WorldWideScience

Sample records for median particle diameter

  1. Determination of Aerosol Particle Diameter Using Cascade Impactor Procedure

    International Nuclear Information System (INIS)

    Bunawas; Ruslanto, P. O

    1998-01-01

    Determination of aerosol particle size distribution has been done using a low pressure Andersen's cascade impactor with 13 stages. The aerosol has been sampled with flow rate of aerosol sampling of 28.3 Ipm. Preliminary study result shows that aerosol in the simulation chamber was spread in monomodal distribution with Mass Median Aerodynamic Diameter of 4.9 μm. The aerosol measurement in Japan Power Demonstration Reactor has been spread in trimodal distribution with Activity Median Aerodynamic Diameter equal to 13.3 μm. The use of mylar as impaction plate instead of aluminum foil gives good result

  2. Effective particle magnetic moment of multi-core particles

    Energy Technology Data Exchange (ETDEWEB)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  3. Effective particle magnetic moment of multi-core particles

    International Nuclear Information System (INIS)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; IJzendoorn, Leo J. van; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-01-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm

  4. Effective particle magnetic moment of multi-core particles

    Science.gov (United States)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-04-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  5. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  6. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S.

    2013-08-01

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  7. Diameter measurements of polystyrene particles with atomic force microscopy

    International Nuclear Information System (INIS)

    Garnaes, J

    2011-01-01

    The size of (nano) particles is a key parameter used in controlling their function. The particle size is also important in order to understand their physical and chemical properties and regulate their number in health and safety issues. In this work, the geometric diameters of polystyrene spheres of nominal diameter 100 nm are measured using atomic force microscopy. The measurements are based on the apex height and on the average distance between neighbouring spheres when they form a close-packed monolayer on a flat mica substrate. The most important influence parameters for the determination of the geometric diameter are the lateral air gaps and deformation of the spheres. The lateral air gaps are caused by significant size variations of the individual spheres, and a correction is calculated based on the simulation of packing of spheres. The deformation of the spheres is caused mainly by capillary forces acting when they are in contact with each other or with the mica substrate. Based on calculated capillary forces and the literature values of the elastic properties of the polystyrene and mica, the deformation is estimated to be 2 nm with a standard uncertainty of 2 nm. The geometric diameter of the polystyrene spheres was measured with a combined standard uncertainty of ≈3 nm. The measured vertical diameter of 92.3 nm and the certified mobility equivalent diameter measured by differential mobility analysis (DMA) are marginally consistent at a confidence level of 95%. However, the measured lateral geometric diameter was 98.9 nm and is in good agreement with DMA

  8. The design of cermet fuel phase fraction and fuel particle diameter

    International Nuclear Information System (INIS)

    Tian Sheng.

    1986-01-01

    UO 2 -Zr-2 is an ideal cermet fuel. As an exemplification with this fuel, this paper emphatically elucidates the irradiation theory of cermet fuel and its application in the design of cermet fuel phase fraction and of fuel particle diameter. From the point of view of the irradiation theory and the consideration for sandwich rolling, the suitable volume fraction of UO 2 phase of 25% and diameter of UO 2 particle of 100 +- 15 μm are selected

  9. Puffing and inhalation behaviour in cigarette smoking: Implications for particle diameter and dose

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, Colin; McGrath, Conor; Warren, Nigel; Biggs, Philip; McAughey, John, E-mail: colin_dickens@bat.co [British American Tobacco, Group R and D Centre, Southampton, SO15 8TL (United Kingdom)

    2009-02-01

    Inhalation of tobacco smoke aerosol is a two-step process involving puffing followed by inhalation. Measured smoke deposition efficiencies in the lung (20-70%) are greater than expected for smoke particles of diameter 150 - 250 nm CMD. Various mechanisms have been put forward to explain this enhanced deposition pattern, including coagulation, hygroscopic growth, condensation and evaporation, changes in composition, or changes in inhalation behaviour. This paper represents one of a series of studies seeking to better quantify smoke chemistry, inhalation behaviour and cumulative particle growth. The studies have been conducted to better understand smoke dosimetry and links to disease as part of a wider programme defining risk and potential harm reduction. In this study, it was noted that particle deposition increased with increasing inhalation depth, and that smoke inhalation volumes were generally greater than normal tidal breathing volumes. A weak association was observed between particle diameter and puff flow, but no strong association between particle diameter and retention efficiency.

  10. Puffing and inhalation behaviour in cigarette smoking: Implications for particle diameter and dose

    International Nuclear Information System (INIS)

    Dickens, Colin; McGrath, Conor; Warren, Nigel; Biggs, Philip; McAughey, John

    2009-01-01

    Inhalation of tobacco smoke aerosol is a two-step process involving puffing followed by inhalation. Measured smoke deposition efficiencies in the lung (20-70%) are greater than expected for smoke particles of diameter 150 - 250 nm CMD. Various mechanisms have been put forward to explain this enhanced deposition pattern, including coagulation, hygroscopic growth, condensation and evaporation, changes in composition, or changes in inhalation behaviour. This paper represents one of a series of studies seeking to better quantify smoke chemistry, inhalation behaviour and cumulative particle growth. The studies have been conducted to better understand smoke dosimetry and links to disease as part of a wider programme defining risk and potential harm reduction. In this study, it was noted that particle deposition increased with increasing inhalation depth, and that smoke inhalation volumes were generally greater than normal tidal breathing volumes. A weak association was observed between particle diameter and puff flow, but no strong association between particle diameter and retention efficiency.

  11. Method for varying the diameter of a beam of charged particles

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1977-01-01

    In the bombardment of targets with beams of charged particles, a method is described for varying and controlling the diameter of such beams by passing the beam through an envelope of conductive material. The envelope is spaced from and coaxial with the beam. A selected dc potential is applied to the envelope, and the beam diameter is controlled by changing this applied potential in a direction away from ground potential to increase the beam diameter or by changing the potential in a direction toward ground potential to decrease said beam diameter

  12. Effect of particle diameter of porous media on flow and heat transfer in a mixing tee

    International Nuclear Information System (INIS)

    Wang, Yongwei; Lu, Tao; Wang, Kuisheng

    2012-01-01

    Highlights: ► Three particle diameter cases of 28 mm, 14 mm and 7 mm were simulated by LES. ► With the diameter decreasing, mixing scale tends to decrease in the mixing tee. ► With the diameter decreasing, thermal mixing is weakened. ► With the diameter decreasing, the thermal stratification is obvious. ► When the particle diameter ratio is 4:2:1, pressure drop ratio is 1:2:4. -- Abstract: Numerical simulations have been carried out to investigate flow and heat transfer in a mixing tee filled with periodic sintered copper spheres. Three particle diameter cases of 28 mm, 14 mm and 7 mm with the array of 4 × 4, 8 × 8 and 16 × 16 at the same porosity of 0.3 have been calculated using large-eddy simulations and the Smagorinsky–Lilly sub-grid scale model. With the particle diameter decreasing, the mixture scale of hot and cold fluid tends to decrease in the mixing tee; the pressure drop of fluid flow through porous media increases. When the particle diameter ratios are 4:2:1 and the specific surface ratios are 1:2:4, the pressure drop ratios are 1:2:4; the thermal mixing in porous media is weakened because the temperature fluctuation decreases and the stratification of hot and cold fluids is observed.

  13. Correlation between the median particle size of chewed frankfurter sausage and almonds during masticatory performance test.

    Science.gov (United States)

    Sumonsiri, P; Thongudomporn, U; Paphangkorakit, J

    2018-04-27

    The correlation between chewing and gastric function is best reflected when the same food type is used during both tests. We proposed frankfurter sausage as test food for masticatory performance as it can also be used in gastric emptying test. The suitability of frankfurter sausage to determine masticatory performance, however, has never been examined. To examine the correlations between the median particle size of frankfurter sausage and almonds (as standard test food) after different numbers of chewing cycles. Twenty-seven subjects performed masticatory performance tests by chewing 2 types of test foods, that is, a piece of almond or 5-g frankfurter sausage cubes placed in a sealed latex bag, for 5 and 15 chewing cycles. For each individual, right and left sides were tested separately. Chewed samples obtained from both sides were pooled. Median particle sizes were determined using a multiple sieving method. Spearman's rank correlation was used to examine any correlation between median particle sizes of the 2 test foods after 5 and 15 cycles. Median particle sizes after 5 and 15 cycles were 2.04 ± 0.87 and 0.95 ± 0.58 mm for almonds and 4.16 ± 0.19 and 3.73 ± 0.25 mm for frankfurter sausage, respectively. Significant correlations were observed between the median particle size of chewed frankfurter sausage after 15 cycles and that of chewed almonds after 5 and 15 cycles (r = .76, P < .01 and r = .52, P = .01, respectively). Frankfurter sausage chewed for 15 cycles may be suitable for the determination of masticatory performance in conjunction with gastric emptying test. © 2018 John Wiley & Sons Ltd.

  14. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shunchun, E-mail: epscyao@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, Hefei 230037 (China); Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lu, Jidong, E-mail: jdlu@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2015-08-01

    The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment. - Highlights: • Tapered tube was designed for beam-focusing the coal particle flow as well as enriching the particles in laser focus spot. • The characteristics of laser-induced plasma of coal particle flow were investigated carefully. • An appropriate diameter of coal particle flow was proven to benefit for improving the performance of LIBS measurement.

  15. Mechanical behaviors of the dispersion nuclear fuel plates induced by fuel particle swelling and thermal effect II: Effects of variations of the fuel particle diameters

    International Nuclear Information System (INIS)

    Ding Shurong; Wang Qiming; Huo Yongzhong

    2010-01-01

    In order to predict the irradiation mechanical behaviors of plate-type dispersion nuclear fuel elements, the total burnup is divided into two stages: the initial stage and the increasing stage. At the initial stage, the thermal effects induced by the high temperature differences between the operation temperatures and the room temperature are mainly considered; and at the increasing stage, the intense mechanical interactions between the fuel particles and the matrix due to the irradiation swelling of fuel particles are focused on. The large-deformation thermo-elasto-plasticity finite element analysis is performed to evaluate the effects of particle diameters on the in-pile mechanical behaviors of fuel elements. The research results indicate that: (1) the maximum Mises stresses and equivalent plastic strains at the matrix increase with the fuel particle diameters; the effects of particle diameters on the maximum first principal stresses vary with burnup, and the considered case with the largest particle diameter holds the maximum values all along; (2) at the cladding near the interface between the fuel meat and the cladding, the Mises stresses and the first principal stresses undergo major changes with increasing burnup, and different variations exist for different particle diameter cases; (3) the maximum Mises stresses at the fuel particles rise with the particle diameters.

  16. Centrifugal Pump Effect on Average Particle Diameter of Oil-Water Emulsion

    Science.gov (United States)

    Morozova, A.; Eskin, A.

    2017-11-01

    In this paper we review the process of oil-water emulsion particles fragmentation in a turbulent flow created by a centrifugal pump. We examined the influence of time necessary for oil-water emulsion preparation on the particle size of oil products and the dependence of a centrifugal pump emulsifying capacity on the initial emulsion dispersion. The investigated emulsion contained the brand fuel oil M-100 and tap water; it was sprayed with a nozzle in a gas-water flare. After preparation of the emulsion, the centrifugal pump was turned on and the emulsion samples were taken before and after the pump passing in 15, 30 and 45 minutes of spraying. To determine the effect the centrifugal pump has on the dispersion of the oil-water emulsion, the mean particle diameter of the emulsion particles was determined by the optical and microscopic method before and after the pump passing. A dispersion analysis of the particles contained in the emulsion was carried out by a laser diffraction analyzer. By analyzing the pictures of the emulsion samples, it was determined that after the centrifugal pump operation a particle size of oil products decreases. This result is also confirmed by the distribution of the obtained analyzer where the content of fine particles with a diameter less than 10 μm increased from 12% to 23%. In case of increasing emulsion preparation time, a particle size of petroleum products also decreases.

  17. Preparation of denatured sup(99m)Tc labeled HSA aerosols of different median diameters for various imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, B.; Kotrappa, P.; Soni, P.S.; Ganatra, R.D. (Bhabha Atomic Research Centre, Bombay (India))

    1982-02-01

    The preparation of denatured sup(99m)Tc-labelled human serum albumin (HSA) aerosols of different median diameters is described using the BARC (Bhabha Atomic Research Centre) dry aerosol generation and delivery system. The applications of these radioactive aerosols are demonstrated in aerosol scintigraphy of lungs, mucociliary movement studies and lymphoscintigraphy in rabbits. It is concluded that the BARC system gives a simplified, rapid and versatile procedure for generation of denatured volume tagged HSA aerosols for a variety of clinical applications.

  18. Preparation of denatured sup(99m)Tc labeled HSA aerosols of different median diameters for various imaging studies

    International Nuclear Information System (INIS)

    Raghunath, B.; Kotrappa, P.; Soni, P.S.; Ganatra, R.D.

    1982-01-01

    The preparation of denatured sup(99m)Tc-labelled human serum albumin (HSA) aerosols of different median diameters is described using the BARC (Bhabha Atomic Research Centre) dry aerosol generation and delivery system. The applications of these radioactive aerosols are demonstrated in aerosol scintigraphy of lungs, mucociliary movement studies and lymphoscintigraphy in rabbits. It is concluded that the BARC system gives a simplified, rapid and versatile procedure for generation of denatured volume tagged HSA aerosols for a variety of clinical applications. (U.K.)

  19. Application of monodisperse fibers and discs to evaluation of the aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Hoover, M.D.; Lipowicz, P.J.; Hanson, R.W.; Yeh, H.C.; Casalnuovo, S.A.

    1988-01-01

    Monodisperse fibers, μm in width and lengths of 5, 10, 20, and 40 μm, as well as monodisperse discs, 2 4 8, or 12 μm in diameter, were prepared using an integrated circuit microchip fabrication technique. Particles were silicon dioxide with thickness of 1 μm. Examination of the particles using a scanning electron microscope showed that they were uniform in shape, with well-defined edges. The particles were suspended in distilled water and aerosolized with a Lovelace nebullizer. The monodisperse particles were used to evaluate the TSI Aerodynamic Particle Sizer (APS). Carbon fibers that were monodisperse in diameter (count median diameter 3.42 μm, geometric standard deviation 1.06) and polydisperse in length (count median length = 28 μm, geometric standard deviation 2.2) were also used. The APS was found to be insensitive to fiber length and only weakly sensitive to disc diameter. (author)

  20. Small median tumor diameter at cure threshold (lung cancers in male smokers predicts both chest X-ray and CT screening outcomes in a novel simulation framework.

    Science.gov (United States)

    Goldwasser, Deborah L; Kimmel, Marek

    2013-01-01

    The effectiveness of population-wide lung cancer screening strategies depends on the underlying natural course of lung cancer. We evaluate the expected stage distribution in the Mayo CT screening study under an existing simulation model of non-small cell lung cancer (NSCLC) progression calibrated to the Mayo lung project (MLP). Within a likelihood framework, we evaluate whether the probability of 5-year NSCLC survival conditional on tumor diameter at detection depends significantly on screening detection modality, namely chest X-ray and computed tomography. We describe a novel simulation framework in which tumor progression depends on cellular proliferation and mutation within a stem cell compartment of the tumor. We fit this model to randomized trial data from the MLP and produce estimates of the median radiologic size at the cure threshold. We examine the goodness of model fit with respect to radiologic tumor size and 5-year NSCLC survival among incident cancers in both the MLP and Mayo CT studies. An existing model of NSCLC progression under-predicts the number of advanced-stage incident NSCLCs among males in the Mayo CT study (p-value = 0.004). The probability of 5-year NSCLC survival conditional on tumor diameter depends significantly on detection modality (p-value = 0.0312). In our new model, selected solution sets having a median tumor diameter of 16.2-22.1 mm at cure threshold among aggressive NSCLCs predict both MLP and Mayo CT outcomes. We conclude that the median lung tumor diameter at cure threshold among aggressive NSCLCs in male smokers may be small (<20 mm). Copyright © 2012 UICC.

  1. Numerical Simulation of Plume Transport in Channel Bend with Different Sediment Diameters

    Science.gov (United States)

    Kim, H. S.; Chen, H. C.

    2017-12-01

    The flow and transport of suspended sediment particles, in the form of plume, were simulated using an in-house Computational Fluid Dynamics (CFD) solver FANS3D (Finite Analytic Navier-Stokes code for 3D flow). The motivation for this investigation is to provide a means to simulate and visualize dispersal systems in a complex flow environment. The physical domain considered is a 90-degrees channel bend with wingwall abutments, which induces complex, three-dimensional flow characteristics. At the inlet of the channel, a sediment plume with the volumetric concentration of 1,000 parts per million (ppm) was constantly supplied. For simplicity, it was assumed that neither deposition nor erosion takes place inside the channel and settling sediment was made to pass through the bed surface. The effect of the sediment particle size was also analyzed using two different median diameters: 0.10 mm and 0.20 mm. It was shown that flow acceleration and vortices cause strong mixing inside the channel. The three-dimensional time series from the simulation captured increasing suspended sediment concentration downstream of the abutments, along the outer bank. When the median diameter was varied, the sediment concentration at certain locations differed by orders of magnitude, indicating that the settling velocity dominates the transport process for larger diameters.

  2. Inertial migrations of cylindrical particles in rectangular microchannels: Variations of equilibrium positions and equivalent diameters

    Science.gov (United States)

    Su, Jinghong; Chen, Xiaodong; Hu, Guoqing

    2018-03-01

    Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.

  3. Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS)

    DEFF Research Database (Denmark)

    Weigel, Stefan; Peters, Ruud J.; Löschner, Katrin

    2017-01-01

    determined particle size and particle number concentration of two chicken meat homogenates spiked with polyvinylpyrrolidone (PVP)-stabilized AgNPs. For the determination of the median particle diameter, repeatability standard deviations of 2 and 5% were determined, and reproducibility standard deviations...... were 15 and 25%, respectively. The equivalent median diameter itself was approximately 60% larger than the diameter of the particles in the spiking solution. Determination of the particle number concentration was significantly less precise, with repeatability standard deviations of 7 and 18......% and reproducibility standard deviations of 70 and 90%....

  4. Correlation between peak and median blocking temperatures by magnetization measurement on isolated ferromagnetic and antiferromagnetic particle systems

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Mørup, Steen

    1997-01-01

    The influence of the particle size distribution on the ratio of the peak temperature, T-peak, to the blocking temperature, T-Bm, in zero field cooled (ZFD) magnetization curves has studied for both ferromagnetic and antiferromagnetic particle systems. In both systems the ratio beta=T-peak/T-Bm does...... not depend on the median particle volume. However, T-Bm can be considerably different from T-peak in both systems. These results show that the ZFD measurements can be used to determine T-Bm values only if the particle size distribution of the system is known. Otherwise, the estimated T-Bm values will have...... a large uncertainty, especially in systems with a broad particle size distribution....

  5. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, S. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11711 Cairo (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Arts and Sciences, Najran University, Najran (Saudi Arabia); Centre for Advanced Materials and Nano-Engineering, Najran University, Najran 11001 (Saudi Arabia); Abdel-Hady, E.E. [Physics Department, Faculty of Science, Minia University, BO 61519, Minia (Egypt)

    2015-09-15

    The alpha particle track diameter dependence of the free volume holes size (V{sub f}) in DAM–ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ{sub 3} and V{sub f} increases while I{sub 3} slightly increases as T increases for the two detectors. The values of τ{sub 3}, V{sub f} and I{sub 3} are higher in CR-39 than DAM–ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently V{sub f} increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and V{sub f} in the polymer. A relationship between V{sub f} and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  6. Microbes make average 2 nanometer diameter crystalline UO2 particles.

    Science.gov (United States)

    Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.

    2001-12-01

    It is well known that phylogenetically diverse groups of microorganisms are capable of catalyzing the reduction of highly soluble U(VI) to highly insoluble U(IV), which rapidly precipitates as uraninite (UO2). Because biological uraninite is highly insoluble, microbial uranyl reduction is being intensively studied as the basis for a cost-effective in-situ bioremediation strategy. Previous studies have described UO2 biomineralization products as amorphous or poorly crystalline. The objective of this study is to characterize the nanocrystalline uraninite in detail in order to determine the particle size, crystallinity, and size-related structural characteristics, and to examine the implications of these for reoxidation and transport. In this study, we obtained U-contaminated sediment and water from an inactive U mine and incubated them anaerobically with nutrients to stimulate reductive precipitation of UO2 by indigenous anaerobic bacteria, mainly Gram-positive spore-forming Desulfosporosinus and Clostridium spp. as revealed by RNA-based phylogenetic analysis. Desulfosporosinus sp. was isolated from the sediment and UO2 was precipitated by this isolate from a simple solution that contains only U and electron donors. We characterized UO2 formed in both of the experiments by high resolution-TEM (HRTEM) and X-ray absorption fine structure analysis (XAFS). The results from HRTEM showed that both the pure and the mixed cultures of microorganisms precipitated around 1.5 - 3 nm crystalline UO2 particles. Some particles as small as around 1 nm could be imaged. Rare particles around 10 nm in diameter were also present. Particles adhere to cells and form colloidal aggregates with low fractal dimension. In some cases, coarsening by oriented attachment on \\{111\\} is evident. Our preliminary results from XAFS for the incubated U-contaminated sample also indicated an average diameter of UO2 of 2 nm. In nanoparticles, the U-U distance obtained by XAFS was 0.373 nm, 0.012 nm

  7. Particle Size Distribution of E-Cigarette Aerosols and the Relationship to Cambridge Filter Pad Collection Efficiency

    Directory of Open Access Journals (Sweden)

    Alderman Steven L.

    2015-01-01

    Full Text Available The relatively volatile nature of the particulate matter fraction of e-cigarette aerosols presents an experimental challenge with regard to particle size distribution measure-ments. This is particularly true for instruments requiring a high degree of aerosol dilution. This was illustrated in a previous study, where average particle diameters in the 10-50 nm range were determined by a high-dilution, electrical mobility method. Total particulate matter (TPM masses calculated based on those diameters were orders of magnitude smaller than gravimetrically determined TPM. This discrepancy was believed to result from almost complete particle evaporation at the dilution levels of the electrical mobility analysis. The same study described a spectral transmission measurement of e-cigarette particle size in an undiluted state, and reported particles from 210-380 nm count median diameter. Observed particle number concentrations were in the 109 particles/cm3 range. Additional particle size measurements described here also found e-cigarette particle size to be in the 260-320 nm count median diameter range. Cambridge filter pads have been used for decades to determine TPM yields of tobacco burning cigarettes, and collection of e-cigarette TPM by fibrous filters is predicted to be a highly efficient process over a wide range of filtration flow rates. The results presented in this work provide support for this hypothesis.

  8. Variable solar control using thermotropic core/shell particles

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, Olaf; Seeboth, Arno; Ruhmann, Ralf; Potechius, Elvira; Vetter, Renate [Fraunhofer Institute for Applied Polymer Research (IAP), Department of Chromogenic Polymers, Volmerstr. 7B, 12489 Berlin (Germany); Haeusler, Tobias [Brandenburg University of Technology (BTU Cottbus), Chair of Applied Physics/Thermophysics, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2009-09-15

    Subject of our recent investigations is the utilization of a reversible thermotropic material for a self-regulating sun protection glazing that controls the solar energy input in order to avoid overheating. Based on the well-established UV curing technology for laminated glass a superior thermotropic material with tunable switching characteristics and of low material costs was developed. The polymer layer contains core/shell particles homogeneously dispersed in a UV-cured resin. The particle core in turn consists of an n-alkane mixture that is responsible for the temperature-induced clear/opaque switching. To obtain particles of well-defined size and with a narrow size distribution, the miniemulsion polymerization technique was used. The visible and solar optical properties (normal-normal, normal-hemispherical, and normal-diffuse transmittance) in the off (clear) and in the on state (opaque) were determined by UV/Vis/NIR spectroscopy. Samples containing particles of high median diameter (>800 nm) primarily scatter in the forward direction. However, with smaller particles (300-600 nm) a higher backscattering (reflection) efficiency was achieved. The largest difference in the normal-hemispherical transmittance could be found with a particle amount of 6% and a median scattering domain diameter of {proportional_to}380 nm. (author)

  9. Constraining Diameters of Ash Particles in Io's Pele Plume by DSMC Simulation

    Science.gov (United States)

    McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2013-10-01

    The black “butterfly wings” seen at Pele are produced by silicate ash which is to some extent entrained in the gas flow from very low altitudes. These particles are key to understanding the volcanism at Pele. However, the Pele plume is not nearly as dusty as Prometheus, and these are not the only particles in the plume, as the SO2 in the plume will also condense as it cools. It is therefore difficult to estimate a size distribution for the ash particles by observation, and the drag on ash particles from the plume flow is significant enough that ballistic models are also of limited use. Using Direct Simulation Monte Carlo, we can simulate a gas plume at Pele which demonstrates very good agreement with observations. By extending this model down to nearly the surface of the lava lake, ash particles can be included in the simulation by assuming that they are initially entrained in the very dense (for Io) gas immediately above the magma. Particles are seen to fall to the ground to the east and west of the vent, agreeing with the orientation of the “butterfly wings”, and particles with larger diameters fall to the ground closer to the lava lake. We present a model for mapping simulated deposition density to the coloration of the surface and we use it to estimate the size distribution of ash particles in the plume.

  10. Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS).

    Science.gov (United States)

    Weigel, Stefan; Peters, Ruud; Loeschner, Katrin; Grombe, Ringo; Linsinger, Thomas P J

    2017-08-01

    Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) promises fast and selective determination of nanoparticle size and number concentrations. While several studies on practical applications have been published, data on formal, especially interlaboratory validation of sp-ICP-MS, is sparse. An international interlaboratory study was organized to determine repeatability and reproducibility of the determination of the median particle size and particle number concentration of Ag nanoparticles (AgNPs) in chicken meat. Ten laboratories from the European Union, the USA, and Canada determined particle size and particle number concentration of two chicken meat homogenates spiked with polyvinylpyrrolidone (PVP)-stabilized AgNPs. For the determination of the median particle diameter, repeatability standard deviations of 2 and 5% were determined, and reproducibility standard deviations were 15 and 25%, respectively. The equivalent median diameter itself was approximately 60% larger than the diameter of the particles in the spiking solution. Determination of the particle number concentration was significantly less precise, with repeatability standard deviations of 7 and 18% and reproducibility standard deviations of 70 and 90%.

  11. A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology

    Science.gov (United States)

    Yamada, Hironori; Ujiie, Hiroto; Urata, Chihiro; Yamamoto, Eisuke; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2015-11-01

    Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology.Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size

  12. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    Science.gov (United States)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between the different techniques may result from

  13. Isotachophoresis system having larger-diameter channels flowing into channels with reduced diameter and with selectable counter-flow

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, Jr., Raymond P.

    2018-03-06

    An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.

  14. Multi-scale analysis of the effect of nano-filler particle diameter on the physical properties of CAD/CAM composite resin blocks.

    Science.gov (United States)

    Yamaguchi, Satoshi; Inoue, Sayuri; Sakai, Takahiko; Abe, Tomohiro; Kitagawa, Haruaki; Imazato, Satoshi

    2017-05-01

    The objective of this study was to assess the effect of silica nano-filler particle diameters in a computer-aided design/manufacturing (CAD/CAM) composite resin (CR) block on physical properties at the multi-scale in silico. CAD/CAM CR blocks were modeled, consisting of silica nano-filler particles (20, 40, 60, 80, and 100 nm) and matrix (Bis-GMA/TEGDMA), with filler volume contents of 55.161%. Calculation of Young's moduli and Poisson's ratios for the block at macro-scale were analyzed by homogenization. Macro-scale CAD/CAM CR blocks (3 × 3 × 3 mm) were modeled and compressive strengths were defined when the fracture loads exceeded 6075 N. MPS values of the nano-scale models were compared by localization analysis. As the filler size decreased, Young's moduli and compressive strength increased, while Poisson's ratios and MPS decreased. All parameters were significantly correlated with the diameters of the filler particles (Pearson's correlation test, r = -0.949, 0.943, -0.951, 0.976, p CAD/CAM CR blocks can be enhanced by loading silica nanofiller particles of smaller diameter. CAD/CAM CR blocks by using smaller silica nano-filler particles have a potential to increase fracture resistance.

  15. Evaluation of the dependence of heat transfer coefficient on the particle diameter of a metal porous medium in a heat removal system using liquid nitrogen

    International Nuclear Information System (INIS)

    Sasaki, Shunsuke; Ito, Satoshi; Hashizume, Hidetoshi

    2015-01-01

    Cryogenic cooling system using a bronze-particle-sintered porous medium has been studied for a re mountable high-temperature superconducting magnet. This study evaluates boiling curve of subcooled liquid nitrogen as flowing in a bronze porous medium as a function of the particle diameter of the medium. We obtained Departure from Nuclear Boiling (Dnb) point from the boiling curve and discussed growth of nitrogen vapor bubble inferred from measured pressure drop. The pressure drop decreased significantly at wall superheat before reaching the DNB point whereas that slightly decreased after reaching the DNB point compared to the smallest wall superheat. This result could consider DNB rises with an increase in the particle diameter because larger particle makes vapor to move easily from the heated pore region. The influence of the particle diameter on the heat transfer performance is larger than that of coolant's degree of subcooling. (author)

  16. Dependence of CuO particle size and diameter of reaction tubing on tritium recovery for tritium safety operation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Cui, E-mail: cdxohc10000@163.com [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Uemura, Yuki; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Azuma, Keisuke [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Taguchi, Akira; Hara, Masanori; Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Chikada, Takumi; Oya, Yasuhisa [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan)

    2016-12-15

    Highlights: • Influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. • Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. • Dependence of reaction tubing length on tritium conversion ratio has been explored. - Abstract: Usage of CuO and water bubbler is one of the conventional and convenient methods for tritium recovery. In present work, influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. Then, these results were applied for exploring the dependence of reaction tubing length on tritium conversion ratio. The results showed that the surface area of CuO has a great influence on the oxidation rate constant. The frequency factor of the reaction would be approximately doubled by reducing the CuO particle size from 1.0 mm to 0.2 mm. Cross section of reaction tubing mainly affected on the duration of tritium at the temperature below 600 K. Reaction tubing with length of 1 m at temperature of 600 K would be suitable for keeping the tritium conversion ratio above 99.9%. The length of reaction tubing can be reduced by using the smaller CuO particle or increasing the CuO temperature.

  17. The Distribution of PM10 and PM2.5 Dust Particles Diameter in Airborne at the Cement Factory Neighboring Area, Citeureup - Bogor

    International Nuclear Information System (INIS)

    Gatot Suhariyono; Muji Wiyono

    2003-01-01

    The distribution analysis in PM 10 and PM 2.5 dust particle diameter has been carried out at residence area around the cement factory, Citeureup - Bogor to estimate deposition of dust particles that is accepted by public. The dust particles were sampled at the dwellings by using a cascade impactor on four wind directions and 500, 1000, 1500, 2000, 2500, and 3000 m radius from the Plant one as the center of the cement factory at Citeureup - Bogor. Measurements at the north direction were the Gunung Putri, Kranggan, Bojong Nangka villages, and Gunung Putri dwellings. The south directions were Tarikolot and Pasir Mukti villages. The west directions were guest house, Puspanegara, Puspasari, and Citatah villages. The northwest directions were Puspanegara, Gunung Putri, Puspasari, and Kranggan villages. The analysis result showed that the diameter distribution of PM 10 dust particles at outdoor is ranging from 0.4 to 4.7 μm, and has the weight percentage is high in average approximate 17.91 % of total dust weight on 500, 1000, 1500, 2000, 2500, and 3000 m radius. The distributions of indoor PM 2.5 dust particles diameter show a stable 12.27 % weight percentage of total dust weight from 0.4 to 2.1 μm. (author)

  18. Annual particle flux observations over a heterogeneous urban area

    DEFF Research Database (Denmark)

    Järvi, L.; Rannik, Ü.; Mammarella, I.

    2009-01-01

    Long-term eddy covariance particle number flux measurements for the diameter range 6 nm to 5 μm were performed at the SMEAR III station over an urban area in Helsinki, Finland. The heterogeneity of the urban measurement location allowed us to study the effect of different land-use classes in diff...... stationary combustion sources are also highest. Particle number fluxes were compared with the simultaneously measured CO2 fluxes and similarity in their sources was distinguishable. For CO2, the median emission factor of vehicles was estimated to be 370 g km−1........ The measurement footprint was estimated by the use of both numerical and analytical models. Using the crosswind integrated form of the footprint function, we estimated the emission factor for the mixed vehicle fleet, yielding a median particle number emission factor per vehicle of 3.0×1014 # km−1. Particle fluxes...

  19. Experimental relationship between the specific resistance of a HEPA [High Efficiency Particulate Air] filter and particle diameters of different aerosol materials

    International Nuclear Information System (INIS)

    Novick, V.J.; Monson, P.R.; Ellison, P.E.

    1990-01-01

    The increase in pressure drop across a HEPA filter has been measured as a function of the particle mass loading using two materials with different particle morphologies. The HEPA filter media chosen, is identical to the filter media used in the Airborne Activity Confinement System (AACS) on the Savannah River Reactors. The velocity through the test filter media was the same as the velocity through the AACS media, under normal operating flow conditions. Sodium Chloride challenge particles were generated using an atomizer, resulting in regularly shaped crystalline forms. Ammonium chloride aerosols were formed from the gas phase reaction of HCl and NH 4 OH vapors resulting in irregular agglomerates. In both cases, the generation conditions were adjusted to provide several different particle size distributions. For each particle size distribution, the mass of material loaded per unit area of filter per unit pressure drop for a given filtration velocity (1/Specific resistance) was measured. Theoretical considerations in the most widely accepted filter cake model predict that the mass per unit area and per unit pressure drop should increase with the particle density times the particle diameter squared. However, these test results indicate that the increase in the mass loaded per unit area per unit pressure drop, for both materials, can be better described by plotting the specific resistance divided by the particle density as an inverse function of the particle density times the particle diameter squared. 9 refs., 7 figs

  20. Polarization difference due to nonrandomly oriented ice particles at millimeter/submillimeter waveband

    International Nuclear Information System (INIS)

    Xie Xinxin; Miao Jungang

    2011-01-01

    This paper presents polarized signature due to oriented circular columnar and planar ice crystals at millimeter/submillimeter (mm/sub-mm) waveband. DDSCAT 6.1 and RT4 code package are employed for scattering properties and radiative transfer simulations, respectively, at the three estimated window frequencies (150, 220 and 340 GHz) of FengYun-4 (FY-4). We use empirical formulas to describe realistic sizes of planar and columnar particles and assume that ice particles are in Gamma-size distribution in this study. A 'resonance' feature of polarized signals as a function of median mass diameter is notably found for horizontally oriented columns and blunt plates at the frequency of 340 GHz; however, there is no promising resonance characteristic for horizontally aligned plates with empirical sizes at the three window channels of FY-4. The position of the resonance peak is related to particle aspect ratio, frequency and ice water path (IWP), and it moves to a shorter median mass diameter when the particle aspect ratio decreases or IWP in clouds increases. Considering that particle canting angle distribution (Gaussian distribution in this study), polarization difference, as well as the brightness temperature difference between clear and cloudy sky, decreases rapidly when particles gradually change from horizontally oriented to randomly oriented. The upwelling brightness temperature is insensitive to particle size and shape but sensitive to particle orientation, the difference of brightness temperature between horizontal and random orientation up to 6 K, whereas polarized signature is quite sensitive to particle microphysics as well as orientation; polarized measurements thereby could benefit retrieval of cloud microphysical parameters.

  1. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    Science.gov (United States)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  2. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio

    International Nuclear Information System (INIS)

    Yang, Jian; Wu, Jiangquan; Zhou, Lang; Wang, Qiuwang

    2016-01-01

    Highlights: • Flow and heat transfer in composite packed beds with low d_t/d_p_e are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it is also

  3. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jian, E-mail: yangjian81@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiangquan [CSR Research of Electrical Technology and Material Engineering, Zhuzhou, Hunan 412001 (China); Zhou, Lang; Wang, Qiuwang [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-04-15

    Highlights: • Flow and heat transfer in composite packed beds with low d{sub t}/d{sub pe} are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it

  4. Vertical pneumatic conveying in dilute and dense-phase flows: experimental study of the influence of particle density and diameter on fluid dynamic behavior

    Directory of Open Access Journals (Sweden)

    Narimatsu C.P.

    2001-01-01

    Full Text Available In this work, the effects of particle size and density on the fluid dynamic behavior of vertical gas-solid transport of Group D particles in a 53.4 mm diameter transport tube were studied. For the conditions tested, the experimental curves of pressure gradient versus air velocity presented a minimum pressure gradient point, which is associated with a change in the flow regime from dense to dilute phase. The increases in particle size from 1.00 to 3.68 mm and in density from 935 to 2500 kg/m³ caused an increase in pressure gradient for the dense-phase transport region, but were not relevant in dilute transport. The transition velocity between dense and dilute flow (Umin also increased with increasing particle density and diameter. An empirical equation was fitted for predicting transition air velocity for the transport of glass spheres. Additional experiments, covering a wider range of conditions and particles properties, are still needed to allow the fitting of a generalized equation for prediction of Umin.

  5. [Are inhaled dust particles harmful for our lungs?].

    Science.gov (United States)

    Brändli, O

    1996-12-14

    Particles with diameters ranging from less than 0.02 to more than 100 microns and in concentration up to 120 micrograms/m3 daily average TSP (total suspended particles) are measurable in the air of Swiss cities and responsible for the decrease of visibility on the Swiss Plateau and south of the Alps. The particle size shows a typical distribution: the coarse particles (> 2.5 microns mass median diameter) are mostly of natural origin (plants, pollen, earth particles) and are deposited in the upper airways. The fine particles (PM2.5 annual concentrations of 14-53 micrograms/m3 TSP or 10-33 micrograms/m3 PM10, well below the national standard (annual mean TSP 70 micrograms/m3) have been measured in rural and urban areas. Even at these concentrations an increase in respiratory symptoms and a decrease in lung function, without evidence for a "safe" threshold, have been observed in the Swiss study of air pollution and lung diseases in adults (SAPALDIA). Although the noxious effects of the particles cannot be clearly separated from the effect of other pollutants (e.g. NOx, SO2, ozone) in complex pollutant mixtures, the emission standards and national standards for ambient air should be revised, in particular by adding a standard for fine particles (e.g. PM10 or PM2.5).

  6. Physical and chemical characterization of airborne particles from welding operations in automotive plants.

    Science.gov (United States)

    Dasch, Jean; D'Arcy, James

    2008-07-01

    Airborne particles were characterized from six welding operations in three automotive plants, including resistance spot welding, metal inert gas (MIG) welding and tungsten inert gas (TIG) welding of aluminum and resistance spot welding, MIG welding and weld-through sealer of galvanized steel. Particle levels were measured throughout the process area to select a sampling location, followed by intensive particle sampling over one working shift. Temporal trends were measured, and particles were collected on filters to characterize their size and chemistry. In all cases, the particles fell into a bimodal size distribution with very large particles >20 mum in diameter, possibly emitted as spatter or metal expulsions, and very small particles about 1 mum in diameter, possibly formed from condensation of vaporized metal. The mass median aerodynamic diameter was about 1 mum, with only about 7% of the particle mass present as ultrafine particles welding particles could be accounted for by chemical analysis, with the remainder possibly present as oxygen. Predominant species were organic carbon, elemental carbon, iron, and aluminum. More than 80% of the particle mass could be accounted for from steel welding, primarily present as iron, organic carbon, zinc, and copper. Particle concentrations and elemental concentrations were compared with allowable concentrations as recommended by the Occupational Safety and Health Administration and the American Conference of Governmental Industrial Hygienists. In all cases, workplace levels were at least 11 times lower than recommended levels.

  7. Deposition and retention of 67Ga-labelled diesel particles in Fischer-344 rats

    International Nuclear Information System (INIS)

    Wolff, R.K.; Sun, J.D.; Lopez, J.A.; Wolf, I.; Cheng, Y.S.; McClellan, R.O.

    1981-01-01

    Fischer-344 rats were exposed nose-only to 67 Ga radiolabeled diesel exhaust particles produced from a 1 cylinder engine and diluted 10:1 with filtered air. Volume median diameters of the particles were 0.14 to 0.16 μm measured using an electrical aerosol analyzer, a diffusion battery and a cascade impactor. Initial lung deposition was 7 +- 2% and 12 +- 2% in two separate experiments. Gallium-67 left the lung rapidly with a clearance half-time of about 10 days, indicating that the 67 Ga label dissociated from diesel particles

  8. Particle size distribution of dust collected from Alcator C-MOD

    International Nuclear Information System (INIS)

    Gorman, S.V.; Carmack, W.J.; Hembree, P.B.

    1998-01-01

    There are important safety issues associated with tokamak dust, accumulated primarily from sputtering and disruptions. The dust may contain tritium, it may be activated, chemically toxic, and chemically reactive. The purpose of this paper is to present results from analyses of particulate collected from the Alcator C-MOD tokamak located at Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. The sample obtained from C-MOD was not originally intended for examination outside of MIT. The sample was collected with the intent of performing only a composition analysis. However, MIT provided the INEEL with this sample for particle analysis. The sample was collected by vacuuming a section of the machine (covering approximately 1/3 of the machine surface) with a coarse fiber filter as the collection surface. The sample was then analyzed using an optical microscope, SEM microscope, Microtrac FRA particle size analyzer. The data fit a log-normal distribution. The count median diameter (CMD) of the samples ranged from 0.3 microm to 1.1 microm with geometric standard deviations (GSD) ranging from 2.8 to 5.2 and a mass median diameter (MMD) ranging from 7.22 to 176 microm

  9. Particle size distributions of radioactive aerosols measured in workplaces

    International Nuclear Information System (INIS)

    Dorrian, M.-D.; Bailey, M.R.

    1995-01-01

    A survey of published values of Activity Median Aerodynamic Diameter (AMAD) measured in working environments was conducted to assist in the selection of a realistic default AMAD for occupational exposures. Results were compiled from 52 publications covering a wide variety of industries and workplaces. Reported values of AMAD from all studies ranged from 0.12 μm to 25 μm, and most were well fitted by a log-normal distribution with a median value of 4.4 μm. This supports the choice of a 5 μm default AMAD, as a realistic rounded value for occupational exposures, by the ICRP Task Group on Human Respiratory Tract Models for Radiological Protection and its acceptance by ICRP. Both the nuclear power and nuclear fuel handling industries gave median values of approximately 4 μm. Uranium mills gave a median value of 6.8 μm with AMADs frequently greater than 10 μm. High temperature and arc saw cutting operations generated submicron particles and occasionally, biomodal log-normal particle size distributions. It is concluded that in view of the wide range of AMADs found in the surveyed literature, greater emphasis should be placed on air sampling to characterise aerosol particle size distributions for individual work practices, especially as doses estimated with the new 5 μm default AMAD will not always be conservative. (author)

  10. Multi-objective optimization of cooling air distributions of grate cooler with different clinker particles diameters and air chambers by genetic algorithm

    International Nuclear Information System (INIS)

    Shao, Wei; Cui, Zheng; Cheng, Lin

    2017-01-01

    Highlights: • A multi-objective optimization model of air distributions of grate cooler by genetic algorithm is proposed. • Optimal air distributions of different conditions are obtained and validated by measurements. • The most economic average diameters of clinker particles is 0.02 m. • The most economic amount of air chambers is 9. - Abstract: The paper proposes a multi-objective optimization model of cooling air distributions of grate cooler in cement plant based on convective heat transfer principle and entropy generation minimization analysis. The heat transfer and flow models of clinker cooling process are brought out at first. Then the modified entropy generation numbers caused by heat transfer and viscous dissipation are considered as objective functions respectively which are optimized by genetic algorithm simultaneously. The design variables are superficial velocities of air chambers and thicknesses of clinker layer on different grate plates. The model is verified by a set of Pareto optimal solutions and scattered distributions of design variables. Sensitive analysis of average diameters of clinker particles and amount of air chambers are carried out based on the optimization model. The optimal cooling air distributions are compared by heat recovered, energy consumption of cooling fans and heat efficiency of grate cooler. And all of them are selected from the Pareto optimal solutions based on energy consumption of cooling fans minimization. The results show that the most effective and economic average diameter of clinker particles is 0.02 m and the amount of air chambers is 9.

  11. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  12. Study on Characteristic of Self-preservation Effect of CO2 Hydrate according to Temperature, Particle Diameter and Shape

    International Nuclear Information System (INIS)

    Kim, Yeon-Soo; Kang, Seong-Pil; Park, So-Jin

    2013-01-01

    Gas hydrate studies are attracting attention of many researchers as an innovative, economic and environmentally friendly technology when it is applied to CO 2 capture, transport, and storage. In this study, we investigated whether CO 2 hydrate shows the self-preservation effect or not, that is the key property for developing a novel CO 2 transport/storage method. Especially the degree of self-preservation effect for CO 2 hydrate was studied according to the particle size of CO 2 hydrate samples. We prepared three kinds of CO 2 hydrate samples varying their particle diameter as millimeter, micron and nano size and measured their change of weight at -15 - -30 .deg. C under atmospheric pressure during 3 weeks. According to our experimental result, the lower temperature, larger particle size, and compact structure for higher density are the better conditions for obtaining self-preservation effect

  13. Dose and diameter relationships for facial, trigeminal, and acoustic neuropathies following acoustic neuroma radiosurgery

    International Nuclear Information System (INIS)

    Flickinger, John C.; Kondziolka, Douglas; Lunsford, L. Dade

    1996-01-01

    Purpose and objective: To define the relationships between dose and tumor diameter for the risks of developing trigeminal, facial, and acoustic neuropathies after acoustic neuroma radiosurgery, a large single-institution experience was analyzed. Materials and methods: Two hundred and thirty-eight patients with unilateral acoustic neuromas who underwent Gamma knife radiosurgery between 1987-1994 with 6-91 months of follow-up (median 30 months) were studied. Minimum tumor doses were 12-20 Gy (median 15 Gy). Transverse tumor diameter varied from 0.3-5.5 cm (median 2.1 cm). The relationships of dose and diameter to the development of cranial neuropathies were delineated by multivariate logistic regression. Results: The development of post-radiosurgery neuropathies affecting cranial nerves V, VII, and VIII were correlated with minimum tumor dose and transverse tumor diameter (P min for VIII where P=0.10). A comparison of the dose-diameter response curves showed the acoustic nerve to be the most sensitive to doses of 12-16 Gy and the facial nerve to be the least sensitive. Conclusion: The risks of developing trigeminal, facial, and acoustic neuropathies following acoustic neuroma radiosurgery can be predicted from the transverse tumor diameter and the minimum tumor dose using models constructed from data presently available

  14. Correcting for particle size effects on plasma actuator particle image velocimetry measurements

    Science.gov (United States)

    Masati, A.; Sedwick, R. J.

    2018-01-01

    Particle image velocimetry (PIV) is often used to characterize plasma actuator flow, but particle charging effects are rarely taken into account. A parametric study was conducted to determine the effects of particle size on the velocity results of plasma actuator PIV experiments. Results showed that smaller particles more closely match air flow velocities than larger particles. The measurement uncertainty was quantified by deconvolving the particle image diameter from the correlation diameter. The true air velocity was calculated by linearly extrapolating to the zero-size particle diameter.

  15. Use of small diameter column particles to enhance HPLC determination of histamine and other biogenic amines in seafood

    DEFF Research Database (Denmark)

    Simat, Vida; Dalgaard, Paw

    2011-01-01

    Pre-column and post-column HPLC derivatization methods were modified and evaluated for the identification and quantification of nine biogenic amines in seafood Two HPLC methods with column particles of 1 8 mu m or 3 mu m in diameter were modified and compared to classical methods using 5 mu m...... column particles Both pre-column derivatization with dansyl chloride and post-column derivatization with O-phthalaldehyde were studied The HPLC methods were compared with respect to the time of elution eluent consumption backpressure as well as separation sensitivity recovery and repeatability...... for determination of biogenic amines in lean canned tuna and fatty frozen herring The modified methods using smaller column particles of 1 8 mu m or 3 mu m allowed biogenic amines to be separated and quantified faster (23-59%) and with less eluent consumption (59-62%) than classical HPLC methods Backpressures were...

  16. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets

    DEFF Research Database (Denmark)

    Kollander, Barbro; Widemo, Fredrik; Ågren, Erik

    2017-01-01

    This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm....... The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from...... the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact...

  17. Detection and characterisation of aluminium-containing nanoparticles in Chinese noodles by single particle ICP-MS.

    Science.gov (United States)

    Loeschner, Katrin; Correia, Manuel; López Chaves, Carlos; Rokkjær, Inge; Sloth, Jens J

    2018-01-01

    This study investigated Chinese noodles for the presence of aluminium-containing nanoparticles by using inductively coupled plasma mass spectrometry in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The aluminium concentrations in the noodle samples, determined by conventional ICP-MS without or with the use of hydrofluoric acid for digestion, were 5.4 ± 1.9 µg/g and 10.1 ± 2.2 µg/g (N = 21), respectively. Aluminium-containing nanoparticles were detected by spICP-MS in all 21 samples. Depending on the assumed particle composition, Al 2 O 3 or Al 2 O 3 ∙2SiO 2 ∙2H 2 O, the median particle diameters were either below or above 100 nm, respectively. The minimum detectable particle diameter by spICP-MS was between 54 and 83 nm. The mass recovery of aluminium in the form of particles was between 5% and 18%. The presented work reports for the first time the detection of Al-containing particles in food by spICP-MS.

  18. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    Science.gov (United States)

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  19. Primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range

    Science.gov (United States)

    Sakaguchi, T.; Ehara, K.

    2011-02-01

    The national primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range has been developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. The standard consists of a total number counting type flow cytometer (T-FCM) and an electronic balance. The T-FCM is a commercial flow cytometer modified so that the total number of particles in an aqueous suspension sampled in a test tube can be counted, and the electronic balance is used to determine the mass of the suspension. This standard is intended to be used for calibrating commercial standard suspensions of monodisperse polystyrene latex (PSL) particles. The measurand in the calibration is the mass-based number concentration (the particle number in a unit mass of a suspension), and the calibration capability covers the concentration range from 5 × 102 to 2 × 106 particles g-1. When the concentration of the suspension is higher than 2 × 103 particles g-1, the suspension is first diluted to about 1 × 103 particles g-1 to suppress the coincidence loss in particle counting by the T-FCM. The validity of the calibration with the T-FCM was examined by comparison with an independent method in which a scanning electron microscope (SEM) was used to determine the number concentration of particles deposited on a silicon wafer. For a suspension of 10 µm PSL particles with a concentration of approximately 1 × 106 particles g-1, the concentration values determined by the T-FCM and SEM methods were 1.042 × 106 and 1.035 × 106 particles g-1, respectively: The difference was less than 0.7%. The relative expanded uncertainty of the measurement by the T-FCM method with the coverage factor k = 2 was 4.4%.

  20. Diameter modulation of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo

    2012-08-28

    We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.

  1. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets.

    Science.gov (United States)

    Kollander, Barbro; Widemo, Fredrik; Ågren, Erik; Larsen, Erik H; Loeschner, Katrin

    2017-03-01

    This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact to humans. Graphical Abstract Detection of lead nanoparticles in game meat by single particle ICP-MS following use of leadcontaining bullets.

  2. On the performance of small diameter gas cyclones

    International Nuclear Information System (INIS)

    Halasz, Marcos Roberto Teixeira

    2002-02-01

    Small diameter cyclones represent a potential alternative for the removal of small diameter particles from gaseous mixtures as well as the environmental control of their emission. In order to establish feasible configurations of a small diameter cyclone applied in the separation of solid particles dispersed in a gas and considering a large quantify of experimental data in literature, neural networks were used to estimate the equipment grade efficiency and pressure drop. In order to evaluate a performance of many small diameters configurations and analysis was carried of parametrical sensibility which determines the most important variables on separation efficiency determination. A set of experimental runs was carried out in a lab-scale mini-cyclone in order to obtain the separation efficiency and pressure drop for different configurations, and evaluate the feasibility of coupling a post-cyclone device to improve the equipment overall performance. The cyclones used presented diameters of 0.03 and 0.05 m and the remaining dimensions varied proportionally about those found in Stairmand high-efficiency cyclones. Experimental separation efficiencies up to 99% were obtained in this work. These results confirm the feasibility of the experimental set-up configuration proposed. (author)

  3. Primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range

    International Nuclear Information System (INIS)

    Sakaguchi, T; Ehara, K

    2011-01-01

    The national primary standard for the number concentration of liquid-borne particles in the 10 to 20 µm diameter range has been developed at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. The standard consists of a total number counting type flow cytometer (T-FCM) and an electronic balance. The T-FCM is a commercial flow cytometer modified so that the total number of particles in an aqueous suspension sampled in a test tube can be counted, and the electronic balance is used to determine the mass of the suspension. This standard is intended to be used for calibrating commercial standard suspensions of monodisperse polystyrene latex (PSL) particles. The measurand in the calibration is the mass-based number concentration (the particle number in a unit mass of a suspension), and the calibration capability covers the concentration range from 5 × 10 2 to 2 × 10 6 particles g −1 . When the concentration of the suspension is higher than 2 × 10 3 particles g −1 , the suspension is first diluted to about 1 × 10 3 particles g −1 to suppress the coincidence loss in particle counting by the T-FCM. The validity of the calibration with the T-FCM was examined by comparison with an independent method in which a scanning electron microscope (SEM) was used to determine the number concentration of particles deposited on a silicon wafer. For a suspension of 10 µm PSL particles with a concentration of approximately 1 × 10 6 particles g −1 , the concentration values determined by the T-FCM and SEM methods were 1.042 × 10 6 and 1.035 × 10 6 particles g −1 , respectively: The difference was less than 0.7%. The relative expanded uncertainty of the measurement by the T-FCM method with the coverage factor k = 2 was 4.4%

  4. Predictability and stability of refraction with increasing optical zone diameter in hyperopic LASIK

    Directory of Open Access Journals (Sweden)

    Mostafa A El-Helw

    2010-05-01

    Full Text Available Mostafa A El-Helw, Ahmed M EmarahCairo University, Cairo, EgyptObjective: We undertook a prospective nonrandomized study to assess refractive outcome and patient satisfaction with hyperopic laser in situ keratomileusis (LASIK using variable optical zone diameters in correction of hyperopia of more than 4.00 diopters.Methods: Fourteen adults (comprising 28 hyperopic eyes underwent hyperopic LASIK correction for hyperopia of more than 4.00 diopters. The sample was divided into two groups. Group 1 included the right eyes of the 14 patients who underwent hyperopic LASIK using a 6.5 mm optical zone diameter. Group 2 comprised the left eyes of the same patients with the only difference being that the optical zone diameter was 6.0 mm.Results: The mean age of the patients was 36.42 ± 5.10 years. Group 1 eyes had a median (range preoperative uncorrected visual acuity (UCVA of 0.79 (0.52 and best-corrected visual acuity (BCVA of 0.15 (0.08. Group 2 had a median preoperative UCVA of 0.79 (0.60 and BCVA of 0.15 (0.08. The median postoperative UCVA in Group 1 was 0.17 (0.21 and BCVA was 0.15 (0.13. In Group 2, the median postoperative UCVA was 0.30 (0.32 and BCVA was 0.15 (0.26. Group 1 had a median preoperative refraction of +5.37 (1.75 diopters and the median postoperative refraction at one week was −0.23 (1.25 diopters, at three months was +0.75 (0.75 diopters, and at six months was +0.75 (1.00 diopters. Group 2 had a median preoperative refraction of +5.00 (1.75 diopters, and the median postoperative refraction at one week was +0.13 (1.5 diopters, at three months was +1.00 (0.75 diopters and at six months +1.25 (1.25 diopters. The difference was statistically significant between groups 1 and 2. The difference within each group was also significant. Group 1 eyes were stabilizing after the three-month period in contrast with Group 2 in which the refractive changes continued throughout the follow-up period.Conclusion: Larger optical zone diameter in

  5. Optimizing parameter of particle damping based on Leidenfrost effect of particle flows

    Science.gov (United States)

    Lei, Xiaofei; Wu, Chengjun; Chen, Peng

    2018-05-01

    Particle damping (PD) has strongly nonlinearity. With sufficiently vigorous vibration conditions, it always plays excellent damping performance and the particles which are filled into cavity are on Leidenfrost state considered in particle flow theory. For investigating the interesting phenomenon, the damping effect of PD on this state is discussed by the developed numerical model which is established based on principle of gas and solid. Furtherly, the numerical model is reformed and applied to study the relationship of Leidenfrost velocity with characteristic parameters of PD such as particle density, diameter, mass packing ratio and diameter-length ratio. The results indicate that particle density and mass packing ratio can drastically improve the damping performance as opposed as particle diameter and diameter-length ratio, mass packing ratio and diameter-length ratio can low the excited intensity for Leidenfrost state. For discussing the application of the phenomenon in engineering, bound optimization by quadratic approximation (BOBYQA) method is employed to optimize mass packing ratio of PD for minimize maximum amplitude (MMA) and minimize total vibration level (MTVL). It is noted that the particle damping can drastically reduce the vibrating amplitude for MMA as Leidenfrost velocity equal to the vibrating velocity relative to maximum vibration amplitude. For MTVL, larger mass packing ratio is best option because particles at relatively wide frequency range is adjacent to Leidenfrost state.

  6. Lysosome Transport as a Function of Lysosome Diameter

    Science.gov (United States)

    Bandyopadhyay, Debjyoti; Cyphersmith, Austin; Zapata, Jairo A.; Kim, Y. Joseph; Payne, Christine K.

    2014-01-01

    Lysosomes are membrane-bound organelles responsible for the transport and degradation of intracellular and extracellular cargo. The intracellular motion of lysosomes is both diffusive and active, mediated by motor proteins moving lysosomes along microtubules. We sought to determine how lysosome diameter influences lysosome transport. We used osmotic swelling to double the diameter of lysosomes, creating a population of enlarged lysosomes. This allowed us to directly examine the intracellular transport of the same organelle as a function of diameter. Lysosome transport was measured using live cell fluorescence microscopy and single particle tracking. We find, as expected, the diffusive component of intracellular transport is decreased proportional to the increased lysosome diameter. Active transport of the enlarged lysosomes is not affected by the increased lysosome diameter. PMID:24497985

  7. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    Energy Technology Data Exchange (ETDEWEB)

    Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  8. Uncertainty propagation using the Monte Carlo method in the measurement of airborne particle size distribution with a scanning mobility particle sizer

    Science.gov (United States)

    Coquelin, L.; Le Brusquet, L.; Fischer, N.; Gensdarmes, F.; Motzkus, C.; Mace, T.; Fleury, G.

    2018-05-01

    A scanning mobility particle sizer (SMPS) is a high resolution nanoparticle sizing system that is widely used as the standard method to measure airborne particle size distributions (PSD) in the size range 1 nm–1 μm. This paper addresses the problem to assess the uncertainty associated with PSD when a differential mobility analyzer (DMA) operates under scanning mode. The sources of uncertainty are described and then modeled either through experiments or knowledge extracted from the literature. Special care is brought to model the physics and to account for competing theories. Indeed, it appears that the modeling errors resulting from approximations of the physics can largely affect the final estimate of this indirect measurement, especially for quantities that are not measured during day-to-day experiments. The Monte Carlo method is used to compute the uncertainty associated with PSD. The method is tested against real data sets that are monosize polystyrene latex spheres (PSL) with nominal diameters of 100 nm, 200 nm and 450 nm. The median diameters and associated standard uncertainty of the aerosol particles are estimated as 101.22 nm  ±  0.18 nm, 204.39 nm  ±  1.71 nm and 443.87 nm  ±  1.52 nm with the new approach. Other statistical parameters, such as the mean diameter, the mode and the geometric mean and associated standard uncertainty, are also computed. These results are then compared with the results obtained by SMPS embedded software.

  9. Particle size distribution of mainstream tobacco and marijuana smoke. Analysis using the electrical aerosol analyzer.

    Science.gov (United States)

    Anderson, P J; Wilson, J D; Hiller, F C

    1989-07-01

    Accurate measurement of cigarette smoke particle size distribution is important for estimation of lung deposition. Most prior investigators have reported a mass median diameter (MMD) in the size range of 0.3 to 0.5 micron, with a small geometric standard deviation (GSD), indicating few ultrafine (less than 0.1 micron) particles. A few studies, however, have suggested the presence of ultrafine particles by reporting a smaller count median diameter (CMD). Part of this disparity may be due tot he inefficiency to previous sizing methods in measuring ultrafine size range, to evaluate size distribution of smoke from standard research cigarettes, commercial filter cigarettes, and from marijuana cigarettes with different delta 9-tetrahydrocannabinol contents. Four 35-cm3, 2-s puffs were generated at 60-s intervals, rapidly diluted, and passed through a charge neutralizer and into a 240-L chamber. Size distribution for six cigarettes of each type was measured, CMD and GSD were determined from a computer-generated log probability plot, and MMD was calculated. The size distribution parameters obtained were similar for all cigarettes tested, with an average CMD of 0.1 micron, a MMD of 0.38 micron, and a GSD of 2.0. The MMD found using the EAA is similar to that previously reported, but the CMD is distinctly smaller and the GSD larger, indicating the presence of many more ultrafine particles. These results may explain the disparity of CMD values found in existing data. Ultrafine particles are of toxicologic importance because their respiratory tract deposition is significantly higher than for particles 0.3 to 0.5 micron and because their large surface area facilitates adsorption and delivery of potentially toxic gases to the lung.

  10. Functional Median Polish

    KAUST Repository

    Sun, Ying

    2012-08-03

    This article proposes functional median polish, an extension of univariate median polish, for one-way and two-way functional analysis of variance (ANOVA). The functional median polish estimates the functional grand effect and functional main factor effects based on functional medians in an additive functional ANOVA model assuming no interaction among factors. A functional rank test is used to assess whether the functional main factor effects are significant. The robustness of the functional median polish is demonstrated by comparing its performance with the traditional functional ANOVA fitted by means under different outlier models in simulation studies. The functional median polish is illustrated on various applications in climate science, including one-way and two-way ANOVA when functional data are either curves or images. Specifically, Canadian temperature data, U. S. precipitation observations and outputs of global and regional climate models are considered, which can facilitate the research on the close link between local climate and the occurrence or severity of some diseases and other threats to human health. © 2012 International Biometric Society.

  11. Residual stresses and critical diameter in vitreous matrix materials

    International Nuclear Information System (INIS)

    Mastelaro, Valmor R.; Zanotto, Edgar D.

    1995-01-01

    The present study was undertaken to test the validity of existing models for: i) the residual internal stresses which arise due to thermal and elastic mismatch in duplex systems, and ii) the critical particle diameter for spontaneous cracking. Partially crystallized 1,07 Na 2 O-2 Ca O-3 Si O 2 - 6% P 2 O 5 glasses were studied. The experimental residual stress was in excellent agreement with the calculated value, however, the critical particle diameter, estimated by an energy balance approach, was more than ten times smaller than the experimental value. This discrepancy indicates that the energy model is not applicable in this case. (author)

  12. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  13. Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones

    Science.gov (United States)

    Erikli, Ş.; Olcay, A. B.

    2015-08-01

    This study investigates hydrocyclone performance of an oil injected screw compressor. Especially, the oil separation efficiency of a screw compressor plays a significant role for air quality and non-stop working hour of compressors has become an important issue when the efficiency in energy is considered. In this study, two separation efficiency parameters were selected to be hydrocyclone inlet diameter and flow volume height between oil reservoir surface and top of the hydrocyclone. Nine different cases were studied in which cyclone inlet diameter and flow volume height between oil reservoir surface and top were investigated in regards to separation and energy performance aspects and the effect of the parameters on the general performance appears to be causing powerful influence. Flow inside the hydrocyclone geometry was modelled by Reynolds Stress Model (RSM) and hydro particles were tracked by Discrete Phase Model (DPM). Besides, particle break up was modelled by the Taylor Analogy Breakup (TAB) model. The reversed vortex generation was observed at different planes. The upper limit of the inlet diameter of the cyclone yields the centrifugal force on particles to decrease while the flow becomes slower; and the larger diameter implies slower flow. On the contrary, the lower limit is increment in speed causes breakup problems that the particle diameters become smaller; consequently, it is harder to separate them from gas.

  14. Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale

    Science.gov (United States)

    Zhang, Guoqiang; Tateno, Kouta; Sogawa, Tetsuomi; Gotoh, Hideki

    2018-04-01

    We report diameter-tailored luminescence in telecom band of InP/InAs multi-heterostructure nanowires with continuously-modulated diameter from microscale to nanoscale. By using the self-catalyzed vapor-solid-liquid approach, we tune the indium particle size, and consequently the InP/InAs nanowire diameter, during growth by modulating the flow rate of the indium source material. This technique allows a high degree of continuous tuning in a wide scale from microscale to nanoscale. Hence it offers an original way to bridge the gap between microscale-featured photolithographic and nanoscale-featured nanolithographic processes and to incorporate InAs quantum disks with tunable diameters into a single InP/InAs quantum heterostructure nanowire. We realized site-defined nanowires with nanoscale diameters initiated from site-defined microscale-diameter particles made with a conventional photolithographic process. The luminescence wavelength from InAs quantum disks is directly connected to the nanowire diameter, by which the strain in the InAs quantum disks is tailored. This work provides new opportunities in the fabrication and design of nanowire devices that extends beyond what is achievable with the current technologies and enables the nanowire shape to be engineered thus offering the potential to broaden the application range of nanowire devices.

  15. Dryout heat flux and flooding phenomena in debris beds consisting of homogeneous diameter particles

    International Nuclear Information System (INIS)

    Maruyama, Yu; Abe, Yutaka; Yamano, Norihiro; Soda, Kunihisa

    1988-08-01

    Since the TMI-2 accident, which occurred in 1979, necessity of understanding phenomena associated with a severe accident have been recognized and researches have been conducted in many countries. During a severe accident of a light water reactor, a debris bed consisting of the degraded core materials would be formed. Because the debris bed continues to release decay heat, the debris bed would remelt when the coolable geometry is not maintained. Thus the degraded core coolability experiments to investigate the influence of the debris particle diameter and coolant flow conditions on the coolability of the debris bed and the flooding experiments to investigate the dependence of flooding phenomena on the configuration of the debris bed have been conducted in JAERI. From the degraded core coolability experiments, the following conclusions were derived; the coolability of debris beds would be improved by coolant supply into the beds, Lipinski's 1-dimensional model shows good agreement with the measured dryout heat flux for the beds under stagnant and forced flow conditions from the bottom of the beds, and the analytical model used for the case that coolant is fed by natural circulation through the downcomer reproduces the experimental results. And the following conclusions were given from the flooding experiments ; no dependence between bed height and the flooding constant exists for the beds lower than the critical bed height, flooding phenomena of the stratified beds would be dominated by the layer consisting of smaller particles, and the predicted dryout heat flux by the analytical model based on the flooding theory gives underestimation under stagnant condition. (author)

  16. Dry deposition of particles to ocean surfaces

    NARCIS (Netherlands)

    Larsen, S.E.; Edson, J.B.; Hummelshoj, P.; Jensen, N.O.; Leeuw, G. de; Mestayer, P.G.

    1995-01-01

    Dry deposition of atmospheric particles mainly depends on wind speed and particle diameter. The dry deposition velocity, Vd, is found to vary by a factor of 100-1,000 with diameter in a likely diameter range, adding uncertainty to deposition estimates, because the diameter distribution for many

  17. Cluster analysis of rural, urban, and curbside atmospheric particle size data.

    Science.gov (United States)

    Beddows, David C S; Dall'Osto, Manuel; Harrison, Roy M

    2009-07-01

    Particle size is a key determinant of the hazard posed by airborne particles. Continuous multivariate particle size data have been collected using aerosol particle size spectrometers sited at four locations within the UK: Harwell (Oxfordshire); Regents Park (London); British Telecom Tower (London); and Marylebone Road (London). These data have been analyzed using k-means cluster analysis, deduced to be the preferred cluster analysis technique, selected from an option of four partitional cluster packages, namelythe following: Fuzzy; k-means; k-median; and Model-Based clustering. Using cluster validation indices k-means clustering was shown to produce clusters with the smallest size, furthest separation, and importantly the highest degree of similarity between the elements within each partition. Using k-means clustering, the complexity of the data set is reduced allowing characterization of the data according to the temporal and spatial trends of the clusters. At Harwell, the rural background measurement site, the cluster analysis showed that the spectra may be differentiated by their modal-diameters and average temporal trends showing either high counts during the day-time or night-time hours. Likewise for the urban sites, the cluster analysis differentiated the spectra into a small number of size distributions according their modal-diameter, the location of the measurement site, and time of day. The responsible aerosol emission, formation, and dynamic processes can be inferred according to the cluster characteristics and correlation to concurrently measured meteorological, gas phase, and particle phase measurements.

  18. Automatic size analysis of coated fuel particles

    International Nuclear Information System (INIS)

    Wallisch, K.; Koss, P.

    1977-01-01

    The determination of the diameter, coating thickness, and sphericity of coated fuel particles by conventional methods is very time consuming. Therefore, statistical data can only be obtained with limited accuracy. An alternative method is described that avoids these disadvantages by utilizing a fast optical data-collecting system of high accuracy. This system allows the determination of the diameter of particles in the range between 100 and 1500 μm, with an accuracy of better than +-2 μm and with a rate of 100 particles per second. The density and thickness of coating layers can be determined by comparing the data obtained before and after coating, taking into account the relative increase of weight. A special device allows the automatic determination of the sphericity of single particles as well as the distribution in a batch. This device measures 50 to 100 different diameters of each particle per second. An on-line computer stores the measured data and calculates all parameters required, e.g., number of particles measured, particle diameter, standard deviation, diameter limiting values, average particle volume, average particle surface area, and the distribution of sphericity in absolute and percent form

  19. A mechanism for the production of ultrafine particles from concrete fracture.

    Science.gov (United States)

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    J. Rissler

    2006-01-01

    Full Text Available Aerosol particle number size distributions and hygroscopic properties were measured at a pasture site in the southwestern Amazon region (Rondonia. The measurements were performed 11 September-14 November 2002 as part of LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia - SMOke aerosols, Clouds, rainfall and Climate, and cover the later part of the dry season (with heavy biomass burning, a transition period, and the onset of the wet period. Particle number size distributions were measured with a DMPS (Differential Mobility Particle Sizer, 3-850nm and an APS (Aerodynamic Particle Sizer, extending the distributions up to 3.3 µm in diameter. An H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer measured the hygroscopic diameter growth factors (Gf at 90% relative humidity (RH, for particles with dry diameters (dp between 20-440 nm, and at several occasions RH scans (30-90% RH were performed for 165nm particles. These data provide the most extensive characterization of Amazonian biomass burning aerosol, with respect to particle number size distributions and hygroscopic properties, presented until now. The evolution of the convective boundary layer over the course of the day causes a distinct diel variation in the aerosol physical properties, which was used to get information about the properties of the aerosol at higher altitudes. The number size distributions averaged over the three defined time periods showed three modes; a nucleation mode with geometrical median diameters (GMD of ~12 nm, an Aitken mode (GMD=61-92 nm and an accumulation mode (GMD=128-190 nm. The two larger modes were shifted towards larger GMD with increasing influence from biomass burning. The hygroscopic growth at 90% RH revealed a somewhat external mixture with two groups of particles; here denoted nearly hydrophobic (Gf~1.09 for 100 nm particles and moderately hygroscopic (Gf~1.26. While the hygroscopic growth factors were surprisingly similar over the

  1. DETEKSI DIAMETER TUMOR PADA KULIT MENGGUNAKAN SEGMENTASI CITRA BERDASARKAN KARAKTERISTIK ABCDE

    Directory of Open Access Journals (Sweden)

    Wuwanjie Septian

    2016-09-01

    ABSTRAK Kanker kulit merupakan pertumbuhan sel kulit abnormal yang tidak dapat dikendalikan dan pada stadium lanjut dapat mengakibatkan kematian. Menemukan penyakit ini sedini mungkin merupakan salah satu cara untuk menghindari kecacatan maupun kemungkinan terburuk. Karena letaknya dipermukaan kulit, akan mudah bagi siapa saja untuk mengenali sendiri kanker kulit. Deteksi dini kanker kulit dalam bidang dermatologi, dapat dideteksi berdasarkan karakteristik Asymmetrical Shape, Border, Color, Diameter, Evolution (ABCDE. Dalam penelitian ini, deteksi dini difokuskan pada identifikasi diameter pada 30 citra nevus. Metode penelitian berupa pengolahan citra nevus dengan melakukan konversi citra menjadi citra HSI lalu diubah menjadi citra biner, selanjutnya dilakukan tahap segmentasi menggunakan filter median, proses rekonstruksi morfologi dan pada tahap akhir dilakukan deteksi tepi dengan menggunakan operator sobel. Proses deteksi tepi akan mempermudah menghitung nilai luas diameter nevus. Hasil penelitian deteksi dini kanker kulit terhadap 30 citra nevus, diperoleh hasil bahwa metode pengolahan citra yang diusulkan dapat mendeteksi diameter nevus dan berhasil mengidentifikasi citra tersebut sebagai 26 citra memiliki luas diameter nevus yang diidentifikasi sebagai tumor jinak dan 4 citra nevus yang memiliki diameter > 6 mm dan dinyatakan sebagai tumor melanoma. Kata Kunci: Nevus, Melanoma, Segmentasi, Deteksi Diameter

  2. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure

    International Nuclear Information System (INIS)

    Golokhvast, Kirill S.; Chernyshev, Valery V.; Chaika, Vladimir V.; Ugay, Sergey M.; Zelinskaya, Elena V.; Tsatsakis, Aristidis M.; Karakitsios, Spyros P.; Sarigiannis, Denis A.

    2015-01-01

    The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found that vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 μm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1–5 µm – soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10–30 µm – metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400–1,000 µm – metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm 2 /cm 3 ). These tend to deposit in the lower part of the human respiratory tract. - Highlights: • Car mileage has virtually no effect on the size of the solid particles released. • Newer diesel vehicles emit particles of lower aerodynamic diameter. • Particle active surface emitted by newer vehicles is on average 3 times higher. • Real-life emissions were translated into actual internal PM exposure.

  3. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure

    Energy Technology Data Exchange (ETDEWEB)

    Golokhvast, Kirill S.; Chernyshev, Valery V.; Chaika, Vladimir V.; Ugay, Sergey M. [Far Eastern Federal University, Vladivostok (Russian Federation); Zelinskaya, Elena V. [National Research Irkutsk State Technical University, Irkutsk (Russian Federation); Tsatsakis, Aristidis M. [University of Crete, Medical School, Department of Toxicology and Forensic Science, Heraklion, Crete (Greece); Karakitsios, Spyros P. [Aristotle University of Thessaloniki, Department of Chemical Engineering, Thessaloniki (Greece); Sarigiannis, Denis A., E-mail: denis@eng.auth.gr [Aristotle University of Thessaloniki, Department of Chemical Engineering, Thessaloniki (Greece)

    2015-10-15

    The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found that vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 μm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1–5 µm – soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10–30 µm – metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400–1,000 µm – metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm{sup 2}/cm{sup 3}). These tend to deposit in the lower part of the human respiratory tract. - Highlights: • Car mileage has virtually no effect on the size of the solid particles released. • Newer diesel vehicles emit particles of lower aerodynamic diameter. • Particle active surface emitted by newer vehicles is on average 3 times higher. • Real-life emissions were translated into actual internal PM exposure.

  4. Numerical Simulation of Flow and Heat Transfer in Structured Packed Beds with Smooth or Dimpled Spheres at Low Channel to Particle Diameter Ratio

    Directory of Open Access Journals (Sweden)

    Shiyang Li

    2018-04-01

    Full Text Available Packed beds are widely used in catalytic reactors or nuclear reactors. Reducing the pressure drop and improving the heat transfer performance of a packed bed is a common research aim. The dimpled structure has a complex influence on the flow and heat transfer characteristics. In the present study, the flow and heat transfer characteristics in structured packed beds with smooth or dimpled spheres are numerically investigated, where two different low channel to particle diameter ratios (N = 1.00 and N = 1.15 are considered. The pressure drop and the Nusselt number are obtained. The results show that, for N = 1.00, compared with the structured packed bed with smooth spheres, the structured packed bed with dimpled spheres has a lower pressure drop and little higher Nusselt number at 1500 < ReH < 14,000, exhibiting an improved overall heat transfer performance. However, for N = 1.15, the structured packed bed with dimpled spheres shows a much higher pressure drop, which dominantly affects the overall heat transfer performance, causing it to be weaker. Comparing the different channel to particle diameter ratios, we find that different configurations can result in: (i completely different drag reduction effect; and (ii relatively less influence on heat transfer enhancement.

  5. Toxicity of inhaled 239PuO2 in Beagle dogs. A. Monodisperse 0.75 μm AMAD particles. B. Monodisperse 1.5 μm AMAD particles. C. Monodisperse 3.0 μm AMAD particles. V

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; Boecker, B.B.; McClellan, R.O.; Mauderly, J.L.; Pickrell, J.A.

    1982-01-01

    Studies on the metabolism, dosimetry and biological effects of inhaled particles of 239 PuO 2 in Beagle dogs are in progress. To obtain information on the relative importance of homogeneity versus nonhomogeneity of radiation doses to the lung, dogs have been exposed to monodisperse aerosols of 239 PuO 2 of 0.75, 1.5 or 3.0 μm activity median aerodynamic diameter (AMAD). The exposures have resulted in graded initial lung burdens ranging from 0.0002 to 2.6 μCi 239 Pu per kilogram body weight. Other dogs were exposed to the aerosol diluent to serve as controls. Ten dogs have died in the study with 0.75 μm AMAD particles, 40 dogs have died in the study with 1.5 μm AMAD particles and 35 dogs have died in the study with 3.0 μm AMAD particles of 239 PuO 2 . Dogs have died with radiation pneumonitis and pulmonary fibrosis and carcinomas of the lung. The remaining dogs have survived up to 2100 days after inhalation exposure and are being observed for the remainder of their life span

  6. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  7. Dissolution of uranium and plutonium particles: simulations using the Mercer equation

    International Nuclear Information System (INIS)

    Cowan, C.E.; Jenne, E.A.

    1983-10-01

    There is a need to be able to predict the amount of plutonium that will be in solution at a given time from dissolution of particles in order to better predict the environmental behavior and possible adverse effects of plutonium spills. The equation developed by Mercer (1967) to simulate the dissolution of particles in lungs was parameterized and used to simulate the dissolution of a population of plutonium or uranium particles in the soil. Parameter values for the size distribution of particles in soil, and the density of the particles were found; however, values for the shape factors, and the dissolution rate were virtually non-existent. The calculated mass dissolved was most sensitive to the median diameter of the population of particles and least sensitive to the geometric standard deviation. A given percent change in the shape parameter and the dissolution rate resulted in approximately an equal percent change in the mass dissolved. Provided that the population of particles follows a log-normal distribution, the particles are homogeneous in composition and the dissolution can be represented by first-order kinetics, this equation can probably be applied with slight modification to estimate the mass dissolved at a given time. 66 references, 7 figures, 4 tables

  8. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    Science.gov (United States)

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  9. A clustering analysis of lipoprotein diameters in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Frazier-Wood Alexis C

    2011-12-01

    Full Text Available Abstract Background The presence of smaller low-density lipoproteins (LDL has been associated with atherosclerosis risk, and the insulin resistance (IR underlying the metabolic syndrome (MetS. In addition, some research has supported the association of very low-, low- and high-density lipoprotein (VLDL HDL particle diameters with components of the metabolic syndrome (MetS, although this has been the focus of less research. We aimed to explore the relationship of VLDL, LDL and HDL diameters to MetS and its features, and by clustering individuals by their diameters of VLDL, LDL and HDL particles, to capture information across all three fractions of lipoprotein into a unified phenotype. Methods We used nuclear magnetic resonance spectroscopy measurements on fasting plasma samples from a general population sample of 1,036 adults (mean ± SD, 48.8 ± 16.2 y of age. Using latent class analysis, the sample was grouped by the diameter of their fasting lipoproteins, and mixed effects models tested whether the distribution of MetS components varied across the groups. Results Eight discrete groups were identified. Two groups (N = 251 were enriched with individuals meeting criteria for the MetS, and were characterized by the smallest LDL/HDL diameters. One of those two groups, one was additionally distinguished by large VLDL, and had significantly higher blood pressure, fasting glucose, triglycerides, and waist circumference (WC; P Conclusions While small LDL diameters remain associated with IR and the MetS, the occurrence of these in conjunction with a shift to overall larger VLDL diameter may identify those with the highest fasting glucose, TG and WC within the MetS. If replicated, the association of this phenotype with more severe IR-features indicated that it may contribute to identifying of those most at risk for incident type II diabetes and cardiometabolic disease.

  10. Particle size distribution control of Pt particles used for particle gun

    Science.gov (United States)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  11. Collisions of droplets on spherical particles

    Science.gov (United States)

    Charalampous, Georgios; Hardalupas, Yannis

    2017-10-01

    Head-on collisions between droplets and spherical particles are examined for water droplets in the diameter range between 170 μm and 280 μm and spherical particles in the diameter range between 500 μm and 2000 μm. The droplet velocities range between 6 m/s and 11 m/s, while the spherical particles are fixed in space. The Weber and Ohnesorge numbers and ratio of droplet to particle diameter were between 92 deposition and splashing regimes, a regime is observed in the intermediate region, where the droplet forms a stable crown, which does not breakup but propagates along the particle surface and passes around the particle. This regime is prevalent when the droplets collide on small particles. The characteristics of the collision at the onset of rim instability are also described in terms of the location of the film on the particle surface and the orientation and length of the ejected crown. Proper orthogonal decomposition identified that the first 2 modes are enough to capture the overall morphology of the crown at the splashing threshold.

  12. Sosiaalisen median mahdollisuudet Tilastokeskukselle

    OpenAIRE

    Vesterinen, Anu

    2011-01-01

    Tämän opinnäytetyön aiheena oli sosiaalisen median mahdollisuudet Tilastokeskuksen viestinnässä. Työn tavoitteena oli kartoittaa sosiaalisen median käyttöön liittyviä mahdollisuuksia ja haasteita sekä selvittää siihen liittyviä odotuksia Tilastokeskuksen henkilöstön keskuudessa. Työn teoriaosuudessa tarkasteltiin sosiaalista mediaa käsitteenä ja esiteltiin sosiaalisen median käyttöä organisaation ulkoisen viestinnän välineenä. Opinnäytetyössä selvitettiin teoriatietoon pohjautuen sekä ca...

  13. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions

    Science.gov (United States)

    Levia, Delphis F.; Michalzik, Beate; Bischoff, Sebastian; NäThe, Kerstin; Legates, David R.; Gruselle, Marie-Cecile; Richter, Susanne

    2013-04-01

    Particulate matter (PM) plays an important role in biogeosciences, affecting biosphere-atmosphere interactions and ecosystem health. This is the first known study to quantify and model PM diameter distributions of bulk precipitation, throughfall, stemflow, and organic layer (Oa) solution. Solutions were collected from a European beech (Fagus sylvatica L.) forest during leafed and leafless periods. Following scanning electron microscopy and image analysis, PM distributions were quantified and then modeled with the Box-Cox transformation. Based on an analysis of 43,278 individual particulates, median PM diameter of all solutions was around 3.0 µm. All PM diameter frequency distributions were skewed significantly to the right. Optimal power transformations of PM diameter distributions were between -1.00 and -1.56. The utility of this model reconstruction would be that large samples having a similar probability density function can be developed for similar forests. Further work on the shape and chemical composition of particulates is warranted.

  14. Algorithm of Data Reduce in Determination of Aerosol Particle Size Distribution at Damps/C

    International Nuclear Information System (INIS)

    Muhammad-Priyatna; Otto-Pribadi-Ruslanto

    2001-01-01

    The analysis had to do for algorithm of data reduction on Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system, this is for determine aerosol particle size distribution with range 0,01 μm to 1 μm in diameter. Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system contents are software and hardware. The hardware used determine of mobilities of aerosol particle and so the software used determine aerosol particle size distribution in diameter. The mobilities and diameter particle had connection in the electricity field. That is basic program for reduction of data and particle size conversion from particle mobility become particle diameter. The analysis to get transfer function value, Ω, is 0.5. The data reduction program to do conversation mobility basis become diameter basis with number efficiency correction, transfer function value, and poly charge particle. (author)

  15. Sosiaalisen median markkinointistrategia

    OpenAIRE

    Tran, Jenny

    2017-01-01

    Insinöörityön tavoitteena oli suunnitella toimeksiantajayritykselle sopiva sosiaalisen median markkinointistrategia ja avustaa sen toteutuksessa sekä tuottaen sisältöä sovittuihin kanaviin. Pyrkimyksenä oli myös kouluttaa yrityksen henkilökuntaa käyttämään sosiaalista mediaa yleisellä tasolla ja markkinoinnissa tutustuttamalla heidät sosiaalisen median erilaisiin kanaviin ja mainostyökaluihin. Opinnäytetyössä keskityttiin tutkimaan Facebookissa toimivaa markkinointia ja siinä toimivia mai...

  16. Toxicity of inhaled 239PuO2 in Beagle dogs: A. Monodisperse 0.75-μm AMAD particles. B. Monodisperse 1.5-μm AMAD particles. C. Monodisperse 3.0--μm AMAD particles. XI

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; Boecker, B.B.; McClellan, R.O.

    1988-01-01

    Beagle dogs were exposed to monodisperse aerosols of 239 PuO 2 of 0.75, 1.5, or 30 μm activity median aerodynamic diameter (AMAD) to obtain information on the relative importance of homogeneity of alpha irradiation doses to the lung in producing biological effects. The dogs' initial pulmonary burdens (IPB) ranged from 0.0002-2.0 μCi (0.0074 to 74 kBq) 239 Pu/kg of body mass. Thirty-six dogs were exposed to the aerosol diluent as controls. Forty-two of 48 dogs exposed to 0.75 μm AMAD particles have died; 67 of 96 have died in the study involving 1.5 μm AMAD particles; and 62 of 72 have died in the study involving the 3.0 μm AMAD particles. Seven of 36 control dogs have died. Most dogs exposed to 239 Pu that have failed to survive have died with radiation pneumonitis and fibrosis and/or lung cancer. Surviving dogs have lived up to 4300 days after exposure. The data obtained to date indicate that the degree of uniformity of dose to the lung does not significantly modify the risk of lung cancer. (author)

  17. Hydrologic properties of the vadose zone at B292

    International Nuclear Information System (INIS)

    Shinn, J.; Mallon, B.; Martins, S.

    1992-09-01

    A formula for the unsaturated hydraulic conductivity was derived for the vadose zone down to the 45-foot depth by analysis of data from 5 wells near B292. The formula gives the median hydraulic conductivity as a function of depth and soil-water content, and was obtained by parameterization of saturated hydraulic conductivity and the water-retention characteristics to the median particle diameter of soil samples. It was noted that the variation of median particle diameter among soil samples at the same depth, taken from 5 wells in close proximity to B292, would have a great effect on saturated hydraulic conductivity. The coefficient of variation of median particle diameter was estimated to be 1.23 at any depth, based on apparent log-normal frequency distribution. The coefficient of variation of measured and predicted saturated hydraulic conductivity was estimated to be 7.9; large values are found in the literature as well

  18. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ho, Koon-Sing; Lui, Kwok-On; Lee, Kin-Ho; Chan, Wing-Tat

    2013-01-01

    The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles. In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best. An

  19. Effect on blood lead of airborne lead particles characterized by size.

    Science.gov (United States)

    Park, Dong-Uk; Paik, Nam-Won

    2002-03-01

    Worker exposure to airborne lead particles was evaluated for a total of 117 workers in 12 work-places of four different industrial types in Korea. The particle sizes were measured using 8-stage cascade impactors worn by the workers. Mass median aerodynamic diameters (MMAD) were determined by type of industry and percentage of lead particles as a fraction of airborne lead (PbA) concentration was determined by particle size. Blood lead (PbB) levels of workers who matched airborne lead samples were also examined. A Scheffé's pairwise comparison test showed that MMAD and the fractions of each of respirable particles and lead particles lead particles lead particles (r = 0.82) than that between concentrations of small particles and PbA (r = 0.61). A simple linear regression indicated that PbB correlated better with respirable lead concentration (r2 = 0.35, P = 0.0001) than with PbA concentration and had a higher slope coefficient. Controlling for respirable lead concentration reduced the partial correlation coefficient between PbA concentration and PbB level from 0.56 to 0.20 (P = 0.053). The results indicate that the contribution of respirable lead particles to lead absorption would be greater than that of PbA. This study concludes that the measurement of PbA only may not properly reflect a worker's exposure to lead particles with diverse characteristics. For the evaluation of a worker's exposure to various types of lead particles, it is recommended that respirable lead particles as well as PbA be measured.

  20. Water-soluble ions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site

    International Nuclear Information System (INIS)

    Lin, C.-C.; Chen, S.-J.; Huang, K.-L.; Lee, W.-J.; Lin, W.-Y.; Liao, C.-J.; Chaung, H.-C.; Chiu, C.-H.

    2007-01-01

    This study investigated water-soluble ions in the sized particles (particularly nano (PM 0.01-0.056 )/ultrafine (PM 0.01-0.1 )) collected using MOUDI and Nano-MOUDI samplers near a busy road site and at a rural site. The analytical results demonstrate that nano and coarse particles exhibited the highest (16.3%) and lowest (8.37%) nitrate mass ratios, respectively. The mass ratio of NO 3 - was higher than that of SO 4 2- in all the sized particles at the traffic site. The secondary aerosols all displayed trimodal distributions. The aerosols in ultrafine particles collected at the roadside site exhibited Aitken mode distributions indicating they were of local origin. This finding was not observed for those ultrafine particles collected at the rural site. The mass median diameters (MMDs) of the nano, ultrafine, and fine particles were smaller at the traffic site than at the rural site, possibly related to the contribution of mobile engine emissions. - NO 3 - > SO 4 2- in mass ratio, different from common observations in rural areas, was found in (particularly the nano) traffic-associated particles

  1. Rotational particle separator: A new method for separating fine particles and mist from gases

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1996-01-01

    An account is given of the patented technique of the rotational particle separator for separating solid and liquid particles of diameter 0.1 µm and larger from gases. Attention is focused on the working principle, fluid mechanical constraints, particle design, separation performance, power

  2. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    Science.gov (United States)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  3. Thrombosed persistent median artery causing carpal tunnel syndrome associated with bifurcated median nerve: A case report

    International Nuclear Information System (INIS)

    Salter, M.; Sinha, N. R.; Szmigielski, W.

    2011-01-01

    Background: Carpal tunnel syndrome is a sporadically occurring abnormality due to compression of median nerve. It is exceedingly rare for it to be caused by thrombosis of persistent median artery. Case Report: A forty two year old female was referred for ultrasound examination due to ongoing wrist pain, not relived by pain killers and mild paraesthesia on the radial side of the hand. High resolution ultrasound and Doppler revealed a thrombosed persistent median artery and associated bifurcated median nerve. The thrombus resolved on treatment with anticoagulants. Conclusions: Ultrasound examination of the wrist when done for patients with carpal tunnel syndrome should preferably include looking for persistent median artery and its patency. (authors)

  4. Effect of ultrasonic stimulation on particle transport and fate over different lengths of porous media

    Science.gov (United States)

    Chen, Xingxin; Wu, Zhonghan; Cai, Qipeng; Cao, Wei

    2018-04-01

    It is well established that seismic waves traveling through porous media stimulate fluid flow and accelerate particle transport. However, the mechanism remains poorly understood. To quantify the coupling effect of hydrodynamic force, transportation distance, and ultrasonic stimulation on particle transport and fate in porous media, laboratory experiments were conducted using custom-built ultrasonic-controlled soil column equipment. Three column lengths (23 cm, 33 cm, and 43 cm) were selected to examine the influence of transportation distance. Transport experiments were performed with 0 W, 600 W, 1000 W, 1400 W, and 1800 W of applied ultrasound, and flow rates of 0.065 cm/s, 0.130 cm/s, and 0.195 cm/s, to establish the roles of ultrasonic stimulation and hydrodynamic force. The laboratory results suggest that whilst ultrasonic stimulation does inhibit suspended-particle deposition and accelerate deposited-particle release, both hydrodynamic force and transportation distance are the principal controlling factors. The median particle diameter for the peak concentration was approximately 50% of that retained in the soil column. Simulated particle-breakthrough curves using extended traditional filtration theory effectively described the experimental curves, particularly the curves that exhibited a higher tailing concentration.

  5. The inhalation of insoluble iron oxide particles in the sub-micron ranges. Part II - Plutonium-237 labelled aerosols

    International Nuclear Information System (INIS)

    Waite, D.A.; Ramsden, D.

    1971-10-01

    The results of a series of inhalation studies using iron oxide particles in the size range 0.1 to 0.3 um (count median diameter) are described. In this series the aerosols were labelled with plutonium 237. In vivo detection, excretion analysis and crude location studies were obtainable and the results compared to the earlier studies using chromium 51 labelled aerosols. Plutonium 237 can be considered as a simulator for plutonium 239 and attempts are made to extrapolate the results to the problem of the estimation of plutonium 239 in the human lung. (author)

  6. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    Directory of Open Access Journals (Sweden)

    Daniel J Cooney

    2008-08-01

    Full Text Available Daniel J Cooney1, Anthony J Hickey21Department of Biomedical Engineering; 2School of Pharmacy, University of North Carolina, Chapel Hill, NC, USAAbstract: The influence of diesel exhaust particles (DEP on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene in the particles resulting from the aerosolization process.Keywords: diesel exhaust particles, aerosol, inhalation toxicology

  7. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  8. Microcolumns with self-assembled particle frits for proteomics

    DEFF Research Database (Denmark)

    Ishihama, Yasushi; Rappsilber, Juri; Andersen, Jens S

    2002-01-01

    LC-MS-MS experiments in proteomics are usually performed with packed microcolumns employing frits or outlets smaller than the particle diameter to retain the packing material. We have developed packed microcolumns using self-assembled particles (SAPs) as frits that are smaller than the size...... of the outlet. A five to one ratio of outlet size to particle diameter appears to be the upper maximum. In these situations the particles assembled into an arch over the outlet like the stones in a stone bridge. When 3 microm particles were packed into a tapered column with an 8 microm outlet, two particles...

  9. A method for calculating equivalent diameter of fiber in self-compacting fiber reinforced concrete

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.; Fischer, H.-B.; Bode, K.-A.; Beuthan, C.

    2012-01-01

    This paper presents a method for calculating the equivalent diameter of fiber in self-compacting fiber reinforced concrete (SCFRC). The key idea is to utilize a small amount of particles with a narrow particle size distribution to replace the fibers by the same volume, without causing any obvious

  10. Lung clearance of inhaled particles after exposure to carbon black generated from a resuspension system

    International Nuclear Information System (INIS)

    Lee, P.S.; Gorski, R.A.; Hering, W.E.; Chan, T.L.

    1987-01-01

    A system to resuspend carbon black particles for providing submicron aerosols for inhalation exposure studies has been developed. The effect of continuous exposure to carbonaceous material (as a surrogate for the carbonaceous particles in diesel exhaust) on the pulmonary clearance of inhaled diesel tracer particles was studied in male Fischer 344 rats. Submicron carbon black particles with a mass median aerodynamic diameter (MMAD) of 0.22 micron and a size distribution similar to that of exhaust particles from a GM 5.7-liter diesel engine were successfully generated and administered to test animals at a nominal concentration of 6 mg/m3 for 20 hr/day, 7 days/week, for periods lasting 1 to 11 weeks. Immediately after the carbon black exposure, test animals were administered 14 C-tagged diesel particles for 45 min in a nose-only chamber. The pulmonary retention of inhaled radioactive tracer particles was determined at preselected time intervals. Based upon the data collected up to 1 year postexposure, prolonged exposure to carbon black particles exhibits a similar inhibitory effect on pulmonary clearance as does prolonged exposure to diesel exhaust with a comparable particulate dose. This observation indicates that the excessive accumulation of carbonaceous material may be the predominant factor affecting lung clearance

  11. A study on the particle penetration in RMS Right Single Quotation Marks particle transport system

    International Nuclear Information System (INIS)

    Son, S. M.; Oh, S. H.; Choi, C. R.

    2014-01-01

    In nuclear facilities, a radiation monitoring system (RMS) monitors the exhaust gas containing the radioactive material. Samples of exhaust gas are collected in the downstream region of air cleaning units (ACUs) in order to examine radioactive materials. It is possible to predict an amount of radioactive material by analyzing the corrected samples. Representation of the collected samples should be assured in order to accurately sense and measure of radioactive materials. The radius of curvature is mainly 5 times of tube diameter. Sometimes, a booster fan is additionally added to enhance particle penetration rate... In this study, particle penetrations are calculated to evaluate particle penetration rate with various design parameters (tube lengths, tube declined angles, radius of curvatures, etc). The particle penetration rates have been calculated for several elements in the particle transport system. In general, the horizontal length of tube and the number of bending tube have a big impact on the penetration rate in the particle transport system. If the sampling location is far from the radiation monitoring system, additional installation of booster fans could be considered in case of large diameter tubes, but is not recommended in case of small diameter tube. In order to enhance particle penetration rate, the following works are recommended by priority. 1) to reduce the interval between sampling location and radiation monitoring system 2) to reduce the number of the bending tube

  12. Cavitation inception on micro-particles: a self propelled particle accelerator

    NARCIS (Netherlands)

    Arora, M.; Ohl, C.D.; Morch, Knud Aage; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 �m and 150 �m are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growth of cavity and its interaction with the original nucleating particle is recorded by means of

  13. Characterizing gas-particle interactions of phthalate plasticizer emitted from vinyl flooring.

    Science.gov (United States)

    Benning, Jennifer L; Liu, Zhe; Tiwari, Andrea; Little, John C; Marr, Linsey C

    2013-03-19

    Phthalates are widely used as plasticizers, and improved ability to predict emissions of phthalates is of interest because of concern about their health effects. An experimental chamber was used to measure emissions of di-2-ethylhexyl-phthalate (DEHP) from vinyl flooring, with ammonium sulfate particles introduced to examine their influence on the emission rate and to measure the partitioning of DEHP onto airborne particles. When particles were introduced to the chamber at concentrations of 100 to 245 μg/m(3), the total (gas + particle) DEHP concentrations increased by a factor of 3 to 8; under these conditions, emissions were significantly enhanced compared to the condition without particles. The measured DEHP partition coefficient to ammonium sulfate particles with a median diameter of 45 ± 5 nm was 0.032 ± 0.003 m(3)/μg (95% confidence interval). The DEHP-particle sorption equilibration time was demonstrated to be less than 1 min. Both the partition coefficient and equilibration time agree well with predictions from the literature. This study represents the first known measurements of the particle-gas partition coefficient for DEHP. Furthermore, the results demonstrate that the emission rate of DEHP is substantially enhanced in the presence of particles. The particles rapidly sorb DEHP from the gas phase, allowing more to be emitted from the source, and also appear to enhance the convective mass-transfer coefficient itself. Airborne particles can influence SVOC fate and transport in the indoor environment, and these mechanisms must be considered in evaluating exposure and human health.

  14. Particle hygroscopicity during atmospheric new particle formation events: implications for the chemical species contributing to particle growth

    Directory of Open Access Journals (Sweden)

    Z. Wu

    2013-07-01

    Full Text Available This study examines the hygroscopicity of newly formed particles (diameters range 25–45 nm during two atmospheric new particle formation (NPF events in the German mid-level mountains during the Hill Cap Cloud Thuringia 2010 (HCCT-2010 field experiment. At the end of the NPF event involving clear particle growth, we measured an unusually high soluble particle fraction of 58.5% at 45 nm particle size. The particle growth rate contributed through sulfuric acid condensation only accounts for around 6.5% of the observed growth rate. Estimations showed that sulfuric acid condensation explained, however, only around 10% of that soluble particle fraction. Therefore, the formation of additional water-soluble matter appears imperative to explain the missing soluble fraction. Although direct evidence is missing, we consider water-soluble organics as candidates for this mechanism. For the case with clear growth process, the particle growth rate was determined by two alternative methods based on tracking the mode diameter of the nucleation mode. The mean particle growth rate obtained from the inter-site data comparison using Lagrangian consideration is 3.8 (± 2.6 nm h−1. During the same period, the growth rate calculated based on one site data is 5.0 nm h−1 using log-normal distribution function method. In light of the fact that considerable uncertainties could be involved in both methods, we consider both estimated growth rates consistent.

  15. Separation and chemical characterization of finely-sized fly-ash particles

    International Nuclear Information System (INIS)

    Campbell, J.A.; Laul, J.C.; Nielson, K.K.; Smith, R.D.

    1978-01-01

    The concentrations of 43 major, minor, and trace elements were measured by x-ray fluorescence, atomic absorption, and instrumental neutron activation for nine well-defined size fractions, with mass median diameters of 0.5 μ to 50 μm, of fly ash from a western coal-fired steam plant. There was generally good agreement in concentrations of elements analyzed by more than one technique. Concentration profiles as a function of mean particle size were established for various elements. Based on the concentration profiles, the elements can be divided into three distinct groups. One group consists primarily of the volatile elements or elements partially volatilized during coal combustion (examples include As, Se, Zn, Ga, etc.), and their concentrations decrease with increasing particle size. A second group, which shows a minor or direct dependence on particle size, as in the case of Si, is apparently associated primarily with the fly-ash matrix. The last group of elements, which includes Ca, Sr, Y, and the rare earths, shows small changes in their concentration profiles with a maximum in concentration at approximately 5 μm. 6 tables, 6 figures

  16. A comparison of freeway median crash frequency, severity, and barrier strike outcomes by median barrier type.

    Science.gov (United States)

    Russo, Brendan J; Savolainen, Peter T

    2018-08-01

    Median-crossover crashes are among the most hazardous events that can occur on freeways, often resulting in severe or fatal injuries. The primary countermeasure to reduce the occurrence of such crashes is the installation of a median barrier. When installation of a median barrier is warranted, transportation agencies are faced with the decision among various alternatives including concrete barriers, beam guardrail, or high-tension cable barriers. Each barrier type differs in terms of its deflection characteristics upon impact, the required installation and maintenance costs, and the roadway characteristics (e.g., median width) where installation would be feasible. This study involved an investigation of barrier performance through an in-depth analysis of crash frequency and severity data from freeway segments where high-tension cable, thrie-beam, and concrete median barriers were installed. A comprehensive manual review of crash reports was conducted to identify crashes in which a vehicle left the roadway and encroached into the median. This review also involved an examination of crash outcomes when a barrier strike occurred, which included vehicle containment, penetration, or re-direction onto the travel lanes. The manual review of crash reports provided critical supplementary information through narratives and diagrams not normally available through standard fields on police crash report forms. Statistical models were estimated to identify factors that affect the frequency, severity, and outcomes of median-related crashes, with particular emphases on differences between segments with varying median barrier types. Several roadway-, traffic-, and environmental-related characteristics were found to affect these metrics, with results varying across the different barrier types. The results of this study provide transportation agencies with important guidance as to the in-service performance of various types of median barrier. Copyright © 2018 Elsevier Ltd. All rights

  17. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  18. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.

    Science.gov (United States)

    Cherry, Erica M; Maxim, Peter G; Eaton, John K

    2010-01-01

    A physics-based model of a general magnetic drug targeting (MDT) system was developed with the goal of realizing the practical limitations of MDT when electromagnets are the source of the magnetic field. The simulation tracks magnetic particles subject to gravity, drag force, magnetic force, and hydrodynamic lift in specified flow fields and external magnetic field distributions. A model problem was analyzed to determine the effect of drug particle size, blood flow velocity, and magnetic field gradient strength on efficiency in holding particles stationary in a laminar Poiseuille flow modeling blood flow in a medium-sized artery. It was found that particle retention rate increased with increasing particle diameter and magnetic field gradient strength and decreased with increasing bulk flow velocity. The results suggest that MDT systems with electromagnets are unsuitable for use in small arteries because it is difficult to control particles smaller than about 20 microm in diameter.

  19. Sosiaalisen median riskit yritysmaailmassa

    OpenAIRE

    Kilpinen, Joni

    2015-01-01

    Sosiaalisen median palveluista on kirjoitettu lukuisia kirjoja ja artikkeleita, joissa niitä ylistetään varsinkin yritysnäkökulmasta. Vaikka sosiaalinen media on muuttanut olennaisesti tapaa, jolla keskustella, mainostaa, etsiä ja jakaa tietoa, piilee sen palveluiden käytössä kuitenkin erilaisia uhkakuvia. Yritykset ja asiantuntijat pelkäävät sosiaalisen median avoimuuden aiheuttavan suuria tietoturvariskejä. Lisäksi asiantuntijat ovat varoitelleet sosiaalisessa mediassa olevista haittaohjelm...

  20. GPU Accelerated Vector Median Filter

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  1. In situ fragmentation and rock particle sorting on arid hills

    Science.gov (United States)

    McGrath, Gavan S.; Nie, Zhengyao; Dyskin, Arcady; Byrd, Tia; Jenner, Rowan; Holbeche, Georgina; Hinz, Christoph

    2013-03-01

    Transport processes are often proposed to explain the sorting of rock particles on arid hillslopes, where mean rock particle size often decreases in the downslope direction. Here we show that in situ fragmentation of rock particles can also produce similar patterns. A total of 93,414 rock particles were digitized from 880 photographs of the surface of three mesa hills in the Great Sandy Desert, Australia. Rock particles were characterized by the projected Feret's diameter and circularity. Distance from the duricrust cap was found to be a more robust explanatory variable for diameter than the local hillslope gradient. Mean diameter decreased exponentially downslope, while the fractional area covered by rock particles decreased linearly. Rock particle diameters were distributed lognormally, with both the location and scale parameters decreasing approximately linearly downslope. Rock particle circularity distributions showed little change; only a slight shift in the mode to more circular particles was noted to occur downslope. A dynamic fragmentation model was used to assess whether in situ weathering alone could reproduce the observed downslope fining of diameters. Modeled and observed size distributions agreed well and both displayed a preferential loss of relatively large rock particles and an apparent approach to a terminal size distribution of the rocks downslope. We show this is consistent with a size effect in material strength, where large rocks are more susceptible to fatigue failure under stress than smaller rocks. In situ fragmentation therefore produces qualitatively similar patterns to those that would be expected to arise from selective transport.

  2. Wintertime hygroscopicity and volatility of ambient urban aerosol particles

    Science.gov (United States)

    Enroth, Joonas; Mikkilä, Jyri; Németh, Zoltán; Kulmala, Markku; Salma, Imre

    2018-04-01

    Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20), 50, 75, 110 and 145 nm were determined in situ by using a volatility-hygroscopicity tandem differential mobility analyser (VH-TDMA) system with a relative humidity of 90 % and denuding temperature of 270 °C in central Budapest during 2 months in winter 2014-2015. The probability density function of the hygroscopic growth factor (HGF) showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033) independently of the particle size and was assigned to nearly hydrophobic (NH) particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196) with particle diameter, and it was attributed to less hygroscopic (LH) particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF) also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV) and volatile (V) particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non-hygroscopic hydrocarbon-like organics. The hygroscopic

  3. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    Science.gov (United States)

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  4. Aggregated particles caused by instrument artifact

    Directory of Open Access Journals (Sweden)

    A. M. Pierce

    2018-04-01

    Full Text Available Previous studies have indicated that superaggregates, clusters of aggregates of soot primary particles, can be formed in large-scale turbulent fires. Due to lower effective densities, higher porosity, and lower aerodynamic diameters, superaggregates may pass through inlets designed to remove particles  <  2.5 µm in aerodynamic diameter (PM2.5. Ambient particulate matter samples were collected at Peavine Peak, NV, USA (2515 m northwest of Reno, NV, USA from June to November 2014. The Teledyne Advanced Pollution Instrumentation (TAPI 602 BetaPlus particulate monitor was used to collect PM2.5 on two filter types. During this time, aggregated particles  >  2.5 µm in aerodynamic diameter were collected on 36 out of 158 sample days. On preliminary analysis, it was thought that these aggregated particles were superaggregates, depositing past PM10 (particles  <  10 µm in aerodynamic diameter pre-impactors and PM2.5 cyclones. However, further analysis revealed that these aggregated particles were dissimilar to superaggregates observed in previous studies, both in morphology and in elemental composition. To determine if the aggregated particles were superaggregates or an instrument artifact, samples were investigated for the presence of certain elements, the occurrence of fires, high relative humidity and wind speeds, as well as the use of generators on site. Samples with aggregated particles, referred to as aggregates, were analyzed using a scanning electron microscope for size and shape and energy dispersive X-ray spectroscopy was used for elemental analysis. It was determined, based on the high amounts of aluminum present in the aggregate samples, that a sampling artifact associated with the sample inlet and prolonged, high wind events was the probable reason for the observed aggregates.

  5. Compositions of airborne plutonium-bearing particles from a plutonium finishing operation

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1976-11-01

    The elemental composition of 111 plutonium-bearing particles was determined (using an electron microprobe) as part of a program to investigate the origin and behavior of the long-lived transuranic radionuclides released from fuel reprocessing facilities at the Savannah River Plant. These particles, collected from wet-cabinet and room-air exhausts from the plutonium finishing operation (JB-Line), were between 0.4 and 36 μm in diameter. Ninety-nine of the particles were found to be aggregates of various minerals and metals, six were quartz, and six were small (less than 2-μm-diameter) pieces of iron oxide. Collectively, these particles contained less minerals and more metals than natural dusts contain. The metallic constituents included elements normally not found in dusts, e.g., chromium, nickel, copper, and zinc. Concentrations of aluminum and iron exceeded those normally found in minerals. Elemental concentrations in individual particles covered a wide range: one 2-μm-diameter particle contained 97 percent NiO, a 9-μm-diameter particle contained 72 percent Cr 2 O 3 . Although the particles were selected because they produced plutonium fission tracks, the plutonium concentration was too low to be estimated by microprobe analysis in all but a 1-μm-diameter particle. This plutonium-bearing particle contained 73 percent PuO 2 by weight in combination with Fe 2 O 3 and mica; its activity was estimated at 0.17 pCi of 239 Pu

  6. Switching non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2015-06-01

    This paper describes a novel image filtering method for removal of random-valued impulse noise superimposed on grayscale images. Generally, it is well known that switching-type median filters are effective for impulse noise removal. In this paper, we propose a more sophisticated switching-type impulse noise removal method in terms of detail-preserving performance. Specifically, the noise detector of the proposed method finds out noise-corrupted pixels by focusing attention on the difference between the value of a pixel of interest (POI) and the median of its neighboring pixel values, and on the POI's isolation tendency from the surrounding pixels. Furthermore, the removal of the detected noise is performed by the newly proposed median filter based on non-local processing, which has superior detail-preservation capability compared to the conventional median filter. The effectiveness and the validity of the proposed method are verified by some experiments using natural grayscale images.

  7. Safety distance for preventing hot particle ignition of building insulation materials

    Directory of Open Access Journals (Sweden)

    Jiayun Song

    2014-01-01

    Full Text Available Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle temperature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial temperatures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temperature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.

  8. Functional Median Polish

    KAUST Repository

    Sun, Ying; Genton, Marc G.

    2012-01-01

    polish is demonstrated by comparing its performance with the traditional functional ANOVA fitted by means under different outlier models in simulation studies. The functional median polish is illustrated on various applications in climate science

  9. The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingxiao [Key Laboratory of Textile Science and Technology (Donghua University), Ministry of Education of China, Shanghai 201620 (China); College of Textiles, Donghua University, Shanghai 201620 (China); Ding, Xin, E-mail: xding@dhu.edu.cn [Key Laboratory of Textile Science and Technology (Donghua University), Ministry of Education of China, Shanghai 201620 (China); College of Textiles, Donghua University, Shanghai 201620 (China); Tian, Lingling, E-mail: lingling_tian@nus.edu.sg [Center of Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Hu, Jiyong; Yang, Xudong [Key Laboratory of Textile Science and Technology (Donghua University), Ministry of Education of China, Shanghai 201620 (China); College of Textiles, Donghua University, Shanghai 201620 (China); Ramakrishna, Seeram [Center of Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632 (China)

    2017-05-01

    Bead-on-string nanofibers, with appropriate control of the beads diameter, are potential fibrous structures for efficient encapsulation of particle drugs in micron scales and could achieve controlled drug release for tissue engineering applications. In this study, the beads diameter of electrospun bead-on-string nanofibers was controlled by adjusting the concentration of spinning polymer, poly (lactic-co-glycolic acid) (PLGA), and the solvent ratio of chloroform to acetone. The images of the scanning electron microscopy (SEM) suggested that bead-on-string nanofibers could be successfully obtained only with a certain range of PLGA solution concentration. Moreover, with the decrease in the solvent ratio of chloroform to acetone, the range was left-shifted towards a smaller concentration. In addition, increase in the PLGA solution concentration within the range the beads diameter became greater and the shape of the beads changed from oval to slender when increasing the PLGA concentration within the range. The bead-on-string nanofibers with different beads diameter were further used to load micro-particle drugs of tetracycline hydrochloride, as a model drug, to examine the release behavior of nanofibers scaffold. The release profiles of drug loaded bead-on-string nanofibers demonstrated the possibility to alleviate the burst drug release by means of beads diameter control. - Highlights: • Bead diameter of bead-on-string electrospun nanofibers was controlled by varying solvent ratio and polymer concentration. • The effect of the addition of particle drugs on BD of bead-on-string electrospun nanofibers was studied. • The corresponding release behaviors of nanofibers with different BD loading micro-particle drugs were investigated. • Bead-on-string nanofibers with bigger BD could alleviate the initial burst release.

  10. The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs

    International Nuclear Information System (INIS)

    Li, Tingxiao; Ding, Xin; Tian, Lingling; Hu, Jiyong; Yang, Xudong; Ramakrishna, Seeram

    2017-01-01

    Bead-on-string nanofibers, with appropriate control of the beads diameter, are potential fibrous structures for efficient encapsulation of particle drugs in micron scales and could achieve controlled drug release for tissue engineering applications. In this study, the beads diameter of electrospun bead-on-string nanofibers was controlled by adjusting the concentration of spinning polymer, poly (lactic-co-glycolic acid) (PLGA), and the solvent ratio of chloroform to acetone. The images of the scanning electron microscopy (SEM) suggested that bead-on-string nanofibers could be successfully obtained only with a certain range of PLGA solution concentration. Moreover, with the decrease in the solvent ratio of chloroform to acetone, the range was left-shifted towards a smaller concentration. In addition, increase in the PLGA solution concentration within the range the beads diameter became greater and the shape of the beads changed from oval to slender when increasing the PLGA concentration within the range. The bead-on-string nanofibers with different beads diameter were further used to load micro-particle drugs of tetracycline hydrochloride, as a model drug, to examine the release behavior of nanofibers scaffold. The release profiles of drug loaded bead-on-string nanofibers demonstrated the possibility to alleviate the burst drug release by means of beads diameter control. - Highlights: • Bead diameter of bead-on-string electrospun nanofibers was controlled by varying solvent ratio and polymer concentration. • The effect of the addition of particle drugs on BD of bead-on-string electrospun nanofibers was studied. • The corresponding release behaviors of nanofibers with different BD loading micro-particle drugs were investigated. • Bead-on-string nanofibers with bigger BD could alleviate the initial burst release.

  11. Five Roots Pattern of Median Nerve Formation

    Directory of Open Access Journals (Sweden)

    Konstantinos Natsis

    2016-04-01

    Full Text Available An unusual combination of median nerve’s variations has been encountered in a male cadaver during routine educational dissection. In particular, the median nerve was formed by five roots; three roots originated from the lateral cord of the brachial plexus joined individually the median nerve’s medial root. The latter (fourth root was united with the lateral (fifth root of the median nerve forming the median nerve distally in the upper arm and not the axilla as usually. In addition, the median nerve was situated medial to the brachial artery. We review comprehensively the relevant variants, their embryologic development and their potential clinical applications.

  12. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H 2 for 12 hours with no visible reaction or weight loss

  13. Behaviour of non-spherical particles in the TSI aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Marshall, I.A.

    1991-02-01

    The TSI Aerodynamic Particle Sizer (APS33B) is a real-time monitor which is capable of measuring aerosols in terms of this most relevant size parameter for the assessment of occupational risk. The influence of particle shape on APS33B performance has been investigated using a range of monodisperse, regular-shaped and non-porous solid particles in the size range from about 6 to 14 μm aerodynamic diameter. (author)

  14. Wintertime hygroscopicity and volatility of ambient urban aerosol particles

    Directory of Open Access Journals (Sweden)

    J. Enroth

    2018-04-01

    Full Text Available Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20, 50, 75, 110 and 145 nm were determined in situ by using a volatility–hygroscopicity tandem differential mobility analyser (VH-TDMA system with a relative humidity of 90 % and denuding temperature of 270 °C in central Budapest during 2 months in winter 2014–2015. The probability density function of the hygroscopic growth factor (HGF showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033 independently of the particle size and was assigned to nearly hydrophobic (NH particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196 with particle diameter, and it was attributed to less hygroscopic (LH particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV and volatile (V particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non

  15. Study of the operational parameters of crops turbine sprayer (turbo liner on spray quality and diameter of droplets, using image processing

    Directory of Open Access Journals (Sweden)

    F Behzadi Pour

    2017-05-01

    median numerical diameter (NMD and spraying quality indicator were calculated. A Spectrophotometry device at the wavelength of 427 nm, Image J and sas 9.2 software were used for measurement. This research was carried out in accordance with the calendar crop canola spraying in field conditions and the weather was calm that the wind speed was 0- 2.5 km hr-1, relative humidity was 29.7% - 32.5% and air temperature was 18.8˚C – 20.7˚C. Results and Discussion According to the results sprayer pressure, fan speed and forward speed were shown significantly different (P≤0.01 on the volume diameter of 50% (DV50 and median numerical diameter (NMD. The effect of spraying pressure on distributing quality indicator was shown significant (P ≤ 0.01, but the fan and forward speed did not shown any significant effect. Mean comparison of the interaction of pressure and forward speed on the spray quality index and the number median diameter were shown significant (P ≤ 0.01, but they did not shown any significant effect on the volume diameter of 50% (DV50. With increasing spraying pressure and fan speed, the droplet size, volume diameter of 50% (DV50 at 72% and numerical median diameter (NMD at 69% and distributing quality indicator at 46% were decreased that were corresponded with the result of Czaczyk et al. (2012, Peyman et al. (2011, Nuyttens et al. (2009 and Landers and Farooq (2004. With increasing spraying pressure and forward speed, the droplet size, numerical median diameter (NMD at 63% and distributing quality indicator at 35% were decreased that these resulted were corresponded with the results of Naseri et al. (2007 and Dorr et al. (2013. Conclusions With increasing spraying pressure, fan and forward speed, the droplet size, volume diameter of 50% (DV50 and numerical median diameter (NMD were decreased. Therefore, spraying quality indicator was decreased. The maximum pressure (35 bars, maximum fan speed (2430 rpm and maximum forward speed (13.5 km hr-1 were able to

  16. Particle size distribution of selected electronic nicotine delivery system products.

    Science.gov (United States)

    Oldham, Michael J; Zhang, Jingjie; Rusyniak, Mark J; Kane, David B; Gardner, William P

    2018-03-01

    Dosimetry models can be used to predict the dose of inhaled material, but they require several parameters including particle size distribution. The reported particle size distributions for aerosols from electronic nicotine delivery system (ENDS) products vary widely and don't always identify a specific product. A low-flow cascade impactor was used to determine the particle size distribution [mass median aerodynamic diameter (MMAD); geometric standard deviation (GSD)] from 20 different cartridge based ENDS products. To assess losses and vapor phase amount, collection efficiency of the system was measured by comparing the collected mass in the impactor to the difference in ENDS product mass. The levels of nicotine, glycerin, propylene glycol, water, and menthol in the formulations of each product were also measured. Regardless of the ENDS product formulation, the MMAD of all tested products was similar and ranged from 0.9 to 1.2 μm with a GSD ranging from 1.7 to 2.2. There was no consistent pattern of change in the MMAD and GSD as a function of number of puffs (cartridge life). The collection efficiency indicated that 9%-26% of the generated mass was deposited in the collection system or was in the vapor phase. The particle size distribution data are suitable for use in aerosol dosimetry programs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Rotational particle separator: A new method for separating fine particles and mists from gases

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1996-01-01

    An account is given of the patented technique of the rotational particle separator for separating solid and liquid particles of diameter 0.1 µm and larger from gases. Attention is focussed on the working principle, fluid mechanical constraints, practical designs, separation performance, power

  18. Gas supply during fluidization of spherical particles in FBR

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Eom, Sung Ho; Kim, Yeon Ku; Kim, Woong Ki; Kim, Young Min; Lee, Young Woo; Cho, Moon Seong

    2011-11-01

    Calculations of gas flow requirements and of other related parameters in the fluidized-bed process used to coat nuclear fuel particles are presented. These data include: volumes and surfaces of spheres for diameters of 50 to 500μm: number of theses spheres in 1 g for densities of 2 to 11 g/cm 3 : overall densities of coated spheres for initial particle diameters of 50 to 500μm, initial densities of 8 to 11 g/cm 3 , coating densities of 1.0 to 2.2 g/cm 3 , and final particle diameters of 100 to 1000μm: viscosities of Ar, CO 2 , He, and H 2 for temperatures up to 2200 .deg. C: minimum flows of He and Ar necessary to fluidized nuclear fuel particles at 20 .deg. C: coefficients for converting the 20 .deg. C minimum fluidization gas flows to high-temperature flows (up to 2200 .deg. C): variation of particle diameter with time for constant weight deposition rate: variation of coating gas flow for constant linear growth of the coating: comparison of coating time at constant weight deposition rate and at constant coating growth rate

  19. Size spectra for trace elements in urban aerosol particles by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ondov, J.M.; Divita, F. Jr.

    1993-01-01

    Size-fractionated aerosol samples collected with micro-orifice impactors at Camden, NJ, a heavily industrialized urban area, and at two sites near Washington, DC, were analyzed for elemental constituents determined instrumentally from short-lived neutron activation products. A least-squares peak-fitting method was used with impactor calibration data to determine log-normal distribution parameters, i.e., mass median aerodynamic diameter (MMAD) and geometric standard deviation (σ g ) for particles bearing S, V, Br, and I. For these elements, MMADs ranged from 0.24 to 0.65 μm; 0.23 to 0.53 μm; 0.22 to 0.61 μm, and 0.20 to 0.48 μm, respectively. (author) 15 refs.; 4 figs.; 2 tabs

  20. Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice

    DEFF Research Database (Denmark)

    Hougaard, K. S.; Jensen, K. A.; Nordly, P.

    2008-01-01

    Background: Results from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether...... exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m(3) DEP (similar to 1.10(6) particles/cm(3); mass median diameter congruent...... to 240 nm) on gestational days 9-19, for 1 h/day. Results: Gestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed...

  1. Nanoparticle growth by particle-phase chemistry

    Science.gov (United States)

    Apsokardu, Michael J.; Johnston, Murray V.

    2018-02-01

    The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2-100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5) or ozonolysis of β-pinene, oligomerization rate constants on the order of 10-3 to 10-1 M-1 s-1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.

  2. Effect of enzyme-induced pulmonary emphysema in Syrian hamsters on the deposition and retention of inhaled particles

    International Nuclear Information System (INIS)

    Hahn, F.F.; Hobbs, C.H.

    1974-01-01

    Experimental emphysema was induced in Syrian hamsters by intratracheal injection of elastase or by inhaled papain aerosols. Control hamsters were injected with saline or exposed to enzyme diluent aerosols. After 3 weeks, all groups were simultaneously exposed to an aerosol of relatively insoluble 137 Cs in fused clay particles with an activity median aerodynamic diameter of 1.4 to 1.6 and a geometric standard deviation of 1.6. The initial pulmonary deposition of particles (measured 3 hours after inhalation) was significantly lower in treated hamsters, 45 percent of controls with elastase and 65 percent with papain aerosols. The effect of both enzyme treatments on the retention of particles was similar in spite of the fact that the pulmonary lesions were not the same. Elastase I.T. caused a diffuse destruction and enlargement of alveoli with a loss of pulmonary elastic recoil. Papain aerosols caused a focal destruction and enlargement of alveoli with no loss of elastic recoil. The common feature of both lesions was an increased number of alveolar macrophages which may account for the early increased clearance of particles. The prolonged retention of particles may be due to focal accumulations of macrophages in distal alveoli. (U.S.)

  3. Distribution Of Natural Radioactivity On Soil Size Particles

    International Nuclear Information System (INIS)

    Tran Van Luyen; Trinh Hoai Vinh; Thai Khac Dinh

    2008-01-01

    This report presents a distribution of natural radioactivity on different soil size particles, taken from one soil profile. On the results shows a range from 52% to 66% of natural radioisotopes such as 238 U, 232 Th, 226 Ra and 40 K concentrated on the soil particles below 40 micrometers in diameter size. The remained of natural radioisotopes were distributed on a soil particles with higher diameter size. The study is available for soil sample collected to natural radioactive analyze by gamma and alpha spectrometer methods. (author)

  4. Aggregated particles caused by instrument artifact

    Science.gov (United States)

    Pierce, Ashley M.; Loría-Salazar, S. Marcela; Arnott, W. Patrick; Edwards, Grant C.; Miller, Matthieu B.; Gustin, Mae S.

    2018-04-01

    Previous studies have indicated that superaggregates, clusters of aggregates of soot primary particles, can be formed in large-scale turbulent fires. Due to lower effective densities, higher porosity, and lower aerodynamic diameters, superaggregates may pass through inlets designed to remove particles 2.5 µm in aerodynamic diameter were collected on 36 out of 158 sample days. On preliminary analysis, it was thought that these aggregated particles were superaggregates, depositing past PM10 (particles wind speeds, as well as the use of generators on site. Samples with aggregated particles, referred to as aggregates, were analyzed using a scanning electron microscope for size and shape and energy dispersive X-ray spectroscopy was used for elemental analysis. It was determined, based on the high amounts of aluminum present in the aggregate samples, that a sampling artifact associated with the sample inlet and prolonged, high wind events was the probable reason for the observed aggregates.

  5. Retrobulbar diameter of optic nerve in glaucoma

    Directory of Open Access Journals (Sweden)

    Stefanović Ivan

    2009-01-01

    Full Text Available Introduction. The ultrasound diagnostics of the optic nerve includes the analysis of the optic nerve disc (PNO and measuring of its retrobulbar diameter. With B-scan, by Schraeder's method, it is possible to measure very precisely the optic nerve, the pial diameter, the normal values for the pial diameter being 2.8-4.1 mm. In glaucoma, the disease that is most frequently associated with higher intraocular pressure, there comes the destruction of nerve fibres, which can be visualized as the excavation of the optic nerve disc. Objective. In this paper, we were interested in finding whether in glaucoma, and in what phase of the disease, the optic nerve starts growing thinner. Aware of many forms of this very complex disease, we were interested in knowing if the visualization of excavation on the optic nerve disc is related to diminishing of the pial diameter of the retrobulbar nerve part. Methods. There were treated the patients who had already had the diagnosis of glaucoma and the visualized excavation of the optic disc of various dimensions. Echographically, there was measured the thickness of the retrobulbar part of the optic nerve and the finding compared in relation to the excavation of the optic disc. Results. In all eyes with glaucoma, a normal size of the retrobulbar part of the optic nerve was measured, ranging from 3.01 to 3.91 mm with the median of 3.36 mm. Also, by testing the correlation between the thickness of the optic nerve and the excavation of the PNO, by Pearson test, we found that there was no correlation between these two parameters (r=0.109; p>0.05. Conclusion. In the patients with glaucoma, the retrobulbar part of the optic nerve is not thinner (it has normal values, even not in the cases with a totally excavated optic disc. There is no connection between the size of the PNO excavation and the thickness of the retrobulbar part of the optic nerve.

  6. Permasalahan P-Hub Median Dengan Lintasan Terpendek

    OpenAIRE

    Pasaribu, Raja David

    2013-01-01

    Hub are facilities that serve as sorting, switching, and transhipment in a transportation network. P-hub median problem is a discrete case location allocation problem which all hub is fully connected. In this paper will be intoduced Mixed Integrer Linear Programming (MILP) formulation models of cost for p-hub median problem allocation for uncapacitaced single allocation p-hub median(USApHMP). In this paper also introduced Floyd-Warshall shortest path algorithm to solve p-hub median problems a...

  7. Study on the fragmentation of granite due to the impact of single particle and double particles

    Directory of Open Access Journals (Sweden)

    Yuchun Kuang

    2016-09-01

    Full Text Available Particle Impact Drilling (PID is a novel method to improve the rate of penetration (ROP. In order to further improve the performance of PID, an investigation into the effect of single and double particles: (1 diameter; (2 initial velocity; (3 distance; and (4 angle of incidence was undertaken to investigate their effects on broken volume and penetration depth into hard brittle rock. For this purpose, the laboratory experiment of single particle impact rock was employed. Meanwhile, based on the LS-DYNA, a new finite element (FE simulation of the PID, including single and double particles impact rock, has been presented. The 3-dimensional (3D, aix-symmetric, dynamic-explicit, Lagrangian model has been considered in this simulation. And the Elastic and Holmquist Johnson Cook (HJC material behaviors have been used for particles and rocks, respectively. The FE simulation results of single particle impacting rock are good agreement with experimental data. Furthermore, in this article the optimal impact parameters, including diameter, initial velocity, distance and the angle of incidence, are obtained in PID.

  8. Deposition and detection of particles during integrated circuit manufacturing

    NARCIS (Netherlands)

    Wali, F.; Knotter, D. Martin; Kelly, John J.; Kuper, F.G.

    2006-01-01

    Abstract—Deposition mechanism of silica particles on silicon wafers was investigated by depositing specially prepared mono-dispersed particles (mean diameter = 330 nm). To measure particles of the size below the detection limit of our particle measurement tools, silica particles with luminance core

  9. Structural Color Tuning: Mixing Melanin-Like Particles with Different Diameters to Create Neutral Colors.

    Science.gov (United States)

    Kawamura, Ayaka; Kohri, Michinari; Yoshioka, Shinya; Taniguchi, Tatsuo; Kishikawa, Keiki

    2017-04-18

    We present the ability to tune structural colors by mixing colloidal particles. To produce high-visibility structural colors, melanin-like core-shell particles composed of a polystyrene (PSt) core and a polydopamine (PDA) shell, were used as components. The results indicated that neutral structural colors could be successfully obtained by simply mixing two differently sized melanin-like PSt@PDA core-shell particles. In addition, the arrangements of the particles, which were important factors when forming structural colors, were investigated by mathematical processing using a 2D Fourier transform technique and Voronoi diagrams. These findings provide new insights for the development of structural color-based ink applications.

  10. Nanoparticle growth by particle-phase chemistry

    Directory of Open Access Journals (Sweden)

    M. J. Apsokardu

    2018-02-01

    Full Text Available The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2–100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5 or ozonolysis of β-pinene, oligomerization rate constants on the order of 10−3 to 10−1 M−1 s−1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.

  11. Improvement of Particle Recovery Method for Uranium Isotope Analysis Using SIMS

    International Nuclear Information System (INIS)

    Kim, Taehee; Park, Jinkyu; Lee, Chi-Gyu; Lim, Sang Ho; Han, Sun-Ho

    2017-01-01

    In this study, we developed a new design of vacuum-suction impactor with wider inlet nozzle and outlet nozzle for guiding particles to disperse the particles on the surface of carbon planchet. We prepared simulated samples with lead dioxide and examined particle recovery yield and degree of dispersion using the conventional vacuum impactor and the newly designed ones with different inlet nozzle diameters. We tried to improve the inlet part of vacuum impactor, in order to increase the recovery yield and disperse the collected particle on carbon planchet. As the diameter of inlet nozzle became larger, the collected particles were better dispersed on planchet. In addition, when the inner diameter of the impactor was 3 mm or 5 mm, the recovery yield was higher than that of conventional impactor. Considering the degree of dispersion and recovery yield, we used the impactor with 5 mm exit diameter and recovered the mixed uranium standard materials for SIMS measurement. We were able to reduce the mixing effect and measure the isotopic ratio more accurately and precisely.

  12. The Ultrasonographic Findings of Bifid Median Nerve

    International Nuclear Information System (INIS)

    Park, Hee Jin; Park, Noh Hyuck; Joh, Joon Hee; Lee, Sung Moon

    2009-01-01

    We wanted to evaluate the ultrasonographic findings of bifid median nerve and its clinical significance. We retrospectively reviewed five cases (three men and two women, mean age: 54 years) of incidentally found bifid median nerve from 264 cases of clinically suspected carpal-tunnel syndrome that were seen at our hospital during last 6 years. Doppler sonography was performed in all five cases and MR angiography was done in one case for detecting a persistent median artery. The difference (ΔCSA) between the sum of the cross-sectional areas of the bifid median nerve at the pisiform level (CSA2) and the cross-sectional area proximal to the bifurcation(CSA1) was calculated. The incidence of a bifid median nerve was 1.9%. All the patients presented with a tingling sensation on a hand and two patients had nocturnal pain. All the cases showed bifurcation of the nerve bundle proximal to the carpal tunnel. The margins appeared relatively smooth and each bundle showed a characteristic fascicular pattern. A persistent median artery was noted between the bundles in four cases. ΔCSA was more than 2 mm 2 in four cases. Bifid median nerve with a persistent median artery is a relatively rare normal variance and these are very important findings before performing surgical intervention to avoid potential nerve injury and massive bleeding. We highly suggest that radiologists should understand the anatomical characteristics of this anomaly and make efforts to detect it

  13. Size-resolved fluxes of sub-100-nm particles over forests

    DEFF Research Database (Denmark)

    Pryor, Sara; Barthelmie, Rebecca Jane; Spaulding, A.M.

    2009-01-01

    Dry deposition of atmospheric particles is critically dependent on particle size and plays a key role in dictating the mass and number distributions of atmospheric particles. However, modeling dry deposition is constrained by a lack of understanding of controlling dependencies and accurate size......-resolved observations. We present size-resolved particle number fluxes for sub-100-nm particle diameters (Dp) over a deciduous forest derived using eddy covariance applied to data from a fast mobility particle sizer. The size-resolved particle number fluxes in 18 diameters between 8 and 100 nm were collected during...... leaf-on and are statistically robust. Particle deposition velocities normalized by friction velocity (v d +) are approximately four times smaller than comparable values for coniferous forests reported elsewhere. Comparison of the data with output from a new one-dimensional mechanistic particle...

  14. Testing the gravity p-median model empirically

    Directory of Open Access Journals (Sweden)

    Kenneth Carling

    2015-12-01

    Full Text Available Regarding the location of a facility, the presumption in the widely used p-median model is that the customer opts for the shortest route to the nearest facility. However, this assumption is problematic on free markets since the customer is presumed to gravitate to a facility by the distance to and the attractiveness of it. The recently introduced gravity p-median model offers an extension to the p-median model that account for this. The model is therefore potentially interesting, although it has not yet been implemented and tested empirically. In this paper, we have implemented the model in an empirical problem of locating vehicle inspections, locksmiths, and retail stores of vehicle spare-parts for the purpose of investigating its superiority to the p-median model. We found, however, the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.

  15. Switching non-local vector median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  16. Urban particle size distributions during two contrasting dust events originating from Taklimakan and Gobi Deserts

    International Nuclear Information System (INIS)

    Zhao, Suping; Yu, Ye; Xia, Dunsheng; Yin, Daiying; He, Jianjun; Liu, Na; Li, Fang

    2015-01-01

    The dust origins of the two events were identified using HYSPLIT trajectory model and MODIS and CALIPSO satellite data to understand the particle size distribution during two contrasting dust events originated from Taklimakan and Gobi deserts. The supermicron particles significantly increased during the dust events. The dust event from Gobi desert affected significantly on the particles larger than 2.5 μm, while that from Taklimakan desert impacted obviously on the particles in 1.0–2.5 μm. It is found that the particle size distributions and their modal parameters such as VMD (volume median diameter) have significant difference for varying dust origins. The dust from Taklimakan desert was finer than that from Gobi desert also probably due to other influencing factors such as mixing between dust and urban emissions. Our findings illustrated the capacity of combining in situ, satellite data and trajectory model to characterize large-scale dust plumes with a variety of aerosol parameters. - Highlights: • Dust particle size distributions had large differences for varying origins. • Dust originating from Taklimakan Desert was finer than that from Gobi Desert. • Effect of dust on the supermicron particles was obvious. • PM_1_0 concentrations increased by a factor of 3.4–25.6 during the dust event. - Dust particle size distributions had large differences for varying origins, which may be also related to other factors such as mixing between dust and urban emissions.

  17. Exposure to ultrafine particles in hospitality venues with partial smoking bans.

    Science.gov (United States)

    Neuberger, Manfred; Moshammer, Hanns; Schietz, Armin

    2013-01-01

    Fine particles in hospitality venues with insufficient smoking bans indicate health risks from passive smoking. In a random sample of Viennese inns (restaurants, cafes, bars, pubs and discotheques) effects of partial smoking bans on indoor air quality were examined by measurement of count, size and chargeable surface of ultrafine particles (UFPs) sized 10-300 nm, simultaneously with mass of particles sized 300-2500 nm (PM2.5). Air samples were taken in 134 rooms unannounced during busy hours and analyzed by a diffusion size classifier and an optical particle counter. Highest number concentrations of particles were found in smoking venues and smoking rooms (median 66,011 pt/cm(3)). Even non-smoking rooms adjacent to smoking rooms were highly contaminated (median 25,973 pt/cm(3)), compared with non-smoking venues (median 7408 pt/cm(3)). The particle number concentration was significantly correlated with the fine particle mass (Phospitality premises. Health protection of non-smoking guests and employees from risky UFP concentration is insufficient, even in rooms labeled "non-smoking". Partial smoking bans with separation of smoking rooms failed.

  18. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Science.gov (United States)

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  19. The variation of organ doses with the particle size and chemical form of an inhaled radioactive aerosol

    International Nuclear Information System (INIS)

    Hunt, B.W.; Adams, N.; Reissland, J.A.

    1979-04-01

    In this report, radiation doses to organs are calculated as a function of the particle size of the inhaled radioactive material. Aerosols with an Activity Median Aerodynamic Diameter (AMAD) from 0.1 μm to 20 μm are considered and doses accumulated by various organs in periods ranging from 1 day to 70 years are given for 65 radionuclides. A computer program is used which calculates the transformations taking place in each organ per curie of inhaled nuclide from the basic radioactivity and metabolic data. The program also calculates the resulting doses both for the organ in which the transformations occur and from penetrating radiation emitted as a result of transformations in other organs. The effects of particle size and chemical form of the nuclides on the doses received by organs are discussed. Tables of doses accumulated by 10 specific organs and other organs together with effective whole body doses are given for particle sizes 0.1 μm, 1 μm and 10 μm (AMAD). (author)

  20. Effects of 20–100 nm particles on liquid clouds in the clean summertime Arctic

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2016-09-01

    Full Text Available Observations addressing effects of aerosol particles on summertime Arctic clouds are limited. An airborne study, carried out during July 2014 from Resolute Bay, Nunavut, Canada, as part of the Canadian NETCARE project, provides a comprehensive in situ look into some effects of aerosol particles on liquid clouds in the clean environment of the Arctic summer. Median cloud droplet number concentrations (CDNC from 62 cloud samples are 10 cm−3 for low-altitude cloud (clouds topped below 200 m and 101 cm−3 for higher-altitude cloud (clouds based above 200 m. The lower activation size of aerosol particles is  ≤  50 nm diameter in about 40 % of the cases. Particles as small as 20 nm activated in the higher-altitude clouds consistent with higher supersaturations (S for those clouds inferred from comparison of the CDNC with cloud condensation nucleus (CCN measurements. Over 60 % of the low-altitude cloud samples fall into the CCN-limited regime of Mauritsen et al. (2011, within which increases in CDNC may increase liquid water and warm the surface. These first observations of that CCN-limited regime indicate a positive association of the liquid water content (LWC and CDNC, but no association of either the CDNC or LWC with aerosol variations. Above the Mauritsen limit, where aerosol indirect cooling may result, changes in particles with diameters from 20 to 100 nm exert a relatively strong influence on the CDNC. Within this exceedingly clean environment, as defined by low carbon monoxide and low concentrations of larger particles, the background CDNC are estimated to range between 16 and 160 cm−3, where higher values are due to activation of particles  ≤  50 nm that likely derive from natural sources. These observations offer the first wide-ranging reference for the aerosol cloud albedo effect in the summertime Arctic.

  1. Synthesis of diamondlike carbon particles in/on a water substrate by laser irradiation

    International Nuclear Information System (INIS)

    Hidai, Hirofumi; Tokura, Hitoshi

    2005-01-01

    We proposed two-particle synthesis techniques using a liquid as a substrate. First, utilizing liquid instead of solid substrates, particle synthesis is expected on the liquid surface. Particles sink into the liquid before the particles grow into film, because of liquid fluidity. Second, the excitation of a gas dissolved in water was also attempted. An ArF excimer laser beam was focused in a chamber. The 60% volume of the chamber was filled with water, in which methane was dissolved and the remaining space of the chamber was filled with methane gas. As a result, diamondlike carbon particles could be synthesized in water. The particles synthesized from methane in the gas phase were 50-200 nm in diameter, and the particles synthesized from methane dissolved in water were 200-700 nm in diameter, and no structural differences were observed between the particles of two different diameters. Energy-dispersive spectroscopy, Raman spectroscopy analysis, and high-resolution transmission electron microscopy observations revealed that particles contained a diamondlike carbon component and that graphite was attached to them. These particles were harder than graphite particles

  2. Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles

    Directory of Open Access Journals (Sweden)

    A. Virtanen

    2011-08-01

    Full Text Available The assessment of the climatic impacts and adverse health effects of atmospheric aerosol particles requires detailed information on particle properties. However, very limited information is available on the morphology and phase state of secondary organic aerosol (SOA particles. The physical state of particles greatly affects particulate-phase chemical reactions, and thus the growth rates of newly formed atmospheric aerosol. Thus verifying the physical phase state of SOA particles gives new and important insight into their formation, subsequent growth, and consequently potential atmospheric impacts. According to our recent study, biogenic SOA particles produced in laboratory chambers from the oxidation of real plant emissions as well as in ambient boreal forest atmospheres can exist in a solid phase in size range >30 nm. In this paper, we extend previously published results to diameters in the range of 17–30 nm. The physical phase of the particles is studied by investigating particle bounce properties utilizing electrical low pressure impactor (ELPI. We also investigate the effect of estimates of particle density on the interpretation of our bounce observations. According to the results presented in this paper, particle bounce clearly decreases with decreasing particle size in sub 30 nm size range. The comparison measurements by ammonium sulphate and investigation of the particle impaction velocities strongly suggest that the decreasing bounce is caused by the differences in composition and phase of large (diameters greater than 30 nm and smaller (diameters between 17 and 30 nm particles.

  3. Growth of uniform thin-walled carbon nanotubes with spin-coated Fe catalyst and the correlation between the pre-growth catalyst size and the nanotube diameter

    International Nuclear Information System (INIS)

    Seah, Choon-Ming; Chai, Siang-Piao; Ichikawa, Satoshi; Mohamed, Abdul Rahman

    2013-01-01

    Single-walled carbon nanotubes (CNTs) and double-walled CNTs with a selectivity of 93 % were obtained by means of the novel homemade iron catalysts which were spin coated on silicon wafer. The average diameters of the iron particles prepared from the colloidal solutions containing 30, 40, 50, 60, and 70 mmol/L of iron nitrate were 8.2, 5.1, 20.8, 32.2, and 34.7 nm, respectively, and growing thin-walled CNTs with the average diameters of 4.1, 2.2, 9.2, 11.1, and 18.1 nm, respectively. The diameters of the CNTs were correlated with the geometric sizes of the pre-growth catalyst particles. Thin-walled CNTs were found to have a catalyst mean diameter-to-CNT average diameter ratio of 2.31. Iron carbide was formed after the growth of CNTs, and it is believed that during the growth of CNTs, carbon source decomposed and deposited on the surface of catalyst, followed by the diffusion of surface carbon into the iron catalyst particles, resulting in carbon supersaturation state before the growth of CNTs.

  4. Washing of gel particles in wet chemical manufacture of reactor fuel particles

    International Nuclear Information System (INIS)

    Ringel, H.

    1980-07-01

    In the manufacture of HTR fuel particles and particles of fertile material by wet chemical methods, the ammonium nitrate formed during the precipitation reaction must be washed out of the gel particles. This washing process has been investigated theoretically and experimentally. A counter-current washer has been developed which in particular takes account of the aspects of refabrication - such as compact construction and minimum waste. A counter-current washing column of 17 mm internal diameter and 640 mm length gives to gel particle throughput of 0.65 1/h. The volume ratio of wash water to gel particles is 5, and the residual nitrate concentration in the particles is 7 x 10 -3 mols of NO - 3 /1. (orig.) [de

  5. Median Nerve Conduction in Healthy Nigerians: Normative Data

    African Journals Online (AJOL)

    of median nerve disease using multiple studies, and rendering ... Aim: To develop normative values for motor and sensory median nerve ..... Table 5: Comparison of median motor nerve conduction study parameters to studies elsewhere. Study.

  6. Experimental investigation on single-phase pressure losses in nuclear debris beds: Identification of flow regimes and effective diameter

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SAG/LEPC, Cadarache bât. 700, 13115 St Paul-lez-Durance (France); Quintard, M. [Université de Toulouse – INPT – UPS – Institut de Mécanique des Fluides de Toulouse (IMFT), Allée Camille Soula, F-31400 Toulouse (France); CNRS – IMFT, F-31400 Toulouse (France)

    2015-10-15

    predictive correlation. In the case of monodisperse beds, and according to the Ergun equation, they depend on the porosity of the medium, empirical constants and the diameter of the particles. Applicability of the Ergun equation for debris-bed-like particle beds has been investigated by assessing the possibility to evaluate equivalent diameters, i.e., characteristic length allowing correct predictions of linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, by less than 10% in most cases, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter, by about 15%.

  7. Failure Diameter Resolution Study

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-19

    Previously the SURFplus reactive burn model was calibrated for the TATB based explosive PBX 9502. The calibration was based on fitting Pop plot data, the failure diameter and the limiting detonation speed, and curvature effect data for small curvature. The model failure diameter is determined utilizing 2-D simulations of an unconfined rate stick to find the minimum diameter for which a detonation wave propagates. Here we examine the effect of mesh resolution on an unconfined rate stick with a diameter (10mm) slightly greater than the measured failure diameter (8 to 9 mm).

  8. Saltation movement of large spherical particles

    Science.gov (United States)

    Chara, Z.; Dolansky, J.; Kysela, B.

    2017-07-01

    The paper presents experimental and numerical investigations of the saltation motion of a large spherical particle in an open channel. The channel bottom was roughed by one layer of glass rods of diameter 6 mm. The plastic spheres of diameter 25.7 mm and density 1160 kgm-3 were fed into the water channel and theirs positions were viewed by a digital camera. Two light sheets were placed above and under the channel, so the flow was simultaneously lighted from the top and the bottom. Only particles centers of which moved through the light sheets were recorded. Using a 2D PIV method the trajectories of the spheres and the velocity maps of the channel flow were analyzed. The Lattice-Boldzmann Method (LBM) was used to simulate the particle motion.

  9. Impact of two particle measurement techniques on the determination of N95 class respirator filtration performance against ultrafine particles

    International Nuclear Information System (INIS)

    Mostofi, Reza; Noël, Alexandra; Haghighat, Fariborz; Bahloul, Ali; Lara, Jaime; Cloutier, Yves

    2012-01-01

    Highlights: ► Performance evaluation of respirator using two different measurement techniques. ► Impaction and electrical mobility were used to characterize ultrafine particle. ► The experiment was done using ultrafine-sized poly-dispersed aerosols. ► Both techniques show that MPPS would occur at a similar size range. - Abstract: The purpose of this experimental study was to compare two different particle measurement devices; an Electrical Low Pressure Impactor (ELPI) and a Scanning Mobility Particle Sizer (SMPS), to measure the number concentration and the size distribution of NaCl salt aerosols to determine the collection efficiency of filtering respirators against poly disperse aerosols. Tests were performed on NIOSH approved N95 filtering face-piece respirators (FFR), sealed on a manikin head. Ultrafine particles found in the aerosols were also collected and observed by transmission electron microscopy (TEM). According to the results, there is a systematic difference for the particle size distribution measured by the SMPS and the ELPI. It is largely attributed to the difference in the measurement techniques. However, in spite of these discrepancies, reasonably similar trends were found for the number concentration with both measuring instruments. The particle penetration, calculated based on mobility and aerodynamic diameters, never exceeded 5% for any size range measured at constant flow rate of 85 L/min. Also, the most penetrating particle size (MPPS), with the lowest filtration efficiency, would occur at a similar ultrafine size range <100 nm. With the ELPI, the MPPS was at 70 nm aerodynamic diameter, whereas it occurred at 40 nm mobility diameter with the SMPS.

  10. Reconstruction of the size of nuclear fuel particle aerosol by the investigation of a radionuclide behaviour in body of the Chernobyl accident witnesses

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    1996-01-01

    As a result of the Chernobyl NPP (ChNPP) accident aerosol particles of dispersed nuclear fuel were released to the atmosphere. Inhalation of those aerosol became the source of internal exposure for witnesses of the Chernobyl accident. To assess correctly internal doses from a mixture of radionuclides present in air in the form of aerosol particles one mast assign each radionuclide to a certain inhalation class by its chemical speciation in aerosol and define the airborne characteristics (the activity median aerodynamic diameter, AMAD and the standard geometric deviation, fig) of that particular aerosol. Moreover, information on any particular radionuclide is useless for other components since, in such a mixture, the radionuclides are generally independent and may belong to different particles. On the contrary, all nuclear fuel particle (NFP) radionuclides belong to the same particle, being matrix-bound. The collective behaviour of the matrix-bound radionuclides in the environment and in the human barrier organs makes it possible to spread to the aerosol of NFP any estimates of AMAD and β g obtained for any particular NFP radionuclide. This is principal feature of NFP aerosol as distinguished from a mere mixture of aerosol particles carry different radionuclides. (author)

  11. Exploration of the optimal diameter cut-off value in patients with nonfunctional adrenal tumor suitable for surgery

    Directory of Open Access Journals (Sweden)

    Dan-dan LIU

    2016-12-01

    Full Text Available Objective  To analyze the pathology of the patients with nonfunctional adrenal tumor (NFA, and explore the optimal diameter cut-off value. Methods  The clinical data of 243 patients with NFA, evaluated in the Department of Endocrinology and operated in the Department of Urology of General Hospital of Chinese PLA from Feb. 1996 to Jan. 2016, were collected. The patients were divided into two groups according to pathology: those in real demand of surgery were classified to the surgery-need group (n=57, while the others were categorized as the surgery-unwanted group (n=186. The general situation, pathological type and tumor diameter of the two groups and the factors affecting the surgery were analyzed, and the ROC curve was used to explore the optimal surgery cut-off value, which represents the maximum value of the sum of sensitivity and specificity. Results  Of the 57 patients in surgery-need group (27 males and 30 females, the lesions were on the right in 31 cases, on the left in 25 cases, and on bilateral sides in 1 case; the median of lesion diameter was 4.5cm, and the average age was 41.5±12.1 years old. Of the 186 patients in surgery-unwanted group (87 males and 99 females, the lesions were on the right in 99 cases, on the left in 86 cases, and on bilateral sides in 1 case; the median of lesion diameter was 3.0cm, and the average age was 50.6±10.9 years old. Logistic regression revealed that lesion diameter might be a risk factor (OR=1.340, 95%CI 1.266-1.418, P=0.000 and age be a protective factor (OR=0.942, 95%CI 0.929-0.955, P=0.000 for real demand of surgery. The area under the ROC curve (AUC of lesion diameter was 0.757(95%CI 0.681-0.833. The optimal cut-off value was 4.1cm (sensitivity 60.7% and specificity 83.0%. Conclusions  Younger patients with bigger lesion diameter may have greater possibility for surgery. The optimal surgery cut-off value of the lesion diameter is 4.1cm. DOI: 10.11855/j.issn.0577-7402.2016.11.11

  12. Relationships between the Brook Street Terrane and Median Tectonic Zone (Median Batholith) : evidence from Jurassic conglomerates

    International Nuclear Information System (INIS)

    Tulloch, A.J.; Kimbrough, D.L.; Landis, C.A.; Mortimer, N.; Johnston, M.R.

    1999-01-01

    U-Pb zircon ages of 237-180 Ma and c. 280 Ma of seven granitoid clasts from the Rainy River Conglomerate which lies within the eastern Median Tectonic Zone (Median Batholith) in Nelson, and the Barretts Formation of the Brook Street Terrane in Southland, constrain the depositional ages of both units to be no older than c. 180-200 Ma (Early Jurassic). The minimum age of the Rainy River Conglomerate is constrained by the 147 +2 -1 Ma (Latest Jurassic) emplacement age of the One Mile Gabbronorite (new name: previously western Buller Diorite). The ages and chemistry of five of the granitoid clasts are broadly compatible with derivation from rocks that are now represented by Triassic plutons of the Median Tectonic Zone (Median Batholith), although ages as young as 180 Ma are slightly outside the range of the latter as currently exposed in New Zealand. The age (273-290 Ma, 237 +/- 3 Ma) and chemistry of the other two clasts (one each from Rainy River Conglomerate and Barretts Formation) suggest derivation from the Brook Street Terrane. Similarity in stratigraphic age, depositional characteristics, granitoid clast ages and composition between Rainy River Conglomerate and Barretts Formation suggests that they are broadly correlative and collectively overlapped a combined Brook Street Terrane - Median Batholith (MTZ) before the Late Jurassic (147 +2 -1 Ma). Sedimentary overlap may also have continued across to Middle Jurassic conglomeratic strata in the Murihiku Terrane to the east of the Brook Street Terrane. A U-Pb zircon age of 261 +/- 2 Ma is reported for Pourakino Trondhjemite of the Brook Street Terrane. (author). 56 refs., 10 figs., 4 tabs

  13. Median and ulnar neuropathies in university guitarists.

    Science.gov (United States)

    Kennedy, Rachel H; Hutcherson, Kimberly J; Kain, Jennifer B; Phillips, Alicia L; Halle, John S; Greathouse, David G

    2006-02-01

    Descriptive study. To determine the presence of median and ulnar neuropathies in both upper extremities of university guitarists. Peripheral nerve entrapment syndromes of the upper extremities are well documented in musicians. Guitarists and plucked-string musicians are at risk for entrapment neuropathies in the upper extremities and are prone to mild neurologic deficits. Twenty-four volunteer male and female guitarists (age range, 18-26 years) were recruited from the Belmont University School of Music and the Vanderbilt University Blair School of Music. Individuals were excluded if they were pregnant or had a history of recent upper extremity or neck injury. Subjects completed a history form, were interviewed, and underwent a physical examination. Nerve conduction status of the median and ulnar nerves of both upper extremities was obtained by performing motor, sensory, and F-wave (central) nerve conduction studies. Descriptive statistics of the nerve conduction study variables were computed using Microsoft Excel. Six subjects had positive findings on provocative testing of the median and ulnar nerves. Otherwise, these guitarists had normal upper extremity neural and musculoskeletal function based on the history and physical examinations. When comparing the subjects' nerve conduction study values with a chart of normal nerve conduction studies values, 2 subjects had prolonged distal motor latencies (DMLs) of the left median nerve of 4.3 and 4.7 milliseconds (normal, DMLs are compatible with median neuropathy at or distal to the wrist. Otherwise, all electrophysiological variables were within normal limits for motor, sensory, and F-wave (central) values. However, comparison studies of median and ulnar motor latencies in the same hand demonstrated prolonged differences of greater than 1.0 milliseconds that affected the median nerve in 2 additional subjects, and identified contralateral limb involvement in a subject with a prolonged distal latency. The other 20

  14. [Aerodynamic focusing of particles and heavy molecules

    International Nuclear Information System (INIS)

    de la Mora, J.F.

    1990-01-01

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m p some 3.6 x 10 5 times larger than the molecular mass m of the carrier gas (diameters above some 100 angstrom), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 μm. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5√(m/m p ) times the nozzle diameter d n . But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs

  15. Filtration of submicrometer particles by pelagic tunicates.

    Science.gov (United States)

    Sutherland, Kelly R; Madin, Laurence P; Stocker, Roman

    2010-08-24

    Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d approximately 0.1 microm) at low velocity (U = 1.6 +/- 0.6 cmxs(-1), mean +/- SD) and is thus a low Reynolds-number (Re approximately 10(-3)) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger than the mesh spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for realistic oceanic particle-size distributions shows that submicron particles, due to their higher abundances, are encountered at higher rates (particles per time) than larger particles. Data from feeding experiments with 0.5-, 1-, and 3-microm diameter polystyrene spheres corroborate these findings. Although particles larger than 1 microm (e.g., flagellates, small diatoms) represent a larger carbon pool, smaller particles in the 0.1- to 1-microm range (e.g., bacteria, Prochlorococcus) may be more quickly digestible because they present more surface area, and we find that particles smaller than the mesh size (1.4 microm) can fully satisfy salp energetic needs. Furthermore, by packaging submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially change particle-size spectra and increase downward fluxes in the ocean.

  16. Synthesis of Cationic Core-Shell Latex Particles

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2006-01-01

    Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells

  17. Air bubble-induced detachment of polystyrene particles with different sizes from collector surfaces in a parallel plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; van der Mei, HC; Busscher, HJ

    2001-01-01

    Particle size was found to be an important factor in air bubble-induced detachment of colloidal particles from collector surfaces in a parallel plate flow chamber and generally polystyrene particles with a diameter of 806 nm detached less than particles with a diameter of 1400 nm. Particle

  18. Observations of the vertical concentrations of aerosol particles in the boundary layer by means of tethered balloon method

    Energy Technology Data Exchange (ETDEWEB)

    Ishioka, Futoshi; Lee, D.I; Taniguchi, Takashi; Kikuchi,Katsuhiro

    1988-09-30

    In general, it is difficult to accurately understand the behavior of aerosol particles in the boundary layer above urban areas because aerosol sources are influenced by time-dependent factors and local climate. To overcome this difficulty, a particle counter which can count Mie particles with diameters of 0.3 /mu/m or more in five diameter ranges was installed on a large tehered balloon. With this method, the vertical distribution of aerosol concentration was measured in several areas different in meteorological condition, and the dependence of the particle behavior on particle diameter was studied. As a result, it has been revealed that the results of the observations explained above agree with the results of studies conducted in the past, but that dependence on particle diameter is not significant. 37 references, 21 figures, 1 table.

  19. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  20. The influence of human physical activity and contaminated clothing type on particle resuspension.

    Science.gov (United States)

    McDonagh, A; Byrne, M A

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to "contaminate" the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Device for the separation of spherically shaped fuel or breeding material particles for nuclear reactors

    International Nuclear Information System (INIS)

    Gyarmati, E.; Muenzer, R.

    1974-01-01

    Spherical fuel or blanket material particles are graded by diameter. The particles, which are present in a loose pebble bed, are singulized by means of a drum and by pneumatic suction. Next they pass through a drop section past an optical barrier which generates pulses corresponding to the number of particles. The particles then run through an eccentric wheel. This generates an electric voltage across a potentiometer which corresponds to the size of the particles. The slider of the potentiometer is connected with the axle of the eccentric wheel whose distance to the wall of the drop canal varies between the largest and the smallest possible diameters of the particles over half a revolution. Another barrier downstream of the eccentric wheel causes the particles to be graded in different containers in accordance with their diameters determined in this way. (DG) [de

  2. Dryout heat flux experiments with deep heterogeneous particle bed

    International Nuclear Information System (INIS)

    Lindholm, I.; Holmstroem, S.; Miettinen, J.; Lestinen, V.; Hyvaerinen, J.; Pankakoski, P.; Sjoevall, H.

    2006-01-01

    A test facility has been constructed at Technical Research Centre of Finland (VTT) to simulate as accurately as possible the ex-vessel core particle bed in the conditions of Olkiluoto nuclear power plant. The STYX particle bed reproduces the anticipated depth of the bed and the size range of particles having irregular shape. The bed is immersed in water, creating top flooding conditions, and internally heated by an array of electrical resistance heating elements. Dryout tests have been successfully conducted at 0.1-0.7 MPa pressure for both uniformly mixed and stratified bed geometries. In all tests, including the stratified ones, the dry zone first formed near the bottom of the bed. The measured dryout heat fluxes increased with increasing pressure, from 232 kW/m 2 at near atmospheric pressure to 451 kW/m 2 at 0.7 MPa pressure. The data show some scatter even for the uniform bed. The tests with the stratified bed indicate a clear reduction of critical power due to the presence of a layer of small particles on top of the uniform bed. Comparison of data with various critical power (dryout heat flux) correlations for porous media shows that the most important parameter in the models is the effective particle diameter. Adiabatic debris bed flow resistance measurements were conducted to determine the most representative particle diameter. This diameter is close, but not equal, to the particle number-weighted average diameter of the bed material. With it, uniform bed data can be calculated to within an accuracy of 3-28% using Lipinski's 0-D model. In the stratified bed experiments, it appears that the top layer was partially fluidized, hence the measured critical power was significantly higher than calculated. Future experiments are being planned with denser top layer material to eliminate non-prototypic fluidization

  3. A comparative study of the ignition and burning characteristics of after burning aluminum and magnesium particles

    International Nuclear Information System (INIS)

    Lim, Ji Hwan; Lee, Sang Hyup; Yoon, Woong Sup

    2014-01-01

    Ignition and the burning of air-born single aluminum and magnesium particles are experimentally investigated. Particles of 30 to 106 μm-diameters were electrodynamically levitated, ignited, and burnt in atmospheric air. The particle combustion evolution was recorded by high-speed cinematography. Instant temperature and thermal radiation intensity were measured using two-wavelength pyrometry and photomultiplier tube methods. Ignition of the magnesium particle is prompt and substantially advances the aluminum particle by 10 ms. Burning time of the aluminum particles is extended 3 to 5 times longer than the magnesium particles. Exponents of a power-law fit of the burning rates are 1.55 and 1.24 for aluminum and magnesium particles, respectively. Flame temperature is slightly lower than the oxide melting temperature. For the aluminum, dimensionless flame diameter is inert to the initial particle size, but for the magnesium inversely proportional to the initial diameter.

  4. A comparative study of the ignition and burning characteristics of after burning aluminum and magnesium particles

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji Hwan; Lee, Sang Hyup; Yoon, Woong Sup [Yonsei University, Seoul (Korea, Republic of)

    2014-10-15

    Ignition and the burning of air-born single aluminum and magnesium particles are experimentally investigated. Particles of 30 to 106 μm-diameters were electrodynamically levitated, ignited, and burnt in atmospheric air. The particle combustion evolution was recorded by high-speed cinematography. Instant temperature and thermal radiation intensity were measured using two-wavelength pyrometry and photomultiplier tube methods. Ignition of the magnesium particle is prompt and substantially advances the aluminum particle by 10 ms. Burning time of the aluminum particles is extended 3 to 5 times longer than the magnesium particles. Exponents of a power-law fit of the burning rates are 1.55 and 1.24 for aluminum and magnesium particles, respectively. Flame temperature is slightly lower than the oxide melting temperature. For the aluminum, dimensionless flame diameter is inert to the initial particle size, but for the magnesium inversely proportional to the initial diameter.

  5. Size distribution of airbone particulates in monazite dust

    International Nuclear Information System (INIS)

    Cunha, K.M.A.D. da; Carvalho, S.M.M.; Leite, C.V.B.; Baptista, G.B.; Paschoa, A.S.

    1988-01-01

    A six-stage cascade impactor was used to collect airborne dust particulates in the grinding area of a Monazite sepation plant. The samples were analysis using particle-induced X-ray emission (PIXE) to determine the elemental concentrations, with special attention to thorium and uranium concentrations. The particle size distribution of the samples containing thorium and uranium were determined. The mass median aerodynamic diameter (MMAD) obtained was 1.15 μm for both elements. The activity median aerodynamic diameter (AMAD) was estimated based on the MMAD. The results are compared with ICRP recommendations for derived air concentrations (DAC) for thorium and uranium in restricted areas [pt

  6. Instability of Reference Diameter in the Evaluation of Stenosis After Coronary Angioplasty: Percent Diameter Stenosis Overestimates Dilative Effects Due to Reference Diameter Reduction

    International Nuclear Information System (INIS)

    Hirami, Ryouichi; Iwasaki, Kohichiro; Kusachi, Shozo; Murakami, Takashi; Hina, Kazuyoshi; Matano, Shigeru; Murakami, Masaaki; Kita, Toshimasa; Sakakibara, Noburu; Tsuji, Takao

    2000-01-01

    Purpose: To examine changes in the reference segment luminal diameter after coronary angioplasty.Methods: Sixty-one patients with stable angina pectoris or old myocardial infarction were examined. Coronary angiograms were recorded before coronary angioplasty (pre-angioplasty) and immediately after (post-angioplasty), as well as 3 months after. Artery diameters were measured on cine-film using quantitative coronary angiographic analysis.Results: The diameters of the proximal segment not involved in the balloon inflation and segments in the other artery did not change significantly after angioplasty, but the reference segment diameter significantly decreased (4.7%). More than 10% luminal reduction was observed in seven patients (11%) and more than 5% reduction was observed in 25 patients (41%). More than 5% underestimation of the stenosis was observed in 22 patients (36%) when the post-angioplasty reference diameter was used as the reference diameter, compared with when the pre-angioplasty measurement was used and more than 10% underestimation was observed in five patients (8%).Conclusion: This study indicated that evaluation by percent diameter stenosis, with the reference diameter from immediately after angioplasty, overestimates the dilative effects of coronary angioplasty, and that it is thus better to evaluate the efficacy of angioplasty using the absolute diameter in addition to percent luminal stenosis

  7. Application of a narrow-diameter implant in a limited space

    Directory of Open Access Journals (Sweden)

    Chia-Yun Tsai

    2010-06-01

    Full Text Available This report presents a case of inadequate space distribution after orthodontic treatment, when a narrow-diameter implant was placed in a limited mandibular anterior space (ridge and prosthetic. A 26-year-old female patient presented with a purulent discharge from the mandibular right posterior area. Radiographic and clinical evaluations revealed a four-unit bridge spanning teeth 42 to 43 and acute apical periodontitis with root resorption around tooth 42. After careful evaluation, tooth 42 was extracted, and orthodontic treatment was performed to align the posterior teeth and create a dimensionally appropriate space between teeth 41 and 43. A 3i MicroMiniplant with dimensions of 3.25 mm (diameter × 11.5 mm was implanted in the edentulous area of tooth 42 because of the small size of tooth 42. Autogenous bone particles were placed on the buccal crestal defect, and a healing abutment was attached. After an 8-month healing phase, a final impression was made and an all-ceramic crown was delivered. This case demonstrates that osseous sites with significant dimensional space limitations can be successfully utilized to receive and integrate a narrow-diameter implant that will satisfy esthetic, phonetic and functional requirements.

  8. Optimization of solid state fermentation of sugar cane by Aspergillus niger considering particles size effect

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, J.; Rodriguez, L.J.A.; Delgado, G. (Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar (ICIDCA), La Habana (Cuba)); Espinosa, M.E. (Centro Nacional de Investigaciones Cientificas, La Habana (Cuba))

    1991-01-01

    The protein enrichment of sugar cane by solid state fermentation employing Aspergillus niger was optimized in a packed bed column using a two Factor Central Composit Design {alpha} = 2, considering as independent factors the particle diameter corresponding to different times of grinding for a sample and the air flow rate. It was significative for the air flow rate (optimum 4.34 VKgM) and the particle diameter (optimum 0.136 cm). The average particle size distribution, shape factor, specific surface, volume-surface mean diameter, number of particles, real and apparent density and holloweness for the different times of grinding were determined, in order to characterize the samples. (orig.).

  9. Reduction of nanowire diameter beyond lithography limits by controlled catalyst dewetting

    Science.gov (United States)

    Calahorra, Yonatan; Kerlich, Alexander; Amram, Dor; Gavrilov, Arkady; Cohen, Shimon; Ritter, Dan

    2016-04-01

    Catalyst assisted vapour-liquid-solid is the most common method to realize bottom-up nanowire growth; establishing a parallel process for obtaining nanoscale catalysts at pre-defined locations is paramount for further advancement towards commercial nanowire applications. Herein, the effect of a selective area mask on the dewetting of metallic nanowire catalysts, deposited within lithography-defined mask pinholes, is reported. It was found that thin disc-like catalysts, with diameters of 120-450 nm, were transformed through dewetting into hemisphere-like catalysts, having diameters 2-3 fold smaller; the process was optimized to about 95% yield in preventing catalyst splitting, as would otherwise be expected due to their thickness-to-diameter ratio, which was as low as 1/60. The catalysts subsequently facilitated InP and InAs nanowire growth. We suggest that the mask edges prevent surface migration mediated spreading of the dewetted metal, and therefore induce its agglomeration into a single particle. This result presents a general strategy to diminish lithography-set dimensions for NW growth, and may answer a fundamental challenge faced by bottom-up nanowire technology.

  10. Determination of thorium and uranium particles in monazite airborne

    International Nuclear Information System (INIS)

    Cunha, K.M. de A.D. da

    1988-01-01

    The work is the determination of the Mass Median Aerodynamic Diameter of Airborne particles of Th and U, produced during the milling of monazite in Monozite Sand Plants. The air samples was collected using a Cascade Impactor from Delron DCI-6 with a flux of 12,5 1/min and cut-off diametes of 0,5, 1,0, 4,0, 8,0 and 16,0 μm. Each stage of the cascate impactor was analysed by measuring the X rays induced in collision with 2 MeV protons acellereted by a 4 MV Van de Graaff acceletor located at University Catolic, PUC, RJ. The MMAD found for Th and U was of 1,15 μm with a geometric standard desviation of 2,0. Take in acount that there are more thorium than uranium in the brazilian monazite, and the 232 Th 238 U are thr principal isotopes at the Th and U natural radioative decay series, we considered the mass and the activity distribution as equal. The mean concentration of Th (17,0 Bq/m 3 ) record in the air was 42% above 3/10 of international limit for concentration of oxides of thorium in the air, while the concentration of U remaind below 1/10 of the limit for concentration of U 3 O 8 in the air. (author) [pt

  11. Filtração de aerossóis em altas temperaturas utilizando filtros cerâmicos de dupla camada: influência do diâmetro de partícula na eficiência de coleta Filtration of aerosols at high temperatures using a double layer ceramic filter: influence of the particle diameter in the collection efficiency

    Directory of Open Access Journals (Sweden)

    N. L de Freitas

    2004-12-01

    Full Text Available Neste trabalho foram utilizados filtros cerâmicos para filtração de aerossóis, constituídos por dupla camada, onde a primeira camada é formada por um suporte celular de elevada porosidade com diâmetro de poro controlado e a segunda formada por uma película filtrante. A camada suporte foi obtida pela técnica de replicação cerâmica de espuma poliuretânica, por meio da impregnação de uma suspensão aquosa de Al2O3. Foram utilizados suportes de 45 e 75 poros/polegada. A membrana filtrante (Al2O3 e argila foi a mesma para ambos os suportes, sendo composta por uma massa granular cerâmica de baixa porosidade. Os experimentos de filtração foram realizados em temperaturas de 25 a 700 ºC onde mediu-se a capacidade dos filtros de limpar um aerossol de partículas finas polidispersas (diâmetro mediano de 4,6 µm e calculou-se a eficiência de coleta para diâmetros de partícula entre 0,4 e 8,5 µm. Os resultados mostraram que a eficiência diminuiu com o aumento da temperatura e aumentou com o diâmetro da partícula.In this work, ceramic filters were used for aerosol filtration. The filters were constituted by two layers, where the first layer was formed by of a highly porous ceramic support with controlled pore size and the second layer constituted by a fine membrane. The ceramic support was obtained from polymeric foams utilizing a technique of alumina impregnation. The supports had 45 and 75 pores per inch (ppi. The membrane (a mixture of alumina and clay was the same for the two supports, with much smaller pore sizes. The filtration experiments were accomplished at temperatures varying from 25 to 700 ºC, where the ability of the filters for cleaning an aerosol constituted by fine particles (median diameter of 4.6 µm was measured. The collection efficiency was calculated for particle diameters between 0.4 and 8.5 µm. The results showed that the collection efficiency decreased with the increase of the temperature and increased

  12. Implementation of design of experiments approach for the micronization of a drug with a high brittle-ductile transition particle diameter.

    Science.gov (United States)

    Yazdi, Ashkan K; Smyth, Hugh D C

    2017-03-01

    To optimize air-jet milling conditions of ibuprofen (IBU) using design of experiment (DoE) method, and to test the generalizability of the optimized conditions for the processing of another non-steroidal anti-inflammatory drug (NSAID). Bulk IBU was micronized using an Aljet mill according to a circumscribed central composite (CCC) design with grinding and pushing nozzle pressures (GrindP, PushP) varying from 20 to 110 psi. Output variables included yield and particle diameters at the 50th and 90th percentile (D 50 , D 90 ). Following data analysis, the optimized conditions were identified and tested to produce IBU particles with a minimum size and an acceptable yield. Finally, indomethacin (IND) was milled using the optimized conditions as well as the control. CCC design included eight successful runs for milling IBU from the ten total runs due to powder "blowback" from the feed hopper. DoE analysis allowed the optimization of the GrindP and PushP at 75 and 65 psi. In subsequent validation experiments using the optimized conditions, the experimental D 50 and D 90 values (1.9 and 3.6 μm) corresponded closely with the DoE modeling predicted values. Additionally, the optimized conditions were superior over the control conditions for the micronization of IND where smaller D 50 and D 90 values (1.2 and 2.7 μm vs. 1.8 and 4.4 μm) were produced. The optimization of a single-step air-jet milling of IBU using the DoE approach elucidated the optimal milling conditions, which were used to micronize IND using the optimized milling conditions.

  13. Considerations over the floating speed of a particle in vacuum pneumatic conveying sytems in flour milling

    Directory of Open Access Journals (Sweden)

    Tanase Tanase

    2016-06-01

    Full Text Available The present paper is a theoretical study aiming for to assess the influence of the different factors such as deviation from the spherical form of a particle, specific mass load of the pneumatic conveying pipe and the report between the particle diameter and the pipe diameter, over the floating speed of a particle. For a non-spherical particle, the Magnus force is affecting the floating speed of the given particle by increasing or decreasing it. The equation deducted within the present study, describes the movement of a particle or a fluid swirl under the resultant force with emphasis on the evaluation of the nature and magnitude of the Magnus force. The same Magnus Force explains the movement of the swirls in fluids, as for the wind swirls (hurricane or water swirls. The next part of the study relate the report between the particle diameter and the pipe diameter as well as the specific loads of the pipe, to the same floating speed. A differentiation in denominating the floating speed is proposed as well as that for the non-spherical particle the floating speed should be a domain, rather than a single value.

  14. Synthesis of Brushite Particles in Reverse Microemulsions of the Biosurfactant Surfactin

    Directory of Open Access Journals (Sweden)

    Young-Fo Chang

    2011-06-01

    Full Text Available In this study the “green chemistry” use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000. The particle sizes were found to be in the 16–200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter and needle-like (8–14 nm in diameter and 80–100 nm in length noncalcinated particles. However, the calcinated products included nanospheres (50–200 nm in diameter, oval (~300 nm in diameter and nanorod (200–400 nm in length particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles.

  15. Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin.

    Science.gov (United States)

    Maity, Jyoti Prakash; Lin, Tz-Jiun; Cheng, Henry Pai-Heng; Chen, Chien-Yen; Reddy, A Satyanarayana; Atla, Shashi B; Chang, Young-Fo; Chen, Hau-Ren; Chen, Chien-Cheng

    2011-01-01

    In this study the "green chemistry" use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16-200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8-14 nm in diameter and 80-100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50-200 nm in diameter), oval (~300 nm in diameter) and nanorod (200-400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles.

  16. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.

    Science.gov (United States)

    Ben Haj Slama, Rafika; Gilles, Bruno; Ben Chiekh, Maher; Béra, Jean-Christophe

    2017-04-01

    This research evaluates the use of Particle Image Velocimetry (PIV) technique for characterizing acoustic streaming flow generated by High Intensity Focused Ultrasound (HIFU). PIV qualification tests, focusing on the seeding particle size (diameter of 5, 20 and 50μm) were carried out in degassed water subjected to a focused field of 550kHz-frequency with an acoustic pressure amplitude of 5.2, 10.5 and 15.7bar at the focus. This study shows that the ultrasonic field, especially the radiation force, can strongly affect seeding particle behavior. Large particles (50μm-diameter) are repelled from the focal zone and gathered at radiation pressure convergence lines on either side of the focus. The calculation of the acoustic radiation pressure applied on these particles explains the observed phenomenon. PIV measurements do not, therefore, properly characterize the streaming flow in this case. On the contrary, small particles (5μm-diameter) velocity measurements were in good agreement with the Computational Fluid Dynamics (CFD) simulations of the water velocity field. A simple criterion approximating the diameter threshold below which seeding particles are qualified for PIV in presence of focused ultrasound is then proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Hygroscopic behaviour of aerosol particles emitted from biomass fired grate boilers

    Energy Technology Data Exchange (ETDEWEB)

    Rissler, Jenny; Swietlicki, Erik [Lund Univ. (Sweden). Div. of Nuclear Physics; Pagels, Joakim; Wierzbicka, Aneta; Bohgard, Mats [Lund Univ. (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Bioenergy Technology

    2005-02-01

    This study focuses on the hygroscopic properties of sub-micrometer aerosol particles emitted from two small-scale district heating combustion plants (1 and 1.5 MW) burning two types of biomass fuels (moist forest residue and pellets). The hygroscopic particle diameter growth was measured when taken from a dehydrated to a humidified state for particle diameters between 30-350 nm (dry size) using a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA). Particles of a certain dry size all showed similar hygroscopic growth and the average diameter growth at RH=90% for 110/100 nm particles was 1.68 in the 1 MW boiler, and 1.52 in the 1.5 MW boiler. These growth factors are considerably higher in comparison to other combustion aerosol particles such as diesel exhaust, and are the result of the efficient combustion and the high concentration of alkali species in the fuel. The observed water uptake could be explained using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and a chemical composition of only potassium salts, taken from an Ion Chromatography analysis of filter sample (KCl, K{sub 2}SO{sub 4}, and K{sub 2}CO{sub 3}). Agglomerated particles collapsed and became more spherical when initially exposed to a moderately high relative humidity. When diluting with hot particle-free air, the fractal-like structures remained intact until humidified in the HTDMA. A method is presented to by which to estimate the fractal dimension of the agglomerated combustion aerosol and correct the measured mobility diameter hygroscopic growth to the more useful property volume growth. The fractal dimension was estimated to be {approx}2.5.

  18. Hygroscopic behaviour of aerosol particles emitted from biomass fired grate boilers

    International Nuclear Information System (INIS)

    Rissler, Jenny; Swietlicki, Erik; Pagels, Joakim; Wierzbicka, Aneta; Bohgard, Mats; Strand, Michael; Lillieblad, Lena; Sanati, Mehri

    2005-01-01

    This study focuses on the hygroscopic properties of sub-micrometer aerosol particles emitted from two small-scale district heating combustion plants (1 and 1.5 MW) burning two types of biomass fuels (moist forest residue and pellets). The hygroscopic particle diameter growth was measured when taken from a dehydrated to a humidified state for particle diameters between 30-350 nm (dry size) using a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA). Particles of a certain dry size all showed similar hygroscopic growth and the average diameter growth at RH=90% for 110/100 nm particles was 1.68 in the 1 MW boiler, and 1.52 in the 1.5 MW boiler. These growth factors are considerably higher in comparison to other combustion aerosol particles such as diesel exhaust, and are the result of the efficient combustion and the high concentration of alkali species in the fuel. The observed water uptake could be explained using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and a chemical composition of only potassium salts, taken from an Ion Chromatography analysis of filter sample (KCl, K 2 SO 4 , and K 2 CO 3 ). Agglomerated particles collapsed and became more spherical when initially exposed to a moderately high relative humidity. When diluting with hot particle-free air, the fractal-like structures remained intact until humidified in the HTDMA. A method is presented to by which to estimate the fractal dimension of the agglomerated combustion aerosol and correct the measured mobility diameter hygroscopic growth to the more useful property volume growth. The fractal dimension was estimated to be ∼2.5

  19. Sonochemical synthesis of silica particles and their size control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Min [Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Lee, Chang-Hyun [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Kim, Bonghwan, E-mail: bhkim@cu.ac.kr [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of)

    2016-09-01

    Graphical abstract: - Highlights: • Silica particles were easily prepared by an ultrasound-assisted sol–gel method. • The particle size was controlled by the ammonium hydroxide/water molar ratio. • The size-controlled diameter of silica particles ranged from 40 to 400 nm. • The particles were formed in a relatively short reaction time. - Abstract: Using an ultrasound-assisted sol–gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  20. Taylor dispersion of colloidal particles in narrow channels

    NARCIS (Netherlands)

    Sane, J.; Padding, J.T.; Louis, A.A.

    2015-01-01

    Special issue in Honor of Jean-Pierre Hansen We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there

  1. Automatic particle-size analysis of HTGR nuclear fuel microspheres

    International Nuclear Information System (INIS)

    Mack, J.E.

    1977-01-01

    An automatic particle-size analyzer (PSA) has been developed at ORNL for measuring and counting samples of nuclear fuel microspheres in the diameter range of 300 to 1000 μm at rates in excess of 2000 particles per minute, requiring no sample preparation. A light blockage technique is used in conjunction with a particle singularizer. Each particle in the sample is sized, and the information is accumulated by a multi-channel pulse height analyzer. The data are then transferred automatically to a computer for calculation of mean diameter, standard deviation, kurtosis, and skewness of the distribution. Entering the sample weight and pre-coating data permits calculation of particle density and the mean coating thickness and density. Following this nondestructive analysis, the sample is collected and returned to the process line or used for further analysis. The device has potential as an on-line quality control device in processes dealing with spherical or near-spherical particles where rapid analysis is required for process control

  2. The Particle Number Emission Characteristics of the Diesel Engine with a Catalytic Diesel Particle Filter

    Directory of Open Access Journals (Sweden)

    Li Jia Qiang

    2016-01-01

    Full Text Available Due to their adverse health effects and their abundance in urban areas, diesel exhaust ultrafine particles caused by the aftertreatment devices have been of great concern in the past years. An experiment of particles number emissions was carried out on a high-pressure, common rail diesel engine with catalytic diesel particle filter (CDPF to investigate the impact of CDPF on the number emission characteristics of particles. The results indicated that the conversion rates of CDPF is over 97%. The size distributions of particles are bimodal lognormal distributions downstream CDPF at 1400 r/min and 2300 r/min. CDPF has a lower conversion rates on the nucleation mode particles. The geometric number mean diameters of particles downstream CDPF is smaller than that upstream CDPF.

  3. Time history of diesel particle deposition in cylindrical dielectric barrier discharge reactors

    Energy Technology Data Exchange (ETDEWEB)

    Talebizadeh, P.; Rahimzadeh, H., E-mail: rahimzad@aut.ac.ir [Amirkabir University of Technology, Department of Mechanical Engineering (Iran, Islamic Republic of); Ahmadi, G. [Clarkson University, Department of Mechanical and Aeronautical Engineering (United States); Brown, R. [Queensland University of Technology, Biofuel Engine Research Facility (Australia); Inthavong, K. [RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering (Australia)

    2016-12-15

    Non-thermal plasma (NTP) treatment reactors have recently been developed for elimination of diesel particulate matter for reducing both the mass and number concentration of particles. The role of the plasma itself is obscured by the phenomenon of particle deposition on the reactor surface. Therefore, in this study, the Lagrangian particle transport model is used to simulate the dispersion and deposition of nano-particles in the range of 5 to 500 nm in a NTP reactor in the absence of an electric field. A conventional cylindrical dielectric barrier discharge reactor is selected for the analysis. Brownian diffusion, gravity and Saffman lift forces were included in the simulations, and the deposition efficiencies of different sized diesel particles were studied. The results show that for the studied particle diameters, the effect of Saffman lift is negligible and gravity only affects the motion of particles with a diameter of 500 nm or larger. Time histories of particle transport and deposition were evaluated for one-time injection and a continuous (multiple-time) injection. The results show that the number of deposited particles for one-time injection is identical to the number of deposited particles for multiple-time injections when adjusted with the shift in time. Furthermore, the maximum number of escaped particles occurs at 0.045 s after the injection for all particle diameters. The presented results show that some particle reduction previously ascribed to plasma treatment has ignored contributions from the surface deposition.

  4. Time history of diesel particle deposition in cylindrical dielectric barrier discharge reactors

    International Nuclear Information System (INIS)

    Talebizadeh, P.; Rahimzadeh, H.; Ahmadi, G.; Brown, R.; Inthavong, K.

    2016-01-01

    Non-thermal plasma (NTP) treatment reactors have recently been developed for elimination of diesel particulate matter for reducing both the mass and number concentration of particles. The role of the plasma itself is obscured by the phenomenon of particle deposition on the reactor surface. Therefore, in this study, the Lagrangian particle transport model is used to simulate the dispersion and deposition of nano-particles in the range of 5 to 500 nm in a NTP reactor in the absence of an electric field. A conventional cylindrical dielectric barrier discharge reactor is selected for the analysis. Brownian diffusion, gravity and Saffman lift forces were included in the simulations, and the deposition efficiencies of different sized diesel particles were studied. The results show that for the studied particle diameters, the effect of Saffman lift is negligible and gravity only affects the motion of particles with a diameter of 500 nm or larger. Time histories of particle transport and deposition were evaluated for one-time injection and a continuous (multiple-time) injection. The results show that the number of deposited particles for one-time injection is identical to the number of deposited particles for multiple-time injections when adjusted with the shift in time. Furthermore, the maximum number of escaped particles occurs at 0.045 s after the injection for all particle diameters. The presented results show that some particle reduction previously ascribed to plasma treatment has ignored contributions from the surface deposition.

  5. EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS): REVIEW

    Science.gov (United States)

    Epidemiologic studies support a participation of fine particulate matter (PM) with a diameter of 0.1 to 2.5 microm in the effects of air pollution particles on human health. The ambient fine particle concentrator is a recently developed technology that can enrich the mass of ambi...

  6. Size distribution of radon daughter particles in uranium mine atmospheres

    International Nuclear Information System (INIS)

    George, A.C.; Hinchliffe, L.; Sladowski, R.

    1977-07-01

    An investigation of the particle size distribution and other properties of radon daughters in uranium mines was reported earlier but only summaries of the data were presented. This report consists mainly of tables of detailed measurements that were omitted in the original article. The tabulated data include the size distributions, uncombined fractions and ratios of radon daughters as well as the working levels, radon concentrations, condensation nuclei concentrations, temperature, and relative humidity. The measurements were made in 27 locations in four large underground mines in New Mexico during typical mining operations. The size distributions of the radon daughters were log normal. The activity median diameters ranged from 0.09 μm to 0.3 μm with a mean of 0.17 μm. Geometric standard deviations were from 1.3 to 4 with a mean of 2.7. Uncombined fractions expressed in accordance with the ICRP definition ranged from 0.004 to 0.16 with a mean of 0.04

  7. Size distribution of radon daughter particles in uranium mine atmospheres

    International Nuclear Information System (INIS)

    George, A.C.; Hinchliffe, L.; Sladowski, R.

    1975-01-01

    The size distribution of radon daughters was measured in several uranium mines using four compact diffusion batteries and a round jet cascade impactor. Simultaneously, measurements were made of uncombined fractions of radon daughters, radon concentration, working level, and particle concentration. The size distributions found for radon daughters were log normal. The activity median diameters ranged from 0.09 μm to 0.3 μm with a mean value of 0.17 μm. Geometric standard deviations were in the range from 1.3 to 4 with a mean value of 2.7. Uncombined fractions expressed in accordance with the ICRP definition ranged from 0.004 to 0.16 with a mean value of 0.04. The radon daughter sizes in these mines are greater than the sizes assumed by various authors in calculating respiratory tract dose. The disparity may reflect the widening use of diesel-powered equipment in large uranium mines. (U.S.)

  8. MEDIAN: Wireless broadband LAN for multimedia applications

    NARCIS (Netherlands)

    Vliet, P.J. van

    1998-01-01

    MEDIAN is one of the projects in the mobile domain of the Advanced Communications Technologies and Services (ACTS) programme of the European Commission. The main obiective of the MEDIAN project is to evaluate and implement a high speed Wireless Customer Premises / Local Area Network (WCPN/WLAN)

  9. On Preliminary Test Estimator for Median

    OpenAIRE

    Okazaki, Takeo; 岡崎, 威生

    1990-01-01

    The purpose of the present paper is to discuss about estimation of median with a preliminary test. Two procedures are presented, one uses Median test and the other uses Wilcoxon two-sample test for the preliminary test. Sections 3 and 4 give mathematical formulations of such properties, including mean square errors with one specified case. Section 5 discusses their optimal significance levels of the preliminary test and proposes their numerical values by Monte Carlo method. In addition to mea...

  10. Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection

    Science.gov (United States)

    Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.

    2017-10-01

    A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ˜ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.

  11. Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance

    International Nuclear Information System (INIS)

    Chai, Jiale; Cheng, Qiang; Si, Mengting; Su, Yang; Zhou, Yifan; Song, Jinlin

    2017-01-01

    The spectral selective coating is becoming more and more popular against solar irradiation not only in keeping the coated objects stay cool but also retain the appearance of the objects by reducing the glare of reflected sunlight. In this work a numerical study is investigated to design the double-layer coating with different submicron particles to achieve better performance both in thermal and aesthetic aspects. By comparison, the performance of double-layer coating with TiO_2 and ZnO particles is better than that with single particles. What's more, the particle diameter, volume fraction of particle as well as substrate condition is also investigated. The results show that an optimized double-layer coating with particles should be the one with an appropriate particle diameter, volume fraction and the black substrate. - Highlights: • The double-layer coating has a great influence on both thermal and aesthetic aspects. • The double-layer coating performs better than the uniform one with single particles. • The volume fraction, particle diameter and substrate conditions are optimized.

  12. Measurement of cylindrical particles with phase Doppler anemometry.

    Science.gov (United States)

    Mignon, H; Gréhan, G; Gouesbet, G; Xu, T H; Tropea, C

    1996-09-01

    Light scattering from cylindrical particles has been described with geometric optics. The feasibility of determining the particle diameter with a planar phase Doppler anemometer has been examined by simulations and experiments. In particular, the influence of particle orientation on measurability and measurement accuracy has been investigated. Some recommendations for realizing a practical-measurement instrument have been presented.

  13. Number size distribution of fine and ultrafine fume particles from various welding processes.

    Science.gov (United States)

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  14. Porous metal oxide particles and their methods of synthesis

    Science.gov (United States)

    Chen, Fanglin; Liu, Qiang

    2013-03-12

    Methods are generally disclosed for synthesis of porous particles from a solution formed from a leaving agent, a surfactant, and a soluble metal salt in a solvent. The surfactant congregates to form a nanoparticle core such that the metal salt forms about the nanoparticle core to form a plurality of nanoparticles. The solution is heated such that the leaving agent forms gas bubbles in the solution, and the plurality of nanoparticles congregate about the gas bubbles to form a porous particle. The porous particles are also generally disclosed and can include a particle shell formed about a core to define an average diameter from about 0.5 .mu.m to about 50 .mu.m. The particle shell can be formed from a plurality of nanoparticles having an average diameter of from about 1 nm to about 50 nm and defined by a metal salt formed about a surfactant core.

  15. The toxicity of inhaled particles of 238PuO2 in dogs

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Griffith, W.C. Jr.; Hahn, F.F.; Boecker, B.B.

    1991-01-01

    This study was conducted to determine the toxicity of inhaled 238 PuO 2 in the dog. Inhalation was selected because it is the mostly likely route of human exposure in the event of an accidental airborne release. Of 166 dog in the study, 72 inhaled 1.5μm and 72 inhaled 3.0 μm activity median aerodynamic diameter particles of 238 PuO 2 . Another 24 dogs inhaled the aerosol vector without plutonium. The aerosol exposures resulted in initial pulmonary burdens ranging from 37 to 0.11 and 55.5 to 0.37 kBq of 238 Pu/kg body mass, of 1.5 μm and 3.0 μ, particles, respectively. The particles dissolved slowly resulting in translocation of the Pu to liver, bone and other sites. The dogs were observed for biological effects over their life span. Necropsies were performed at death, and tissues were examined microscopically. The principal late-occurring effects were tumors of the lung, skeleton, and liver. Risk factors estimated for these cancers were 2800 lung cancers/10 4 Gy, 800 liver cancers/10 4 Gy, and 6200 bone cancers/10 4 Gy for dogs. The potential hazard from 238 Pu to humans may include tumors of the lung, bone and liver because of the likelihood of similarity of the dose patterns for the two species. 10 refs., 1 fig., 3 tabs

  16. Residual stresses and critical diameter in vitreous matrix materials; Tensoes residuais e diametro critico em materiais com matrizes vitreas

    Energy Technology Data Exchange (ETDEWEB)

    Mastelaro, Valmor R.; Zanotto, Edgar D. [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais

    1995-12-31

    The present study was undertaken to test the validity of existing models for: i) the residual internal stresses which arise due to thermal and elastic mismatch in duplex systems, and ii) the critical particle diameter for spontaneous cracking. Partially crystallized 1,07 Na{sub 2} O-2 Ca O-3 Si O{sub 2} - 6% P{sub 2} O{sub 5} glasses were studied. The experimental residual stress was in excellent agreement with the calculated value, however, the critical particle diameter, estimated by an energy balance approach, was more than ten times smaller than the experimental value. This discrepancy indicates that the energy model is not applicable in this case. (author) 1 figs., 3 tabs.

  17. Automatic particle-size analysis of HTGR recycle fuel

    International Nuclear Information System (INIS)

    Mack, J.E.; Pechin, W.H.

    1977-09-01

    An automatic particle-size analyzer was designed, fabricated, tested, and put into operation measuring and counting HTGR recycle fuel particles. The particle-size analyzer can be used for particles in all stages of fabrication, from the loaded, uncarbonized weak acid resin up to fully-coated Biso or Triso particles. The device handles microspheres in the range of 300 to 1000 μm at rates up to 2000 per minute, measuring the diameter of each particle to determine the size distribution of the sample, and simultaneously determining the total number of particles. 10 figures

  18. Sugar maple height-diameter and age-diameter relationships in an uneven-aged northern hardwood stand

    Science.gov (United States)

    Laura S. Kenefic; R.D. Nyland

    1999-01-01

    Sugar maple (Acer saccharum Marsh.) height-diameter and age-diameter relationships are explored in a balanced uneven-aged northern hardwood stand in central New York. Results show that although both height and age vary considerably with diameter, these relationships can be described by statistically valid equations. The age-diameter relationship...

  19. Nanoparticle electrostatic loss within corona needle charger during particle-charging process

    International Nuclear Information System (INIS)

    Huang Chenghsiung; Alonso, Manuel

    2011-01-01

    A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.

  20. Evolution of particle composition in CLOUD nucleation experiments

    Directory of Open Access Journals (Sweden)

    H. Keskinen

    2013-06-01

    Full Text Available Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets chamber experiments at CERN (Centre européen pour la recherche nucléaire. The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts. In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid

  1. Iterative Dipole Moment Method for the Dielectrophoretic Particle-Particle Interaction in a DC Electric Field

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2018-01-01

    Full Text Available Electric force is the most popular technique for bioparticle transportation and manipulation in microfluidic systems. In this paper, the iterative dipole moment (IDM method was used to calculate the dielectrophoretic (DEP forces of particle-particle interactions in a two-dimensional DC electric field, and the Lagrangian method was used to solve the transportation of particles. It was found that the DEP properties and whether the connection line between initial positions of particles perpendicular or parallel to the electric field greatly affect the chain patterns. In addition, the dependence of the DEP particle interaction upon the particle diameters, initial particle positions, and the DEP properties have been studied in detail. The conclusions are advantageous in elelctrokinetic microfluidic systems where it may be desirable to control, manipulate, and assemble bioparticles.

  2. Simultaneous on-line size and chemical analysis of gas phase and particulate phase of mainstream tobacco smoke

    International Nuclear Information System (INIS)

    McAughey, J; McGrath, C; Adam, T; Mocker, C; Zimmermann, R

    2009-01-01

    Tobacco smoke is a complex and dynamic physical and chemical matrix in which about 4800 components have been identified. It is known that deposition efficiencies of smoke particles in the lung in the lung (60-80%) are greater than expected for smoke particles of 150-- 250 nm count median diameter (CMD). Various mechanisms have been put forward to explain this enhanced deposition pattern, including coagulation, hygroscopic growth, condensation and evaporation, changes in composition, or changes in inhalation behaviour. This paper represents one of three studies seeking to better quantify smoke chemistry, inhalation behaviour and cumulative particle growth. This information will improve dosimetry estimates in quantitative risk assessment tools as part of a harm reduction process. In this study smoke particle size and chemistry were measured simultaneously in real-time using electrical mobility spectrometry and soft-ionisation, time-of-flight mass spectrometry respectively. Qualitative puff-by-puff resolved yields of three selected compounds (acetaldehyde, phenol, and styrene) are shown and compared with particle number and count median diameter from different smoking intensities and filter ventilation. Yields of chemical analysis, particle diameter and concentration are in good agreement with the intensity of the smoking regime and the dilution of smoke by filter ventilation.

  3. Particle capture by turbulent recirculation zones measured using long-time Lagrangian particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Y.W. [Hong Kong Securities Institute, Department of Professional Education and Training, Central (China); Taylor, A.M.K.P. [Imperial College London, Department of Mechanical Engineering, London (United Kingdom)

    2011-07-15

    We have measured the trajectories of particles into, and around, the recirculation zone formed in water flowing through a sudden pipe expansion with radius ratio 1:3.7, at Reynolds numbers between 5,960 and 41,700 over a range of particle Stokes number (here defined as St=(T{sub f})/({tau} p), where T{sub f} is an appropriate mean or turbulent timescale of the fluid flow and a particle relaxation time, {tau}{sub p},) between 6.2 and 51 and drift parameter between 0.3 and 2.8. The particles were thus weakly inertial but nevertheless heavy with a diameter about an order of magnitude larger than the Kolmogorov scale. Trajectories of particles, released individually into the flow, were taken in a Lagrangian framework by a three-dimensional particle tracking velocimeter using a single 25 Hz framing rate intensified CCD camera. Trajectories are quantified by the axial distribution of the locations of particle axial velocity component reversal and the probability distributions of trajectory angle and curvature. The effect of increasing the drift parameter was to reduce the tendency for particles to enter the recirculation zone. For centreline release, the proportion of particles entering the recirculation zone and acquiring a negative velocity decreased from about 80% to none and from about 66% to none, respectively, as the drift parameter increased from 0.3 to 2.8. Almost half of the particles experienced a relatively large change of direction corresponding to a radius of curvature of their trajectory comparable to, or smaller than, the radius of the downstream pipe. This was due to the interaction between these particles and eddies of this size in the downstream pipe and provides experimental evidence that particles are swept by large eddies into the recirculation zone over 1.0 < Z{sup *} < 2.5, where Z{sup *} is axial distance from the expansion plane normalized by the downstream pipe diameter, which was well upstream of the reattachment point at the wall (Z

  4. Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions.

    Science.gov (United States)

    Peng, Jie; Dong, Wu-Jun; Li, Ling; Xu, Jia-Ming; Jin, Du-Jia; Xia, Xue-Jun; Liu, Yu-Ling

    2015-12-01

    The effect of different high pressure homogenization energy input parameters on mean diameter droplet size (MDS) and droplets with > 5 μm of lipid injectable emulsions were evaluated. All emulsions were prepared at different water bath temperatures or at different rotation speeds and rotor-stator system times, and using different homogenization pressures and numbers of high-pressure system recirculations. The MDS and polydispersity index (PI) value of the emulsions were determined using the dynamic light scattering (DLS) method, and large-diameter tail assessments were performed using the light-obscuration/single particle optical sensing (LO/SPOS) method. Using 1000 bar homogenization pressure and seven recirculations, the energy input parameters related to the rotor-stator system will not have an effect on the final particle size results. When rotor-stator system energy input parameters are fixed, homogenization pressure and recirculation will affect mean particle size and large diameter droplet. Particle size will decrease with increasing homogenization pressure from 400 bar to 1300 bar when homogenization recirculation is fixed; when the homogenization pressure is fixed at 1000 bar, the particle size of both MDS and percent of fat droplets exceeding 5 μm (PFAT 5 ) will decrease with increasing homogenization recirculations, MDS dropped to 173 nm after five cycles and maintained this level, volume-weighted PFAT 5 will drop to 0.038% after three cycles, so the "plateau" of MDS will come up later than that of PFAT 5 , and the optimal particle size is produced when both of them remained at plateau. Excess homogenization recirculation such as nine times under the 1000 bar may lead to PFAT 5 increase to 0.060% rather than a decrease; therefore, the high-pressure homogenization procedure is the key factor affecting the particle size distribution of emulsions. Varying storage conditions (4-25°C) also influenced particle size, especially the PFAT 5 . Copyright

  5. Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stochiometry

    Directory of Open Access Journals (Sweden)

    Fogarty Keir H

    2010-09-01

    Full Text Available Abstract Background Human T-lymphotropic virus type 1 (HTLV-1 is an important human retrovirus that is a cause of adult T-cell leukemia/lymphoma. While an important human pathogen, the details regarding virus replication cycle, including the nature of HTLV-1 particles, remain largely unknown due to the difficulties in propagating the virus in tissue culture. In this study, we created a codon-optimized HTLV-1 Gag fused to an EYFP reporter as a model system to quantitatively analyze HTLV-1 particles released from producer cells. Results The codon-optimized Gag led to a dramatic and highly robust level of Gag expression as well as virus-like particle (VLP production. The robust level of particle production overcomes previous technical difficulties with authentic particles and allowed for detailed analysis of particle architecture using two novel methodologies. We quantitatively measured the diameter and morphology of HTLV-1 VLPs in their native, hydrated state using cryo-transmission electron microscopy (cryo-TEM. Furthermore, we were able to determine HTLV-1 Gag stoichiometry as well as particle size with the novel biophysical technique of fluorescence fluctuation spectroscopy (FFS. The average HTLV-1 particle diameter determined by cryo-TEM and FFS was 71 ± 20 nm and 75 ± 4 nm, respectively. These values are significantly smaller than previous estimates made of HTLV-1 particles by negative staining TEM. Furthermore, cryo-TEM reveals that the majority of HTLV-1 VLPs lacks an ordered structure of the Gag lattice, suggesting that the HTLV-1 Gag shell is very likely to be organized differently compared to that observed with HIV-1 Gag in immature particles. This conclusion is supported by our observation that the average copy number of HTLV-1 Gag per particle is estimated to be 510 based on FFS, which is significantly lower than that found for HIV-1 immature virions. Conclusions In summary, our studies represent the first quantitative biophysical

  6. Estimation of settling velocity of sediment particles in estuarine and coastal waters

    Science.gov (United States)

    Nasiha, Hussain J.; Shanmugam, Palanisamy

    2018-04-01

    A model for estimating the settling velocity of sediment particles (spherical and non-spherical) in estuarine and coastal waters is developed and validated using experimental data. The model combines the physical, optical and hydrodynamic properties of the particles and medium to estimate the sediment settling velocity. The well-known Stokes law is broadened to account for the influencing factors of settling velocity such as particle size, shape and density. To derive the model parameters, laboratory experiments were conducted using natural flaky seashells, spherical beach sands and ball-milled seashell powders. Spectral light backscattering measurements of settling particles in a water tank were made showing a distinct optical feature with a peak shifting from 470-490 nm to 500-520 nm for particle populations from spherical to flaky grains. This significant optical feature was used as a proxy to make a shape determination in the present model. Other parameters experimentally determined included specific gravity (ΔSG) , Corey shape factor (CSF) , median grain diameter (D50) , drag coefficient (Cd) and Reynolds number (Re) . The CSF values considered ranged from 0.2 for flaky to 1.0 for perfectly spherical grains and Reynolds numbers from 2.0 to 105 for the laminar to turbulent flow regimes. The specific gravity of submerged particles was optically derived and used along with these parameters to estimate the sediment settling velocity. Comparison with the experiment data showed that the present model estimated settling velocities of spherical and non-spherical particles that were closely consistent with the measured values. Findings revealed that for a given D50, the flaky particles caused a greater decrease in settling velocity than the spherical particles which suggests that the particle shape factor has a profound role in influencing the sediment settling velocity and drag coefficients, especially in transitional and turbulent flow regimes. The present model can

  7. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    Science.gov (United States)

    Schütze, Katharina; Wilson, James Charles; Weinbruch, Stephan; Benker, Nathalie; Ebert, Martin; Günther, Gebhard; Weigel, Ralf; Borrmann, Stephan

    2017-10-01

    Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment) from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM) combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM = 3872; SEM = 330) were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air)-1 and varied between 0.65 and 2.3 (mg air)-1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation). Carbon and oxygen are the only detected major elements with an atomic O/C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si/C: 0.010 ± 0.011; S/C: 0.0007 ± 0.0015; Fe/C: 0.0052 ± 0.0074; Cr/C: 0.0012 ± 0.0017; Ni/C: 0.0006 ± 0.0011 (all mean values ± standard deviation).High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between particles collected inside and outside the polar vortex. Based on chemistry and nanostructure

  8. Reduction of nanowire diameter beyond lithography limits by controlled catalyst dewetting

    International Nuclear Information System (INIS)

    Calahorra, Yonatan; Kerlich, Alexander; Gavrilov, Arkady; Cohen, Shimon; Ritter, Dan; Amram, Dor

    2016-01-01

    Catalyst assisted vapour-liquid–solid is the most common method to realize bottom-up nanowire growth; establishing a parallel process for obtaining nanoscale catalysts at pre-defined locations is paramount for further advancement towards commercial nanowire applications. Herein, the effect of a selective area mask on the dewetting of metallic nanowire catalysts, deposited within lithography-defined mask pinholes, is reported. It was found that thin disc-like catalysts, with diameters of 120–450 nm, were transformed through dewetting into hemisphere-like catalysts, having diameters 2–3 fold smaller; the process was optimized to about 95% yield in preventing catalyst splitting, as would otherwise be expected due to their thickness-to-diameter ratio, which was as low as 1/60. The catalysts subsequently facilitated InP and InAs nanowire growth. We suggest that the mask edges prevent surface migration mediated spreading of the dewetted metal, and therefore induce its agglomeration into a single particle. This result presents a general strategy to diminish lithography-set dimensions for NW growth, and may answer a fundamental challenge faced by bottom-up nanowire technology. (paper)

  9. Dual pathology proximal median nerve compression of the forearm.

    LENUS (Irish Health Repository)

    Murphy, Siun M

    2013-12-01

    We report an unusual case of synchronous pathology in the forearm- the coexistence of a large lipoma of the median nerve together with an osteochondroma of the proximal ulna, giving rise to a dual proximal median nerve compression. Proximal median nerve compression neuropathies in the forearm are uncommon compared to the prevalence of distal compression neuropathies (eg Carpal Tunnel Syndrome). Both neural fibrolipomas (Refs. 1,2) and osteochondromas of the proximal ulna (Ref. 3) in isolation are rare but well documented. Unlike that of a distal compression, a proximal compression of the median nerve will often have a definite cause. Neural fibrolipoma, also called fibrolipomatous hamartoma are rare, slow-growing, benign tumours of peripheral nerves, most often occurring in the median nerve of younger patients. To our knowledge, this is the first report of such dual pathology in the same forearm, giving rise to a severe proximal compression of the median nerve. In this case, the nerve was being pushed anteriorly by the osteochondroma, and was being compressed from within by the intraneural lipoma. This unusual case highlights the advantage of preoperative imaging as part of the workup of proximal median nerve compression.

  10. Tire-tread and bitumen particle concentrations in aerosol and soil samples

    DEFF Research Database (Denmark)

    Fauser, Patrik; Tjell, Jens Christian; Mosbæk, Hans

    2002-01-01

    % of the mass of airborne particulate tire debris have aerodynamic diameters smaller than 1 mum. The mean aerodynamic diameter is about I gm for the bitumen particles. This size range enables the possibility for far range transport and inhalation by humans. Soil concentrations in the vicinity of a highway...... indicate an approximate exponential decrease with increasing distance from the road. Constant values are reached after about 5 m for the tire particles and 10 m for the bitumen particles. Concentrations in soil that has not been touched for at least 30 years show a decrease in tire concentration...

  11. Efficient Scalable Median Filtering Using Histogram-Based Operations.

    Science.gov (United States)

    Green, Oded

    2018-05-01

    Median filtering is a smoothing technique for noise removal in images. While there are various implementations of median filtering for a single-core CPU, there are few implementations for accelerators and multi-core systems. Many parallel implementations of median filtering use a sorting algorithm for rearranging the values within a filtering window and taking the median of the sorted value. While using sorting algorithms allows for simple parallel implementations, the cost of the sorting becomes prohibitive as the filtering windows grow. This makes such algorithms, sequential and parallel alike, inefficient. In this work, we introduce the first software parallel median filtering that is non-sorting-based. The new algorithm uses efficient histogram-based operations. These reduce the computational requirements of the new algorithm while also accessing the image fewer times. We show an implementation of our algorithm for both the CPU and NVIDIA's CUDA supported graphics processing unit (GPU). The new algorithm is compared with several other leading CPU and GPU implementations. The CPU implementation has near perfect linear scaling with a speedup on a quad-core system. The GPU implementation is several orders of magnitude faster than the other GPU implementations for mid-size median filters. For small kernels, and , comparison-based approaches are preferable as fewer operations are required. Lastly, the new algorithm is open-source and can be found in the OpenCV library.

  12. Deposition of particle-bound radionuclides in dry weather, fog, rain and snowfall

    International Nuclear Information System (INIS)

    Oberschachtsiek, D.; Sparmacher, H.; Kreh, R.; Adam, M.; Fuelber, K.; Stegger, J.; Bonka, H.

    1992-01-01

    Radionuclides emitted from nuclear plants and installations are transported in dry weather, because of turbulences and sedimentations, to plant parts above ground and near the ground and to other areas, and deposited there. The deposited activity is proportional to the activity concentration near the deposition area. In the case of particle-bound radionuclides it depends on the aerodynamic particle diameter, surface quality and other factors. In a large number of experiments deposition velocity was measured. In fog the particles to which radionuclides are bound grow by coagulation and condensation. The aerosol size spectrum changes with increasing distance from the place of emission. The type of the fog and the form of the emitted spectrum are important factors which influence this process. With normal activity distributions as a function of the aerodynamic particle diameter, the deposition velocity increases with the distance from the place of emission, up to a final value, due to the shift of the spectrum to larger diameters. (orig.) [de

  13. Portfolio optimization using median-variance approach

    Science.gov (United States)

    Wan Mohd, Wan Rosanisah; Mohamad, Daud; Mohamed, Zulkifli

    2013-04-01

    Optimization models have been applied in many decision-making problems particularly in portfolio selection. Since the introduction of Markowitz's theory of portfolio selection, various approaches based on mathematical programming have been introduced such as mean-variance, mean-absolute deviation, mean-variance-skewness and conditional value-at-risk (CVaR) mainly to maximize return and minimize risk. However most of the approaches assume that the distribution of data is normal and this is not generally true. As an alternative, in this paper, we employ the median-variance approach to improve the portfolio optimization. This approach has successfully catered both types of normal and non-normal distribution of data. With this actual representation, we analyze and compare the rate of return and risk between the mean-variance and the median-variance based portfolio which consist of 30 stocks from Bursa Malaysia. The results in this study show that the median-variance approach is capable to produce a lower risk for each return earning as compared to the mean-variance approach.

  14. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  15. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    determine particle size distributions of cloud layers. Depending on how ice particles vary through the cloud, several layers per cloud with relatively uniform properties have been analysed. Preliminary results of the balloon campaign, targeting upper tropospheric, cold cirrus clouds, are presented here. Ice particles in these clouds were predominantly very small, with a median size of measured particles of around 50 µm and about 80 % of all particles below 100 µm in size. The properties of the particle size distributions at temperatures between -36 and -67 °C have been studied, as well as particle areas, extinction coefficients, and their shapes (area ratios). Gamma and log-normal distribution functions could be fitted to all measured particle size distributions achieving very good correlation with coefficients R of up to 0.95. Each distribution features one distinct mode. With decreasing temperature, the mode diameter decreases exponentially, whereas the total number concentration increases by two orders of magnitude with decreasing temperature in the same range. The high concentrations at cold temperatures also caused larger extinction coefficients, directly determined from cross-sectional areas of single ice particles, than at warmer temperatures. The mass of particles has been estimated from area and size. Ice water content (IWC) and effective diameters are then determined from the data. IWC did vary only between 1 × 10-3 and 5 × 10-3 g m-3 at temperatures below -40 °C and did not show a clear temperature trend. These measurements are part of an ongoing study.

  16. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  17. The influence of human physical activity and contaminated clothing type on particle resuspension

    International Nuclear Information System (INIS)

    McDonagh, A.; Byrne, M.A.

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to “contaminate” the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. -- Highlights: • Experimental investigation of the resuspension of hazardous particles from clothing. • Influence of human physical activity

  18. Contribution of ship traffic to aerosol particle concentrations downwind of a major shipping lane

    DEFF Research Database (Denmark)

    Kivekäs, N.; Massling, Andreas; Grythe, H.

    2014-01-01

    at a remote location. We studied the particle number concentration (12 to 490 nm in diameter), the mass concentration (12 to 150 nm in diameter) and number and volume size distribution of aerosol particles in ship plumes for a period of 4.5 months at Hovsore, a coastal site on the western coast of Jutland...... in Denmark. During episodes of western winds, the site is about 50 km downwind of a major shipping lane and the plumes are approximately 1 hour old when they arrive at the site. We have used a sliding percentile-based method for separating the plumes from the measured background values and to calculate...... the ship plume contribution to the total particle number and PM0.15 mass concentration (mass of particles below 150 nm in diameter, converted from volume assuming sphericity) at the site. The method is not limited to particle number or volume concentration, but can also be used for different chemical...

  19. Papillary carcinoma in median aberrant thyroid (ectopic) - case report.

    Science.gov (United States)

    Hebbar K, Ashwin; K, Shashidhar; Deshmane, Vijaya Laxmi; Kumar, Veerendra; Arjunan, Ravi

    2014-06-01

    Median ectopic thyroid may be encountered anywhere from the foramen caecum to the diaphragm. Non lingual median aberrant thyroid (incomplete descent) usually found in the infrahyoid region and malignant transformation in this ectopic thyroid tissue is very rare. We report an extremely rare case of papillary carcinoma in non lingual median aberrant thyroid in a 25-year-old female. The differentiation between a carcinoma arising in the median ectopic thyroid tissue and a metastatic papillary carcinoma from an occult primary in the main thyroid gland is also discussed.

  20. In situ measurement of electrostatic charge and charge distribution on flyash particles in power station exhaust stream

    Energy Technology Data Exchange (ETDEWEB)

    Guang, D.

    1992-01-01

    The electrostatic charges and charge distributions on individual flyash particles were experimentally measured in situ at four power stations in New South Wales and in the laboratory with an Electrostatic Charge Classifier. The global charge of these flyashes was also measured. The electrostatic charge on flyash particles of four power stations was found to be globally native. The median charge on the flyash particles varies linearly with particle diameter for all four flyashes. The electrostatic charge on the Tallawarra flyash particles was found to increase after passage through the air heater having huge metal surface areas, suggesting that triboelectrification was the primary charging mechanism for flyash particles. Distinctly different characteristics of the electrostatic charge, particle size and particle shape were found between the Eraring and the Tallawarra flyashes. The spherical Eraring ash has the highest proportion of lines and positively charged particles, but the lowest global charge level among the four flyashes. In contrast, the Tallawarra flyash has just the opposite. It is the distinct characteristics of the flyashes from Eraring and Tallawarra power stations that are responsible for the significant differences in their baghouse performance. The napping feature on the surface of the filter bags used in the Eraring and Tallawarra power stations provides an upstream surface of low fibre density above the fabric bulk. This feature presents and advantage to highly charged particles, like the Tallawarra flyash particles. Highly charged particles tend to deposit on such an upstream surface resulting in a porous dust cake with much less contact areas with the fabric medium than would otherwise be formed. This cake is easy to remove and provides less resistance to the gas flow. After singeing the naps on the filter bag surface at the Eraring power station, the problems of high pressure drop and retention of dust cake on the bas surface have been resolved.

  1. Robust median estimator in logisitc regression

    Czech Academy of Sciences Publication Activity Database

    Hobza, T.; Pardo, L.; Vajda, Igor

    2008-01-01

    Roč. 138, č. 12 (2008), s. 3822-3840 ISSN 0378-3758 R&D Projects: GA MŠk 1M0572 Grant - others:Instituto Nacional de Estadistica (ES) MPO FI - IM3/136; GA MŠk(CZ) MTM 2006-06872 Institutional research plan: CEZ:AV0Z10750506 Keywords : Logistic regression * Median * Robustness * Consistency and asymptotic normality * Morgenthaler * Bianco and Yohai * Croux and Hasellbroeck Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.679, year: 2008 http://library.utia.cas.cz/separaty/2008/SI/vajda-robust%20median%20estimator%20in%20logistic%20regression.pdf

  2. Particle aerosolisation and break-up in dry powder inhalers 1: evaluation and modelling of venturi effects for agglomerated systems.

    Science.gov (United States)

    Wong, William; Fletcher, David F; Traini, Daniela; Chan, Hak-Kim; Crapper, John; Young, Paul M

    2010-07-01

    This study utilized a combination of computational fluid dynamics (CFD) and standardized entrainment tubes to investigate the influence of turbulence on the break-up and aerosol performance of a model inhalation formulation. Agglomerates (642.8 mum mean diameter) containing 3.91 mum median diameter primary spherical mannitol particles were prepared by spheronisation. A series of entrainment tubes with different Venturi sections were constructed in silico, and the flow pattern and turbulence/impaction parameters were predicted using CFD. The entrainment models were constructed from the in silico model using three-dimensional printing. The aerosol performance of the mannitol was assessed by entraining the agglomerates into the experimental tubes at a series of flow rates and assessing the size distribution downstream of the venturi via in-line laser diffraction. A series of parameters (including Reynolds number (Re), turbulence kinetic energy, turbulence eddy frequency, turbulence length-scale, velocity and pressure drop) were calculated from the CFD simulation. The venturi diameter and volumetric flow rate were varied systematically. The particle size data of the agglomerated powders were then correlated with the CFD measurements. No correlation between turbulence and aerosol performance could be made (i.e. at a Reynolds number of 8,570, the d(0.1) was 52.5 mum +/- 19.7 mum, yet at a Reynolds number of 12,000, the d(0.1) was 429.1 mum +/- 14.8 mum). Lagrangian particle tracking indicated an increase in the number of impactions and the normal velocity component at the wall, with increased volumetric airflow and reduced venturi diameter. Chemical analysis of the mannitol deposited on the walls showed a linear relationship with respect to the theoretical number of impactions (R(2) = 0.9620). Analysis of the relationship between the CFD results and the experimental size data indicated a critical impact velocity was required to initiate agglomerate break

  3. Dual pathology proximal median nerve compression of the forearm.

    Science.gov (United States)

    Murphy, Siun M; Browne, Katherine; Tuite, David J; O'Shaughnessy, Michael

    2013-12-01

    We report an unusual case of synchronous pathology in the forearm- the coexistence of a large lipoma of the median nerve together with an osteochondroma of the proximal ulna, giving rise to a dual proximal median nerve compression. Proximal median nerve compression neuropathies in the forearm are uncommon compared to the prevalence of distal compression neuropathies (eg Carpal Tunnel Syndrome). Both neural fibrolipomas (Refs. 1,2) and osteochondromas of the proximal ulna (Ref. 3) in isolation are rare but well documented. Unlike that of a distal compression, a proximal compression of the median nerve will often have a definite cause. Neural fibrolipoma, also called fibrolipomatous hamartoma are rare, slow-growing, benign tumours of peripheral nerves, most often occurring in the median nerve of younger patients. To our knowledge, this is the first report of such dual pathology in the same forearm, giving rise to a severe proximal compression of the median nerve. In this case, the nerve was being pushed anteriorly by the osteochondroma, and was being compressed from within by the intraneural lipoma. This unusual case highlights the advantage of preoperative imaging as part of the workup of proximal median nerve compression. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Properties of aerosol floating in the air in a nuclear power plant workplace environment

    International Nuclear Information System (INIS)

    Karasawa, H.; Funabashi, M.; Ito, M.

    1992-01-01

    An investigation was carried out on properties of radioactive aerosol floating in the air at several workplaces in nuclear power plant. The principal results are as follows: the aerosol particle size distributions consisted of two particle groups, whose aerodynamic diameters ranged from 4 to 7 microns and from 0.4 to 0.6 microns; the radioactive aerosol particle size distribution were unimodal. The mean activity median aerodynamic diameter (AMAD) was 6 microns, with geometric standard deviation microns; and, the average density of the aerosol was about 2.2g/cm 3 . (author)

  5. A simple analytical model for reactive particle ignition in explosives

    Energy Technology Data Exchange (ETDEWEB)

    Tanguay, Vincent [Defence Research and Development Canada - Valcartier, 2459 Pie XI Blvd. North, Quebec, QC, G3J 1X5 (Canada); Higgins, Andrew J. [Department of Mechanical Engineering, McGill University, 817 Sherbrooke St. West, Montreal, QC, H3A 2K6 (Canada); Zhang, Fan [Defence Research and Development Canada - Suffield, P. O. Box 4000, Stn Main, Medicine Hat, AB, T1A 8K6 (Canada)

    2007-10-15

    A simple analytical model is developed to predict ignition of magnesium particles in nitromethane detonation products. The flow field is simplified by considering the detonation products as a perfect gas expanding in a vacuum in a planar geometry. This simplification allows the flow field to be solved analytically. A single particle is then introduced in this flow field. Its trajectory and heating history are computed. It is found that most of the particle heating occurs in the Taylor wave and in the quiescent flow region behind it, shortly after which the particle cools. By considering only these regions, thereby considerably simplifying the problem, the flow field can be solved analytically with a more realistic equation of state (such as JWL) and a spherical geometry. The model is used to compute the minimum charge diameter for particle ignition to occur. It is found that the critical charge diameter for particle ignition increases with particle size. These results are compared to experimental data and show good agreement. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  6. Numerical and analytical simulation of the production process of ZrO2 hollow particles

    Science.gov (United States)

    Safaei, Hadi; Emami, Mohsen Davazdah

    2017-12-01

    In this paper, the production process of hollow particles from the agglomerated particles is addressed analytically and numerically. The important parameters affecting this process, in particular, the initial porosity level of particles and the plasma gun types are investigated. The analytical model adopts a combination of quasi-steady thermal equilibrium and mechanical balance. In the analytical model, the possibility of a solid core existing in agglomerated particles is examined. In this model, a range of particle diameters (50μm ≤ D_{p0} ≤ 160 μ m) and various initial porosities ( 0.2 ≤ p ≤ 0.7) are considered. The numerical model employs the VOF technique for two-phase compressible flows. The production process of hollow particles from the agglomerated particles is simulated, considering an initial diameter of D_{p0} = 60 μm and initial porosity of p = 0.3, p = 0.5, and p = 0.7. Simulation results of the analytical model indicate that the solid core diameter is independent of the initial porosity, whereas the thickness of the particle shell strongly depends on the initial porosity. In both models, a hollow particle may hardly develop at small initial porosity values ( p disintegrates at high initial porosity values ( p > 0.6.

  7. Polypyrrole-palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst.

    Science.gov (United States)

    Fujii, Syuji; Matsuzawa, Soichiro; Hamasaki, Hiroyuki; Nakamura, Yoshinobu; Bouleghlimat, Azzedine; Buurma, Niklaas J

    2012-02-07

    A range of near-monodisperse, multimicrometer-sized polymer particles has been coated with ultrathin overlayers of polypyrrole-palladium (PPy-Pd) nanocomposite by chemical oxidative polymerization of pyrrole using PdCl(2) as an oxidant in aqueous media. Good control over the targeted PPy-Pd nanocomposite loading is achieved for 5.2 μm diameter polystyrene (PS) particles, and PS particles of up to 84 μm diameter can also be efficiently coated with the PPy-Pd nanocomposite. The seed polymer particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. Laser diffraction studies of dilute aqueous suspensions indicate that the polymer particles disperse stably before and after nanocoating with the PPy-Pd nanocomposite. The Fourier transform infrared (FT-IR) spectrum of the PS particles coated with the PPy-Pd nanocomposite overlayer is dominated by the underlying particle, since this is the major component (>96% by mass). Thermogravimetric and elemental analysis indicated that PPy-Pd nanocomposite loadings were below 6 wt %. The conductivity of pressed pellets prepared with the nanocomposite-coated particles increased with a decrease of particle diameter because of higher PPy-Pd nanocomposite loading. "Flattened ball" morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and a PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed the production of elemental Pd and X-ray photoelectron spectroscopy studies indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. Near-monodisperse poly(methyl methacrylate) particles with diameters ranging between 10 and 19 μm have been also successfully

  8. Median nail dystrophy involving the thumb nail

    Directory of Open Access Journals (Sweden)

    Rahulkrishna Kota

    2016-01-01

    Full Text Available Median canaliform dystrophy of Heller is a rare entity characterized by a midline or a paramedian ridge or split and canal formation in nail plate of one or both the thumb nails. It is an acquired condition resulting from a temporary defect in the matrix that interferes with nail formation. Habitual picking of the nail base may be responsible for some cases. Histopathology classically shows parakeratosis, accumulation of melanin within and between the nail bed keratinocytes. Treatment of median nail dystrophy includes injectable triamcinalone acetonide, topical 0.1% tacrolimus, and tazarotene 0.05%, which is many a times challenging for a dermatologist. Psychiatric opinion should be taken when associated with the depressive, obsessive-compulsive, or impulse-control disorder. We report a case of 19-year-old male diagnosed as median nail dystrophy.

  9. Large window median filtering on Clip7

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K N

    1983-07-01

    Median filtering has been found to be a useful operation to perform on images in order to reduce random noise while preserving edges of objects. However, in some cases, as the resolution of the image increases, so too does the required window size of the filter. For parallel array processors, this leads to problems when dealing with the large amount of data involved. That is to say that there tend to be problems over slow access of data from pixels over a large neighbourhood, lack of available storage of this data during the operation and long computational times for finding the median. An algorithm for finding the median, designed for use on byte wide architecture parallel array processors is presented together with its implementation on Clip7, a scanning array of such processors. 6 references.

  10. Health effects of exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Pihlava, T.; Uuppo, M.; Niemi, S.

    2013-11-01

    This report introduces general information about diesel particles and their health effects. The purpose of this report is to introduce particulate matter pollution and present some recent studies made regarding the health effects of particulate matter. The aim is not to go very deeply into the science, but instead to keep the text understandable for the average layman. Particulate matter is a complex mixture of extremely small particles and liquid droplets. These small particles are made up of a number of components that include for example acids, such as nitrates and sulphates, as well as organic chemicals, metals and dust particles from the soil. Particulate matter comes from several sources, such as transportation emissions, industrial emissions, forest fires, cigarette smoke, volcanic ash and climate variations. Particles are divided into coarse particles with diameters less than 10 ..m, fine particles with diameters smaller than 2.5 ..m and ultra-fine particles with diameters less than 0.1 ..m. The particulate matter in diesel exhaust gas is a highly complex mixture of organic, inorganic, solid, volatile and partly volatile compounds. Many of these particles do not form until they reach the air. Many carcinogenic compounds have been found in diesel exhaust gas and it is considered carcinogenic to humans. Particulate matter can cause several health effects, such as premature death in persons with heart or lung disease, cancer, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function and an increase in respiratory symptoms, such as irritation of the airways, coughing or difficulty breathing. It is estimated that in Finland about 1300 people die prematurely due to particles and the economic loss in the EU due to the health effects of particles can be calculated in the billions. Ultra-fine particles are considered to be the most harmful to human health. Ultrafine particles usually make the most of their quantity and surface area

  11. Soot particles at an elevated site in eastern China during the passage of a strong cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Hongya [State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 (China); Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Shao, Longyi [State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 (China); Zhang, Daizhou, E-mail: dzzhang@pu-kumamoto.ac.jp [Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan)

    2012-07-15

    Atmospheric particles larger than 0.2 {mu}m were collected at the top of Mt. Tai (36.25 Degree-Sign N, 117.10 Degree-Sign E, 1534 m a.s.l.) in eastern China in May 2008 during the passage of a strong cyclone. The particles were analyzed with electron microscopes and characterized by morphology, equivalent diameter and elemental composition. Soot particles with coating (coated soot particles) and those without apparent coating (naked soot particles) were predominant in the diameter range smaller than 0.6 {mu}m in all samples. The number-size distribution of the relative abundance of naked soot particles in the prefrontal air was similar to that in the postfrontal air and their size modes were around 0.2-0.3 {mu}m. However, the distribution of inclusions of coated soot particles showed a mode in the range of 0.1-0.3 {mu}m. The coating degree of coated soot particles, which was defined by the ratio of the diameter of inclusion to the diameter of particle body, showed a mode around 0.5 with the range of 0.3-0.6. These results indicate that the status of soot particles in the prefrontal and postfrontal air was similar although air pollution levels were dramatically different. In addition, the relative abundance of accumulation mode particles increased with the decrease of soot particles after the front passage. - Highlights: Black-Right-Pointing-Pointer Particles at an elevated site in eastern China in a strong cyclone were studied. Black-Right-Pointing-Pointer Aged status of soot particles in the prefrontal and postfrontal air was similar. Black-Right-Pointing-Pointer Soot particles in elevated layers could be considered as aged ones.

  12. Liquid nitrogen enhancement of alpha particle tracks in a polycarbonate detector

    International Nuclear Information System (INIS)

    Pilione, L.J.

    1977-01-01

    Makrofol-E polycarbonate detectors were exposed to 1 to 3 MeV alpha particles and subsequently immersed in liquid nitrogen for various periods of time. The influence of the liquid nitrogen on the track recording properties of the detector has been found by measuring the track densities and diameters. Track densities increase with immersion time with a maximum gain of approximately 9% after 1200 min in liquid nitrogen. Track enhancement decreases with waiting time between the end of alpha particle exposure and the beginning of liquid nitrogen immersion. Track diameters decrease with time after passage of the particles and this process is accelerated by immersion in liquid nitrogen. (author)

  13. Thoracic and abdominal aortic diameters in a general population: MRI-based reference values and association with age and cardiovascular risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Mensel, Birger; Hesselbarth, Lydia; Wenzel, Michael; Kuehn, Jens-Peter; Hegenscheid, Katrin [University Medicine Greifswald, Institute of Diagnostic Radiology and Neuroradiology, Greifswald (Germany); Doerr, Marcus [University Medicine Greifswald, Department of Internal Medicine, Greifswald (Germany); DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald (Germany); Voelzke, Henry [University Medicine Greifswald, Institute for Community Medicine, Greifswald (Germany); DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald (Germany); Lieb, Wolfgang [Christian Albrechts University, Institute of Epidemiology, Kiel (Germany); Lorbeer, Roberto [Ludwig-Maximilians-University Hospital, Institute of Clinical Radiology, Munich (Germany)

    2016-04-15

    To generate reference values for thoracic and abdominal aortic diameters determined by magnetic resonance imaging (MRI) and analyse their association with cardiovascular risk factors in the general population. Data from participants (n = 1759) of the Study of Health in Pomerania were used for analysis in this study. MRI measurement of thoracic and abdominal aortic diameters was performed. Parameters for calculation of reference values according to age and sex analysis were provided. Multivariable linear regression models were used for determination of aortic diameter-related risk factors, including smoking, blood pressure (BP), high-density lipoprotein cholesterol (HDL-C). For the ascending aorta (β = -0.049, p < 0.001), the aortic arch (β = -0.061, p < 0.001) and the subphrenic aorta (β = -0.018, p = 0.004), the body surface area (BSA)-adjusted diameters were lower in men. Multivariable-adjusted models revealed significant increases in BSA-adjusted diameters with age for all six aortic segments (p < 0.001). Consistent results for all segments were observed for the positive associations of diastolic BP (β = 0.001; 0.004) and HDL (β = 0.035; 0.087) with BSA-adjusted aortic diameters and for an inverse association of systolic BP (β = -0.001). Some BSA-adjusted median aortic diameters are smaller in men than in women. All diameters increase with age, diastolic blood pressure and HDL-C and decrease as systolic BP increases. (orig.)

  14. Particle effects on fish gills

    DEFF Research Database (Denmark)

    Lu, Cao; Kania, Per W.; Buchmann, Kurt

    2018-01-01

    Particles composed of inorganic, organic and/or biological materials occur in both natural water bodies and aquaculture facilities. They are expected to affect fish health through a direct chemical, mechanical and biological interaction with gills during ventilation but the nature of the reactions...... and the relative importance of mechanical versus chemical and biological stimulation are unknown. The present work presents an immune gene expression method for evaluation of gill disturbance and sets a baseline for the mechanical influence on fish gills of chemically inert spherical particles. The method may...... be applied to investigate particle impact at different combinations of temperature, fish size, water quality and particle composition. Spherical polystyrene particles (diameters 0.2 μm, 1 μm, 20 μm, 40 μm and 90 μm) were adopted as the particle model and the rainbow trout (Oncorhynchus mykiss) fingerlings...

  15. Validation of the erosion map for spherical particle impacts on glass

    NARCIS (Netherlands)

    Verspui, M.A.; Slikkerveer, P.J.; Skerka, G.J.E.; Oomen, I.; With, de G.

    1998-01-01

    Hard spherical particles may exhibit a variation in impact damage on a softer target depending on the particle diameter and particle velocity. In this paper quantitative equations will be derived for these transitions in material behaviour. These equations have been presented in an erosion map of

  16. The effect of ethanol on the formation and physico-chemical properties of particles generated from budesonide solution-based pressurized metered-dose inhalers.

    Science.gov (United States)

    Zhu, Bing; Traini, Daniela; Chan, Hak-Kim; Young, Paul M

    2013-11-01

    The aerosol performance of budesonide solution-based pressurized metered-dose inhalers (HFA 134a), with various amounts of ethanol (5-30%, w/w) as co-solvents, was evaluated using impaction and laser diffraction techniques. With the increase of ethanol concentration in a formulation, the mass median aerodynamic diameter was increased and the fine particle fraction showed a significant decline. Although data obtained from laser diffraction oversized that of the impaction measurements, good correlations were established between the two sets of data. Particles emitted from all the five formulations in this study were amorphous, with two different types of morphology - the majority had a smooth surface with a solid core and the others were internally porous with coral-like surface morphology. The addition of ethanol in the formulation decreased the percentage of such irregular-shape particles from 52% to 2.5% approximately, when the ethanol concentration was increased from 5% to 30%, respectively. A hypothesis regarding the possible particle formation mechanisms was also established. Due to the difference of droplet composition from the designed formulation during the atomization process, the two types of particle may have gone through distinct drying processes: both droplets will have a very short period of co-evaporation, droplets with less ethanol may be dried during such period; while the droplets containing more ethanol will undergo an extra condensation stage before the final particle formation.

  17. Nanoparticle production by UV irradiation of combustion generated soot particles

    International Nuclear Information System (INIS)

    Stipe, Christopher B.; Choi, Jong Hyun; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-01-01

    Laser ablation of surfaces normally produce high temperature plasmas that are difficult to control. By irradiating small particles in the gas phase, we can better control the size and concentration of the resulting particles when different materials are photofragmented. Here, we irradiate soot with 193 nm light from an ArF excimer laser. Irradiating the original agglomerated particles at fluences ranging from 0.07 to 0.26 J/cm 2 with repetition rates of 20 and 100 Hz produces a large number of small, unagglomerated particles, and a smaller number of spherical agglomerated particles. Mean particle diameters from 20 to 50 nm are produced from soot originally having a mean electric mobility diameter of 265nm. We use a non-dimensional parameter, called the photon/atom ratio (PAR), to aid in understanding the photofragmentation process. This parameter is the ratio of the number of photons striking the soot particles to the number of the carbon atoms contained in the soot particles, and is a better metric than the laser fluence for analyzing laser-particle interactions. These results suggest that UV photofragmentation can be effective in controlling particle size and morphology, and can be a useful diagnostic for studying elements of the laser ablation process

  18. Cavitation Inception on Microparticles: A Self-Propelled Particle Accelerator

    DEFF Research Database (Denmark)

    Arora, M.; Ohl, C.-D.; Mørch, Knud Aage

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 and 150 mum are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases...

  19. Sosiaalisen median markkinoinnin vuosikello Weecos Oy:lle

    OpenAIRE

    Heinämäki, Lotta; Huuskonen, Leena

    2015-01-01

    Opinnäytetyön tarkoitus oli luoda kokonaisvaltainen ja selkeä suunnitelma Weecos Oy:n markkinointitoimenpiteille valituissa sosiaalisen median kanavissa. Weecos on vuonna 2012 perustettu ekologisia yrityksiä yhteen keräävä verkkokauppa-alusta. Pienestä koostaan johtuen se ei ole pystynyt toteuttamaan sosiaalisen median markkinointia toivomallaan tavalla ja markkinoinnin suunnittelu ja toteutus on ollut epäsäännöllistä. Markkinointisuunnitelman tavoitteena oli helpottaa yrityksen markkinoi...

  20. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends

    Science.gov (United States)

    Morawska, L.; Jayaratne, E. R.; Mengersen, K.; Jamriska, M.; Thomas, S.

    Airborne particle number concentrations and size distributions as well as CO and NO x concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)×10 3 cm -3 and on weekends (5.9±0.2)×10 3 cm -3—a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2×10 4 and 9.6×10 4 vehicles per weekday and weekend day, respectively—a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 10 5 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NO x concentrations and a higher increase of about 70% in particle number concentration.

  1. Diameter-speed relation of sprite streamers

    International Nuclear Information System (INIS)

    Kanmae, T; Stenbaek-Nielsen, H C; McHarg, M G; Haaland, R K

    2012-01-01

    Propagation and splitting of sprite streamers has been observed at high temporal and spatial resolution using two intensified high-speed CMOS cameras recording at 10 000 and 16 000 frames per second. Concurrent video recordings from a remote site provided data for triangulation allowing us to determine accurate altitude scales for the sprites. Diameters and speeds of the sprite streamers were measured from the high-speed images, and the diameters were scaled to the reduced diameters based on the triangulated locations. The sprite streamers with larger reduced diameter move faster than those with smaller diameter; the relation between the reduced diameter and speed is roughly linear. The reduced diameters at ≈65-70 km altitude are larger than streamer diameters measured at ground pressure in laboratory discharges indicating a deviation from the similarity law possibly due to the effects of the photoionization and an expansion of the streamer head along its propagation over a long distance. The reduced diameter and speed of the sprite streamers agree well with the diameter-velocity relation proposed by Naidis (2009 Phys. Rev. E 79 057401), and the peak electric field of the sprite streamers is estimated to be approximately 3-5 times the breakdown threshold field. (paper)

  2. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  3. Effect of Pressurized Metered Dose Inhaler Spray Characteristics and Particle Size Distribution on Drug Delivery Efficiency.

    Science.gov (United States)

    Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan

    2017-10-01

    A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.

  4. Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Jayaratne, E.R.; Morawska, L.; Ayoko, G.A.; Lim, M.

    2005-01-01

    A comprehensive study of the particle and carbon dioxide emissions from a fleet of six dedicated liquefied petroleum gas (LPG) powered and five unleaded petrol (ULP) powered new Ford Falcon Forte passenger vehicles was carried out on a chassis dynamometer at four different vehicle speeds-0 (idle), 40, 60, 80 and 100 km h -1 . Emission factors and their relative values between the two fuel types together with a statistical significance for any difference were estimated for each parameter. In general, LPG was found to be a 'cleaner' fuel, although in most cases, the differences were not statistically significant owing to the large variations between emissions from different vehicles. The particle number emission factors ranged from 10 11 to 10 13 km -1 and was over 70% less with LPG compared to ULP. Corresponding differences in particle mass emission factor between the two fuels were small and ranged from the order of 10 μg km -1 at 40 to about 1000 μg km -1 at 100 km h -1 . The count median particle diameter (CMD) ranged from 20 to 35 nm and was larger with LPG than with ULP in all modes except the idle mode. Carbon dioxide emission factors ranged from about 300 to 400 g km -1 at 40 km h -1 , falling with increasing speed to about 200 g km -1 at 100 km h -1 . At all speeds, the values were 10% to 18% greater with ULP than with LPG

  5. Particle analysis and differentiation using a photovoltaic cell

    International Nuclear Information System (INIS)

    Fu, Lung-Ming; Shu, Wei-En; Wang, Yao-Nan

    2012-01-01

    A method is proposed for the sizing and counting of fluorescent and non-fluorescent particles of various sizes on a poly-dimethylsiloxane microchip. In the proposed approach, the detection region of the microchip is illuminated by a laser, which is then incident on a power-free photovoltaic cell. As the particles (both fluorescent and non-fluorescent) pass through the detection region, they block the laser beam, causing a reduction in the output voltage of the cell. The voltage signal is interfaced to a PC and is used to determine both the size and the number of the particles. Meanwhile, the fluorescence signal generated by the fluorescent particles within the sample is detected by an avalanche photodetector and is used to differentiate between the fluorescent and non-fluorescent particles in the sample. The effectiveness of the proposed approach is demonstrated using fluorescent-labeled beads with means diameters of 5, 8 and 10 µm, respectively, and unlabeled beads with a mean diameter of 7.2 µm. The experimental results confirm that the forward scattered light signal generated by the photovoltaic cell enables both the size and the number of the particles to be reliably determined. Moreover, it is shown that the number of non-fluorescent particles within the sample can be easily determined by comparing the signals received from the photovoltaic cell and avalanche photodetector, respectively. (paper)

  6. Encapsulation of an EP67-Conjugated CTL Peptide Vaccine in Nanoscale Biodegradable Particles Increases the Efficacy of Respiratory Immunization and Affects the Magnitude and Memory Subsets of Vaccine-Generated Mucosal and Systemic CD8+ T Cells in a Diameter-Dependent Manner.

    Science.gov (United States)

    Karuturi, Bala V K; Tallapaka, Shailendra B; Yeapuri, Pravin; Curran, Stephen M; Sanderson, Sam D; Vetro, Joseph A

    2017-05-01

    The diameter of biodegradable particles used to coencapsulate immunostimulants and subunit vaccines affects the magnitude of memory CD8 + T cells generated by systemic immunization. Possible effects on the magnitude of CD8 + T cells generated by mucosal immunization or memory subsets that potentially correlate more strongly with protection against certain pathogens, however, are unknown. In this study, we conjugated our novel host-derived mucosal immunostimulant, EP67, to the protective MCMV CTL epitope, pp89, through a lysosomal protease-labile double arginine linker (pp89-RR-EP67) and encapsulated in PLGA 50:50 micro- or nanoparticles. We then compared total magnitude, effector/central memory (CD127/KRLG1/CD62L), and IFN-γ/TNF-α/IL-2 secreting subsets of pp89-specific CD8 + T cells as well as protection of naive female BALB/c mice against primary respiratory infection with MCMV 21 days after respiratory immunization. We found that decreasing the diameter of encapsulating particle from ∼5.4 μm to ∼350 nm (i) increased the magnitude of pp89-specific CD8 + T cells in the lungs and spleen; (ii) partially changed CD127/KLRG1 effector memory subsets in the lungs but not the spleen; (iii) changed CD127/KRLG1/CD62L effector/central memory subsets in the spleen; (iv) changed pp89-responsive IFN-γ/TNF-α/IL-2 secreting subsets in the lungs and spleen; (v) did not affect the extent to which encapsulation increased efficacy against primary MCMV respiratory infection over unencapsulated pp89-RR-EP67. Thus, although not observed under our current experimental conditions with MCMV, varying the diameter of nanoscale biodegradable particles may increase the efficacy of mucosal immunization with coencapsulated immunostimulant/subunit vaccines against certain pathogens by selectively increasing memory subset(s) of CD8 + T cells that correlate the strongest with protection.

  7. Seasonal cycle and modal structure of particle number size distribution at Dome C, Antarctica

    Directory of Open Access Journals (Sweden)

    E. Järvinen

    2013-08-01

    Full Text Available We studied new particle formation and modal behavior of ultrafine aerosol particles on the high East Antarctic plateau at the Concordia station, Dome C (75°06' S, 123°23' E. Aerosol particle number size distributions were measured in the size range 10–600 nm from 14 December 2007 to 7 November 2009. We used an automatic algorithm for fitting up to three modes to the size distribution data. The total particle number concentration was low with the median of 109 cm−3. There was a clear seasonal cycle in the total particle number and the volume concentrations. The concentrations were at their highest during the austral summer with the median values of 260 cm−3 and 0.086 μm3 cm−3, and at their lowest during the austral winter with corresponding values of 15 cm−3 and 0.009 μm3 cm−3. New particle formation events were determined from the size distribution data. During the measurement period, natural new particle formation was observed on 60 days and for 15 of these days the particle growth rates from 10 to 25 nm in size could be determined. The median particle growth rate during all these events was 2.5 nm h−1 and the median formation rate of 10 nm particles was 0.023 cm−3 s−1. Most of the events were similar to those observed at other continental locations, yet also some variability in event types was observed. Exceptional features in Dome C were the winter events that occurred during dark periods, as well as the events for which the growth could be followed during several consecutive days. We called these latter events slowly growing events. This paper is the first one to analyze long-term size distribution data from Dome C, and also the first paper to show that new particle formation events occur in central Antarctica.

  8. Exposure assessment and heart rate variability monitoring in workers handling titanium dioxide particles: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Sahoko [Mie University, Graduate School of Regional Innovation Studies (Japan); Li, Weihua [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Omura, Seiichi [Tokyo Institute of Technology (Japan); Fujitani, Yuji [National Institute for Environmental Studies (Japan); Liu, Ying; Wang, Qiangyi [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Hiraku, Yusuke [Mie University Graduate School of Medicine, Department of Environmental and Molecular Medicine (Japan); Hisanaga, Naomi [Aichi Gakusen University, Faculty of Human Science and Design (Japan); Wakai, Kenji [Nagoya University Graduate School of Medicine, Department of Preventive Medicine (Japan); Ding, Xuncheng [WHO Collaborating Centre for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research (China); Kobayashi, Takahiro, E-mail: takakoba@airies.or.jp [Association for International Research Initiatives for Environmental Studies (Japan); Ichihara, Gaku, E-mail: gak@rs.tus.ac.jp [Tokyo University of Science, Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences (Japan)

    2016-03-15

    Titanium dioxide (TiO{sub 2}) particles are used for surface coating and in a variety of products such as inks, fibers, food, and cosmetics. The present study investigated possible respiratory and cardiovascular effects of TiO{sub 2} particles in workers exposed to this particle at high concentration in a factory in China. The diameter of particles collected on filters was measured by scanning electron microscopy. Real-time size-dependent particle number concentration was monitored in the nostrils of four workers using condensation particle counter and optical particle counter. Electrocardiogram was recorded using Holter monitors for the same four workers to record heart rate variability. Sixteen workers underwent assessment of the respiratory and cardiovascular systems. Mass-based individual exposure levels were also measured with personal cascade impactors. The primary particle diameter ranged from 46 to 562 nm. Analysis of covariance of the pooled data of the four workers showed that number of particles with a diameter <300 nm was associated positively with total number of N–N and negatively with total number of increase or decrease in successive RR intervals greater than 50 ms (RR50+/−) or percentage of RR 50+/− that were parameters of parasympathetic function. The total mass concentration was 9.58–30.8 mg/m{sup 3} during work, but significantly less before work (0.36 mg/m{sup 3}). The clear abnormality in respiratory function was not observed in sixteen workers who had worked for 10 months to 13 years in the factory. The study showed that exposure to particles with a diameter <300 nm might affect HRV in workers handling TiO{sub 2} particles. The results highlight the need to investigate the possible impact of exposure to nano-scaled particles on the autonomic nervous system.

  9. Cavitation inception on microparticles: a self-propelled particle accelerator

    NARCIS (Netherlands)

    Arora, M.; Ohl, C.D.; Morch, Knud Aage

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 and 150   μm are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases,

  10. Properties of radioactive aerosols produced by interactions of indoor radon decay products with cigarette smoke and burning cigarettes

    International Nuclear Information System (INIS)

    Martell, E.A.; Sweder, K.S.

    1984-01-01

    Risks of lung cancer to smokers, attributable in part to exposure to indoor radon decay products, are dependent on properties of radon progeny-tagged smoke particles. The authors have investigated the properties and interactions of radon progeny-tagged smoke particles as they pass through burning cigarettes into mainstream smoke, using /sup 212/Pb-tagged smoke particles as tracers, cascade impactors for particle size determinations, and low-level β/sup -/ counting techniques. /sup 212/Pb-tagged particles of submicron size are destroyed in the burning zone of cigarettes. However, /sup 212/Pb-tagged smoke particles exceeding 1.0 μm diameter pass readily through the burning zone and tobacco rod into mainstream smoke. /sup 212/ Pb- tagged particles in mainstream smoke have an activity median aerodynamic diameter between 1.0 and 2.0 μm diameter. Particles > 2.0 μm diameter carry about 10 percent of the total activity, are selectively deposited at the carina of bifurcations, and are resistant to dissolution in lung fluid. These results indicate that indoor radon progeny on large particles in mainstream smoke can contribute substantially to the cumulative alpha radiation dose at ''hot spots'' in the bronchi of smokers

  11. Fabrication of beta particles detector for RMS

    International Nuclear Information System (INIS)

    Lee, W. G.; Kim, Y. G.; Kim, J. B.; Jeong, J. E.; Hong, S. B.

    2003-01-01

    The beta particles detector for RMS (radiation monitoring system) was fabricated to detect charged beta particles. The plastic scintillator was cutted, shaped, polished to make plastic disk for beta particles. The diameter of completed plastic scintillator disk is 40 mm and thickness is 1.5 mm. The mylar film and aluminium foil were used the front of plastic scintillator to intercept light and moisture. The completed plastic detector for RMS consist of the discriminator and counter were made by ULS (Co.). The absolute efficiency of plastic detector was 45.51% for beta particles (Sr/Y - 90)

  12. Tailoring MCM-41 mesoporous silica particles through modified sol-gel process for gas separation

    Science.gov (United States)

    Sang, Wong Yean; Ching, Oh Pei

    2017-10-01

    Mobil Composition of Matter-41 (MCM-41) is recognized as a potential filler to enhance permeability of mixed matrix membrane (MMM). However, the required loading for available micron-sized MCM-41 was considerably high in order to achieve desired separation performance. In this work, reduced-size MCM-41 was synthesized to minimize filler loading, improve surface modification and enhance polymer-filler compatibility during membrane fabrication. The effect of reaction condition, stirring rate and type of post-synthesis washing solution used on particle diameter of resultant MCM-41 were investigated. It was found that MCM-41 produced at room temperature condition yield particles with smaller diameter, higher specific surface area and enhanced mesopore structure. Increase of stirring rate up to 500 rpm during synthesis also reduced the particle diameter. In addition, replacing water with methanol as the post-synthesis washing solution to remove bromide ions from the precipitate was able to further reduce the particle size by inhibiting polycondensation reaction.

  13. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    Directory of Open Access Journals (Sweden)

    K. Schütze

    2017-10-01

    Full Text Available Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM  =  3872; SEM  =  330 were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air−1 and varied between 0.65 and 2.3 (mg air−1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation. Carbon and oxygen are the only detected major elements with an atomic O∕C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si∕C: 0.010 ± 0.011; S∕C: 0.0007 ± 0.0015; Fe∕C: 0.0052 ± 0.0074; Cr∕C: 0.0012 ± 0.0017; Ni∕C: 0.0006 ± 0.0011 (all mean values ± standard deviation.High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between

  14. Tree diameter at breast height in relation to stump diameter by species group

    Science.gov (United States)

    Arthur G. Horn; Richard C. Keller

    1957-01-01

    A stump tally is one method of determining the volume of timber previously removed from an area in a logging operation. To estimate volume of standing timber from stumps, foresters must first know the relationship between stump diameters and tree diameters at breast height (d.b.h.).

  15. Effects of hunger level and tube diameter on thefeeding behavior of teat-fed dairy calves

    DEFF Research Database (Denmark)

    Herskin, Mette S; Skjøth, Flemming; Jensen, Margit Bak

    2010-01-01

    Behavioral changes caused by variation in hunger have a great potential in health monitoring in dairy cattle. The present experiment used 48 Danish Holstein bull calves with a median age of 33 d. We examined the effect of different levels of hunger (reduced, in which calves were fed 1.5 L of milk...... via esophageal tube before feeding; increased, in which calves were fed half milk ration at the previous feeding, or control, in which calves were fed normal ration at the previous feeding) on feeding behavior of calves fed via different tube diameters (6.0, 3.0, or 1.5 mm). Behavior observed during...... levels. The present results show that only a rather high reduction in tube diameter led to reduced drinking rate. Neither reduced nor increased hunger levels led to changes in drinking rate, but calves showed reduced nonnutritive sucking and butting when they were less hungry and increased nonnutritive...

  16. Particle resuspension due to human walking

    International Nuclear Information System (INIS)

    Mana, Zakaria

    2014-01-01

    In nuclear facilities, during normal operations in controlled areas, workers could be exposed to radioactive aerosols (1 μm ≤ dp ≤ 10 μm). One of the airborne contamination sources is particles that are initially seeded on the floor and could be removed by workers while they are walking. During the outage of EDF nuclear facilities, there is a resuspension of some radionuclides in aerosol form (1 μm ≤ dp ≤ 10 μm). Since the number of co-activity will increase in reactors buildings of EDF, it becomes important to understand particle resuspension due to the activity of the operators to reduce their radiation exposure. The purpose of this Ph.D thesis is to quantify the resuspension of particles due to the progress of operators on a contaminated soil. Thus, the approach is to combine an aerodynamic resuspension model with numerical calculations of flow under a shoe, and then to characterize experimentally some input parameters of the model (particle diameter, adhesion forces, shoes motion). The resuspension model Rock'n'Roll proposed by Reeks and Hall (2001) was chosen because it describes physically the resuspension mechanism and because it is based on the moment of forces applied to a particle. This model requires two input parameters such as friction velocity and adhesion forces distribution applied on each particle. Regarding the first argument, numerical simulations were carried on using the ANSYS CFX software applied to a safety shoe in motion (digitized by 3D CAO); the mapping of friction velocity shows values of about 1 m.s -1 for an angular average velocity of 200 degrees.s -1 . As regards the second parameter, AFM (Atomic Force Microscopy) measurements were carried out with alumina and cobalt oxide particles in contact with epoxy surfaces representative of those encountered in EDF power plants. AFM provides the distribution of adhesion forces and reveals a much lower value than what can be calculated theoretically using JKR model (Johnson

  17. The attachment of radon daughters to submicron aerosol particles

    International Nuclear Information System (INIS)

    Grenier, M.G.; Bigu, J.

    1984-04-01

    A study of the effects of aerosol concentration, aerosol size distribution and relative humidity on the Working Level and the radon daughter concentration was conducted in a 3000 L radon environmental chamber. Typical values of the aerosol concentration varied in the 1 x 10 3 particles/cm 3 to 4.5 x 10 5 particles/cm 3 range. Various size distributions of aerosols that have mean diffusional aerodynamic diameters of .025 μm, .045 μm and .090 μm were tested. A good correlation was found between the Working Level and the aerosol concentration as well as the relative humidity. Most of the activity seems to be associated with particles of diameter between .05 μm and .2 μm. The results presented here are in agreement with work done by other investigators in the health physics field

  18. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    Science.gov (United States)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  19. Soft template synthesis of yolk/silica shell particles.

    Science.gov (United States)

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  20. Reassessment of data used in setting exposure limits for hot particles

    International Nuclear Information System (INIS)

    Baum, J.W.; Kaurin, D.G.

    1991-05-01

    A critical review and a reassessment of data reviewed in NCRP Report 106 on effects of ''hot particles'' on the skin of pigs, monkeys, and humans were made. Our analysis of the data of Forbes and Mikhail on effects from activated UC 2 particles, ranging in diameter from 144 μm to 328 μm, led to the formulation of a new model for prediction of both the threshold for acute ulceration and for ulcer diameter. A dose of 27 Gy at a depth of 1.33 mm in tissue in this model will result in an acute ulcer with a diameter determined by the radius over which this dose (at 1.33-mm depth) extends. Application of the model to the Forbes-Mikhail data yielded a ''threshold'' (5% probability) of 6 x 10 9 beta particles from a point source on skin of mixed fission product beta particles, or about 10 10 beta particles from Sr--Y-90, since few of the Sr-90 beta particles reach this depth. The data of Hopewell et al. for their 1 mm Sr-Y-90 exposures were also analyzed with the above model and yielded a predicted threshold of 2 x 10 10 Sr-Y-90 beta particles for a point source on skin. Dosimetry values were employed in this latter analysis that are 3.3 times higher than previously reported for this source. An alternate interpretation of the Forbes and Mikhail data, derived from linear plots of the data, is that the threshold depends strongly on particle size with the smaller particles yielding a much lower threshold and smaller minimum size ulcer. Additional animal exposures are planned to distinguish between the above explanations. 17 refs., 3 figs., 3 tabs

  1. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    International Nuclear Information System (INIS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-01-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO 2 , primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30–50 nm), and nano-silicon dioxide (nano-SiO 2 , primary diameter: 10–30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO 2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1–2.1 μm and 166–261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3–6.0 μm and NMD: 156–462 nm), and the RD (MMAD: 5.2–11.2 μm and NMD: 198–479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  2. Inertial particle focusing in serpentine channels on a centrifugal platform

    Science.gov (United States)

    Shamloo, Amir; Mashhadian, Ali

    2018-01-01

    Inertial particle focusing as a powerful passive method is widely used in diagnostic test devices. It is common to use a curved channel in this approach to achieve particle focusing through balancing of the secondary flow drag force and the inertial lift force. Here, we present a focusing device on a disk based on the interaction of secondary flow drag force, inertial lift force, and centrifugal forces to focus particles. By choosing a channel whose cross section has a low aspect ratio, the mixing effect of the secondary flow becomes negligible. To calculate inertial lift force, which is exerted on the particle from the fluid, the interaction between the fluid and particle is investigated accurately through implementation of 3D Direct Numerical Solution (DNS) method. The particle focusing in three serpentine channels with different corner angles of 75°, 85°, and 90° is investigated for three polystyrene particles with diameters of 8 μm, 9.9 μm, and 13 μm. To show the simulation reliability, the results obtained from the simulations of two examples, namely, particle focusing and centrifugal platform, are verified against experimental counterparts. The effects of angular velocity of disk on the fluid velocity and on the focusing parameters are studied. Fluid velocity in a channel with corner angle of 75° is greater than two other channels. Furthermore, the particle equilibrium positions at the cross section of channel are obtained at the outlet. There are two equilibrium positions located at the centers of the long walls. Finally, the effect of particle density on the focusing length is investigated. A particle with a higher density and larger diameter is focused in a shorter length of the channel compared to its counterpart with a lower density and shorter diameter. The channel with a corner angle of 90° has better focusing efficiency compared to other channels. This design focuses particles without using any pump or sheath flow. Inertial particle focusing

  3. Preparation of rod-like β-Si3N4 single crystal particles

    International Nuclear Information System (INIS)

    Hirao, K.; Tsuge, A.; Brito, M.E.; Kanzaki, S.

    1994-01-01

    The use of β-Si 3 N 4 particles as a seed material has been demonstrated to be effective for development of a self-reinforcing microstructure in sintered silicon nitride ceramics. We have confirmed the seeding effect and arrived at a concept that seed particles should consist of rod-like single crystals free from defects and with a large diameter. The present work describes our attempts to produce such particles with a controlled morphology and in high amount. β-Si 3 N 4 particles with a diameter of 1μm and length of 5μm were obtained by heating a mixture of α-Si 3 N 4 , SiO 2 and Y 2 O 3 , followed by acid rinse treatments to remove residual glassy phase. (orig.)

  4. Suppression of coffee ring: (Particle) size matters

    Science.gov (United States)

    Bansal, Lalit; Seth, Pranjal; Murugappan, Bhubesh; Basu, Saptarshi

    2018-05-01

    Coffee ring patterns in drying sessile droplets are undesirable in various practical applications. Here, we experimentally demonstrate that on hydrophobic substrates, the coffee ring can be suppressed just by increasing the particle diameter. Particles with larger size flocculate within the evaporation timescale, leading to a significant gravimetric settling (for Pe > 1) triggering a uniform deposit. Interestingly, the transition to a uniform deposit is found to be independent of the internal flow field and substrate properties. Flocculation of particles also alters the particle packing at the nanoscale resulting in order to disorder transitions. In this letter, we exhibit a physical exposition on how particle size affects morphodynamics of the droplet drying at macro-nano length scales.

  5. Regularization of DT-MRI Using 3D Median Filtering Methods

    Directory of Open Access Journals (Sweden)

    Soondong Kwon

    2014-01-01

    Full Text Available DT-MRI (diffusion tensor magnetic resonance imaging tractography is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of the principal eigenvectors obtained from tensor matrix, which is different from the conventional isotropic MRI. Tractography based on DT-MRI is known to need many computations and is highly sensitive to noise. Hence, adequate regularization methods, such as image processing techniques, are in demand. Among many regularization methods we are interested in the median filtering method. In this paper, we extended two-dimensional median filters already developed to three-dimensional median filters. We compared four median filtering methods which are two-dimensional simple median method (SM2D, two-dimensional successive Fermat method (SF2D, three-dimensional simple median method (SM3D, and three-dimensional successive Fermat method (SF3D. Three kinds of synthetic data with different altitude angles from axial slices and one kind of human data from MR scanner are considered for numerical implementation by the four filtering methods.

  6. Safety performance evaluation of cable median barriers on freeways in Florida.

    Science.gov (United States)

    Alluri, Priyanka; Haleem, Kirolos; Gan, Albert; Mauthner, John

    2016-07-03

    This article aims to evaluate the safety performance of cable median barriers on freeways in Florida. The safety performance evaluation was based on the percentages of barrier and median crossovers by vehicle type, crash severity, and cable median barrier type (Trinity Cable Safety System [CASS] and Gibraltar system). Twenty-three locations with cable median barriers totaling about 101 miles were identified. Police reports of 6,524 crashes from years 2005-2010 at these locations were reviewed to verify and obtain detailed crash information. A total of 549 crashes were determined to be barrier related (i.e., crashes involving vehicles hitting the cable median barrier) and were reviewed in further detail to identify crossover crashes and the manner in which the vehicles crossed the barriers; that is, by either overriding, underriding, or penetrating the barriers. Overall, 2.6% of vehicles that hit the cable median barrier crossed the median and traversed into the opposite travel lane. Overall, 98.1% of cars and 95.5% of light trucks that hit the barrier were prevented from crossing the median. In other words, 1.9% of cars and 4.5% of light trucks that hit the barrier had crossed the median and encroached on the opposite travel lanes. There is no significant difference in the performance of cable median barrier for cars versus light trucks in terms of crossover crashes. In terms of severity, overrides were more severe compared to underrides and penetrations. The statistics showed that the CASS and Gibraltar systems performed similarly in terms of crossover crashes. However, the Gibraltar system experienced a higher proportion of penetrations compared to the CASS system. The CASS system resulted in a slightly higher percentage of moderate and minor injury crashes compared to the Gibraltar system. Cable median barriers are successful in preventing median crossover crashes; 97.4% of the cable median barrier crashes were prevented from crossing over the median. Of all of

  7. Continental anthropogenic primary particle number emissions

    Science.gov (United States)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  8. Continental anthropogenic primary particle number emissions

    Directory of Open Access Journals (Sweden)

    P. Paasonen

    2016-06-01

    Full Text Available Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa, coke production (Russia and China, and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response

  9. Performance evaluation of cable median barrier systems in Texas.

    Science.gov (United States)

    2009-08-01

    Since 2003, the Texas Department of Transportation (TxDOT) has embarked on an aggressive campaign to install : median barriers to prevent cross-median crashes on freeway facilities statewide. In the few years prior to 2003, : virtually all fatalities...

  10. Gas-particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze.

    Science.gov (United States)

    Jin, Rong; Zheng, Minghui; Yang, Hongbo; Yang, Lili; Wu, Xiaolin; Xu, Yang; Liu, Guorui

    2017-12-01

    Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are emerging semi-volatile organic pollutants in haze-associated particulate matter (PM). Their gas-particle phase partitioning and distribution among PM fractions have not been clarified. Clarification would increase understanding of atmospheric behavior and health risks of Cl/Br-PAHs. In this study, samples of the gas phase and 4 PM phases (aerodynamic diameters (d ae ) > 10 μm, 2.5-10 μm, 1.0-2.5 μm, and <1.0 μm) were collected simultaneously during haze events in Beijing and analyzed. Normalized histogram distribution indicated that the Cl/Br-PAHs tended to adhere to fine particles. Over 80% of the Cl-PAHs and 70% of the Br-PAHs were associated with fine PM (d ae  < 2.5 μm). The gas-particle phase partitioning and PM distribution of Cl/Br-PAHs when heating of buildings was required, which was associated with haze events, were obviously different from those when heating was not required. The relationship between the logarithmic geometric mean diameters of the Cl/Br-PAH congeners and reciprocal of the temperature (1/T) suggested that low air temperatures during the heating period could lead to high proportions of Cl/Br-PAHs in the fine particles. Increased coal burning during the heating period also contributed to high Cl/Br-PAH loads in the fine particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Anatomic single-bundle ACL surgery: consequences of tibial tunnel diameter and drill-guide angle on tibial footprint coverage.

    Science.gov (United States)

    Van der Bracht, H; Verhelst, L; Stuyts, B; Page, B; Bellemans, J; Verdonk, P

    2014-05-01

    To investigate the consequences of differences in drill-guide angle and tibial tunnel diameter on the amount of tibial anatomical anterior cruciate ligament (ACL) footprint coverage and the risk of overhang of the tibial tunnel aperture over the edges of the native tibial ACL footprint. Twenty fresh-frozen adult human knee specimens with a median age of 46 years were used for this study. Digital templates mimicking the ellipsoid aperture of tibial tunnels with a different drill-guide angle and a different diameter were designed. The centres of these templates were positioned over the geometric centre of the tibial ACL footprint. The amount of tibial ACL footprint coverage and overhang was calculated. Risk factors for overhang were determined. Footprint coverage and the risk of overhang were also compared between a lateral tibial tunnel and a classic antero-medial tibial tunnel. A larger tibial tunnel diameter and a smaller drill-guide angle both will create significant more footprint coverage and overhang. In 45% of the knees, an overhang was created with a 10-mm diameter tibial tunnel with drill-guide angle 45°. Furthermore, a lateral tibial tunnel was found not to be at increased risk of overhang. A larger tibial tunnel diameter and a smaller drill-guide angle both will increase the amount of footprint coverage. Inversely, larger tibial tunnel diameters and smaller drill-guide angles will increase the risk of overhang of the tibial tunnel aperture over the edges of the native tibial ACL footprint. A lateral tibial tunnel does not increase the risk of overhang.

  12. Calculating concentration of inhaled radiolabeled particles from external gamma counting: External counting efficiency and attenuation coefficient of thorax

    International Nuclear Information System (INIS)

    Langenback, E.G.; Foster, W.M.; Bergofsky, E.H.

    1989-01-01

    We determined the overall external counting efficiency of radiolabeled particles deposited in the sheep lung. This efficiency permits the noninvasive calculation of the number of particles and microcuries from gamma-scintillation lung images of the live sheep. Additionally, we have calculated the attenuation of gamma radiation (120 keV) by the posterior chest wall and the gamma-scintillation camera collection efficiency of radiation emitted from the lung. Four methods were employed in our experiments: (1) by light microscopic counting of discrete carbonized polystyrene particles with a count median diameter (CMD) of 2.85 microns and tagged with cobalt-57, we delineated a linear relationship between the number of particles and the emitted counts per minute (cpm) detected by well scintillation counting; (2) from this conversion relationship we determined the number of particles inhaled and deposited in the lungs by scintillation counting fragments of dissected lung at autopsy; (3) we defined a linear association between the number of particles or microcuries contained in the lung and the emitted radiation as cpm detected by a gamma scintillation camera in the live sheep prior to autopsy; and (4) we compared the emitted radiation from the lungs of the live sheep to that of whole excised lungs in order to calculate the attenuation coefficient (ac) of the chest wall. The mean external counting efficiency was 4.00 X 10(4) particles/cpm (5.1 X 10(-3) microCi/cpm), the camera collection efficiency was 1 cpm/10(4) disintegrations per minute (dpm), and the ac had a mean of 0.178/cm. The external counting efficiency remained relatively constant over a range of particles and microcuries, permitting a more general use of this ratio to estimate number of particles or microcuries depositing after inhalation in a large mammalian lung if a similarly collimated gamma camera system is used

  13. Theoretical calculations of the deposition of non-spherical particles in the upper airways of the human lung

    International Nuclear Information System (INIS)

    Sturm, Robert; Hofmann, Werner

    2009-01-01

    In the contribution presented here a computer model for the description of non-spherical particle deposition in the upper human respiratory tract is introduced. The theoretical approach is mainly based on the principle of the aerodynamic diameter, whose calculation was carried out according to most current scientific findings. With the help of this parameter deposition patterns for various particle categories (fibers and oblate disks) and breathing conditions (sitting, light-work and hard-work breathing) were simulated. Concerning cylindrical fibers with a diameter ≥ 1 μm, an increase of the aspect ratio β (i.e. particle length/particle diameter) causes a significant enhancement of deposition in the uppermost regions of the respiratory tract (oropharynx, larynx, trachea). This effect is additionally intensified by an increase of the inhalative flow. Regarding the oblate disks with a diameter ≥ 1 μm, any decrease of the aspect ratio leads to an enhancement of deposition in the deeper lung regions, representing an effect contrary to that observed for fibers. An increase of the inhalative flow only induces a limited decrease of the effect. (orig.)

  14. Trends in size classified particle number concentration in subtropical Brisbane, Australia, based on a 5 year study

    Science.gov (United States)

    Mejía, J. F.; Wraith, D.; Mengersen, K.; Morawska, L.

    Particle number size distribution data in the range from 0.015 to 0.630 μm were collected over a 5-year period in the central business district (CBD) of Brisbane, Australia. Particle size distribution was summarised by total number concentration and number median diameter (NMD) as well as the number concentration of the 0.015-0.030 ( N15-30), 0.030-0.050 ( N30-50), 0.050-0.100 ( N50-100), 0.100-0.300 ( N100-300) and 0.300-0.630 ( N300-630) μm size classes. Morning (6:00-10:00) and afternoon (16:00-19:00) measurements, the former representing fresh traffic emissions (based on the local meteorological conditions) and the latter well-mixed emissions from the CBD, during weekdays were extracted and the respective monthly mean values were estimated for time series analysis. For all size fractions, average morning concentrations were about 1.5 higher than in the afternoon whereas NMD did not vary between the morning and afternoon. The trend and seasonal components were extracted through weighted linear regression models, using the monthly variance as weights. Only the morning measurements exhibited significant trends. During this time of the day, total particle number increased by 105.7% and the increase was greater for larger particles, resulting in a shift in NMD by 7.9%. Although no seasonal component was detected the evidence against it remained weak due to the limitations of the database.

  15. Magnetic properties of carbonyl iron particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Gorodkin, S R; James, R O; Kordonski, W I

    2009-01-01

    Knowledge of the magnetic properties of dispersed magnetic particles is a prerequisite to the design an MR fluid with desired performance. A term specific susceptibility is introduced for characterization of particle susceptibility. The study was performed with the Bartington MS2B magnetic susceptibility system on small samples volume. Specific magnetic susceptibility of iron particles was found to be a linear function of median particle size. Structural change in the fluid, including particle organization, led to susceptibility drift and may affect fluid performance. It was shown that susceptibility data can be used for evaluation of the concentration of carbonyl iron particles in MR fluids.

  16. Study of recurrent branch of median nerve (Thenar's muscular branch in relation to the flexor retinaculum and median in 64 hands (32 Men

    Directory of Open Access Journals (Sweden)

    Amirsadri R

    1998-07-01

    Full Text Available Variation of recurred branch of median nerve in relation to the median and flexor retinaculum are significant for both hand surgeons and specialists always. In this study, 64 cadaver hands (32 men have been dissected. The median nerve was identified at the proximal edge of the flexor retinaculum, and in order to expose carpal tunnel the ligament was divided, and the above subjects were studied. The results are: 1 The relation of recurrent nerve to the flexor retinaculum was classified into 4 types: A In (53.1% of subjects, this branch arises from the median after the flexor retinaculum. B In (31.3% of subjects, it arises from the median in the carpal tunnel and the moves around the lower edge of flexor retinaculum and enters the thenar region. C In (14.1% of subjects, it arises from the median in the carpal tunnel and pierces the flexor retinaculum. D In (1.56% of subjects it arises, in the carpal tunnel and it divides into two subbranches here. One follows pattern A and the other pattern C. 2 In this step, the relation of the recurrent branch to the median nerve was studied. The results show that inspite of this image even though most often the recurrent branch arises from the lateral side of median, in (68.75% of subjects it arises from it's anterior surface. The MC Nemar test reveals that there is no relation between manifestation of mentioned patterns with right or left hands.

  17. Contribution to the study of particle resuspension kinetics during thermal degradation of polymers.

    Science.gov (United States)

    Ouf, F-X; Delcour, S; Azema, N; Coppalle, A; Ferry, L; Gensdarmes, F; Lopez-Cuesta, J-M; Niang, A; Pontreau, S; Yon, J

    2013-04-15

    Experimental results are reported on the resuspension of particles deposited on polymer samples representative of glove boxes used in the nuclear industry, under thermal degradation. A parametric study was carried out on the effects of heat flux, air flow rate, fuel type and particle size distribution. Small-scale experiments were conducted on 10 cm × 10 cm PolyMethyl MethAcrylate (PMMA) and PolyCarbonate (PC) samples covered with aluminium oxide particles with physical geometric diameters of 0.7 and 3.6 μm. It was observed for both polymer (fuel) samples that heat flux has no effect on the airborne release fraction (ARF), whereas particle size is a significant parameter. In the case of the PMMA sample, ARF values for 0.7 and 3.6 μm diameter particles range from 12.2% (± 6.2%) to 2.1% (± 0.6%), respectively, whereas the respective values for the PC sample range from 3.2% (± 0.8%) to 6.9% (± 3.9%). As the particle diameter increases, a significant decrease in particle release is observed for the PMMA sample, whereas an increase is observed for the PC sample. Furthermore, a peak airborne release rate is observed during the first instants of PMMA exposure to thermal stress. An empirical relationship has been proposed between the duration of this peak release and the external heat flux. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    Science.gov (United States)

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  19. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  20. In Vitro Polyvinylformaldehyde Particle Compatibility with Chemotherapeutic Drugs Used for Chemoembolization Therapy

    International Nuclear Information System (INIS)

    Vallee, Jean-Noel; Guillevin, Remy; Lo, Daouda; Adem, Carmen; Benois, Florence; Chiras, Jacques

    2003-01-01

    Purpose: Because the effects of pirarubicin and carboplatin on the physical structure of particles made from polyvinylformaldehyde are not well known, we describe an experiment to test the in vitro polyvinylformaldehyde particle compatibility with these drugs used for chemoembolization of bone metastases. Materials and Methods: Polyvinylformaldehydeparticles (Ultra-Drivalon) were mixed in vitro with either pirarubicinor carboplatin as experimental samples, and with distilled water as control samples, and left for 24 h at 37 o C. The particles used measured 150-250 μm and 600-1000 μm in diameter. Particle morphology, including appearance, overall shape, and surface characteristics were examined using a microscope equipped with a videocamera. Particle size was measured by granulometry. Qualitative and quantitative variables were analyzed using, respectively, the two-sided Fisher's exact test and the Wilcoxon signed-rank rank test for paired values, with a significance level of 0.05. Results: No broken particles or microscopic degradations in the appearance, overall shape, or surface characteristics of any particles were observed. The particle size distribution was not significantly different between the experimental samples containing pirarubicin or carboplatin and the control sample of particles with diameters in the same range. Conclusion: Particles made from polyvinylformaldehyde can be mixed with pirarubicin or carboplatin without any risk of damaging their physical properties

  1. Development of large area si detectors based on planar technology for charged particles

    International Nuclear Information System (INIS)

    Zhang Wanchang; Sun Liang; Huang Xiaojian; Liu Yang; Chen Guozhu

    2009-01-01

    This paper describes the processing method of large area Si detectors fabricated by planar technology for charged particles. In order to decrease the detectors leakage current, the surface passivation technique was used. The paper gives the measurement results of the leakage current of 300μm thick, 20mm diameter detectors and 500μm thick, 40mm diameter detectors respectively. The spectra of the detectors for 241 Am 5.486MeV α particles are also provided at room temperature. (authors)

  2. The Relationship amongst Intervertebral Disc Vertical Diameter, Lateral Foramen Diameter and Nerve Root Impingement in Lumbar Vertebra

    Directory of Open Access Journals (Sweden)

    Yusof MI

    2018-03-01

    Full Text Available Introduction: The vertical diameter of the foramen is dependent upon the vertical diameter of the corresponding intervertebral disc. A decrease in disc vertical diameter has direct anatomic consequences to the foraminal diameter and area available for the nerve root passing through it. This study is to establish the relationship amongst the intervertebral disc vertical diameter, lateral foramen diameters and nerve root compression in the lumbar vertebra. Materials and Methods: Measurements of the study parameters were performed using sagittal MRI images. The parameters studied were: intervertebral disc vertical diameter (DVD, foraminal vertical diameter (FVD, foraminal transverse diameter (FTD and nerve root diameter (NRD of both sides. The relationship between the measured parameters were then analyzed. Results: A total of 62 MRI images were available for this study. Statistical analysis showed moderate to strong correlation between DVD and FVD at all the lumbar levels except at left L23 and L5S1 and right L3L4 and L4L5. Correlation between DVD and FTD were not significant at all lumbar levels. Regression analysis showed that a decrease of 1mm of DVD was associated with 1.3, 1.7, 3.3, 3.3 and 1.3mm reduction of FVD at L1L2, L2L3, L3L4, L4L5 and L5S1 respectively. Conclusion: Reduction of DVD was associated with reduction of FVD. However, FVD was relatively wide for the nerve root even with complete loss of DVD. FTD was much narrower than the FVD making it more likely to cause nerve root compression at the exit foramina. These anatomical details should be given consideration in treating patients with lateral canal stenosis.

  3. Particle size distribution variance in untreated urban runoff and its implication on treatment selection.

    Science.gov (United States)

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2015-11-15

    Understanding the particle size distribution (PSD) of sediment in urban runoff assists in the selection of appropriate treatment systems for sediment removal as systems vary in their ability to remove sediment across different particle size fractions. Variation in PSD in runoff from individual urban surfaces both during and across multiple rain events is not well understood and it may lead to performance uncertainty in treatment systems. Runoff PSDs in international literature were compiled to provide a comparative summary of PSDs from different urban surfaces. To further assess both intra-event and inter-event PSD variation, untreated runoff was collected from road, concrete roof, copper roof, and galvanized roof surfaces within an urban catchment exposed to the same rainfall conditions and analysed for PSD and total suspended solids (TSS). Road runoff had the highest TSS concentrations, while copper roofs had high initial TSS that reduced to very low levels under steady state conditions. Despite variation in TSS concentrations, the median particle diameter of the TSS was comparable across the surfaces. Intra-event variation was generally not significant, but substantial inter-event variation was observed, particularly for coarser road and concrete roof surfaces. PSD variation for each surface contributed to a wide range in predicted treatment performance and suggests that short-retention treatment devices carry a high performance risk of not being able to achieve adequate TSS removal across all rain events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Allegheny County Median Age at Death

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The median age at death is calculated for each municipality in Allegheny County. Data is based on the decedent's residence at the time of death, not the location...

  5. A theoretical analysis of the median LMF adaptive algorithm

    DEFF Research Database (Denmark)

    Bysted, Tommy Kristensen; Rusu, C.

    1999-01-01

    Higher order adaptive algorithms are sensitive to impulse interference. In the case of the LMF (Least Mean Fourth), an easy and effective way to reduce this is to median filter the instantaneous gradient of the LMF algorithm. Although previous published simulations have indicated that this reduces...... the speed of convergence, no analytical studies have yet been made to prove this. In order to enhance the usability, this paper presents a convergence and steady-state analysis of the median LMF adaptive algorithm. As expected this proves that the median LMF has a slower convergence and a lower steady...

  6. Kinetics of particle deposition at heterogeneous surfaces

    Science.gov (United States)

    Stojiljković, D. Lj.; Vrhovac, S. B.

    2017-12-01

    The random sequential adsorption (RSA) approach is used to analyze adsorption of spherical particles of fixed diameter d0 on nonuniform surfaces covered by square cells arranged in a square lattice pattern. To characterize such pattern two dimensionless parameters are used: the cell size α and the cell-cell separation β, measured in terms of the particle diameter d0. Adsorption is assumed to occur if the particle (projected) center lies within a cell area. We focus on the kinetics of deposition process in the case when no more than a single disk can be placed onto any square cell (α deposition process is not consistent with the power law behavior. However, if the geometry of the pattern approaches towards ;noninteracting conditions; (β > 1), when adsorption on each cell can be decoupled, approach of the coverage fraction θ(t) to θJ becomes closer to the exponential law. Consequently, changing the pattern parameters in the present model allows to interpolate the deposition kinetics between the continuum limit and the lattice-like behavior. Structural properties of the jammed-state coverings are studied in terms of the radial distribution function g(r) and spatial distribution of particles inside the cell. Various, non-trivial spatial distributions are observed depending on the geometry of the pattern.

  7. Development and evaluation of an impactor sampler for radioactive aerosol particles

    International Nuclear Information System (INIS)

    Sorimachi, Atsuyuki; Kranrod, Chutima; Chantrarayotha, Supitcha; Tokonami, Shinji

    2008-01-01

    This sampler consists of one impaction stage, which allows separation of airborne particles by 1 μm particle size cut-off point with a 50% probability of impaction, followed by a back-up filter at a flow rate of 1 L min -1 . The particles size more than and less than 1 μm-diameter are collected on the impactor plate at the nozzle side and on the filter, respectively. A Cr-39 detector is mounted on the filter sides of the impaction plate; α particles emitted from the particles less than 1 μm-diameter are counted with the Cr-39 detectors. In order to separate α particles emitted from radon, thoron and their progeny, the Cr-39 detectors are covered with aluminum-vaporized Mylar films. The total thickness of films is adjusted to let their α particles impinge on the Cr-39 detectors. Laboratory tests are going on in terms of the spectral characteristics of α particles before and after passing through the films, the count rate performance of Cr-39 detectors by α particles, the actual collection efficiency of aerosol particles on the impaction plate, and so on. This sampler may be able to supply us with an interesting technique for measuring radon and thoron progeny come from the sources of natural radiation such as the naturally occurred radioactive materials. (author)

  8. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    particle number concentration increased slightly with increasing load, at the same time the fine mode particles became smaller. This was probably caused by different degree of particle coagulation as the residence time in the boiler was changed. The mean diameter during combustion of forest residue was around 100 nm compared to 70-80 nm for dry wood and pellets, while the total number was close to constant. This explains the differences in mass concentration found in the impactor measurements. The concentrations of CO and THC was highest for the dry wood fuel, the PAH concentration was highest for pellets combustion in boiler 4, however this boiler was poorly tuned at the time of measurement. The PAH concentration was 5 times higher during combustion of dry wood compared to forest residue. The concentration of CO, THC and PAH varied to a great extend. The high concentrations were measured in boilers running at a low load. The concentration of particle organic carbon was less than 15% of PMI for all fuels. However we used heated primary dilution, which inhibits the condensation of organic components into, the particle phase. A significant fraction of the emitted organic carbon may condense to the particle phase during dilution after the stack or after being oxidized in the atmosphere. We also measured elemental carbon in the particle phase. The contribution to PM1 was as high as 25-30% during pellets combustion at low load and 8% at low load during combustion of dry wood. In all other cases the EC-concentration was less than 3% of PMI. PIXE and lon-chromatography confirmed that alkali-salts were the dominant chemical species. PIXE analysis revealed that emitted amounts of heavy metals such as Zn, Cd and Pb are strongly dependent on the type of the fuel used. Forest residues gave high emissions of Zn, Cd and Pb, while pellets gave very high emissions of Cd and Zn. The fuel with the lowest emissions of heavy metals was dry wood. This again could be related to ash content in

  9. Analytical electron microscopy of combustion particles: a comparison of vehicle exhaust and residential wood smoke

    International Nuclear Information System (INIS)

    Kocbach, A.; Johansen, B.V.; Schwarze, P.E.; Namork, E.

    2005-01-01

    Particulate matter has been associated with a number of adverse health effects. Since combustion particles from vehicle exhaust and wood smoke are common constituents of ambient air, the morphology and elemental composition of particles from these two sources were analysed and compared using single particle analysis. Ambient air particles were collected in locations dominated by vehicle exhaust or residential wood smoke. To verify the source contributions to the ambient air samples, particles were collected directly from the combustion sources. All particulate samples were analysed on carbon extraction replica by transmission electron microscopy (TEM) and X-ray microanalysis (XRMA). The particles were classified into four groups based on morphology and elemental composition. Carbon aggregates were the only particles identified to originate from combustion sources and accounted for more than 88% of the particle numbers in the ambient air samples from both sources. The carbon aggregates were therefore further analysed with respect to morphology and elemental composition on germanium extraction replica. Carbon aggregates from vehicle exhaust were characterised by higher levels of Si and Ca compared to wood smoke aggregates that contained higher levels of K. The S content in aggregates from both sources was probably caused by interaction with gases in the air. Furthermore, the diameters of primary particles from vehicle exhaust were significantly smaller (27±7 nm) than the diameters for wood smoke (38±11 nm). The observed differences in elemental profiles and primary particle diameters for vehicle exhaust and wood smoke may influence the health effects caused by these particles

  10. Unipolar and bipolar diffusion charging of ultrafine particles

    International Nuclear Information System (INIS)

    Adachi, Motoaki; Okuyama, Kikuo; Kousaka, Yasuo.

    1985-01-01

    Unipolar and bipolar diffusion charging of monodisperse ultrafine particles of 4 - 100 nm in diameter has been studied experimentally and theoretically. The particles were charged by unipolar and bipolar ions generated by α-ray irradiation and the charge distribution of particles was directly observed in the electric field after the growth of them by condensation of di-butyl phthalate vapor. In both cases of unipolar and bipolar charging, the experimental results have been found in good agreement with the solution of basic equations where Fuchs' formula is used as the combination probability of an ion with a particle. (author)

  11. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    Science.gov (United States)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  12. Comparison of ice particle morphology crushed from ice chunk and directly solidified from droplet

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.H.; Yoon, Y.S.; Bang, S.Y. [Dongguk Univ., Pil-dong, Chung-gu, Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    2008-07-01

    In order to investigate the transition kinetics of ice to hydrate and to produce standard specimens of hydrate pellet from prepared hydrate powders, fine ice beads with uniform diameters must be fabricated. This paper discussed the construction of several experimental setups for the fabrication of fine ice particle generation. The ultrasonic nozzle was used to produce fine mist which solidified near the free surface of liquid nitrogen bath. The shape and population distribution of ice bead diameters was analyzed. The study also compared ice particles produced by crushing. The surface morphology of ice particles produced with a ball mill was also examined. Experimental results were obtained for an ice shaver, ball mill, bowl for grinding medicine, and ultrasonic nozzle. It was concluded that the information generated from the study was useful in estimating the macroscopic flow characteristics such as permeability of bulk powder and in determining mean effective diameter of irregular shaped particles. Future work was also noted as being underway with different experiments for other cases with different operating conditions. 5 refs., 5 figs.

  13. The Investigation of Median Frequency Changes in Paraspinal Muscles Following Fatigue

    Directory of Open Access Journals (Sweden)

    Saeed Talebian

    2009-10-01

    Conclusion: Median frequency shift toward low values following fatigue in global and local paraspinal muscles was seen. However, median frequency values for the local stabilizer muscle were higher than median frequency values for the global muscles.

  14. Syrlic: a Lagrangian code to handle industrial problems involving particles and droplets

    International Nuclear Information System (INIS)

    Peniguel, C.

    1997-01-01

    Numerous industrial applications require to solve droplets or solid particles trajectories and their effects on the flow. (fuel injection in combustion engine, agricultural spraying, spray drying, spray cooling, spray painting, particles separator, dispersion of pollutant, etc). SYRLIC is being developed to handle the dispersed phase while the continuous phase is tackled by classical Eulerian codes like N3S-EF, N3S-NATUR, ESTET. The trajectory of each droplet is calculated on unstructured grids or structured grids according the Eulerian code with SYRLIC is coupled. The forces applied to each particle are recalculated along each path. The Lagrangian approach treats the convection and the source terms exactly. It is particularly adapted to problems involving a wide range of particles characteristics (diameter, mass, etc). In the near future, wall interaction, heat transfer, evaporation more complex physics, etc, will be included. Turbulent effects will be accounted for by a Langevin equation. The illustration shows the trajectories followed by water droplets (diameter from 1 mm to 4 mm) in a cooling tower. the droplets are falling down due to gravity but are deflected towards the center of the tower because of a lateral wind. It is clear that particles are affected differently according their diameter. The Eulerian flow field used to compute the forces has been generated by N3S-AERO, on an unstructured mesh

  15. Effects of Diameter on Initial Stiffness of P-Y Curves for Large-Diameter Piles in Sand

    DEFF Research Database (Denmark)

    Sørensen, Søren Peder Hyldal; Ibsen, Lars Bo; Augustesen, Anders Hust

    2010-01-01

    is developed for slender piles with diameters up to approximately 2.0 m. Hence, the method is not validated for piles with diameters of 4–6 m. The aim of the paper is to extend the p-y curve method to large-diameter non-slender piles in sand by considering the effects of the pile diameter on the soil-pile...... interaction. Hence, a modified expression for the p-y curves for statically loaded piles in sand is proposed in which the initial slope of the p-y curves depends on the depth below the soil surface, the pile diameter and the internal angle of friction. The evaluation is based on three-dimensional numerical...... analyses by means of the commercial program FLAC3D incorporating a Mohr-Coulomb failure criterion. The numerical model is validated with laboratory tests in a pressure tank at Aalborg University....

  16. Influence of removal time and particle size on the particle substrate adhesion force

    Directory of Open Access Journals (Sweden)

    M. A. Felicetti

    2008-03-01

    Full Text Available An investigation was conducted on influence of removal time on the particle substrate adhesive force. The centrifuge technique was used to determine the adhesion force at different compression and removal rates. A microcentrifuge with a maximum rotation of 14000 rpm was used to both compress upon particles and remove them from the surface of the substrate. An image analysis program (Image-Pro Plus 4.5 was employed to monitor the number of particles adhering to and removed from the surface of the substrate after each increase in angular speed. The influence of removal time on the adhesion force was investigated, using removal times of 1, 3 and 5 minutes, which indicated that removal time does not interfere with the adhesion force within the diameter range analyzed here.

  17. Intraneural synovial sarcoma of the median nerve

    Directory of Open Access Journals (Sweden)

    Rahul Kasukurthi

    2010-06-01

    Full Text Available Synovial sarcomas are soft-tissue malignancies with a poor prognosis and propensity for distant metastases. Although originally believed to arise from the synovium, these tumors have been found to occur anywhere in the body. We report a rare case of synovial sarcoma arising from the median nerve. To our knowledge, this is the twelfth reported case of intraneural synovial sarcoma, and only the fourth arising from the median nerve. Because the diagnosis may not be apparent until after pathological examination of the surgical speci­men, synovial sarcoma should be kept in mind when dealing with what may seem like a benign nerve tumor.

  18. Fission tracks diameters in glasses

    International Nuclear Information System (INIS)

    Garzon Ruiperez, L.; Veiguela, J.

    1974-01-01

    Standard glass microscope slides have been irradiated with fission fragments from the uranium. The etching track conditions have been the same for the series, having changed the etching time only for each specimen. For each glass, a minimum of 250 measurements of the tracks diameters have been made, the distributions of which are the bimodal type. Diameters-etching dependence with time is roughly lineal. Energy determinations have been made with the help of the diameters-energy relations. The calculated values agree very well with the know ones. (author) [es

  19. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    International Nuclear Information System (INIS)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya; De, Swades

    2013-01-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 μm that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  20. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya [Indian Institute of Technology, Hyderabad (India). Dept. of Electrical Engineering; De, Swades [Indian Institute of Technology, Delhi (India). Dept. of Electrical Engineering

    2013-07-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 {mu}m that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  1. Diameter-dependent coloration of silver nanowires

    International Nuclear Information System (INIS)

    Stewart, Mindy S; Qiu Chao; Jiang Chaoyang; Kattumenu, Ramesh; Singamaneni, Srikanth

    2011-01-01

    Silver nanowires were synthesized with a green method and characterized with microscopic and diffractometric methods. The correlation between the colors of the nanowires deposited on a solid substrate and their diameters was explored. Silver nanowires that appear similar in color in the optical micrographs have very similar diameters as determined by atomic force microscopy. We have summarized the diameter-dependent coloration for these silver nanowires. An optical interference model was applied to explain such correlation. In addition, microreflectance spectra were obtained from individual nanowires and the observed spectra can be explained with the optical interference theory. This work provides a cheap, quick and simple screening method for studying the diameter distribution of silver nanowires, as well as the diameter variations of individual silver nanowires, without complicated sample preparation.

  2. Diameter and axial position measurement of micrometric particles by in-line digital holography using wavelet transform

    International Nuclear Information System (INIS)

    Torres, Y M; Amezquita, R; Monroy, F

    2011-01-01

    In this paper, the size and axial position of micrometric particles is obtained for an in-line Fraunhofer holography setup. The hologram reconstruction was realized using the wavelet transform. By digital image processing tools, the size distribution histogram for the particles in the sample was obtained. The contrast measurement in the amplitude reconstruction presents a peak when the axial coordinate and the register distance are equal. This fact lets the axial position in the sample be determined.

  3. Apolipoprotein B-containing lipoprotein particle assembly: Lipid capacity of the nascent lipoprotein particle

    Energy Technology Data Exchange (ETDEWEB)

    Manchekar, Medha; Forte, Trudy M.; Datta, Geeta; Richardson, Paul E.; Segrest, Jere P.; Dashti, Nassrin

    2003-12-01

    We previously proposed that the N-terminal 1000 residue {beta}{alpha}{sub 1} domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin (LV). In support of this ''lipid pocket'' hypothesis, apoB:1000 (residues 1-1000) was shown to be secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with HDL{sub 3} density and Stokes diameter of 112 {angstrom}. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to LV, was secreted as a particle considerably more dense than HDL with Stokes diameter of 110 {angstrom}. The purpose of the present study was to determine the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. This was accomplished by metabolic labeling of cells with either [{sup 14}C]oleic acid or [{sup 3}H]glycerol followed by immunoprecipitation (IP) or nondenaturing gradient gel electrophoresis (NDGGE) of secreted lipoproteins and by immunoaffinity chromatography of secreted unlabeled lipoproteins. The [{sup 3}H]-labeled apoB:1000-containing particles, isolated by NDGGE, contained 50 phospholipids (PL) and 11 triacylglycerols (TAG) molecules per particle. In contrast, apoB:931-containing particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000-containing particles isolated by immunoaffinity chromatography and analyzed for lipid mass, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules per particle. The surface:core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by incubation of cells with oleate. Although small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000-containing particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which: (1) the first 1000 amino acid residues of apoB are competent to complete the ''lipid pocket

  4. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    Science.gov (United States)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  5. Endoscopic Dilation of Pharyngoesophageal Strictures: There Are More Dimensions than a Diameter

    Directory of Open Access Journals (Sweden)

    Diana Martins

    2018-02-01

    Full Text Available Background/Aims: Dysphagia due to benign pharyngoesophageal strictures (PES often requires repeated dilations; however, a uniform definition for the therapeutic efficacy of this technique has not been yet established. We aimed to assess the overall efficacy of endoscopic dilation of pharyngoesophageal anastomotic or post-radiotherapy (post-RT strictures. Methods: The data of 48 patients with post-RT (n = 29 or anastomotic PES (n = 19 submitted to endoscopic dilation during a 3-year period were retrospectively assessed. The Kochman criteria were used to determine refractoriness and recurrence. Patients were asked to answer a questionnaire determining prospectively the dilation program efficacy as (a dysphagia improvement, (b dysphagia resolution, (c need for further dilations, or (d percutaneous endoscopic gastrostomy (PEG during the previous 6 months. Need for additional therapy was considered an inefficacy criterion. Results: The median number of dilations per patient was 4 (total of 296 dilations with a median follow-up of 29 months. The mean predilation dysphagia Mellow-Pinkas score was 3 and the initial stenosis diameter was 7 mm. Fifteen and 29% of patients presented with the Kochman criteria for refractory and recurrent strictures, respectively. Moreover, 96 and 60% showed dysphagia improvement and resolution, respectively. Seventy-five-percent did not require dilations during 6 months, and 89% did not require PEG. From the patients’ perspective, overall efficacy was achieved in 58% of cases. Nine additional therapies were required. Number of dilations (OR 0.7, stricture diameter (OR 2.2, and nonrecurrence criteria (OR 14.2 appeared as significant predictors of overall efficacy, whereas refractory stenosis criteria did not. Conclusions: Endoscopic dilation seems to be effective for patients with dysphagia after RT or surgery, especially when assessed as patient perception of improvement. Narrow strictures, recurrent ones, and strictures

  6. 7 CFR 51.320 - Diameter.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Grades of Apples Definitions § 51.320 Diameter. When measuring for minimum size, “diameter...

  7. Effects of texture diameter and depth on the tribological performance of DLC coating under lubricated sliding condition

    Science.gov (United States)

    Arslan, A.; Masjuki, H. H.; Varman, M.; Kalam, M. A.; Quazi, M. M.; Al Mahmud, K. A. H.; Gulzar, M.; Habibullah, M.

    2015-11-01

    In this study, the effect of surface texturing parameters on the tribological performance of amorphous hydrogenated diamond-like carbon (DLC) under oil lubrication has been investigated. Micro dimples were created on a substrate by using a picosecond laser. After surface texturing was performed, amorphous hydrogenated diamond-like carbon (DLC) coating was deposited through magnetron sputtering. Dimple diameter varied from 50 μm to 300 μm, and dimple depth varied from 6 μm to 30 μm. Results show that at respective dimple diameter and depth of 100 μm and 6 μm, surface texturing improved the tribological performance of the amorphous hydrogenated DLC coating. Whereas, at a higher dimple diameter of 300 μm and dimple depth of 30 μm, the tribological performance of textured amorphous hydrogenated DLC was worse than that of un-textured amorphous hydrogenated DLC. The performance enhancement in the case of dimple diameter and depth of 100 μm and 6 μm can be due to micro textures, which can serve as a lubricant reservoir at the interface during sliding and remove wear particles from the contact. However, this beneficial mechanism could be obtained at an optimum texture diameter and depth.

  8. Surgical smoke and ultrafine particles

    Directory of Open Access Journals (Sweden)

    Nowak Dennis

    2008-12-01

    Full Text Available Abstract Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine ( Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc. was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3 of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure.

  9. Measurements of humidified particle number size distributions in a Finnish boreal forest: derivation of hygroscopic particle growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Birmili, W.; Schwirn, K.; Nowak, A.; Rose, D.; Wiedensohler, A. (Leibniz Institute for Tropospheric Research, Leipzig (Germany)); Petaejae, T.; Haemeri, K.; Aalto, P.; Kulmala, M.; Boy, M. (Dept. of Physics, Univ. of Helsinki (Finland)); Joutsensaari, J. (Univ. of Kuopio, Dept. of Physics (Finland))

    2009-07-01

    Dry and humidified size distributions of atmospheric particles were characterised at the atmospheric research station SMEAR 2, Finland between May and July 2004. Particles were classified in a size range between 3 and 800 nm at controlled relative humidities up to 90% by two instruments complementary in size range (HDMPS; Nano-HDMPS). Using the summation method, descriptive hygroscopic growth factors (DHGF) were derived for particle diameters between 70 and 300 nm by comparing dry and humidified size distributions. At 90% relative humidity, DHGF showed mean values between 1.25 and 1.45 in the accumulation mode, between 1.20 and 1.25 in the Aitken mode, and between 1.15 and 1.20 in the nucleation mode. Due to the high size resolution of the method, the transition in DHGF between the Aitken and accumulation modes, which reflects differences in the soluble fraction, could be pinpointed efficiently. For the accumulation mode, experimental DHGFs were compared to those calculated from a simplistic growth model initialised by in-situ chemical composition measurements, and yielded maximum deviations around 0.1. The variation in DHGF could only imperfectly be linked to meteorological factors. A pragmatic parameterisation of DHGF as a function of particle diameter and relative humidity was derived, and subsequently used to study the sensitivity of the condensational sink parameter (CS) as a function of height in a well-mixed boundary layer. (orig.)

  10. Asthma-Related Outcomes in Patients Initiating Extrafine Ciclesonide or Fine-Particle Inhaled Corticosteroids

    Science.gov (United States)

    Postma, Dirkje S.; Dekhuijzen, Richard; van der Molen, Thys; Martin, Richard J.; van Aalderen, Wim; Roche, Nicolas; Guilbert, Theresa W.; Israel, Elliot; van Eickels, Daniela; Khalid, Javaria Mona; Herings, Ron M.C.; Overbeek, Jetty A.; Miglio, Cristiana; Thomas, Victoria; Hutton, Catherine; Hillyer, Elizabeth V.

    2017-01-01

    Purpose Extrafine-particle inhaled corticosteroids (ICS) have greater small airway deposition than standard fine-particle ICS. We sought to compare asthma-related outcomes after patients initiated extrafine-particle ciclesonide or fine-particle ICS (fluticasone propionate or non-extrafine beclomethasone). Methods This historical, matched cohort study included patients aged 12-60 years prescribed their first ICS as ciclesonide or fine-particle ICS. The 2 cohorts were matched 1:1 for key demographic and clinical characteristics over the baseline year. Co-primary endpoints were 1-year severe exacerbation rates, risk-domain asthma control, and overall asthma control; secondary endpoints included therapy change. Results Each cohort included 1,244 patients (median age 45 years; 65% women). Patients in the ciclesonide cohort were comparable to those in the fine-particle ICS cohort apart from higher baseline prevalence of hospitalization, gastroesophageal reflux disease, and rhinitis. Median (interquartile range) prescribed doses of ciclesonide and fine-particle ICS were 160 (160-160) µg/day and 500 (250-500) µg/day, respectively (P<0.001). During the outcome year, patients prescribed ciclesonide experienced lower severe exacerbation rates (adjusted rate ratio [95% CI], 0.69 [0.53-0.89]), and higher odds of risk-domain asthma control (adjusted odds ratio [95% CI], 1.62 [1.27-2.06]) and of overall asthma control (2.08 [1.68-2.57]) than those prescribed fine-particle ICS. The odds of therapy change were 0.70 (0.59-0.83) with ciclesonide. Conclusions In this matched cohort analysis, we observed that initiation of ICS with ciclesonide was associated with better 1-year asthma outcomes and fewer changes to therapy, despite data suggesting more difficult-to-control asthma. The median prescribed dose of ciclesonide was one-third that of fine-particle ICS. PMID:28102056

  11. Cold intolerance following median and ulnar nerve injuries : prognosis and predictors

    NARCIS (Netherlands)

    Ruijs, A.C.J; Jaquet, J-B.; van Riel, W. G.; Daanen, H. A M; Hovius, S.E.R.

    This study describes the predictors for cold intolerance and the relationship to sensory recovery after median and ulnar nerve injuries. The study population consisted of 107 patients 2 to 10 years after median, ulnar or combined median and ulnar nerve injuries. Patients were asked to fill out the

  12. Cold intolerance following median and ulnar nerve injuries : prognosis and predictors

    NARCIS (Netherlands)

    Ruijs, A.C.J.; Jaquet, J.B.; Riel, W.G. van; Daanen, H.A.M.; Hovius, S.E.R.

    2007-01-01

    This study describes the predictors for cold intolerance and the relationship to sensory recovery after median and ulnar nerve injuries. The study population consisted of 107 patients 2 to 10 years after median, ulnar or combined median and ulnar nerve injuries. Patients were asked to fill out the

  13. Characterization of airborne plutonium-bearing particles from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1977-11-01

    The elemental compositions, sizes, structures, and 239 Pu contents were determined for 299 plutonium-bearing particles isolated from airborne particles collected at various locations in the exhaust from a nuclear fuel reprocessing facility. These data were compared with data from natural aerosol particles. Most of the collected particles were composed of aggregates of crustal materials. Seven percent of the particles were organic and 3% were metallic, viz., iron, chromium, and nickel. High enrichment factors for titanium, manganese, chromium, nickel, zinc, and copper were evidence of the anthropic nature of some of the particles. The amount of plutonium in most particles was very small (less than one femtocurie of 239 Pu). Plutonium concentrations were determined by the fission track counting method. Only one particle contained sufficient plutonium for detection by electron microprobe analysis. This was a 1-μm-diameter particle containing 73% PuO 2 by weight (estimated to be 170 fCi of 239 Pu) in combination with Fe 2 O 3 and mica. The plutonium-bearing particles were generally larger than natural aerosols. The geometric mean diameter of those collected from the mechanical line exhaust point where plutonium is converted to the metal was larger than that of particles collected from the wet cabinet exhaust (13.7 μm vs. 4.6 μm). Particles from the mechanical line also contained more plutonium per particle than those from the wet cabinets

  14. Numerical modeling of aerosol particles scavenging by drops as a process of air depollution

    OpenAIRE

    Cherrier , Gaël

    2017-01-01

    This PhD-Thesis is dedicated to the numerical modeling of aerosol particles scavenging by drops. Investigated situations are about aerosol particles of aerodynamic diameter ranging from 1 nm to 100 µm captured in the air by water drops of diameter varying between 80 µm and 600 µm, with corresponding droplet Reynolds number ranging between 1 and 100. This air depollution modeling is achieved in two steps. The first step consists in obtaining a scavenging kernel predicting the flow rate of aero...

  15. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)

  16. Robust non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2017-04-01

    This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.

  17. Usefulness of ultrasound assessment of median nerve mobility in carpal tunnel syndrome.

    Science.gov (United States)

    Park, Gi-Young; Kwon, Dong Rak; Seok, Jung Im; Park, Dong-Soon; Cho, Hee Kyung

    2018-01-01

    Background Carpal tunnel syndrome (CTS) is the most common peripheral compression neuropathy of the upper extremity. Recently, dynamic ultrasound (US) imaging has shown differences in median nerve mobility between the affected and unaffected sides in CTS. Purpose The present study was performed to compare the median nerve mobility between patients with CTS and healthy individuals, and to correlate median nerve mobility with the severity of CTS. Material and Methods A total of 101 patients (128 wrists) with CTS and 43 healthy individuals (70 wrists) were evaluated. Electrodiagnostic studies were initially conducted to determine the neurophysiological grading scale (NGS). The cross-sectional area (CSA) of the median nerve and the grade of median nerve mobility were measured using US. Results The mean grade of median nerve mobility in the CTS group (1.9) was significantly lower than that in the control group (2.6; P mobility and distal motor latency of the median nerve (r = -0.218, P = 0.015), NGS (r = -0.207, P = 0.020) and CSA of the median nerve (r = -0.196, P = 0.028). Conclusion The grade of median nerve mobility was negatively correlated with the severity of CTS. US assessment of median nerve mobility may be useful in diagnosing and determining the severity of CTS.

  18. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  19. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    International Nuclear Information System (INIS)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 μm and a geometric standard deviation, σ g of about 2; the CMD was found to increase and σ g decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 μm and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented

  20. Particle clustering within a two-phase turbulent pipe jet

    Science.gov (United States)

    Lau, Timothy; Nathan, Graham

    2016-11-01

    A comprehensive study of the influence of Stokes number on the instantaneous distributions of particles within a well-characterised, two-phase, turbulent pipe jet in a weak co-flow was performed. The experiments utilised particles with a narrow size distribution, resulting in a truly mono-disperse particle-laden jet. The jet Reynolds number, based on the pipe diameter, was in the range 10000 developed technique. The results show that particle clustering is significantly influenced by the exit Stokes number. Particle clustering was found to be significant for 0 . 3 financial contributions by the Australian Research Council (Grant No. DP120102961) and the Australian Renewable Energy Agency (Grant No. USO034).

  1. Fine Particle Matter (PM2.5) Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fine particulate matter or PM2.5 (total mass of particles below 2.5 micron is diameter) is known to cause adverse health effects in humans.See the following websites...

  2. White-light Detection for Nanoparticle Sizing with the TSI Ultrafine Condensation Particle Counter

    International Nuclear Information System (INIS)

    Dick, William D.; McMurry, Peter H.; Weber, Rodney J.; Quant, Frederick R.

    2000-01-01

    Several of the most common methods for measuring nanoparticle size distributions employ the ultrafine condensation particle counter (UCPC) for detection purposes. Among these methods, the pulse height analysis (PHA) technique, in which the optical response of the UCPC detector is related to initial particle diameter in the 3-10 nm range, prevails in applications where fast sampling is required or for which concentrations of nanoparticles are frequently very low. With the PHA technique, white light is required for particle illumination in order to obtain a monotonic relationship between initial particle diameter and optical response (pulse height). However, the popular, commercially available TSI Model 3025A UCPC employs a laser for particle detection. Here, we report on a novel white-light detection system developed for the 3025A UCPC that involves minimal alteration to the instrument and preserves normal counting operation. Performance is illustrated with pulse height spectra produced by differential mobility analyzer (DMA) - generated calibration aerosols in the 3-50 nm range

  3. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    Science.gov (United States)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  4. Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry

    Science.gov (United States)

    Osman, Matthew; Zawadowicz, Maria A.; Das, Sarah B.; Cziczo, Daniel J.

    2017-11-01

    Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ˜ 0.2-3.0 µm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.

  5. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. A. Zawadowicz

    2017-06-01

    Full Text Available Measurements of primary biological aerosol particles (PBAP, especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.

  6. How comparable are size-resolved particle number concentrations from different instruments?

    Science.gov (United States)

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental

  7. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    Science.gov (United States)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary

  8. Falaiye et al (19)

    African Journals Online (AJOL)

    1 Department of Physics, University of Ilorin, Ilorin, Nigeria,. 2 Physics Department ... particles deposited over the region. According to ... relatively larger mass median diameter of quartz, ... to do a reconstruct of the Aeolian origin of the dust and ...

  9. An approach to calculating metal particle detection in lubrication oil based on a micro inductive sensor

    Science.gov (United States)

    Wu, Yu; Zhang, Hongpeng

    2017-12-01

    A new microfluidic chip is presented to enhance the sensitivity of a micro inductive sensor, and an approach to coil inductance change calculation is introduced for metal particle detection in lubrication oil. Electromagnetic knowledge is used to establish a mathematical model of an inductive sensor for metal particle detection, and the analytic expression of coil inductance change is obtained by a magnetic vector potential. Experimental verification is carried out. The results show that copper particles 50-52 µm in diameter have been detected; the relative errors between the theoretical and experimental values are 7.68% and 10.02% at particle diameters of 108-110 µm and 50-52 µm, respectively. The approach presented here can provide a theoretical basis for an inductive sensor in metal particle detection in oil and other areas of application.

  10. Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry

    International Nuclear Information System (INIS)

    Zhou Jun; Xie Li

    2011-01-01

    By taking net surface charge into consideration, the scattering field of particles illuminated by dual laser beams of phase Doppler anemometry (PDA) is computed based on Mie's theory, and the effect of net surface charge on the phase-diameter relationship and the phase ratio is studied. It is found that the phase-diameter relationship and the relationship between the phase ratio and the refractive index of charged particles could be significantly different from those of uncharged particles, which would lead to errors in particle sizing and the measurement of refractive indices. A method of recognizing charged particles and determining the value of their surface conductivity, which is related to net surface charge, is proposed by utilizing the effect of net surface charge on the measurement of refractive indices using PDA.

  11. Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Xie Li

    2011-01-20

    By taking net surface charge into consideration, the scattering field of particles illuminated by dual laser beams of phase Doppler anemometry (PDA) is computed based on Mie's theory, and the effect of net surface charge on the phase-diameter relationship and the phase ratio is studied. It is found that the phase-diameter relationship and the relationship between the phase ratio and the refractive index of charged particles could be significantly different from those of uncharged particles, which would lead to errors in particle sizing and the measurement of refractive indices. A method of recognizing charged particles and determining the value of their surface conductivity, which is related to net surface charge, is proposed by utilizing the effect of net surface charge on the measurement of refractive indices using PDA.

  12. Appendiceal diameter: CT versus sonographic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Orscheln, Emily S. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati, OH (United States); Trout, Andrew T. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2016-03-15

    Ultrasound and CT are the dominant imaging modalities for assessment of suspected pediatric appendicitis, and the most commonly applied diagnostic criterion for both modalities is appendiceal diameter. The classically described cut-off diameter for the diagnosis of appendicitis is 6 mm when using either imaging modality. To demonstrate the fallacy of using the same cut-off diameter for both CT and US in the diagnosis of appendicitis. We conducted a retrospective review of patients younger than 18 years who underwent both US and CT of the appendix within 24 h. The shortest transverse dimension of the appendix was measured at the level of the proximal, mid and distal appendix on US and CT images. We compared mean absolute difference in appendiceal diameter between US and CT, using the paired t-test. We reviewed exams of 155 children (58.7% female) with a mean age of 11.3 ± 4.2 years; 38 of the children (24.5%) were diagnosed with appendicitis. The average time interval between US and CT was 7.0 ± 5.4 h. Mean appendiceal diameter measured by CT was significantly larger than that measured by US in cases without appendicitis (5.3 ± 1.0 mm vs. 4.7 ± 1.1 mm, P < 0.0001) and in cases with appendicitis (8.3 ± 2.2 mm vs. 7.0 ± 2.0 mm, P < 0.0001). Mean absolute diameter difference at any location along the appendix was 1.3-1.4 mm in normal appendices and 2 mm in cases of appendicitis. Measured appendiceal diameter differs between US and CT by 1-2 mm, calling into question use of the same diameter cut-off (6 mm) for both modalities for the diagnosis of appendicitis. (orig.)

  13. Appendiceal diameter: CT versus sonographic measurements

    International Nuclear Information System (INIS)

    Orscheln, Emily S.; Trout, Andrew T.

    2016-01-01

    Ultrasound and CT are the dominant imaging modalities for assessment of suspected pediatric appendicitis, and the most commonly applied diagnostic criterion for both modalities is appendiceal diameter. The classically described cut-off diameter for the diagnosis of appendicitis is 6 mm when using either imaging modality. To demonstrate the fallacy of using the same cut-off diameter for both CT and US in the diagnosis of appendicitis. We conducted a retrospective review of patients younger than 18 years who underwent both US and CT of the appendix within 24 h. The shortest transverse dimension of the appendix was measured at the level of the proximal, mid and distal appendix on US and CT images. We compared mean absolute difference in appendiceal diameter between US and CT, using the paired t-test. We reviewed exams of 155 children (58.7% female) with a mean age of 11.3 ± 4.2 years; 38 of the children (24.5%) were diagnosed with appendicitis. The average time interval between US and CT was 7.0 ± 5.4 h. Mean appendiceal diameter measured by CT was significantly larger than that measured by US in cases without appendicitis (5.3 ± 1.0 mm vs. 4.7 ± 1.1 mm, P < 0.0001) and in cases with appendicitis (8.3 ± 2.2 mm vs. 7.0 ± 2.0 mm, P < 0.0001). Mean absolute diameter difference at any location along the appendix was 1.3-1.4 mm in normal appendices and 2 mm in cases of appendicitis. Measured appendiceal diameter differs between US and CT by 1-2 mm, calling into question use of the same diameter cut-off (6 mm) for both modalities for the diagnosis of appendicitis. (orig.)

  14. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G.; Barnett, A.M.

    2016-11-11

    Results characterizing GaAs p{sup +}-i-n{sup +} mesa photodiodes with a 10 µm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 µm and 400 µm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm{sup 2} to 67 nA/cm{sup 2} at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. {sup 55}Fe X-ray spectra were obtained using one 200 µm diameter device and one 400 µm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 µm and 740 eV using the 400 µm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. {sup 63}Ni beta particle spectra obtained using the 200 µm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  15. Sosiaalisen median rooli kunnan viestinnässä

    OpenAIRE

    Selkämaa, Kati

    2016-01-01

    Opinnäytetyön tavoitteena oli selvittää sosiaalisen median roolia kunnan viestinnässä sekä tutkia, miten sosiaalista mediaa hyödynnetään kuntien viestinnässä. Teoriaosuudessa tarkasteltiin sosiaalista mediaa, tutustuttiin sen tunnetuimpiin sovelluksiin sekä perehdyttiin kuntien viestintään yleisesti. Työssä tarkasteltiin myös kuntien viestintään vaikuttavia ja sitä sääteleviä lakeja. Kuntien sosiaalisen median käyttöön tutustuttiin Kuntaliiton tekemän viestintätutkimuksen tulosten pohjalt...

  16. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  17. Development of guidelines for cable median barrier systems in Texas.

    Science.gov (United States)

    2009-12-01

    Since 2003, the Texas Department of Transportation (TxDOT) has embarked on an aggressive campaign to install : median barriers to prevent cross-median crashes on freeway facilities statewide. In the few years prior to 2003, : virtually all fatalities...

  18. Lung retention and metabolic fate of inhaled benzo(a)pyrene associated with diesel exhaust particles

    International Nuclear Information System (INIS)

    Sun, J.D.; Wolff, R.K.; Kanapilly, G.M.; McClellan, R.O.

    1984-01-01

    The effect of ultrafine, insoluble, carrier particles on the lung retention and metabolic fate of inhaled PAHs was investigated with a radiolabeled model PAH, [ 3 H]benzo(a)pyrene ( 3 H-BaP). Fischer-344 rats were exposed (30 min) by nose-only inhalation to 3 H-BaP adsorbed (approximately 0.1% by mass) onto diesel engine exhaust particles. The total mass concentration of these aerosols was 4-6 micrograms/liter of air with a mass median diameter of 0.14 micron. Lung clearance of the inhaled particle-associated 3 H radioactivity occurred in two phases. The initially rapid clearance of this inhaled radiolabel had a half-time of less than 1 hr. The second, long-term component of lung clearance had a half-time of 18 +/- 2 days and represented 50 +/- 2% of the 3 H radioactivity that had initially deposited in lungs. In contrast, previous inhalation studies with a pure 3 H-BaP aerosol showed that greater than 99% of the 3 H radioactivity deposited in lungs was cleared within 2 hr after exposure. By HPLC analysis, the majority of diesel soot-associated 3 H radioactivity retained in lungs was BaP (65-76%) with smaller amounts of BaP-phenol (13-17%) and BaP-quinone (5-18%) metabolites also being detected. No other metabolites of BaP were detected in lungs of exposed rats. Tissue distribution and excretion patterns of 3 H radioactivity were qualitatively similar to previous inhalation studies with 3 H-BaP coated Ga2O3 aerosols. These findings suggest that inhaled PAHs may be retained in lungs for a greater period of time when these compounds are associated with diesel engine exhaust particles. These results may have significant implications for the health risks that may be involved with human exposure to particle-associated organic pollutants

  19. Numerical investigation of the effect of particle concentration on particle measurement by digital holography

    Science.gov (United States)

    Zhao, Huafeng; Zhou, Binwu; Wu, Xuecheng; Wu, Yingchun; Gao, Xiang; Gréhan, Gérard; Cen, Kefa

    2014-04-01

    Digital holography plays a key role in particle field measurement, and appears to be a strong contender as the next-generation technology for diagnostics of 3D particle field. However, various recording parameters, such as the recording distance, the particle size, the wavelength, the size of the CCD chip, the pixel size and the particle concentration, will affect the results of the reconstruction, and may even determine the success or failure of a measurement. This paper presents a numerical investigation on the effect of particle concentration, the volume depth to evaluate the capability of digital holographic microscopy. Standard particles holograms with all known recording parameters are numerically generated by using a common procedure based on Lorenz-Mie scattering theory. Reconstruction of those holograms are then performed by a wavelet-transform based method. Results show that the reconstruction efficiency decreases quickly until particle concentration reaches 50×104 (mm-3), and decreases linearly with the increase of particle concentration from 50 × 104 (mm-3) to 860 × 104 (mm-3) in the same volume. The first half of the line waves larger than the second half. It also indicates that the increase of concentration leads the rise in average diameter error and z position error of particles. Besides, the volume depth also plays a key role in reconstruction.

  20. In vitro and in vivo lung deposition of coated magnetic aerosol particles.

    Science.gov (United States)

    Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott

    2010-11-01

    The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Radioactive iodine (125I) labeling of latex particles

    International Nuclear Information System (INIS)

    Parikh, G.C.; Ho, C.K.

    1977-01-01

    The invention disclosed in this application is directed towards developing a radioiodination method which is applicable to the labeling of 2.02 micrometer (μm) and 0.37 micrometer (μm) diameter polyvinyltoluene latex particles that have been used as an immunoadsorbent. More particularly the overall method includes using an oxidation-reduction chemical reaction for tagging latex particles. Two methods are described. One, the hydrochloric acid method; and two, the nitric acid method

  2. Is the biparietal diameter of fetuses in late gestation too variable to predict readiness for cesarean section in dogs?

    Science.gov (United States)

    De Cramer, K G M; Nöthling, J O

    2018-06-01

    Correct assessment of readiness for cesarean section is essential for timing elective cesarean section during late pregnancy in the bitch. In humans, biparietal diameter is sufficiently precise and accurate and used in a clinical setting daily. The objectives of this study were to determine whether fetal biparietal diameter in late gestation in the dog could be used to predict readiness for cesarean section by having reached a minimum cut-off value and to correlate the biparietal diameter to birth weight. The biparietal diameter of 208 puppies in 34 litters from 31 English bulldog bitches and 660 puppies in 78 litters from 70 Boerboel bitches were measured immediately after delivery by cesarean section, performed at full term, using digital calipers. At the same time the birth weight of the same 208 English bulldog puppies and 494 of the same Boerboel puppies in 59 litters from 54 bitches was measured by means of an electronic scale. With a cesarean section, all the puppies in a litter are delivered simultaneously and readiness for cesarean section must be determined for a litter. The minimum, median and maximum biparietal diameter varied from 21.1 to 47.8, 32.9 to 50.0 and 34.2-58.2 mm, respectively, among English bulldog litters and from 18.4 to 48.7, 35.5 to 49.7 and 39.8-54.3 mm among Boerboel litters. This large variation suggests that biparietal diameter is too variable within and among litters to be useful as a means of determining readiness for cesarean section. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. A charged-particle manipulator utilizing a co-axial tube electrodynamic trap with an integrated camera

    International Nuclear Information System (INIS)

    Jiang, L; Pau, S; Whitten, W B

    2011-01-01

    A charged-particle manipulator was designed and fabricated with an integrated imaging camera allowing real-time in-situ monitoring of trapped particle motion even when the trap device is under motion or rotation. The trap device was made of two co-axial electrically conductive tubes with diameters of 5.5 mm and 7 mm for the inner tube and outer tube, respectively; the imaging camera with its optical fiber bundle was integrated within the tubular trap device to realize a single instrument functioning as a manipulator. Motion of suspended microparticles of 3 μm to 50 μm in diameter can be monitored using the integrated camera regardless of the trap device orientations. This manipulator provides capability of controlled manipulation of trapped particles by tuning the operating conditions while monitoring the feedback of real-time particle motion. Imaging of suspended particles was not interrupted while the manipulator was translated and/or rotated. This integrated manipulator can be used for charged particle transport and repositioning.

  4. Number Size Distribution of Ambient Particles in a Typical Urban Site: The First Polish Assessment Based on Long-Term (9 Months Measurements

    Directory of Open Access Journals (Sweden)

    Krzysztof Klejnowski

    2013-01-01

    Full Text Available This work presents results from the long-term measurements of particle number carried out at an urban background station in Zabrze, Poland. Ambient particles with aerodynamic diameters of between 28 nm and 10 μm were investigated by means of a DEKATI thirteen-stage electrical low pressure impactor (ELPI. The particle number-size distribution was bimodal, whilst its density function had the local maxima in the aerodynamic diameter intervals 0.056–0.095 μm and 0.157–0.263 μm. The average particle number in winter was nearly twice as high as in summer. The greatest number concentrations in winter were those of the particles with diameters of between 0.617 and 2.41 μm, that is, the anthropogenic particles from fossil fuel combustion. Approximately 99% of the particles observed in Zabrze had aerodynamic diameters ≤1 μm—they may have originated from the combustion of biomass, liquid, and gaseous fuels in domestic stoves or in car engines. The daily variation of particle number was similar for both seasons—the highest values were observed in the morning (traffic rush hour and in the afternoon/late evening (traffic and house heating emissions. An additional maximum (0.028–0.056 μm observed in the early afternoon in summer was due to the intensive formation of new PM particles from gas precursors.

  5. 40 CFR 798.4350 - Inhalation developmental toxicity study.

    Science.gov (United States)

    2010-07-01

    ... diameter” or “median diameter” is the calculated aerodynamic diameter which divides the particles of an... as respiratory, autonomic and central nervous systems, somatomotor activity and behavioral pattern. Particular attention should be directed to observation of tremors, convulsions, salivation, diarrhea...

  6. Fine particles in the Soufriere eruption plume

    Science.gov (United States)

    Woods, D. C.; Chuan, R. L.

    1982-01-01

    The size distributions of fine particles measured at tropospheric altitudes in the periphery of the eruption plume formed during the April 17, 1979 eruption of Soufriere Volcano and in the low-level effluents on May 15, 1979 were found to be bimodal, having peak concentrations at geometric mean diameters of 1.1 and 0.23 micrometers. Scanning electron microscopy and energy-dispersive X-ray analysis of the samples revealed an abundance of aluminum and silicon and traces of sodium, magnesium, chlorine, potassium, calcium, and iron in the large-particle mode. The submicrometer-sized particles were covered with liquid containing sulfur, assumed to be in the form of liquid sulfuric acid.

  7. ZnO and TiO2 particles: a study on nanosafety and photoprotection

    Science.gov (United States)

    Popov, Alexey; Zhao, Xin; Zvyagin, Andrei; Lademann, Jürgen; Roberts, Michael; Sanchez, Washington; Priezzhev, Alexander; Myllylä, Risto

    2010-04-01

    Nanoparticles of titanium dioxide (TiO2) and zinc oxide (ZnO) are used in sunscreens as protective compounds against UV radiation. We investigate these particles from the viewpoint of nanosafety (penetration into skin in vivo, production of free radicals when UV-irradiated) as well as UV protection. We show that: a) even after multiple applications, the particles remain within stratum corneum (uppermost skin layer); b) the optimal sizes are 62 nm and 45 nm, respectively for TiO2 and ZnO particles for 310-nm light and, correspondingly, 122 and 140 nm - for 400-nm radiation; c) in general, small particles (25 nm in diameter) are more photoactive than the larger ones (400 nm in diameter); however, on the background if porcine skin in vitro this difference is not seen and is substantially surpassed by skin contribution into production of free radicals.

  8. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  9. Characterization of Particles in Protein Solutions: Reaching the Limits of Current Technologies

    OpenAIRE

    Demeule, Barth?lemy; Messick, Steven; Shire, Steven J.; Liu, Jun

    2010-01-01

    Recent publications have emphasized the lack of characterization methods available for protein particles in a size range comprised between 0.1 and 10??m and the potential risk of immunogenicity associated with such particles. In the present paper, we have investigated the performance of light obscuration, flow microscopy, and Coulter counter instruments for particle counting and sizing in protein formulations. We focused on particles 2?10??m in diameter and studied the effect of silicon oil d...

  10. Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma

    Science.gov (United States)

    Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.

    2008-11-01

    In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)

  11. Investigation of transient dynamics of capillary assisted particle assembly yield

    Energy Technology Data Exchange (ETDEWEB)

    Virganavičius, D. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Juodėnas, M. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Tamulevičius, T., E-mail: tomas.tamulevicius@ktu.lt [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania); Schift, H. [Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Tamulevičius, S. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania)

    2017-06-01

    Highlights: • Regular particles arrays were assembled by capillary force assisted deposition. • Deposition yield dynamics was investigated at different thermal velocity regimes. • Yield transient behavior was approximated with logistic function. • Pattern density influence for switching behavior was assessed. - Abstract: In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm{sup 2} square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  12. Detection of fission fragments and alpha particles using the solid trace detector CR-39

    International Nuclear Information System (INIS)

    Santos, R.C.

    1988-01-01

    The technique of detecting charged particles using the solid track detector CR-39 is employed to establish some characteristics of fission fragments and alpha particles emitted from a Cf-252 source. Results are presented and discussed on the following aspects i) distribution of the track diameters; ii) variations on the track diameters to the chemical attack; iii) variations of the chemical attack velocity with respect to concentration and temperature. iv) activation energy of the developping process; v) induction time; vi) critical angle and efficiency on track developping. (A.C.A.S.) [pt

  13. Movement of heavy particles in tornadoes

    Science.gov (United States)

    Ingel, L. Kh.

    2017-07-01

    The horizontal movement of inertial particles in the intensive vortices, where the centrifugal force can be substantially higher than the gravity, is studied analytically. A similar problem was studied earlier for small (Stokes) particles at low Reynolds number, which allow one to be limited to the linear resistance law. It is shown that the previous results to a great extent can be extrapolated to the case of considerably heavier particles (e.g., water droplets with a diameter up to 1 mm at Reynolds numbers up to 103). The nonlinear nature of the resistance, i.e., its dependence on the particle velocity relative to the medium, should be taken into account for such particles. Some general laws are established for particle dynamics. In particular, their tangential velocity is close to the velocity of the medium, while the radial velocity is substantially lower (it is close on the order of magnitude to the geometric mean of the particle tangential velocity and the difference between the latter and the tangential velocity of the medium). The limits of applicability of the results are found, i.e., the restrictions to the size and mass/density of particles.

  14. Study on Soap-free P(MMA-EA-AA/MAA) Latex Particles With Narrow Size Distribution

    Institute of Scientific and Technical Information of China (English)

    K. Kang; C. Y. Kan; Y. Du; D. S. Liu

    2005-01-01

    @@ 1Introduction In the past decades, more and more studies have been focused on the synthesis of monodisperse particles with different diameter by special polymerization technique. In 1980' s, Ugelstad, et al[1] invented two-step swelling method to prepare monodisperse microsphere with large size more than 1 μm. In the following decade, Okubo and his coworkers[2] synthesized monodisperse crosslinked polymer particles above 3 μm using one-step dynamic swelling method. New method has been developed to produce particles more than 50 μm in diameter with a standard deviation of less than 2%[3]. Up to now, most of the monodisperse particles were usually prepared by polymerization of St in the presence of surfactants. In this presentation, sub-micro sized P (MMA-EA-AA/MAA) particles with narrow size distribution were prepared by seeded emulsion polymerization in the absence of any surfactant materials.

  15. MEAN OF MEDIAN ABSOLUTE DERIVATION TECHNIQUE MEAN ...

    African Journals Online (AJOL)

    eobe

    development of mean of median absolute derivation technique based on the based on the based on .... of noise mean to estimate the speckle noise variance. Noise mean property ..... Foraging Optimization,” International Journal of. Advanced ...

  16. Influence of some atmospheric variables on the concentration and particle size distribution of sulfate in urban air

    Energy Technology Data Exchange (ETDEWEB)

    Wagman, J; Lee, Jr, R E; Axt, C J

    1967-01-01

    Variations in the particle size distribution and concentration of atmospheric sulfate during a week in each of four cities were assessed with regard to the influence of such factors as location, humidity, sulfur dioxide level and time of day. Average sulfate mass median equivalent diameters (MMD) in Cincinnati, Chicago and Fairfax (Ohio) were nearly the same (0.42 micron) despite large differences in sulfate concentration and heterodispersity. A higher MMD (0.66 micron) in downtown Philadelphia was at least partly attributable to the presence of dust generated by road construction near the sampling site. Sulfate MMD generally increased with increasing relative humidity, whereas sulfate concentration was more closely correlated with absolute humidity except when SO/sub 2/ levels exceeded 3pphm. Periodic variations in the sulfate parameters at the different locations were characterized by the lack of a consistent pattern and could not be explained on the basis of humidity changes alone.

  17. Mixing fuel particles for space combustion research using acoustics

    Science.gov (United States)

    Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

    1988-01-01

    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20-sec low-gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

  18. Polymer-Particle Pressure-Sensitive Paint with High Photostability

    Directory of Open Access Journals (Sweden)

    Yu Matsuda

    2016-04-01

    Full Text Available We propose a novel fast-responding and paintable pressure-sensitive paint (PSP based on polymer particles, i.e. polymer-particle (pp-PSP. As a fast-responding PSP, polymer-ceramic (PC-PSP is widely studied. Since PC-PSP generally consists of titanium (IV oxide (TiO2 particles, a large reduction in the luminescent intensity will occur due to the photocatalytic action of TiO2. We propose the usage of polymer particles instead of TiO2 particles to prevent the reduction in the luminescent intensity. Here, we fabricate pp-PSP based on the polystyrene particle with a diameter of 1 μm, and investigate the pressure- and temperature-sensitives, the response time, and the photostability. The performances of pp-PSP are compared with those of PC-PSP, indicating the high photostability with the other characteristics comparable to PC-PSP.

  19. Airborne Release of Particles in Overheating Incidents Involving Plutonium Metal and Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schwendiman, L. C.; Mishima, J.; Radasch, C. A. [Battelle Memorial Institute, Pacific Northwest Laboratory, Richland, WA (United States)

    1968-12-15

    Ever-increasing utilization of nuclear fuels will result in wide-scale plutonium recovery processing, reconstitution of fuels, transportation, and extensive handling of this material. A variety of circumstances resulting in overheating and fires involving plutonium may occur, releasing airborne particles. This work describes the observations from a study in which the airborne release of plutonium and its compounds was measured during an exposure of the material of interest containing plutonium to temperatures which may result from fires. Aerosol released from small cylinders of metallic plutonium ignited in air at temperatures from 410 to 650 Degree-Sign C ranged from 3 x 10{sup -6} to 5 x 10{sup -5} wt%. Particles smaller than 15{mu}m in diameter represented as much as 0.03% of the total released. Large plutonium pieces weighing from 456 to 1770 g were ignited and allowed to oxidize completely in air with a velocity of around 500 cm/sec. Release rates of from 0.0045 to 0.032 wt% per hour were found. The median mass diameter of airborne material was 4 {mu}m. Quenching the oxidation with magnesium oxide sand reduced the release to 2.9 X 10{sup -4} wt% per hour. Many experiments were carried out in which plutonium compounds as powders were heated at temperatures ranging from 700 to 1000 Degree-Sign C with several air flows. Release rates ranged from 5 x 10{sup -8} to 0.9 wt% per hour, depending upon the compound and the conditions imposed. The airborne release from boiling solutions of plutonium nitrate were roughly related to energy of boiling, and ranged from 4 x 10{sup -4} to 2 x 10{sup -1} % for the evaporation of 90% of the solution. The fraction airborne when combustibles contaminated with plutonium are burned is under study. The data reported can be used in assessing the consequences of off-standard situations involving plutonium and its compounds in fires. (author)

  20. Electroacupuncture and Acupuncture Promote the Rat’s Transected Median Nerve Regeneration

    OpenAIRE

    Ho, C. Y.; Yao, C. H.; Chen, W. C.; Shen, W. C.; Bau, D. T.

    2013-01-01

    Background. Acupuncture and electroacupuncture treatments of damaged nerves may aid nerve regeneration related to hindlimb function, but the effects on the forelimb-related median nerve were not known. Methods. A gap was made in the median nerve of each rat by suturing the stumps into silicone rubber tubes. The influences of acupuncture and electroacupuncture treatments on transected median nerve regeneration were evaluated from morphological, electrophysiological, and functional angles. Resu...

  1. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice

    International Nuclear Information System (INIS)

    Lu Xiaoyan; Jin Tingting; Jin Yachao; Wu Leihong; Hu Bin; Tian Yu; Fan Xiaohui

    2013-01-01

    This study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm, which is essential to the safe design and application of SP. Data obtained from histopathological examinations suggested that SP of these sizes can all induce acute inflammation in the liver. In vivo imaging showed that intravenously administrated SP are mainly present in the liver, spleen and intestinal tract. Interestingly, in gene expression analysis, the cellular response pathways activated in the liver are predominantly conserved independently of particle dose when the same size SP are administered or are conserved independently of particle size, surface area and particle number when nano- or submicro-sized SP are administered at their toxic doses. Meanwhile, integrated analysis of transcriptomics, previous metabonomics and conventional toxicological results support the view that SP can result in inflammatory and oxidative stress, generate mitochondrial dysfunction, and eventually cause hepatocyte necrosis by neutrophil-mediated liver injury. (paper)

  2. Differences in particle size distributions collected by two wood dust samplers: preliminary findings

    International Nuclear Information System (INIS)

    Campopiano, A.; Olori, A.; Basili, F.; Ramires, D.; Zakrzewska, A.M.

    2008-01-01

    The International Agency for Research on Cancer (IARC) classification of wood dust as carcinogenic to humans, and the threshold limit value (TLV) of 5 mg/m 3 weighted over an 8-hour work day as defined by Italian legislation, have raised the issue of dust risk assessments in all woodworking environments. The aim is to characterize the particle size distribution for wood particles collected by two samplers used for collecting the inhalable fraction: the IOM sampler (Institute of Occupational Medicine, Edinburgh, Scotland) and the conical sampler also known in Italy as conetto. These two sampling heads were chosen mainly because the Italian conical sampler, used in the past for total dust sampling, is the most widely used by the Italian Prevention Services and analysis laboratories in general, whereas the IOM sampler was specifically designed to collect the inhalable fraction of airborne particles. The devices were placed side by side within the worker's breathing zone. In addition, another IOM sampler not connected to the personal sampling pump was placed on the same worker, thus functioning as a passive sampler capable of collecting projectile particles normally produced during processing. A Scanning Electron Microscope (SEM) coupled with energy dispersive X-ray spectrometry (EDAX) was used to count the number of particles collected on the sampling filters. The size of each particle identified by the SEM was determined by measuring its mean diameter. The SEM analysis revealed that the average size of the largest particles collected by the conetto sampler did not exceed 150 μm, whereas the size of particles collected by the IOM sampler was up to 350 μm. Indeed, the analysis of the filters of the passive IOM samplers showed that particles with mean diameters larger than 100 μm were collected, although the calculated percentage was very low (on average, approximately 1%). This does not mean that their gravimetric contribution is negligible; indeed, the weight of

  3. Nineteen-Foot Diameter Explosively Driven Blast Simulator; TOPICAL

    International Nuclear Information System (INIS)

    VIGIL, MANUEL G.

    2001-01-01

    This report describes the 19-foot diameter blast tunnel at Sandia National Laboratories. The blast tunnel configuration consists of a 6 foot diameter by 200 foot long shock tube, a 6 foot diameter to 19 foot diameter conical expansion section that is 40 feet long, and a 19 foot diameter test section that is 65 feet long. Therefore, the total blast tunnel length is 305 feet. The development of this 19-foot diameter blast tunnel is presented. The small scale research test results using 4 inch by 8 inch diameter and 2 foot by 6 foot diameter shock tube facilities are included. Analytically predicted parameters are compared to experimentally measured blast tunnel parameters in this report. The blast tunnel parameters include distance, time, static, overpressure, stagnation pressure, dynamic pressure, reflected pressure, shock Mach number, flow Mach number, shock velocity, flow velocity, impulse, flow duration, etc. Shadowgraphs of the shock wave are included for the three different size blast tunnels

  4. Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking

    International Nuclear Information System (INIS)

    Pourmehran, O.; Rahimi-Gorji, M.; Gorji-Bandpy, M.; Gorji, T.B.

    2015-01-01

    Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T). - Highlights: • A realistic 3D geometry of human tracheobronchial airway based on CT scan image. • External non-uniform magnetic field applied to target the magnetic drug career. • Lagrangian particle tracking using discrete phase model applied. • The efficiency of deposition is dependent of magnetic number and particle diameter

  5. Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Pourmehran, O., E-mail: oveis87@yahoo.com; Rahimi-Gorji, M.; Gorji-Bandpy, M., E-mail: gorji@nit.ac.ir; Gorji, T.B.

    2015-11-01

    Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T). - Highlights: • A realistic 3D geometry of human tracheobronchial airway based on CT scan image. • External non-uniform magnetic field applied to target the magnetic drug career. • Lagrangian particle tracking using discrete phase model applied. • The efficiency of deposition is dependent of magnetic number and particle diameter.

  6. Large diameter lithium compensated silicon detectors for the NASA Advanced Composition Explorer (ACE) mission

    International Nuclear Information System (INIS)

    Allbritton, G.L.; Andersen, H.; Barnes, A.

    1996-01-01

    Fabrication of the 100 mm diameter, 3 mm thick lithium-compensated silicon, Si(Li), detectors for the Cosmic Ray Isotope Spectrometer (CRIS) instrument on board the ACE satellite required development of new float-zone silicon growing techniques, new Si(Li) fabrication procedures, and new particle beam testing sequences. These developments are discussed and results are presented that illustrate the advances made in realizing these CRIS Si(Li) detectors, which, when operational in the CRIS detector telescopes, will usher in a new generation of cosmic-ray isotope spectrometers

  7. Design of a device for simultaneous particle size and electrostatic charge measurement of inhalation drugs.

    Science.gov (United States)

    Zhu, Kewu; Ng, Wai Kiong; Shen, Shoucang; Tan, Reginald B H; Heng, Paul W S

    2008-11-01

    To develop a device for simultaneous measurement of particle aerodynamic diameter and electrostatic charge of inhalation aerosols. An integrated system consisting of an add-on charge measurement device and a liquid impinger was developed to simultaneously determine particle aerodynamic diameter and electrostatic charge. The accuracy in charge measurement and fine particle fraction characterization of the new system was evaluated. The integrated system was then applied to analyze the electrostatic charges of a DPI formulation composed of salbutamol sulphate-Inhalac 230 dispersed using a Rotahaler. The charge measurement accuracy was comparable with the Faraday cage method, and incorporation of the charge measurement module had no effect on the performance of the liquid impinger. Salbutamol sulphate carried negative charges while the net charge of Inhalac 230 and un-dispersed salbutamol sulphate was found to be positive after being aerosolized from the inhaler. The instantaneous current signal was strong with small noise to signal ratio, and good reproducibility of charge to mass ratio was obtained for the DPI system investigated. A system for simultaneously measuring particle aerodynamic diameter and aerosol electrostatic charges has been developed, and the system provides a non-intrusive and reliable electrostatic charge characterization method for inhalation dosage forms.

  8. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Sandip, E-mail: sandip.d.kulkarni@gmail.com [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Nacev, Alek [Weinberg Medical Physics, LLC (United States); Depireux, Didier [The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shimoji, Mika [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shapiro, Benjamin [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States)

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  9. Electron beam driven disordering in small particles

    International Nuclear Information System (INIS)

    Vanfleet, R.R.; Mochel, J.

    1997-01-01

    Small metal particles in the range of a few nanometers in diameter are seen to progressively disorder when the 100 keV electron beam of a Scanning Transmission Electron Microscope (STEM) is held stationary on the particle. The diffraction pattern of the individual particle is seen to progress from an initial array of indexable diffraction spots to a mixture of diffraction spots and amorphous-like rings and finally to rings with no persistent diffraction spots. After the electron beam is removed, the particles will recrystallize after minutes or hours. Only particles below a critical size are seen to fully disorder. The authors have observed this in platinum, palladium, rhodium, and iridium and based on the model of disordering process believe it is a universal effect. It has also been observed with a platinum ruthenium alloy. They discuss the mechanism of this disordering and the structure of the resulting disordering particle for the case of platinum clusters

  10. Synthesis of Zinc Oxide Particles Using Green Beans as Biotemplating Agent

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Zulkarnain Zainal; Suzanita Latip

    2011-01-01

    A bio template-heating method using green beans for the synthesize of ZnO particles was developed. The results show that this method is able to synthesize ZnO particles with non uniform granular morphologies with average diameter of 0.4 m as characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). (author)

  11. Particle porosity at plasma are spraying of metals

    International Nuclear Information System (INIS)

    Petrunichev, V.A.; Koroleva, E.B.; Pushilin, N.P.

    1985-01-01

    Quantitative dependences of porosity and character of pore distribution in particles of different materials on particle size and composition of atmosphere in a working chamber are studied experimentally as applied to the process of plasma wire sputtering. Wires 1.2 mm in diameter made of tungsten, molybdenum, Kh20N80 alloy, and zirconium served as sputtering materials. It is shown that pore size and character of their distribution in particles of powders obtained by the method of plasma wire sputtering are dependent on sizes of forming particles and determined by conditions of their cooling. Intensive porosity formation is characteristic of wire sputtering in argon plasma with nitrogen additions, but there are critical values of nitrogen concentration in plasma, above which intensive porosity formation in forming particles stops

  12. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Science.gov (United States)

    Lioliou, G.; Barnett, A. M.

    2016-11-01

    Results characterizing GaAs p+-i-n+ mesa photodiodes with a 10 μm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 μm and 400 μm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm2 to 67 nA/cm2 at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. 55Fe X-ray spectra were obtained using one 200 μm diameter device and one 400 μm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 μm and 740 eV using the 400 μm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. 63Ni beta particle spectra obtained using the 200 μm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  13. Primary versus secondary and anthropogenic versus natural sources of aminium ions in atmospheric particles during nine coastal and marine campaigns

    Science.gov (United States)

    Xie, H.; Yao, X.

    2017-12-01

    In this study, size-segregated dimethylaminium (DMA+) and trimethylaminium (TMA+) in atmospheric particles were measured during four coastal campaigns in Qingdao, China and five campaigns cruising over marginal seas of China and the northwest Pacific Ocean. The measured averages of DMA+ and TMA+ in PM0.056-10 (the sum of chemical concentrations from 0.056 to 10 µm) during each campaign, ranged from 0.045 to 1.1 nmol m-3 and from 0.029 to 0.53 nmol m-3, respectively. Size distributions of DMA+ and TMA+ in coastal atmospheric particles suggested that primary combustion emissions featured by mass median aerodynamic diameter (MMAD) at 0.2 µm generally yielded appreciable contributions to their observed concentrations in PM0.056-10 and sometimes dominantly contributed. In the marine atmospheres, the 0.1-0.2 µm modes of DMA+ and TMA+ also existed and sometimes dominated while they were very likely derived from primary ocean-biogenic emissions. In most of the samples during nine campaigns, secondarily-formed DMA+ and TMA+ in droplet mode with MMAD at 0.3-2 µm dominantly contributed to DMA+ and TMA+ in PM0.056-10. Overall, our results suggested that DMA+ and TMA+ in the marine atmospheric particles overwhelmingly came from ocean biogenic sources while they were likely derived from complicated anthropogenic and natural sources at the coastal sites.

  14. Improved technique for measuring the size distribution of black carbon particles in rainwater and snow samples

    Science.gov (United States)

    Mori, T.; Moteki, N.; Ohata, S.; Koike, M.; Azuma, K. G.; Miyazaki, Y.; Kondo, Y.

    2015-12-01

    Black carbon (BC) is the strongest contributor to sunlight absorption among atmospheric aerosols. Quantitative understanding of wet deposition of BC, which strongly affects the spatial distribution of BC, is important to improve our understandings on climate change. We have devised a technique for measuring the masses of individual BC particles in rainwater and snow samples, as a combination of a nebulizer and a single-particle soot photometer (SP2) (Ohata et al. 2011, 2013; Schwarz et al. 2012; Mori et al. 2014). We show two important improvements in this technique: 1)We have extended the upper limit of detectable BC particle diameter from 0.9 μm to about 4.0 μm by modifying the photodetector for measuring the laser-induced incandescence signal. 2)We introduced a pneumatic nebulizer Marin-5 (Cetac Technologies Inc., Omaha, NE, USA) and experimentally confirmed its high extraction efficiency (~50%) independent of particle diameter up to 2.0 μm. Using our improved system, we simultaneously measured the size distribution of BC particles in air and rainwater in Tokyo. We observed that the size distribution of BC in rainwater was larger than that in air, indicating that large BC particles were effectively removed by precipitation. We also observed BC particles with diameters larger than 1.0 μm, indicating that further studies of wet deposition of BC will require the use of the modified SP2.

  15. Surface structure and oxidation reactivity of oil sand coke particles

    Energy Technology Data Exchange (ETDEWEB)

    Fairbridge, C.; Palmer, A.D.; Ng, S.H.; Furimsky, E.

    1987-05-01

    Fractions of particles of varying mean diameter were isolated from coke obtained from the fluid coking of Athabasca bitumen. Correlations were established between the rate of oxygen sorption and the apparent surface area as measured by carbon dioxide adsorption. The rate of oxygen sorption, r/sub o/, could be related to particle radius, R, by r/sub o/ varying with R/sup D/ T over a range of particle size where D is the fractal dimension of the coke. The existence of such correlations may be related to the iterative processes which form the particles. 14 refs., 5 figs., 2 tabs.

  16. Median Filtering Methods for Non-volcanic Tremor Detection

    Science.gov (United States)

    Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.

    2016-12-01

    Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.

  17. Experimental investigation of coarse particle conveying in pipes

    Directory of Open Access Journals (Sweden)

    Vlasak Pavel

    2015-01-01

    Full Text Available The advanced knowledge of particle-water mixture flow behaviour is important for safe, reliable, and economical design and operation of the freight pipelines. The effect of the mixture velocity and concentration on the coarse particle – water mixtures flow behaviour was experimentally investigated on an experimental pipe loop of inner diameter D = 100 mm with horizontal, vertical, and inclined pipe sections. Narrow particle size distribution basalt pebbles were used as model of coarse-grained solid particles. The radiometric method was used to measure particle concentration distribution in pipe cross-section. Mixture flow behaviour and particles motion along the pipe invert were studied in a pipe viewing section. The study revealed that the coarse particlewater mixtures in the horizontal and inclined pipe sections were significantly stratified. The particles moved principally in a layer close to the pipe invert. However, for higher and moderate flow velocities the particles moved also in the central part of the pipe cross-section, and particle saltation was found to be dominant mode of particle conveying.

  18. Self-ordering of small-diameter metal nanoparticles by dewetting on hexagonal mesh templates.

    Science.gov (United States)

    Meshot, Eric R; Zhao, Zhouzhou; Lu, Wei; Hart, A John

    2014-09-07

    Arrays of small-diameter nanoparticles with high spatial order are useful for chemical and biological sensors, data storage, synthesis of nanowires and nanotubes, and many other applications. We show that self-ordered metal nanoparticle arrays can be formed by dewetting of thin films on hexagonal mesh substrates made of anodic aluminum oxide (AAO). Upon heating, the metal (Fe) film dewets onto the interstitial sites (i.e., the node points) between pores on the top surface of the AAO. We investigated the particle morphology and dynamics of dewetting using a combination of atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), and numerical simulations. Templated metal particles are more monodisperse and have higher local order than those formed by the same dewetting process on flat, nonporous alumina. The degree of order depends on the initial film thickness, and for the optimal thickness tested (nominally 2 nm), we achieved uniform coverage and high order of the particles, comparable to that of the AAO template itself. Computational modeling of dewetting on templates with various pore order and size shows that the order of AAO pores is primarily influential in determining particle position and spacing, while the variance in pore size is less impactful. Potential uses of these ordered nanoparticle arrays on porous materials include plasmonic sensors and spatially controlled catalysts.

  19. Lapset median käyttäjinä

    OpenAIRE

    Jalonen, Taru; Suomela, Sonja

    2010-01-01

    Laurea-ammattikorkeakoulu Tiivistelmä Hyvinkää Sosiaali-, terveys- ja liikunta-ala Hoitotyön koulutusohjelma Terveydenhoitaja AMK Sairaanhoitaja AMK Taru Jalonen, Sonja Suomela Lapset median käyttäjinä Vuosi ‎2010‎ Sivumäärä ‎63‎ Tämän opinnäytetyön tarkoituksena oli selvittää lasten tottumuksia ja kokemuksia mediasta sekä ‎niiden herättämiä tunteita. Lisäksi selvitimme lasten käyttämiä mediaympäristöjä sekä median ‎näkymistä lasten leikeissä. Tämä työ on os...

  20. Influence of particle size in silo discharge

    Directory of Open Access Journals (Sweden)

    Gella Diego

    2017-01-01

    Full Text Available Recently Janda et al. [Phys. Rev. Lett. 108, 248001 (2012] reported an experimental study where it was measured the velocity and volume fraction fields of 1 mm diameter stainless steel beads in the exit of a two-dimensional silo. In that work, they proposed a new expression to predict the flow of granular media in silos which does not explicitly include the particle size as a parameter. Here, we study if effectively, there is not such influence of the particle size in the flux equations as well as investigate any possible effect in the velocity and volume fraction fields. To this end, we have performed high speed motion measurements of these magnitudes in a two-dimensional silo filled with 4 mm diameter beads of stainless steel, the same material than the previous works. A developed tracking program has been implemented to obtain at the same time both, the velocity and volume fraction. The final objective of this work has been to extend and generalize the theoretical framework of Janda et al. for all sizes of particles. We have found that the obtained functionalities are the same than in the 1 mm case, but the exponents and other fitting parameters are different.

  1. Refined Synthesis and Characterization of Controlled Diameter, Narrow Size Distribution Microparticles for Aerospace Research Applications

    Science.gov (United States)

    Tiemsin, Pacita I.; Wohl, Christopher J.

    2012-01-01

    Flow visualization using polystyrene microspheres (PSL)s has enabled researchers to learn a tremendous amount of information via particle based diagnostic techniques. To better accommodate wind tunnel researchers needs, PSL synthesis via dispersion polymerization has been carried out at NASA Langley Research Center since the late 1980s. When utilizing seed material for flow visualization, size and size distribution are of paramount importance. Therefore, the work described here focused on further refinement of PSL synthesis and characterization. Through controlled variation of synthetic conditions (chemical concentrations, solution stirring speed, temperature, etc.) a robust, controllable procedure was developed. The relationship between particle size and salt concentration, MgSO4, was identified enabling the determination of PSL diameters a priori. Suggestions of future topics related to PSL synthesis, stability, and size variation are also described.

  2. Changes in pupil diameter are correlated with the occurrence of pareidolias in patients with dementia with Lewy bodies.

    Science.gov (United States)

    Suzuki, Yumi; Hirayama, Kazumi; Shimomura, Tatsuo; Uchiyama, Makoto; Fujii, Hiromi; Mori, Etsuro; Nishio, Yoshiyuki; Iizuka, Osamu; Inoue, Ryusuke; Otsuki, Mika; Sakai, Shinya

    2017-03-01

    Pareidolias are visual illusions of meaningful objects, such as faces and animals, that arise from ambiguous forms embedded in visual scenes. Pareidolias and visual hallucinations have been suggested to have a common underlying neural mechanism in patients with dementia with Lewy bodies (DLB). The aim of the present study was to find an externally observable physiological indicator of pareidolias. Using a pareidolia test developed by Uchiyama and colleagues, we evoked pareidolias in patients with DLB and recorded the resultant changes in the diameters of their pupil. The time frequencies of changes in pupil diameters preceding pareidolic utterances and correct utterances by the patients, as well as correct utterances by healthy control participants, were analyzed by a fast Fourier transform program. The power at time frequencies of 0-0.46 Hz was found to be greatest preceding pareidolic utterances in patients with DLB, followed by that preceding correct utterances in control participants, followed by that preceding correct utterances in patients with DLB. When the changes in power preceding the utterance were greater than the median value of correct utterances by the control group, the frequency of pareidolic utterances was significantly greater than that of correct utterances and when the changes were the same as or lower than the median value, the frequency of correct utterances was significantly greater than that of pareidolic utterances. Greater changes in power preceding the utterance at time frequencies of 0-0.46 Hz may thus be an externally observable physiological indicator of the occurrence of pareidolias.

  3. Visualizing test on the pass-through and collision characteristics of coarse particles in a double blade pump

    Directory of Open Access Journals (Sweden)

    Minggao Tan

    2018-01-01

    Full Text Available As the key equipment in deep ocean mining, the slurry pump suffers from wear and blocking problems. In this paper, high-speed photography technique is applied to track the movement rule of single particle of the coarse particle solid–liquid two-phase flow in a double blade slurry pump. The influences of particle diameter and particle density on the pass-through and collision characteristics of particles are analyzed as well. The results show that the average of the passing pump time first decreases and then increases when the particle diameter increases. The average of the passing pump time decreases by 22.7%, when the particle density increases from 1.09 g/cm3 to 1.75 g/cm3. Besides, the particle density has great influence on the location where the particle hits the tongue. Most particles of 1.09 g/cm3 hit the tongue on the left side, while collision location of particles of 1.75 g/cm3 is mainly on the top and at the right side of the tongue. The research can provide a basis for the optimization design of slurry pump in deep ocean mining system.

  4. Diameter 2 properties and convexity

    Czech Academy of Sciences Publication Activity Database

    Abrahamsen, T. A.; Hájek, Petr Pavel; Nygaard, O.; Talponen, J.; Troyanski, S.

    2016-01-01

    Roč. 232, č. 3 (2016), s. 227-242 ISSN 0039-3223 R&D Projects: GA ČR GA16-07378S Institutional support: RVO:67985840 Keywords : diameter 2 property * midpoint locally uniformly rotund * Daugavet property Subject RIV: BA - General Mathematics Impact factor: 0.535, year: 2016 https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/studia- mathematica /all/232/3/91534/diameter-2-properties-and-convexity

  5. Optimal design of work zone median crossovers.

    Science.gov (United States)

    2010-09-01

    The use of temporary median crossovers in work zones allows for the closure of one side of a multi-lane roadway while : maintaining two-way traffic on the opposite side. This process provides the ability for construction and maintenance crews : to co...

  6. Laser ablation of nanoscale particles with 193 nm light

    International Nuclear Information System (INIS)

    Choi, J H; Lucas, D; Koshland, C P

    2007-01-01

    Laser interaction with nanoscale particles is distinct and different from laser-bulk material interaction, where a hot plasma is normally created. Here, we review our studies on 193 nm laser ablation of various nanoscale particles including NaCl, soot, polystyrene, and gold. The 20 ns laser beam with fluences up to 0.3 J/cm 2 irradiates nanoparticles in a gas stream at laser repetition rates from 10 to 100 Hz. The particle size distributions before and after irradiation are measured with a scanning mobility particle sizer (SMPS), and particle morphology is examined with electron microscopy. All the nanomaterials studied exhibit a similar disintegration pattern and similar particle formation characteristics. No broadband emission associated with particle heating or optical breakdown is observed. The nanoparticles formed after irradiation have a smaller mean diameter and an order of magnitude higher number concentration with a more spherical shape compared to the original particles. We use the photon-atom ratio (PAR) to interpret the laser-particle interaction energetics

  7. Concentration and size distribution of particles in abstracted groundwater.

    Science.gov (United States)

    van Beek, C G E M; de Zwart, A H; Balemans, M; Kooiman, J W; van Rosmalen, C; Timmer, H; Vandersluys, J; Stuyfzand, P J

    2010-02-01

    Particle number concentrations have been counted and particle size distributions calculated in groundwater derived by abstraction wells. Both concentration and size distribution are governed by the discharge rate: the higher this rate the higher the concentration and the higher the proportion of larger particles. However, the particle concentration in groundwater derived from abstraction wells, with high groundwater flow velocities, is much lower than in groundwater from monitor wells, with minimal flow velocities. This inconsistency points to exhaustion of the particle supply in the aquifer around wells due to groundwater abstraction for many years. The particle size distribution can be described with the help of a power law or Pareto distribution. Comparing the measured particle size distribution with the Pareto distribution shows that particles with a diameter >7 microm are under-represented. As the particle size distribution is dependent on the flow velocity, so is the value of the "Pareto" slope beta. (c) 2009 Elsevier Ltd. All rights reserved.

  8. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    Science.gov (United States)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  9. Fast particle characterization using digital holography and neural networks.

    Science.gov (United States)

    Schneider, B; Dambre, J; Bienstman, P

    2016-01-01

    We propose using a neural network approach in conjunction with digital holographic microscopy in order to rapidly determine relevant parameters such as the core and shell diameter of coated, non-absorbing spheres. We do so without requiring a time-consuming reconstruction of the cell image. In contrast to previous approaches, we are able to obtain a continuous value for parameters such as size, as opposed to binning into a discrete number of categories. Also, we are able to separately determine both core and shell diameter. For simulated particle sizes ranging between 7 and 20 μm, we obtain accuracies of (4.4±0.2)% and (0.74±0.01)% for the core and shell diameter, respectively.

  10. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  11. Synthesis of AlN fine particles by surface corona discharge-CVD; Enmen corona hoden CVD ni yoru AlN biryushi no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y.; Chiba, S. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Harima, K> ; Kondo, K.; Shinohara, K. [Hokkaido University, Sapporo (Japan)

    1994-09-15

    With an objective to improve insulating and heat dissipating substrates substituting for the conventional alumina substrates, discussions been given on synthesis of AlN fine particles by means of gaseous phase reaction between AlCl3 and NH3 using surface corona discharge as a reaction exciting source. AIN particles should be highly pure to acquire high-heat conductivity, and fine and uniform particles to obtain dense sinters at low temperatures. The particles obtained by using the present method were amorphous particles having nearly spherical form and smooth surface. The particle diameter depends on the initial concentration of AlCl3, and is proportional to 0.4 square of the concentration. Within the range in the present experiment, the diameters ranged from 208 nm to 431 nm. The particle diameter increased in proportion to 0.2 square of an average gas stagnating time within the plasma generating region. The particle size distribution consisted of highly uniform fine particles having the standard deviation at about the same degree as that in the conventional thermal CVD process. The alumina-based oxygen was removed completely by reduction due to graphite powder, but the re-oxidation during removal of the remaining graphite using combustion had oxygen remained at 7.4% by weight. 16 refs., 7 figs.

  12. MECHANISMS OF ACTION OF INHALED FIBERS, PARTICLES AND NANOPARTICLES IN LUNG AND CARDIOVASCULAR DISEASES

    Science.gov (United States)

    ABSTRACT: A symposium on the mechanisms of action of inhaled airborne particulate matter (PM),pathogenic particles and fibers such as silica and asbestos, and nanomaterials, defined as synthetic particles or fibers less than 100 nm in diameter, was held on October 27 and 28,...

  13. Deposition of 0.1 μm chain aggregate aerosols in beagle dogs

    International Nuclear Information System (INIS)

    Wolff, R.K.; Kanapilly, G.M.; DeNee, P.B.; McClellan, R.O.

    1981-01-01

    Deposition and retention of ultrafine chain aggregate particles were studied in 20 beagle dogs. Aggregated particles of insoluble 67 Ga 2 O 3 in the 0.1 μm size range were generated by heat treatment of 67 Ga tetramethylheptanedione. Size characterization was done using electron microscopy, diffusion battery and electrical aerosol analyzer measurements. The average equivalent diffusion diameter of the aerosol was 0.07 μm and the volume median diameter (electrical mobility measurement) was 0.10 μm with a geometric standard deviation of 1.6. Primary particles from which the aggregates were formed were 0.01 to 0.02 μm in diameter. Whole-body counting and gamma camera imaging were used to measure deposition. Total deposition in the whole body was 33 +- 16 % (mean +-S.D.) of the inhaled particles; 82 +- 13 % of this material was deposited in the lung. Retention studies showed that 77 +- 3 % of the material deposited in the lung was in the pulmonary region. Thus, 21 % of the inhaled particles were deposited beyond ciliated airways in alveolar areas. (author)

  14. Individual aerosol particles in and below clouds along a Mt. Fuji slope: Modification of sea-salt-containing particles by in-cloud processing

    Science.gov (United States)

    Ueda, S.; Hirose, Y.; Miura, K.; Okochi, H.

    2014-02-01

    Sizes and compositions of atmospheric aerosol particles can be altered by in-cloud processing by absorption/adsorption of gaseous and particulate materials and drying of aerosol particles that were formerly activated as cloud condensation nuclei. To elucidate differences of aerosol particles before and after in-cloud processing, aerosols were observed along a slope of Mt. Fuji, Japan (3776 m a.s.l.) during the summer in 2011 and 2012 using a portable laser particle counter (LPC) and an aerosol sampler. Aerosol samples for analyses of elemental compositions were obtained using a cascade impactor at top-of-cloud, in-cloud, and below-cloud altitudes. To investigate composition changes via in-cloud processing, individual particles (0.5-2 μm diameter) of samples from five cases (days) collected at different altitudes under similar backward air mass trajectory conditions were analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. For most cases (four cases), most particles at all altitudes mainly comprised sea salts: mainly Na with some S and/or Cl. Of those, in two cases, sea-salt-containing particles with Cl were found in below-cloud samples, although sea-salt-containing particles in top-of-cloud samples did not contain Cl. This result suggests that Cl in the sea salt was displaced by other cloud components. In the other two cases, sea-salt-containing particles on samples at all altitudes were without Cl. However, molar ratios of S to Na (S/Na) of the sea-salt-containing particles of top-of-cloud samples were higher than those of below-cloud samples, suggesting that sulfuric acid or sulfate was added to sea-salt-containing particles after complete displacement of Cl by absorption of SO2 or coagulation with sulfate. The additional volume of sulfuric acid in clouds for the two cases was estimated using the observed S/Na values of sea-salt-containing particles. The estimation revealed that size changes by in

  15. Single-crystalline spherical β-Ga2O3 particles: Synthesis, N-doping and photoluminescence properties

    International Nuclear Information System (INIS)

    Zhang, Tingting; Lin, Jing; Zhang, Xinghua; Huang, Yang; Xu, Xuewen; Xue, Yanming; Zou, Jin; Tang, Chengchun

    2013-01-01

    We report on the synthesis of single-crystalline spherical β-Ga 2 O 3 particles by a simple method in ambient atmosphere. No pre-treatment, catalyst, substrate, or gas flow was required during the synthesis process. The well-dispersed Ga 2 O 3 particles display uniform spherical morphology with an average diameter of ∼200 nm. Photoluminescence studies indicate that the Ga 2 O 3 particles exhibit a broad blue-green light emission and an interesting red light emission at room temperature. The red light emission can be further tuned by post-annealing of the particles in ammonia atmosphere. The present single-crystalline β-Ga 2 O 3 particles with spherical morphology, uniform sub-micrometer sizes and tunable light emission are envisaged to be of high promise for applications in white-LED phosphors and optoelectronic devices. -- Highlights: ► We prepared single-crystalline spherical β-Ga 2 O 3 particles in ambient atmosphere. ► The particles display uniform spherical morphology with an average diameter of ∼200 nm. ► The Ga 2 O 3 particles exhibit a broad blue-green light and an interesting red light emission. ► The red light emission can be further tuned by post-annealing of the particles

  16. Study of airborne particles generated by the impact of droplets

    International Nuclear Information System (INIS)

    Motzkus, Ch.

    2007-12-01

    A liquid droplet impinging onto surfaces occurs in many industrial and natural processes. The study of this phenomenon is fundamental in order to determine the potential sources of contamination in the case of scenarios of liquid falls such as dripping. There are very few data in the literature in the case of the impact of millimeter-size droplets. The purpose of our work is to study experimentally the particle emission during the impact of droplets onto a liquid film. Experiments were conducted to study the influence of the velocity and the diameter of the droplets, the height of the liquid film, the surface tension and viscosity of the liquid on the airborne particles. Our results, original, have made it possible to examine the relevance of existing relations, describing the transition between deposition and splash regimes, in order to determine the presence or not of airborne particles. The micro droplets produced, with diameters less than fifty micrometers, are characterised in terms of total mass and size distribution. Our results also show the influence of a combination of several factors on the production of airborne particles. For this reason, it is interesting to use dimensionless numbers, to describe the relationship between the inertial, viscosity and surface tension forces, in order to understand physically the emission of airborne particles. (author)

  17. Experimental study on the particles deposition in the sampling duct

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Charuau, J. [Institut de Protection et de Surete Nucleaire, Yvette (France)

    1995-02-01

    A high standard of protection against the harmful effects of radioactive aerosol dissemination requires a measurement, as representative as possible, of their concentration. This measurement depends on the techniques used for aerosol sampling and transfer to the detector, as well as on the location of the latter with respect to the potential sources. The aeraulic design of the apparatus is also an important factor. Once collected the aerosol particles often have to travel through a variably shaped duct to the measurement apparatus. This transport is responsible for losses due to the particles deposition on the walls, leading to a distortion on the concentration measurements and a change in the particle size distribution. To estimate and minimize measurement errors it is important to determine the optimal transport conditions when designing a duct; its diameter and material, the radius of curvature of the bends and the flow conditions must be defined in particular. This paper presents an experimental study in order to determine, for each deposition mechanism, the retained fraction, or the deposition velocity for different flow regimes. This study has pointed out that it exists a favourable flow regime for the particle transport through the sampling ducts (2 500 < Re < 5 000). It has been established, for any particle diameters, equations to predict the aerosol penetration in smooth-walled cylindrical metal ducts.

  18. Sosiaalisen median markkinointisuunnitelma uudelle hoitoalan konseptoidulle työvaatemallistolle

    OpenAIRE

    Leppälä, Sanna

    2017-01-01

    Opinnäytetyössä pohdittiin keinoja saada uuden konseptoidun työvaatemalliston näkyvyyttä esille sosiaalisen median keinoin. Toimeksiantaja-yrityksenä toimi suomalainen Virtually Oy ja kohteena oli sen uusi hoitajille suunnattu työvaatemallisto. Malliston ympärille halutaan luoda kestävä brändi ja sosiaalisen median markkinointi on tukemassa brändin tunnettavuutta ja myyntiä. Sosiaalinen media ei yritysten välisessä liiketoiminnassa toimi ainoana markkinoinnin työkaluna, vaan se on tukemas...

  19. Advances in Biomagnetic Interfacing Concepts Derived from Polymer-Magnetic Particle Complexes

    National Research Council Canada - National Science Library

    Riffle, Judy S

    2005-01-01

    Our research on the development and characterization of magnetic nanoparticle-polymer complexes for tile project period 6/1/03-12/31/04 has yielded approximately 10-nm diameter cobalt particles coated...

  20. Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer

    Science.gov (United States)

    Nishimura, K.; Hunt, J. C. R.

    2000-08-01

    Experiments were conducted in a wind tunnel in which a turbulent boundary layer was naturally grown over flat beds of three types of nearly mono-disperse spherical particles with different diameters, densities and coefficient of restitution (r) (snow, 0.48 mm, 910 kg m[minus sign]3; mustard seeds, 1.82 mm, 1670 kg m[minus sign]3, r = 0.7; ice particles, 2.80 mm, 910 kg m[minus sign]3, r = 0.8 0.9). The surface wind speeds (defined by the friction velocity u[low asterisk]) were varied between 1.0 and 1.9 times the threshold surface wind speed (defined by u[low asterisk]t). The trajectories, and ejection and impact velocities of the particles were recorded and analysed, even those that were raised only about one diameter into the flow.

  1. Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely-driven particles

    Science.gov (United States)

    Whitelam, Stephen

    Colloidal particles of two types, driven in opposite directions, can segregate into lanes. I will describe some results on this phenomenon obtained by simple physical arguments and computer simulations. Laning results from rectification of diffusion on the scale of a particle diameter: oppositely-driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence of those of the opposite type, grows approximately linearly with Peclet number, a prediction confirmed by our numerics. Such environment-dependent diffusion is statistically similar to an effective interparticle attraction; consistent with this observation, we find that oppositely-driven colloids display features characteristic of the simplest model system possessing both interparticle attractions and persistent motion, the driven Ising lattice gas. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  2. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  3. Experimental study of single-phase pressure drops in coarse particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Fichot, F., E-mail: florian.fichot@irsn.fr [IRSN Cadarache, Saint Paul-lez-Durance (France); Quintard, M., E-mail: Michel.Quintard@imft.fr [Université de Toulouse, Allée Camille Soula, F-31400 Toulouse (France); INPT, UPS, Allée Camille Soula, F-31400 Toulouse (France); IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse (France); CNRS, F-31400 Toulouse (France)

    2017-02-15

    Motivated by uncertainty reduction in nuclear debris beds coolability, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds, i.e., high sphericity (>80%) particle beds with small size dispersion (from 1 mm to 10 mm), for which no validated model exists. In this paper, experimental results are presented and analyzed in order to identify a simple correlation for single-phase flow pressure losses generated in this kind of porous media in reflooding flowing conditions, which cover Darcy to weakly turbulent regimes. In the literature, it has been observed that their behavior can be accurately described by a Darcy–Forchheimer law, involving the sum of a linear term and a quadratic non-linear deviation, with respect to the filtration velocity. Expressions for the coefficients of the linear and quadratic terms are determined by assessing the possibility to evaluate equivalent diameters, i.e., characteristic lengths allowing correct predictions of the linear and quadratic terms by the Ergun equation. It has been observed that the Sauter diameter of particles allows a very precise prediction of the linear term, while the quadratic term can be predicted using the product of the Sauter diameter and a sphericity coefficient as an equivalent diameter.

  4. The use of rotating electric arc for spherical particle production

    International Nuclear Information System (INIS)

    Bica, I.

    2000-01-01

    This work presents and experimental device designed to obtain spherical particles by mans of a rotating electric arc. A rotation frequency of the electric arc of 750 s''-1, a voltage of 50 V(dc) and a current of 100 A was used. The mass flow rate was 3 g.min''-1. Under these conditions particles of 15 to 20 μm in diameter were obtained. (Author) 8 refs

  5. Effect of graphite particle size and content on the formation mechanism of detonation polycrystalline diamond

    Science.gov (United States)

    Tong, Y.; Cao, Y.; Liu, R.; Shang, S. Y.; Huang, F. L.

    2018-03-01

    The formation mechanism of detonation polycrystalline diamond (DPD) generated from the detonation of a mixed RDX/graphite explosive is investigated. It is found experimentally that the DPD conversion rate decreases with both the content and the particle size of the graphite. Moreover, the particle sizes of the generated DPD powder are analyzed, which shows that, with the decrease in the graphite particle size, the mean number diameter of DPD decreases, but the mean volume diameter increases. In addition, with the help of scanning electron microscopy, it is observed that the in situ phase change occurs in the graphite particles, by which the small particles combine to form numerous large DPD particles. Based on both the experimental data and the classical ZND detonation model, we divide such a DPD synthesis process into two stages: In the first stage, the in situ phase change from graphite to diamond is dominant, supplemented by some coalescence growth at high pressure and temperature, which is affected mainly by the detonation performance of the mixed explosive under consideration. In the second stage, the graphitization of DPD caused by the residual heat is dominant, which is affected mainly by the unloading rate of the particle temperature.

  6. Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment

    Directory of Open Access Journals (Sweden)

    L. Laakso

    2008-08-01

    Full Text Available We have analyzed one year (July 2006–July 2007 of measurement data from a relatively clean background site located in dry savannah in South Africa. The annual-median trace gas concentrations were equal to 0.7 ppb for SO2, 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO. The corresponding PM1, PM2.5 and PM10 concentrations were 9.0, 10.5 and 18.8 μg m−3, and the annual median total particle number concentration in the size range 10–840 nm was 2340 cm−3. During Easterly winds, influence of industrial sources approximately 150 km away from the measurement site was clearly visible, especially in SO2 and NOx concentrations. Of gases, NOx and CO had a clear annual, and SO2, NOx and O3 clear diurnal cycle. Atmospheric new-particle formation was observed to take place in more than 90% of the analyzed days. The days with no new particle formation were cloudy or rainy days. The formation rate of 10 nm particles varied in the range of 0.1–28 cm−3 s−1 (median 1.9 cm−3 s−1 and nucleation mode particle growth rates were in the range 3–21 nm h−1 (median 8.5 nm h−1. Due to high formation and growth rates, observed new particle formation gives a significant contribute to the number of cloud condensation nuclei budget, having a potential to affect the regional climate forcing patterns.

  7. Sosiaalisen median rooli mikroyrittäjän ostoprosessissa

    OpenAIRE

    Martikainen, Inkeri

    2014-01-01

    Opinnäytetyön tavoite oli selvittää sosiaalisen median rooli mikroyrittäjän ostoprosessissa; miten mikroyrittäjä hakee tietoa sosiaalisesta mediasta ja millainen vaikutus sieltä löytyvillä käyttäjäarvioilla on ostopäätökseen. Opinnäytetyö tehtiin erään finanssialan yrityksen toimeksiantona. Opinnäytetyön tarkoituksena oli antaa digitaalisen markkinoinnin ammattilaisille tietoa siitä, miten mikroyrittäjiä voidaan tavoittaa sosiaalisen median kautta, ja saada näin uusia asiakkaita. Tutkimus...

  8. Median forehead flap - beyond classic indication

    Directory of Open Access Journals (Sweden)

    Cristian R. Jecan

    2016-11-01

    Full Text Available Introduction. The paramedian forehead flap is one of the best options for reconstruction of the median upper two-thirds of the face due to its vascularity, color, texture match and ability to resurface all or part of the reconstructed area. The forehead flap is the gold standard for nasal soft tissue reconstruction and the flap of choice for larger cutaneous nasal defects having a robust pedicle and large amount of tissue. Materials and Methods. We are reporting a clinical series of cutaneous tumors involving the nose, medial canthus, upper and lower eyelid through a retrospective review of 6 patients who underwent surgical excision of the lesion and primary reconstruction using a paramedian forehead flap. Results. The forehead flap was used for total nose reconstruction, eyelids and medial canthal reconstruction. All flaps survived completely and no tumor recurrence was seen in any of the patients. Cosmetic and functional results were favorable. Conclusions. The forehead flap continues to be one of the best options for nose reconstruction and for closure of surgical defects of the nose larger than 2 cm. Even though is not a gold standard, median forehead flap can be an advantageous technique in periorbital defects reconstruction.

  9. Mixing state of regionally transported soot particles and the coating effect on their size and shape at a mountain site in Japan

    Science.gov (United States)

    Adachi, Kouji; Zaizen, Yuji; Kajino, Mizuo; Igarashi, Yasuhito

    2014-05-01

    Soot particles influence the global climate through interactions with sunlight. A coating on soot particles increases their light absorption by increasing their absorption cross section and cloud condensation nuclei activity when mixed with other hygroscopic aerosol components. Therefore, it is important to understand how soot internally mixes with other materials to accurately simulate its effects in climate models. In this study, we used a transmission electron microscope (TEM) with an auto particle analysis system, which enables more particles to be analyzed than a conventional TEM. Using the TEM, soot particle size and shape (shape factor) were determined with and without coating from samples collected at a remote mountain site in Japan. The results indicate that ~10% of aerosol particles between 60 and 350 nm in aerodynamic diameters contain or consist of soot particles and ~75% of soot particles were internally mixed with nonvolatile ammonium sulfate or other materials. In contrast to an assumption that coatings change soot shape, both internally and externally mixed soot particles had similar shape and size distributions. Larger aerosol particles had higher soot mixing ratios, i.e., more than 40% of aerosol particles with diameters >1 µm had soot inclusions, whereas <20% of aerosol particles with diameters <1 µm included soot. Our results suggest that climate models may use the same size distributions and shapes for both internally and externally mixed soot; however, changing the soot mixing ratios in the different aerosol size bins is necessary.

  10. Intrinsic speckle noise in in-line particle holography due to polydisperse and continuous particle sizes

    Science.gov (United States)

    Edwards, Philip J.; Hobson, Peter R.; Rodgers, G. J.

    2000-08-01

    In-line particle holography is subject to image deterioration due to intrinsic speckle noise. The resulting reduction in the signal to noise ratio (SNR) of the replayed image can become critical for applications such as holographic particle velocimetry (HPV) and 3D visualisation of marine plankton. Work has been done to extend the mono-disperse model relevant to HPV to include poly-disperse particle fields appropriate for the visualisation of marine plankton. Continuous and discrete particle fields are both considered. It is found that random walk statistics still apply for the poly-disperse case. The speckle field is simply the summation of the individual speckle patters due to each scatter size. Therefor the characteristic speckle parameter (which encompasses particle diameter, concentration and sample depth) is alos just the summation of the individual speckle parameters. This reduces the SNR calculation to the same form as for the mono-disperse case. For the continuous situation three distributions, power, exponential and Gaussian are discussed with the resulting SNR calcuated. The work presented here was performed as part of the Holomar project to produce a working underwater holographic camera for recording plankton.

  11. Identification and quantification of particle growth channels during new particle formation

    Directory of Open Access Journals (Sweden)

    M. R. Pennington

    2013-10-01

    Full Text Available Atmospheric new particle formation (NPF is a key source of ambient ultrafine particles that may contribute substantially to the global production of cloud condensation nuclei (CCN. While NPF is driven by atmospheric nucleation, its impact on CCN concentration depends strongly on atmospheric growth mechanisms since the growth rate must exceed the loss rate due to scavenging in order for the particles to reach the CCN size range. In this work, chemical composition measurements of 20 nm diameter particles during NPF in Hyytiälä, Finland, in March–April 2011 permit identification and quantitative assessment of important growth channels. In this work we show the following: (A sulfuric acid, a key species associated with atmospheric nucleation, accounts for less than half of particle mass growth during this time period; (B the sulfate content of a growing particle during NPF is quantitatively explained by condensation of gas-phase sulfuric acid molecules (i.e., sulfuric acid uptake is collision-limited; (C sulfuric acid condensation substantially impacts the chemical composition of preexisting nanoparticles before new particles have grown to a size sufficient to be measured; (D ammonium and sulfate concentrations are highly correlated, indicating that ammonia uptake is driven by sulfuric acid uptake; (E sulfate neutralization by ammonium does not reach the predicted thermodynamic end point, suggesting that a barrier exists for ammonia uptake; (F carbonaceous matter accounts for more than half of the particle mass growth, and its oxygen-to-carbon ratio (~ 0.5 is characteristic of freshly formed secondary organic aerosol; and (G differences in the overall growth rate from one formation event to another are caused by variations in the growth rates of all major chemical species, not just one individual species.

  12. Ultrahigh-frequency ultrasound of fascicles in the median nerve at the wrist.

    Science.gov (United States)

    Cartwright, Michael S; Baute, Vanessa; Caress, James B; Walker, Francis O

    2017-10-01

    An ultrahigh-frequency (70 MHZ) ultrasound device has recently been approved for human use. This study seeks to determine whether this device facilitates counting of fascicles within the median nerve at the wrist. Twenty healthy volunteers underwent imaging of the median nerve at the wrist bilaterally. The number of fascicles in each nerve was counted by two independent raters. The mean fascicle number was 22.68. Correlation was strong between the two raters (r = 0.68, P nerve area did not predict fascicle number. Those with bifid median nerves and persistent median arteries had lower fascicle density than those without anatomic anomalies (1.79 vs. 2.29; P = 0.01). Fascicles within the median nerve at the wrist can be readily imaged. Ultrahigh-frequency ultrasound technology may be informative in a variety of disorders affecting the peripheral nervous system. Muscle Nerve 56: 819-822, 2017. © 2017 Wiley Periodicals, Inc.

  13. Fractal-like dimension of nanometer Diesel soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Skillas, G.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegmann, K. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    Measurements with a low-pressure impactor and a differential mobility analyser were conducted for Diesel soot at various engine loads. By means of these measurements a fractal-like dimension of Diesel soot particles, with diameters ranging from 55 up to 260 nm, was established. (author) 2 figs., 7 refs.

  14. Diameter effect on critical heat flux

    International Nuclear Information System (INIS)

    Tanase, A.; Cheng, S.C.; Groeneveld, D.C.; Shan, J.Q.

    2009-01-01

    The critical heat flux look-up table (CHF LUT) is widely used to predict CHF for various applications, including design and safety analysis of nuclear reactors. Using the CHF LUT for round tubes having inside diameters different from the reference 8 mm involves conversion of CHF to 8 mm. Different authors [Becker, K.M., 1965. An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Aktiebolaget Atomenergie Report AE 177, Sweden; Boltenko, E.A., et al., 1989. Effect of tube diameter on CHF at various two phase flow regimes, Report IPE-1989; Biasi, L., Clerici, G.C., Garriba, S., Sala, R., Tozzi, A., 1967. Studies on Burnout, Part 3, Energia Nucleare, vol. 14, pp. 530-536; Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46-62; Groeneveld et al., 1996; Hall, D.D., Mudawar, I., 2000. Critical heat flux for water flow in tubes - II subcooled CHF correlations. Int. J. Heat Mass Transfer, 43, 2605-2640; Wong, W.C., 1996. Effect of tube diameter on critical heat flux, MaSC dissertation, Ottawa Carleton Institute for Mechanical and Aeronautical Engineering, University of Ottawa] have proposed several types of correlations or factors to describe the diameter effect on CHF. The present work describes the derivation of new diameter correction factor and compares it with several existing prediction methods

  15. Sizes of particles formed during municipal wastewater treatment.

    Science.gov (United States)

    Lech, Smoczynski; Marta, Kosobucka; Michal, Smoczynski; Harsha, Ratnaweera; Krystyna, Pieczulis-Smoczynska

    2017-02-01

    Volumetric diameters Dv and specific surface area SpS of sludge particles formed during chemical coagulation and electrocoagulation of sewage were determined. The obtained aggregate-flocs differed substantially in both Dv and SpS values. The differences in Dv and SpS values of the analyzed particles were interpreted based on theoretical models for expanding aggregates. The most uniform particles were formed under exposure to: (a) optimal and maximal doses of PIX, (b) optimal doses of PAX, (c) maximal doses of the Al electro-coagulant. The lowest PIX dose produced the least uniform particles. Sludge aggregates-particles produced under exposure to minimal doses of PIX and the Al electro-coagulant were characterized by the lowest SpS values. Sludge particles coagulated by PAX and the particles formed at higher doses of PIX and the Al electro-coagulant had higher SpS values. The particles formed at all doses of the applied coagulants and electro-coagulants were generally classified into two size ranges: the main range and the secondary range. Most particles belonged to the main size range. An increase in the percentage of colloidal hydroxide particles in sewage sludge increased SpS.

  16. Abnormal splenic artery diameter/hepatic artery diameter ratio in cirrhosis-induced portal hypertension

    Science.gov (United States)

    Zeng, Dao-Bing; Dai, Chuan-Zhou; Lu, Shi-Chun; He, Ning; Wang, Wei; Li, Hong-Jun

    2013-01-01

    AIM: To determine an optimal cutoff value for abnormal splenic artery diameter/proper hepatic artery diameter (S/P) ratio in cirrhosis-induced portal hypertension. METHODS: Patients with cirrhosis and portal hypertension (n = 770) and healthy volunteers (n = 31) underwent volumetric computed tomography three-dimensional vascular reconstruction to measure the internal diameters of the splenic artery and proper hepatic artery to calculate the S/P ratio. The cutoff value for abnormal S/P ratio was determined using receiver operating characteristic curve analysis, and the prevalence of abnormal S/P ratio and associations between abnormal S/P ratio and major complications of portal hypertension were studied using logistic regression. RESULTS: The receiver operating characteristic analysis showed that the cutoff points for abnormal splenic artery internal diameter and S/P ratio were > 5.19 mm and > 1.40, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value were 74.2%, 45.2%, 97.1%, and 6.6%, respectively. The prevalence of an abnormal S/P ratio in the patients with cirrhosis and portal hypertension was 83.4%. Patients with a higher S/P ratio had a lower risk of developing ascites [odds ratio (OR) = 0.708, 95%CI: 0.508-0.986, P = 0.041] and a higher risk of developing esophageal and gastric varices (OR = 1.483, 95%CI: 1.010-2.175, P = 0.044) and forming collateral circulation (OR = 1.518, 95%CI: 1.033-2.230, P = 0.034). After splenectomy, the portal venous pressure and maximum and mean portal venous flow velocities were reduced, while the flow rate and maximum and minimum flow velocities of the hepatic artery were increased (P portal hypertension, and it can be used as an important marker of splanchnic hemodynamic disturbances. PMID:23483462

  17. In-situ observations of interstitial aerosol particles and cloud residues found in contrails

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    In spring 1994 a series of flights were conducted in cirrus clouds and contrails over southern Germany. One of the aims of this campaign was to study the phase partitioning of aerosols and water in these clouds. To achieve this separation of particles two complementary sampling probes were mounted on the research aircraft Falcon. These are the Counterflow Virtual Impactor (CVI) or super-micrometer inlet, and the interstitial inlet or submicrometer inlet. The CVI is a device that inertially separates cloud elements larger than a certain aerodynamic size from the surrounding atmosphere into a warm, dry and particle free air. Assuming that each cloud element leaves behind only one residue particle, these measurements yield an equivalent number concentration for cloud particles having an aerodynamic diameter larger than the lower cut size of the CVI. The size distribution of the sampled aerosol and residual particles between 0.1 to 3.5 {mu}m diameter was measured by a PMS PCASP (Passive Cavity Aerosol Spectrometer) working alternatively on both inlets. The gas-phase water vapor content was measured by a cryogenic frost point mirror. (R.P.) 4 refs.

  18. In-situ observations of interstitial aerosol particles and cloud residues found in contrails

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, J [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-12-31

    In spring 1994 a series of flights were conducted in cirrus clouds and contrails over southern Germany. One of the aims of this campaign was to study the phase partitioning of aerosols and water in these clouds. To achieve this separation of particles two complementary sampling probes were mounted on the research aircraft Falcon. These are the Counterflow Virtual Impactor (CVI) or super-micrometer inlet, and the interstitial inlet or submicrometer inlet. The CVI is a device that inertially separates cloud elements larger than a certain aerodynamic size from the surrounding atmosphere into a warm, dry and particle free air. Assuming that each cloud element leaves behind only one residue particle, these measurements yield an equivalent number concentration for cloud particles having an aerodynamic diameter larger than the lower cut size of the CVI. The size distribution of the sampled aerosol and residual particles between 0.1 to 3.5 {mu}m diameter was measured by a PMS PCASP (Passive Cavity Aerosol Spectrometer) working alternatively on both inlets. The gas-phase water vapor content was measured by a cryogenic frost point mirror. (R.P.) 4 refs.

  19. Database and prediction model for CANDU pressure tube diameter

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.Y.; Park, J.H. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2014-07-01

    The pressure tube (PT) diameter is basic data in evaluating the CCP (critical channel power) of a CANDU reactor. Since the CCP affects the operational margin directly, an accurate prediction of the PT diameter is important to assess the operational margin. However, the PT diameter increases by creep owing to the effects of irradiation by neutron flux, stress, and reactor operating temperatures during the plant service period. Thus, it has been necessary to collect the measured data of the PT diameter and establish a database (DB) and develop a prediction model of PT diameter. Accordingly, in this study, a DB for the measured PT diameter data was established and a neural network (NN) based diameter prediction model was developed. The established DB included not only the measured diameter data but also operating conditions such as the temperature, pressure, flux, and effective full power date. The currently developed NN based diameter prediction model considers only extrinsic variables such as the operating conditions, and will be enhanced to consider the effect of intrinsic variables such as the micro-structure of the PT material. (author)

  20. Median Robust Extended Local Binary Pattern for Texture Classification.

    Science.gov (United States)

    Liu, Li; Lao, Songyang; Fieguth, Paul W; Guo, Yulan; Wang, Xiaogang; Pietikäinen, Matti

    2016-03-01

    Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP's high performance-robust to gray scale variations, rotation changes and noise-but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption.

  1. A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows

    International Nuclear Information System (INIS)

    Cardwell, Nicholas D; Vlachos, Pavlos P; Thole, Karen A

    2011-01-01

    Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method's efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas–solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of

  2. Charged particle beam monitoring by means of synchrotron radiation

    International Nuclear Information System (INIS)

    Panasyuk, V.S.; Anevskij, S.I.

    1984-01-01

    Optical methods for monitoring the number of accelerated electrons and electron energy by means of beam synchrotron radiation (SR) as well as peculiarities of SR characteristics of beams with a small radius of the orbit are considered. Optical methods for charged particle beam monitoring are shown to ensure operative and precise monitoring the number of particles and particle energy. SR sources with large axial dimensions of an electron beam have specific spectral angular and polarization characteristics. If electron angular distribution at deflection from the median plane is noticeably wider than angular distribution of SR of a certain electron, relative SR characteristics of these soUrces are calculated with high accuracy

  3. Speckle Reduction and Structure Enhancement by Multichannel Median Boosted Anisotropic Diffusion

    Directory of Open Access Journals (Sweden)

    Yang Zhi

    2004-01-01

    Full Text Available We propose a new approach to reduce speckle noise and enhance structures in speckle-corrupted images. It utilizes a median-anisotropic diffusion compound scheme. The median-filter-based reaction term acts as a guided energy source to boost the structures in the image being processed. In addition, it regularizes the diffusion equation to ensure the existence and uniqueness of a solution. We also introduce a decimation and back reconstruction scheme to further enhance the processing result. Before the iteration of the diffusion process, the image is decimated and a subpixel shifted image set is formed. This allows a multichannel parallel diffusion iteration, and more importantly, the speckle noise is broken into impulsive or salt-pepper noise, which is easy to remove by median filtering. The advantage of the proposed technique is clear when it is compared to other diffusion algorithms and the well-known adaptive weighted median filtering (AWMF scheme in both simulation and real medical ultrasound images.

  4. Reliability of Ultrasound Diameter Measurements in Patients with a Small Asymptomatic Popliteal Artery Aneurysm: An Intra- and Inter-observer Agreement Study.

    Science.gov (United States)

    Zwiers, I; Hoogland, C M T; Mackaay, A J C

    2016-03-01

    In this study the intra- and inter-observer variability of ultrasound measurements of the diameter of the popliteal artery were tested in a group of patients under surveillance for a small (diameter 10-20 mm), asymptomatic popliteal artery aneurysm (PAA). From a group of patients under ultrasound surveillance for bilateral, asymptomatic PAAs, 13 consecutive patients agreed to participate in the study and provided informed consent. The maximum diameter of the popliteal arteries was assessed by a vascular technologist. The same assessment was repeated by a second vascular technologist, unaware of the results of the first measurement. After a week, this protocol was repeated. The intra- and inter-observer reliability of this measurement was calculated using intra-class correlation coefficients (ICCs) and Bland and Altman plots. Of the 10 patients with bilateral and three patients with unilateral PAA, 12 completed the 2 week protocol. A total of 86 measurements were analyzed. The mean diameter of the popliteal arteries was 13.5 ± 3.4 mm. The ICC for the intra-observer reliability of observer 1 was 0.96 (95% CI 0.92-0.99), p .47. The absolute magnitude of the systematic error of both observers was less than 0.135 mm (median 0.00). Ultrasound measurement of the maximum diameter of the popliteal artery is reproducible; hence, it is suitable for making a clinical treatment decision. Its use for surveillance of small, asymptomatic PAAs is justified. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy.

    Science.gov (United States)

    Ho, Phuong T; Reddy, Vijay S

    2018-01-01

    The recent technological advances in electron microscopes, detectors, as well as image processing and reconstruction software have brought single particle cryo-electron microscopy (cryo-EM) into prominence for determining structures of bio-molecules at near atomic resolution. This has been particularly true for virus capsids, ribosomes, and other large assemblies, which have been the ideal specimens for structural studies by cryo-EM approaches. An analysis of time series metadata of virus structures on the methods of structure determination, resolution of the structures, and size of the virus particles revealed a rapid increase in the virus structures determined by cryo-EM at near atomic resolution since 2010. In addition, the data highlight the median resolution (∼3.0 Å) and size (∼310.0 Å in diameter) of the virus particles determined by X-ray crystallography while no such limits exist for cryo-EM structures, which have a median diameter of 508 Å. Notably, cryo-EM virus structures in the last four years have a median resolution of 3.9 Å. Taken together with minimal sample requirements, not needing diffraction quality crystals, and being able to achieve similar resolutions of the crystal structures makes cryo-EM the method of choice for current and future virus capsid structure determinations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Experimental study of sediment particle diffusion on a granular bed.

    Science.gov (United States)

    Antico, Federica; Sanches, Pedro; Fent, Ilaria; Ferreira, Rui M. L.

    2016-04-01

    Particle diffusion in a cohesionless granular bed, hydraulically fully rough, subjected to a steady-uniform turbulent open-channel flow is investigated. Experiments were carried out under conditions of weak bedload transport in a 12.5 m long and 40.5 cm wide glass-sided flume recirculating water and sediment through independent circuits at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico, Lisbon. The flume bed was divided in two reaches: a fixed reach comprising 1.5 m of large boulders, followed by 3.0 m of smooth bottom (PVC) and 2.5 m of one layer glued 5.0 mm diameter spherical glass beads; a mobile reach 4.0 m long and 2.5 cm deep filled with 5.0 mm diameter glass packed beads. Particle velocities were obtained introducing 5.0 mm diameter white-coated beads in the flow. Particle motion was registered from above using a high-speed camera AVT Bonito CL-400 with resolution set to 2320 x 1000 px2and frame rate of 170 fps. The field of view recorded was 77.0 cm long and 38.0 cm wide, covering almost all the width of the flume. Image processing allowed detecting and locating the centre of mass of the particles with sub-pixel accuracy. Particle trajectories were reconstructed by tracking the beads in the images; particle velocities were obtained as bead displacement over time interval between two consecutive frames (1/170 s). The computation of lagrangian statistics of particle velocities for a Shields parameter θ=0.014, Froude number Fr=0.756, boundary Reynolds number Re*=182.9 and run duration of 20 min (during which 1218 particle trajectories were collected) provided information about particle diffusion within the local and intermediate range of temporal and space scales. Mean particle velocities, second, third and fourth order moments were obtained for both longitudinal and transverse velocity components. A relatively large ballistic range, approximately two particle diameters, was observed, mainly due to the simple bed topography of

  7. Blue-Emitting Small Silica Particles Incorporating ZnSe-Based Nanocrystals Prepared by Reverse Micelle Method

    Directory of Open Access Journals (Sweden)

    Masanori Ando

    2007-01-01

    Full Text Available ZnSe-based nanocrystals (ca. 4-5 nm in diameter emitting in blue region (ca. 445 nm were incorporated in spherical small silica particles (20–40 nm in diameter by a reverse micelle method. During the preparation, alkaline solution was used to deposit the hydrolyzed alkoxide on the surface of nanocrystals. It was crucially important for this solution to include Zn2+ ions and surfactant molecules (thioglycolic acid to preserve the spectral properties of the final silica particles. This is because these substances in the solution prevent the surface of nanocrystals from deterioration by dissolution during processing. The resultant silica particles have an emission efficiency of 16% with maintaining the photoluminescent spectral width and peak wavelength of the initial colloidal solution.

  8. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  9. Dust generation in powders: Effect of particle size distribution

    Directory of Open Access Journals (Sweden)

    Chakravarty Somik

    2017-01-01

    Full Text Available This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  10. Electronic transport behavior of diameter-graded Ag nanowires

    International Nuclear Information System (INIS)

    Wang Xuewei; Yuan Zhihao

    2010-01-01

    Ag nanowires with a graded diameter in anodic aluminum oxide (AAO) membranes were fabricated by the direct-current electrodeposition. The Ag nanowires have a graded-change in diameter from 8 to 32 nm, which is matched with the graded-change of the AAO pore diameter. Electronic transport measurements show that there is a transport behavior similar to that of a metal-semiconductor junction along the axial direction in the diameter-graded Ag nanowires. Such a novel homogeneous nanojunction will be of great fundamental and practical significance.

  11. Electronic transport behavior of diameter-graded Ag nanowires

    Science.gov (United States)

    Wang, Xue Wei; Yuan, Zhi Hao

    2010-05-01

    Ag nanowires with a graded diameter in anodic aluminum oxide (AAO) membranes were fabricated by the direct-current electrodeposition. The Ag nanowires have a graded-change in diameter from 8 to 32 nm, which is matched with the graded-change of the AAO pore diameter. Electronic transport measurements show that there is a transport behavior similar to that of a metal-semiconductor junction along the axial direction in the diameter-graded Ag nanowires. Such a novel homogeneous nanojunction will be of great fundamental and practical significance.

  12. Asynchronous beating of cilia enhances particle capture rate

    Science.gov (United States)

    Ding, Yang; Kanso, Eva

    2014-11-01

    Many aquatic micro-organisms use beating cilia to generate feeding currents and capture particles in surrounding fluids. One of the capture strategies is to ``catch up'' with particles when a cilium is beating towards the overall flow direction (effective stroke) and intercept particles on the downstream side of the cilium. Here, we developed a 3D computational model of a cilia band with prescribed motion in a viscous fluid and calculated the trajectories of the particles with different sizes in the fluid. We found an optimal particle diameter that maximizes the capture rate. The flow field and particle motion indicate that the low capture rate of smaller particles is due to the laminar flow in the neighbor of the cilia, whereas larger particles have to move above the cilia tips to get advected downstream which decreases their capture rate. We then analyzed the effect of beating coordination between neighboring cilia on the capture rate. Interestingly, we found that asynchrony of the beating of the cilia can enhance the relative motion between a cilium and the particles near it and hence increase the capture rate.

  13. Edge screw withdrawal resistance in conventional particleboard and OSB: Influence of the particles type

    Directory of Open Access Journals (Sweden)

    Miljković Jovan

    2007-01-01

    Full Text Available This research was based on presumption that the changes in size and shape of wood particles are expected to have certain impact on the particleboard quality in general. Since the conventional particleboard (PB and oriented strand board (OSB were built of the quite diverse wood particles, they present interesting specimens in the comparison tests. In this work, the influence of the wood particles type on the edge screw holding performance of conventional particleboard and OSB was investigated. Those tests were obtained with the screw diameters of 4.0 mm, 4.5 mm and 5 mm. Depth of embedment was 30 mm for all tests and with the pilot-hole diameter kept in the range of 80-90% in respect of the screw root diameter. Additional tests of the thickness density profile and tensile strength perpendicular to the surface of the board were conducted. Since the middle layer structure of the particleboard embeds the screw body, both mentioned parameters are considered important in the aspect of the quality of the edge screw holding performance. In order to have further insight into the conformation of the middle layer the image survey was obtained on the split board section presenting the surface of the middle layer. Significant differences in the SWR performance of OSB and PB was recorded at all screw diameters. For the screw withdrawal tests parameters OSB samples showed 56-73% superior mean values then conventional PB. On the other hand, the OSB showed wider dispersions of measured withdrawal forces at all screw diameters, which might present some of the problems in certain engineering and project calculations.

  14. Single-particle characterization of 'Asian Dust' certified reference materials using low-Z particle electron probe X-ray microanalysis

    International Nuclear Information System (INIS)

    Hwang, Hee Jin; Ro, Chul-Un

    2006-01-01

    In order to clearly elucidate whether Asian Dust particles experience chemical modification during long-range transport, it is necessary to characterize soil particles where Asian Dust particles originate. If chemical compositions of source soil particles are well characterized, then chemical compositions of Asian Dust particles collected outside source regions can be compared with those of source soil particles in order to find out the occurrence of chemical modification. Asian Dust particles are chemically and morphologically heterogeneous, and thus the average composition and the average aerodynamic diameter (obtainable by bulk analysis) are not much relevant if the chemical modifications of the particles must be followed. The major elemental composition and abundance of the particle types that are potential subjects of chemical modification can only be obtained using single-particle analysis. A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize two certified reference materials (CRMs) for Asian Dust particles, which were collected from a loess plateau area and a desert of China. The CRMs were defined by bulk analyses to provide certified concentrations for 13 chemical elements. Using the low-Z particle EPMA technique, the concentrations of major chemical species such as aluminosilicates, SiO 2 , CaCO 3 , and carbonaceous species were obtained. Elemental concentrations obtained by the low-Z particle EPMA are close to the certified values, with considering that the single particle and bulk analyses employ very different approaches. There are still some discrepancies between those concentration values, resulting from analyses of particles with different sizes, different sample amounts analyzed, and uncertainties involved in the single particle analysis

  15. An investigation on the noise reduction performance of profiled rigid median barriers at highways

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Monazzam

    2012-01-01

    Full Text Available Median barriers as a portion of a divided highway are provided to minimize the cross-median crashes. Moreover, median barriers similar to roadside noise barriers could protect people from transportation noise. Thus, there is a need to investigate various median barrier models to identify changes of insertion loss over a simple rigid barrier. In order to estimate the acoustical influence of median barrier′s profile in the shadow zone, different median barrier models are presented and their insertion losses are calculated over a frequency range from 50 to 4000 Hz using a two-dimensional boundary element method. The present investigation has clearly revealed that among the profiled median barriers, T-shape, Y-shape, and L-shape provide better performance than that of the other shapes. It is also found that among inclined barriers, V-shape barrier significantly presents higher values of attenuation. Based on the calculation of different geometrics, it has been shown that a further 2 dB (A in efficiency could be obtained by a better design of the median barrier which is labeled model "L."

  16. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    Science.gov (United States)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  17. High concentrations of coarse particles emitted from a cattle feeding operation

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-08-01

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less) were as high as 1200 μg m-3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was present in internal mixtures with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences may lead to errors in estimates of aerosol effects on local air quality, visibility, and public health.

  18. Effect of feed processing on size of (washed) faeces particles from pigs measured by image analysis

    DEFF Research Database (Denmark)

    Nørgaard, Peder; Kornfelt, Louise Foged; Hansen, Christian Fink

    2005-01-01

    of particles from the sieving fractions were scanned and the length and width of individual particles were identified using image analysis software. The overall mean, mode and median were estimated from a composite function. The dietary physical characteristics significantly affected the proportion of faecal...

  19. Spheronization process particle kinematics determined by discrete element simulations and particle image velocimentry measurements.

    Science.gov (United States)

    Koester, Martin; García, R Edwin; Thommes, Markus

    2014-12-30

    Spheronization is an important pharmaceutical manufacturing technique to produce spherical agglomerates of 0.5-2mm diameter. These pellets have a narrow size distribution and a spherical shape. During the spheronization process, the extruded cylindrical strands break in short cylinders and evolve from a cylindrical to a spherical state by deformation and attrition/agglomeration mechanisms. Using the discrete element method, an integrated modeling-experimental framework is presented, that captures the particle motion during the spheronization process. Simulations were directly compared and validated against particle image velocimetry (PIV) experiments with monodisperse spherical and dry γ-Al2O3 particles. demonstrate a characteristic torus like flow pattern, with particle velocities about three times slower than the rotation speed of the friction plate. Five characteristic zones controlling the spheronization process are identified: Zone I, where particles undergo shear forces that favors attrition and contributes material to the agglomeration process; Zone II, where the static wall contributes to the mass exchange between particles; Zone III, where gravitational forces combined with particle motion induce particles to collide with the moving plate and re-enter Zone I; Zone IV, where a subpopulation of particles are ejected into the air when in contact with the friction plate structure; and Zone V where the low poloidal velocity favors a stagnant particle population and is entirely controlled by the batch size. These new insights in to the particle motion are leading to deeper process understanding, e.g., the effect of load and rotation speed to the pellet formation kinetics. This could be beneficial for the optimization of a manufacturing process as well as for the development of new formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    Science.gov (United States)

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM 0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Surface particle sizes on armoured gravel streambeds: Effects of supply and hydraulics

    Science.gov (United States)

    Peter J. Whiting; John G. King

    2003-01-01

    Most gravel-bed streams exhibit a surface armour in which the median grain size of the surface particles is coarser than that of the subsurface particles. This armour has been interpreted to result when the supply of sediment is less than the ability of the stream to move sediment. While there may be certain sizes in the bed for which the supply is less than the...

  2. Particle Shape Characterization of Lunar Regolith using Reflected Light Microscopy

    Science.gov (United States)

    McCarty, C. B.; Garcia, G. C.; Rickman, D.

    2014-12-01

    Automated identification of particles in lunar thin sections is necessary for practical measurement of particle shape, void characterization, and quantitative characterization of sediment fabric. This may be done using image analysis, but several aspects of the lunar regolith make such automations difficult. For example, many of the particles are shattered; others are aggregates of smaller particles. Sieve sizes of the particles span 5 orders of magnitude. The physical thickness of a thin section, at a nominal 30 microns, is large compared to the size of many of the particles. Image acquisition modes, such as SEM and reflected light, while superior to transmitted light, still have significant ambiguity as to the volume being sampled. It is also desirable to have a technique that is inexpensive, not resource intensive, and analytically robust. To this end, we have developed an image acquisition and processing protocol that identifies and delineates resolvable particles on the front surface of a lunar thin section using a petrographic microscope in reflected light. For a polished thin section, a grid is defined covering the entire thin section. The grid defines discrete images taken with 20% overlap, minimizing the number of particles that intersect image boundaries. In reflected light mode, two images are acquired at each grid location, with a closed aperture diaphragm. One image, A, is focused precisely on the front surface of the thin section. The second image, B, is made after the stage is brought toward the objective lens just slightly. A bright fringe line, analogous to a Becke line, appears inside all transparent particles at the front surface of the section in the second image. The added light in the bright line corresponds to a deficit around the particles. Particle identification is done using ImageJ and uses multiple steps. A hybrid 5x5 median filter is used to make images Af and Bf. This primarily removes very small particles just below the front surface

  3. Formation of charged particles in condensation aerosol generators used for inhalation studies

    International Nuclear Information System (INIS)

    Ramu, M.C.R.; Vohra, K.G.

    1976-01-01

    Formation of charged particles in a condensation aerosol generator has been studied using a charge collector and a mobility analyzer. Measurements carried out using the charge collector show that the number of charged particles increases with an increase in the particle diameter. The number of charged particles measured also depends on the thickness of the sodium chloride coating on the platinum wire used in the aerosol generator for the production of condensation nuclei. It was found that the charged particle concentration increases with decreasing coating thickness. Mobility measurements have shown that the particles are singly and doubly charged. It has been estimated that about 10% of the particles produced in the generator are charged. The mechanism of formation of charged particles in the aerosol generator has been briefly discussed. (author)

  4. Friction factor for water flow through packed beds of spherical and non-spherical particles

    Directory of Open Access Journals (Sweden)

    Kaluđerović-Radoičić Tatjana

    2017-01-01

    Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022

  5. Plume particle collection and sizing from static firing of solid rocket motors

    Science.gov (United States)

    Sambamurthi, Jay K.

    1995-01-01

    A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.

  6. COLOUR IMAGE STEGANOGRAPHY USING MEDIAN MAINTENANCE

    Directory of Open Access Journals (Sweden)

    S. Arivazhagan

    2011-08-01

    Full Text Available Steganographic algorithms in the recent past have been producing stego images with perceptual invisibility, better secrecy and certain robustness against attacks like cropping, filtering etc. Recovering a good quality secret from a good quality stego image may not always be possible. The method proposed in this paper works in transform domain and attempts to extract the secret almost as same as the embedded one maintaining minimal changes to the cover image by using techniques like median maintenance, offset and quantization.

  7. Electromyogram median power frequency in dynamic exercise at medium exercise intensities

    NARCIS (Netherlands)

    Ament, W; Bonga, GJJ; Hof, AL; Verkerke, GJ

    The electromyogram (EMG) median power Frequency of the calf muscles was investigated during an exhausting treadmill exercise and a 20-min recovery period. The exercise was an uphill run at a speed of 5 km . h(-1) and a gradient of 20%. During exercise there was no decrease of EMG median power

  8. Median mental sinus in twins.

    Science.gov (United States)

    Ong, S T; Ngeow, W C

    1999-05-01

    Sinus on the chin can be the result of a chronic apical abscess due to pulp necrosis of a mandibular anterior tooth. The tooth is usually asymptomatic, and a dental cause is therefore not apparent to the patient or the unsuspecting clinician. Not infrequently, the patient may seek treatment from a dermatologist or general surgeon instead of a dentist. Excision and repair of the fistula may be carried out with subsequent breakdown because the dental pathology is not removed. This paper reports the presence of median mental sinus of dental origin in twins. One case healed following root canal therapy while the other required both root canal therapy and surgery to eliminate the infection.

  9. Range Selection and Median

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Larsen, Kasper Green

    2011-01-01

    and several natural special cases thereof. The rst special case is known as range median, which arises when k is xed to b(j 􀀀 i + 1)=2c. The second case, denoted prex selection, arises when i is xed to 0. Finally, we also consider the bounded rank prex selection problem and the xed rank range......Range selection is the problem of preprocessing an input array A of n unique integers, such that given a query (i; j; k), one can report the k'th smallest integer in the subarray A[i];A[i+1]; : : : ;A[j]. In this paper we consider static data structures in the word-RAM for range selection...... selection problem. In the former, data structures must support prex selection queries under the assumption that k for some value n given at construction time, while in the latter, data structures must support range selection queries where k is xed beforehand for all queries. We prove cell probe lower bounds...

  10. Separate patient serum sodium medians from males and females provide independent information on analytical bias.

    Science.gov (United States)

    Hansen, Steen Ingemann; Petersen, Per Hyltoft; Lund, Flemming; Fraser, Callum G; Sölétormos, György

    2017-10-26

    During monitoring of monthly medians of results from patients undertaken to assess analytical stability in routine laboratory performance, the medians for serum sodium for male and female patients were found to be significantly related. Daily, weekly and monthly patient medians of serum sodium for both male and female patients were calculated from results obtained on samples from the population >18 years on three analysers in the hospital laboratory. The half-range of medians was applied as an estimate of the maximum bias. Further, the ratios between the two medians were calculated. The medians of both genders demonstrated dispersions over time, but they were closely connected in like patterns, which were confirmed by the half-range of the ratios of medians for males and females that varied from 0.36% for daily, 0.14% for weekly and 0.036% for monthly ratios over all instruments. The tight relationship between the gender medians for serum sodium is only possible when raw laboratory data are used for calculation. The two patient medians can be used to confirm both and are useful as independent estimates of analytical bias during constant calibration periods. In contrast to the gender combined median, the estimate of analytical bias can be confirmed further by calculation of the ratios of medians for males and females.

  11. Voimaa visuaalisuudesta : Narratiivinen kirjallisuuskatsaus visuaalisen sosiaalisen