yue-Qin; Shang, Hua-Yu; Guimar?es-Ferreira, Lucas; Naimo, Marshall Alan; Su, Quan-Sheng; Zanchi, Nelo Eidy

    2016-01-01

    Several studies have indicated a positive influence of leucine supplementation and aerobic training on the aging skeletal muscle signaling pathways that control muscle protein balance and muscle remodeling. However, the effect of a combined intervention requires further clarification. Thirteen month old CD-1® mice were subjected to moderate aerobic exercise (45 min swimming per day with 3% body weight workload) and fed a chow diet with 5% leucine or 3.4% alanine for 8 weeks. Serum and plasma ...

  2. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    Science.gov (United States)

    Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by activating the vestibulocerebellum and deactivating the posterolateral thalamus. PMID:25803613

  3. Liver functional metabolomics discloses an action of L-leucine against Streptococcus iniae infection in tilapias.

    Science.gov (United States)

    Ma, Yan-Mei; Yang, Man-Jun; Wang, Sanying; Li, Hui; Peng, Xuan-Xian

    2015-08-01

    Streptococcus iniae seriously affects the intensive farming of tilapias. Much work has been conducted on prevention and control of S. iniae infection, but little published information on the metabolic response is available in tilapias against the bacterial infection, and no metabolic modulation way may be adopted to control this disease. The present study used GC/MS based metabolomics to characterize the metabolic profiling of tilapias infected by a lethal dose (LD50) of S. iniae and determined two characteristic metabolomes separately responsible for the survival and dying fishes. A reversal changed metabolite, decreased and increased l-leucine in the dying and survival groups, respectively, was identified as a biomarker which featured the difference between the two metabolomes. More importantly, exogenous l-leucine could be used as a metabolic modulator to elevate survival ability of tilapias infected by S. iniae. These results indicate that tilapias mount metabolic strategies to deal with bacterial infection, which can be regulated by exogenous metabolites such as l-leucine. The present study establishes an alternative way, metabolic modulation, to cope with bacterial infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. L-leucine transport in liver of Antarctic fish in vivo at 0 degrees C.

    Science.gov (United States)

    Haschemeyer, A E

    1982-03-01

    Uptake of L-[14C]leucine by liver of an endemic Antarctic fish, Trematomus hansoni, was studied by a single injection technique with [3H]inulin as a reference. Rate constants for leucine influx and efflux and incorporation into liver protein were determined by analysis of isotope distribution in the free and protein-bound compartments of liver and in blood draining the liver at various times after injection. Transport rates were slower than in temperate fish at 20 degrees C, but saturation properties and ability to accumulate leucine in liver were comparable. Kinetic analysis indicated that 30% of uptake at 0 degrees C was due to active transport, similar to that in toadfish at 20 degrees C. This contrasts with the absence of this component in toadfish cooled to 10 degrees C. Average polypeptide chain assembly time was 19 min at 0 degrees C. Transport functions were maintained in fish warmed to 10 degrees C; however, protein synthesis declined at temperatures above 5 degrees C. The results indicate this system is adapted to function at extremely low temperatures in a manner qualitatively similar to organisms adapted to much higher temperatures. Transport and synthetic rates, however, were low, consistent with a normal temperature dependency (Q10 about 2.5) for biological reaction rates.

  5. Dietary macronutrient composition affects hypothalamic appetite regulation in chicks.

    Science.gov (United States)

    McConn, Betty R; Matias, Justin; Wang, Guoqing; Cline, Mark A; Gilbert, Elizabeth R

    2018-01-01

    The objective was to determine the effects of high-protein and high-fat diets, and fasting and refeeding, on appetite regulation in chicks. Day of hatch chicks were fed one of four diets: basal, high protein (25% crude protein), and 15 and 30% high fat (15 and 30% metabolizable energy derived from soybean oil, respectively), and assigned to one of three treatments at 4 days: (1) access to feed, (2) 3 hours of fasting, or (3) fasting followed by 1 hour of refeeding. The hypothalamus was collected, total RNA isolated, and mRNA abundance measured. Food intake was reduced in chicks fed the high-protein and high-fat diets. Agouti-related peptide, neuropeptide Y (NPY), NPY receptors 1, 2, and 5, melanocortin receptors 3 and 4 (MC3R and 4R, respectively), mesotocin, corticotropin-releasing factor (CRF), and CRF receptor sub-type 2 (CRFR2) mRNAs were greatest in chicks that consumed the basal diet. Refeeding was associated with increased MC3R mRNA in the high-protein diet group. CRFR2 mRNA was increased by fasting and refeeding in chicks that consumed the high-protein diet. Food intake and hypothalamic gene expression of some important appetite-associated factors were reduced in chicks fed the high-protein or high-fat diets. Fasting and refeeding accentuated several differences and results suggest that the CRF and melanocortin pathways are involved.

  6. Bacteria, viruses, and hypothalamic inflammation: Potential new players in obesity

    Directory of Open Access Journals (Sweden)

    Magdalena Wierucka-Rybak

    2014-03-01

    Full Text Available Being overweight and obese has become an increasingly serious clinical and socioeconomic problem worldwide. The rapidly rising prevalence of obesity has prompted studies on modifiable, causative factors and novel treatment options for this disorder. Recent evidence indicates that excessive weight gain that leads to being overweight and obese may result from alterations in gut microflora. Studies in humans and animals demonstrated that the composition of gut microbiota may differ in lean and obese subjects, suggesting that these differences result in the increased efficiency of caloric extraction from food, enhanced lipogenesis, and impaired central and peripheral regulation of energy balance. Other studies revealed an excessive increase in body weight in a significant percentage of people infected with human adenoviruses SMAM-1 and Ad-36. Dysregulation of adipocyte function by viruses appears to be the most likely cause of excessive fat accumulation in these individuals. Studies on the pathomechanisms related to the pathogenesis of obesity indicated that a high-fat diet triggers the inflammatory response in the hypothalamus, an event that promotes weight gain and further defends elevated body weight through the initiation of central leptin and insulin resistance and impairment of regenerative capacity of hypothalamic neurons. Exposure to a high-calorie diet appears to predispose individuals to obesity not only because of excessive caloric intake but also because of the induction of microbiota- and central inflammatory response-dependent changes that lead to a dysregulation of energy balance.

  7. Melatonin controls seasonal breeding by a network of hypothalamic targets

    DEFF Research Database (Denmark)

    Revel, Florent G; Masson-Pévet, Mireille; Pévet, Paul

    2009-01-01

    In seasonal species, the photoperiod (i.e. day length) tightly regulates reproduction to ensure that birth occurs at the most favourable time of year. In mammals, a distinct photoneuroendocrine circuit controls this process via the pineal hormone melatonin. This hormone is responsible for the sea......In seasonal species, the photoperiod (i.e. day length) tightly regulates reproduction to ensure that birth occurs at the most favourable time of year. In mammals, a distinct photoneuroendocrine circuit controls this process via the pineal hormone melatonin. This hormone is responsible...... for the seasonal timing of reproduction, but the anatomical substrates and the cellular mechanisms through which melatonin modulates seasonal functions remain imprecise. Recently, several genes have been identified as being regulated by the photoperiod in the brain of seasonal mammals. These genes are thought....../GPR54 system and to the RFamide-related peptides.Interestingly, these systems involve different hypothalamic nuclei, suggesting that several brain loci may be crucial for melatonin to regulate reproduction, and thus represent key starting points to identify the long-sought-after mode and site...

  8. Hypothalamic regulation of brown adipose tissue thermogenesis and energy homeostasis

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-08-01

    Full Text Available Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis.

  9. Hypothalamic endoplasmic reticulum stress of overtrained mice after recovery

    Directory of Open Access Journals (Sweden)

    Ana P. Pinto

    2017-05-01

    Full Text Available Abstract AIMS knowing the relationship between endoplasmic reticulum (ER stress and inflammation and based on the fact that downhill running-based overtraining (OT model increases hypothalamus levels of some pro-inflammatory cytokines, we verified the effects of three OT protocols on the levels of BiP, pIRE-1 (Ser734, pPERK (Thr981, pelF2alpha (Ser52, ATF-6 and GRP-94 proteins in the mouse hypothalamus after two weeks of recovery. METHODS the mice were randomized into control (CT, overtrained by downhill running (OTR/down, overtrained by uphill running (OTR/up and overtrained by running without inclination (OTR groups. After 2-week total recovery period (i.e., week 10, hypothalamus was removed and used for immunoblotting. RESULTS the OTR/down group exhibited high levels of BiP and ATF6. The other OT protocols showed higher levels of pPERK (Th981 and pelf-2alpha (Ser52 when compared with the CT group. CONCLUSION the current results suggest that after a 2-week total recovery period, the overtrained groups increased partially their ER stress protein levels, but without hypothalamic inflammation, which characterizes a physiological condition related to an adaptation mechanism.

  10. Dopamine Autoreceptor Regulation of a Hypothalamic Dopaminergic Network

    Directory of Open Access Journals (Sweden)

    Stefanos Stagkourakis

    2016-04-01

    Full Text Available How autoreceptors contribute to maintaining a stable output of rhythmically active neuronal circuits is poorly understood. Here, we examine this issue in a dopamine population, spontaneously oscillating hypothalamic rat (TIDA neurons, that underlie neuroendocrine control of reproduction and neuroleptic side effects. Activation of dopamine receptors of the type 2 family (D2Rs at the cell-body level slowed TIDA oscillations through two mechanisms. First, they prolonged the depolarizing phase through a combination of presynaptic increases in inhibition and postsynaptic hyperpolarization. Second, they extended the discharge phase through presynaptic attenuation of calcium currents and decreased synaptic inhibition. Dopamine reuptake blockade similarly reconfigured the oscillation, indicating that ambient somatodendritic transmitter concentration determines electrical behavior. In the absence of D2R feedback, however, discharge was abolished by depolarization block. These results indicate the existence of an ultra-short feedback loop whereby neuroendocrine dopamine neurons tune network behavior to echoes of their own activity, reflected in ambient somatodendritic dopamine, and also suggest a mechanism for antipsychotic side effects.

  11. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex

    Science.gov (United States)

    Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F.; Schnitzer, Mark J.; Anderson, David J.

    2017-10-01

    All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1+ neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a ‘hard-wired’ system.

  12. Retino-hypothalamic regulation of light-induced murine sleep

    Directory of Open Access Journals (Sweden)

    Fanuel eMuindi

    2014-08-01

    Full Text Available The temporal organization of sleep is regulated by an interaction between the circadian clock and homeostatic processes. Light indirectly modulates sleep through its ability to phase shift and entrain the circadian clock. Light can also exert a direct, circadian-independent effect on sleep. For example, acute exposure to light promotes sleep in nocturnal animals and wake in diurnal animals. The mechanisms whereby light directly influences sleep and arousal are not well understood. In this review, we discuss the direct effect of light on sleep at the level of the retina and hypothalamus in rodents. We review murine data from recent publications showing the roles of rod-, cone- and melanopsin-based photoreception on the initiation and maintenance of light-induced sleep. We also present hypotheses about hypothalamic mechanisms that have been advanced to explain the acute control of sleep by light. Specifically, we review recent studies assessing the roles of the ventrolateral preoptic area and the suprachiasmatic nucleus. We also discuss how light might differentially promote sleep and arousal in nocturnal and diurnal animals respectively. Lastly, we suggest new avenues for research on this topic which is still in its early stages.

  13. Comparative anatomy of the mammalian hypothalamic suprachiasmatic nucleus.

    Science.gov (United States)

    Cassone, V M; Speh, J C; Card, J P; Moore, R Y

    1988-01-01

    A detailed analysis of the cytoarchitecture, retinohypothalamic tract (RHT) projections, and immunohistochemical localization of major cell and fiber types within the hypothalamic suprachiasmatic nuclei (SCN) was conducted in five mammalian species: two species of opossum, the domestic cat, the guinea pig, and the house mouse. Cytoarchitectural and immunohistochemical studies were conducted in three additional species of marsupial mammals and in the domestic pig. The SCN in this diverse transect of mammalian taxonomy bear striking similarities. First, the SCN are similar in location, lying close to the third ventricle (3V) dorsal to the optic chiasm (OC), with a cytoarchitecture characterized by small, tightly packed neurons. Second, in all groups studied, the SCN receive bilateral retinal input. Third, the SCN contain immunohistochemically similar elements. These similarities suggest that the SCN developed characteristic features early in mammalian phylogeny. Some details of SCN organization vary among the species studied. In marsupials, vasopressin-like immunoreactive (VP-LI) and vasoactive intestinal polypeptide-like immunoreactive (VIP-LI) cells codistribute primarily in the dorsomedial aspects of the SCN, while in eutherians, VP-LI and VIP-LI cells are separated into SCN subnuclei. Furthermore, the marsupial RHT projects to the periventricular dorsomedial region, whereas the eutherian RHT projects more ventrally in the SCN into the zone that typically contains VIP-LI perikarya.

  14. Neonatal ghrelin programs development of hypothalamic feeding circuits

    Science.gov (United States)

    Steculorum, Sophie M.; Collden, Gustav; Coupe, Berengere; Croizier, Sophie; Lockie, Sarah; Andrews, Zane B.; Jarosch, Florian; Klussmann, Sven; Bouret, Sebastien G.

    2015-01-01

    A complex neural network regulates body weight and energy balance, and dysfunction in the communication between the gut and this neural network is associated with metabolic diseases, such as obesity. The stomach-derived hormone ghrelin stimulates appetite through interactions with neurons in the arcuate nucleus of the hypothalamus (ARH). Here, we evaluated the physiological and neurobiological contribution of ghrelin during development by specifically blocking ghrelin action during early postnatal development in mice. Ghrelin blockade in neonatal mice resulted in enhanced ARH neural projections and long-term metabolic effects, including increased body weight, visceral fat, and blood glucose levels and decreased leptin sensitivity. In addition, chronic administration of ghrelin during postnatal life impaired the normal development of ARH projections and caused metabolic dysfunction. Consistent with these observations, direct exposure of postnatal ARH neuronal explants to ghrelin blunted axonal growth and blocked the neurotrophic effect of the adipocyte-derived hormone leptin. Moreover, chronic ghrelin exposure in neonatal mice also attenuated leptin-induced STAT3 signaling in ARH neurons. Collectively, these data reveal that ghrelin plays an inhibitory role in the development of hypothalamic neural circuits and suggest that proper expression of ghrelin during neonatal life is pivotal for lifelong metabolic regulation. PMID:25607843

  15. ADHD-like behavior in a patient with hypothalamic hamartoma.

    Science.gov (United States)

    Katayama, Koujyu; Yamashita, Yushiro; Yatsuga, Shuichi; Koga, Yasutoshi; Matsuishi, Toyojiro

    2016-01-01

    We report a male patient with hypothalamic hamartoma (HH) who manifested central precocious puberty (CPP) at 4 years of age. Gonadotropin-releasing hormone (GnRH) analogue treatment was started at 6 years of age and his pubertal signs were suppressed. At 9 years of age, the patient was emotionally unstable, aggressive, and antisocial. He had severe attention deficit hyperactivity disorder (ADHD)-like behavior and conduct disorder. No seizure activity was observed. GnRH analogue treatment was discontinued for 8 months from 9 years and 4 months of age due to his mother's illness. During this period sexual urges were observed. Treatment with daily methylphenidate markedly improved his behavioral problems. However, his sexual urges were not suppressed until 3 months after the GnRH analogue treatment was restarted. The present case is unique because the patient's behavioral problems were observed despite the parahypothalamic type of HH and absence of seizures. This case is also rare because behavioral problems were observed without seizures, and no ADHD cases with hamartoma have been reported previously. Recently, clinical studies have described an association between psychiatric morbidity, including ADHD, and hyperandrogenism disorders. Our patient's ADHD-like symptoms might be due to hyperandrogenism. In such cases, GnRH analogue with methylphenidate could be effective for improving ADHD-like symptoms. Copyright © 2015. Published by Elsevier B.V.

  16. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline.

    Science.gov (United States)

    Gordon, Catherine M; Ackerman, Kathryn E; Berga, Sarah L; Kaplan, Jay R; Mastorakos, George; Misra, Madhusmita; Murad, M Hassan; Santoro, Nanette F; Warren, Michelle P

    2017-05-01

    The American Society for Reproductive Medicine, the European Society of Endocrinology, and the Pediatric Endocrine Society. This guideline was funded by the Endocrine Society. To formulate clinical practice guidelines for the diagnosis and treatment of functional hypothalamic amenorrhea (FHA). The participants include an Endocrine Society-appointed task force of eight experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The task force commissioned two systematic reviews and used the best available evidence from other published systematic reviews and individual studies. One group meeting, several conference calls, and e-mail communications enabled consensus. Endocrine Society committees and members and cosponsoring organizations reviewed and commented on preliminary drafts of this guideline. FHA is a form of chronic anovulation, not due to identifiable organic causes, but often associated with stress, weight loss, excessive exercise, or a combination thereof. Investigations should include assessment of systemic and endocrinologic etiologies, as FHA is a diagnosis of exclusion. A multidisciplinary treatment approach is necessary, including medical, dietary, and mental health support. Medical complications include, among others, bone loss and infertility, and appropriate therapies are under debate and investigation. Copyright © 2017 Endocrine Society

  17. Adenovirus-mediated suppression of hypothalamic glucokinase affects feeding behavior.

    Science.gov (United States)

    Uranga, Romina María; Millán, Carola; Barahona, María José; Recabal, Antonia; Salgado, Magdiel; Martinez, Fernando; Ordenes, Patricio; Elizondo-Vega, Roberto; Sepúlveda, Fernando; Uribe, Elena; García-Robles, María de Los Ángeles

    2017-06-16

    Glucokinase (GK), the hexokinase involved in glucosensing in pancreatic β-cells, is also expressed in arcuate nucleus (AN) neurons and hypothalamic tanycytes, the cells that surround the basal third ventricle (3V). Several lines of evidence suggest that tanycytes may be involved in the regulation of energy homeostasis. Tanycytes have extended cell processes that contact the feeding-regulating neurons in the AN, particularly, agouti-related protein (AgRP), neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and proopiomelanocortin (POMC) neurons. In this study, we developed an adenovirus expressing GK shRNA to inhibit GK expression in vivo. When injected into the 3V of rats, this adenovirus preferentially transduced tanycytes. qRT-PCR and Western blot assays confirmed GK mRNA and protein levels were lower in GK knockdown animals compared to the controls. In response to an intracerebroventricular glucose injection, the mRNA levels of anorexigenic POMC and CART and orexigenic AgRP and NPY neuropeptides were altered in GK knockdown animals. Similarly, food intake, meal duration, frequency of eating events and the cumulative eating time were increased, whereas the intervals between meals were decreased in GK knockdown rats, suggesting a decrease in satiety. Thus, GK expression in the ventricular cells appears to play an important role in feeding behavior.

  18. Hypertrophy-Promoting Effects of Leucine Supplementation and Moderate Intensity Aerobic Exercise in Pre-Senescent Mice

    Directory of Open Access Journals (Sweden)

    Zhi Xia

    2016-05-01

    Full Text Available Several studies have indicated a positive influence of leucine supplementation and aerobic training on the aging skeletal muscle signaling pathways that control muscle protein balance and muscle remodeling. However, the effect of a combined intervention requires further clarification. Thirteen month old CD-1® mice were subjected to moderate aerobic exercise (45 min swimming per day with 3% body weight workload and fed a chow diet with 5% leucine or 3.4% alanine for 8 weeks. Serum and plasma were prepared for glucose, urea nitrogen, insulin and amino acid profile analysis. The white gastrocnemius muscles were used for determination of muscle size and signaling proteins involved in protein synthesis and degradation. The results show that both 8 weeks of leucine supplementation and aerobic training elevated the activity of mTOR (mammalian target of rapamycin and its downstream target p70S6K and 4E-BP1, inhibited the ubiquitin-proteasome system, and increased fiber cross-sectional area (CSA in white gastrocnemius muscle. Moreover, leucine supplementation in combination with exercise demonstrated more significant effects, such as greater CSA, protein content and altered phosphorylation (suggestive of increased activity of protein synthesis signaling proteins, in addition to lower expression of proteins involved in protein degradation compared to leucine or exercise alone. The current study shows moderate aerobic training combined with 5% leucine supplementation has the potential to increase muscle size in fast-twitch skeletal muscle during aging, potentially through increased protein synthesis and decreased protein breakdown.

  19. Hypertrophy-Promoting Effects of Leucine Supplementation and Moderate Intensity Aerobic Exercise in Pre-Senescent Mice.

    Science.gov (United States)

    Xia, Zhi; Cholewa, Jason; Zhao, Yan; Yang, Yue-Qin; Shang, Hua-Yu; Guimarães-Ferreira, Lucas; Naimo, Marshall Alan; Su, Quan-Sheng; Zanchi, Nelo Eidy

    2016-05-02

    Several studies have indicated a positive influence of leucine supplementation and aerobic training on the aging skeletal muscle signaling pathways that control muscle protein balance and muscle remodeling. However, the effect of a combined intervention requires further clarification. Thirteen month old CD-1(®) mice were subjected to moderate aerobic exercise (45 min swimming per day with 3% body weight workload) and fed a chow diet with 5% leucine or 3.4% alanine for 8 weeks. Serum and plasma were prepared for glucose, urea nitrogen, insulin and amino acid profile analysis. The white gastrocnemius muscles were used for determination of muscle size and signaling proteins involved in protein synthesis and degradation. The results show that both 8 weeks of leucine supplementation and aerobic training elevated the activity of mTOR (mammalian target of rapamycin) and its downstream target p70S6K and 4E-BP1, inhibited the ubiquitin-proteasome system, and increased fiber cross-sectional area (CSA) in white gastrocnemius muscle. Moreover, leucine supplementation in combination with exercise demonstrated more significant effects, such as greater CSA, protein content and altered phosphorylation (suggestive of increased activity) of protein synthesis signaling proteins, in addition to lower expression of proteins involved in protein degradation compared to leucine or exercise alone. The current study shows moderate aerobic training combined with 5% leucine supplementation has the potential to increase muscle size in fast-twitch skeletal muscle during aging, potentially through increased protein synthesis and decreased protein breakdown.

  20. Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women.

    Science.gov (United States)

    Loucks, A B; Mortola, J F; Girton, L; Yen, S S

    1989-02-01

    The functional integrity of the hypothalamic-pituitary-ovarian and hypothalamic-pituitary-adrenal axes was assessed by determining pulsatile LH, ACTH, and cortisol secretion during the early follicular phase in athletic women with regular menstrual cycles (CA; n = 9), athletic women with amenorrhea (AA; n = 9), and regularly cyclic sedentary women (CS; n = 8). The CA and AA women were not significantly different in body composition, exercise training, psychometric tests, or dietary consumption. The CA women had shorter luteal phases (P less than 0.05) and lower urinary excretion of pregnanediol glucuronide than the CS women. In the AA women, urinary estrone glucuronide, pregnanediol glucuronide, and LH excretion were low throughout a 30-day period. The CA women had a 24-h pattern of pulsatile LH secretion characterized by reduced frequency (P less than 0.05) and increased amplitude (P less than 0.05), yielding an overall increased 24-h mean level (P less than 0.05), but interpulse intervals similar to those in the CS women. During sleep, LH pulse frequency slowed in the CS and CA women, while pulse amplitude increased and the mean serum LH level decreased in both groups. The AA women had even fewer pulses (P less than 0.05) of normal amplitude occurring at much more variable (P less than 0.01) interpulse intervals. Sleep-associated changes in LH pulsatility were absent. Responses to a 10-microgram bolus GnRH dose revealed blunted (P less than 0.05) FSH release in CA and augmented (P less than 0.05) LH release in AA women. The groups did not differ in any 24-h ACTH pulse pattern parameter or in cortisol pulse frequencies. Yet, early morning (0200-0800 h) serum cortisol levels were higher (P less than 0.05) in both groups of athletes, and this elevation was extended through the day (0800-2000 h; P less than 0.001) and evening (2000-0200 h; P less than 0.05) in the AA women. The plasma ACTH and serum cortisol responses to bolus human CRH administration were blunted in

  1. Growth hormone modulates hypothalamic inflammation in long-lived pituitary dwarf mice.

    Science.gov (United States)

    Sadagurski, Marianna; Landeryou, Taylor; Cady, Gillian; Kopchick, John J; List, Edward O; Berryman, Darlene E; Bartke, Andrzej; Miller, Richard A

    2015-12-01

    Mice in which the genes for growth hormone (GH) or GH receptor (GHR(-/-) ) are disrupted from conception are dwarfs, possess low levels of IGF-1 and insulin, have low rates of cancer and diabetes, and are extremely long-lived. Median longevity is also increased in mice with deletion of hypothalamic GH-releasing hormone (GHRH), which leads to isolated GH deficiency. The remarkable extension of longevity in hypopituitary Ames dwarf mice can be reversed by a 6-week course of GH injections started at the age of 2 weeks. Here, we demonstrate that mutations that interfere with GH production or response, in the Snell dwarf, Ames dwarf, or GHR(-/-) mice lead to reduced formation of both orexigenic agouti-related peptide (AgRP) and anorexigenic proopiomelanocortin (POMC) projections to the main hypothalamic projection areas: the arcuate nucleus (ARH), paraventricular nucleus (PVH), and dorsomedial nucleus (DMH). These mutations also reduce hypothalamic inflammation in 18-month-old mice. GH injections, between 2 and 8 weeks of age, reversed both effects in Ames dwarf mice. Disruption of GHR specifically in liver (LiGHRKO), a mutation that reduces circulating IGF-1 but does not lead to lifespan extension, had no effect on hypothalamic projections or inflammation, suggesting an effect of GH, rather than peripheral IGF-1, on hypothalamic development. Hypothalamic leptin signaling, as monitored by induction of pStat3, is not impaired by GHR deficiency. Together, these results suggest that early-life disruption of GH signaling produces long-term hypothalamic changes that may contribute to the longevity of GH-deficient and GH-resistant mice. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Unsaturated Fatty Acids Revert Diet-Induced Hypothalamic Inflammation in Obesity

    Science.gov (United States)

    Cintra, Dennys E.; Ropelle, Eduardo R.; Moraes, Juliana C.; Pauli, José R.; Morari, Joseane; de Souza, Claudio T.; Grimaldi, Renato; Stahl, Marcela; Carvalheira, José B.; Saad, Mario J.; Velloso, Licio A.

    2012-01-01

    Background In experimental models, hypothalamic inflammation is an early and determining factor in the installation and progression of obesity. Pharmacological and gene-based approaches have proven efficient in restraining inflammation and correcting the obese phenotypes. However, the role of nutrients in the modulation of hypothalamic inflammation is unknown. Methodology/Principal Findings Here we show that, in a mouse model of diet-induced obesity, partial substitution of the fatty acid component of the diet by flax seed oil (rich in C18:3) or olive oil (rich in C18:1) corrects hypothalamic inflammation, hypothalamic and whole body insulin resistance, and body adiposity. In addition, upon icv injection in obese rats, both ω3 and ω9 pure fatty acids reduce spontaneous food intake and body mass gain. These effects are accompanied by the reversal of functional and molecular hypothalamic resistance to leptin/insulin and increased POMC and CART expressions. In addition, both, ω3 and ω9 fatty acids inhibit the AMPK/ACC pathway and increase CPT1 and SCD1 expression in the hypothalamus. Finally, acute hypothalamic injection of ω3 and ω9 fatty acids activate signal transduction through the recently identified GPR120 unsaturated fatty acid receptor. Conclusions/Significance Unsaturated fatty acids can act either as nutrients or directly in the hypothalamus, reverting diet-induced inflammation and reducing body adiposity. These data show that, in addition to pharmacological and genetic approaches, nutrients can also be attractive candidates for controlling hypothalamic inflammation in obesity. PMID:22279596

  3. Rhythmic activities of hypothalamic magnocellular neurons: autocontrol mechanisms.

    Science.gov (United States)

    Richard, P; Moos, F; Dayanithi, G; Gouzènes, L; Sabatier, N

    1997-12-01

    Electrophysiological recordings in lactating rats show that oxytocin (OT) and vasopressin (AVP) neurons exhibit specific patterns of activities in relation to peripheral stimuli: periodic bursting firing for OT neurons during suckling, phasic firing for AVP neurons during hyperosmolarity (systemic injection of hypertonic saline). These activities are autocontrolled by OT and AVP released somato-dentritically within the hypothalamic magnocellular nuclei. In vivo, OT enhances the amplitude and frequency of bursts, an effect accompanied with an increase in basal firing rate. However, the characteristics of firing change as facilitation proceeds: the spike patterns become very irregular with clusters of spikes spaced by long silences; the firing rate is highly variable and clearly oscillates before facilitated bursts. This unstable behaviour dramatically decreases during intense tonic activation which temporarily interrupts bursting, and could therefore be a prerequisite for bursting. In vivo, the effects of AVP depend on the initial firing pattern of AVP neurons: AVP excites weakly active neurons (increasing duration of active periods and decreasing silences), inhibits highly active neurons, and does not affect neurons with intermediate phasic activity. AVP brings the entire population of AVP neurons to discharge with a medium phasic activity characterised by periods of firing and silence lasting 20-40 s, a pattern shown to optimise the release of AVP from the neurohypophysis. Each of the peptides (OT or AVP) induces an increase in intracellular Ca2+ concentration, specifically in the neurons containing either OT or AVP respectively. OT evokes the release of Ca2+ from IP3-sensitive intracellular stores. AVP induces an influx of Ca2+ through voltage-dependent Ca2+ channels of T-, L- and N-types. We postulate that the facilitatory autocontrol of OT and AVP neurons could be mediated by Ca2+ known to play a key role in the control of the patterns of phasic neurons.

  4. Hypothalamic response to experimental allergic encephalomyelitis: role of substance P.

    Science.gov (United States)

    Ruocco, Heloisa H; Fernandes, Gilberto A; Namer, Izzie J; Depaulis, Antoine; Levy, Salomon

    2004-01-01

    Adjuvant-induced arthritis (AA) is thought to be a model for experimental chronic stress that has as main features decreased adrenocorticotropin hormone (ACTH) plasma levels and a rise in median eminence content of arginine vasopressin (AVP) due to the activity of substance P. In experimental allergic encephalomyelitis (EAE), another chronic stress model, the role of substance P action is not clear. In this paper we tried to clarify the role of substance P in Lewis rats, which are susceptible to this disease. EAE was induced using myelin basic protein plus complete Freund's adjuvant injected into the hind limbs. One day later injections of an antagonist to substance P (RP 67580), saline, and substance P were administered daily for 12-14 days through a stainless steel cannula into the lateral ventricle of the brain, and then the rats were killed. The rats were divided into groups of controls, sham, diseased controls (no intracerebroventricular injections) and EAE (injected intracerebroventricularly). Plasma was used for the quantification of ACTH and corticosterone but not AVP which was assayed in hypothalamic median eminence extracts. In noninjected diseased rats the plasma levels of ACTH and corticosterone were significantly higher than in noninjected control rats, whereas the AVP concentrations in the median eminence were unchanged. The substance P antagonist did not affect the levels of these hormones in plasma or the median eminence. Substance P decreased the plasma levels of ACTH and corticosterone but did not increase the median eminence content of vasopressin. Administration of the antagonist 30 min before an equivalent dose of substance P increased the plasma levels of the two hormones, but did not change the content of AVP. Based on the lack of response to the antagonist RP 67580 we suggest that the substance P has different roles in EAE and AA at least in the later stages of EAE (after 11 days of immunization). Copyright 2004 S. Karger AG, Basel

  5. Lateral hypothalamic serotonin is not stimulated during central leptin hypophagia.

    Science.gov (United States)

    Telles, Mônica Marques; da Silva, Thaís Girão; Watanabe, Regina Lúcia Harumi; de Andrade, Iracema Senna; Estadella, Debora; Nascimento, Cláudia Maria Oller; Oyama, Lila Missae; Ribeiro, Eliane Beraldi

    2013-06-10

    Whether leptin targets the hypothalamic serotonergic system to inhibit food intake is not established. We examined the effect of a short-term i.c.v. leptin treatment on serotonin microdialysate levels in rat lateral hypothalamus. Adipose tissue gene expression was also evaluated. Male rats received four daily injections of leptin (5 μg) or vehicle (with pair-feeding to leptin-induced intake) and a fifth injection during collection of LH microdialysates. We found that serotonin and 5-HIAA levels were not affected by the leptin pre-treatment, as basal levels were similar between the leptin and the pair-fed group. These levels remained unaltered after the acute leptin injection. For gene expression studies, rats were pre-treated with five daily injections of either leptin (5 μg) or vehicle (with either pair-feeding or ad libitum intake). mRNA levels of resistin, adiponectin, lipoprotein lipase, and PPAR-gamma were unaltered by either leptin or pair-feeding. Leptin gene expression was significantly reduced by leptin but not by pair-feeding, in both the retroperitoneal (-74%) and the epididymal (-99%) depots while no differences were observed in the subcutaneous depot. The observations confirmed the absence of an acute stimulatory effect of central leptin on serotonin release in the lateral hypothalamus and showed that the pre-treatment with leptin failed to modify this pattern. This indicates that components of the serotonergic system are probably not directly affected by leptin. Additionally, the central effect of leptin was able to downregulate its own adipose tissue gene expression in a depot-specific manner while other adipokine genes were not affected. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Hypothalamic gene expression underlying pre-hibernation satiety.

    Science.gov (United States)

    Schwartz, C; Hampton, M; Andrews, M T

    2015-03-01

    Prior to hibernation, 13-lined ground squirrels (Ictidomys tridecemlineatus) enter a hypophagic period where food consumption drops by an average of 55% in 3 weeks. This occurs naturally, while the ground squirrels are in constant environmental conditions and have free access to food. Importantly, this transition occurs before exposure to hibernation conditions (5°C and constant darkness), so the ground squirrels are still maintaining a moderate level of activity. In this study, we used the Illumina HiSeq 2000 system to sequence the hypothalamic transcriptomes of ground squirrels before and after the autumn feeding transition to examine the genes underlying this extreme change in feeding behavior. The hypothalamus was chosen because it is known to play a role in the control and regulation of food intake and satiety. Overall, our analysis identified 143 genes that are significantly differentially expressed between the two groups. Specifically, we found five genes associated with feeding behavior and obesity (VGF, TRH, LEPR, ADIPOR2, IRS2) that are all upregulated during the hypophagic period, after the feeding transition has occurred. We also found that serum leptin significantly increases in the hypophagic group. Several of the genes associated with the natural autumnal feeding decline in 13-lined ground squirrels show parallels to signaling pathways known to be disrupted in human metabolic diseases, like obesity and diabetes. In addition, many other genes were identified that could be important for the control of food consumption in other animals, including humans. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Effects of intranasal insulin application on the hypothalamic BOLD response to glucose ingestion

    DEFF Research Database (Denmark)

    van Opstal, Anna M.; Akintola, Abimbola A.; Elst, Marjan van der

    2017-01-01

    The hypothalamus is a crucial structure in the brain that responds to metabolic cues and regulates energy homeostasis. Patients with type 2 diabetes demonstrate a lack of hypothalamic neuronal response after glucose ingestion, which is suggested to be an underlying cause of the disease. In this s......The hypothalamus is a crucial structure in the brain that responds to metabolic cues and regulates energy homeostasis. Patients with type 2 diabetes demonstrate a lack of hypothalamic neuronal response after glucose ingestion, which is suggested to be an underlying cause of the disease....... In this study, we assessed whether intranasal insulin can be used to enhance neuronal hypothalamic responses to glucose ingestion. In a randomized, double-blinded, placebo-controlled 4-double cross-over experiment, hypothalamic activation was measured in young non- diabetic subjects by determining blood......-oxygen-level dependent MRI signals over 30 minutes before and after ingestion of 75 g glucose dissolved in 300 ml water, under intranasal insulin or placebo condition. Glucose ingestion under placebo condition lead to an average 1.4% hypothalamic BOLD decrease, under insulin condition the average response to glucose...

  8. Hypothalamic response to the chemo-signal androstadienone in gender dysphoric children and adolescents

    Directory of Open Access Journals (Sweden)

    Sarah M Burke

    2014-05-01

    Full Text Available The odorous steroid androstadienone, a putative male chemo-signal, was previously reported to evoke sex differences in hypothalamic activation in adult heterosexual men and women. In order to investigate whether puberty modulated this sex difference in response to androstadienone we measured the hypothalamic responsiveness to this chemo-signal in 39 prepubertal and 41 adolescent boys and girls by means of functional magnetic resonance imaging. We then investigated whether 36 prepubertal children and 38 adolescents diagnosed with Gender Dysphoria (GD; DSM-5 exhibited sex-atypical (in accordance with their experienced gender, rather than sex-typical (in accordance with their natal sex hypothalamic activations during olfactory stimulation with androstadienone. We found that the sex difference in responsiveness to androstadienone was already present in prepubertal control children and thus likely developed during early perinatal development instead of during sexual maturation. Adolescent girls and boys with GD both responded remarkably like their experienced gender, thus sex-atypical. In contrast, prepubertal girls with GD showed neither a typically male nor female hypothalamic activation pattern and prepubertal boys with GD had hypothalamic activations in response to androstadienone that were similar to control boys, thus sex-typical. We present here a unique data set of boys and girls diagnosed with GD at two different developmental stages, showing that these children possess certain sex-atypical functional brain characteristics and may have undergone atypical sexual differentiation of the brain.

  9. Hypothalamic Response to the Chemo-Signal Androstadienone in Gender Dysphoric Children and Adolescents

    Science.gov (United States)

    Burke, Sarah M.; Cohen-Kettenis, Peggy T.; Veltman, Dick J.; Klink, Daniel T.; Bakker, Julie

    2014-01-01

    The odorous steroid androstadienone, a putative male chemo-signal, was previously reported to evoke sex differences in hypothalamic activation in adult heterosexual men and women. In order to investigate whether puberty modulated this sex difference in response to androstadienone, we measured the hypothalamic responsiveness to this chemo-signal in 39 pre-pubertal and 41 adolescent boys and girls by means of functional magnetic resonance imaging. We then investigated whether 36 pre-pubertal children and 38 adolescents diagnosed with gender dysphoria (GD; DSM-5) exhibited sex-atypical (in accordance with their experienced gender), rather than sex-typical (in accordance with their natal sex) hypothalamic activations during olfactory stimulation with androstadienone. We found that the sex difference in responsiveness to androstadienone was already present in pre-pubertal control children and thus likely developed during early perinatal development instead of during sexual maturation. Adolescent girls and boys with GD both responded remarkably like their experienced gender, thus sex-atypical. In contrast, pre-pubertal girls with GD showed neither a typically male nor female hypothalamic activation pattern and pre-pubertal boys with GD had hypothalamic activations in response to androstadienone that were similar to control boys, thus sex-typical. We present here a unique data set of boys and girls diagnosed with GD at two different developmental stages, showing that these children possess certain sex-atypical functional brain characteristics and may have undergone atypical sexual differentiation of the brain. PMID:24904525

  10. Management of optic pathway and chiasmatic-hypothalamic gliomas in children with radiation therapy

    International Nuclear Information System (INIS)

    Erkal, Haldun Suekrue; Serin, Meltem; Cakmak, Ahmet

    1997-01-01

    Background and purpose: Optic pathway and chiasmatic-hypothalamic gliomas are rare childhood tumors. This study presents the experience in management of these tumors with radiation therapy. Materials and methods: Thirty-three children with the diagnosis of optic pathway and chiasmatic-hypothalamic gliomas were treated with radiation therapy from 1973 through 1994 in the Department of Radiation Oncology at Ankara University Faculty of Medicine. Twenty-four children had optic pathway gliomas and nine had chiasmatic-hypothalamic gliomas. Evidence of neurofibromatosis was present in six children. Subtotal resection was performed in 22 children and a biopsy in seven. The most common prescription for total tumor dose was 50 Gy, delivered in 2 Gy daily fractions. Follow-up ranged from 0.5 to 16.1 years (mean, 13.6 years). Results: Overall, progression-free and cause-specific survival probabilities for the entire group were 93%, 82% and 93%, respectively, at 5 years and 79%, 77% and 88%, respectively, at 10 years. Differences in overall, progression-free and cause-specific survival probabilities between optic pathway and chiasmatic-hypothalamic gliomas were not statistically significant. Absence of evidence of neurofibromatosis correlated with significantly better progression-free and cause-specific survival probabilities. Conclusion: Radiation therapy is effective in stabilization or improvement of vision and prevention of tumor progression in both optic pathway and chiasmatic-hypothalamic gliomas

  11. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  12. Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning.

    Science.gov (United States)

    Begum, Ghazala; Stevens, Adam; Smith, Emma Bolton; Connor, Kristin; Challis, John R G; Bloomfield, Frank; White, Anne

    2012-04-01

    Undernutrition during pregnancy is implicated in the programming of offspring for the development of obesity and diabetes. We hypothesized that maternal programming causes epigenetic changes in fetal hypothalamic pathways regulating metabolism. This study used sheep to examine the effect of moderate maternal undernutrition (60 d before to 30 d after mating) and twinning to investigate changes in the key metabolic regulators proopiomelanocortin (POMC) and the glucocorticoid receptor (GR) in fetal hypothalami. Methylation of the fetal hypothalamic POMC promoter was reduced in underfed singleton, fed twin, and underfed twin groups (60, 73, and 63% decrease, respectively). This was associated with reduced DNA methyltransferase activity and altered histone methylation and acetylation. Methylation of the hypothalamic GR promoter was decreased in both twin groups and in maternally underfed singleton fetuses (52, 65, and 55% decrease, respectively). This correlated with changes in histone methylation and acetylation and increased GR mRNA expression in the maternally underfed singleton group. Alterations in GR were hypothalamic specific, with no changes in hippocampi. Unaltered levels of OCT4 promoter methylation indicated gene-specific effects. In conclusion, twinning and periconceptional undernutrition are associated with epigenetic changes in fetal hypothalamic POMC and GR genes, potentially resulting in altered energy balance regulation in the offspring.

  13. Comparative analysis of leucine transport in temperate fish liver in vivo.

    Science.gov (United States)

    Haschemeyer, A E; Persell, R

    1984-01-01

    The uptake of [14C]leucine in toadfish (Opsanus tau) liver in vivo at 10 degrees C has been studied by a single pulse injection technique. Transport parameters were determined on the basis of the distribution of the amino acid and of [3H]inulin, used as a marker for extracellular space, in liver free and protein-bound fractions and in venous blood draining from the liver. Saturation analysis by the Cornish-Bowden method yielded a maximal uptake of 0.26 mumole, which was similar on a concentration basis to that at 21 degrees C when circulation rate and dilution with blood are taken into account. Isoleucine and phenylalanine competed with leucine uptake at 10 degrees C as at 21 degrees C; additional competitors at 10 degrees C included histidine, methionine and valine. Fish acclimated to 10 degrees C for 2 weeks or more showed a restoration in maximal leucine uptake and disappearance of histidine inhibition. Methionine inhibition was retained. Three transport systems in this species are discussed: 20-20, operating in 20 degrees C-acclimated fish at 20 degrees C; 20-10, in 20 degrees C-acclimated fish at 10 degrees C; and 10-10, in 10 degrees C-acclimated fish at 10 degrees C. The properties of these systems are compared with the 0-0 system of Antarctic fish and with transport systems of mammalian cells. The latter are similar to our non-acclimated system, 20-10, suggesting that the mammalian cell may not be at a state of optimal temperature adaptation.

  14. Accumulation of D- vs. L-isomers of alanine and leucine in rat prostatic adenocarcinoma

    International Nuclear Information System (INIS)

    Conti, P.S.; Schmall, B.; Bigler, R.E.; Zanzonico, P.B.; Kleinert, E.; Whitmore, W.F. Jr.

    1985-01-01

    It has been reported that tumor tissue may accumulate some D-amino acids preferentially over the L-isomers. In order to investigate the potential use of carbon-11 labeled amino acid isomers for in vivo tumor studies with positron emission tomography in patients, the tissue distributions of alanine and leucine, substrates for the A-type and L-type amino acid transport systems, respectively, were studied in Copenhagen rates bearing the Dunning R3327G prostatic adenocarcinoma. The authors have previously reported differences in the accumulation of A-type vs. L-type amino acids in rat prostatic adenocarcinoma and normal tissues. All compounds were labeled with C-14 in the carboxyl position with specific activities of 30.0-56.6 mCi/mmol. Higher levels of C-14 activity (Relative Concentration (RC)=dpm found per gm tissue + dpm inject per gm animal mass) were observed in tumor tissue using D-alanine (0.71) compared to L- (0.21) or DL-alanine (0.27) at 45 min post-injection. While tumor/prostate and tumor/liver ratios were above 2 for all three substrates, tumor/blood and tumor/muscle were above one for only the D-isomer. Comparisons made with D-, L-, and DL-leucine also demonstrated a higher level of RC in tumor tissue with the D-isomer (0.84) vs. the L-(0.66) and DL-leucine (0.63). In this case, however, tumor/blood, tumor/prostate, and tumor/muscle ratios were above one for all three substrates, while tumor/liver ratios were below one. These results support the observation of a preferential accumulation of D-amino acids in tumor tissue over the natural L-isomers. Observed differences in the accumulation of the isomers in normal tissues are discussed

  15. Identification of an oxytocinase/vasopressinase-like leucyl-cystinyl aminopeptidase (LNPEP) in teleost fish and evidence for hypothalamic mRNA expression linked to behavioral social status.

    Science.gov (United States)

    Elkins, Emma A; Walti, Kayla A; Newberry, Kathryn E; Lema, Sean C

    2017-09-01

    The vasotocin/vasopressin and isotocin/mesotocin/oxytocin family of nonapeptides regulate social behaviors and physiological functions associated with reproductive physiology and osmotic balance. While experimental and correlative studies provide evidence for these nonapeptides as modulators of behavior across all classes of vertebrates, mechanisms for nonapeptide inactivation in regulating these functions have been largely overlooked. Leucyl-cystinyl aminopeptidase (LNPEP) - also known as vasopressinase, oxytocinase, placental leucine aminopeptidase (P-LAP), and insulin-regulated aminopeptidase (IRAP) - is a membrane-bound zinc-dependent metalloexopeptidase enzyme that inactivates vasopressin, oxytocin, and select other cyclic polypeptides. In humans, LNPEP plays a key role in the clearance of oxytocin during pregnancy. However, the evolutionary diversity, expression distribution, and functional roles of LNPEP remain unresolved for other vertebrates. Here, we isolated and sequenced a full-length cDNA encoding a LNPEP-like polypeptide of 1033 amino acids from the ovarian tissue of Amargosa pupfish, Cyprinodon nevadensis. This deduced polypeptide exhibited high amino acid identity to human LNPEP both in the protein's active domain that includes the peptide binding site and zinc cofactor binding motif (53.1% identity), and in an intracellular region that distinguishes LNPEP from other aminopeptidases (70.3% identity). Transcripts encoding this LNPEP enzyme (lnpep) were detected at highest relative abundance in the gonads, hypothalamus, forebrain, optic tectum, gill and skeletal muscle of adult pupfish. Further evaluation of lnpep transcript abundance in the brain of sexually-mature pupfish revealed that lnpep mRNAs were elevated in the hypothalamus of socially subordinate females and males, and at lower abundance in the telencephalon of socially dominant males compared to dominant females. These findings provide evidence of an association between behavioral social

  16. Alteration of substrate specificity of leucine dehydrogenase by site-directed mutagenesis

    OpenAIRE

    片岡, 邦重; Kataoka, Kunishige; Tanizawa, Katsuyuki

    2003-01-01

    The residues L40, A113, V291, and V294, in leucine dehydrogenase (LeuDH), predicted to be involved in recognition of the substrate side chain, have been mutated on the basis of the molecular modeling to mimic the substrate specificities of phenylalanine (PheDH), glutamate (GluDH), and lysine dehydrogenases (LysDH). The A113G and A113G/V291L mutants, imitating the PheDH active site, displayed activities toward -phenylalanine and phenylpyruvate with 1.6 and 7.8% of kcat values of the wild-type ...

  17. Investigations on particle surface characteristics vs. dispersion behaviour of L-leucine coated carrier-free inhalable powders.

    Science.gov (United States)

    Raula, Janne; Thielmann, Frank; Naderi, Majid; Lehto, Vesa-Pekka; Kauppinen, Esko I

    2010-01-29

    Aerosol microparticles of salbutamol sulphate are gas-phase coated with an amino acid L-leucine. Depending of the saturated state of L-leucine, the coating is formed by the surface diffusion of L-leucine molecules within a droplet or by the physical vapour deposition (PVD) of L-leucine or by the combination thereof. The PVD coated particles showed excellent aerosolization characteristics in a carrier-free powder delivery from an inhaler. The aerosolization of the fine powders is compared with surface energy parameters analysed by inverse gas chromatography (IGC). The dispersion testing is conducted by a Inhalation Simulator using a fast inhalation profile with inhalation flow rate of 67 l min(-1). It is found that the powder emission is affected by the morphology, surface roughness (asperity size and density) of the particles and acidity of particle surface. The latter affects the dispersion and dose repeatability of fine powder in a case if L-leucine content is high enough. However, there is no direct correlation between dispersive surface energies and aerosolization performances of the powders. Crucial factors for the improved aerosolization rely weakly on surface acid-base properties but strongly on particle morphology and fine-scale surface roughness. 2009 Elsevier B.V. All rights reserved.

  18. Effect of hyperglucagonemia on whole-body leucine metabolism in immature pigs before and during a meal

    International Nuclear Information System (INIS)

    Ostaszewski, P.; Nissen, S.

    1988-01-01

    Leucine metabolism was measured isotopically in 12 immature female pigs to assess the effect of acute hyperglucagonemia on leucine kinetics in both the fed and fasting states. After an overnight fast, immature pigs were infused with α-[ 3 H]ketoisocaproate and [ 14 C]leucine. After a 2-h equilibration period, an infusion of either saline or 7 pg · kg -1 · min -1 of glucagon was begun, which increased plasma glucagon from ∼140 to ∼640 pg/ml and doubled the insulin concentrations. Two hours later, pigs were fed small meals to which [5,5,5- 2 H 3 ]leucine was added to trace absorption. By subtracting absorption from total leucine flux, an estimate of endogenous proteolysis during the meal was made. In the fasting state, glucagon increased proteolysis and increased oxidation. No significant glucagon-related changes in any other flux parameters occurred in the fasting state. Ingestion of the meals caused oxidation to increase 41% in control animals, whereas in glucagon-infused animals, oxidation increased 84%. Additional, animals infused with glucagon suppressed endogenous proteolysis 43% after the meal compared with 55% decrease in control animals. These data indicate that glucagon stimulates whole-body proteolysis in both the fasting and fed states

  19. Crystal Structure of FadA Adhesin from Fusobacterium nucleatum Reveals a Novel Oligomerization Motif, the Leucine Chain

    Energy Technology Data Exchange (ETDEWEB)

    Nithianantham, Stanley; Xu, Minghua; Yamada, Mitsunori; Ikegami, Akihiko; Shoham, Menachem; Han, Yiping W.; (Case Western)

    2009-04-07

    Many bacterial appendages have filamentous structures, often composed of repeating monomers assembled in a head-to-tail manner. The mechanisms of such linkages vary. We report here a novel protein oligomerization motif identified in the FadA adhesin from the Gram-negative bacterium Fusobacterium nucleatum. The 2.0 {angstrom} crystal structure of the secreted form of FadA (mFadA) reveals two antiparallel {alpha}-helices connected by an intervening 8-residue hairpin loop. Leucine-leucine contacts play a prominent dual intra- and intermolecular role in the structure and function of FadA. First, they comprise the main association between the two helical arms of the monomer; second, they mediate the head-to-tail association of monomers to form the elongated polymers. This leucine-mediated filamentous assembly of FadA molecules constitutes a novel structural motif termed the 'leucine chain.' The essential role of these residues in FadA is corroborated by mutagenesis of selected leucine residues, which leads to the abrogation of oligomerization, filament formation, and binding to host cells.

  20. Three-dimensional structure of carboxypeptidase T from Thermoactinomyces vulgaris in complex with N-BOC-L-leucine.

    Science.gov (United States)

    Timofeev, V I; Kuznetsov, S A; Akparov, V Kh; Chestukhina, G G; Kuranova, I P

    2013-03-01

    The 3D structure of recombinant bacterial carboxypeptidase T (CPT) in complex with N-BOC-L-leucine was determined at 1.38 Å resolution. Crystals for the X-ray study were grown in microgravity using the counter-diffusion technique. N-BOC-L-leucine and SO4(2-) ion bound in the enzyme active site were localized in the electron density map. Location of the leucine side chain in CPT-N-BOC-L-leucine complex allowed identification of the S1 subsite of the enzyme, and its structure was determined. Superposition of the structures of CPT-N-BOC-L-leucine complex and complexes of pancreatic carboxypeptidases A and B with substrate and inhibitors was carried out, and similarity of the S1 subsites in these three carboxypeptidases was revealed. It was found that SO4(2-) ion occupies the same position in the S1' subsite as the C-terminal carboxy group of the substrate.

  1. Giant hypothalamic hamartoma associated with an intracranial cyst in a newborn

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Yeon; Khang, Shin Kwang [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yoon, Hye Kyung [Dept. of Radiology, Kangwon National University Hospital, Chuncheon (Korea, Republic of)

    2016-08-15

    We report the case of a giant hypothalamic hamartoma with a large intracranial cyst in a neonate. On ultrasonography, the lesion presented as a lobulated, mass-like lesion with similar echogenicity to the adjacent brain parenchyma, located anterior to the underdeveloped and compressed left temporal lobe, and presenting as an intracranial cyst in the left cerebral convexity without definite internal echogenicity or septa. The presence of a hypothalamic hamartoma and intracranial neurenteric cyst were confirmed by surgical biopsy. The association of a giant hypothalamic hamartoma and a neurenteric cyst is rare. Due to the rarity of this association, the large size of the intracranial cyst, and the resulting distortion in the regional anatomy, the diagnosis of the solid mass was not made correctly on prenatal high-resolution ultrasonography.

  2. Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner.

    Science.gov (United States)

    Sadagurski, Marianna; Cady, Gillian; Miller, Richard A

    2017-08-01

    Aging leads to hypothalamic inflammation, but does so more slowly in mice whose lifespan has been extended by mutations that affect GH/IGF-1 signals. Early-life exposure to GH by injection, or to nutrient restriction in the first 3 weeks of life, also modulate both lifespan and the pace of hypothalamic inflammation. Three drugs extend lifespan of UM-HET3 mice in a sex-specific way: acarbose (ACA), 17-α-estradiol (17αE2), and nordihydroguaiaretic acid (NDGA), with more dramatic longevity increases in males in each case. In this study, we examined the effect of these anti-aging drugs on neuro-inflammation in hypothalamus and hippocampus. We found that age-associated hypothalamic inflammation is reduced in males but not in females at 12 months of age by ACA and 17αE2 and at 22 months of age in NDGA-treated mice. The three drugs blocked indices of hypothalamic reactive gliosis associated with aging, such as Iba-1-positive microglia and GFAP-positive astrocytes, as well as age-associated overproduction of TNF-α. This effect was not observed in drug-treated female mice or in the hippocampus of the drug-treated animals. On the other hand, caloric restriction (CR; an intervention that extends the lifespan in both sexes) significantly reduced hypothalamic microglia and TNF-α in both sexes at 12 months of age. Together, these results suggest that the extent of drug-induced changes in hypothalamic inflammatory processes is sexually dimorphic in a pattern that parallels the effects of these agents on mouse longevity and that mimics the changes seen, in both sexes, of long-lived nutrient restricted or mutant mice. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Regulation of Hypothalamic Corticotropin-Releasing Hormone Transcription by Elevated Glucocorticoids

    Science.gov (United States)

    Evans, Andrew N.; Liu, Ying; MacGregor, Robert; Huang, Victoria

    2013-01-01

    Negative glucocorticoid feedback is essential for preventing the deleterious effects of excessive hypothalamic pituitary adrenal axis axis activation, with an important target being CRH transcription in the hypothalamic paraventricular nucleus. The aim of these studies was to determine whether glucocorticoids repress CRH transcription directly in CRH neurons, by examining glucocorticoid effects on glucocorticoid receptor (GR)–CRH promoter interaction and the activation of proteins required for CRH transcription. Immunoprecipitation of hypothalamic chromatin from intact or adrenalectomized rats subjected to either stress or corticosterone injections showed minor association of the proximal CRH promoter with the GR compared with that with phospho-CREB (pCREB). In contrast, the Period-1 (Per1, a glucocorticoid-responsive gene) promoter markedly recruited GR. Stress increased pCREB recruitment by the CRH but not the Per1 promoter, irrespective of circulating glucocorticoids. In vitro, corticosterone pretreatment (30 minutes or 18 hours) only slightly inhibited basal and forskolin-stimulated CRH heteronuclear RNA in primary hypothalamic neuronal cultures and CRH promoter activity in hypothalamic 4B cells. In 4B cells, 30 minutes or 18 hours of corticosterone exposure had no effect on forskolin-induced nuclear accumulation of the recognized CRH transcriptional regulators, pCREB and transducer of regulated CREB activity 2. The data show that inhibition of CRH transcription by physiological glucocorticoids in vitro is minor and that direct interaction of GR with DNA in the proximal CRH promoter may not be a major mechanism of CRH gene repression. Although GR interaction with distal promoter elements may have a role, the data suggest that transcriptional repression of CRH by glucocorticoids involves protein-protein interactions and/or modulation of afferent inputs to the hypothalamic paraventricular nucleus. PMID:24065704

  4. Sympathetic Response to Insulin is Mediated by Melanocortin 3/4 Receptors in the Hypothalamic Paraventricular Nucleus

    OpenAIRE

    Ward, Kathryn R.; Bardgett, James F.; Wolfgang, Lawrence; Stocker, Sean D.

    2011-01-01

    Hyperinsulinemia increases sympathetic nerve activity and contributes to cardiovascular dysfunction in obesity and diabetes. Neurons of the hypothalamic paraventricular nucleus regulate sympathetic nerve activity through mono- and poly-synaptic connections to preganglionic neurons in the spinal cord. The purpose of the present study was to determine whether hypothalamic paraventricular nucleus neurons mediate the sympathetic response to insulin. Hyperinsulinemic-euglycemic clamps were perform...

  5. Genetic polymorphisms in the hypothalamic pathway in relation to subsequent weight change--the DiOGenes study

    DEFF Research Database (Denmark)

    Du, Huaidong; Ängquist, Lars Henrik; Vimaleswaran, Karani S

    2011-01-01

    Single nucleotide polymorphisms (SNPs) in genes encoding the components involved in the hypothalamic pathway may influence weight gain and dietary factors may modify their effects.......Single nucleotide polymorphisms (SNPs) in genes encoding the components involved in the hypothalamic pathway may influence weight gain and dietary factors may modify their effects....

  6. Increased concentration of. cap alpha. - and. gamma. -endorphin in post mortem hypothalamic tissue of schizophrenic patients

    Energy Technology Data Exchange (ETDEWEB)

    Wiegant, V.M.; Verhoef, C.J.; Burbach, J.P.H.; de Wied, D.

    1988-01-01

    The concentrations of ..cap alpha..-, ..beta..- and ..gamma..-endorphin were determined by radioimmunoassay in HPLC fractionated extracts of post mortem hypothalamic tissue obtained from schizophrenic patients and controls. The hypothalamic concentration of ..cap alpha..- and ..gamma..-endorphin was significantly higher in patients than in controls. No difference was found in the concentration of ..beta..-endorphin, the putative precursor of ..cap alpha..- and ..gamma..-endorphins. These results suggest a deviant metabolism of ..beta..-endorphin in the brain of schizophrenic patients. Whether this phenomenon is related to the psychopathology, or is a consequence of ante mortem farmacotherapy, remains to be established.

  7. Cerebral Localized Marginal Zone Lymphoma Presenting as Hypothalamic-Pituitary Region Disorder

    Directory of Open Access Journals (Sweden)

    E. Broussalis

    2011-05-01

    Full Text Available Introduction: Marginal zone B-cell lymphoma is a rare disease which can be considerably difficult to recognize and diagnose when signs of systemic involvement are absent. Case Presentation: We report the case of a 57-year-old woman with initial olfactory disturbance, followed by psychosis, diabetes insipidus and hypothalamic eating disorder as an uncommon clinical presentation of marginal zone B-cell lymphoma. Conclusion: Marginal zone B-cell lymphoma should be considered as a potential differential diagnosis in patients with hypothalamic disturbances.

  8. Pregnancy induces resistance to the anorectic effect of hypothalamic malonyl-CoA and the thermogenic effect of hypothalamic AMPK inhibition in female rats.

    Science.gov (United States)

    Martínez de Morentin, Pablo B; Lage, Ricardo; González-García, Ismael; Ruíz-Pino, Francisco; Martins, Luís; Fernández-Mallo, Diana; Gallego, Rosalía; Fernø, Johan; Señarís, Rosa; Saha, Asish K; Tovar, Sulay; Diéguez, Carlos; Nogueiras, Rubén; Tena-Sempere, Manuel; López, Miguel

    2015-03-01

    During gestation, hyperphagia is necessary to cope with the metabolic demands of embryonic development. There were three main aims of this study: Firstly, to investigate the effect of pregnancy on hypothalamic fatty acid metabolism, a key pathway for the regulation of energy balance; secondly, to study whether pregnancy induces resistance to the anorectic effect of fatty acid synthase (FAS) inhibition and accumulation of malonyl-coenzyme A (CoA) in the hypothalamus; and, thirdly, to study whether changes in hypothalamic AMPK signaling are associated with brown adipose tissue (BAT) thermogenesis during pregnancy. Our data suggest that in pregnant rats, the hypothalamic fatty acid pathway shows an overall state that should lead to anorexia and elevated BAT thermogenesis: decreased activities of AMP-activated protein kinase (AMPK), FAS, and carnitine palmitoyltransferase 1, coupled with increased acetyl-CoA carboxylase function with subsequent elevation of malonyl-CoA levels. This profile seems dependent of estradiol levels but not prolactin or progesterone. Despite the apparent anorexic and thermogenic signaling in the hypothalamus, pregnant rats remain hyperphagic and display reduced temperature and BAT function. Actually, pregnant rats develop resistance to the anorectic effects of central FAS inhibition, which is associated with a reduction of proopiomelanocortin (POMC) expression and its transcription factors phospho-signal transducer and activator of transcription 3, and phospho-forkhead box O1. This evidence demonstrates that pregnancy induces a state of resistance to the anorectic and thermogenic actions of hypothalamic cellular signals of energy surplus, which, in parallel to the already known refractoriness to leptin effects, likely contributes to gestational hyperphagia and adiposity.

  9. Effect of treatment modality on the hypothalamic-pituitary function of patients treated with radiation therapy for pituitary adenomas: Hypothalamic dose and endocrine outcomes.

    Directory of Open Access Journals (Sweden)

    Andrew eElson

    2014-04-01

    Full Text Available Background: Both fractionated external beam radiotherapy and single fraction radiosurgery for pituitary adenomas are associated with the risk of hypothalamic-pituitary (HP axis dysfunction.Objective: To analyze the effect of treatment modality (Linac, TomoTherapy, or Gamma Knife on hypothalamic dose and correlate these with HP-Axis deficits after radiotherapy.Methods:Radiation plans of patients treated postoperatively for pituitary adenomas using Linac-based 3D Conformal Radiotherapy (CRT (n=11, TomoTherapy-based Intensity Modulated Radiation Therapy (IMRT (n=10, or Gamma Knife Stereotactic Radiosurgery (SRS(n=12 were retrospectively reviewed. Dose to the hypothalamus was analyzed and postradiotherapy hormone function including growth hormone (GH, thyroid (TSH, adrenal (ACTH, prolactin (PRL, and gonadotropins (FSH/LH were assessed. Results:Post-radiation, 13 of 27 (48% patients eligible for analysis developed at least one new hormone deficit, of which 8 of 11 (72% occurred in the Linac group, 4 of 8 (50% occurred in the TomoTherapy group, and 1 of 8 (12.5% occurred in the Gamma Knife group. Compared with fractionated techniques, Gamma Knife showed improved hypothalamic sparing for DMax Hypo, and V12Gy. For fractionated modalities, TomoTherapy showed improved dosimetric characteristics over Linac-based treatment with hypothalamic DMean (44.8 Gy vs. 26.8 Gy p=0.02, DMax (49.8 Gy vs. 39.1 Gy p=0.04, and V12Gy (100% vs. 76% p=0.004.Conclusion:Maximal dosimetric avoidance of the hypothalamus was achieved using Gamma Knife-based radiosurgery followed by TomoTherapy-based IMRT, and Linac-based 3D conformal radiation therapy, respectively.

  10. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.

    Science.gov (United States)

    Hindle, K Lauren; Bella, Jordi; Lovell, Simon C

    2009-11-01

    Leucine-rich repeat (LRR) proteins form a large and diverse family. They have a wide range of functions most of which involve the formation of protein-protein interactions. All known LRR structures form curved solenoids, although there is large variation in their curvature. It is this curvature that determines the shape and dimensions of the inner space available for ligand binding. Unfortunately, large-scale parameters such as the overall curvature of a protein domain are extremely difficult to predict. Here, we present a quantitative analysis of determinants of curvature of this family. Individual repeats typically range in length between 20 and 30 residues and have a variety of secondary structures on their convex side. The observed curvature of the LRR domains correlates poorly with the lengths of their individual repeats. We have, therefore, developed a scoring function based on the secondary structure of the convex side of the protein that allows prediction of the overall curvature with a high degree of accuracy. We also demonstrate the effectiveness of this method in selecting a suitable template for comparative modeling. We have developed an automated, quantitative protocol that can be used to predict accurately the curvature of leucine-rich repeat proteins of unknown structure from sequence alone. This protocol is available as an online resource at http://www.bioinf.manchester.ac.uk/curlrr/.

  11. LEUCINE-RICH REPEAT CONTAINING 10 (LRRC10 AND DILATED CARDIOMYOPATHY

    Directory of Open Access Journals (Sweden)

    Matthew J Brody

    2016-08-01

    Full Text Available Leucine-rich repeat containing protein 10 (LRRC10 is a cardiomyocyte-specific member of the Leucine-rich repeat containing (LRRC protein superfamily with critical roles in cardiac function and disease pathogenesis. Recent studies have identified LRRC10 mutations in human idiopathic dilated cardiomyopathy (DCM and Lrrc10 homozygous knockout mice develop DCM, strongly linking LRRC10 to the molecular etiology of DCM. LRRC10 localizes to the dyad region in cardiomyocytes where it can interact with actin and α-actinin at the Z-disc and associate with T-tubule components. Indeed, this region is becoming increasingly recognized as a signaling center in cardiomyocytes, not only for calcium cycling, excitation-contraction coupling, and calcium-sensitive hypertrophic signaling, but also as a nodal signaling hub where the myocyte can sense and respond to mechanical stress. Disruption of a wide range of critical structural and signaling molecules in cardiomyocytes confers susceptibility to cardiomyopathies in addition to the more classically studied mutations in sarcomeric proteins. However, the molecular mechanisms underlying DCM remain unclear. Here, we review what is known about the cardiomyocyte functions of LRRC10, lessons learned about LRRC10 and DCM from the Lrrc10 knockout mouse model, and discuss ongoing efforts to elucidate molecular mechanisms whereby mutation or absence of LRRC10 mediates cardiac disease.

  12. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application

    International Nuclear Information System (INIS)

    Veluswamy, Hari Prakash; Kumar, Asheesh; Kumar, Rajnish; Linga, Praveen

    2017-01-01

    Highlights: • Innovative combinatorial hybrid approach to reduce nucleation stochasticity and enhance hydrate growth. • Methane hydrate growth curves are similar in UTR and STR configurations in presence of leucine. • Amalgamation of stirred (STR) and unstirred (UTR) configuration is demonstrated. • Reliable method for scale up and commercial production of Solidified Natural Gas (SNG). - Abstract: Natural gas storage in clathrate hydrates or solidified natural gas (SNG) offers the safest, cleanest and the most compact mode of storage aided by the relative ease in natural gas (NG) recovery with minimal cost compared to known conventional methods of NG storage. The stochastic nature of hydrate nucleation and the slow kinetics of hydrate growth are major challenges that needs to be addressed on the SNG production side. A deterministic and fast nucleation coupled with rapid crystallization kinetics would empower this beneficial technology for commercial application. We propose a hybrid combinatorial approach of methane hydrate formation utilizing the beneficial aspect of environmentally benign amino acid (leucine) as a kinetic promoter by combining stirred and unstirred reactor operation. This hybrid approach is simple, can easily be implemented and scaled-up to develop an economical SNG technology for efficient storage of natural gas on a large scale. Added benefits include the minimal energy requirement during hydrate growth resulting in overall cost reduction for SNG technology.

  13. Leucine aminopeptidase and transaminase activity of intestine epithelium of chickens fed on gamma-irradiated feed

    International Nuclear Information System (INIS)

    Toncheva, E.; Chotinski, D.

    1987-01-01

    An experiment was conducted with 4 groups of male broilers. From hatching to the age of 49 days the chickens were fed as follows: group 1 (control) - compound feed, group 2 - feed gamma treated at 0.35 Mrad, group 3 - at 0.7 Mrad, and group 4 - at 1.0 Mrad. In a homogenate of jejunum mucosa, isolated from 24 chickens, it was determined the activity of leucine aminopeptidase, glutamic oxalacetic transminase and glutamic pyruvic transminase as well as the content of protein. Data obtained showed that activity of leucine aminopeptidase in the intestinal mucosa decreased at most twofold in chickens receiving feed treated at 0.7 Mrad. Irradiation at 1.0 Mrad also led to a significant lowering of enzime activity; at 0.35 Mrad there was of no impact on the activity of this hydrolase in the jejunal mucosa of chickens fed on such feed. Glutamic oxalacetic transminase activity increased significantly only when treated at 0.7 Mrad. Glutamic pyruvic transminase activity was not effected by the applied gamma ray radiation in this experiment

  14. Preliminary structural studies on the leucine-zipper homology region of the human protein Bap31

    Energy Technology Data Exchange (ETDEWEB)

    Mukasa, Takashi; Santelli, Eugenio [Program on Infectious Diseases, Center for Inflammation and Infectious Diseases, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Reed, John C. [Program on Apoptosis, Cancer Center, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Pascual, Jaime, E-mail: pascual@burnham.org [Program on Infectious Diseases, Center for Inflammation and Infectious Diseases, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States)

    2007-04-01

    A leucine-zipper with properties as apoptotic regulator in the ER has been crystallized. X-ray data to 2.5 Å resolution were collected, molecular replacement solutions were identified and refinement has been started. B-cell receptor-associated protein 31 (Bap31) is an integral membrane protein located in the endoplasmic reticulum (ER) that participates in the transport and quality control of membrane proteins and plays a role in determining cell sensitivity to ER stress and apoptosis. Its cytoplasmic region contains two target sites for caspase cleavage in certain apoptotic pathways. Here, the subcloning, expression, purification and crystallization of the Homo sapiens Bap31 leucine-zipper C-terminal fragment, which spans residues Gly160–Glu246, are reported. An N-terminally His-tagged protein was overexpressed in Escherichia coli and purified by chromatographic methods. X-ray diffraction data were collected in-house to 2.5 Å resolution. Crystals belong to space group P6{sub 1}22/P6{sub 5}22, with unit-cell parameters a = b = 70.7, c = 80.6 Å. Data analysis indicates the presence of one molecule per asymmetric unit.

  15. MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Jarocki, Veronica M; Santos, Jerran; Tacchi, Jessica L; Raymond, Benjamin B A; Deutscher, Ania T; Jenkins, Cheryl; Padula, Matthew P; Djordjevic, Steven P

    2015-01-01

    Aminopeptidases are part of the arsenal of virulence factors produced by bacterial pathogens that inactivate host immune peptides. Mycoplasma hyopneumoniae is a genome-reduced pathogen of swine that lacks the genetic repertoire to synthesize amino acids and relies on the host for availability of amino acids for growth. M. hyopneumoniae recruits plasmin(ogen) onto its cell surface via the P97 and P102 adhesins and the glutamyl aminopeptidase MHJ_0125. Plasmin plays an important role in regulating the inflammatory response in the lungs of pigs infected with M. hyopneumoniae. We show that recombinant MHJ_0461 (rMHJ_0461) functions as a leucine aminopeptidase (LAP) with broad substrate specificity for leucine, alanine, phenylalanine, methionine and arginine and that MHJ_0461 resides on the surface of M. hyopneumoniae. rMHJ_0461 also binds heparin, plasminogen and foreign DNA. Plasminogen bound to rMHJ_0461 was readily converted to plasmin in the presence of tPA. Computational modelling identified putative DNA and heparin-binding motifs on solvent-exposed sites around a large pore on the LAP hexamer. We conclude that MHJ_0461 is a LAP that moonlights as a multifunctional adhesin on the cell surface of M. hyopneumoniae.

  16. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Eduard J. Kerkhoven

    2017-06-01

    Full Text Available The yeast Yarrowia lipolytica is a potent accumulator of lipids, and lipogenesis in this organism can be influenced by a variety of factors, such as genetics and environmental conditions. Using a multifactorial study, we elucidated the effects of both genetic and environmental factors on regulation of lipogenesis in Y. lipolytica and identified how two opposite regulatory states both result in lipid accumulation. This study involved comparison of a strain overexpressing diacylglycerol acyltransferase (DGA1 with a control strain grown under either nitrogen or carbon limitation conditions. A strong correlation was observed between the responses on the transcript and protein levels. Combination of DGA1 overexpression with nitrogen limitation resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered a contradictory role for TORC1 in controlling lipid accumulation, likely mediated through 2-isopropylmalate and a Leu3-like transcription factor.

  17. Arginine supplementation modulates pig plasma lipids, but not hepatic fatty acids, depending on dietary protein level with or without leucine.

    Science.gov (United States)

    Madeira, Marta Sofia Morgado Dos Santos; Rolo, Eva Sofia Alves; Pires, Virgínia Maria Rico; Alfaia, Cristina Maria Riscado Pereira Mateus; Coelho, Diogo Francisco Maurício; Lopes, Paula Alexandra Antunes Brás; Martins, Susana Isabel Vargas; Pinto, Rui Manuel Amaro; Prates, José António Mestre

    2017-05-30

    In the present study, the effect of arginine and leucine supplementation, and dietary protein level, were investigated in commercial crossbred pigs to clarify their individual or combined impact on plasma metabolites, hepatic fatty acid composition and mRNA levels of lipid sensitive factors. The experiment was conducted on fifty-four entire male pigs (Duroc × Pietrain × Large White × Landrace crossbred) from 59 to 92 kg of live weight. Each pig was randomly assigned to one of six experimental treatments (n = 9). The treatments followed a 2 × 3 factorial arrangement, providing two levels of arginine supplementation (0 vs. 1%) and three levels of basal diet (normal protein diet, NPD; reduced protein diet, RPD; reduced protein diet with 2% of leucine, RPDL). Significant interactions between arginine supplementation and protein level were observed across plasma lipids. While dietary arginine increased total lipids, total cholesterol, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol and triacylglycerols in NPD, the inverse effect was observed in RPD. Overall, dietary treatments had a minor impact on hepatic fatty acid composition. RPD increased 18:1c9 fatty acid while the combination of leucine and RPD reduced 18:0 fatty acid. Arginine supplementation increased the gene expression of FABP1, which contributes for triacylglycerols synthesis without affecting hepatic fatty acids content. RPD, with or without leucine addition, upregulated the lipogenic gene CEBPA but downregulated the fat oxidation gene LPIN1. Arginine supplementation was responsible for a modulated effect on plasma lipids, which is dependent on dietary protein level. It consistently increased lipaemia in NPD, while reducing the correspondent metabolites in RPD. In contrast, arginine had no major impact, neither on hepatic fatty acids content nor on fatty acid composition. Likewise, leucine supplementation of RPD, regardless the presence of arginine, promoted no changes on total fatty acids in

  18. Methodological study on determining endogenous amino acid excretion of broiler chickens by single intravenous injection of 3H-leucine

    International Nuclear Information System (INIS)

    Yao Junhu; Wang Kangning; Yang Feng; Zhou Anguo; Cai Xuelin; Duanmu Dao

    1999-01-01

    Forty broiler chickens (1.5 kg of body weight, BW) were randomly divided into 20 groups. Every fifth group was force-fed a nitrogen-free diet (NFD) or a NFd + 3.20% enzyme hydrolysed casein (EHC) diet or diets with 5% and 20% crude protein (CP) in which soybean meal (sol.) was the sole nitrogen source. 30μCi 3 H-leucine/kg BW was intravenously injected into all birds just after the force-feeding. Venous blood samples were taken at 5 min, 4h, 24h, 36h and 48h after the injection, and the amount of excreta for the whole period of 48h was collected. The amino acids excreted after force-feeding NFD + 3.20% EHC of CP5% diet were theoretically endogenous. The ratios of specific radioactivity (SR) in excreta and the value of definite integral in free plasma from 0 to 48 h after injection of labelled leucine were not different (P > 0.05) when NFD, NFD + 3.20% EHC or CP5% diet was fed. From these results and theoretical analysis, it was suggested that for the birds with CP20% diet, the ratio of SR in endogenous leucine and value of definite integral in free plasma from 0 to 48 h after injection of labelled leucine would be the same as that of the birds with NFD diet, and thus endogenous losses of leucine and other amino acids, by the endogenous amino acid pattern measured with NFD diet, could be estimated for CP20% diet. The endogenous amino acid losses measured by this new technique was 120.50% of those measured by NFD method. It was suggested that single intravenous injection of 3 H-leucine first proposed would be more valuable for determining endogenous amino acid losses, especially when practical nitrogen-containing diet was fed

  19. DMPD: The role of macrophages in the hypothalamic-pituitary-adrenal activation inresponse to endotoxin (LPS). [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1315450 The role of macrophages in the hypothalamic-pituitary-adrenal activation in...png) (.svg) (.html) (.csml) Show The role of macrophages in the hypothalamic-pituitary-adrenal activation in...e hypothalamic-pituitary-adrenal activation inresponse to endotoxin (LPS). Authors Derijk RH, van Rooijen N,

  20. Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis.

    Science.gov (United States)

    Pasiakos, Stefan M; McClung, Holly L; McClung, James P; Margolis, Lee M; Andersen, Nancy E; Cloutier, Gregory J; Pikosky, Matthew A; Rood, Jennifer C; Fielding, Roger A; Young, Andrew J

    2011-09-01

    The effects of essential amino acid (EAA) supplementation during moderate steady state (ie, endurance) exercise on postexercise skeletal muscle metabolism are not well described, and the potential role of supplemental leucine on muscle protein synthesis (MPS) and associated molecular responses remains to be elucidated. This randomized crossover study examined whether EAA supplementation with 2 different concentrations of leucine affected post-steady state exercise MPS, whole-body protein turnover, and mammalian target of rapamycin 1 (mTORC1) intracellular signaling. Eight adults completed 2 separate bouts of cycle ergometry [60 min, 60% VO(2)peak (peak oxygen uptake)]. Isonitrogenous (10 g EAA) drinks with different leucine contents [leucine-enriched (l)-EAA, 3.5 g leucine; EAA, 1.87 g leucine] were consumed during exercise. MPS and whole-body protein turnover were determined by using primed continuous infusions of [(2)H(5)]phenylalanine and [1-(13)C]leucine. Multiplex and immunoblot analyses were used to quantify mTORC1 signaling. MPS was 33% greater (P < 0.05) after consumption of L-EAA (0.08 ± 0.01%/h) than after consumption of EAA (0.06 ± 0.01%/h). Whole-body protein breakdown and synthesis were lower (P < 0.05) and oxidation was greater (P < 0.05) after consumption of L-EAA than after consumption of EAA. Regardless of dietary treatment, multiplex analysis indicated that Akt and mammalian target of rapamycin phosphorylation were increased (P < 0.05) 30 min after exercise. Immunoblot analysis indicated that phosphorylation of ribosomal protein S6 and extracellular-signal regulated protein kinase increased (P < 0.05) and phosphorylation of eukaryotic elongation factor 2 decreased (P < 0.05) after exercise but was not affected by dietary treatment. These findings suggest that increasing the concentration of leucine in an EAA supplement consumed during steady state exercise elicits a greater MPS response during recovery. This trial is registered at clinicaltrials

  1. Effect of dietary nutrients on ileal endogenous losses of threonine, cysteine, methionine, lysine, leucine and protein in broiler chicks.

    Science.gov (United States)

    Cerrate, S; Vignale, S K; Ekmay, R; England, J; Coon, C

    2018-04-01

    An isotope dose technique was utilized (i) to determine endogenous amino acid (AA) and protein losses and (ii) to propose adjusted values for AA requirements. The endogenous flow rate was calculated from the pool of enrichment in plasma AA, assuming similitude to enrichment of endogenous AA. In experiment 1, chicks were orally administered D4-lysine at 2% of estimated lysine intake from 16 to 24 days to find the isotopic steady state of the atom percent excess (APE) of lysine for plasma and jejunal and ileal digesta. The APE of D4-lysine in plasma, jejunal digesta and ileal digesta reached the isotopic steady state at 5.5, 3.4 and 2.0 days, respectively, by using the broken-line model. It was assumed that the isotopic steady state at 5 days identified for D4-lysine is also representative for the 15N-labeled AA. In experiment 2, chicks were fed diets from 1 to 21 days with increasing levels of fat (6%, 8%, 12%, 13% extract ether), protein (26%, 28.5%, 31% CP) or fiber (14%, 16%, 18% NDF) by adding poultry fat, soybean meal, blended animal protein or barley. Chicks were orally administered 15N-threonine, 15N-cysteine, 15N-methionine, 15N-lysine and 15N-leucine at 2% of estimated daily intake for 5 days from 17 to 21 days of age. Dietary nutrients influenced endogenous losses (EL), where dietary fat stimulated EL of lysine (P=0.06), leucine and protein (P=0.07); dietary protein enhanced EL of leucine and protein; and finally the dietary fiber increased EL of leucine. Dietary nutrients also affected apparent ileal digestibility (AID). Dietary fat increased AID of cysteine but decreased AID of lysine. Dietary protein reduced AID of protein, threonine, lysine and leucine, and similarly dietary fiber decreased AID of protein, threonine, methionine, lysine and leucine. In contrast, dietary fat or protein did not affect real ileal digestibility (RID) of protein and AA except threonine and leucine. The dietary fiber reduced the RID of protein, threonine and leucine. This

  2. Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation

    DEFF Research Database (Denmark)

    Behncken, S N; Billestrup, Nils; Brown, R

    2000-01-01

    Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers of the gro......Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers...

  3. The Plant Leucine-Rich Repeat Receptor-Like Kinase PSY1R from Head to Toe

    DEFF Research Database (Denmark)

    Oehlenschlæger, Christian Berg

    PSY1R belongs to the family of plant leucine-rich repeat receptor-like kinases that play important roles in processes such as growth regulation and plant immunity response. PSY1R was proposed to be the receptor of the plant peptide hormone PSY1 which promotes cell expansion. PSY1R was furthermore...... are conserved among related plant leucine-rich repeat receptor-like kinases whereas Ser951 is unique for PSY1R which suggests that it may serve a specialized function in regulation of PSY1R kinase activity....

  4. Body composition of piglets from sows fed the leucine metabolite β-hydroxy β-methyl butyrate in late gestation

    DEFF Research Database (Denmark)

    Flummer, Christine; Kristensen, Niels Bastian; Theil, Peter Kappel

    2012-01-01

    Supplementation of the leucine metabolite β-hydroxy β-methyl butyrate (HMB) to sows during late gestation or lactation has been shown to improve piglet health, survival, and growth. This study aimed to investigate long-term effects of HMB supplementation to late-gestating sows on body characteris......Supplementation of the leucine metabolite β-hydroxy β-methyl butyrate (HMB) to sows during late gestation or lactation has been shown to improve piglet health, survival, and growth. This study aimed to investigate long-term effects of HMB supplementation to late-gestating sows on body...

  5. Dose and Latency Effects of Leucine Supplementation in Modulating Glucose Homeostasis: Opposite Effects in Healthy and Glucocorticoid-Induced Insulin-Resistance States

    Directory of Open Access Journals (Sweden)

    Nelo Eidy Zanchi

    2012-11-01

    Full Text Available Dexamethasone (DEXA is a potent immunosupressant and anti-inflammatory agent whose main side effects are muscle atrophy and insulin resistance in skeletal muscles. In this context, leucine supplementation may represent a way to limit the DEXA side effects. In this study, we have investigated the effects of a low and a high dose of leucine supplementation (via a bolus on glucose homeostasis, muscle mass and muscle strength in energy-restricted and DEXA-treated rats. Since the leucine response may also be linked to the administration of this amino acid, we performed a second set of experiments with leucine given in bolus (via gavage versus leucine given via drinking water. Leucine supplementation was found to produce positive effects (e.g., reduced insulin levels only when administrated in low dosage, both via the bolus or via drinking water. However, under DEXA treatment, leucine administration was found to significantly influence this response, since leucine supplementation via drinking water clearly induced a diabetic state, whereas the same effect was not observed when supplied via the gavage.

  6. SREBP-1 dimerization specificity maps to both the helix-loop-helix and leucine zipper domains: use of a dominant negative

    DEFF Research Database (Denmark)

    Rishi, Vikas; Gal, Jozsef; Krylov, Dmitry

    2004-01-01

    -HLH-ZIP proteins MAX, USF, or MITF, even at 100 molar eq. Chimeric proteins containing the HLH domain of SREBP-1 and the leucine zipper from either MAX, USF, or MITF indicate that both the HLH and leucine zipper regions of SREBP-1 contribute to its dimerization specificity. Transient co-transfection studies...

  7. MATERNAL ATRAZINE (ATR) ALTERS HYPOTHALAMIC DOPAMINE (HYP-DA) AND SERUM PROLACTIN (SPRL) IN MALE PUPS

    Science.gov (United States)

    Maternal Atrazine (ATR) alters hypothalamic dopamine (HYP-DA) and serum prolactin (sPRL) in male pups. 1Christopher Langdale, 2Tammy Stoker and 2Ralph Cooper. 1 Dept. of Cell Biology, North Carolina State University College of Veterinary Medicine, Raleigh, NC. 2 Endocrinology ...

  8. Hypothalamic PGC-1 alpha Protects Against High-Fat Diet Exposure by Regulating ER alpha

    NARCIS (Netherlands)

    Morselli, Eugenia; Fuente-Martin, Esther; Finan, Brian; Kim, Min; Frank, Aaron; Garcia-Caceres, Cristina; Navas, Carlos Rodriguez; Gordillo, Ruth; Neinast, Michael; Kalainayakan, Sarada P.; Li, Dan L.; Gao, Yuanqing; Yi, Chun-Xia; Hahner, Lisa; Palmer, Biff F.; Tschöp, Matthias H.; Clegg, Deborah J.

    2014-01-01

    High-fat diets (HFDs) lead to obesity and inflammation in the central nervous system (CNS). Estrogens and estrogen receptor alpha (ER alpha) protect premenopausal females from the metabolic complications of inflammation and obesity-related disease. Here, we demonstrate that hypothalamic PGC-1 alpha

  9. Hypothalamic-pituitary-adrenal axis activity in adults who were prenatally exposed to the Dutch famine

    NARCIS (Netherlands)

    de Rooij, Susanne R.; Painter, Rebecca C.; Phillips, David I. W.; Osmond, Clive; Michels, Robert P. J.; Bossuyt, Patrick M. M.; Bleker, Otto P.; Roseboom, Tessa J.

    2006-01-01

    OBJECTIVE: The hypothalamic-pituitary-adrenal (HPA) axis has been proposed to be susceptible to fetal programming, the process by which an adverse fetal environment elicits permanent physiological and metabolic alterations predisposing to disease in later life. It is hypothesized that fetal exposure

  10. Relationship between the hypothalamic-pituitary-adrenal-axis and fatty acid metabolism in recurrent depression

    NARCIS (Netherlands)

    Mocking, R. J. T.; Ruhe, E.; Assies, J.; Lok, A.; Koeter, M. W. J.; Visser, I.; Bockting, C. L. H.|info:eu-repo/dai/nl/258267992; Schene, A. H.

    Alterations in hypothalamic-pituitary-adrenal (HPA)-axis activity and fatty acid (FA)-metabolism have been observed in (recurrent) major depressive disorder (MDD). Through the pathophysiological roles of FAs in the brain and cardiovascular system, a hypothesized relationship between HPA-axis

  11. Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons.

    Science.gov (United States)

    Takahashi, Hiroyuki; Takata, Fuyuko; Matsumoto, Junichi; Machida, Takashi; Yamauchi, Atsushi; Dohgu, Shinya; Kataoka, Yasufumi

    2015-02-20

    Insulin signaling in the hypothalamus plays an important role in food intake and glucose homeostasis. Hypothalamic neuronal functions are modulated by glial cells; these form an extensive network connecting the neurons and cerebral vasculature, known as the neurovascular unit (NVU). Brain pericytes are periendothelial accessory structures of the blood-brain barrier and integral members of the NVU. However, the interaction between pericytes and neurons is largely unexplored. Here, we investigate whether brain pericytes could affect hypothalamic neuronal insulin signaling. Our immunohistochemical observations demonstrated the existence of pericytes in the mouse hypothalamus, exhibiting immunoreactivity of platelet-derived growth factor receptor β (a pericyte marker), and laminin, a basal lamina marker. We then exposed a murine hypothalamic neuronal cell line, GT1-7, to conditioned medium obtained from primary cultures of rat brain pericytes. Pericyte-conditioned medium (PCM), but not astrocyte- or aortic smooth muscle cell-conditioned medium, increased the insulin-stimulated phosphorylation of Akt in GT1-7 cells in a concentration-dependent manner. PCM also enhanced insulin-stimulated tyrosine phosphorylation of insulin receptor β without changing its expression or localization in cytosolic or plasma membrane fractions. These results suggest that pericytes, rather than astrocytes, increase insulin sensitivity in hypothalamic neurons by releasing soluble factors under physiological conditions in the NVU. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5bet...

  13. Childhood Craniopharyngioma with Hypothalamic Obesity - No Long-term Weight Reduction due to Rehabilitation Programs

    NARCIS (Netherlands)

    Sterkenburg, A. S.; Hoffmann, A.; Gebhardt, U.; Waldeck, E.; Springer, S.; Mueller, H. L.

    2014-01-01

    Background: Severe obesity due to hypothalamic involvement has major impact on prognosis in long-term survivors of childhood craniopharyngioma. The long-term effects of rehabilitation efforts on weight development and obesity in these patients are not analyzed up to now. Patients and Methods: 108

  14. Androgenic anabolic steroid use and severe hypothalamic-pituitary dysfunction : a case study

    NARCIS (Netherlands)

    van Breda, E.; Keizer, H.A.; Kuipers, H.; Wolffenbuttel, B.H.R.

    The data of the present case demonstrate that the abuse of androgenic anabolic steroids (AAS) may lead to serious health effects. Although most clinical attention is usually directed towards peripheral side effects, the most serious central side effect, hypothalamic-pituitary-dysfunction, is often

  15. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra

    2016-10-01

    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  16. Increased melanin concentrating hormone receptor type I in the human hypothalamic infundibular nucleus in cachexia

    NARCIS (Netherlands)

    Unmehopa, Unga A.; van Heerikhuize, Joop J.; Spijkstra, Wenda; Woods, John W.; Howard, Andrew D.; Zycband, Emanuel; Feighner, Scott D.; Hreniuk, Donna L.; Palyha, Oksana C.; Guan, Xiao-Ming; Macneil, Douglas J.; van der Ploeg, Lex H. T.; Swaab, Dick F.

    2005-01-01

    Melanin-concentrating hormone (MCH) exerts a positive regulation on appetite and binds to the G protein-coupled receptors, MCH1R and MCH2R. In rodents, MCH is produced by neurons in the lateral hypothalamus with projections to various hypothalamic and other brain sites. In the present study, MCH1R

  17. Dehydration-induced release of vasopressin involves activation of hypothalamic histaminergic neurons.

    Science.gov (United States)

    Kjaer, A; Knigge, U; Rouleau, A; Garbarg, M; Warberg, J

    1994-08-01

    The hypothalamic neurotransmitter histamine (HA) induces arginine vasopressin (AVP) release when administered centrally. We studied and characterized this effect of HA with respect to receptor involvement. In addition, we studied the possible role of hypothalamic histaminergic neurons in the mediation of a physiological stimulus (dehydration) for AVP secretion. Intracerebroventricular administration of HA, the H1-receptor agonists 2(3-bromophenyl)HA and 2-thiazolylethylamine, or the H2-receptor agonists amthamine or 4-methyl-HA stimulated AVP secretion. The stimulatory action of HA on AVP was inhibited by pretreatment with the H1-receptor antagonist mepyramine or the H2-receptor antagonist cimetidine. Twenty-four hours of dehydration elevated the plasma osmolality from 298 +/- 3 to 310 +/- 3 mmol/liter and increased the plasma AVP concentration 4-fold. The hypothalamic content of HA and its metabolite tele-methyl-HA was elevated in response to dehydration, indicating an increased synthesis and release of hypothalamic HA. Dehydration-induced AVP secretion was lowered when neuronal HA synthesis was inhibited by the administration of (S) alpha-fluoromethylhistidine or when the animals were pretreated with the H3-receptor agonist R(alpha)methylhistamine, which inhibits the release and synthesis of HA, the H1-receptor antagonists mepyramine and cetirizine, or the H2-receptor antagonists cimetidine and ranitidine. We conclude that HA, via activation of both H1- and H2-receptors, stimulates AVP release and that HA is a physiological regulator of AVP secretion.

  18. Characterization of the Hypothalamic-Pituitary-Adrenal-Axis in Familial Longevity under Resting Conditions

    DEFF Research Database (Denmark)

    Jansen, Steffy W; Roelfsema, Ferdinand; Akintola, Abimbola A

    2015-01-01

    OBJECTIVE: The hypothalamic-pituitary-adrenal (HPA)-axis is the most important neuro-endocrine stress response system of our body which is of critical importance for survival. Disturbances in HPA-axis activity have been associated with adverse metabolic and cognitive changes. Humans enriched for ...

  19. Revised criteria for PCOS in WHO Group II anovulatory infertility – a revival of hypothalamic amenorrhoea?

    DEFF Research Database (Denmark)

    Lauritsen, Mette Petri; Pinborg, Anja; Loft, Anne

    2015-01-01

    OBJECTIVE: To evaluate revised criteria for polycystic ovarian morphology (PCOM) in the diagnosis of polycystic ovary syndrome (PCOS) in anovulatory infertility. DESIGN: Prospective cohort study. PATIENTS: WHO Group II anovulatory infertile women (n = 75). MEASUREMENTS: Clinical, sonographic......, but according to AMH levels, the ovaries remain multifollicular. PERSPECTIVES: A better distinction between hypothalamic amenorrhoea and PCOS could improve treatment strategies for anovulatory infertility....

  20. Hypothalamic-pituitary-adrenal axis reactivity to social stress and adolescent cannabis use: the TRAILS study

    NARCIS (Netherlands)

    Prince van Leeuwen, A.; Creemers, H.E.; Greaves-Lord, K.; Verhulst, F.C.; Ormel, J.; Huizink, A.C.

    2011-01-01

    Aims: To investigate the relationship of life-time and repeated cannabis use with hypothalamic-pituitary-adrenal (HPA) axis reactivity to social stress in a general population sample of adolescents. Design: Adolescents who reported life-time or repeated cannabis use, life-time or repeated tobacco

  1. Hypothalamic-pituitary-adrenal axis reactivity to social stress and adolescent cannabis use : the TRAILS study

    NARCIS (Netherlands)

    van Leeuwen, Andrea Prince; Creemers, Hanneke E.; Greaves-Lord, Kirstin; Verhulst, Frank C.; Ormel, Johan; Huizink, Anja C.

    Aims To investigate the relationship of life-time and repeated cannabis use with hypothalamic-pituitary-adrenal (HPA) axis reactivity to social stress in a general population sample of adolescents. Design Adolescents who reported life-time or repeated cannabis use, life-time or repeated tobacco use

  2. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  3. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Dijk, van M.; Dijk, F.J.; Boekschoten, M.V.; Faber, J.; Argiles, J.M.; Laviano, A.; Müller, M.R.; Witkamp, R.F.; Norren, van K.

    2014-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an

  4. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  5. Increased glutamic acid decarboxylase expression in the hypothalamic suprachiasmatic nucleus in depression

    NARCIS (Netherlands)

    Wu, Xueyan; Balesar, R.A.; Lu, Jing; Farajnia, Sahar; Zhu, Qiongbin; Huang, Manli; Bao, Ai-Min; Swaab, D.F.

    2017-01-01

    In depression, disrupted circadian rhythms reflect abnormalities in the central circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN). Although many SCN neurons are said to be GABAergic, it was not yet known whether and how SCN GABA changes occur in the SCN in depression. We,

  6. Mindful Parenting Predicts Mothers' and Infants' Hypothalamic-Pituitary-Adrenal Activity during a Dyadic Stressor

    Science.gov (United States)

    Laurent, Heidemarie K.; Duncan, Larissa G.; Lightcap, April; Khan, Faaiza

    2017-01-01

    Mindfulness in the parenting relationship has been proposed to help both parents and children better regulate stress, though this has not yet been shown at the physiological level. In this study, we tested relations between maternal mindfulness in parenting and both mothers' and their infants' hypothalamic-pituitary-adrenal (HPA) axis activity…

  7. Spontaneous remission of chiasmatic/hypothalamic masses in neurofibromatosis type 1: report of two cases

    International Nuclear Information System (INIS)

    Gottschalk, S.; Tavakolian, R.; Lehmann, R.; Buske, A.; Tinschert, S.

    1999-01-01

    We report two children with neurofibromatosis type 1 showing enhancing masses on MRI suggesting neoplasms in the chiasm and hypothalamic region. In both patients no visual or endocrinal dysfunction was present. On serial MRI spontaneous partial remission was found, implying that a cautious approach to therapeutic management of similar cases should be taken. (orig.) (orig.)

  8. On the relation between self-reported cognitive fatigue and the posterior hypothalamic-brainstem network

    NARCIS (Netherlands)

    Hanken, K.; Manousi, A.; Klein, J.; Kastrup, A.; Eling, P.A.T.M.; Hildebrandt, H.

    2016-01-01

    Background and Purpose: Various causes have been suggested for multiple sclerosis (MS) related fatigue. Hypothalamus-brainstem fibres play a role in sleep−wake regulation and in hypothalamic deactivation during inflammatory states. Hence, they may play a role for experiencing fatigue by changing

  9. Discrepancies between genital responses and subjective sexual function during testosterone substitution in women with hypothalamic amenorrhea

    NARCIS (Netherlands)

    Tuiten, A.; Laan, E.; Panhuysen, G.; Everaerd, W.; de Haan, E.; Koppeschaar, H.; Vroon, P.

    1996-01-01

    Psychosexual dysfunction is often suggested the cause of the disturbed eating habits associated with hypothalamic secondary amenorrhea. In contrast, we explored the possibility that impaired sexual function may result from reduced levels of testosterone in amenorrheic subjects as a consequence of

  10. Hypothalamic obesity after treatment for craniopharyngioma: the importance of the home environment.

    Science.gov (United States)

    Meijneke, Ruud W H; Schouten-van Meeteren, Antoinette Y N; de Boer, Nienke Y; van Zundert, Suzanne; van Trotsenburg, Paul A S; Stoelinga, Femke; van Santen, Hanneke M

    2015-01-01

    Hypothalamic obesity after treatment for craniopharyngioma is a well-recognized, severe problem. Treatment of hypothalamic obesity is difficult and often frustrating for the patient, the parents and the professional care-giver. Because hypothalamic obesity is caused by an underlying medical disorder, it is often assumed that regular diet and exercise are not beneficial to reduce the extraordinarily high body mass index, and in fact, lifestyle interventions have been shown to be insufficient in case of extreme hypothalamic obesity. Nevertheless, it is important to realize that also in this situation, informal care delivered by the family and appropriate parenting styles are required to minimize the obesity problem. We present a case in which weight gain in the home situation was considered unstoppable, and a very early mortality due to complications of the severe increasing obesity was considered inevitable. A permissive approach toward food intake became leading with rapid weight increase since a restrictive lifestyle was considered a senseless burden for the child. By admission to our hospital for a longer period of time, weight reduction was realized, and the merely permissive approach could be changed into active purposeful care by adequate information, instruction, guidance and encouragement of the affected child and her parents. This case illustrates that, although this type of obesity has a pathological origin, parental and environmental influences remain of extreme importance.

  11. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    NARCIS (Netherlands)

    Meerlo, P; Koehl, M; van der Borght, K; Turek, FW

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine

  12. Hypothalamic-pituitary-adrenal axis activity and early onset of cannabis use

    NARCIS (Netherlands)

    Huizink, Anja C.; Ferdinand, Robert F.; Ormel, Johan; Verhulst, Frank C.

    2006-01-01

    Aims To identify early onset cannabis users by measuring basal hypothalamic-pituitary-adrenal (HPA) axis activity, which may be a risk factor for early onset substance use when showing low activity. Design In a prospective cohort study, adolescents who initiated cannabis use at an early age (9-12

  13. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators.

    Science.gov (United States)

    Desai, Mina; Ferrini, Monica G; Han, Guang; Jellyman, Juanita K; Ross, Michael G

    2018-02-21

    In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring obesity. As food intake/appetite is one of the critical elements contributing to obesity, we determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn hypothalamic stem cells which form the arcuate nucleus appetite center. For in vivo studies, female rats received BPA prior to and during pregnancy via drinking water, and newborn offspring primary hypothalamic neuroprogenitor (NPCs) were obtained and cultured. For in vitro BPA exposure, primary hypothalamic NPCs from healthy newborns were utilized. In both cases, we studied the effects of BPA on NPC proliferation and differentiation, including putative signal and appetite factors. Maternal BPA increased hypothalamic NPC proliferation and differentiation in newborns, in conjunction with increased neuroproliferative (Hes1) and proneurogenic (Ngn3) protein expression. With NPC differentiation, BPA exposure increased appetite peptide and reduced satiety peptide expression. In vitro BPA-treated control NPCs showed results that were consistent with in vivo data (increase appetite vs satiety peptide expression) and further showed a shift towards neuronal versus glial fate as well as an increase in the epigenetic regulator lysine-specific histone demethylase1 (LSD1). These findings emphasize the vulnerability of stem-cell populations that are involved in life-long regulation of metabolic homeostasis to epigenetically-mediated endocrine disruption by BPA during early life. Copyright © 2018. Published by Elsevier Inc.

  14. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise

    DEFF Research Database (Denmark)

    Moberg, Marcus; Apró, William; Ekblom, Björn

    2016-01-01

    Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution...... of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo......, leucine, BCAA, or EAA (including the BCAA) in random order. Muscle biopsies were taken at rest, immediately after exercise, and following 90 and 180 min of recovery. Following 90 min of recovery the activity of S6 kinase 1 (S6K1) was greater than at rest in all four trials (PlaceboLeucine

  15. The role of leucine in isoprenoid metabolism. Incorporation of [3-13C]leucine and of [2-3H,4-14C]-β,β-dimethyl-acrylic acid into phytosterols by tissue cultures of Andrographis paniculata

    International Nuclear Information System (INIS)

    Anastasis, P.; Freer, I.; Overton, K.; Rycroft, D.; Singh, S.B.

    1985-01-01

    [3- 13 C]Leucine is incorporated into phytosterols by tissue cultures of Andrographis paniculata by breakdown to acetyl-CoA and its subsequent incorporation via (3S)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) and mevalonic acid; [2- 3 H,4- 14 C]-β,β-dimethylacrylic acid also is not incorporated intact. (author)

  16. Immobilazation of aerobic microorganisms on glassy sintered material, illustrated by the example of the production of L leucine using Corynebacterium glutamicum. Immobilisierung von aeroben Mikroorganismen an Glassintermaterial am Beispiel der L-Leucin-Produktion mit Corynebacterium glutamicum

    Energy Technology Data Exchange (ETDEWEB)

    Buechs, J.

    1988-12-01

    The aim of this study was to develop the carrier fixation of aerobic microorganisms on open-pore sintered glass material. The fermentative production of L-leucine from {alpha} cetonic isocaproic acid with Corynebacterium glutamicum was chosen as an example of a microbial process with a high demand of oxygen. (orig.).

  17. The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis

    Science.gov (United States)

    Fondi, Marco; Brilli, Matteo; Emiliani, Giovanni; Paffetti, Donatella; Fani, Renato

    2007-01-01

    Background It is generally assumed that primordial cells had small genomes with simple genes coding for enzymes able to react with a wide range of chemically related substrates, interconnecting different metabolic routes. New genes coding for enzymes with a narrowed substrate specificity arose by paralogous duplication(s) of ancestral ones and evolutionary divergence. In this way new metabolic pathways were built up by primordial cells. Useful hints to disclose the origin and evolution of ancestral metabolic routes and their interconnections can be obtained by comparing sequences of enzymes involved in the same or different metabolic routes. From this viewpoint, the lysine, arginine, and leucine biosynthetic routes represent very interesting study-models. Some of the lys, arg and leu genes are paralogs; this led to the suggestion that their ancestor genes might interconnect the three pathways. The aim of this work was to trace the evolutionary pathway leading to the appearance of the extant biosynthetic routes and to try to disclose the interrelationships existing between them and other pathways in the early stages of cellular evolution. Results The comparative analysis of the genes involved in the biosynthesis of lysine, leucine, and arginine, their phylogenetic distribution and analysis revealed that the extant metabolic "grids" and their interrelationships might be the outcome of a cascade of duplication of ancestral genes that, according to the patchwork hypothesis, coded for unspecific enzymes able to react with a wide range of substrates. These genes belonged to a single common pathway in which the three biosynthetic routes were highly interconnected between them and also to methionine, threonine, and cell wall biosynthesis. A possible evolutionary model leading to the extant metabolic scenarios was also depicted. Conclusion The whole body of data obtained in this work suggests that primordial cells synthesized leucine, lysine, and arginine through a single

  18. Litter size variation in hypothalamic gene expression determines adult metabolic phenotype in Brandt's voles (Lasiopodomys brandtii.

    Directory of Open Access Journals (Sweden)

    Xue-Ying Zhang

    Full Text Available Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10-12 and small (3-4 litter sizes, of Brandt's voles (Lasiopodomys brandtii, a rodent species from Inner Mongolia grassland in China.Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3 mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP mRNA increased in the offspring from small litters.These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood.

  19. Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: interaction with postnatal nutritional environment.

    Directory of Open Access Journals (Sweden)

    Hui Chen

    Full Text Available OBJECTIVE: Early life nutrition is critical for the development of hypothalamic neurons involved in energy homeostasis. We previously showed that intrauterine and early postnatal overnutrition programmed hypothalamic neurons expressing the appetite stimulator neuropeptide Y (NPY and suppressor proopiomelanocortin (POMC in offspring at weaning. However, the long-term effects of such programming and its interactions with post-weaning high-fat-diet (HFD consumption are unclear. RESEARCH DESIGN AND METHODS: Female Sprague Dawley rats were exposed to chow or HFD for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1, litters were adjusted to 3/litter to induce postnatal overnutrition (vs. 12 in control. At postnatal day 20, half of the rats from each maternal group were weaned onto chow or HFD for 15 weeks. Hypothalamic appetite regulators, and fuel (glucose and lipid metabolic markers were measured. RESULTS: Offspring from obese dams gained more weight than those from lean dams independent of post-weaning diet. Maternal obesity interacted with post-weaning HFD consumption to cause greater levels of hyperphagia, adiposity, hyperlipidemia, and glucose intolerance in offspring. This was linked to increased hypothalamic NPY signaling and leptin resistance in adult offspring. Litter size reduction had a detrimental impact on insulin and adiponectin, while hypothalamic NPY and POMC mRNA expression were suppressed in the face of normal energy intake and weight gain. CONCLUSIONS: Maternal obesity, postnatal litter size reduction and post-weaning HFD consumption caused obesity via different neuroendocrine mechanism. There were strong additive effects of maternal obesity and post-weaning HFD consumption to increase the metabolic disorders in offspring.

  20. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet

    Directory of Open Access Journals (Sweden)

    Jun Jiao

    2016-09-01

    Full Text Available Background: Leucine supplementation has been reported to improve lipid metabolism. However, lipid metabolism in adipose tissues and liver has not been extensively studied for leucine supplementation in mice fed with a high-fat/cholesterol diet (HFCD. Design: C57BL/6J mice were fed a chow diet, HFCD, HFCD supplemented with 1.5% leucine (HFCD+1.5% Leu group or 3% leucine (HFCD+3% Leu group for 24 weeks. The body weight, peritoneal adipose weight, total cholesterol (TC, triglyceride in serum and liver, and serum adipokines were analyzed. In addition, expression levels of proteins associated with hepatic lipogenesis, adipocyte lipolysis, and white adipose tissue (WAT browning were determined. Results: Mice in the HFCD group developed obesity and deteriorated lipid metabolism. Compared with HFCD, leucine supplementation lowered weight gain and TC levels in circulation and the liver without changing energy intake. The decrease in body fat was supported by histological examination in the WAT and liver. Furthermore, serum levels of proinflammatory adipokines, such as leptin, IL-6, and tumor necrosis factor-alpha, were significantly decreased by supplemented leucine. At the protein level, leucine potently decreased the hepatic lipogenic enzymes (fatty acid synthase and acetyl-coenzyme A carboxylase and corresponding upstream proteins. In epididymal WAT, the reduced expression levels of two major lipases by HFCD, namely phosphorylated hormone-sensitive lipase and adipose triglyceride lipase, were reversed when leucine was supplemented. Uncoupling protein 1, β3 adrenergic receptors, peroxisome proliferator-activated receptor g coactivator-1α, and fibroblast growth factor 21 were involved in the thermogenic program and WAT browning. Leucine additionally upregulated their protein expression in both WAT and interscapular brown adipose tissue. Conclusion: This study demonstrated that chronic leucine supplementation reduced the body weight and improved the

  1. The effects of adding leucine to pre and postexercise carbohydrate beverages on acute muscle recovery from resistance training.

    Science.gov (United States)

    Stock, Matt S; Young, John C; Golding, Lawrence A; Kruskall, Laura J; Tandy, Richard D; Conway-Klaassen, Janice M; Beck, Travis W

    2010-08-01

    The present study examined the effects of adding leucine to pre and postexercise carbohydrate beverages on selected markers of muscle damage, delayed-onset muscle soreness (DOMS), and squat performance for up to 72 hours after lower-body resistance training. Seventeen resistance trained men (mean +/- SD age 22.9 +/- 2.9 years) and 3 resistance trained women (mean +/- SD age 21.6 +/- 2.6 years) performed 6 sets of squats to fatigue using 75% of the 1 repetition maximum. Each subject consumed a carbohydrate beverage 30 minutes before and immediately after exercise with or without the addition of 22.5 mgxkg (45 mgxkg total) of leucine in a randomized, double-blind fashion. Serum creatine kinase (CK), lactate dehydrogenase (LDH), and DOMS were analyzed immediately before (TIME1), 24 (TIME2), 48 (TIME3), and 72 (TIME4) hours after exercise. The subjects repeated the squat protocol at TIME4 to test recovery. No differences were observed between groups for squat performance, defined as the total number of repetitions performed during 6 sets of squats, for both TIME1 and TIME4. The addition of leucine did not significantly decrease CK and LDH activity or DOMS. These results suggested that adding leucine to carbohydrate beverages did not affect acute muscle recovery and squat performance during both initial testing and during a subsequent exercise bout 72 hours later in resistance trained subjects.

  2. Metabolism of leucine and alanine in growing rats fed the diets with various protein to energy ratios

    International Nuclear Information System (INIS)

    Tanaka, Hideyuki; Yamaguchi, Michio; Kametaka, Masao

    1975-01-01

    In order to clarify the nutritional significance of metabolism of the carbon skeleton of individual amino acids, the metabolic fates of L-leucine-U- 14 C and L-alanine-U- 14 C were investigated in growing rats fed the diets with various protein calories percents (PC%) at 410 kcal of metabolizable energy. The incorporation of 14 C into body protein in 12 hr after the injection of leucine- 14 C was about 73% of the dose in the 0 and 5 PC% groups, though it decreased with increasing the levels of dietary protein from 10 to 30 PC%. The value of 14 C recovery in body protein almost agreed with the net protein utilization (NPU) determined for the whole egg protein in a similar experimental condition. The 14 C recovery in expired CO 2 and body lipid suggested that the carbon skeleton of leucine is well utilized as an energy source when the dietary carbohydrate is extensively replaced by protein. While, the incorporation of 14 C into body protein from alanine- 14 C was less than about 11% of the dose in all the dietary groups, and the majority of 14 C was recovered in expired CO 2 and body lipid in a remarked contrast to leucine. A similar pattern in urinary excretion of 14 C was obtained for these amino acids, and the refracted rise of 14 C from 10 PC% may give an indication for minimum protein requirements. (auth.)

  3. Brucella abortus strain RB51 leucine auxotroph as an environmentally safe vaccine for plasmid maintenance and antigen overexpression.

    Science.gov (United States)

    Rajasekaran, Parthiban; Seleem, Mohamed N; Contreras, Andrea; Purwantini, Endang; Schurig, Gerhardt G; Sriranganathan, Nammalwar; Boyle, Stephen M

    2008-11-01

    To avoid potentiating the spread of an antibiotic resistance marker, a plasmid expressing a leuB gene and a heterologous antigen, green fluorescent protein (GFP), was shown to complement a leucine auxotroph of cattle vaccine strain Brucella abortus RB51, which protected CD1 mice from virulent B. abortus 2308 and elicited GFP antibodies.

  4. Leucine, starch and bicarbonate utilization by specific bacterial groups in surface shelf waters off Galicia (NW Spain).

    Science.gov (United States)

    Teira, E; Hernando-Morales, V; Guerrero-Feijóo, E; Varela, M M

    2017-06-01

    The capability of different bacterial populations to degrade abundant polymers, such as algal-derived polysaccharides, or to utilize preferentially polymers over monomers, remains largely unknown. In this study, microautoradiography was combined with fluorescence in situ hybridization (MAR-FISH) to evaluate the ability of Bacteroidetes, SAR11, Roseobacter spp., Gammaproteobacteria and SAR86 cells to use bicarbonate, leucine and starch under natural light conditions at two locations in shelf surface waters off NW Spain. The percentage of cells incorporating bicarbonate was relatively high (mean 32% ± 4%) and was positively correlated with the intensity of solar radiation. The proportion of cells using starch (mean 56% ± 4%) or leucine (mean 47% ± 4%) was significantly higher than that using bicarbonate. On average, SAR11, Roseobacter spp. and Gammaproteobacteria showed a similarly high percentage of cells using leucine (47%-65% of hybridized cells) than using starch (51%-64% of hybridized cells), while Bacteroidetes and SAR86 cells preferentially used starch (53% of hybridized cells) over leucine (34%-40% of hybridized cells). We suggest that the great percentage of bacteria using starch is related to a high ambient availability of polymers associated to algal cell lysis, which, in turn, weakens the short-term coupling between phytoplankton release and bacterial production. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. The Influence of 8 Weeks of Whey-Protein and Leucine Supplementation on Physical and Cognitive Performance

    Science.gov (United States)

    2010-01-01

    as a primarv cause of clecreasecl physiciil ancl cognitive pcrlbnnance ( Romanowski & Grabicc, 1974).’I’ryptophan e tering the cenlr"al nervous ystern...oftihore sailing race. European Journal ofApplied Plrysiolo gy, I 04(5),7 87 I 94. Whey Protein, Leucine, and Performance 417 Romanowski , W., & Grabiec

  6. Divergent effects of endogenous and exogenous glucocorticoid-induced leucine zipper in animal models of inflammation and arthritis

    NARCIS (Netherlands)

    Ngo, Devi; Beaulieu, Elaine; Gu, Ran; Leaney, Alexandra; Santos, Leilani; Fan, Huapeng; Yang, Yuanhang; Kao, Wenping; Xu, Jiake; Escriou, Virginie; Loiler, Scott; Vervoordeldonk, Margriet J.; Morand, Eric F.

    2013-01-01

    Glucocorticoid-induced leucine zipper (GILZ) has effects on inflammatory pathways that suggest it to be a key inhibitory regulator of the immune system, and its expression is exquisitely sensitive to induction by glucocorticoids. We undertook this study to test our hypothesis that GILZ deficiency

  7. Leucine supplementation stimulates protein synthesis and reduces degradation signal activation in muscle of newborn pigs during acute endotoxemia

    Science.gov (United States)

    Sepsis disrupts skeletal muscle proteostasis and mitigates the anabolic response to leucine (Leu) in muscle of mature animals. We have shown that Leu stimulates muscle protein synthesis (PS) in healthy neonatal piglets. To determine if supplemental Leu can stimulate PS and reduce protein degradation...

  8. In vitro conditions for 14C-leucine incorporation into the protein of cultured ovaries of the silkworm, Bombyx mori

    International Nuclear Information System (INIS)

    Miyadai, Toshiaki; Yamashita, Okitsugu

    1980-01-01

    Vitellogenic ovaries of silkworm pupae were incubated in vitro in different media based on the Wyatt's medium to establish an adequate condition for culture of silkworm ovaries. Incorporation of 14 C-leucine into protein fraction was determined to assess the biochemical activity of the ovary. When ovaries were incubated in vitro for a short time by 6 hr, a saturation kinetics of incorporation of the labelled leucine was shown. Sequential substitution of K + ion to Na + ion in the medium had no effect on the incorporation of 14 C-leucine, but Mg 2+ ion appeared to stimulate synthetic activity at more than 10 mM. The activity was not affected at pH range 5.0-7.2. Neither different sugars, nor vitellogenin nor lipoprotein prepared from silkworm haemolymph affected the incorporation of 14 C-leucine, when added into the medium. The synthesis of protein depended upon the developmental stages of the cultured ovaries and was most active in 6-day-old ovary. Ovaries developing in pupal body showed comparable changes in synthetic activity. It is concluded that the chemical composition of the medium does not exert a strict effect on synthetic activity of protein in short-term cultures and the ovaries cultured in vitro maintain the activity comparable with those found in in situ condition. (author)

  9. RAS2/PKA pathway activity is involved in the nitrogen regulation of L-leucine uptake in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sáenz, D A; Chianelli, M S; Stella, C A; Mattoon, J R; Ramos, E H

    1997-03-01

    The aim of the present work is to study the participation of RAS2/PKA signal pathway in the nitrogen regulation of L-leucine transport in yeast cells. The study was performed on Saccharomyces cerevisiae isogenic strains with the normal RAS2 gene, the RAS2val19 mutant and the disrupted ras2::LEU2. These strains bring about different activities of the RAS2/PKA signal pathway, L-(14C)-Amino acid uptake measurements were determined in cells grown in a rich YPD medium with a mixed nitrogen source or in minimal media containing NH4+ or L-proline as the sole nitrogen source. We report herein that in all strains used, even in those grown in a minimal proline medium, the activity of the general amino acid permease (GAP1) was not detected. L-Leucine uptake in these strains is mediated by two kinetically characterized transport systems. Their KT values are of the same order as those of S1 and S2 L-leucine permeases. Mutation in the RAS2 gene alters initial velocities and Jmax values in both high and low affinity L-leucine transport systems. Activation of the RAS2/PKA signalling pathway by the RAS2val19 mutation, blocks the response to a poor nitrogen source whereas inactivation of RAS2 by gene disruption, results in an increase of the same response.

  10. Distinct Plasma Profile of Polar Neutral Amino Acids, Leucine, and Glutamate in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Tirouvanziam, Rabindra; Obukhanych, Tetyana V.; Laval, Julie; Aronov, Pavel A.; Libove, Robin; Banerjee, Arpita Goswami; Parker, Karen J.; O'Hara, Ruth; Herzenberg, Leonard A.; Herzenberg, Leonore A.; Hardan, Antonio Y.

    2012-01-01

    The goal of this investigation was to examine plasma amino acid (AA) levels in children with Autism Spectrum Disorders (ASD, N = 27) and neuro-typically developing controls (N = 20). We observed reduced plasma levels of most polar neutral AA and leucine in children with ASD. This AA profile conferred significant post hoc power for discriminating…

  11. Pulsatile delivery of a leucine supplement during long-term continuous enteral feeding enhances lean growth in term neonatal pigs

    Science.gov (United States)

    Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have previously shown that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in...

  12. Determination of proteolytic activity using L-[4,5-3H]leucine-labelled globin as a substrate

    International Nuclear Information System (INIS)

    Maliopoulou, T.B.; Dionyssiou-Asteriou, A.; Loucopoulos, D.

    1980-01-01

    A simple and sensitive method for the assay of proteolytic enzyme activity is described. This is based on the digestion of L-[4,5- 3 H]leucine globin by proteolytic enzymes and radioactivity measurement of the trichloroacetic acid soluble cleavage products. (Auth.)

  13. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons

    DEFF Research Database (Denmark)

    Bak, Lasse Kristoffer; Johansen, Maja L.; Schousboe, Arne

    2012-01-01

    Synthesis of neuronal glutamate from a-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino...

  14. Short-term variability in bacterial abundance, cell properties, and incorporation of leucine and thymidine in subarctic sea ice

    DEFF Research Database (Denmark)

    Kaartokallio, H.; Søgaard, D.H.; Norman, L.

    2013-01-01

    Sea ice is a biome of immense size and provides a range of habitats for diverse microbial communities, many of which are adapted to living at low temperatures and high salinities in brines. We measured simultaneous incorporation of thymidine (TdR) and leucine (Leu), bacterial cell abundance...

  15. Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity

    DEFF Research Database (Denmark)

    Merelo, Paz; Ram, Hathi; Caggiano, Monica Pia

    2016-01-01

    A defining feature of plant leaves is their flattened shape. This shape depends on an antagonism between the genes that specify adaxial (top) and abaxial (bottom) tissue identity; however, the molecular nature of this antagonism remains poorly understood. Class III homeodomain leucine zipper (HD...

  16. The enzymatic degradation and transport of leucine-enkephalin and 4-imidazolidinone enkephalin prodrugs at the blood-brain barrier

    DEFF Research Database (Denmark)

    Lund, L.; Bak, A.; Friis, G.J.

    1998-01-01

    In this study, the stability in and transport across a cell culture model of the blood-brain barrier (BBB) is investigated for leucine-enkephalin (Leu-enkephalin) and four 4-imidazolidinone prodrugs of Leu-enkephalin. The results show that Leu-enkephalin is degraded in the cell culture model...

  17. Biosynthesis of the leucine derived α-, β- and γ-hydroxynitrile glucosides in barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Knoch, Eva; Motawie, Mohammed Saddik; Olsen, Carl Erik

    2016-01-01

    Barley (Hordeum vulgare L.) produces five leucine-derived hydroxynitrile glucosides (HNGs), of which only epiheterodendrin is a cyanogenic glucoside. The four non-cyanogenic HNGs are the β-HNG epidermin and the γ-HNGs osmaronin, dihydroosmaronin and sutherlandin. By analyzing 247 spring barley...

  18. A novel fluorometric ultramicro determination of serum leucine aminopeptidase using a coumarine derivative.

    Science.gov (United States)

    Saifuku, K; Sekine, T; Namihisa, T; Takahashi, T; Kanaoka, Y

    1978-03-01

    A simple and rapid rate assay of serum leucine aminopeptidase is described, using a novel fluorogenic substrate, 7-L-leucyl-4-methylcoumarinylamide. The reaction is initiated by adding 10 microliter of serum, and the fluorescence development for 1 min due to the 7-amino-4-methylcoumarin liberated at 37 degrees C is followed directly on a recorder. The proposed method is proved to be free from error due to the adsorption of the substrate dye to serum albumin and to be applicable to hyperbilirubinemic sera by simple correction. The values obtained by this method showed good correlation with those obtained by the conventional method of Goldbarg and Rutenberg (Goldbarg, J.A. and Rutenberg, A.M. (1958) Cancer 11, 283-291).

  19. A microsystem to evaluate the synthesis of [3H]leucine labeled proteins by macrophages

    International Nuclear Information System (INIS)

    Varesio, L.; Eva, A.

    1980-01-01

    A method is described for evaluating protein synthesis by adherent MPHI by measuring the incorporation of [ 3 H]leucine into TCA precipitable material. By using guanidine-HCl it was possible to remove completely the radiolabeled proteins from the adherent cells that were cultured in microwells, and retain TCA precipitable material. This procedure enabled the authors to harvest the TCA precipitable proteins with a semiautomatic cell harvester. The guanidine-HCl treatment did not affect the recovery of the radioactive proteins and did not alter the sensitivity of the assay. This method is very simple and rapid and, since it is suitable for processing microcultures, permits detailed studies on the biology of small numbers of MPHI. (Auth.)

  20. Structural basis for the regulation of maternal embryonic leucine zipper kinase.

    Directory of Open Access Journals (Sweden)

    Lu-Sha Cao

    Full Text Available MELK (maternal embryonic leucine zipper kinase, which is a member of the AMPK (AMP-activated protein kinase-related kinase family, plays important roles in diverse cellular processes and has become a promising drug target for certain cancers. However, the regulatory mechanism of MELK remains elusive. Here, we report the crystal structure of a fragment of human MELK that contains the kinase domain and ubiquitin-associated (UBA domain. The UBA domain tightly binds to the back of the kinase domain, which may contribute to the proper conformation and activity of the kinase domain. Interestingly, the activation segment in the kinase domain displays a unique conformation that contains an intramolecular disulfide bond. The structural and biochemical analyses unravel the molecular mechanisms for the autophosphorylation/activation of MELK and the dependence of its catalytic activity on reducing agents. Thus, our results may provide the basis for designing specific MELK inhibitors for cancer treatment.

  1. Leucine-rich repeat-containing synaptic adhesion molecules as organizers of synaptic specificity and diversity.

    Science.gov (United States)

    Schroeder, Anna; de Wit, Joris

    2018-04-09

    The brain harbors billions of neurons that form distinct neural circuits with exquisite specificity. Specific patterns of connectivity between distinct neuronal cell types permit the transfer and computation of information. The molecular correlates that give rise to synaptic specificity are incompletely understood. Recent studies indicate that cell-surface molecules are important determinants of cell type identity and suggest that these are essential players in the specification of synaptic connectivity. Leucine-rich repeat (LRR)-containing adhesion molecules in particular have emerged as key organizers of excitatory and inhibitory synapses. Here, we discuss emerging evidence that LRR proteins regulate the assembly of specific connectivity patterns across neural circuits, and contribute to the diverse structural and functional properties of synapses, two key features that are critical for the proper formation and function of neural circuits.

  2. Heart rate variability in leucine-rich repeat kinase 2-associated Parkinson's disease.

    Science.gov (United States)

    Visanji, Naomi P; Bhudhikanok, Grace S; Mestre, Tiago A; Ghate, Taneera; Udupa, Kaviraj; AlDakheel, Amaal; Connolly, Barbara S; Gasca-Salas, Carmen; Kern, Drew S; Jain, Jennifer; Slow, Elizabeth J; Faust-Socher, Achinoam; Kim, Sam; Azhu Valappil, Ruksana; Kausar, Farah; Rogaeva, Ekaterina; William Langston, J; Tanner, Caroline M; Schüle, Birgitt; Lang, Anthony E; Goldman, Samuel M; Marras, Connie

    2017-04-01

    Heart rate variability is reduced in idiopathic PD, indicating cardiac autonomic dysfunction likely resulting from peripheral autonomic synucleinopathy. Little is known about heart rate variability in leucine-rich repeat kinase 2-associated PD. This study investigated heart rate variability in LRRK2-associated PD. Resting electrocardiograms were obtained from 20 individuals with LRRK2-associated PD, 37 nonmanifesting carriers, 48 related noncarriers, 26 idiopathic PD patients, and 32 controls. Linear regression modelling compared time and frequency domain values, adjusting for age, sex, heart rate, and disease duration. Low-frequency power and the ratio of low-high frequency power were reduced in idiopathic PD versus controls (P Heart rate variability may remain intact in LRRK2-associated PD, adding to a growing literature supporting clinical-pathologic differences between LRRK2-associated and idiopathic PD. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  3. Dietary leucine--an environmental modifier of insulin resistance acting on multiple levels of metabolism

    DEFF Research Database (Denmark)

    Macotela, Yazmin; Emanuelli, Brice; Bång, Anneli M

    2011-01-01

    Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor--leucine--can modify insulin resistance by acting on multiple tissues...... homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose...... with a decrease in hepatic steatosis and a decrease in inflammation in adipose tissue. These changes occurred despite an increase in insulin-stimulated phosphorylation of p70S6 kinase indicating enhanced activation of mTOR, a phenomenon normally associated with insulin resistance. These data indicate that modest...

  4. L-leucine dietary supplementation modulates muscle protein degradation and increases pro-inflammatory cytokines in tumour-bearing rats.

    Science.gov (United States)

    Cruz, Bread; Oliveira, André; Gomes-Marcondes, Maria Cristina Cintra

    2017-08-01

    Cancer cachexia is characterised by involuntary weight loss associated with systemic inflammation and metabolic changes. Studies aimed at maintaining lean body mass in cachectic tumour-bearing hosts have made important contributions reducing the number of deaths and improving the quality of life. In recent years, leucine has demonstrated effective action in maintaining lean body mass by decreasing muscle protein degradation. Currently, there is a growing need to understand how leucine stimulates protein synthesis and acts protectively in a cachectic organism. Thus, this study aimed to assess the effects of a leucine-rich diet on protein degradation signalling in muscle over the course of tumour growth. Animals were distributed into four experimental groups, which did or did not receive 2×10 6 viable Walker-tumour cells. Some were fed a leucine-rich diet, and the groups were subsequently sacrificed at three different time points of tumour evolution (7th, 14th, and 21st days). Protein degradation signals, as indicated by ubiquitin-proteasome subunits (11S, 19S, and 20S) and pro- and anti-inflammatory cytokines, were analysed in all experimental groups. In tumour-bearing animals without nutritional supplementation (W7, W14, and W21 groups), we observed that the tumour growth promoted a concurrent decrease in muscle protein, a sharp increase in pro-inflammatory cytokines (TNFα, IL-6, and IFNγ), and a progressive increase in proteasome subunits (19S and 20S). Thus, the leucine-supplemented tumour-bearing groups showed improvements in muscle mass and protein content, and in this specific situation, the leucine-rich diet led to an increase on the day in cytokine profile and proteasome subunits mainly on the 14th day, which subsequently had a modulating effect on tumour growth on the 21st day. These results indicate that the presence of leucine in the diet may modulate important aspects of the proteasomal pathway in cancer cachexia and may prevent muscle wasting due to

  5. Copolymers based on N-acryloyl-L-leucine and urea methacrylate with pyridine moieties

    Directory of Open Access Journals (Sweden)

    Buruiana Emil C.

    2016-01-01

    Full Text Available By using free radical polymerization of (N-methacryloyloxyethyl-N′-4-picolyl-urea (MAcPU and N-acryloyl-L-leucine (AcLeu, an optically active copolymer, poly[(N-methacryloyloxyethyl-N′-4-picolyl-urea-co-N-acryloyl-L-leucine], MAcPU-co-AcLeu (1.86:1 molar ratio was prepared and subsequently functionalized at the pyridine-N with (1R/S-(−/+-10-camphorsulfonic acid (R/S-CSA and at carboxyl group with (R-(+-α-ethylbenzylamine (R-EBA or trans-4-stilbene methanol (t-StM. The structures, chemical composition and chiroptical activity of the monomers and the copolymers were characterized by spectral analysis (FTIR, 1H (13C-NMR, 1H,1H-COSY, UV/vis, thermal methods (TGA, DSC, fluorescence spectroscopy, gel permeation chromatography and specific rotation measurements. Influence of the optical activity of monomer and modifier on modified copolymers suggested a good correlation between the experimental data obtained (23[α]589=+12.5° for AcLeu and MAcPU-co-AcLeu, 23[α]589=0°+27.5° for (MAcPU-co-AcLeu-R/S-CSA, 23[α]589=+25° for (MAcPU-co-AcLeu-R-EBA, and 23[α]589 = 0° for (MAcPU-co-AcLeu-St. In addition, the photobehavior of the stilbene copolymer (MAcPU-co-AcLeu-St in film was investigated by UV-vis spectroscopy. The fluorescence quenching of the stilbene species in the presence of aliphatic/aromatic amine in DMF solution was evaluated, more efficiently being 4,4′−dipyridyl (detection limit: 7.2 x 10-6 mol/L.

  6. Metabolism of L-leucine-U-14C in young rats fed excess glycine diets

    International Nuclear Information System (INIS)

    Takeuchi, Hisanao; Tadauchi, Nobuo; Muramatsu, Keiichiro

    1975-01-01

    As reported previously, while the growth-depressing effect of excess glycine was prevented by supplementing L-arginine and L-methionine, the degradation of glycine-U-(SUP 14)C into expired carbon dioxide was not accelerated by the supplement of both amino acids. However, it was found that the incorporation of the isotope into the lipids of livers and carcasses increased in the rats fed the excess glycine diet containing both amino acids. The lipid synthesis utilizing excess glycine may be accelerated by adding both amino acids to the 10% casein diet containing excess glycine. In the present experiment, the metabolic fate of L-leucine-U-(SUP 14)C was studied with the rats fed the excess glycine diet with or without L-arginine and L-methionine. 10% casein (10C), 10% casein diet containing 7% glycine (10C7G), or 10C7G Supplemented with 1.4% L-arginine-HCL and 0.9% L-methionine (10C7GArgMet) was fed to each rat, and the diet suspension containing 4 sup(μ)Ci of L-leucine-U-(SUP 14)C per 100 g of body weight was fed forcibly after 12 hr fast. The radioactivity in expired carbon dioxide, TCA soluble fraction, protein, glycogen, lipids and urine, and the concentration of free amino acids in blood plasma, livers and urine were measured. The body weight gain and food intake of the 10C7G group were much smaller than those of the other groups. The recovery of (SUP 14)C-radioactivity in expired carbon dioxide was much lower in the 10C7GArgMet group than that of the other groups. (Kako, I.)

  7. Synergistic effects of polyphenols and methylxanthines with Leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes.

    Directory of Open Access Journals (Sweden)

    Antje Bruckbauer

    Full Text Available The AMPK-Sirt1 pathway is an important regulator of energy metabolism and therefore a potential target for prevention and therapy of metabolic diseases. We recently demonstrated leucine and its metabolite β-hydroxy-β-methylbutyrate (HMB to synergize with low-dose resveratrol (200 nM to activate sirtuin signaling and stimulate energy metabolism. Here we show that leucine exerts a direct effect on Sirt1 kinetics, reducing its Km for NAD(+ by >50% and enabling low doses of resveratrol to further activate the enzyme (p = 0.012. To test which structure elements of resveratrol are necessary for synergy, we assessed potential synergy of structurally similar and dissimilar polyphenols as well as other compounds converging on the same pathways with leucine using fatty acid oxidation (FAO as screening tool. Dose-response curves for FAO were constructed and the highest non-effective dose (typically 1-10 nM was used with either leucine (0.5 mM or HMB (5 µM to treat adipocytes and myotubes for 24 h. Significant synergy was detected for stilbenes with FAO increase in adipocytes by 60-70% (p2000% (p1 µM and exhibited little or no synergy. Thus, the six-carbon ring structure bound to a carboxylic group seems to be a necessary element for leucine/HMB synergy with other stilbenes and hydroxycinnamic acids to stimulate AMPK/Sirt1 dependent FAO; these effects occur at concentrations that produce no independent effects and are readily achievable via oral administration.

  8. A leucine-supplemented diet improved protein content of skeletal muscle in young tumor-bearing rats

    Directory of Open Access Journals (Sweden)

    Gomes-Marcondes M.C.C.

    2003-01-01

    Full Text Available Cancer cachexia induces host protein wastage but the mechanisms are poorly understood. Branched-chain amino acids play a regulatory role in the modulation of both protein synthesis and degradation in host tissues. Leucine, an important amino acid in skeletal muscle, is higher oxidized in tumor-bearing animals. A leucine-supplemented diet was used to analyze the effects of Walker 256 tumor growth on body composition in young weanling Wistar rats divided into two main dietary groups: normal diet (N, 18% protein and leucine-rich diet (L, 15% protein plus 3% leucine, which were further subdivided into control (N or L or tumor-bearing (W or LW subgroups. After 12 days, the animals were sacrificed and their carcass analyzed. The tumor-bearing groups showed a decrease in body weight and fat content. Lean carcass mass was lower in the W and LW groups (W = 19.9 ± 0.6, LW = 23.1 ± 1.0 g vs N = 29.4 ± 1.3, L = 28.1 ± 1.9 g, P < 0.05. Tumor weight was similar in both tumor-bearing groups fed either diet. Western blot analysis showed that myosin protein content in gastrocnemius muscle was reduced in tumor-bearing animals (W = 0.234 ± 0.033 vs LW = 0.598 ± 0.036, N = 0.623 ± 0.062, L = 0.697 ± 0.065 arbitrary intensity, P < 0.05. Despite accelerated tumor growth, LW animals exhibited a smaller reduction in lean carcass mass and muscle myosin maintenance, suggesting that excess leucine in the diet could counteract, at least in part, the high host protein wasting in weanling tumor-bearing rats.

  9. L-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome.

    Science.gov (United States)

    Xu, Baoshan; Sowa, Nenja; Cardenas, Maria E; Gerton, Jennifer L

    2015-03-15

    Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (α-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite α-KIC can partially rescue development in zebrafish models for CdLS. © The Author 2014. Published by Oxford University Press.

  10. The leucine zipper domains of the transcription factors GCN4 and c-Jun have ribonuclease activity.

    Directory of Open Access Journals (Sweden)

    Yaroslav Nikolaev

    Full Text Available Basic-region leucine zipper (bZIP proteins are one of the largest transcription factor families that regulate a wide range of cellular functions. Owing to the stability of their coiled coil structure leucine zipper (LZ domains of bZIP factors are widely employed as dimerization motifs in protein engineering studies. In the course of one such study, the X-ray structure of the retro-version of the LZ moiety of yeast transcriptional activator GCN4 suggested that this retro-LZ may have ribonuclease activity. Here we show that not only the retro-LZ but also the authentic LZ of GCN4 has weak but distinct ribonuclease activity. The observed cleavage of RNA is unspecific, it is not suppressed by the ribonuclease A inhibitor RNasin and involves the breakage of 3',5'-phosphodiester bonds with formation of 2',3'-cyclic phosphates as the final products as demonstrated by HPLC/electrospray ionization mass spectrometry. Several mutants of the GCN4 leucine zipper are catalytically inactive, providing important negative controls and unequivocally associating the enzymatic activity with the peptide under study. The leucine zipper moiety of the human factor c-Jun as well as the entire c-Jun protein are also shown to catalyze degradation of RNA. The presented data, which was obtained in the test-tube experiments, adds GCN4 and c-Jun to the pool of proteins with multiple functions (also known as moonlighting proteins. If expressed in vivo, the endoribonuclease activity of these bZIP-containing factors may represent a direct coupling between transcription activation and controlled RNA turnover. As an additional result of this work, the retro-leucine zipper of GCN4 can be added to the list of functional retro-peptides.

  11. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    Science.gov (United States)

    2012-01-01

    Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh) is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM) to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E)9.5) contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia). Progenitors labeled at later stages (after E9.5) give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly defined progenitor domains

  12. Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions

    Directory of Open Access Journals (Sweden)

    Alvarez-Bolado Gonzalo

    2012-01-01

    Full Text Available Abstract Background The hypothalamus is a brain region with essential functions for homeostasis and energy metabolism, and alterations of its development can contribute to pathological conditions in the adult, like hypertension, diabetes or obesity. However, due to the anatomical complexity of the hypothalamus, its development is not well understood. Sonic hedgehog (Shh is a key developmental regulator gene expressed in a dynamic pattern in hypothalamic progenitor cells. To obtain insight into hypothalamic organization, we used genetic inducible fate mapping (GIFM to map the lineages derived from Shh-expressing progenitor domains onto the four rostrocaudally arranged hypothalamic regions: preoptic, anterior, tuberal and mammillary. Results Shh-expressing progenitors labeled at an early stage (before embryonic day (E9.5 contribute neurons and astrocytes to a large caudal area including the mammillary and posterior tuberal regions as well as tanycytes (specialized median eminence glia. Progenitors labeled at later stages (after E9.5 give rise to neurons and astrocytes of the entire tuberal region and in particular the ventromedial nucleus, but not to cells in the mammillary region and median eminence. At this stage, an additional Shh-expressing domain appears in the preoptic area and contributes mostly astrocytes to the hypothalamus. Shh-expressing progenitors do not contribute to the anterior region at any stage. Finally, we show a gradual shift from neurogenesis to gliogenesis, so that progenitors expressing Shh after E12.5 generate almost exclusively hypothalamic astrocytes. Conclusions We define a fate map of the hypothalamus, based on the dynamic expression of Shh in the hypothalamic progenitor zones. We provide evidence that the large neurogenic Shh-expressing progenitor domains of the ventral diencephalon are continuous with those of the midbrain. We demonstrate that the four classical transverse zones of the hypothalamus have clearly

  13. Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats: an insulin signaling pathway approach.

    Science.gov (United States)

    Zeanandin, Gilbert; Balage, Michèle; Schneider, Stéphane M; Dupont, Joëlle; Hébuterne, Xavier; Mothe-Satney, Isabelle; Dardevet, Dominique

    2012-04-01

    Leucine acts as a signal nutrient in promoting protein synthesis in skeletal muscle and adipose tissue via mTOR pathway activation, and may be of interest in age-related sarcopenia. However, hyper-activation of mTOR/S6K1 has been suggested to inhibit the first steps of insulin signaling and finally promote insulin resistance. The impact of long-term dietary leucine supplementation on insulin signaling and sensitivity was investigated in old rats (18 months old) fed a 15% protein diet supplemented (LEU group) or not (C group) with 4.5% leucine for 6 months. The resulting effects on muscle and fat were examined. mTOR/S6K1 signaling pathway was not significantly altered in muscle from old rats subjected to long-term dietary leucine excess, whereas it was increased in adipose tissue. Overall glucose tolerance was not changed but insulin-stimulated glucose transport was improved in muscles from leucine-supplemented rats related to improvement in Akt expression and phosphorylation in response to food intake. No change in skeletal muscle mass was observed, whereas perirenal adipose tissue mass accumulated (+45%) in leucine-supplemented rats. A prolonged leucine supplementation in old rats differently modulates mTOR/S6K pathways in muscle and adipose tissue. It does not increase muscle mass but seems to promote hypertrophy and hyperplasia of adipose tissue that did not result in insulin resistance.

  14. Leucine-induced activation of translational initiation is partly regulated by the branched-chain α-keto acid dehydrogenase complex in C2C12 cells

    International Nuclear Information System (INIS)

    Nakai, Naoya; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-01-01

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain α-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 (α2β2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1α subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex

  15. The hypothalamic- pituitary -adrenal -leptin axis and metabolic health: A systems approach to resilience, robustness and control

    NARCIS (Netherlands)

    Aschbacher, K.; Rodriguez-Fernandez, M.; Wietmarschen, H. van; Tomiyama, A.; Jain, S.; Epel, E.; Doyle III, F.J.; Greef, J. van der

    2014-01-01

    Glucocorticoids contribute to obesity and metabolic syndrome; however, the mechanisms are unclear, and prognostic measures are unavailable. A systems level understanding of the hypothalamic-pituitary-adrenal (HPA) -leptin axis may reveal novel insights. Eighteen obese premenopausal women provided

  16. The corroboration of the predominant localization of radioactivity on the dimethylallyl pyrophosphate-derived moiety of linalool biosynthesized from radioisotopically labeled leucine by higher plants

    International Nuclear Information System (INIS)

    Tange, Keiji; Okita, Hitoshi; Nakao, Yoshitaka; Hirata, Toshifumi; Suga, Takayuki

    1981-01-01

    The co-feeding experiment of leucine-4,5- 3 H and mevalonic-2- 14 C acid corroborated the preferential localization of radioactivity on the 3,3-dimethylallyl pyrophosphate-derived moiety of linalool in its biosynthesis from radioisotopically labeled leucine by Cinnamomum Camphora Sieb. var. linalooliferum Fujita, in contrast to the predominant location of the activity on its isopentenyl pyrophosphate-derived moiety in the biosynthesis from mevalonic acid. Also, it was established that the imbalance in the localization of radioactivity is not influenced by exogenous administration of leucine or inhibition of isopentenyl pyrophosphate isomerase. (author)

  17. Corroboration of the predominant localization of radioactivity on the dimethylallyl pyrophosphate-derived moiety of linalool biosynthesized from radioisotopically labeled leucine by higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Tange, K.; Okita, H.; Nakao, Y.; Hirata, T.; Suga, T. (Hiroshima Univ. (Japan). Faculty of Science)

    1981-06-01

    The co-feeding experiment of leucine-4,5-/sup 3/H and mevalonic-2-/sup 14/C acid corroborated the preferential localization of radioactivity on the 3,3-dimethylallyl pyrophosphate-derived moiety of linalool in its biosynthesis from radioisotopically labeled leucine by Cinnamomum Camphora Sieb. var. linalooliferum Fujita, in contrast to the predominant location of the activity on its isopentenyl pyrophosphate-derived moiety in the biosynthesis from mevalonic acid. Also, it was established that the imbalance in the localization of radioactivity is not influenced by exogenous administration of leucine or inhibition of isopentenyl pyrophosphate isomerase.

  18. Insulin ameliorating endotoxaemia-induced muscle wasting is associated with the alteration of hypothalamic neuropeptides and inflammation in rats.

    Science.gov (United States)

    Duan, Kaipeng; Yu, Wenkui; Lin, Zhiliang; Tan, Shanjun; Bai, Xiaowu; Gao, Tao; Xi, Fengchan; Li, Ning

    2015-05-01

    Septic patients always develop muscle wasting, which delays the rehabilitation and contributes to the increased complications and mortality. Previous studies have implied the crucial role of central inflammation and neuropeptides in the energy balance and muscle metabolism. Insulin has been confirmed to attenuate muscle degradation and inhibit inflammation. We tested the hypothesis whether insulin ameliorating muscle wasting was associated with modulating hypothalamic inflammation and neuropeptides. Thirty-two adult male Sprague-Dawley rats were in intraperitoneally injected with lipopolysaccharide (LPS) (5 mg/kg) or saline, followed by subcutaneous injection of insulin (5 IU/kg) or saline. Twenty-four hours after injection, skeletal muscle and hypothalamus tissues were harvested. Muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle ring finger 1 (MuRF-1) and muscle atrophy F-box (MAFbx), as well as 3-methylhistidine (3-MH) and tyrosine release. Hypothalamic inflammatory markers and neuropeptides expression were also measured in four groups. LPS injection led to significant increase in hypothalamic inflammation as well as muscle wasting. Also, increased hypothalamic neuropeptides, proopiomelanocortin (POMC), cocaine and amphetamine-related transcript (CART) and neuropeptides Y (NPY) and decreased agouti-related protein (AgRP) were observed. Insulin treatment ameliorated endotoxaemia-induced muscle wasting and hypothalamic inflammation, and attenuated the alteration of neuropeptides, POMC, CART and AgRP. Hypothalamic inflammation and neuropeptides are involved in the endotoxaemia-induced muscle wasting. Insulin treatment can reduce muscle wasting, which is associated with reduced hypothalamic inflammation and alteration of hypothalamic neuropeptides. © 2014 John Wiley & Sons Ltd.

  19. Spontaneous epileptic rats show changes in sleep architecture and hypothalamic pathology.

    Science.gov (United States)

    Bastlund, Jesper F; Jennum, Poul; Mohapel, Paul; Penschuck, Silke; Watson, William P

    2005-06-01

    The goal of the present study was to investigate the relationship between sleep, hypothalamic pathology, and seizures in spontaneous epileptic rats. Rats were implanted with radiotelemetry transmitters for measuring electrocorticogram (ECoG) and stimulation electrodes in the hippocampus. Epileptogenesis was triggered by 2 h of electical stimulation-induced self-sustained status epilepticus (SSSE). After SSSE, ECoGs were monitored over a 15-week period for the occurrence of interictal high-amplitude low-frequency (HALF) acitvity and spontaneous reoccurring seizures (SRSs). Spontaneous epileptic rats showed clinical features of temporal lobe epilepsy (TLE), such as spontaneous seizures, interictal activity and neuronal cell loss in the dorsomedial hypothalamus, a region important for normal sleep regulation. Interestingly, epileptic rats showed disturbances in sleep architecture, with a high percentage of the seizures occurring during sleep. Therefore we conclude that a close association exists between epileptiform activity and alterations in sleep architecture that may be related to hypothalamic pathology.

  20. Hypothalamic glucose-sensing: role of Glia-to-neuron signaling.

    Science.gov (United States)

    Tonon, M C; Lanfray, D; Castel, H; Vaudry, H; Morin, F

    2013-12-01

    The hypothalamus senses hormones and nutrients in order to regulate energy balance. In particular, detection of hypothalamic glucose levels has been shown to regulate both feeding behavior and peripheral glucose homeostasis, and impairment of this regulatory system is believed to be involved in the development of obesity and diabetes. Several data clearly demonstrate that glial cells are key elements in the perception of glucose, constituting with neurons a "glucose-sensing unit". Characterization of this interplay between glia and neurons represents an exciting challenge, and will undoubtedly contribute to identify new candidates for therapeutic intervention. The purpose of this review is to summarize the current data that stress the importance of glia in central glucose-sensing. The nature of the glia-to-neuron signaling is discussed, with a special focus on the endozepine ODN, a potent anorexigenic peptide that is highly expressed in hypothalamic glia. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Barkholt, Pernille; Pedersen, Philip J.; Hay-Schmidt, Anders

    2016-01-01

    Objective: The role of the central nervous system in mediating metabolic effects of Roux-en-Y gastric bypass (RYGB) surgery is poorly understood. Using a rat model of RYGB, we aimed to identify changes in gene expression of key hypothalamic neuropeptides known to be involved in the regulation...... of energy balance.  Methods: Lean male Sprague-Dawley rats underwent either RYGB or sham surgery. Body weight and food intake were monitored bi-weekly for 60 days post-surgery. In situ hybridization mRNA analysis of hypothalamic AgRP, NPY, CART, POMC and MCH was applied to RYGB and sham animals and compared...... with ad libitum fed and food-restricted rats. Furthermore, in situ hybridization mRNA analysis of dopaminergic transmission markers (TH and DAT) was applied in the midbrain.  Results: RYGB surgery significantly reduced body weight and intake of a highly palatable diet but increased chow consumption...

  2. Function of hypothalamic-hypophyseal-ovarian system in radiation treatment of patients with cervical cancer

    International Nuclear Information System (INIS)

    Modnikov, O.P.

    1984-01-01

    Radioimmunoassay of the hypothalamic-hypophyseal-ovarian interrelationships was performed in 87 patients with cervical cancer and 37 practically healthy women. The basal level of the follicle-stimulating hormone (ESH), luteinizing hormone (LH) and estradiol as well as their response to the administration of the releasing factor of the hypothalamus (luliberin) were studied. Some disorders that manifested thermselved in the decreased level of estradiol, were established in the patients with cervical cancer even before irradiation. Concomitant radiation therapy resulted in pronounced changes in the activities of the hypothalamic-hypophyseal-ovarian system that manifested themselves in the lowered rate of LH increment in response to the administration of luliberin and the absence of estradiol response to the load. These changes persisted long after the termination of concomitant radiation therapy

  3. Cellular activation of hypothalamic hypocretin/orexin neurons facilitates short-term spatial memory in mice.

    Science.gov (United States)

    Aitta-Aho, Teemu; Pappa, Elpiniki; Burdakov, Denis; Apergis-Schoute, John

    2016-12-01

    The hypothalamic hypocretin/orexin (HO) system holds a central role in the regulation of several physiological functions critical for food-seeking behavior including mnemonic processes for effective foraging behavior. It is unclear however whether physiological increases in HO neuronal activity can support such processes. Using a designer rM3Ds receptor activation approach increasing HO neuronal activity resulted in improved short-term memory for novel locations. When tested on a non-spatial novelty object recognition task no significant difference was detected between groups indicating that hypothalamic HO neuronal activation can selectively facilitate short-term spatial memory for potentially supporting memory for locations during active exploration. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Anatomy of melancholia: focus on hypothalamic-pituitary-adrenal axis overactivity and the role of vasopressin.

    LENUS (Irish Health Repository)

    Dinan, Timothy G

    2012-02-03

    Overactivity of the hypothalamic-pituitary-adrenal (HPA) axis characterized by hypercortisolism, adrenal hyperplasia and abnormalities in negative feedback is the most consistently described biological abnormality in melancholic depression. Corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are the main secretagogues of the HPA\\/stress system. Produced in the parvicellular division of the hypothalamic paraventricular nucleus the release of these peptides is influenced by inputs from monoaminergic neurones. In depression, anterior pituitary CRH1 receptors are down-regulated and response to CRH infusion is blunted. By contrast, vasopressin V3 receptors on the anterior pituitary show enhanced response to AVP stimulation and this enhancement plays a key role in maintaining HPA overactivity.

  5. Impact of hypothalamic reactive oxygen species in the control of energy metabolism and food intake

    Directory of Open Access Journals (Sweden)

    Anne eDrougard

    2015-02-01

    Full Text Available Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC and agouti-related protein (AgRP/neuropeptide Y (NPY neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,..., neurotransmitters and nutrients (glucose, lipids,.... The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes.In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.

  6. EFFECTS OF LEVOTHYROXINE ADMINSTRATION AND WITHDRAWAL ON THE HYPOTHALAMIC-PITUITARY-THYROID AXIS IN EUTHYROID DOGS

    OpenAIRE

    Ziglioli, Vincent

    2016-01-01

    Background: Because of the vague clinical signs and limitations of thyroid function tests, misdiagnosis of hypothyroidism in dogs is common and leads to inappropriate treatment with levothyroxine. Chronic supplementation can suppress the hypothalamic-pituitary-thyroid axis (HPTA) and make it difficult to assess thyroid function following withdrawal of levothyroxine. Objectives: To determine if the HPTA is suppressed following levothyroxine administration in euthyroid dogs and the time req...

  7. Does aerobic exercise affect the hypothalamic-pituitary-adrenal hormonal response in patients with fibromyalgia syndrome?

    OpenAIRE

    Genc, Aysun; Tur, Birkan Sonel; Aytur, Yesim Kurtais; Oztuna, Derya; Erdogan, Murat Faik

    2015-01-01

    [Purpose] The hypothalamic-pituitary-adrenal (HPA) axis in the etiopathogenesis of fibromyalgia is not clear. This study aimed to analyze the effects of a 6-week aerobic exercise program on the HPA axis in patients with fibromyalgia and to investigate the effects of this program on the disease symptoms, patients? fitness, disability, and quality of life. [Subjects and Methods] Fifty fibromyalgia patients were randomized to Group 1 (stretching and flexibility exercises at home for 6 weeks) and...

  8. Update on stress and depression: the role of the hypothalamic-pituitary-adrenal (HPA) axis

    OpenAIRE

    Mello, Andrea de Abreu Feijó de; Mello, Marcelo Feijó de; Carpenter, Linda L; Price, Lawrence H

    2003-01-01

    Over the past 50 years, relationships between stress and the neurobiological changes seen in psychiatric disorders have been well-documented. A major focus of investigations in this area has been the role of the hypothalamic-pituitary-adrenal (HPA) axis, both as a marker of stress response and as a mediator of additional downstream pathophysiologic changes. This review examines the emerging literature concerning the relationship between stress, HPA axis function, and depression, as well as th...

  9. Glycogen stores are impaired in hypothalamic nuclei of rats malnourished during early life.

    Science.gov (United States)

    Lima, S S; Lima dos Santos, M C; Sinder, M P; Moura, A S; Barradas, P C; Tenório, F

    2010-02-01

    Perinatal nutrition has persistent influences on neural development and cognition. In humans and other animals, protein malnutrition during the perinatal period causes permanent changes, inducing to adulthood metabolic syndrome. Feeding is mainly modulated by neural and hormonal inputs to the hypothalamus. Hypothalamic glycogen stores are a source of glucose in high energetic demands, as during development of neural circuits. As some hypothalamic circuits are formed during lactation, we studied the effects of malnutrition, during the first 10 days of lactation, on glycogen stores in hypothalamic nuclei involved in the control of energy metabolism. Female pregnant rats were fed ad libitum with a normal protein diet (22% protein). After delivery, each dam was kept with 6 male pups. During the first 10 days of lactation, dams from the experimental group received a protein-free diet and the control group a normoprotein diet. By post-natal day 10 (P10), glycogen stores were very high in the arcuate nucleus and median eminence of control group. Glycogen stores decreased during development. In P20 control animals, glycogen stores were lower when compared to P10 control animals. Animals submitted to malnutrition presented a staining even lower than control ones. After P45, it was difficult to determine differences between control and diet groups because glycogen stores were reduced. We also showed that tanycytes were the cells presenting glycogen stores. Our data reinforce the concept that maternal nutritional state during lactation may be critical for neurodevelopment since it resulted in a low hypothalamic glycogen store, which may be critical for establishment of neuronal circuitry.

  10. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass

    Directory of Open Access Journals (Sweden)

    Pernille Barkholt

    2016-04-01

    Conclusion: RYGB surgery increases the mRNA levels of hunger-associated signaling markers in the rat arcuate nucleus without concomitantly increasing downstream MCH expression in the lateral hypothalamus, suggesting that RYGB surgery puts a brake on orexigenic hypothalamic output signals. In addition, down-regulation of midbrain TH and DAT expression suggests that altered dopaminergic activity also contributes to the reduced intake of palatable food in RYGB rats.

  11. Distinct Hypothalamic Neurons Mediate Estrogenic Effects on Energy Homeostasis and Reproduction

    OpenAIRE

    Xu, Yong; Nedungadi, Thekkethil P.; Zhu, Liangru; Sobhani, Nasim; Irani, Boman G.; Davis, Kathryn E.; Zhang, Xiaorui; Zou, Fang; Gent, Lana M.; Hahner, Lisa D.; Khan, Sohaib A.; Elias, Carol F.; Elmquist, Joel K.; Clegg, Deborah J.

    2011-01-01

    Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity, but not hyperphagia, are recapitulated in female mice lacking ERα in hypothalamic steroidogenic factor-1 (SF1) neurons. In contrast, deleti...

  12. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping

    OpenAIRE

    Vito Salvador Hernandez; Oscar René Hernández; Maria Jose Gomora; Miguel Perez De La Mora; Kjell Fuxe; Lee E Eiden; Limei Zhang; Limei Zhang

    2016-01-01

    The arginine-vasopressin (AVP)-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs) are known for their role in hydro-electrolytic balance control via their projections to neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula, and other brain regions, in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid ...

  13. Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping

    OpenAIRE

    Hern?ndez, Vito S.; Hern?ndez, Oscar R.; Perez de la Mora, Miguel; G?mora, Mar?a J.; Fuxe, Kjell; Eiden, Lee E.; Zhang, Limei

    2016-01-01

    The arginine-vasopressin (AVP)-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs) are known for their role in hydro-electrolytic balance control via their projections to the neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula and other brain regions in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloi...

  14. Androgens in Women with Anorexia Nervosa and Normal-Weight Women with Hypothalamic Amenorrhea

    Science.gov (United States)

    Miller, K. K.; Lawson, E. A.; Mathur, V.; Wexler, T. L.; Meenaghan, E.; Misra, M.; Herzog, D. B.; Klibanski, A.

    2011-01-01

    Context Anorexia nervosa and normal-weight hypothalamic amenorrhea are characterized by hypogonadism and hypercortisolemia. However, it is not known whether these endocrine abnormalities result in reductions in adrenal and/or ovarian androgens or androgen precursors in such women, nor is it known whether relative androgen deficiency contributes to abnormalities in bone density and body composition in this population. Objective Our objective was to determine whether endogenous androgen and dehydroepiandrosterone sulfate (DHEAS) levels: 1) are reduced in women with anorexia nervosa and normal-weight hypothalamic amenorrhea, 2) are reduced further by oral contraceptives in women with anorexia nervosa, and 3) are predictors of weight, body composition, or bone density in such women. Design and Setting We conducted a cross-sectional study at a general clinical research center. Study Participants A total of 217 women were studied: 137 women with anorexia nervosa not receiving oral contraceptives, 32 women with anorexia nervosa receiving oral contraceptives, 21 normal-weight women with hypothalamic amenorrhea, and 27 healthy eumenorrheic controls. Main Outcome Measures Testosterone, free testosterone, DHEAS, bone density, fat-free mass, and fat mass were assessed. Results Endogenous total and free testosterone, but not DHEAS, were lower in women with anorexia nervosa than in controls. More marked reductions in both free testosterone and DHEAS were observed in women with anorexia nervosa receiving oral contraceptives. In contrast, normal-weight women with hypothalamic amenorrhea had normal androgen and DHEAS levels. Lower free testosterone, total testosterone, and DHEAS levels predicted lower bone density at most skeletal sites measured, and free testosterone was positively associated with fat-free mass. Conclusions Androgen levels are low, appear to be even further reduced by oral contraceptive use, and are predictors of bone density and fat-free mass in women with

  15. Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat.

    Directory of Open Access Journals (Sweden)

    Joel D Hahn

    2015-05-01

    Full Text Available Evolutionary conservation of the hypothalamus attests to its critical role in the control of fundamental behaviors. However, our knowledge of hypothalamic connections is incomplete, particularly for the lateral hypothalamic area (LHA. Here we present the results of neuronal pathway-tracing experiments to investigate connections of the LHA juxtaventromedial region, which is parceled into dorsal (LHAjvd and ventral (LHAjvv zones. Phaseolus vulgaris leucoagglutinin (PHAL, for outputs and cholera toxin B subunit (CTB, for inputs coinjections were targeted stereotaxically to the LHAjvd/v. RESULTS: LHAjvd/v connections overlapped highly but not uniformly. Major joint outputs included: Bed nuc. stria terminalis (BST, interfascicular nuc. (BSTif and BST anteromedial area, rostral lateral septal (LSr- and ventromedial hypothalamic (VMH nuc., and periaqueductal gray. Prominent joint LHAjvd/v input sources included: BSTif, BST principal nuc., LSr, VMH, anterior hypothalamic-, ventral premammillary-, and medial amygdalar nuc., and hippocampal formation (HPF field CA1. However, LHAjvd HPF retrograde labeling was markedly more abundant than from the LHAjvv; in the LSr this was reversed. Furthermore, robust LHAjvv (but not LHAjvd targets included posterior- and basomedial amygdalar nuc., whereas the midbrain reticular nuc. received a dense input from the LHAjvd alone. Our analyses indicate the existence of about 500 LHAjvd and LHAjvv connections with about 200 distinct regions of the cerebral cortex, cerebral nuclei, and cerebrospinal trunk. Several highly LHAjvd/v-connected regions have a prominent role in reproductive behavior. These findings contrast with those from our previous pathway-tracing studies of other LHA medial and perifornical tier regions, with different connectional behavioral relations. The emerging picture is of a highly differentiated LHA with extensive and far-reaching connections that point to a role as a central coordinator of behavioral

  16. Early spontaneous regression of a hypothalamic/chiasmatic mass in neurofibromatosis type 1: MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, G.; Ferrozzi, F.; Bassi, P. [Department of Radiology, University of Parma, V. Gramsci, 14, I-43100 Parma (Italy); Sigorini, M.; Virdis, R. [Department of Paediatrics, University of Parma, V. Gramsci, 14, I-43100 Parma (Italy); Bellomi, M. [Division of Radiology, European Institute of Oncology, Milan (Italy)

    2000-07-01

    A patient with neurofibromatosis type 1 was found to have an enhancing mass in the hypothalamus and in the anterior optic pathway. A 3-month MR study showed a reduction in the size and enhancement of the mass. At a 9-month MR follow-up the mass disappeared and ceased to enhance. This report shows the unusual behaviour of a hypothalamic/chiasmatic mass confirming that in such asymptomatic cases the conservative management can be considered the treatment of choice. (orig.)

  17. For Debate: Should Bariatric Surgery be Performed in Children and Adolescents with Hypothalamic Obesity?

    Science.gov (United States)

    Stolbova, Sarka; Benes, Marek; Petruzelkova, Lenka; Lebl, Jan; Kolouskova, Stanislava

    2017-06-01

    Hypothalamic dysfunction leading to severe obesity is a serious long-term consequence of paediatric craniopharyngioma. It compromises quality of life, leads to long-term metabolic hazards, and may shorten life expectancy. Therefore, a proactive approach is required. Conventional treatment of hypothalamic obesity is difficult and hardly successful. Experience with bariatric surgery is limited, especially in younger patients. Two retrospective studies recently reported on classic bariatric surgery in a small series of individuals after craniopharyngioma. Of these, one included nine paediatric patients who underwent laparoscopic adjustable gastric banding (LAGB), sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB) or biliopancreatic diversion (BPD). The immediate effects were promising: The mean weight loss was 20.9 kilograms at 6 months and 15.1 kilograms at 12 months. A duodenal-jejunal bypass sleeve (DBJS; EndoBarrier) is a mini-invasive, endoscopically placed and fully reversible bariatric procedure. We reported a boy diagnosed with craniopharyngioma at 10 years old who underwent surgery and radiotherapy. His body weight increased to 139 kilograms and body mass index (BMI) to 46.1 kg/m2 (+4.0 SD) within the subsequent 4.5 years. Fifteen months after DJBS placement, he lost 32.8 kilograms, and his BMI dropped to 32.7 kg/m2 (+2.9 SD). Thus, DJBS proved to be a promising procedure in the treatment of hypothalamic obesity. We suggest performing it in children and adolescents with hypothalamic obesity to prevent or attenuate its devastating long-term sequelae. Copyright© of YS Medical Media ltd.

  18. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    OpenAIRE

    Dwarkasing, Jvalini T.; van Dijk, Miriam; Dijk, Francina J.; Boekschoten, Mark V.; Faber, Joyce; Argilès, Josep M.; Laviano, Alessandro; Müller, Michael; Witkamp, Renger F.; van Norren, Klaske

    2013-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an increased food intake subsequently to the loss of body weight. We hypothesise that in this model, appetite-regulating systems in the hypothalamus, which apparently fail in anorexia, are still able t...

  19. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    OpenAIRE

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  20. Hypothalamic Gene Transfer of BDNF Inhibits Breast Cancer Progression and Metastasis in Middle Age Obese Mice

    OpenAIRE

    Liu, Xianglan; McMurphy, Travis; Xiao, Run; Slater, Andrew; Huang, Wei; Cao, Lei

    2014-01-01

    Activation of the hypothalamus-adipocyte axis is associated with an antiobesity and anticancer phenotype in animal models of melanoma and colon cancer. Brain-derived neurotrophic factor (BDNF) is a key mediator in the hypothalamus leading to preferential sympathoneural activation of adipose tissue and the ensuing resistance to obesity and cancer. Here, we generated middle age obese mice by high fat diet feeding for a year and investigated the effects of hypothalamic gene transfer of BDNF on a...

  1. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    OpenAIRE

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  2. Impact of maternal high fat diet on hypothalamic transcriptome in neonatal Sprague Dawley rats

    OpenAIRE

    Barrand, Sanna; Crowley, Tamsyn M.; Wood-Bradley, Ryan J.; De Jong, Kirstie A.; Armitage, James A.

    2017-01-01

    Maternal consumption of a high fat diet during early development has been shown to impact the formation of hypothalamic neurocircuitry, thereby contributing to imbalances in appetite and energy homeostasis and increasing the risk of obesity in subsequent generations. Early in postnatal life, the neuronal projections responsible for energy homeostasis develop in response to appetite-related peptides such as leptin. To date, no study characterises the genome-wide transcriptional changes that oc...

  3. Ontogenesis of Gonadotropin-Releasing Hormone Neurons: A Model for Hypothalamic Neuroendocrine Cell Development

    OpenAIRE

    Stevenson, Erica L.; Corella, Kristina M.; Chung, Wilson C. J.

    2013-01-01

    The vertebrate hypothalamo–pituitary–gonadal axis is the anatomical framework responsible for reproductive competence and species propagation. Essential to the coordinated actions of this three-tiered biological system is the fact that the regulatory inputs ultimately converge on the gonadotropin-releasing hormone (GnRH) neuronal system, which in rodents primarily resides in the preoptic/hypothalamic region. In this short review we will focus on: (1) the general embryonic temporal and spatial...

  4. Early hypothalamic FTO overexpression in response to maternal obesity--potential contribution to postweaning hyperphagia.

    Directory of Open Access Journals (Sweden)

    Vanni Caruso

    Full Text Available Intrauterine and postnatal overnutrition program hyperphagia, adiposity and glucose intolerance in offspring. Single-nucleotide polymorphisms (SNPs of the fat mass and obesity associated (FTO gene have been linked to increased risk of obesity. FTO is highly expressed in hypothalamic regions critical for energy balance and hyperphagic phenotypes were linked with FTO SNPs. As nutrition during fetal development can influence the expression of genes involved in metabolic function, we investigated the impact of maternal obesity on FTO.Female Sprague Dawley rats were exposed to chow or high fat diet (HFD for 5 weeks before mating, throughout gestation and lactation. On postnatal day 1 (PND1, some litters were adjusted to 3 pups (vs. 12 control to induce postnatal overnutrition. At PND20, rats were weaned onto chow or HFD for 15 weeks. FTO mRNA expression in the hypothalamus and liver, as well as hepatic markers of lipid metabolism were measured.At weaning, hypothalamic FTO mRNA expression was increased significantly in offspring of obese mothers and FTO was correlated with both visceral and epididymal fat mass (P<0.05; body weight approached significance (P = 0.07. Hepatic FTO and Fatty Acid Synthase mRNA expression were decreased by maternal obesity. At 18 weeks, FTO mRNA expression did not differ between groups; however body weight was significantly correlated with hypothalamic FTO. Postnatal HFD feeding significantly reduced hepatic Carnitine Palmitoyltransferase-1a but did not affect the expression of other hepatic markers investigated. FTO was not affected by chronic HFD feeding.Maternal obesity significantly impacted FTO expression in both hypothalamus and liver at weaning. Early overexpression of hypothalamic FTO correlated with increased adiposity and later food intake of siblings exposed to HFD suggesting upregulation of FTO may contribute to subsequent hyperphagia, in line with some human data. No effect of maternal obesity was observed

  5. Early spontaneous regression of a hypothalamic/chiasmatic mass in neurofibromatosis type 1: MR findings

    International Nuclear Information System (INIS)

    Zuccoli, G.; Ferrozzi, F.; Bassi, P.; Sigorini, M.; Virdis, R.; Bellomi, M.

    2000-01-01

    A patient with neurofibromatosis type 1 was found to have an enhancing mass in the hypothalamus and in the anterior optic pathway. A 3-month MR study showed a reduction in the size and enhancement of the mass. At a 9-month MR follow-up the mass disappeared and ceased to enhance. This report shows the unusual behaviour of a hypothalamic/chiasmatic mass confirming that in such asymptomatic cases the conservative management can be considered the treatment of choice. (orig.)

  6. Evidence of abnormal dopaminergic control of prolactin in patients with hypothalamic and pituitary tumors.

    Science.gov (United States)

    Cabranes, J A; Almoguera, I; del Olmo, J; Prensa, A; Pablos, I; Charro, A L

    1986-01-01

    Prolactin secretion was investigated in an attempt to identify the patterns of responses in different types of tumors. Forty four patients were studied: thirty patients with prolactinomas (Group 2); nine patients with growth-hormone (GH)-adrenocorticotropic hormone (ACTH)-secreting pituitary tumors and hypothalamic tumors (Group 3); and five patients with non-secreting pituitary tumors (Group 4). A control group (Group 1) consisted of 60 healthy subjects (30 males and 30 females). All were submitted to testing by nomifensine (Nom), domperidone (Dom) and thyrotropin releasing hormone (TRH). The prolactin levels were measured by radioimmunoassay (RIA). In group 2 the suppression of PRL with Nom and the stimulation with Dom and TRH were significantly lower than in the control group (p less than 0.001). There was no statistically significant difference between groups 2 and 3 in the suppression with Nom. The increase with Dom in group 3 was significantly greater than that in group 2 (p less than 0.001) and less than that in the control group (p less than 0.005). The rise in PRL with TRH was also significantly higher in group 3 than in group 2 (p less than 0.001) and similar to that of the control group. Group 4 gave the same results as the control group to all 3 tests. Our results indicate a dopaminergic irregularity in the hypothalamic and GH-ACTH-secreting pituitary tumors, thus supporting a hypothalamic etiopathogenesis of these tumors. The normality of the GH-ACTH-secreting pituitary tumors and hypothalamic tumor responses to TRH is one more factor in differentiating these from prolactinomas. The normal response of the non-secreting tumors may involve a primary pituitary etiology of these tumors.

  7. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance

    Science.gov (United States)

    Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben

    2015-01-01

    Objective Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Methods Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. Results The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca2+-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. Conclusions This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia. PMID:26909312

  8. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  9. Norepinephrine release and reuptake by hypothalamic synaptosomes of spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Hano, T.; Jeng, Y.; Rho, J.

    1989-01-01

    We compared the overflow of endogenous norepinephrine during electrical field stimulation, the norepinephrine content, and the rate of initial neuronal uptake of [3H]norepinephrine in synaptosomes isolated from hypothalamus and brainstem of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats at 7 and 13 weeks of age. The synaptosomes of two rats, a SHR and a WKY rat control, were simultaneously processed and subjected to the same electrical field stimulation. The overflow of endogenous norepinephrine during electrical stimulation (2 Hz, 2 minutes) in the hypothalamic synaptosomes of 7-week-old SHR was significantly greater, whereas the overflow of 13-week-old SHR was equivalent to the age-matched WKY rat. The norepinephrine content of synaptosomes was about the same in SHR and age-matched controls. There was also significantly enhanced [3H]norepinephrine uptake in the hypothalamic synaptosomes of young SHR, but neither the hypothalamic nor the brainstem samples of 13-week-old SHR showed any significant difference in their rate of [3H]norepinephrine uptake. These data are similar to those we observed (unpublished observations) in perfused mesenteric artery system in which norepinephrine release was significantly elevated during periarterial nerve stimulation only in young SHR. Thus, these results suggest that a parallel enhancement of norepinephrine release in hypothalamus with that of peripheral nervous system may play an important role during development of hypertension in young SHR

  10. Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods

    Science.gov (United States)

    Lizarbe, Blanca; Benitez, Ania; Peláez Brioso, Gerardo A.; Sánchez-Montañés, Manuel; López-Larrubia, Pilar; Ballesteros, Paloma; Cerdán, Sebastián

    2013-01-01

    We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn2+ accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field 1H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. 1H and 13C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable. PMID:23781199

  11. Brain Ciliary Neurotrophic Factor (CNTF and hypothalamic control of energy homeostasis

    Directory of Open Access Journals (Sweden)

    Vacher Claire-Marie

    2011-09-01

    Full Text Available Cytokines play an important role in energy-balance regulation. Notably leptin, an adipocyte-secreted cytokine, regulates the activity of hypothalamic neurons that are involved in the modulation of appetite. Leptin decreases appetite and stimulates weight loss in rodents. Unfortunately, numerous forms of obesity in humans seem to be resistant to leptin action. The ciliary neurotrophic factor (CNTF is a neurocytokine that belongs to the same family as leptin and that was originally characterized as a neurotrophic factor that promotes the survival of a broad spectrum of neuronal cell types and that enhances neurogenesis in adult rodents. It presents the advantage of stimulating weight loss in humans, despite the leptin resistance. Moreover, the weight loss persists several weeks after the cessation of treatment. Hence, CNTF has been considered as a promising therapeutic tool for the treatment of obesity and has prompted intense research aimed at identifying the cellular and molecular mechanisms underlying its potent anorexigenic properties. It has been found that CNTF shares signaling pathways with leptin and is expressed in the arcuate nucleus (ARC, a key hypothalamic region controlling food intake. Endogenous CNTF may also participate in the control of energy balance. Indeed, its expression in the ARC is inversely correlated to body weight in rats fed a high-sucrose diet. Thus hypothalamic CNTF may act, in some individuals, as a protective factor against weight gain during hypercaloric diet and could account for individual differences in the susceptibility to obesity.

  12. Hypothalamic peroxisome proliferator-activated receptor gamma regulates ghrelin production and food intake.

    Science.gov (United States)

    Li, Qingjie; Yu, Quan; Lin, Li; Zhang, Heng; Peng, Miao; Jing, Chunxia; Xu, Geyang

    2018-04-09

    Peroxisome proliferator-activated receptor-γ (PPARγ) regulates fatty acid storage, glucose metabolism, and food intake. Ghrelin, a gastric hormone, provides a hunger signal to the central nervous system to stimulate appetite. However, the effects of PPARγ on ghrelin production are still unclear. In the present study, the effects of PPARγ on ghrelin production were examined in lean- or high-fat diet-induced obese (DIO) C57BL/6J mice and mHypoE-42 cells, a hypothalamic cell line. 3rd intracerebroventricular injection of adenoviral-directed overexpression of PPARγ (Ad-PPARγ) reduced hypothalamic and plasma ghrelin, food intake in both lean C57BL/6J mice and diet-induced obese mice. These changes were associated with a significant increase in mechanistic target of rapamycin complex 1 (mTORC1) activity. Overexpression of PPARγ enhanced mTORC1 signaling and suppressed ghrelin production in cultured mHypoE-42 cells. Our results suggest that hypothalamic PPARγ plays a vital role in ghrelin production and food intake in mice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Disorder in the serotonergic system due to tryptophan hydroxylation impairment: a cause of hypothalamic syndrome?

    Science.gov (United States)

    Schott, D A; Nicolai, J; de Vries, J E; Keularts, I M L W; Rubio-Gozalbo, M E; Gerver, W J M

    2010-01-01

    The hypothalamus regulates basic homeostasis such as appetite, circadian rhythm, autonomic and pituitary functions. Dysregulation in these functions results in the hypothalamic syndrome, a rare disorder of various origins. Since serotonin (5-HT) modulates most of the above-mentioned homeostasis, a defect in the serotonergic system can possibly participate in this syndrome. We describe a girl suffering from hypothalamic syndrome with a decreased concentration of 5-hydroxytryptophan (5-HTP) and a normal level of tryptophan in the cerebrospinal fluid (CSF) suggesting a functional defect in tryptophan hydroxylase (TPH). TPH is a rate-limiting enzyme in the synthesis of the neurotransmitter 5-HT. Therapeutic intervention with 5-HTP, carbidopa and a specific serotonin reuptake inhibitor significantly improved her clinical symptoms and caused biochemical normalisation of neurotransmitters. The girl described had the typical symptoms of a hypothalamic disorder and a defective serotonergic metabolism, a relationship which has not been reported before. Therapeutic interventions to restore 5-HT metabolism resulted in clinical improvement. We suggest that investigation of 5-HT metabolism in CSF of patients with this rare disorder is included in the aetiological work-up.

  14. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction.

    Science.gov (United States)

    Xu, Yong; Nedungadi, Thekkethil P; Zhu, Liangru; Sobhani, Nasim; Irani, Boman G; Davis, Kathryn E; Zhang, Xiaorui; Zou, Fang; Gent, Lana M; Hahner, Lisa D; Khan, Sohaib A; Elias, Carol F; Elmquist, Joel K; Clegg, Deborah J

    2011-10-05

    Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity, but not hyperphagia, are recapitulated in female mice lacking ERα in hypothalamic steroidogenic factor-1 (SF1) neurons. In contrast, deletion of ERα in hypothalamic pro-opiomelanocortin (POMC) neurons leads to hyperphagia, without directly influencing energy expenditure or fat distribution. Further, simultaneous deletion of ERα from both SF1 and POMC neurons causes hypometabolism, hyperphagia, and increased visceral adiposity. Additionally, female mice lacking ERα in SF1 neurons develop anovulation and infertility, while POMC-specific deletion of ERα inhibits negative feedback regulation of estrogens and impairs fertility in females. These results indicate that estrogens act on distinct hypothalamic ERα neurons to regulate different aspects of energy homeostasis and reproduction. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control

    Science.gov (United States)

    Gali Ramamoorthy, Thanuja; Begum, Ghazala; Harno, Erika; White, Anne

    2015-01-01

    The prevalence of obesity in adults and children has increased globally at an alarming rate. Mounting evidence from both epidemiological studies and animal models indicates that adult obesity and associated metabolic disorders can be programmed by intrauterine and early postnatal environment- a phenomenon known as “fetal programming of adult disease.” Data from nutritional intervention studies in animals including maternal under- and over-nutrition support the developmental origins of obesity and metabolic syndrome. The hypothalamic neuronal circuits located in the arcuate nucleus controlling appetite and energy expenditure are set early in life and are perturbed by maternal nutritional insults. In this review, we focus on the effects of maternal nutrition in programming permanent changes in these hypothalamic circuits, with experimental evidence from animal models of maternal under- and over-nutrition. We discuss the epigenetic modifications which regulate hypothalamic gene expression as potential molecular mechanisms linking maternal diet during pregnancy to the offspring's risk of obesity at a later age. Understanding these mechanisms in key metabolic genes may provide insights into the development of preventative intervention strategies. PMID:25954145

  16. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states

    Directory of Open Access Journals (Sweden)

    Allison eGraebner

    2015-08-01

    Full Text Available A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools have greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.

  17. Mediation of oxidative stress in hypothalamic ghrelin-associated appetite control in rats treated with phenylpropanolamine.

    Science.gov (United States)

    Yu, C-H; Chu, S-C; Chen, P-N; Hsieh, Y-S; Kuo, D-Y

    2017-04-01

    Phenylpropanolamine (PPA)-induced appetite control is associated with oxidative stress in the hypothalamus. This study explored whether hypothalamic antioxidants participated in hypothalamic ghrelin system-associated appetite control in PPA-treated rats. Rats were given PPA daily for 4 days, and changes in food intake and the expression of neuropeptide Y (NPY), the cocaine- and amphetamine-regulated transcript (CART), superoxide dismutase, catalase, ghrelin, acyl ghrelin (AG), ghrelin O-acyltransferase (GOAT) and the ghrelin receptor (GHSR1a) were examined and compared. Results showed that both food intake and the expression of NPY and ghrelin/AG/GOAT/GHSR1a decreased in response to PPA treatment with maximum decrease on Day 2 of the treatment. In contrast, the expression of antioxidants and CART increased, with the maximum increase on Day 2, with the expression opposite to that of NPY and ghrelin. A cerebral infusion of either a GHSR1a antagonist or reactive oxygen species scavenger modulated feeding behavior and NPY, CART, antioxidants and ghrelin system expression, showing the involvement of ghrelin signaling and oxidative stress in regulating PPA-mediated appetite control. We suggest that hypothalamic ghrelin signaling system, with the help of antioxidants, may participate in NPY/CART-mediated appetite control in PPA-treated rats. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Hypothalamic Ahi1 mediates feeding behavior through interaction with 5-HT2C receptor.

    Science.gov (United States)

    Wang, Hao; Huang, Zhenbo; Huang, Liansha; Niu, Shaona; Rao, Xiurong; Xu, Jing; Kong, Hui; Yang, Jianzhong; Yang, Chuan; Wu, Donghai; Li, Shihua; Li, Xiao-Jiang; Liu, Tonghua; Sheng, Guoqing

    2012-01-13

    It is indicated that there are important molecules interacting with brain nervous systems to regulate feeding and energy balance by influencing the signaling pathways of these systems, but relatively few of the critical players have been identified. In the present study, we provide the evidence for the role of Abelson helper integration site 1 (Ahi1) protein as a mediator of feeding behavior through interaction with serotonin receptor 2C (5-HT(2C)R), known for its critical role in feeding and appetite control. First, we demonstrated the co-localization and interaction between hypothalamic Ahi1 and 5-HT(2C)R. Ahi1 promoted the degradation of 5-HT(2C)R through the lysosomal pathway. Then, we investigated the effects of fasting on the expression of hypothalamic Ahi1 and 5-HT(2C)R. Fasting resulted in an increased Ahi1 expression and a concomitant decreased expression of 5-HT(2C)R. Knockdown of hypothalamic Ahi1 led to a concomitant increased expression of 5-HT(2C)R and a decrease of food intake and body weight. Last, we found that Ahi1 could regulate the expression of neuropeptide Y and proopiomelanocortin. Taken together, our results indicate that Ahi1 mediates feeding behavior by interacting with 5-HT(2C)R to modulate the serotonin signaling pathway.

  19. NEUROANATOMICAL ASSOCIATION OF HYPOTHALAMIC HSD2-CONTAINING NEURONS WITH ERα, CATECHOLAMINES, OR OXYTOCIN: IMPLICATIONS FOR FEEDING?

    Directory of Open Access Journals (Sweden)

    Maegan L. Askew

    2015-06-01

    Full Text Available This study used immunohistochemical methods to investigate the possibility that hypothalamic neurons that contain 11-β-hydroxysteroid dehydrogenase type 2 (HSD2 are involved in the control of feeding by rats via neuroanatomical associations with the α subtype of estrogen receptor (ERα, catecholamines, and/or oxytocin. An aggregate of HSD2-containing neurons is located laterally in the hypothalamus, and the numbers of these neurons were greatly increased by estradiol treatment in ovariectomized rats compared to numbers in male rats and in ovariectomized rats that were not given estradiol. However, HSD2-containing neurons were anatomically segregated from ERα-containing neurons in the Ventromedial Hypothalamus and the Arcuate Nucleus. There was an absence of oxytocin-immunolabeled fibers in the area of HSD2-labeled neurons. Taken together, these findings provide no support for direct associations between hypothalamic HSD2 and ERα or oxytocin neurons in the control of feeding. In contrast, there was catecholamine-fiber labeling in the area of HSD2-labeled neurons, and these fibers occasionally were in close apposition to HSD2-labeled neurons. Therefore, we cannot rule out interactions between HSD2 and catecholamines in the control of feeding; however, given the relative sparseness of the appositions, any such interaction would appear to be modest. Thus, these studies do not conclusively identify a neuroanatomical substrate by which HSD2-containing neurons in the hypothalamus may alter feeding, and leave the functional role of hypothalamic HSD2-containing neurons subject to further investigation.

  20. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control

    Directory of Open Access Journals (Sweden)

    Thanuja eGali Ramamoorthy

    2015-04-01

    Full Text Available The prevalence of obesity in adults and children has increased globally at an alarming rate. Mounting evidence from both epidemiological studies and animal models indicates that adult obesity and associated metabolic disorders can be programmed by intrauterine and early postnatal environment- a phenomenon known as fetal programming of adult disease. Data from nutritional intervention studies in animals including maternal under- and over-nutrition support the developmental origins of obesity and metabolic syndrome. The hypothalamic neuronal circuits located in the arcuate nucleus controlling appetite and energy expenditure are set early in life and are perturbed by maternal nutritional insults. In this review, we focus on the effects of maternal nutrition in programming permanent changes in these hypothalamic circuits, with experimental evidence from animal models of maternal under- and over-nutrition. We discuss the epigenetic modifications which regulate hypothalamic gene expression as potential molecular mechanisms linking maternal diet during pregnancy to the offspring’s risk of obesity at a later age. Understanding these mechanisms in key metabolic genes may provide insights into the development of preventative intervention strategies.

  1. Cold, Gas-Phase UV and IR Spectroscopy of Protonated Leucine Enkephalin and its Analogues

    Science.gov (United States)

    Burke, Nicole L.; Redwine, James; Dean, Jacob C.; McLuckey, Scott A.; Zwier, Timothy S.

    2014-06-01

    The conformational preferences of peptide backbones and the resulting hydrogen bonding patterns provide critical biochemical information regarding the structure-function relationship of peptides and proteins. The spectroscopic study of cryogenically-cooled peptide ions in a mass spectrometer probes these H-bonding arrangements and provides information regarding the influence of a charge site. Leucine enkephalin, a biologically active endogenous opiod peptide, has been extensively studied as a model peptide in mass spectrometry. This talk will present a study of the UV and IR spectroscopy of protonated leucine enkephalin [YGGFL+H]+ and two of its analogues: the sodiated [YGGFL+Na]+ and C-terminally methyl esterified [YGGFL-OMe+H]+ forms. All experiments were performed in a recently completed multi-stage mass spectrometer outfitted with a cryocooled ion trap. Ions are generated via nano-electrospray ionization and the analyte of interest is isolated in a linear ion trap. The analyte ions are trapped in a 22-pole ion trap held at 5 K by a closed cycle helium cryostat and interrogated via UV and IR lasers. Photofragments are trapped and isolated in a second LIT and mass analyzed. Double-resonance UV and IR methods were used to assign the conformation of [YGGFL+H]+, using the NH/OH stretch, Amide I, and Amide II regions of the infrared spectrum. The assigned structure contains a single backbone conformation at vibrational/rotational temperatures of 10 K held together with multiple H-bonds that self-solvate the NH3+ site. A "proton wire" between the N and C termini reinforces the H-bonding activity of the COO-H group to the F-L peptide bond, whose cleavage results in formation of the b4 ion, which is a prevalent, low-energy fragmentation pathway for [YGGFL+H]+. The reinforced H-bonding network in conjunction with the mobile proton theory may help explain the prevalence of the b4 pathway. In order to elucidate structural changes caused by modifying this H-bonding activity

  2. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhoven, Eduard J.; Kim, Young-Mo; Wei, Siwei; Nicora, Carrie D.; Fillmore, Thomas L.; Purvine, Samuel O.; Webb-Robertson, Bobbie-Jo; Smith, Richard D.; Baker, Scott E.; Metz, Thomas O.; Nielsen, Jens; Lee, Sang Yup

    2017-06-20

    ABSTRACT

    The yeastYarrowia lipolyticais a potent accumulator of lipids, and lipogenesis in this organism can be influenced by a variety of factors, such as genetics and environmental conditions. Using a multifactorial study, we elucidated the effects of both genetic and environmental factors on regulation of lipogenesis inY. lipolyticaand identified how two opposite regulatory states both result in lipid accumulation. This study involved comparison of a strain overexpressing diacylglycerol acyltransferase (DGA1) with a control strain grown under either nitrogen or carbon limitation conditions. A strong correlation was observed between the responses on the transcript and protein levels. Combination ofDGA1overexpression with nitrogen limitation resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered a contradictory role for TORC1 in controlling lipid accumulation, likely mediated through 2-isopropylmalate and a Leu3-like transcription factor.

    IMPORTANCEThe ubiquitous metabolism of lipids involves refined regulation, and an enriched understanding of this regulation would have wide implications. Various factors can influence lipid metabolism, including the environment and genetics. We demonstrated, using a multi-omics and multifactorial experimental setup, that multiple factors affect lipid accumulation in the yeastYarrowia lipolytica. Using integrative analysis, we identified novel interactions between nutrient restriction and genetic factors

  3. Molecular identification and characterization of leucine aminopeptidase 2, an excretory-secretory product of Clonorchis sinensis.

    Science.gov (United States)

    Deng, Chuanhuan; Sun, Jiufeng; Li, Xuerong; Wang, Lexun; Hu, Xuchu; Wang, Xiaoyun; Chen, Wenjun; Lv, Xiaoli; Liang, Chi; Li, Wenfang; Huang, Yan; Li, Ran; Wu, Zhongdao; Yu, Xinbing; Xu, Jin

    2012-10-01

    Aminopeptidases serve vital roles in metabolism of hormones, neurotransmission, turnover of proteins and immunological regulations. Leucine aminopeptidases catalyze the hydrolysis of amino-acid residues from the N-terminus of proteins and peptides. In the present study, leucine aminopeptidase 2 (LAP2) gene of Clonorchis sinensis (C. sinensis) was isolated and identified from an adult cDNA library of C. sinensis. Recombinant CsLAP2 was expressed and purified in Escherichia coli BL21. The open reading frame of LAP2 contains 1,560 bp equivalent to 519 amino acids, a similarity analysis showed a relatively low homology with Homo sapiens (19.0 %), Trypanosoma cruzi (18.0 %), Mus musculus (19.3 %), and relatively high homology with Schistosoma mansoni (65.6 %). The optimum condition of rCsLAP2 enzyme activity was investigated using a fluorescent substrate of Leu-MCA at 37 °C and pH 7.5. The K (m) and V (max) values of rCsLAP2 were 18.2 μM and 10.7 μM/min, respectively. CsLAP2 gene expression can be detected at the stages of the adult worm, metacercaria, excysted metacercaria and egg of C. sinensis using real-time PCR, no difference was observed at the stages of the adult worm, metacercaria and egg. However, CsLAP2 showed a higher expression level at the stage of excysted metacercaria than the adult worm (3.90-fold), metacercaria (4.60-fold) and egg (4.59-fold). Histochemistry analysis showed that CsLAP2 was located at the tegument and excretory vesicle of metacercaria, and the tegument and intestine of adult worm. The immune response specific to rCsLAP2 was characterized by a mixed response patterns of Th1 and Th2, indicating a compounded humoral and cellular immune response. The combined results from the present study indicate that CsLAP2 was an important antigen exposed to host immune system, and probably implicated as potential role in interaction with host cells in clonorchiasis.

  4. Sequence-structure-function relations of the mosquito leucine-rich repeat immune proteins

    Directory of Open Access Journals (Sweden)

    Povelones Michael

    2010-09-01

    Full Text Available Abstract Background The discovery and characterisation of factors governing innate immune responses in insects has driven the elucidation of many immune system components in mammals and other organisms. Focusing on the immune system responses of the malaria mosquito, Anopheles gambiae, has uncovered an array of components and mechanisms involved in defence against pathogen infections. Two of these immune factors are LRIM1 and APL1C, which are leucine-rich repeat (LRR containing proteins that activate complement-like defence responses against malaria parasites. In addition to their LRR domains, these leucine-rich repeat immune (LRIM proteins share several structural features including signal peptides, patterns of cysteine residues, and coiled-coil domains. Results The identification and characterisation of genes related to LRIM1 and APL1C revealed putatively novel innate immune factors and furthered the understanding of their likely molecular functions. Genomic scans using the shared features of LRIM1 and APL1C identified more than 20 LRIM-like genes exhibiting all or most of their sequence features in each of three disease-vector mosquitoes with sequenced genomes: An. gambiae, Aedes aegypti, and Culex quinquefasciatus. Comparative sequence analyses revealed that this family of mosquito LRIM-like genes is characterised by a variable number of 6 to 14 LRRs of different lengths. The "Long" LRIM subfamily, with 10 or more LRRs, and the "Short" LRIMs, with 6 or 7 LRRs, also share the signal peptide, cysteine residue patterning, and coiled-coil sequence features of LRIM1 and APL1C. The "TM" LRIMs have a predicted C-terminal transmembrane region, and the "Coil-less" LRIMs exhibit the characteristic LRIM sequence signatures but lack the C-terminal coiled-coil domains. Conclusions The evolutionary plasticity of the LRIM LRR domains may provide templates for diverse recognition properties, while their coiled-coil domains could be involved in the formation

  5. Growth hormone (GH)-independent dimerization of GH receptor by a leucine zipper results in constitutive activation

    DEFF Research Database (Denmark)

    Behncken, S N; Billestrup, Nils; Brown, R

    2000-01-01

    Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers of the gro......Growth hormone initiates signaling by inducing homodimerization of two GH receptors. Here, we have sought to determine whether constitutively active receptor can be created in the absence of the extracellular domain by substituting it with high affinity leucine zippers to create dimers...... of the growth hormone receptor (GHR) signaling domain. The entire extracellular domain of the GHR was replaced by the hemagglutinin-tagged zipper sequence of either the c-Fos or c-Jun transcription factor (termed Fos-GHR and Jun-GHR, respectively). Transient transfection of Fos-GHR or Jun-GHR resulted...

  6. The Plant Leucine-Rich Repeat Receptor-Like Kinase PSY1R from Head to Toe

    DEFF Research Database (Denmark)

    Oehlenschlæger, Christian Berg

    PSY1R belongs to the family of plant leucine-rich repeat receptor-like kinases that play important roles in processes such as growth regulation and plant immunity response. PSY1R was proposed to be the receptor of the plant peptide hormone PSY1 which promotes cell expansion. PSY1R was furthermore...... are conserved among related plant leucine-rich repeat receptor-like kinases whereas Ser951 is unique for PSY1R which suggests that it may serve a specialized function in regulation of PSY1R kinase activity....... shown to phosphorylate and regulate the activity of the plasma membrane localized H+-ATPase, AHA2. While the mechanism of PSY1R-mediated AHA2 phosphorylation has previously been studied in detail, little is known about how PSY1R binds PSY1 peptide ligand and how the intracellular PSY1R kinase domain...

  7. Post-transcriptional gene silencing of ribosomal protein S6 kinase 1 restores insulin action in leucine-treated skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A; Salehzadeh, F; Metayer-Coustard, S

    2009-01-01

    Excessive nutrients, especially amino acids, impair insulin action on glucose metabolism in skeletal muscle. We tested the hypothesis that the branched-chain amino acid leucine reduces acute insulin action in primary myotubes via a negative feedback mechanism involving ribosomal protein S6 kinase 1...... (S6K1). The effect of S6K1 on glucose metabolism was determined by applying RNA interference (siRNA). Leucine (5 mM) reduced glucose uptake and incorporation to glycogen by 13% and 22%, respectively, compared to the scramble siRNA-transfected control at the basal level. Leucine also reduced insulin...... to excessive leucine. In conclusion, S6K1 plays an important role in the regulation of insulin action on glucose metabolism in skeletal muscle....

  8. Impaired Uptake and/or Utilization of Leucine by Saccharomyces cerevisiae Is Suppressed by the SPT15-300 Allele of the TATA-Binding Protein Gene

    DEFF Research Database (Denmark)

    Baerends, RJ; Qiu, Jin-Long; Rasmussen, Simon

    2009-01-01

    us to examine the effect of expression of the SPT15-300 allele in various yeast species of industrial importance. Expression of SPT15-300 in leucine-prototrophic strains of S. cerevisiae, Saccharomyces bayanus, or Saccharomyces pastorianus (lager brewing yeast), however, did not improve tolerance...... to ethanol on complex rich medium (yeast extract-peptone-dextrose). The enhanced growth of the laboratory yeast strain BY4741 expressing the SPT15-300 mutant allele was seen only on defined media with low concentrations of leucine, indicating that the apparent improved growth in the presence of ethanol...... was indeed associated with enhanced uptake and/or utilization of leucine. Reexamination of the microarray data published by Alper and coworkers likewise suggested that expression of genes coding for the leucine permeases, Tat1p and Bap3p, were upregulated in the SPT15-300 mutant, as was expression...

  9. Postprandial leucine and insulin responses and toxicological effects of a novel whey protein hydrolysate-based supplement in rats

    Directory of Open Access Journals (Sweden)

    Toedebusch Ryan G

    2012-06-01

    Full Text Available Abstract The purpose of this study was: aim 1 compare insulin and leucine serum responses after feeding a novel hydrolyzed whey protein (WPH-based supplement versus a whey protein isolate (WPI in rats during the post-absorptive state, and aim 2 to perform a thorough toxicological analysis on rats that consume different doses of the novel WPH-based supplement over a 30-day period. In male Wistar rats (~250 g, n = 40, serum insulin and leucine concentrations were quantified up to 120 min after one human equivalent dose of a WPI or the WPH-based supplement. In a second cohort of rats (~250 g, n = 20, we examined serum/blood and liver/kidney histopathological markers after 30 days of feeding low (1human equivalent dose, medium (3 doses and high (6 doses amounts of the WPH-based supplement. In aim 1, higher leucine levels existed at 15 min after WPH vs. WPI ingestion (p = 0.04 followed by higher insulin concentrations at 60 min (p = 0.002. In aim 2, liver and kidney histopathology/toxicology markers were not different 30 days after feeding with low, medium, high dose WPH-based supplementation or water only. There were no between-condition differences in body fat or lean mass or circulating clinical chemistry markers following the 30-day feeding intervention in aim 2. In comparison to WPI, acute ingestion of a novel WPH-based supplement resulted in a higher transient leucine response with a sequential increase in insulin. Furthermore, chronic ingestion of the tested whey protein hydrolysate supplement appears safe.

  10. Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction.

    Science.gov (United States)

    Kato, Hiroyuki; Miura, Kyoko; Nakano, Sayako; Suzuki, Katsuya; Bannai, Makoto; Inoue, Yoshiko

    2016-09-01

    Eccentric exercise results in prolonged muscle damage that may lead to muscle dysfunction. Although inflammation is essential to recover from muscle damage, excessive inflammation may also induce secondary damage, and should thus be suppressed. In this study, we investigated the effect of leucine-enriched essential amino acids on muscle inflammation and recovery after eccentric contraction. These amino acids are known to stimulate muscle protein synthesis via mammalian target of rapamycin (mTOR), which, is also considered to alleviate inflammation. Five sets of 10 eccentric contractions were induced by electrical stimulation in the tibialis anterior muscle of male SpragueDawley rats (8-9 weeks old) under anesthesia. Animals received a 1 g/kg dose of a mixture containing 40 % leucine and 60 % other essential amino acids or distilled water once a day throughout the experiment. Muscle dysfunction was assessed based on isometric dorsiflexion torque, while inflammation was evaluated by histochemistry. Gene expression of inflammatory cytokines and myogenic regulatory factors was also measured. We found that leucine-enriched essential amino acids restored full muscle function within 14 days, at which point rats treated with distilled water had not fully recovered. Indeed, muscle function was stronger 3 days after eccentric contraction in rats treated with amino acids than in those treated with distilled water. The amino acid mix also alleviated expression of interleukin-6 and impeded infiltration of inflammatory cells into muscle, but did not suppress expression of myogenic regulatory factors. These results suggest that leucine-enriched amino acids accelerate recovery from muscle damage by preventing excessive inflammation.

  11. The prodromal phase of leucine-rich repeat kinase 2-associated Parkinson disease: Clinical and imaging Studies.

    Science.gov (United States)

    Pont-Sunyer, Claustre; Tolosa, Eduardo; Caspell-Garcia, Chelsea; Coffey, Christopher; Alcalay, Roy N; Chan, Piu; Duda, John E; Facheris, Maurizio; Fernández-Santiago, Rubén; Marek, Kenneth; Lomeña, Francisco; Marras, Connie; Mondragon, Elisabet; Saunders-Pullman, Rachel; Waro, Bjorg

    2017-05-01

    Asymptomatic, nonmanifesting carriers of leucine-rich repeat kinase 2 mutations are at increased risk of developing PD. Clinical and neuroimaging features may be associated with gene carriage and/or may demarcate individuals at greater risk for phenoconversion to PD. To investigate clinical and dopamine transporter single-photon emission computed tomography imaging characteristics of leucine-rich repeat kinase 2 asymptomatic carriers. A total of 342 carriers' and 259 noncarriers' relatives of G2019S leucine-rich repeat kinase 2/PD patients and 39 carriers' and 31 noncarriers' relatives of R1441G leucine-rich repeat kinase 2/PD patients were evaluated. Motor and nonmotor symptoms were assessed using specific scales and questionnaires. Neuroimaging quantitative data were obtained in 81 carriers and compared with 41 noncarriers. G2019S carriers scored higher in motor scores and had lower radioligand uptake compared to noncarriers, but no differences in nonmotor symptoms scores were observed. R1441G carriers scored higher in motor scores, had lower radioligand uptake, and had higher scores in depression, dysautonomia, and Rapid Eye Movements Sleep Behavior Disorder Screening Questionnaire scores, but had better cognition scores than noncarriers. Among G2019S carriers, a group with "mild motor signs" was identified, and was significantly older, with worse olfaction and lower radioligand uptake. G2019S and R1441G carriers differ from their noncarriers' relatives in higher motor scores and slightly lower radioligand uptake. Nonmotor symptoms were mild, and different nonmotor profiles were observed in G2019S carriers compared to R1441G carriers. A group of G2019S carriers with known prodromal features was identified. Longitudinal studies are required to determine whether such individuals are at short-term risk of developing overt parkinsonism. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  12. Obese women on a low energy rice and bean diet: effects of leucine, arginine or glycine supplementation on protein turnover

    Directory of Open Access Journals (Sweden)

    J.S. Marchini

    2001-10-01

    Full Text Available This study examined if leucine, arginine or glycine supplementation in adult obese patients (body mass index of 33 ± 4 kg/m² consuming a Brazilian low energy and protein diet (4.2 MJ/day and 0.6 g protein/kg affects protein and amino acid metabolism. After four weeks adaptation to this diet, each subject received supplements of these amino acids (equivalent to 0.2 g protein kg-1 day-1 in random order. On the seventh day of each amino acid supplementation, a single-dose 15N-glycine study was carried out. There were no significant differences in protein flux, synthesis or breakdown. The protein flux (grams of nitrogen, gN/9 h was 55 ± 24 during the nonsupplemented diet intake and 39 ± 10, 44 ± 22 and 58 ± 35 during the leucine-, glycine- and arginine-supplemented diet intake, respectively; protein synthesis (gN/9 h was 57 ± 24, 36 ± 10, 41 ± 22 and 56 ± 36, respectively; protein breakdown (gN/9 h was 51 ± 24, 34 ± 10, 32 ± 28 and 53 ± 35, respectively; kinetic balance (gN/9 h was 3.2 ± 1.8, 4.1 ± 1.7, 3.4 ± 2.9 and 3.9 ± 1.6. There was no difference in amino acid profiles due to leucine, arginine or glycine supplementation. The present results suggest that 0.6 g/kg of dietary protein is enough to maintain protein turnover in obese women consuming a reduced energy diet and that leucine, arginine or glycine supplementation does not change kinetic balance or protein synthesis.

  13. Fast axonal transport of 3H-leucin-labelled proteins in the unhurt and isolated optical nerve of rats

    International Nuclear Information System (INIS)

    Wagner, H.E.

    1981-01-01

    The distribution of radioactivity of amino acid molecules incorporated in protein after injection of 3 H-Leucin into the right bulb was investigated and determined along optical nerve after 1, 2, and 4 h. A slightly increased radioactivity at the point of entrance of the optical nerves into the optical duct was found. A slightly reduced axon diameter was discussed as a possible cause. The radioactivity brought into the optical nerve via the vascular system was determined by measuring the contralateral optical nerve. In relation to the axonally transported activity, it was low. The speed of the fast axonal transport is 168 mm/d. If the processes ruling the amino acids in the perikaryon are taken into consideration, the transport speed is 240 mm/d. The application of the protein synthesis prohibitor, Cycloheximide, 5 minutes after the injection of Leucinin completely prevented the appearance of axonally transported labelled proteins. When cycloheximide was administered 2 h after Leucin, a significantly loner radioactivity than in the nerve could be determined after another 2 h; i.e. the incorporation of Leucin was not completed yet after 2 h. The profile of active compounds was the same as in the control group. In other experiments, the axonal transport of labelled proteins in isolated optical nerve fibres was tested. If the separation was carried out 2 h after the injection of Leucin an extreme reduction in activity could be determined after 1 or 2 h. The continued distribution of activity after cycloheximide treatment and removal of perikarya in comparison with the control indicate the continuation of the transport, also after separation of the axon from the perikaryon. This means that, during the time of the experiment, the mechanism of the fast axonal transport functions independently of the perikaryon. (orig./MG) [de

  14. Comparative genome analysis reveals an absence of leucine-rich repeat pattern-recognition receptor proteins in the kingdom Fungi.

    OpenAIRE

    Darren M Soanes; Nicholas J Talbot

    2010-01-01

    Background In plants and animals innate immunity is the first line of defence against attack by microbial pathogens. Specific molecular features of bacteria and fungi are recognised by pattern recognition receptors that have extracellular domains containing leucine rich repeats. Recognition of microbes by these receptors induces defence responses that protect hosts against potential microbial attack. Methodology/Principal Findings A survey of genome sequences from 101 species, representing a ...

  15. Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography

    Czech Academy of Sciences Publication Activity Database

    Horňák, Karel; Jezbera, Jan; Nedoma, Jiří; Gasol, J.M.; Šimek, Karel

    2006-01-01

    Roč. 45, č. 3 (2006), s. 277-289 ISSN 0948-3055 R&D Projects: GA ČR GA206/05/0007 Grant - others:FRVŠ(CZ) 1062/2004 Institutional research plan: CEZ:AV0Z60170517 Keywords : leucin e incorporation * bacterial structure * bacterial function Subject RIV: EH - Ecology, Behaviour Impact factor: 2.209, year: 2006

  16. Small leucine zipper protein functions as a negative regulator of estrogen receptor α in breast cancer.

    Directory of Open Access Journals (Sweden)

    Juyeon Jeong

    Full Text Available The nuclear transcription factor estrogen receptor α (ERα plays a critical role in breast cancer progression. ERα acts as an important growth stimulatory protein in breast cancer and the expression level of ERα is tightly related to the prognosis and treatment of patients. Small leucine zipper protein (sLZIP functions as a transcriptional cofactor by binding to various nuclear receptors, including glucocorticoid receptor, androgen receptor, and peroxisome proliferator-activated receptor γ. However, the role of sLZIP in the regulation of ERα and its involvement in breast cancer progression is unknown. We found that sLZIP binds to ERα and represses the transcriptional activity of ERα in ERα-positive breast cancer cells. sLZIP also suppressed the expression of ERα target genes. sLZIP disrupted the binding of ERα to the estrogen response element of the target gene promoter, resulting in suppression of cell proliferation. sLZIP is a novel co-repressor of ERα, and plays a negative role in ERα-mediated cell proliferation in breast cancer.

  17. Biochemical Properties and Potential Applications of Recombinant Leucine Aminopeptidase from Bacillus kaustophilus CCRC 11223

    Directory of Open Access Journals (Sweden)

    Yonghua Wang

    2011-11-01

    Full Text Available Experiments were carried out to investigate the effects of various factors on the activity and conformation of recombinant leucine aminopeptidase of Bacillus kaustophilus CCRC 11223 (BkLAP and potential utilization of BkLAP in the hydrolysis of anchovy protein. Optimal temperature and pH of BkLAP were 70 °C and 8.0 in potassium-phosphate buffer, respectively, and the activity was strongly stimulated by Ni2+, followed by Mn2+ and Co2+. Conformational studies via circular dichroism spectroscopy indicated that various factors could influence the secondary structure of BkLAP to different extents and further induce the changes in enzymatic activity. The secondary structure of BkLAP was slightly modified by Ni2+ at the concentration of 1×10−4 M, however, significant changes on the secondary structures of the enzyme were observed when Hg2+ was added to the concentration of 1×10−4 M. The potential application of BkLAP was evaluated through combination with the commercial or endogenous enzyme to hydrolysis the anchovy protein. Results showed that combining the BkLAP with other enzymes could significantly increase the degree of hydrolysis and amino acid component of hydrolysate. In this regard, BkLAP is a potential enzyme that can be used in the protein hydrolysate industry.

  18. Cellular pattern formation by SCRAMBLED, a leucine-rich repeat receptor-like kinase in Arabidopsis.

    Science.gov (United States)

    Kwak, Su-Hwan; Schiefelbein, John

    2008-02-01

    The appropriate specification of distinct cell types is important for generating the proper tissues and bodies of multicellular organisms. In the root epidermis of Arabidopsis, cell fate determination is accomplished by a transcriptional regulatory circuit that is influenced by positional signaling. A leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), has been shown to be responsible for the position-dependent aspect of this epidermal pattern. In a recent report, we find that SCM affects the transcriptional regulatory network by down-regulating the WEREWOLF (WER) MYB gene expression in a set of epidermal cells located in a specific position. We also find that SCM and the SCM-related SRF1 and SRF3 are not required for embryonic epidermal patterning and that SRF1 and SRF3 do not act redundantly with SCM. This suggests that distinct positional signaling mechanisms exist for embryonic and post-embryonic epidermal patterning. In this addendum, we discuss the implications of our recent findings and extend our working model for epidermal cell pattering.

  19. LRRML: a conformational database and an XML description of leucine-rich repeats (LRRs).

    Science.gov (United States)

    Wei, Tiandi; Gong, Jing; Jamitzky, Ferdinand; Heckl, Wolfgang M; Stark, Robert W; Rössle, Shaila C

    2008-11-05

    Leucine-rich repeats (LRRs) are present in more than 6000 proteins. They are found in organisms ranging from viruses to eukaryotes and play an important role in protein-ligand interactions. To date, more than one hundred crystal structures of LRR containing proteins have been determined. This knowledge has increased our ability to use the crystal structures as templates to model LRR proteins with unknown structures. Since the individual three-dimensional LRR structures are not directly available from the established databases and since there are only a few detailed annotations for them, a conformational LRR database useful for homology modeling of LRR proteins is desirable. We developed LRRML, a conformational database and an extensible markup language (XML) description of LRRs. The release 0.2 contains 1261 individual LRR structures, which were identified from 112 PDB structures and annotated manually. An XML structure was defined to exchange and store the LRRs. LRRML provides a source for homology modeling and structural analysis of LRR proteins. In order to demonstrate the capabilities of the database we modeled the mouse Toll-like receptor 3 (TLR3) by multiple templates homology modeling and compared the result with the crystal structure. LRRML is an information source for investigators involved in both theoretical and applied research on LRR proteins. It is available at http://zeus.krist.geo.uni-muenchen.de/~lrrml.

  20. Gender-Associated Impact of Early Leucine Supplementation on Adult Predisposition to Obesity in Rats

    Science.gov (United States)

    López, Nora; Sánchez, Juana; Palou, Andreu; Serra, Francisca

    2018-01-01

    Early nutrition plays an important role in development and may constitute a relevant contributor to the onset of obesity in adulthood. The aim of this study was to evaluate the long-term impact of maternal leucine (Leu) supplementation during lactation on progeny in rats. A chow diet, supplemented with 2% Leu, was supplied during lactation (21 days) and, from weaning onwards, was replaced by a standard chow diet. Then, at adulthood (6 months of age), this was replaced with hypercaloric diets (either with high-fat (HF) or high-carbohydrate (HC) content), for two months, to induce obesity. Female offspring from Leu-supplemented dams showed higher increases in body weight and in body fat (62%) than their respective controls; whereas males were somehow protected (15% less fat than the corresponding controls). This profile in Leu-females was associated with altered neuronal architecture at the paraventricular nucleus (PVN), involving neuropeptide Y (NPY) fibers and impaired expression of neuropeptides and factors of the mTOR signaling pathway in the hypothalamus. Interestingly, leptin and adiponectin expression in adipose tissue at weaning and at the time before the onset of obesity could be defined as early biomarkers of metabolic disturbance, predisposing towards adult obesity under the appropriate environment. PMID:29329236

  1. Glucocorticoid-Induced Leucine Zipper Protein Controls Macropinocytosis in Dendritic Cells.

    Science.gov (United States)

    Calmette, Joseph; Bertrand, Matthieu; Vétillard, Mathias; Ellouze, Mehdi; Flint, Shaun; Nicolas, Valérie; Biola-Vidamment, Armelle; Pallardy, Marc; Morand, Eric; Bachelerie, Françoise; Godot, Véronique; Schlecht-Louf, Géraldine

    2016-12-01

    Ag sampling is a key process in dendritic cell (DC) biology. DCs use constitutive macropinocytosis, receptor-mediated endocytosis, and phagocytosis to capture exogenous Ags for presentation to T cells. We investigated the mechanisms that regulate Ag uptake by DCs in the steady-state and after a short-term LPS exposure in vitro and in vivo. We show that the glucocorticoid-induced leucine zipper protein (GILZ), already known to regulate effector versus regulatory T cell activation by DCs, selectively limits macropinocytosis, but not receptor-mediated phagocytosis, in immature and recently activated DCs. In vivo, the GILZ-mediated inhibition of Ag uptake is restricted to the CD8α + DC subset, which expresses the highest GILZ level among splenic DC subsets. In recently activated DCs, we further establish that GILZ limits p38 MAPK phosphorylation, providing a possible mechanism for GILZ-mediated macropinocytosis control. Finally, our results demonstrate that the modulation of Ag uptake by GILZ does not result in altered Ag presentation to CD4 T cells but impacts the efficiency of cross-presentation to CD8 T cells. Altogether, our results identify GILZ as an endogenous inhibitor of macropinocytosis in DCs, the action of which contributes to the fine-tuning of Ag cross-presentation. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Role of glucocorticoid-induced leucine zipper (GILZ in inflammatory bone loss.

    Directory of Open Access Journals (Sweden)

    Nianlan Yang

    Full Text Available TNF-α plays a key role in the development of rheumatoid arthritis (RA and inflammatory bone loss. Unfortunately, treatment of RA with anti-inflammatory glucocorticoids (GCs also causes bone loss resulting in osteoporosis. Our previous studies showed that overexpression of glucocorticoid-induced leucine zipper (GILZ, a mediator of GC's anti-inflammatory effect, can enhance osteogenic differentiation in vitro and bone acquisition in vivo. To investigate whether GILZ could antagonize TNF-α-induced arthritic inflammation and protect bone in mice, we generated a TNF-α-GILZ double transgenic mouse line (TNF-GILZ Tg by crossbreeding a TNF-α Tg mouse, which ubiquitously expresses human TNF-α, with a GILZ Tg mouse, which expresses mouse GILZ under the control of a 3.6kb rat type I collagen promoter fragment. Results showed that overexpression of GILZ in bone marrow mesenchymal stem/progenitor cells protected mice from TNF-α-induced inflammatory bone loss and improved bone integrity (TNF-GILZ double Tg vs. TNF-αTg, n = 12-15. However, mesenchymal cell lineage restricted GILZ expression had limited effects on TNF-α-induced arthritic inflammation as indicated by clinical scores and serum levels of inflammatory cytokines and chemokines.

  3. Macrophage migration inhibitory factor inhibits the antiinflammatory effects of glucocorticoids via glucocorticoid-induced leucine zipper.

    Science.gov (United States)

    Fan, Huapeng; Kao, Wenping; Yang, Yuan H; Gu, Ran; Harris, James; Fingerle-Rowson, Günter; Bucala, Richard; Ngo, Devi; Beaulieu, Elaine; Morand, Eric F

    2014-08-01

    Glucocorticoids remain a mainstay in the treatment of rheumatoid arthritis (RA). Dose-dependent adverse effects highlight the need for therapies that regulate glucocorticoid sensitivity to enable dosage reduction. Macrophage migration inhibitory factor (MIF) is a proinflammatory protein that has been implicated in the pathogenesis of RA; it impairs glucocorticoid sensitivity via MAPK phosphatase 1 (MKP-1) inhibition. The intracellular protein glucocorticoid-induced leucine zipper (GILZ) mimics the effects of glucocorticoids in models of RA, but whether it represents a target for the modulation of glucocorticoid sensitivity remains unknown. We undertook this study to investigate whether GILZ is involved in the regulation of glucocorticoid sensitivity by MIF. GILZ expression was studied in the presence and absence of MIF, and the role of GILZ in the MIF-dependent regulation of the glucocorticoid sensitivity mediator MKP-1 was studied at the level of expression and function. GILZ expression was significantly inhibited by endogenous MIF, both basally and during responses to glucocorticoid treatment. The effects of MIF on GILZ were dependent on the expression and Akt-induced nuclear translocation of the transcription factor FoxO3A. GILZ was shown to regulate the expression of MKP-1 and consequent MAPK phosphorylation and cytokine release. MIF exerts its effects on MKP-1 expression and MAPK activity through inhibitory effects on GILZ. These findings suggest a previously unsuspected interaction between MIF and GILZ and identify GILZ as a potential target for the therapeutic regulation of glucocorticoid sensitivity. Copyright © 2014 by the American College of Rheumatology.

  4. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase.

    Directory of Open Access Journals (Sweden)

    Purushottam R Lomate

    Full Text Available Jasmonate inducible plant leucine aminopeptidase (LAP is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.

  5. A Combination of Leucine, Metformin, and Sildenafil Treats Nonalcoholic Fatty Liver Disease and Steatohepatitis in Mice

    Directory of Open Access Journals (Sweden)

    Antje Bruckbauer

    2016-01-01

    Full Text Available Sirt1, AMPK, and eNOS modulate hepatic energy metabolism and inflammation and are key players in the development of NASH. L-leucine, an allosteric Sirt1 activator, synergizes with low doses of metformin or sildenafil on the AMPK-eNOS-Sirt1 pathway to reverse mild NAFLD in preclinical mouse models. Here we tested a possible multicomponent synergy to yield greater therapeutic efficacy in NAFLD/NASH. Liver cells and macrophages or an atherogenic diet induced NASH mouse model was treated with two-way and three-way combinations. The three-way combination Sild-Met-Leu increased hepatic fatty acid oxidation and reduced lipogenic gene expression and inflammatory marker in vitro. In mice, Sild-Met-Leu reduced the diet induced increases of ALT, TGFβ, PAI-1, IL1β, and TNFα, hepatic collagen expression, and nearly completely reversed hepatocyte ballooning and triglyceride accumulation, while all two-way combinations had only modest effects. Therefore, these data provide preclinical evidence for therapeutic efficacy of Sild-Met-Leu in the treatment of NAFLD and NASH.

  6. Proteome-level assessment of origin, prevalence and function of Leucine-Aspartic Acid (LD) motifs

    KAUST Repository

    Alam, Tanvir

    2018-03-11

    Short Linear Motifs (SLiMs) contribute to almost every cellular function by connecting appropriate protein partners. Accurate prediction of SLiMs is difficult due to their shortness and sequence degeneracy. Leucine-aspartic acid (LD) motifs are SLiMs that link paxillin family proteins to factors controlling (cancer) cell adhesion, motility and survival. The existence and importance of LD motifs beyond the paxillin family is poorly understood. To enable a proteome-wide assessment of these motifs, we developed an active-learning based framework that iteratively integrates computational predictions with experimental validation. Our analysis of the human proteome identified a dozen proteins that contain LD motifs, all being involved in cell adhesion and migration, and revealed a new type of inverse LD motif consensus. Our evolutionary analysis suggested that LD motif signalling originated in the common unicellular ancestor of opisthokonts and amoebozoa by co-opting nuclear export sequences. Inter-species comparison revealed a conserved LD signalling core, and reveals the emergence of species-specific adaptive connections, while maintaining a strong functional focus of the LD motif interactome. Collectively, our data elucidate the mechanisms underlying the origin and adaptation of an ancestral SLiM.

  7. Essential Role for an M17 Leucine Aminopeptidase in Encystation of Acanthamoeba castellanii.

    Science.gov (United States)

    Lee, Yu-Ran; Na, Byoung-Kuk; Moon, Eun-Kyung; Song, Su-Min; Joo, So-Young; Kong, Hyun-Hee; Goo, Youn-Kyoung; Chung, Dong-Il; Hong, Yeonchul

    2015-01-01

    Encystation of Acanthamoeba leads to the formation of resilient cysts from vegetative trophozoites. This process is essential for parasite survival under unfavorable conditions such as starvation, low temperatures, and exposure to biocides. During encystation, a massive turnover of intracellular components occurs, and a large number of organelles and proteins are degraded by proteases. Previous studies with specific protease inhibitors have shown that cysteine and serine proteases are involved in encystation of Acanthamoeba, but little is known about the role of metalloproteases in this process. Here, we have biochemically characterized an M17 leucine aminopeptidase of Acanthamoeba castellanii (AcLAP) and analyzed its functional involvement in encystation of the parasite. Recombinant AcLAP shared biochemical properties such as optimal pH, requirement of divalent metal ions for activity, substrate specificity for Leu, and inhibition profile by aminopeptidase inhibitors and metal chelators with other characterized M17 family LAPs. AcLAP was highly expressed at a late stage of encystation and mainly localized in the cytoplasm of A. castellanii. Knockdown of AcLAP using small interfering RNA induced a decrease of LAP activity during encystation, a reduction of mature cyst formation, and the formation of abnormal cyst walls. In summary, these results indicate that AcLAP is a typical M17 family enzyme that plays an essential role during encystation of Acanthamoeba.

  8. Essential Role for an M17 Leucine Aminopeptidase in Encystation of Acanthamoeba castellanii.

    Directory of Open Access Journals (Sweden)

    Yu-Ran Lee

    Full Text Available Encystation of Acanthamoeba leads to the formation of resilient cysts from vegetative trophozoites. This process is essential for parasite survival under unfavorable conditions such as starvation, low temperatures, and exposure to biocides. During encystation, a massive turnover of intracellular components occurs, and a large number of organelles and proteins are degraded by proteases. Previous studies with specific protease inhibitors have shown that cysteine and serine proteases are involved in encystation of Acanthamoeba, but little is known about the role of metalloproteases in this process. Here, we have biochemically characterized an M17 leucine aminopeptidase of Acanthamoeba castellanii (AcLAP and analyzed its functional involvement in encystation of the parasite. Recombinant AcLAP shared biochemical properties such as optimal pH, requirement of divalent metal ions for activity, substrate specificity for Leu, and inhibition profile by aminopeptidase inhibitors and metal chelators with other characterized M17 family LAPs. AcLAP was highly expressed at a late stage of encystation and mainly localized in the cytoplasm of A. castellanii. Knockdown of AcLAP using small interfering RNA induced a decrease of LAP activity during encystation, a reduction of mature cyst formation, and the formation of abnormal cyst walls. In summary, these results indicate that AcLAP is a typical M17 family enzyme that plays an essential role during encystation of Acanthamoeba.

  9. AdpC is a Prevotella intermedia 17 leucine-rich repeat internalin-like protein.

    Science.gov (United States)

    Iyer, Divya; Anaya-Bergman, Cecilia; Jones, Kevin; Yanamandra, Sai; Sengupta, Dipanwita; Miyazaki, Hiroshi; Lewis, Janina P

    2010-06-01

    The oral bacterium Prevotella intermedia attaches to and invades gingival epithelial cells, fibroblasts, and endothelial cells. Several genes encoding proteins that mediate both the adhesion and invasion processes are carried on the genome of this bacterium. Here, we characterized one such protein, AdpC, belonging to the leucine-rich repeat (LRR) protein family. Bioinformatics analysis revealed that this protein shares similarity with the Treponema pallidum LRR (LRR(TP)) family of proteins and contains six LRRs. Despite the absence of a signal peptide, this protein is localized on the bacterial outer membrane, indicating that it is transported through an atypical secretion mechanism. The recombinant form of this protein (rAdpC) was shown to bind fibrinogen. In addition, the heterologous host strain Escherichia coli BL21 expressing rAdpC (V2846) invaded fibroblast NIH 3T3 cells at a 40-fold-higher frequency than control E. coli BL21 cells expressing a sham P. intermedia 17 protein. Although similar results were obtained by using human umbilical vein endothelial cells (HUVECs), only a 3-fold-increased invasion of V2846 into oral epithelial HN4 cells was observed. Thus, AdpC-mediated invasion is cell specific. This work demonstrated that AdpC is an important invasin protein of P. intermedia 17.

  10. AdpC Is a Prevotella intermedia 17 Leucine-Rich Repeat Internalin-Like Protein▿

    Science.gov (United States)

    Iyer, Divya; Anaya-Bergman, Cecilia; Jones, Kevin; Yanamandra, Sai; Sengupta, Dipanwita; Miyazaki, Hiroshi; Lewis, Janina P.

    2010-01-01

    The oral bacterium Prevotella intermedia attaches to and invades gingival epithelial cells, fibroblasts, and endothelial cells. Several genes encoding proteins that mediate both the adhesion and invasion processes are carried on the genome of this bacterium. Here, we characterized one such protein, AdpC, belonging to the leucine-rich repeat (LRR) protein family. Bioinformatics analysis revealed that this protein shares similarity with the Treponema pallidum LRR (LRRTP) family of proteins and contains six LRRs. Despite the absence of a signal peptide, this protein is localized on the bacterial outer membrane, indicating that it is transported through an atypical secretion mechanism. The recombinant form of this protein (rAdpC) was shown to bind fibrinogen. In addition, the heterologous host strain Escherichia coli BL21 expressing rAdpC (V2846) invaded fibroblast NIH 3T3 cells at a 40-fold-higher frequency than control E. coli BL21 cells expressing a sham P. intermedia 17 protein. Although similar results were obtained by using human umbilical vein endothelial cells (HUVECs), only a 3-fold-increased invasion of V2846 into oral epithelial HN4 cells was observed. Thus, AdpC-mediated invasion is cell specific. This work demonstrated that AdpC is an important invasin protein of P. intermedia 17. PMID:20308299

  11. Small Leucine-Rich Proteoglycans in Renal Inflammation: Two Sides of the Coin.

    Science.gov (United States)

    Nastase, Madalina V; Janicova, Andrea; Roedig, Heiko; Hsieh, Louise Tzung-Harn; Wygrecka, Malgorzata; Schaefer, Liliana

    2018-04-01

    It is now well-established that members of the small leucine-rich proteoglycan (SLRP) family act in their soluble form, released proteolytically from the extracellular matrix (ECM), as danger-associated molecular patterns (DAMPs). By interacting with Toll-like receptors (TLRs) and the inflammasome, the two SLRPs, biglycan and decorin, autonomously trigger sterile inflammation. Recent data indicate that these SLRPs, besides their conventional role as pro-inflammatory DAMPs, additionally trigger anti-inflammatory signaling pathways to tightly control inflammation. This is brought about by selective employment of TLRs, their co-receptors, various adaptor molecules, and through crosstalk between SLRP-, reactive oxygen species (ROS)-, and sphingolipid-signaling. In this review, the complexity of SLRP signaling in immune and kidney resident cells and its relevance for renal inflammation is discussed. We propose that the dichotomy in SLRP signaling (pro- and anti-inflammatory) allows for fine-tuning the inflammatory response, which is decisive for the outcome of inflammatory kidney diseases.

  12. Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1

    Directory of Open Access Journals (Sweden)

    Tarasov Valery

    2010-05-01

    Full Text Available Abstract Background Archaea combine bacterial-as well as eukaryotic-like features to regulate cellular processes. Halobacterium salinarum R1 encodes eight leucine-responsive regulatory protein (Lrp-homologues. The function of two of them, Irp (OE3923F and lrpA1 (OE2621R, were analyzed by gene deletion and overexpression, including genome scale impacts using microarrays. Results It was shown that Lrp affects the transcription of multiple target genes, including those encoding enzymes involved in amino acid synthesis, central metabolism, transport processes and other regulators of transcription. In contrast, LrpA1 regulates transcription in a more specific manner. The aspB3 gene, coding for an aspartate transaminase, was repressed by LrpA1 in the presence of L-aspartate. Analytical DNA-affinity chromatography was adapted to high salt, and demonstrated binding of LrpA1 to its own promoter, as well as L-aspartate dependent binding to the aspB3 promoter. Conclusion The gene expression profiles of two archaeal Lrp-homologues report in detail their role in H. salinarum R1. LrpA1 and Lrp show similar functions to those already described in bacteria, but in addition they play a key role in regulatory networks, such as controlling the transcription of other regulators. In a more detailed analysis ligand dependent binding of LrpA1 was demonstrated to its target gene aspB3.

  13. Les besoins en isoleucine, valine et leucine chez le porcelet entre 7 et 15 kg

    DEFF Research Database (Denmark)

    Assadi Soumeh, Elham; van Milgen, Jaap; Sloth, Niels Morten

    2015-01-01

    croissance s’ils sont fournis en deçà du besoin. Des études de métaanalyse révèlent que peu de données de type dose‐réponse sont disponibles chez le porcelet pour l’Ile, notamment avec des aliments exempts de cellules de sang, et la Val (van Milgen et al., 2012, 2013). Par ailleurs, une revue de la......La réduction des teneurs en protéines des aliments pour porcelets peut se faire uniquement sous contrôle des apports en acides aminés (AA) indispensables tels que les AA ramifies (AAR) valine (Val), isoleucine (Ile) et leucine (Leu) susceptibles d’être déficitaires et d’altérer les performances de...... literature révèle que seules deux études permettent d’estimer le besoin en Leu (Gloaguen et al., 2013a). L’objectif de cette étude est de décrire la réponse de porcelets entre 7 et 15 kg de poids vif (PV) à des apports croissants d’Ile, Val et Leu digestible iléale standardisée (DIS) dans trois études dose...

  14. Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Lawrence J Druhan

    Full Text Available Leucine-rich α2 glycoprotein (LRG1, a serum protein produced by hepatocytes, has been implicated in angiogenesis and tumor promotion. Our laboratory previously reported the expression of LRG1 in murine myeloid cell lines undergoing neutrophilic granulocyte differentiation. However, the presence of LRG1 in primary human neutrophils and a role for LRG1 in regulation of hematopoiesis have not been previously described. Here we show that LRG1 is packaged into the granule compartment of human neutrophils and secreted upon neutrophil activation to modulate the microenvironment. Using immunofluorescence microscopy and direct biochemical measurements, we demonstrate that LRG1 is present in the peroxidase-negative granules of human neutrophils. Exocytosis assays indicate that LRG1 is differentially glycosylated in neutrophils, and co-released with the secondary granule protein lactoferrin. Like LRG1 purified from human serum, LRG1 secreted from activated neutrophils also binds cytochrome c. We also show that LRG1 antagonizes the inhibitory effects of TGFβ1 on colony growth of human CD34+ cells and myeloid progenitors. Collectively, these data invoke an additional role for neutrophils in innate immunity that has not previously been reported, and suggest a novel mechanism whereby neutrophils may modulate the microenvironment via extracellular release of LRG1.

  15. Pharmacokinetic and imaging studies of the hepatobiliary agent sup(99m)Tc-pyridoxal leucine

    International Nuclear Information System (INIS)

    Sawas-Dimopoulou, C.; Chiotellis, E.; Dassiou, A.; Papanicolaou, N.; Simitzis, G.; Koutoulidis, K.; Hadzilouka-Mantaka, A.

    1978-01-01

    An investigation into the usefulness of sup(99m)Tc-pyridoxal leucine has demonstrated its advantages over 131 I-rose bengal in the diagnosis of patients with several liver and gall bladder complaints. Toxicity studies in mice, rabbits and dogs showed no histological signs of tissular lesions at doses of up to 5000 to 25,000 times the clinical dose. Visualization of the liver, gall bladder and biliary excretion into intestines was rapid. The appearance of activity into the intestines was delayed in patients with partial obstruction of the common bile duct. Insufficient diagnostic information was provided in jaundiced patients with higher levels of bilirubin (7 to 12 mg%). These patients showed reduced liver uptake with high background, and intestinal activity was not always clearly visualized in an 18 h study. At bilirubin levels higher than 12 mg% no liver uptake was usually observed, but only renal activity. 131 I-rose bengal was preferable for the differential diagnosis of obstructive jaundice in these patients. (U.K.)

  16. LRRML: a conformational database and an XML description of leucine-rich repeats (LRRs

    Directory of Open Access Journals (Sweden)

    Stark Robert W

    2008-11-01

    Full Text Available Abstract Background Leucine-rich repeats (LRRs are present in more than 6000 proteins. They are found in organisms ranging from viruses to eukaryotes and play an important role in protein-ligand interactions. To date, more than one hundred crystal structures of LRR containing proteins have been determined. This knowledge has increased our ability to use the crystal structures as templates to model LRR proteins with unknown structures. Since the individual three-dimensional LRR structures are not directly available from the established databases and since there are only a few detailed annotations for them, a conformational LRR database useful for homology modeling of LRR proteins is desirable. Description We developed LRRML, a conformational database and an extensible markup language (XML description of LRRs. The release 0.2 contains 1261 individual LRR structures, which were identified from 112 PDB structures and annotated manually. An XML structure was defined to exchange and store the LRRs. LRRML provides a source for homology modeling and structural analysis of LRR proteins. In order to demonstrate the capabilities of the database we modeled the mouse Toll-like receptor 3 (TLR3 by multiple templates homology modeling and compared the result with the crystal structure. Conclusion LRRML is an information source for investigators involved in both theoretical and applied research on LRR proteins. It is available at http://zeus.krist.geo.uni-muenchen.de/~lrrml.

  17. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    Directory of Open Access Journals (Sweden)

    Jiao eZhao

    2016-03-01

    Full Text Available Transcription factors (TFs play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu zipper (bZIP TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes. Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in ten different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones.

  18. Are the Bcaas/Leucine Supplementation Effects on Exercise-Induced Muscle Damage Related Immunity Response or to Hmβ?

    OpenAIRE

    Humberto Nicastro

    2014-01-01

    Branched-chain amino acids (BCAAs), mainly leucine, have been described as potential modulators of resistance exercise-induced muscle adaptations which includes stimulation of muscle protein synthesis and attenuation of proteolysis. However, until the moment, there are no well controlled chronic studies (randomized, double-blind and placebo-controlled) in humans assessing the effects of BCAAs/leucine supplementation on muscle hypertrophy and strength. The most well documented benefits of BCAA...

  19. Long-term increased carnitine palmitoyltransferase 1A expression in ventromedial hypotalamus causes hyperphagia and alters the hypothalamic lipidomic profile.

    Directory of Open Access Journals (Sweden)

    Paula Mera

    Full Text Available Lipid metabolism in the ventromedial hypothalamus (VMH has emerged as a crucial pathway in the regulation of feeding and energy homeostasis. Carnitine palmitoyltransferase (CPT 1A is the rate-limiting enzyme in mitochondrial fatty acid β-oxidation and it has been proposed as a crucial mediator of fasting and ghrelin orexigenic signalling. However, the relationship between changes in CPT1A activity and the intracellular downstream effectors in the VMH that contribute to appetite modulation is not fully understood. To this end, we examined the effect of long-term expression of a permanently activated CPT1A isoform by using an adeno-associated viral vector injected into the VMH of rats. Peripherally, this procedure provoked hyperghrelinemia and hyperphagia, which led to overweight, hyperglycemia and insulin resistance. In the mediobasal hypothalamus (MBH, long-term CPT1AM expression in the VMH did not modify acyl-CoA or malonyl-CoA levels. However, it altered the MBH lipidomic profile since ceramides and sphingolipids increased and phospholipids decreased. Furthermore, we detected increased vesicular γ-aminobutyric acid transporter (VGAT and reduced vesicular glutamate transporter 2 (VGLUT2 expressions, both transporters involved in this orexigenic signal. Taken together, these observations indicate that CPT1A contributes to the regulation of feeding by modulating the expression of neurotransmitter transporters and lipid components that influence the orexigenic pathways in VMH.

  20. Enhanced gene expression in tumors after intravenous administration of arginine-, lysine- and leucine-bearing polypropylenimine polyplex.

    Science.gov (United States)

    Aldawsari, Hibah; Edrada-Ebel, Ruangelie; Blatchford, David R; Tate, Rothwelle J; Tetley, Laurence; Dufès, Christine

    2011-09-01

    The possibility of using non-viral gene delivery systems for the treatment of cancer is currently limited by their lower transfection efficacy compared to viral systems. On the basis that amino acids such as arginine, lysine and leucine were involved in enhancing DNA transportation into cells, we hypothesized that the grafting of these amino acids to the highly promising generation 3 diaminobutyric polypropylenimine (DAB) dendrimer would improve its transfection efficacy in cancer cells. In this work we demonstrated that the conjugation of arginine, lysine and leucine to the dendrimer led to an enhanced anti-proliferative activity of the polyplexes, by up to 47-fold for DAB-Lys in T98G cancer cells compared to the unmodified polyplex in vitro. In vivo, the intravenous administration of amino acid-bearing DAB polyplexes resulted in a significantly improved tumor gene expression, with the highest gene expression level observed after treatment with DAB-Lys polyplex. Arginine, lysine and leucine-bearing generation 3 polypropylenimine polymers are therefore highly promising gene delivery systems for gene transfection in tumors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    Science.gov (United States)

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-05

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model.

  2. Comparative genome analysis reveals an absence of leucine-rich repeat pattern-recognition receptor proteins in the kingdom Fungi.

    Directory of Open Access Journals (Sweden)

    Darren M Soanes

    2010-09-01

    Full Text Available In plants and animals innate immunity is the first line of defence against attack by microbial pathogens. Specific molecular features of bacteria and fungi are recognised by pattern recognition receptors that have extracellular domains containing leucine rich repeats. Recognition of microbes by these receptors induces defence responses that protect hosts against potential microbial attack.A survey of genome sequences from 101 species, representing a broad cross-section of the eukaryotic phylogenetic tree, reveals an absence of leucine rich repeat-domain containing receptors in the fungal kingdom. Uniquely, however, fungi possess adenylate cyclases that contain distinct leucine rich repeat-domains, which have been demonstrated to act as an alternative means of perceiving the presence of bacteria by at least one fungal species. Interestingly, the morphologically similar osmotrophic oomycetes, which are taxonomically distant members of the stramenopiles, possess pattern recognition receptors with similar domain structures to those found in plants.The absence of pattern recognition receptors suggests that fungi may possess novel classes of pattern-recognition receptor, such as the modified adenylate cyclase, or instead rely on secretion of anti-microbial secondary metabolites for protection from microbial attack. The absence of pattern recognition receptors in fungi, coupled with their abundance in oomycetes, suggests this may be a unique characteristic of the fungal kingdom rather than a consequence of the osmotrophic growth form.

  3. Elaboration of biscuits with oatmeal and fat palm with added L-leucine and calcium for sarcopenia

    Directory of Open Access Journals (Sweden)

    Telma Elita Bertolin

    2013-06-01

    Full Text Available The objective of this study was to evaluate the effect of the addition of oatmeal and palm fat in the elaboration of biscuits with added L-leucine and calcium in order to develop a product for sarcopenia in the elderly. The biscuits, or cookies, were elaborated applying a central composite rotational design with surface response methodology, and the significant linear, quadratic and interaction terms were used in the second order mathematical model. Physical, physicochemical and sensory analyses were performed by a trained panel. Based on the best results obtained, three cookie formulations were selected for sensory evaluation by the target group and physicochemical determinations. The formulations with the highest sensory scores for appearance and texture and medium scores for color and expansion index were selected. The addition of calcium and leucine increased significantly the concentration of these components in the biscuits elaborated resulting in a cookie with more than 30% of DRI (Dietary Reference Intake for calcium and leucine. The formulations selected showed high acceptance by the target group; therefore, they can be included in the diet of elderly with sarcopenia as a functional food.

  4. Comparative genome analysis reveals an absence of leucine-rich repeat pattern-recognition receptor proteins in the kingdom Fungi.

    Science.gov (United States)

    Soanes, Darren M; Talbot, Nicholas J

    2010-09-14

    In plants and animals innate immunity is the first line of defence against attack by microbial pathogens. Specific molecular features of bacteria and fungi are recognised by pattern recognition receptors that have extracellular domains containing leucine rich repeats. Recognition of microbes by these receptors induces defence responses that protect hosts against potential microbial attack. A survey of genome sequences from 101 species, representing a broad cross-section of the eukaryotic phylogenetic tree, reveals an absence of leucine rich repeat-domain containing receptors in the fungal kingdom. Uniquely, however, fungi possess adenylate cyclases that contain distinct leucine rich repeat-domains, which have been demonstrated to act as an alternative means of perceiving the presence of bacteria by at least one fungal species. Interestingly, the morphologically similar osmotrophic oomycetes, which are taxonomically distant members of the stramenopiles, possess pattern recognition receptors with similar domain structures to those found in plants. The absence of pattern recognition receptors suggests that fungi may possess novel classes of pattern-recognition receptor, such as the modified adenylate cyclase, or instead rely on secretion of anti-microbial secondary metabolites for protection from microbial attack. The absence of pattern recognition receptors in fungi, coupled with their abundance in oomycetes, suggests this may be a unique characteristic of the fungal kingdom rather than a consequence of the osmotrophic growth form.

  5. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    Science.gov (United States)

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; de Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-11-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.

  6. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice

    Science.gov (United States)

    van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-01-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  7. Developmental changes in hypothalamic oxytocin and oxytocin receptor mRNA expression and their sensitivity to fasting in male and female rats.

    Science.gov (United States)

    Matsuzaki, Toshiya; Iwasa, Takeshi; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kawami, Takako; Murakami, Masahiro; Yamasaki, Mikio; Yamamoto, Yuri; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-04-01

    Oxytocin (OT) affects the central nervous system and is involved in a variety of social and non-social behaviors. Recently, the role played by OT in energy metabolism and its organizational effects on estrogen receptor alpha (ER-α) during the neonatal period have gained attention. In this study, the developmental changes in the hypothalamic mRNA levels of OT, the OT receptor (OTR), and ER-α were evaluated in male and female rats. In addition, the fasting-induced changes in the hypothalamic mRNA levels of OT and the OTR were evaluated. Hypothalamic explants were taken from postnatal day (PND) 10, 20, and 30 rats, and the mRNA level of each molecule was measured. Hypothalamic OT mRNA expression increased throughout the developmental period in both sexes. The rats' hypothalamic OTR mRNA levels were highest on PND 10 and decreased throughout the developmental period. In the male rats, the hypothalamic mRNA levels of ER-α were higher on PND 30 than on PND 10. On the other hand, no significant differences in hypothalamic ER-α mRNA expression were detected among the examined time points in the female rats, although hypothalamic ER-α mRNA expression tended to be higher on PND 30 than on PND 10. Significant positive correlations were detected between hypothalamic OT and ER-α mRNA expression in both the male and female rats. Hypothalamic OT mRNA expression was not affected by fasting at any of the examined time points in either sex. These results indicate that hypothalamic OT expression is not sensitive to fasting during the developmental period. In addition, as a positive correlation was detected between hypothalamic OT and ER-α mRNA expression, these two molecules might interact with each other to induce appropriate neuronal development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Investigations of a compartmental model for leucine kinetics using non-linear mixed effects models with ordinary and stochastic differential equations.

    Science.gov (United States)

    Berglund, Martin; Sunnåker, Mikael; Adiels, Martin; Jirstrand, Mats; Wennberg, Bernt

    2012-12-01

    Non-linear mixed effects (NLME) models represent a powerful tool to simultaneously analyse data from several individuals. In this study, a compartmental model of leucine kinetics is examined and extended with a stochastic differential equation to model non-steady-state concentrations of free leucine in the plasma. Data obtained from tracer/tracee experiments for a group of healthy control individuals and a group of individuals suffering from diabetes mellitus type 2 are analysed. We find that the interindividual variation of the model parameters is much smaller for the NLME models, compared to traditional estimates obtained from each individual separately. Using the mixed effects approach, the population parameters are estimated well also when only half of the data are used for each individual. For a typical individual, the amount of free leucine is predicted to vary with a standard deviation of 8.9% around a mean value during the experiment. Moreover, leucine degradation and protein uptake of leucine is smaller, proteolysis larger and the amount of free leucine in the body is much larger for the diabetic individuals than the control individuals. In conclusion, NLME models offers improved estimates for model parameters in complex models based on tracer/tracee data and may be a suitable tool to reduce data sampling in clinical studies.

  9. Excessive Leucine-mTORC1-Signalling of Cow Milk-Based Infant Formula: The Missing Link to Understand Early Childhood Obesity

    Science.gov (United States)

    Melnik, Bodo C.

    2012-01-01

    Increased protein supply by feeding cow-milk-based infant formula in comparison to lower protein content of human milk is a well-recognized major risk factor of childhood obesity. However, there is yet no conclusive biochemical concept explaining the mechanisms of formula-induced childhood obesity. It is the intention of this article to provide the biochemical link between leucine-mediated signalling of mammalian milk proteins and adipogenesis as well as early adipogenic programming. Leucine has been identified as the predominant signal transducer of mammalian milk, which stimulates the nutrient-sensitive kinase mammalian target of rapamycin complex 1 (mTORC1). Leucine thus functions as a maternal-neonatal relay for mTORC1-dependent neonatal β-cell proliferation and insulin secretion. The mTORC1 target S6K1 plays a pivotal role in stimulation of mesenchymal stem cells to differentiate into adipocytes and to induce insulin resistance. It is of most critical concern that infant formulas provide higher amounts of leucine in comparison to human milk. Exaggerated leucine-mediated mTORC1-S6K1 signalling induced by infant formulas may thus explain increased adipogenesis and generation of lifelong elevated adipocyte numbers. Attenuation of mTORC1 signalling of infant formula by leucine restriction to physiologic lower levels of human milk offers a great chance for the prevention of childhood obesity and obesity-related metabolic diseases. PMID:22523661

  10. Excessive Leucine-mTORC1-Signalling of Cow Milk-Based Infant Formula: The Missing Link to Understand Early Childhood Obesity

    Directory of Open Access Journals (Sweden)

    Bodo C. Melnik

    2012-01-01

    Full Text Available Increased protein supply by feeding cow-milk-based infant formula in comparison to lower protein content of human milk is a well-recognized major risk factor of childhood obesity. However, there is yet no conclusive biochemical concept explaining the mechanisms of formula-induced childhood obesity. It is the intention of this article to provide the biochemical link between leucine-mediated signalling of mammalian milk proteins and adipogenesis as well as early adipogenic programming. Leucine has been identified as the predominant signal transducer of mammalian milk, which stimulates the nutrient-sensitive kinase mammalian target of rapamycin complex 1 (mTORC1. Leucine thus functions as a maternal-neonatal relay for mTORC1-dependent neonatal β-cell proliferation and insulin secretion. The mTORC1 target S6K1 plays a pivotal role in stimulation of mesenchymal stem cells to differentiate into adipocytes and to induce insulin resistance. It is of most critical concern that infant formulas provide higher amounts of leucine in comparison to human milk. Exaggerated leucine-mediated mTORC1-S6K1 signalling induced by infant formulas may thus explain increased adipogenesis and generation of lifelong elevated adipocyte numbers. Attenuation of mTORC1 signalling of infant formula by leucine restriction to physiologic lower levels of human milk offers a great chance for the prevention of childhood obesity and obesity-related metabolic diseases.

  11. Leucine and ACE inhibitors as therapies for sarcopenia (LACE trial): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Band, Margaret M; Sumukadas, Deepa; Struthers, Allan D; Avenell, Alison; Donnan, Peter T; Kemp, Paul R; Smith, Karen T; Hume, Cheryl L; Hapca, Adrian; Witham, Miles D

    2018-01-04

    Sarcopenia (the age-related loss of muscle mass and function) is a major contributor to loss of mobility, falls, loss of independence, morbidity and mortality in older people. Although resistance training is effective in preventing and reversing sarcopenia, many older people are sedentary and either cannot or do not want to exercise. This trial examines the efficacy of supplementation with the amino acid leucine and/or angiotensin converting enzyme inhibition to potentially improve muscle mass and function in people with sarcopenia. Promising preliminary data exist from small studies for both interventions, but neither has yet been tested in adequately powered randomised trials in patients with sarcopenia. Leucine and ACE inhibitors in sarcopenia (LACE) is a multicentre, masked, placebo-controlled, 2 × 2 factorial randomised trial evaluating the efficacy of leucine and perindopril (angiotensin converting enzyme inhibitor (ACEi)) in patients with sarcopenia. The trial will recruit 440 patients from primary and secondary care services across the UK. Male and female patients aged 70 years and over with sarcopenia as defined by the European Working Group on Sarcopenia (based on low total skeletal muscle mass on bioimpedance analysis and either low gait speed or low handgrip strength) will be eligible for participation. Participants will be excluded if they have a contraindication to, or are already taking, an ACEi, angiotensin receptor blocker or leucine. The primary clinical outcome for the trial is the between-group difference in the Short Physical Performance Battery score at all points between baseline and 12 months. Secondary outcomes include appendicular muscle mass measured using dual-energy X-ray absorptiometry, muscle strength, activities of daily living, quality of life, activity using pedometer step counts and falls. Participants, clinical teams, outcomes assessors and trial analysts are masked to treatment allocation. A panel of biomarkers including

  12. A potential strategy for counteracting age-related sarcopenia: preliminary evidence of combined exercise training and leucine supplementation.

    Science.gov (United States)

    Xia, Z; Cholewa, J M; Zhao, Y; Yang, Y; Shang, H; Jiang, H; Su, Q; Zanchi, N E

    2017-12-13

    Previous research has demonstrated the positive effects of concurrent/combined aerobic and resistance exercise or leucine supplementation on skeletal muscle protein synthesis (MPS) and hypertrophy in aging organisms. However, the effects of a multimodal intervention which combines both aerobic and resistance exercise and leucine supplementation has not been fully elucidated. Eighteen month old and 2 month old C57BL/6 mice were assigned to aging control (AC, n = 8), aging and multimodal intervention (AMI, n = 8) and young control (YC, n = 8). Mice in the YC and AC groups were fed an alanine-rich diet (3.4%), and mice in the AMI group received an isonitrogenous leucine-supplemented (5%) diet in combination with combined aerobic (30 minutes swimming) and resistance exercise training (incremental jumping submersed in water with overload corresponding to 40%-50% body weight) for a total of 4 weeks. The gastrocnemius muscles were dissected for western blotting detection (signaling proteins involved in MPS) and the ex vivo determination of protein synthesis and protein content. The muscle strength of the hind limbs was measured pre-experiment and repeated once per week on Sunday for 4 weeks. Mice in the AC and AMI groups showed lower ex vivo protein synthesis, protein content, expression of signaling proteins involved in MPS, maximal grip strength but higher plasma cortisol compared with the YC group post intervention. When compared to AC mice, the multimodal treatment led to lower activity of Sestrin2, higher expression of PI3K III and the phosphorylation of mTOR, p70S6K and 4E-BP1, as well as higher plasma leucine, wet gastrocnemius muscle weight and muscle weight to body weight ratio. Furthermore, the multimodal intervention induced more pronounced anabolic response such as higher ex vivo protein synthesis rate, total protein content, and myofibrillar fractions in gastrocnemius muscle, and greater maximum grip strength. The present research shows that a multimodal

  13. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia

    Directory of Open Access Journals (Sweden)

    Taku Tsunekawa

    2017-02-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD, remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3 was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT. In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions.

  14. Bacterial production in Guanabara Bay (Rio de Janeiro, Brazil evaluated by ³H-leucine incorporation

    Directory of Open Access Journals (Sweden)

    Alessandra M. Gonzalez

    2000-01-01

    Full Text Available The aim of this work was to evaluate the necessary ³H-leucine concentration to estimate bacterial production in Guanabara Bay through saturation curves. A second aim was to collect preliminary data of bacterial production in two distinct sites corresponding to different water qualities: Urca inlet and Governador Island. Saturation curves were made with water samples taken at the main circulation channel of the bay, Paquetá Island, and the two sites mentioned before. The ³H-leucine curves showed similar pattern for all studied areas, indicating the ideal isotope concentration to be 10 nM. Bacterial biomass production ranged from 0.40 to 4.53 µgC L-1 h-1 in Urca and from 3.86 to 73.72 µgC L-1 h-1 in Governador Island indicating the relationship between nutrients and organic matter supply and bacterial productivity. This work is an important reference for studies on trophodynamics, biogeochemical cycles and modelling in Guanabara Bay.O objetivo desse trabalho foi realizar curvas de saturação a fim de otimizar a concentração de ³H-leucina necessária para avaliar produção bacteriana na Baía de Guanabara. Objetivou-se ainda a aquisição de dados preliminares de produção bacteriana em dois locais distintos em termos de qualidade de água : enseada da Urca e Ilha do Governador. As amostras para as curvas foram obtidas na região do Canal Central e na Ilha de Paquetá, além dos dois locais de coleta citados acima. Seguiu-se a metodologia descrita por Kirchman et al. (1985 e modificada por Smith & Azam (1992. As curvas de ³H-leucina mostraram um padrão semelhante para todas as áreas estudadas, indicando a concentração ótima de isótopo de 10 nM. A produção de biomassa bacteriana variou de 0,40 a 4,53 µgC L-1 h-1 na Urca e de 3,86 a 73,72 µgC L-1 h-1 na Ilha do Governador confirmando a relação entre a disponibilidade de nutrientes e matéria orgânica e o aumento da produtividade bacteriana. Essas análises poderão ser

  15. Leucine-Rich repeat receptor kinases are sporadically distributed in eukaryotic genomes

    Directory of Open Access Journals (Sweden)

    Diévart Anne

    2011-12-01

    Full Text Available Abstract Background Plant leucine-rich repeat receptor-like kinases (LRR-RLKs are receptor kinases that contain LRRs in their extracellular domain. In the last 15 years, many research groups have demonstrated major roles played by LRR-RLKs in plants during almost all developmental processes throughout the life of the plant and in defense/resistance against a large range of pathogens. Recently, a breakthrough has been made in this field that challenges the dogma of the specificity of plant LRR-RLKs. Results We analyzed ~1000 complete genomes and show that LRR-RK genes have now been identified in 8 non-plant genomes. We performed an exhaustive phylogenetic analysis of all of these receptors, revealing that all of the LRR-containing receptor subfamilies form lineage-specific clades. Our results suggest that the association of LRRs with RKs appeared independently at least four times in eukaryotic evolutionary history. Moreover, the molecular evolutionary history of the LRR-RKs found in oomycetes is reminiscent of the pattern observed in plants: expansion with amplification/deletion and evolution of the domain organization leading to the functional diversification of members of the gene family. Finally, the expression data suggest that oomycete LRR-RKs may play a role in several stages of the oomycete life cycle. Conclusions In view of the key roles that LRR-RLKs play throughout the entire lifetime of plants and plant-environment interactions, the emergence and expansion of this type of receptor in several phyla along the evolution of eukaryotes, and particularly in oomycete genomes, questions their intrinsic functions in mimicry and/or in the coevolution of receptors between hosts and pathogens.

  16. pH-jump induced leucine zipper folding beyond the diffusion limit.

    Science.gov (United States)

    Donten, Mateusz L; Hassan, Shabir; Popp, Alexander; Halter, Jonathan; Hauser, Karin; Hamm, Peter

    2015-01-29

    The folding of a pH-sensitive leucine zipper, that is, a GCN4 mutant containing eight glutamic acid residues, has been investigated. A pH-jump induced by a caged proton (o-nitrobenzaldehyde, oNBA) is employed to initiate the process, and time-resolved IR spectroscopy of the amide I band is used to probe it. The experiment has been carefully designed to minimize the buffer capacity of the sample solution so that a large pH jump can be achieved, leading to a transition from a completely unfolded to a completely folded state with a single laser shot. In order to eliminate the otherwise rate-limiting diffusion-controlled step of the association of two peptides, they have been covalently linked. The results for the folding kinetics of the cross-linked peptide are compared with those of an unlinked peptide, which reveals a detailed picture of the folding mechanism. That is, folding occurs in two steps, one on an ∼1-2 μs time scale leading to a partially folded α-helix even in the monomeric case and a second one leading to the final coiled-coil structure on distinctively different time scales of ∼30 μs for the cross-linked peptide and ∼200 μs for the unlinked peptide. By varying the initial pH, it is found that the folding mechanism is consistent with a thermodynamic two-state model, despite the fact that a transient intermediate is observed in the kinetic experiment.

  17. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress.

    Science.gov (United States)

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2017-01-01

    One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.

  18. Seizure semiology in leucine-rich glioma-inactivated protein 1 antibody-associated limbic encephalitis.

    Science.gov (United States)

    Chen, Chao; Wang, Xiu; Zhang, Chao; Cui, Tao; Shi, Wei-Xiong; Guan, Hong-Zhi; Ren, Hai-Tao; Shao, Xiao-Qiu

    2017-12-01

    The objective of this study was to advance the characterization of seizure semiology in leucine-rich glioma-inactivated protein 1 (LGI1) antibody-associated limbic encephalitis (LE). Eighteen patients diagnosed with LGI1 LE were identified. Seizure semiology, demographic features, MRI and fluorodeoxyglucose positron emission tomography (FDG-PET), electroencephalograms, and outcomes following immunotherapy were evaluated. Patients were divided into the following groups based on seizure semiology: faciobrachial dystonic seizure only (FBDS-only, n=4), epileptic seizure without FBDS (Non-FBDS, n=6), and FBDS plus epileptic seizure (FBDS+, n=8). In the group with Non-FBDS, the majority of patients (5/6) manifested mesial temporal lobe epilepsy (MTLE) like semiology (i.e., fear, epigastric rising, staring, and automatisms) with a frequency of 7±5 times per day and a duration of 15.3±14.3s. In the group with FBDS+, the distinctive symptom was FBDS followed by epileptic events, especially automatisms (7/8), with a frequency of 16±12 times per day and a duration of 13.0±8.0s. In these cases, 67% and 50% of the patients showed abnormalities on MRI and FDG-PET, respectively, and the mesial temporal lobe structures were most often involved. Ictal discharges were observed in 0/4, 6/6, and 8/8 of the patients in the groups with FBDS only, Non-FBDS, and FBDS+, respectively. The temporal lobe was mainly affected. Immunotherapy had favorable therapeutic effects. The LGI1 LE should be considered as one disease syndrome with a series of clinical manifestation. Identifying types of unique semiology features will facilitate the early diagnosis and the timely initiation of immunotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The SALM/Lrfn family of leucine-rich repeat-containing cell adhesion molecules.

    Science.gov (United States)

    Nam, Jungyong; Mah, Won; Kim, Eunjoon

    2011-07-01

    Synaptic adhesion molecules play important roles in various stages of neuronal development, including neurite outgrowth and synapse formation. The SALM (synaptic adhesion-like molecule) family of adhesion molecules, also known as Lrfn, belongs to the superfamily of leucine-rich repeat (LRR)-containing adhesion molecules. Proteins of the SALM family, which includes five known members (SALMs 1-5), have been implicated in the regulation of neurite outgrowth and branching, and synapse formation and maturation. Despite sharing a similar domain structure, individual SALM family proteins appear to have distinct functions. SALMs 1-3 contain a C-terminal PDZ-binding motif, which interacts with PSD-95, an abundant postsynaptic scaffolding protein, whereas SALM4 and SALM5 lack PDZ binding. SALM1 directly interacts with NMDA receptors but not with AMPA receptors, whereas SALM2 associates with both NMDA and AMPA receptors. SALMs 1-3 form homo- and heteromeric complexes with each other in a cis manner, whereas SALM4 and SALM5 do not, but instead participate in homophilic, trans-cellular adhesion. SALM3 and SALM5, but not other SALMs, possess synaptogenic activity, inducing presynaptic differentiation in contacting axons. All SALMs promote neurite outgrowth, while SALM4 uniquely increases the number of primary processes extending from the cell body. In addition to these functional diversities, the fifth member of the SALM family, SALM5/Lrfn5, has recently been implicated in severe progressive autism and familial schizophrenia, pointing to the clinical importance of SALMs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Cytosolic 5'-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf.

    Directory of Open Access Journals (Sweden)

    Federico Cividini

    Full Text Available IMP/GMP preferring cytosolic 5'-nucleotidase II (cN-II is a bifunctional enzyme whose activities and expression play crucial roles in nucleotide pool maintenance, nucleotide-dependent pathways and programmed cell death. Alignment of primary amino acid sequences of cN-II from human and other organisms show a strong conservation throughout the entire vertebrata taxon suggesting a fundamental role in eukaryotic cells. With the aim to investigate the potential role of this homology in protein-protein interactions, a two hybrid system screening of cN-II interactors was performed in S. cerevisiae. Among the X positive hits, the Leucin Rich Repeat (LRR domain of Ipaf was found to interact with cN-II. Recombinant Ipaf isoform B (lacking the Nucleotide Binding Domain was used in an in vitro affinity chromatography assay confirming the interaction obtained in the screening. Moreover, co-immunoprecipitation with proteins from wild type Human Embryonic Kidney 293 T cells demonstrated that endogenous cN-II co-immunoprecipitated both with wild type Ipaf and its LRR domain after transfection with corresponding expression vectors, but not with Ipaf lacking the LRR domain. These results suggest that the interaction takes place through the LRR domain of Ipaf. In addition, a proximity ligation assay was performed in A549 lung carcinoma cells and in MDA-MB-231 breast cancer cells and showed a positive cytosolic signal, confirming that this interaction occurs in human cells. This is the first report of a protein-protein interaction involving cN-II, suggesting either novel functions or an additional level of regulation of this complex enzyme.

  1. High ambient temperature reverses hypothalamic MC4 receptor overexpression in an animal model of anorexia nervosa.

    Science.gov (United States)

    Gutiérrez, E; Churruca, I; Zárate, J; Carrera, O; Portillo, M P; Cerrato, M; Vázquez, R; Echevarría, E

    2009-04-01

    The potential involvement of the melanocortin system in the beneficial effects of heat application in rats submitted to activity-based anorexia (ABA), an analogous model of anorexia nervosa (AN), was studied. Once ABA rats had lost 20% of body weight, half of the animals were exposed to a high ambient temperature (HAT) of 32 degrees C, whereas the rest were maintained at 21 degrees C. Control sedentary rats yoked to ABA animals received the same treatment. ABA rats (21 degrees C) showed increased Melanocortin 4 (MC4) receptor and Agouti gene Related Peptide (AgRP) expression, and decreased pro-opiomelanocortin (POMC) mRNA levels (Real Time PCR), with respect to controls. Heat application increased weight gain and food intake, and reduced running rate in ABA rats, when compared with ABA rats at 21 degrees C. However, no changes in body weight and food intake were observed in sedentary rats exposed to heat. Moreover, heat application reduced MC4 receptor, AgRP and POMC expression in ABA rats, but no changes were observed in control rats. These results indicate that hypothalamic MC4 receptor overexpression could occur on the basis of the characteristic hyperactivity, weight loss, and self-starvation of ABA rats, and suggest the involvement of hypothalamic melanocortin neural circuits in behavioural changes shown by AN patients. Changes in AgRP and POMC expression could represent an adaptative response to equilibrate energy balance. Moreover, the fact that HAT reversed hypothalamic MC4 receptor overexpression in ABA rats indicates the involvement of brain melanocortin system in the reported beneficial effects of heat application in AN. A combination of MC4 receptor antagonists and heat application could improve the clinical management of AN.

  2. Symptomatic hypothalamic-pituitary dysfunction in nasopharyngeal carcinoma patients following radiation therapy: a retrospective study

    International Nuclear Information System (INIS)

    Lam, K.S.; Ho, J.H.; Lee, A.W.; Tse, V.K.; Chan, P.K.; Wang, C.; Ma, J.T.; Yeung, R.T.

    1987-01-01

    Endocrine assessment was performed in 32 relapse-free southern Chinese patients 5-17 years following radiation therapy (RT) alone for early nasopharyngeal carcinoma (NPC). Initial screening was done using questionnaires emphasizing impaired sexual function and menstrual disturbance plus measurement of serum levels of thyroxine, free thyroxine index, thyrotropic hormone, prolactin, and additionally testosterone for males only. Those showing abnormalities were subjected to detailed pituitary function tests. Hypothalamic-pituitary dysfunction was found in 7 female patients and only 1 male patient. A delayed TSH response to thyrotropin releasing hormone suggesting a hypothalamic disorder was seen in 6 of the affected female patients, and hyperprolactinaemia in also 6. None of the patients had evidence of diabetes insipidus. Hypopituitarism became symptomatic 2-5 years after RT with a mean latent interval of 3.8 years. A practical protocol for regular endocrine assessment for NPC patients after RT has been proposed. Multiple linear regression analysis of the radiotherapeutic data from the 11 female patients indicates that the likelihood of late occurrence of symptomatic hypothalamic-pituitary dysfunction following RT is dependent on the TDF of the target dose to the nasopharyngeal region and the height of the upper margin of the opposed lateral facial fields above the diaphragma sellae (coefficient of multiple correlation = 0.9025). Except when the sphenoid sinus or the middle cranial fossa is involved, it is advisable to set the height of the upper margin of the lateral facial field at a level no higher than the diaphragma sellae. The hypothalamus and possibly the pituitary stalk as well may sustain permanent damage by doses of radiation within the conventional radiotherapeutic range for carcinomas

  3. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass.

    Science.gov (United States)

    Barkholt, Pernille; Pedersen, Philip J; Hay-Schmidt, Anders; Jelsing, Jacob; Hansen, Henrik H; Vrang, Niels

    2016-04-01

    The role of the central nervous system in mediating metabolic effects of Roux-en-Y gastric bypass (RYGB) surgery is poorly understood. Using a rat model of RYGB, we aimed to identify changes in gene expression of key hypothalamic neuropeptides known to be involved in the regulation of energy balance. Lean male Sprague-Dawley rats underwent either RYGB or sham surgery. Body weight and food intake were monitored bi-weekly for 60 days post-surgery. In situ hybridization mRNA analysis of hypothalamic AgRP, NPY, CART, POMC and MCH was applied to RYGB and sham animals and compared with ad libitum fed and food-restricted rats. Furthermore, in situ hybridization mRNA analysis of dopaminergic transmission markers (TH and DAT) was applied in the midbrain. RYGB surgery significantly reduced body weight and intake of a highly palatable diet but increased chow consumption compared with sham operated controls. In the arcuate nucleus, RYGB surgery increased mRNA levels of orexigenic AgRP and NPY, whereas no change was observed in anorexigenic CART and POMC mRNA levels. A similar pattern was seen in food-restricted versus ad libitum fed rats. In contrast to a significant increase of orexigenic MCH mRNA levels in food-restricted animals, RYGB did not change MCH expression in the lateral hypothalamus. In the VTA, RYGB surgery induced a reduction in mRNA levels of TH and DAT, whereas no changes were observed in the substantia nigra relative to sham surgery. RYGB surgery increases the mRNA levels of hunger-associated signaling markers in the rat arcuate nucleus without concomitantly increasing downstream MCH expression in the lateral hypothalamus, suggesting that RYGB surgery puts a brake on orexigenic hypothalamic output signals. In addition, down-regulation of midbrain TH and DAT expression suggests that altered dopaminergic activity also contributes to the reduced intake of palatable food in RYGB rats.

  4. Novel aspects of hypothalamic-pituitary-adrenal axis regulation and glucocorticoid actions

    Science.gov (United States)

    Uchoa, Ernane Torres; Aguilera, Greti; Herman, James P.; Fiedler, Jenny L.; Deak, Terrence; Cordeiro de Sousa, Maria Bernardete

    2014-01-01

    Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to rhythmic and episodic release of adrenal glucocorticoids is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, glucocorticoids regulate behavior, metabolic, cardiovascular, immune, and neuroendocrine activities. In contrast to chronic elevated levels, circadian and acute stress-induced increases in glucocorticoids are necessary for hippocampal neuronal survival and memory acquisition and consolidation, through inhibiting apoptosis, facilitating glutamate transmission and inducing immediate early genes and spine formation. In addition to its metabolic actions leading to increasing energy availability, glucocorticoids have profound effects on feeding behavior, mainly through modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that in addition to the recognized immune suppressive actions of glucocorticoids by counteracting adrenergic proinflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative feedback by glucocorticoids involves multiple mechanisms leading to limiting HPA axis activation and preventing deleterious effects of excessive glucocorticoid production. Adequate glucocorticoid secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin releasing hormone (CRH) and vasopressin secretion, the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving non-genomic actions of glucocorticoids, mediate immediate inhibition of hypothalamic CRH and ACTH secretion, while intermediate and delayed mechanisms mediated by genomic actions involve modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily

  5. Centrally injected histamine increases posterior hypothalamic acetylcholine release in hemorrhage-hypotensive rats.

    Science.gov (United States)

    Altinbas, Burcin; Yilmaz, Mustafa S; Savci, Vahide; Jochem, Jerzy; Yalcin, Murat

    2015-01-01

    Histamine, acting centrally as a neurotransmitter, evokes a reversal of hemorrhagic hypotension in rats due to the activation of the sympathetic and the renin-angiotensin systems as well as the release of arginine vasopressin and proopiomelanocortin-derived peptides. We demonstrated previously that central nicotinic cholinergic receptors are involved in the pressor effect of histamine. The aim of the present study was to examine influences of centrally administrated histamine on acetylcholine (ACh) release at the posterior hypothalamus-a region characterized by location of histaminergic and cholinergic neurons involved in the regulation of the sympathetic activity in the cardiovascular system-in hemorrhage-hypotensive anesthetized rats. Hemodynamic and microdialysis studies were carried out in Sprague-Dawley rats. Hemorrhagic hypotension was induced by withdrawal of a volume of 1.5 ml blood/100 g body weight over a period of 10 min. Acute hemorrhage led to a severe and long-lasting decrease in mean arterial pressure (MAP), heart rate (HR), and an increase in extracellular posterior hypothalamic ACh and choline (Ch) levels by 56% and 59%, respectively. Intracerebroventricularly (i.c.v.) administered histamine (50, 100, and 200 nmol) dose- and time-dependently increased MAP and HR and caused an additional rise in extracellular posterior hypothalamic ACh and Ch levels at the most by 102%, as compared to the control saline-treated group. Histamine H1 receptor antagonist chlorpheniramine (50 nmol; i.c.v.) completely blocked histamine-evoked hemodynamic and extracellular posterior hypothalamic ACh and Ch changes, whereas H2 and H3/H4 receptor blockers ranitidine (50 nmol; i.c.v.) and thioperamide (50 nmol; i.c.v.) had no effect. In conclusion, centrally administered histamine, acting via H1 receptors, increases ACh release at the posterior hypothalamus and causes a pressor and tachycardic response in hemorrhage-hypotensive anesthetized rats. Copyright © 2014 Elsevier B

  6. Hypothalamic-specific proopiomelanocortin deficiency reduces alcohol drinking in male and female mice.

    Science.gov (United States)

    Zhou, Y; Rubinstein, M; Low, M J; Kreek, M J

    2017-04-01

    Opioid receptor antagonist naltrexone reduces alcohol consumption and relapse in both humans and rodents. This study investigated whether hypothalamic proopiomelanocortin (POMC) neurons (producing beta-endorphin and melanocortins) play a role in alcohol drinking behaviors. Both male and female mice with targeted deletion of two neuronal Pomc enhancers nPE1 and nPE2 (nPE-/-), resulting in hypothalamic-specific POMC deficiency, were studied in short-access (4-h/day) drinking-in-the-dark (DID, alcohol in one bottle, intermittent access (IA, 24-h cycles of alcohol access every other day, alcohol vs. water in a two-bottle choice) and alcohol deprivation effect (ADE) models. Wild-type nPE+/+ exposed to 1-week DID rapidly established stable alcohol drinking behavior with more intake in females, whereas nPE-/- mice of both sexes had less intake and less preference. Although nPE-/- showed less saccharin intake and preference than nPE+/+, there was no genotype difference in sucrose intake or preference in the DID paradigm. After 3-week IA, nPE+/+ gradually escalated to high alcohol intake and preference, with more intake in females, whereas nPE-/- showed less escalation. Pharmacological blockade of mu-opioid receptors with naltrexone reduced intake in nPE+/+ in a dose-dependent manner, but had blunted effects in nPE-/- of both sexes. When alcohol was presented again after 1-week abstinence from IA, nPE+/+ of both sexes displayed significant increases in alcohol intake (ADE or relapse-like drinking), with more pronounced ADE in females, whereas nPE-/- did not show ADE in either sex. Our results suggest that neuronal POMC is involved in modulation of alcohol 'binge' drinking, escalation and 'relapse', probably via hypothalamic-mediated mechanisms, with sex differences. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Vertical sleeve gastrectomy reduces blood pressure and hypothalamic endoplasmic reticulum stress in mice

    Directory of Open Access Journals (Sweden)

    Anne K. McGavigan

    2017-03-01

    Full Text Available Bariatric surgery, such as vertical sleeve gastrectomy (VSG, causes remarkable improvements in cardiometabolic health, including hypertension remission. However, the mechanisms responsible remain undefined and poorly studied. Therefore, we developed and validated the first murine model of VSG that recapitulates the blood pressure-lowering effect of VSG using gold-standard radiotelemetry technology. We used this model to investigate several potential mechanisms, including body mass, brain endoplasmic reticulum (ER stress signaling and brain inflammatory signaling, which are all critical contributors to the pathogenesis of obesity-associated hypertension. Mice fed on a high-fat diet underwent sham or VSG surgery and radiotelemeter implantation. Sham mice were fed ad libitum or were food restricted to match their body mass to VSG-operated mice to determine the role of body mass in the ability of VSG to lower blood pressure. Blood pressure was then measured in freely moving unstressed mice by radiotelemetry. VSG decreased energy intake, body mass and fat mass. Mean arterial blood pressure (MAP was reduced in VSG-operated mice compared with both sham-operated groups. VSG-induced reductions in MAP were accompanied by a body mass-independent decrease in hypothalamic ER stress, hypothalamic inflammation and sympathetic nervous system tone. Assessment of gut microbial populations revealed VSG-induced increases in the relative abundance of Gammaproteobacteria and Enterococcus, and decreases in Adlercreutzia. These results suggest that VSG reduces blood pressure, but this is only partly due to the reduction in body weight. VSG-induced reductions in blood pressure may be driven by a decrease in hypothalamic ER stress and inflammatory signaling, and shifts in gut microbial populations.

  8. Acute hypothalamic administration of L-arginine increases feed intake in rats

    Directory of Open Access Journals (Sweden)

    Carlos Ricardo Maneck Malfatti

    2015-02-01

    Full Text Available Objective: This study investigated the chronic (oral and acute (hypothalamic infusion effects of L-arginine supplementation on feed intake, body composition, and behavioral changes in rats. Methods: Twenty rats were divided into two groups treated orally for 60 days; one group received L-arginine (1 g/kg body weight and one group received saline (1 mL/NaCl 0.9%. Daily consumption of water and food were evaluated, and weight monitored. After the oral treatment, the rats underwent stereotactic biopsy and a group was injected with 2 µL of L-arginine (0.5 mM and another received an injection of saline (0.9% NaCl, in the hypothalamic route, through micro infusion. Immediately after micro infusion, the animal behavior was evaluated through tests in the open field. Food and water consumption were evaluated at 12 and 24 hours after the micro infusion. Daily water consumption and weight gain evolution were evaluated. At the end of treatments, rats were euthanized and blood was collected for glucose, glycerol, and cholesterol evaluation, and histological analysis of vital organs. Results: Oral supplementation with L-arginine increased water intake (11%, p<0.05 and promoted weight gain (3%, p<0.05. However, hypothalamic infusion promoted a significant increase in chow intake (30%, p<0.05 after 24 hours of L-arginine administration. Conclusion: Chronic oral treatment with L-arginine was not effective on appetite modulation; however, an effect was observed when L-arginine was administered directly into the hypothalamus, suggesting a central regulation on appetite through nNOS sensitization. Chronic use of L-arginine did not cause substantial changes in anthropometric, biochemical, behavioral, or histological variables.

  9. Hypothalamic expression of anorexigenic and orexigenic hormone receptors in obese females Neotomodon alstoni: effect of fasting.

    Science.gov (United States)

    Báez-Ruiz, Adrián; Luna-Moreno, Dalia; Carmona-Castro, Agustín; Cárdenas-Vázquez, René; Díaz-Muñoz, Mauricio; Carmona-Alcocer, Vania; Fuentes-Granados, Citlalli; Manuel, Miranda-Anaya

    2014-01-01

    Obesity is a world problem that requires a better understanding of its physiological and genetic basis, as well as the mechanisms by which the hypothalamus controls feeding behavior. The volcano mouse Neotomodon alstoni develops obesity in captivity when fed with regular chow diet, providing a novel model for the study of obesity. Females develop obesity more often than males; therefore, in this study, we analysed in females, in proestrous lean and obese, the differences in hypothalamus expression of receptors for leptin, ghrelin (growth hormone secretagogue receptor GHS-R), and VPAC, and correlates for plasma levels of total ghrelin. The main comparisons are between mice fed ad libitum and mice after 24 hours of fasting. Mice above 65 g body weight were considered obese, based on behavioral and physiological parameters such as food intake, plasma free fatty acids, and glucose tolerance. Hypothalamic tissue from obese and lean mice was analysed by western blot. Our results indicate that after ad libitum food access, obese mice show no significant differences in hypothalamic leptin receptors, but a significant increase of 60% in the GHS-R, and a nearly 62% decrease in VPAC2 was noted. After a 24-hour fast, plasma ghrelin increased nearly two fold in both lean and obese mice; increases of hypothalamic leptin receptors and GHS-R were also noted, while VPAC2 did not change significantly; levels of plasma free fatty acids were 50% less after fasting in obese than in lean animals. Our results indicate that in obese N. alstoni mice, the levels of orexigenic receptors in the hypothalamus correlate with overfeeding, and the fact that lean and obese females respond in different ways to a metabolic demand such as a 24-hour fast.

  10. Epileptic network of hypothalamic hamartoma: An EEG-fMRI study.

    Science.gov (United States)

    Usami, Kiyohide; Matsumoto, Riki; Sawamoto, Nobukatsu; Murakami, Hiroatsu; Inouchi, Morito; Fumuro, Tomoyuki; Shimotake, Akihiro; Kato, Takeo; Mima, Tatsuya; Shirozu, Hiroshi; Masuda, Hiroshi; Fukuyama, Hidenao; Takahashi, Ryosuke; Kameyama, Shigeki; Ikeda, Akio

    2016-09-01

    To investigate the brain networks involved in epileptogenesis/encephalopathy associated with hypothalamic hamartoma (HH) by EEG with functional MRI (EEG-fMRI), and evaluate its efficacy in locating the HH interface in comparison with subtraction ictal SPECT coregistered to MRI (SISCOM). Eight HH patients underwent EEG-fMRI. All had gelastic seizures (GS) and 7 developed other seizure types. Using a general linear model, spike-related activation/deactivation was analyzed individually by applying a hemodynamic response function before, at, and after spike onset (time-shift model=-8-+4s). Group analysis was also performed. The sensitivity of EEG-fMRI in identifying the HH interface was compared with SISCOM in HH patients having unilateral hypothalamic attachment. EEG-fMRI revealed activation and/or deactivation in subcortical structures and neocortices in all patients. 6/8 patients showed activation in or around the hypothalamus with the HH interface with time-shift model before spike onset. Group analysis showed common activation in the ipsilateral hypothalamus, brainstem tegmentum, and contralateral cerebellum. Deactivation occurred in the default mode network (DMN) and bilateral hippocampi. Among 5 patients with unilateral hypothalamic attachment, activation in or around the ipsilateral hypothalamus was seen in 3 using EEG-fMRI, whereas hyperperfusion was seen in 1 by SISCOM. Group analysis of this preliminary study may suggest that the commonly activated subcortical network is related to generation of GS and that frequent spikes lead to deactivation of the DMN and hippocampi, and eventually to a form of epileptic encephalopathy. Inter-individual variance in neocortex activation explains various seizure types among patients. EEG-fMRI enhances sensitivity in detecting the HH interface compared with SISCOM. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fetal alcohol programming of hypothalamic proopiomelanocortin system by epigenetic mechanisms and later life vulnerability to stress.

    Science.gov (United States)

    Bekdash, Rola; Zhang, Changqing; Sarkar, Dipak

    2014-09-01

    Hypothalamic proopiomelanocortin (POMC) neurons, one of the major regulators of the hypothalamic-pituitary-adrenal (HPA) axis, immune functions, and energy homeostasis, are vulnerable to the adverse effects of fetal alcohol exposure (FAE). These effects are manifested in POMC neurons by a decrease in Pomc gene expression, a decrement in the levels of its derived peptide β-endorphin and a dysregulation of the stress response in the adult offspring. The HPA axis is a major neuroendocrine system with pivotal physiological functions and mode of regulation. This system has been shown to be perturbed by prenatal alcohol exposure. It has been demonstrated that the perturbation of the HPA axis by FAE is long-lasting and is linked to molecular, neurophysiological, and behavioral changes in exposed individuals. Recently, we showed that the dysregulation of the POMC system function by FAE is induced by epigenetic mechanisms such as hypermethylation of Pomc gene promoter and an alteration in histone marks in POMC neurons. This developmental programming of the POMC system by FAE altered the transcriptome in POMC neurons and induced a hyperresponse to stress in adulthood. These long-lasting epigenetic changes influenced subsequent generations via the male germline. We also demonstrated that the epigenetic programming of the POMC system by FAE was reversed in adulthood with the application of the inhibitors of DNA methylation or histone modifications. Thus, prenatal environmental influences, such as alcohol exposure, could epigenetically modulate POMC neuronal circuits and function to shape adult behavioral patterns. Identifying specific epigenetic factors in hypothalamic POMC neurons that are modulated by fetal alcohol and target Pomc gene could be potentially useful for the development of new therapeutic approaches to treat stress-related diseases in patients with fetal alcohol spectrum disorders. Copyright © 2014 by the Research Society on Alcoholism.

  12. Hypothalamic expression and moonlight-independent changes of Cry3 and Per4 implicate their roles in lunar clock oscillators of the lunar-responsive Goldlined spinefoot.

    Directory of Open Access Journals (Sweden)

    Riko Toda

    Full Text Available Lunar cycle-associated physiology has been found in a wide variety of organisms. Studies suggest the presence of a circalunar clock in some animals, but the location of the lunar clock is unclear. We previously found lunar-associated expression of transcripts for Cryptochrome3 gene (SgCry3 in the brain of a lunar phase-responsive fish, the Goldlined spinefoot (Siganus guttatus. Then we proposed a photoperiodic model for the lunar phase response, in which SgCry3 might function as a phase-specific light response gene and/or an oscillatory factor in unidentified circalunar clock. In this study, we have developed an anti-SgCRY3 antibody to identify SgCRY3-immunoreactive cells in the brain. We found immunoreactions in the subependymal cells located in the mediobasal region of the diencephalon, a crucial site for photoperiodic seasonal responses in birds. For further assessment of the lunar-responding mechanism and the circalunar clock, we investigated mRNA levels of Cry3 as well as those of the other clock(-related genes, Period (Per2 and Per4, in S. guttatus reared under nocturnal moonlight interruption or natural conditions. Not only SgCry3 but SgPer4 mRNA levels showed lunar phase-dependent variations in the diencephalon without depending on light condition during the night. These results suggest that the expressions of SgCry3 and SgPer4 are not directly regulated by moonlight stimulation but endogenously mediated in the brain, and implicate that circadian clock(-related genes may be involved in the circalunar clock locating within the mediobasal region of the diencephalon.

  13. Glutamatergic phenotype of hypothalamic neurosecretory systems: a novel aspect of central neuroendocrine regulation.

    Science.gov (United States)

    Hrabovszky, Erik; Liposits, Zsolt

    2007-03-30

    While three decades ago, the co-existence of classical neurotransmitters and peptide neuromodulators in a single neuronal cell was considered to be rather exceptional, the phenomenon that neurons have a complex transmitter phenotype now appears to be the general rule. Parvicellular and magnocellular neurosecretory systems consist of neuronal cells which are specialized in secreting peptide neurohormones into the blood-stream to regulate hypophyseal functions. This mini-review, dedicated to the memory of Mariann Fodor, summarizes the current knowledge about the classical neurotransmitter content of different hypothalamic neurosecretory systems, with a special focus on the occurrence and putative functions of glutamate in parvicellular and magnocellular neurosecretory cells.

  14. Hypothalamic tumor associated with atypical forms of anorexia nervosa and diencephalic syndrome

    OpenAIRE

    Chipkevitch, Eugenio; Fernandes, Antonio C.L.

    1993-01-01

    We report the case of a 10-year-old girl with a mature teratoma in the hypothalamic region. The patient presented a 2-month history of anorexia, psychic disturbances and a 37% loss of body weight. These symptoms had led initially to a diagnosis of major depression and atypical anorexia nervosa. She also presented some signs and symptoms of diencephalic syndrome. This case illustrates the importance of considering a slow-growing mass as a rare but real possibility in the differential diagnosis...

  15. Effects of testosterone treatment on hypothalamic neuroplasticity in female-to-male transgender individuals

    OpenAIRE

    Kranz, Georg S.; Hahn, Andreas; Kaufmann, Ulrike; Tik, Martin; Ganger, Sebastian; Seiger, René; Hummer, Allan; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2017-01-01

    Diffusion-weighted imaging (DWI) is used to measure gray matter tissue density and white matter fiber organization/directionality. Recent studies show that DWI also allows for assessing neuroplastic adaptations in the human hypothalamus. To this end, we investigated a potential influence of testosterone replacement therapy on hypothalamic microstructure in female-to-male (FtM) transgender individuals. 25 FtMs were measured at baseline, 4 weeks, and 4 months past treatment start and compared t...

  16. Consequences of alteration in leucine zipper sequence of melittin in its neutralization of lipopolysaccharide-induced proinflammatory response in macrophage cells and interaction with lipopolysaccharide.

    Science.gov (United States)

    Srivastava, Raghvendra M; Srivastava, Saurabh; Singh, Manish; Bajpai, Virendra Kumar; Ghosh, Jimut Kanti

    2012-01-13

    The bee venom antimicrobial peptide, melittin, besides showing versatile activity against microorganisms also neutralizes lipopolysaccharide (LPS)-induced proinflammatory responses in macrophage cells. However, how the amino acid sequence of melittin contributes in its anti-inflammatory properties is mostly unknown. To determine the importance of the leucine zipper sequence of melittin in its neutralization of LPS-induced inflammatory responses in macrophages and interaction with LPS, anti-inflammatory properties of melittin and its three analogues and their interactions with LPS were studied in detail. Two of these analogues, namely melittin Mut-1 (MM-1) and melittin Mut-2 (MM-2), possess leucine to alanine substitutions in the single and double heptadic leucine residue(s) of melittin, respectively, whereas the third analogue is a scrambled peptide (Mel-SCR) that contains the amino acid composition of melittin with minor rearrangement in its leucine zipper sequence. Although MM-1 partly inhibited the production of proinflammatory cytokines in RAW 264.7 and rat primary macrophage cells in the presence of LPS, MM-2 and Mel-SCR were negligibly active. A progressive decrease in interaction of melittin with LPS, aggregation in LPS, and dissociation of LPS aggregates with alteration in the leucine zipper sequence of melittin was observed. Furthermore, with alteration in the leucine zipper sequence of melittin, these analogues failed to exhibit cellular responses associated with neutralization of LPS-induced inflammatory responses in macrophage cells by melittin. The data indicated a probable important role of the leucine zipper sequence of melittin in neutralizing LPS-induced proinflammatory responses in macrophage cells as well as in its interaction with LPS.

  17. An infant with hyperalertness, hyperkinesis, and failure to thrive: a rare diencephalic syndrome due to hypothalamic anaplastic astrocytoma.

    Science.gov (United States)

    Stival, Alessia; Lucchesi, Maurizio; Farina, Silvia; Buccoliero, Anna Maria; Castiglione, Francesca; Genitori, Lorenzo; de Martino, Maurizio; Sardi, Iacopo

    2015-09-04

    Diencephalic Syndrome is a rare clinical condition of failure to thrive despite a normal caloric intake, hyperalertness, hyperkinesis, and euphoria usually associated with low-grade hypothalamic astrocytomas. We reported an unusual case of diencephalic cachexia due to hypothalamic anaplastic astrocytoma (WHO-grade III). Baseline endocrine function evaluation was performed in this patient before surgery. After histological diagnosis, he enrolled to a chemotherapy program with sequential high-dose chemotherapy followed by hematopoietic stem cell rescue. The last MRI evaluation showed a good response. The patient is still alive with good visual function 21 months after starting chemotherapy. Diencephalic cachexia can rarely be due to high-grade hypothalamic astrocytoma. We suggest that a nutritional support with chemotherapy given to high doses without radiotherapy could be an effective strategy for treatment of a poor-prognosis disease.

  18. Cerebral activations during viewing of food stimuli in adult patients with acquired structural hypothalamic damage: a functional neuroimaging study.

    Science.gov (United States)

    Steele, C A; Powell, J L; Kemp, G J; Halford, J C G; Wilding, J P; Harrold, J A; Kumar, S V D; Cuthbertson, D J; Cross, A A; Javadpour, M; MacFarlane, I A; Stancak, A A; Daousi, C

    2015-09-01

    Obesity is common following hypothalamic damage due to tumours. Homeostatic and non-homeostatic brain centres control appetite and energy balance but their interaction in the presence of hypothalamic damage remains unknown. We hypothesized that abnormal appetite in obese patients with hypothalamic damage results from aberrant brain processing of food stimuli. We sought to establish differences in activation of brain food motivation and reward neurocircuitry in patients with hypothalamic obesity (HO) compared with patients with hypothalamic damage whose weight had remained stable. In a cross-sectional study at a University Clinical Research Centre, we studied 9 patients with HO, 10 age-matched obese controls, 7 patients who remained weight-stable following hypothalamic insult (HWS) and 10 non-obese controls. Functional magnetic resonance imaging was performed in the fasted state, 1 h and 3 h after a test meal, while subjects were presented with images of high-calorie foods, low-calorie foods and non-food objects. Insulin, glucagon-like peptide-1, Peptide YY and ghrelin were measured throughout the experiment, and appetite ratings were recorded. Mean neural activation in the posterior insula and lingual gyrus (brain areas linked to food motivation and reward value of food) in HWS were significantly lower than in the other three groups (P=0.001). A significant negative correlation was found between insulin levels and posterior insula activation (P=0.002). Neural pathways associated with food motivation and reward-related behaviour, and the influence of insulin on their activation may be involved in the pathophysiology of HO.

  19. The acute anorexic effect of liraglutide, a GLP-1 receptor agonist, does not require functional leptin receptor, serotonin, and hypothalamic POMC and CART activities in mice.

    Science.gov (United States)

    Nonogaki, Katsunori; Kaji, Takao

    2016-10-01

    The acute anorexic effect of liraglutide, a GLP-1 receptor agonist, did not require functional leptin receptor, serotonin, and hypothalamic proopiomelanocortin and cocaine amphetamine regulated transcript activities in mice, although decrease in functional hypothalamic orexin activity might be involved in the acute anorexic effect of liraglutide. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Uterine size and ovarian size in adolescents with functional hypothalamic amenorrhoea.

    Science.gov (United States)

    Bumbuliene, Zana; Klimasenko, Jelena; Sragyte, Diana; Zakareviciene, Jolita; Drasutiene, Grazina

    2015-10-01

    Functional hypothalamic amenorrhoea (FHA) is a condition characterised by the absence of menses due to suppression of the hypothalamic-pituitary-ovarian axis. The purpose of the study was to estimate uterine and ovarian sizes in adolescents with FHA and to compare these results with findings in peers having regular menstrual cycles. Prospective case-controlled study. Vilnius University Hospital Santariskiu Klinikos, Lithuania. Lithuanian adolescents--45 with FHA and 40 comparison group participants. We assessed ultrasound measurements of internal reproductive organs, levels of luteinising hormone, follicle-stimulating hormone, prolactin, oestradiol and calculated body mass index (BMI). The mean age of the participants was 16.3 ± 1.2 years, the mean age after menarche--3.6 years. In adolescents with FHA the BMI was 17.8 ± 1.8 kg/m(2) and 20.4 ± 1.4 kg/m(2) in the comparison group, p adolescents with FHA the dimensions of uterus and ovaries were smaller than in girls having regular menstrual cycles. Our study confirmed the influence of oestrogen on uterus size: oestrogen deficiency causes a reduction in uterine size. Uterine size and ovarian size correlate positively with BMI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Revealing the cerebello-ponto-hypothalamic pathway in the human brain.

    Science.gov (United States)

    Kamali, Arash; Karbasian, Niloofar; Rabiei, Pejman; Cano, Andres; Riascos, Roy F; Tandon, Nitin; Arevalo, Octavio; Ocasio, Laura; Younes, Kyan; Khayat-Khoei, Mahsa; Mirbagheri, Saeedeh; Hasan, Khader M

    2018-04-16

    The cerebellum is shown to be involved in some limbic functions of the human brain such as emotion and affect. The major connection of the cerebellum with the limbic system is known to be through the cerebello-hypothalamic pathways. The consensus is that the projections from the cerebellar nuclei to the limbic system, and particularly the hypothalamus, or from the hypothalamus to the cerebellar nuclei, are through multisynaptic pathways in the bulbar reticular formation. The detailed anatomy of the pathways responsible for mediating these responses, however, is yet to be determined. Diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of the cerebello-ponto-hypothalamic (CPH) pathway. This study aimed to investigate the utility of high-spatial-resolution diffusion tensor tractography for mapping the trajectory of the CPH tract in the human brain. Fifteen healthy adults were studied. We delineated, for the first time, the detailed trajectory of the CPH tract of the human brain in fifteen normal adult subjects using high-spatial-resolution diffusion tensor tractography. We further revealed the close relationship of the CPH tract with the optic tract, temporo-pontine tract, amygdalofugal tract and the fornix in the human brain. Copyright © 2018. Published by Elsevier B.V.

  2. Hypothalamic PGC-1α Protects Against High-Fat Diet Exposure by Regulating ERα

    Directory of Open Access Journals (Sweden)

    Eugenia Morselli

    2014-10-01

    Full Text Available High-fat diets (HFDs lead to obesity and inflammation in the central nervous system (CNS. Estrogens and estrogen receptor α (ERα protect premenopausal females from the metabolic complications of inflammation and obesity-related disease. Here, we demonstrate that hypothalamic PGC-1α regulates ERα and inflammation in vivo. HFD significantly increased palmitic acid (PA and sphingolipids in the CNS of male mice when compared to female mice. PA, in vitro, and HFD, in vivo, reduced PGC-1α and ERα in hypothalamic neurons and astrocytes of male mice and promoted inflammation. PGC-1α depletion with ERα overexpression significantly inhibited PA-induced inflammation, confirming that ERα is a critical determinant of the anti-inflammatory response. Physiologic relevance of ERα-regulated inflammation was demonstrated by reduced myocardial function in male, but not female, mice following chronic HFD exposure. Our findings show that HFD/PA reduces PGC-1α and ERα, promoting inflammation and decrements in myocardial function in a sex-specific way.

  3. Pleiotropic and isoform-specific functions for Pitx2 in superior colliculus and hypothalamic neuronal development

    Science.gov (United States)

    Waite, Mindy R.; Skidmore, Jennifer M.; Micucci, Joseph A.; Shiratori, Hidetaka; Hamada, Hiroshi; Martin, James F.; Martin, Donna M.

    2012-01-01

    Transcriptional regulation of gene expression during development is critical for proper neuronal differentiation and migration. Alternative splicing and differential isoform expression have been demonstrated for most mammalian genes, but their specific contributions to gene function are not well understood. In mice, the transcription factor gene Pitx2 is expressed as three different isoforms (PITX2A, PITX2B, and PITX2C) which have unique amino termini and common DNA binding homeodomains and carboxyl termini. The specific roles of these isoforms in neuronal development are not known. Here we report the onset of Pitx2ab and Pitx2c isoform-specific expression by E9.5 in the developing mouse brain. Using isoform-specific Pitx2 deletion mouse strains, we show that collicular neuron migration requires PITX2AB and that collicular GABAergic differentiation and targeting of hypothalamic projections require unique Pitx2 isoform dosage. These results provide insights into Pitx2 dosage and isoform-specific requirements underlying midbrain and hypothalamic development. PMID:23147109

  4. An 11-month-old girl with central precocious puberty caused by hypothalamic hamartoma

    Directory of Open Access Journals (Sweden)

    Da Young Yoon

    2016-12-01

    Full Text Available Central precocious puberty (CPP is caused by premature activation of the hypothalamic-gonadal axis, and must be treated adequately. In particular, CPP that occurs at a relatively young age or in boys is likely to be caused by an organic lesion. Hypothalamic hamartoma (HH is the most common organic cause of CPP. The present case report describes an 11-month-old female infant who presented with vaginal bleeding and rapidly progressive secondary sex characteristics from the age of 6 months. She was diagnosed with CPP following the detection of HH via magnetic resonance imaging. The infant girl was successfully treated with gonadotropin-releasing hormone agonist. After 6 months, her breast had regressed and clinical and radiological follow-up demonstrated stable findings with no evidence of tumor growth or secondary sexual characteristics until the fourth year after the initiation of treatment. This patient is the one of the youngest infants presenting with CPP and HH in Korea; treatment was successful over a relatively long follow-up period.

  5. The ventrolateral hypothalamic area and the parvafox nucleus: Role in the expression of (positive) emotions?

    Science.gov (United States)

    Alvarez-Bolado, Gonzalo; Celio, Marco R

    2016-06-01

    The lateral hypothalamus has been long suspected of triggering the expression of positive emotions, because stimulations of its tuberal portion provoke bursts of laughter. Electrophysiological studies in various species have indeed confirmed that the lateral hypothalamus contributes to reward mechanisms. However, only the rudiments of the neural circuit underlying the expression of positive emotions are known. The prefrontal cortex, the lateral hypothalamus, and the periaqueductal gray matter (PAG) are involved in these circuits; so, too, are the brainstem nuclei that control the laryngeal muscles and subserve mimicry, as well as the cardiovascular and respiratory systems. The implicated populations of hypothalamic neurons have not been defined either anatomically or molecularly. One promising candidate is the novel parvafox nucleus, which we recently described, in the murine medial forebrain bundle (mfb), which specifically expresses parvalbumin and Foxb1. With the molecularly defined parvafox nucleus as a centerpiece, the inputs from the prefrontal cortex and the projections to the PAG and brainstem can be studied with precision. By drawing on genetic approaches, it will be possible to manipulate the circuitry selectively with spatial and temporal exactitude and to evaluate the concomitant autonomic changes. These data will serve as a basis for imaging studies in humans using various paradigms to provoke the expression of positive emotions. In conclusion, studies of the hypothalamic parvafox nucleus will reveal whether this entity represents the fulcrum for positive emotions, as is the amygdala for fear and the insula for disgust. © 2015 Wiley Periodicals, Inc.

  6. An integrated approach to the treatment of chiasmatic-hypothalamic gliomas.

    Science.gov (United States)

    Garvey, M; Packer, R J

    1996-01-01

    The treatment of visual pathway gliomas is controversial. The many retrospective studies reporting outcome data for patients with chiasmatic/hypothalamic gliomas are difficult to interpret for several reasons. First the natural history of these tumors is erratic with some reports suggesting that most visual pathway gliomas are hamartomas and follow an indolent course, and others reporting 10-year survival rates of close to 60%. Second, earlier studies did not clearly indicate which patients had neurofibromatosis type 1 (NF1) and recent evidence suggests that the natural history of optic gliomas is more favorable in patients with NF1. Third the methods and accuracy of diagnosis have changed dramatically and patients diagnosed before and after the advent of CT/MR imaging have often been included in the same series. While surgical resection is usually not a viable option for definitive treatment of these tumors, recent studies have shown favorable results after subtotal resection in selected patients. The efficacy of radiotherapy has not been unequivocally demonstrated and treatment-related morbidity has become a major concern, in particular, adverse effects on cognition and growth. Chemotherapy has been advanced as an viable alternative to avoid or delay the adverse affects of RT, but the long-term outcome benefits and adverse effects of treatment are just being defined. Despite the limitations of currently available information, sufficient data are now available to rational management quotelines for the majority of children with chiasmatic/hypothalamic gliomas.

  7. Effects of testosterone treatment on hypothalamic neuroplasticity in female-to-male transgender individuals.

    Science.gov (United States)

    Kranz, Georg S; Hahn, Andreas; Kaufmann, Ulrike; Tik, Martin; Ganger, Sebastian; Seiger, René; Hummer, Allan; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2018-01-01

    Diffusion-weighted imaging (DWI) is used to measure gray matter tissue density and white matter fiber organization/directionality. Recent studies show that DWI also allows for assessing neuroplastic adaptations in the human hypothalamus. To this end, we investigated a potential influence of testosterone replacement therapy on hypothalamic microstructure in female-to-male (FtM) transgender individuals. 25 FtMs were measured at baseline, 4 weeks, and 4 months past treatment start and compared to 25 female and male controls. Our results show androgenization-related reductions in mean diffusivity in the lateral hypothalamus. Significant reductions were observed unilaterally after 1 month and bilaterally after 4 months of testosterone treatment. Moreover, treatment induced increases in free androgen index and bioavailable testosterone were significantly associated with the magnitude of reductions in mean diffusivity. These findings imply microstructural plasticity and potentially related changes in neural activity by testosterone in the adult human hypothalamus and suggest that testosterone replacement therapy in FtMs changes hypothalamic microstructure towards male proportions.

  8. Effects of chronic restraint stress on body weight, food intake, and hypothalamic gene expressions in mice.

    Science.gov (United States)

    Jeong, Joo Yeon; Lee, Dong Hoon; Kang, Sang Soo

    2013-12-01

    Stress affects body weight and food intake, but the underlying mechanisms are not well understood. We evaluated the changes in body weight and food intake of ICR male mice subjected to daily 2 hours restraint stress for 15 days. Hypothalamic gene expression profiling was analyzed by cDNA microarray. Daily body weight and food intake measurements revealed that both parameters decreased rapidly after initiating daily restraint stress. Body weights of stressed mice then remained significantly lower than the control body weights, even though food intake slowly recovered to 90% of the control intake at the end of the experiment. cDNA microarray analysis revealed that chronic restraint stress affects the expression of hypothalamic genes possibly related to body weight control. Since decreases of daily food intake and body weight were remarkable in days 1 to 4 of restraint, we examined the expression of food intake-related genes in the hypothalamus. During these periods, the expressions of ghrelin and pro-opiomelanocortin mRNA were significantly changed in mice undergoing restraint stress. Moreover, daily serum corticosterone levels gradually increased, while leptin levels significantly decreased. The present study demonstrates that restraint stress affects body weight and food intake by initially modifying canonical food intake-related genes and then later modifying other genes involved in energy metabolism. These genetic changes appear to be mediated, at least in part, by corticosterone.

  9. Psychopathological traits of adolescents with functional hypothalamic amenorrhea: a comparison with anorexia nervosa.

    Science.gov (United States)

    Bomba, Monica; Corbetta, Fabiola; Bonini, Luisa; Gambera, Alessandro; Tremolizzo, Lucio; Neri, Francesca; Nacinovich, Renata

    2014-03-01

    Functional hypothalamic amenorrhea (FHA) is a form of anovulation, due to the suppression of hypothalamic-pituitary-ovarian axis, not related to identifiable organic causes. Like adolescents with anorexia nervosa (AN), subjects with FHA show dysfunctional attitudes, low self-esteem, depressive mood, anxiety and inability to cope with daily stress. The aim of the study is to examine similarities and differences between FHA and AN in terms of clinical profiles and psychological variables. 21 adolescents with FHA, 21 adolescents with anorexia nervosa, and 21 healthy adolescents were included in the study. All the teenagers completed a battery of self-administered psychological tests for the detection of behaviors and symptoms attributable to the presence of an eating disorder (EDI-2), depression (CDI), and alexithymia (TAS-20). Different from healthy controls, subjects with FHA and with AN shared common psychopathological aspects, such as maturity issues, social insecurity and introversion, a tendency to depression, excessive concerns with dieting, and fear of gaining weight. Nevertheless, adolescents with AN presented a more profound psychopathological disorder as observed at test comparisons with subjects with FHA. Results show a clinical spectrum that includes AN and FHA and suggest the necessity to treat FHA with a multidisciplinary approach for both organic and psychological aspects.

  10. On the acoustic wave sensor response to immortalized hypothalamic neurons at the device-liquid interface

    Directory of Open Access Journals (Sweden)

    Shilin Cheung

    2016-12-01

    Full Text Available The response of a thickness shear mode biosensor to immortalized murine hypothalamic neurons (mHypoE-38 and -46 cells under a variety of conditions and stimuli is discussed. Cellular studies which lead to the production of detectable neuronal responses include neuronal deposition, adhesion and proliferation, alteration in the extent of specific cell-surface interactions, actin filament and microtubule cytoskeletal disruptions, effects of cell depolarization, inhibition of the Na+-K+ pump via ouabain, effects of neuronal synchronization and the effects ligand-receptor interaction (glucagon. In the presence of cells, fs shifts are largely influenced by the damping of the TSM resonator. The formation of cell-surface interactions and hence the increase in coupling and acoustic energy dissipation can be modeled as an additional resistor in the BVD model. Further sensor and cellular changes can be obtained by negating the effects of damping from fs via the use of Rm and θmax. Keywords: Acoustic wave sensor, Hypothalamic neurons, Neuron cell-surface interaction

  11. The orexin neuropeptide system: Physical activity and hypothalamic function throughout the aging process.

    Directory of Open Access Journals (Sweden)

    Anastasia N Zink

    2014-11-01

    Full Text Available There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1 How do orexin peptides modulate physical activity? (2 What are the effects of aging and lifestyle choices on physical activity? (3 What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes.

  12. Oviposition pattern of Japanese quail following hypothalamic lesioning with super-absorbent polymer.

    Science.gov (United States)

    Ohta, M; Homma, K

    1988-12-01

    The functions of two hypothalamic areas in controlling the female reproductive cycle were investigated by the intracerebral injection of a new type of water-absorbent polymer of high capacity (super-absorbent polymer). After injection of a minute amount of the polymer into the brain tissue, bulging of the polymer produces a discrete lesion at the site of injection. Two lines (T- and J-lines) of Japanese quail were used; T-line, having a characteristic free-running oviposition pattern irrespective of the environmental 14L10D, and J-line, having a regular oviposition pattern which synchronized with 14L10D. Lesions at the preoptic area were without effect in birds of J-line, but the oviposition of T-line was changed from free-running to regular. Lesions at the posterodorsal part of the infundibular complex were without effect in T-line, but the regular oviposition pattern of J-line became free-running. These results suggest that relative dominancy between the two hypothalamic areas may determine basic pattern of oviposition through modification of the ovulation cycle.

  13. Lateral hypothalamic Orexin-A-ergic projections to the arcuate nucleus modulate gastric function in vivo.

    Science.gov (United States)

    Luan, Xiao; Sun, Xiangrong; Guo, Feifei; Zhang, Di; Wang, Cheng; Ma, Li; Xu, Luo

    2017-12-01

    It has been well-known that hypothalamic orexigenic neuropeptides, orexin-A, and melanin-concentrating hormone (MCH), play important roles in regulation of gastric function. However, what neural pathway mediated by the two neuropeptides affects the gastric function remains unknown. In this study, by way of nucleic stimulation and extracellular recording of single unit electrophysiological properties, we found that electrically stimulating the lateral hypothalamic area (LH) or microinjection of orexin-A into the arcuate nucleus (ARC) excited most gastric distension-responsive neurons in the nuclei and enhanced the gastric function including motility, emptying, and acid secretion of conscious rats. The results indicated that LH-ARC orexin-A-ergic projections may exist and the orexin-A in the ARC affected afferent and efferent signal transmission between ARC and stomach. As expected, combination of retrograde tracing and immunohistochemistry showed that some orexin-A-ergic neurons projected from the LH to the ARC. In addition, microinjection of MCH and its receptor antagonist PMC-3881-PI into the ARC affected the role of orexin-A in the ARC, indicating a possible involvement of the MCH pathway in the orexin-A role. Our findings suggest that there was an orexin-A-ergic pathway between LH and ARC which participated in transmitting information between the central nuclei and the gastrointestinal tract and in regulating the gastric function of rats. © 2017 International Society for Neurochemistry.

  14. Hypoglycemia: Role of Hypothalamic Glucose-Inhibited (GI Neurons in Detection and Correction

    Directory of Open Access Journals (Sweden)

    Chunxue Zhou

    2018-03-01

    Full Text Available Hypoglycemia is a profound threat to the brain since glucose is its primary fuel. As a result, glucose sensors are widely located in the central nervous system and periphery. In this perspective we will focus on the role of hypothalamic glucose-inhibited (GI neurons in sensing and correcting hypoglycemia. In particular, we will discuss GI neurons in the ventromedial hypothalamus (VMH which express neuronal nitric oxide synthase (nNOS and in the perifornical hypothalamus (PFH which express orexin. The ability of VMH nNOS-GI neurons to depolarize in low glucose closely parallels the hormonal response to hypoglycemia which stimulates gluconeogenesis. We have found that nitric oxide (NO production in low glucose is dependent on oxidative status. In this perspective we will discuss the potential relevance of our work showing that enhancing the glutathione antioxidant system prevents hypoglycemia associated autonomic failure (HAAF in non-diabetic rats whereas VMH overexpression of the thioredoxin antioxidant system restores hypoglycemia counterregulation in rats with type 1 diabetes.We will also address the potential role of the orexin-GI neurons in the arousal response needed for hypoglycemia awareness which leads to behavioral correction (e.g., food intake, glucose administration. The potential relationship between the hypothalamic sensors and the neurocircuitry in the hindbrain and portal mesenteric vein which is critical for hypoglycemia correction will then be discussed.

  15. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    Science.gov (United States)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  16. Hypothalamic tumor

    Science.gov (United States)

    Molitch ME. Neuroendocrinology and the neuroendocrine system. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 223. Ntali G, Karavitaki ...

  17. Hypothalamic dysfunction

    Science.gov (United States)

    ... GLAND DEFICIENCY Heart disease Erection problems Infertility Thin bones ( osteoporosis ) Problems breast feeding GROWTH HORMONE DEFICIENCY High cholesterol Osteoporosis Short stature (in children) ...

  18. The Effects of Leucine, Zinc, and Chromium Supplements on Inflammatory Events of the Respiratory System in Type 2 Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Saeed Kolahian

    Full Text Available Diabetes mellitus is a major cause of serious micro- and macrovascular diseases that affect nearly every system in the body, including the respiratory system. Non-enzymatic protein glycation due to hyperglycaemic stress has fundamental implications due to the large capillary network and amount of connective tissue in the lung. The current study was designed to determine whether leucine, zinc, and chromium supplementations influence the function and histological structure of the respiratory tract in a rat model of type 2 diabetes. Seventy-seven rats were divided into eleven groups, consisting of 7 animals each. One group served as negative control and insulin and glibenclamide were used as positive control drugs. Thus, eight groups received the nutritional supplements alone or in combination with each other. Nutritional supplements and glibenclamide were added to the drinking water and neutral protamine Hagedorn insulin was subcutaneously injected during the 4 weeks of treatment period. The induction of type 2 diabetes in the rats caused an infiltration of mononuclear cells and edema in the submucosa of the trachea and lung, severe fibrosis around the vessels and airways, and perivascular and peribronchial infiltration of inflammatory cells and fibrin. In the diabetic group, the total inflammation score and Reid index significantly increased. Diabetes induction significantly reduced the total antioxidant status and elevated the lipid peroxidation products in the serum, lung lavage and lung tissue of the diabetic animals. Treatment with nutritional supplements significantly decreased the histopathological changes and inflammatory indices in the diabetic animals. Supplementation of diabetic rats with leucine, zinc, and chromium, alone and in combination, significantly increased the total antioxidant status and lipid peroxidation level in the diabetic animals. The nutritional supplements improved the enzymatic antioxidant activity of catalase

  19. Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media

    Science.gov (United States)

    Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna

    2017-12-01

    Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.

  20. A new method for determining the metabolic activity of specific bacterial populations in soil using tritiated leucine and immunomagnetic separation

    DEFF Research Database (Denmark)

    Sengeløv, Gitte; Sørensen, Søren Johannes; Frette, Lone

    2000-01-01

    A new assay, using immunomagnetic separation and uptake of tritiated leucine ([3H]-Leu), was developed for measuring the in situ metabolic activity of specific bacterial populations in soil. Such assays are needed to assess the role individual species play in diverse microbial soil communities...... reduced this unspecific binding, resulting in metabolic activity of the target cells. As expected, a linear relationship...... between activity and temperature was observed, demonstrating the sensitivity of the assay. The method was applied to compare activities of the target strain in bulk soil and in the rhizosphere of barley. Contrary to what was anticipated, no significant difference in metabolic activity was observed....