WorldWideScience

Sample records for mechanism rate constants

  1. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Reaction Mechanism and Rate Constants in the Radiolysis of Fe2+-Cu2+ Solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Sehested, Knud; Rasmussen, O. Lang

    1976-01-01

    Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some ...... 10^{8}$ and $1.3\\times 10^{8}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$ in pH 2.1 H2 SO4 and HClO4, respectively.......Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some...... of the reactions have been determined at different pH's. $k_{{\\rm Cu}^{+}+{\\rm O}_{2}}=4.6\\times 10^{5}$ and $1.0\\times 10^{6}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}^{+}+{\\rm Fe}^{3+}}=5.5\\times 10^{6}$ and $1.3\\times 10^{7}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}({\\rm III)}+{\\rm Fe}^{2+}}=3.3\\times...

  3. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    Science.gov (United States)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  4. Rate constants for a mechanism including intermediates in the interconversion of ternary complexes by horse liver alcohol dehydrogenase

    International Nuclear Information System (INIS)

    Sekhar, V.C.; Plapp, B.V.

    1990-01-01

    Transient kinetic data for partial reactions of alcohol dehydrogenase and simulations of progress curves have led to estimates of rate constants for the following mechanism, at pH 8.0 and 25 degrees C: E in equilibrium E-NAD+ in equilibrium *E-NAD+ in equilibrium E-NAD(+)-RCH2OH in equilibrium E-NAD+-RCH2O- in equilibrium *E-NADH-RCHO in equilibrium E-NADH-RCHO in equilibrium E-NADH in equilibrium E. Previous results show that the E-NAD+ complex isomerizes with a forward rate constant of 620 s-1. The enzyme-NAD(+)-alcohol complex has a pK value of 7.2 and loses a proton rapidly (greater than 1000 s-1). The transient oxidation of ethanol is 2-fold faster in D 2 O, and proton inventory results suggest that the transition state has a charge of -0.3 on the substrate oxygen. Rate constants for hydride ion transfer in the forward or reverse reactions were similar for short-chain aliphatic substrates (400-600 s-1). A small deuterium isotope effect for transient oxidation of longer chain alcohols is apparently due to the isomerization of the E-NAD+ complex. The transient reduction of aliphatic aldehydes showed no primary deuterium isotope effect; thus, an isomerization of the E-NADH-aldehyde complex is postulated, as isomerization of the E-NADH complex was too fast to be detected. The estimated microscopic rate constants show that the observed transient reactions are controlled by multiple steps

  5. Direct quantum mechanical calculation of the F + H{sub 2} {yields} HF + H thermal rate constant

    Energy Technology Data Exchange (ETDEWEB)

    Moix, Marc [Computer Simulation and Modeling (COSMO) Lab, Parc Cientific de Barcelona, Josep Samitier 5, 08028 Barcelona (Spain); Institut de Quimica Teorica i Computacional de la UB (IQTCUB), Universitat de Barcelona (Spain); Huarte-Larranaga, Fermin [Computer Simulation and Modeling (COSMO) Lab, Parc Cientific de Barcelona, Josep Samitier 5, 08028 Barcelona (Spain); Institut de Quimica Teorica i Computacional de la UB (IQTCUB), Universitat de Barcelona (Spain)], E-mail: fhuarte@pcb.ub.es

    2008-07-03

    Accurate full-dimensional quantum mechanical thermal rate constant values have been calculated for the F+H{sub 2}{yields}HF+H reaction on the Stark-Werner ab initio potential energy surface. These calculations are based on a flux correlation functions and employ a rigorous statistical sampling scheme to account for the overall rotation and the MCTDH scheme for the wave packet propagation. Our results shed some light on discrepancies on the thermal rate found for previous flux correlation based calculations with respect to accurate reactive scattering results. The resonance pattern of the all-J cumulative reaction probability is analyzed in terms of the partial wave contributions.

  6. High-temperature rate constant measurements for OH+xylenes

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2015-06-01

    The overall rate constants for the reactions of hydroxyl (OH) radicals with o-xylene (k 1), m-xylene (k 2), and p-xylene (k 3) were measured behind reflected shock waves over 890-1406K at pressures of 1.3-1.8atm using OH laser absorption near 306.7nm. Measurements were performed under pseudo-first-order conditions. The measured rate constants, inferred using a mechanism-fitting approach, can be expressed in Arrhenius form as:k1=2.93×1013exp(-1350.3/T)cm3mol-1s-1(890-1406K)k2=3.49×1013exp(-1449.3/T)cm3mol-1s-1(906-1391K)k3=3.5×1013exp(-1407.5/T)cm3mol-1s-1(908-1383K)This paper presents, to our knowledge, first high-temperature measurements of the rate constants of the reactions of xylene isomers with OH radicals. Low-temperature rate-constant measurements by Nicovich et al. (1981) were combined with the measurements in this study to obtain the following Arrhenius expressions, which are applicable over a wider temperature range:k1=2.64×1013exp(-1181.5/T)cm3mol-1s-1(508-1406K)k2=3.05×109exp(-400/T)cm3mol-1s-1(508-1391K)k3=3.0×109exp(-440/T)cm3mol-1s-1(526-1383K) © 2015 The Combustion Institute.

  7. Reaction rate constant for radiative association of CF{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Öström, Jonatan, E-mail: jonatan.ostrom@gmail.com; Gustafsson, Magnus, E-mail: magnus.gustafsson@ltu.se [Applied Physics, Division of Materials Science, Department of Engineering Science and Mathematics, Luleå University of Technology, 97187 Luleå (Sweden); Bezrukov, Dmitry S. [Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); Nyman, Gunnar [Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg (Sweden)

    2016-01-28

    Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C{sup +}) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 1{sup 1}Π → X{sup 1}Σ{sup +} and rovibrational transitions on the X{sup 1}Σ{sup +} and a{sup 3}Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit–Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius–Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10–250 K, the rate constant is about 10{sup −21} cm{sup 3} s{sup −1}, rising toward 10{sup −16} cm{sup 3} s{sup −1} for a temperature of 30 000 K.

  8. Recent developments in semiclassical mechanics: eigenvalues and reaction rate constants

    International Nuclear Information System (INIS)

    Miller, W.H.

    1976-04-01

    A semiclassical treatment of eigenvalues for a multidimensional non-separable potential function and of the rate constant for a chemical reaction with an activation barrier is presented. Both phenomena are seen to be described by essentially the same semiclassical formalism, which is based on a construction of the total Hamiltonian in terms of the complete set of ''good'' action variables (or adiabatic invariants) associated with the minimum in the potential energy surface for the eigenvalue case, or the saddle point in the potential energy surface for the case of chemical reaction

  9. Constant displacement rate testing at elevated temperatures

    International Nuclear Information System (INIS)

    Pepe, J.J.; Gonyea, D.C.

    1989-01-01

    A short time test has been developed which is capable of determining the long time notch sensitivity tendencies of CrMoV rotor forging materials. This test is based on Constant Displacement Rate (CDR) testing of a specific notch bar specimen at 1200 0 F at 2 mils/in/hour displacement rate. These data were correlated to conventional smooth and notch bar rupture behavior for a series of CrMoV materials with varying long time ductility tendencies. The purpose of this paper is to describe the details of this new test procedure and some of the relevant mechanics of material information generated during its development

  10. Dose rate constants for new dose quantities

    International Nuclear Information System (INIS)

    Tschurlovits, M.; Daverda, G.; Leitner, A.

    1992-01-01

    Conceptual changes and new quantities made is necessary to reassess dose rate quantities. Calculations of the dose rate constant were done for air kerma, ambient dose equivalent and directional dose equivalent. The number of radionuclides is more than 200. The threshold energy is selected as 20 keV for the dose equivalent constants. The dose rate constant for the photon equivalent dose as used mainly in German speaking countries as a temporary quantity is also included. (Author)

  11. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions

    Science.gov (United States)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Martínez, Carmen Enid

    2012-07-01

    , within error, for both 0 and 2 mol% Al nanoparticle suspensions. Thus, the presence of 2 mol% Al decreased the rate constants determined from analyses of infrared OH-stretching and OH-bending vibrations by 43-57%. We postulate that dissolution re-precipitation reactions are accelerated in aggregate microenvironments by locally increased supersaturation, yielding the dominant mechanism for transformation of ferrihydrite to goethite and goethite crystal growth when bulk ion concentrations are low. Although we did observe growth of a population of prismatic goethite single crystals by TEM, there was more substantial growth of a population of polycrystalline goethite needles that appeared to retain some defects from a preceding aggregation step that we detected with DLS. Since the presence of Al hinders the dissolution of ferrihydrite, it too reduces the rate of crystallization to goethite and its crystal growth. As exemplified in this nano-particle crystallization study, the combination of advanced spectral-curve-resolution algorithms and sensitive and quantitative infrared sampling techniques opens future opportunities for the quantification of mineral phase dynamics in nanocolloidal suspensions, which is important for many aspects of environmental studies.

  12. Inflation with a constant rate of roll

    International Nuclear Information System (INIS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-01-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ·· φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime

  13. On determining dose rate constants spectroscopically

    International Nuclear Information System (INIS)

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-01

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of 125 I and 103 Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089–6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated 125 I and 103 Pd sources. Methods: Spectra generated by 14 125 I and 6 103 Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 × 2.7 × 0.05 cm 3 voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the 125 I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for 103 Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were ⩽0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in 125 I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The 103 Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different

  14. Uniaxial tension test on Rubber at constant true strain rate

    Directory of Open Access Journals (Sweden)

    Sourne H.L.

    2012-08-01

    Full Text Available Elastomers are widely used for damping parts in different industrial contexts because of their remarkable dissipation properties. Indeed, they can undergo severe mechanical loading conditions, i.e., high strain rates and large strains. Nevertheless, the mechanical response of these materials can vary from purely rubber-like to glassy depending on the strain rate undergone. Classically, uniaxial tension tests are made in order to find a relation between the stress and the strain in the material at various strain rates. However, even if the strain rate is searched to be constant, it is the nominal strain rate that is considered. Here we develop a test at constant true strain rate, i.e. the strain rate that is experienced by the material. In order to do such a test, the displacement imposed by the machine is an exponential function of time. This test has been performed with a high speed hydraulic machine for strain rates between 0.01/s and 100/s. A specific specimen has been designed, yielding a uniform strain field (and so a uniform stress field. Furthermore, an instrumented aluminum bar has been used to take into account dynamic effects in the measurement of the applied force. A high speed camera enables the determination of strain in the sample using point tracking technique. Using this method, the stress-strain curve of a rubber-like material during a loading-unloading cycle has been determined, up to a stretch ratio λ = 2.5. The influence of the true strain rate both on stiffness and on dissipation of the material is then discussed.

  15. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  16. Rate constant measurements for the overall reaction of OH + 1-butanol → products from 900 to 1200 K.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-03-15

    The rate constant for the overall reaction OH + 1-butanol → products was determined in the temperature range 900 to 1200 K from measurements of OH concentration time histories in reflected shock wave experiments of tert-butyl hydroperoxide (TBHP) as a fast source of OH radicals with 1-butanol in excess. Narrow-linewidth laser absorption was employed for the quantitative OH concentration measurement. A detailed kinetic mechanism was constructed that includes updated rate constants for 1-butanol and TBHP kinetics that influence the near-first-order OH concentration decay under the present experimental conditions, and this mechanism was used to facilitate the rate constant determination. The current work improves upon previous experimental studies of the title rate constant by utilizing a rigorously generated kinetic model to describe secondary reactions. Additionally, the current work extends the temperature range of experimental data in the literature for the title reaction under combustion-relevant conditions, presenting the first measurements from 900 to 1000 K. Over the entire temperature range studied, the overall rate constant can be expressed in Arrhenius form as 3.24 × 10(-10) exp(-2505/T [K]) cm(3) molecule(-1) s(-1). The influence of secondary reactions on the overall OH decay rate is discussed, and a detailed uncertainty analysis is performed yielding an overall uncertainty in the measured rate constant of ±20% at 1197 K and ±23% at 925 K. The results are compared with previous experimental and theoretical studies on the rate constant for the title reaction and reasonable agreement is found when the earlier experimental data were reinterpreted.

  17. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  18. Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-10-04

    The overall rate constant for the reaction of OH with sec-butanol [CH(3)CH(OH)CH(2)CH(3)] was determined from measurements of the near-first-order OH decay in shock-heated mixtures of tert-butylhydroperoxide (as a fast source of OH) with sec-butanol in excess. Three kinetic mechanisms from the literature describing sec-butanol combustion were used to examine the sensitivity of the rate constant determination to secondary kinetics. The overall rate constant determined can be described by the Arrhenius expression 6.97 × 10(-11) exp(-1550/T[K]) cm(3) molecule(-1) s(-1), valid over the temperature range of 888-1178 K. Uncertainty bounds of ±30% were found to adequately account for the uncertainty in secondary kinetics. To our knowledge, the current data represent the first efforts toward an experimentally determined rate constant for the overall reaction of OH with sec-butanol at combustion-relevant temperatures. A rate constant predicted using a structure-activity relationship from the literature was compared to the current data and previous rate constant measurements for the title reaction at atmospheric-relevant temperatures. The structure-activity relationship was found to be unable to correctly predict the measured rate constant at all temperatures where experimental data exist. We found that the three-parameter fit of 4.95 × 10(-20)T(2.66) exp(+1123/T[K]) cm(3) molecule(-1) s(-1) better describes the overall rate constant for the reaction of OH with sec-butanol from 263 to 1178 K.

  19. Sensitivity of molecular vibrational dynamics to energy exchange rate constants

    International Nuclear Information System (INIS)

    Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P

    2003-01-01

    The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments

  20. Possibility of reconstructing the mechanism and rate constants of elementary processes in the gas-discharge plasma of a rapid-flow laser

    International Nuclear Information System (INIS)

    Gontar, V.G.; Pashkin, S.V.; Surguchenko, S.A.

    1982-01-01

    The procedure is given for reconstructing the mechanism of elementary processes in the plasma of a gas-discharge laser on the basis of a statistical analysis of the experimental data. The method of writing the initial equations described here permits automation of the procedure for constructing a mathematical model of the discharge. A new iteration procedure for estimating the rate constants of the elementary processes by the method of least squares is proposed which has a wide region of convergence. The proposed methods are analyzed on test problems

  1. Selected hydraulic test analysis techniques for constant-rate discharge tests

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1993-03-01

    The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions

  2. Accurate and approximate thermal rate constants for polyatomic chemical reactions

    International Nuclear Information System (INIS)

    Nyman, Gunnar

    2007-01-01

    In favourable cases it is possible to calculate thermal rate constants for polyatomic reactions to high accuracy from first principles. Here, we discuss the use of flux correlation functions combined with the multi-configurational time-dependent Hartree (MCTDH) approach to efficiently calculate cumulative reaction probabilities and thermal rate constants for polyatomic chemical reactions. Three isotopic variants of the H 2 + CH 3 → CH 4 + H reaction are used to illustrate the theory. There is good agreement with experimental results although the experimental rates generally are larger than the calculated ones, which are believed to be at least as accurate as the experimental rates. Approximations allowing evaluation of the thermal rate constant above 400 K are treated. It is also noted that for the treated reactions, transition state theory (TST) gives accurate rate constants above 500 K. TST theory also gives accurate results for kinetic isotope effects in cases where the mass of the transfered atom is unchanged. Due to neglect of tunnelling, TST however fails below 400 K if the mass of the transferred atom changes between the isotopic reactions

  3. Rate constant for reaction of atomic hydrogen with germane

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  4. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    Science.gov (United States)

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Variational transition-state theory study of the rate constant of the DMS·OH scavenging reaction by O2.

    Science.gov (United States)

    Ramírez-Anguita, Juan M; González-Lafont, Àngels; Lluch, José M

    2011-07-30

    The chemical tropospheric dimethyl sulfide (DMS, CH3SCH3) degradation involves several steps highly dependent on the environmental conditions. So, intensive efforts have been devoted during the last years to enhance the understanding of the DMS oxidation mechanism under different conditions. The reaction of DMS with OH is considered to be the most relevant process that initiates the whole oxidation process. The experimental observations have been explained by a two-channel mechanism consisting of a H-abstraction process leading to CH3S(O)CH3 and HO2 and an addition reaction leading to the DMS·OH adduct. In the presence of O2, the DMS·OH adduct is competitively scavenged increasing the contribution of the addition channel to the overall DMS oxidation. Recent experimental measurements have determined from a global fit that the rate constant of this scavenging process is independent of pressure and temperature but this rate constant cannot be directly measured. In this article, a variational transition-state theory calculation of the low- and high-pressure rate constants for the reaction between DMS·OH and O2 has been carried out as a function of temperature. Our proposal is that the slight temperature dependence of the scavenging rate constant can only be explained if the H-abstraction bottleneck is preceded by a dynamical bottleneck corresponding to the association process between the DMS·OH adduct and the O2 molecule. The agreement between the low-pressure and high-pressure rate constants confirms the experimental observations. Copyright © 2011 Wiley Periodicals, Inc.

  6. Rate constant computation on some elementary reactions of Hg during combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing; Yang, Bo-wen; Bai, Jing-ru [Northeast Dianli Univ., Jilin (China). Inst. of Energy and Power Engineering

    2013-07-01

    The geometry optimizations of reactants, products and transition states were made by the quantum chemistry MP2 method at the SDD basis function level for Hg, and 6-311++G(3df, 3pd) for others. The properties of stable minimums were validated by vibration frequencies analysis. Furthermore, the microcosmic chemical reaction mechanisms of reactions were investigated by ab initio calculations of quantum chemistry. On the basis of the geometry optimization, reaction rate constants within 298-2,000 K are calculated neither from experimental data nor by estimated, but directly from Quantum Chemistry software-Khimera.

  7. The time dependence of rate constants of esub(aq)sup(-) reactions

    International Nuclear Information System (INIS)

    Burcl, R.; Byakov, V.M.; Grafutin, V.I.

    1982-01-01

    Published data about the time dependence of rate constants k(esub(aq)sup(-)+Ac) of esub(aq)sup(-) reactions with the acceptor Ac are analyzed, using the results of rate constant k(Ps+Ac) measurements for positronium reactions. It is shown that neither esub(aq)sup(-) nor Ps reaction rate constants depend on time in the observable range. Experimentally found concentration dependence of k(esub(aq)sup(-)+Ac) is due to other factors, connected with the existence of electric charge of esub(aq)sup(-), e.g. ionic strength, tunnelling effect etc. (author)

  8. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    Science.gov (United States)

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  9. Rate constant for reaction of hydroxyl radicals with bicarbonate ions

    International Nuclear Information System (INIS)

    Buxton, G.V.; Elliot, A.J.

    1986-01-01

    The rate constant for reaction of hydroxyl radicals with the bicarbonate ion has been determined to be 8.5 x 10 6 dm 3 mol -1 s -1 . This value was calculated from: the measured rate of formation of the CO 3 - radical in pulsed electron irradiation of bicarbonate solutions over the pH range 7.0 to 9.4; the pK for the equilibrium HCO 3 - = CO 3 2- + H + ; and the rate constant for hydroxyl radicals reacting with the carbonate ion. (author)

  10. Model test study of evaporation mechanism of sand under constant atmospheric condition

    OpenAIRE

    CUI, Yu Jun; DING, Wenqi; SONG, Weikang

    2014-01-01

    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  11. Rate constant and mechanism of the reaction Cl + CFCl₂H → CFCl₂ + HCl over the temperature range 298-670 K in N₂ or N₂/O₂ diluent.

    Science.gov (United States)

    Kaiser, E W; Jawad, Khadija M

    2014-05-08

    The rate constant of the reaction Cl + CFCl2H (k1) has been measured relative to the established rate constant for the reaction Cl + CH4 (k2) at 760 Torr. The measurements were carried out in Pyrex reactors using a mixture of CFCl2H, CH4, and Cl2 in either N2 or N2/O2 diluent. Reactants and products were quantified by GC/FID analysis. Cl atoms were generated by irradiation of the mixture with 360 nm light to dissociate the Cl2 for temperatures up to ~550 K. At higher temperature, the Cl2 dissociated thermally, and no irradiation was used. Over the temperature range 298-670 K, k1 is consistently a factor of ~5 smaller than that of k2 with a nearly identical temperature dependence. The optimum non-Arrhenius rate constant is represented by the expression k1 = 1.14 × 10(-22) T(3.49) e(-241/T) cm(3) molecule(-1) s(-1) with an estimated uncertainty of ±15% including uncertainty in the reference reaction. CFCl3 formed from the reaction CFCl2 + Cl2 (k3) is the sole product in N2 diluent. In ~20% O2 at 298 K, the CFCl3 product is suppressed. The rate constant of reaction 3 was measured relative to that of reaction 4 [CFCl2 + O2 (k4)] giving the result k3/k4 = 0.0031 ± 0.0005 at 298 K. An earlier experiment by others observed C(O)FCl to be the major product of reaction channel 4 [formed via the sequence, CFCl2(O2) → CFCl2O → C(O)FCl + Cl]. Our current experiments verified that there is a Cl atom chain reaction in the presence of O2 as required by this mechanism.

  12. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    Directory of Open Access Journals (Sweden)

    T. William Bentley

    2015-05-01

    Full Text Available Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1 to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3 are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides. Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride.

  13. Glucose consumption and rate constants for 18F-fluorodeoxyglucose in human gliomas

    International Nuclear Information System (INIS)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao

    1990-01-01

    To investigate the value of direct measurement of the rate constants by performing 18 F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author)

  14. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad; Elwardani, Ahmed Elsaid; Farooq, Aamir

    2014-01-01

    -pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct

  15. Determination of Biological Oxygen Demand Rate Constant and ...

    African Journals Online (AJOL)

    Determination of Biological Oxygen Demand Rate Constant and Ultimate Biological Oxygen Demand for Liquid Waste Generated from Student Cafeteria at Jimma University: A Tool for Development of Scientific Criteria to Protect Aquatic Health in the Region.

  16. Regional Distribution of Epifascial Swelling and Epifascial Lymph Drainage Rate Constants in Breast Cancer-Related Lymphedema

    OpenAIRE

    MODI, STEPHANIE; STANTON, ANTHONY W. B.; MELLOR, RUSSELL H.; MICHAEL PETERS, A.; RODNEY LEVICK, J.; MORTIMER, PETER S.

    2005-01-01

    Background: The view that breast cancer-related lymphedema (BCRL) is a simple, direct mechanical result of axillary lymphatic obstruction (‘stopcock’ mechanism) appears incomplete, because parts of the swollen limb (e.g., hand) can remain nonswollen. The lymph drainage rate constant (k) falls in the swollen forearm but not in the spared hand, indicating regional differences in lymphatic function. Here the generality of the hypothesis that regional epifascial lymphatic failure underlies region...

  17. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    Science.gov (United States)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  18. Rate constants for some electrophilic reactions of benzyl, benzhydryl, and trityl cations in solution

    International Nuclear Information System (INIS)

    Ujdak, R.J.; Jones, R.L.; Dorfman, L.M.

    1976-01-01

    Absolute rate constants have been determined by the pulse radiolysis technique for several electrophilic reactions of the benzyl, the benzhydryl, and the trityl cation in 1,2-dichloroethane solution. The rate constants for the reactions of these carbonium ions with chloride ion, with bromide ion, and with iodide ion are all very nearly the same, namely 6 x 10 10 M -1 s -1 at 24 0 C. The values very likely represent the diffusion controlled limit for the ion combination reactions. The rate constants for the reactions with triethylamine, tri-n-propylamine, and tri-n-butylamine range from 2.0 x 10 9 to 7 x 10 6 M -1 s -1 at 24 0 C. With increasing phenyl substitution, the decreasing trend in the magnitude of the rate constant is consistent with the combined electronic and steric effects. With increasing size of the amine, the decrease in the value of the rate constant seems to indicate that the steric effect predominates. The values of the rate constants for reactions of benzyl and benzhydryl cation with methanol, ethanol, and 2-propanol indicate the following. The rate constant is higher for reaction with the alcohol dimer in solution than with alcohol monomer. The rate constants for reaction with alcohol monomer have values of 1 x 10 8 M -1 s -1 or lower

  19. VMATc: VMAT with constant gantry speed and dose rate

    International Nuclear Information System (INIS)

    Peng, Fei; Romeijn, H Edwin; Epelman, Marina A; Jiang, Steve B

    2015-01-01

    This article considers the treatment plan optimization problem for Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate (VMATc). In particular, we consider the simultaneous optimization of multi-leaf collimator leaf positions and a constant gantry speed and dose rate. We propose a heuristic framework for (approximately) solving this optimization problem that is based on hierarchical decomposition. Specifically, an iterative algorithm is used to heuristically optimize dose rate and gantry speed selection, where at every iteration a leaf position optimization subproblem is solved, also heuristically, to find a high-quality plan corresponding to a given dose rate and gantry speed. We apply our framework to clinical patient cases, and compare the resulting VMATc plans to idealized IMRT, as well as full VMAT plans. Our results suggest that VMATc is capable of producing treatment plans of comparable quality to VMAT, albeit at the expense of long computation time and generally higher total monitor units. (paper)

  20. Impact of Constant Rate Factor on Objective Video Quality Assessment

    Directory of Open Access Journals (Sweden)

    Juraj Bienik

    2017-01-01

    Full Text Available This paper deals with the impact of constant rate factor value on the objective video quality assessment using PSNR and SSIM metrics. Compression efficiency of H.264 and H.265 codecs defined by different Constant rate factor (CRF values was tested. The assessment was done for eight types of video sequences depending on content for High Definition (HD, Full HD (FHD and Ultra HD (UHD resolution. Finally, performance of both mentioned codecs with emphasis on compression ratio and efficiency of coding was compared.

  1. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    Science.gov (United States)

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  2. Constrained least squares methods for estimating reaction rate constants from spectroscopic data

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H.F.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2002-01-01

    Model errors, experimental errors and instrumental noise influence the accuracy of reaction rate constant estimates obtained from spectral data recorded in time during a chemical reaction. In order to improve the accuracy, which can be divided into the precision and bias of reaction rate constant

  3. Estimating reaction rate constants: comparison between traditional curve fitting and curve resolution

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H. F. M.; Hoefsloot, H. C. J.; Smilde, A. K.

    2000-01-01

    A traditional curve fitting (TCF) algorithm is compared with a classical curve resolution (CCR) approach for estimating reaction rate constants from spectral data obtained in time of a chemical reaction. In the TCF algorithm, reaction rate constants an estimated from the absorbance versus time data

  4. Dissociative electron attachment to ozone: rate constant

    International Nuclear Information System (INIS)

    Skalny, J.D.; Cicman, P.; Maerk, T.D.

    2002-01-01

    The rate constant for dissociative electron attachment to ozone has been derived over the energy range of 0-10 eV by using previously measured cross section data revisited here in regards to discrimination effect occurring during the extraction of ions. The obtained data for both possible channels exhibit the maximum at mean electron energies close to 1 eV. (author)

  5. Methane combustion kinetic rate constants determination: an ill-posed inverse problem analysis

    Directory of Open Access Journals (Sweden)

    Bárbara D. L. Ferreira

    2013-01-01

    Full Text Available Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.

  6. Glucose consumption and rate constants for sup 18 F-fluorodeoxyglucose in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao [Kyoto Univ. (Japan). Faculty of Medicine

    1990-06-01

    To investigate the value of direct measurement of the rate constants by performing {sup 18}F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author).

  7. High-temperature rate constant measurements for OH+xylenes

    KAUST Repository

    Elwardani, Ahmed Elsaid; Badra, Jihad; Farooq, Aamir

    2015-01-01

    The overall rate constants for the reactions of hydroxyl (OH) radicals with o-xylene (k 1), m-xylene (k 2), and p-xylene (k 3) were measured behind reflected shock waves over 890-1406K at pressures of 1.3-1.8atm using OH laser absorption near 306

  8. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    Science.gov (United States)

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  9. A calculation of the surface recombination rate constant for hydrogen isotopes on metals

    International Nuclear Information System (INIS)

    Baskes, M.J.

    1980-01-01

    The surface recombination rate constant for hydrogen isotopes on a metal has been calculated using a simple model whose parameters may be determined by direct experimental measurements. Using the experimental values for hydrogen diffusivity, solubility, and sticking coefficient at zero surface coverage a reasonable prediction of the surface recombination constant may be made. The calculated recombination constant is in excellent agreement with experiment for bcc iron. A heuristic argument is developed which, along with the rate constant calculation, shows that surface recombination is important in those metals in which hydrogen has an exothermic heat of solution. (orig.)

  10. Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics

    Directory of Open Access Journals (Sweden)

    Dániel Kozma

    2012-01-01

    Full Text Available Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.

  11. Convergence analysis of Chauvin's PCA learning algorithm with a constant learning rate

    International Nuclear Information System (INIS)

    Lv Jiancheng; Yi Zhang

    2007-01-01

    The convergence of Chauvin's PCA learning algorithm with a constant learning rate is studied in this paper by using a DDT method (deterministic discrete-time system method). Different from the DCT method (deterministic continuous-time system method), the DDT method does not require that the learning rate converges to zero. An invariant set of Chauvin's algorithm with a constant learning rate is obtained so that the non-divergence of this algorithm can be guaranteed. Rigorous mathematic proofs are provided to prove the local convergence of this algorithm

  12. Nuclear Magnetic Shielding Constants from Quantum Mechanical/Molecular Mechanical Calculations Using Polarizable Embedding: Role of the Embedding Potential

    DEFF Research Database (Denmark)

    Steinmann, Casper; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2014-01-01

    We present NMR shielding constants obtained through quantum mechanical/molecular mechanical (QM/MM) embedding calculations. Contrary to previous reports, we show that a relatively small QM region is sufficient, provided that a high-quality embedding potential is used. The calculated averaged NMR...... shielding constants of both acrolein and acetone solvated in water are based on a number of snapshots extracted from classical molecular dynamics simulations. We focus on the carbonyl chromophore in both molecules, which shows large solvation effects, and we study the convergence of shielding constants...

  13. Determination of reaction rate constants for alkylation of 4-(p-nitrobenzyl) pyridine by different alkylating agents.

    Science.gov (United States)

    Walles, S A

    1980-02-01

    The rate constants have been determined for the reaction between some different alkylating agents and 4-(p-nitrobenzyl) pyridine (NBP) in methanol. These constants have been compared with those for alkylation of aniline in water. All the constants were lower in methanol than in water but in different degrees. The rate constants of the different alkylating agents have been calculated at a nucleophilic strength n=2. The genetic risk defined as the degree of alkylation of a nucleophile (n=2) is equivalent to the rate constant kn=2 and the target dose. The dependence of the genetic risk on the rate constant (kn=2) is discussed.

  14. Reaction rate constants of HO2 + O3 in the temperature range 233-400 K

    Science.gov (United States)

    Wang, Xiuyan; Suto, Masako; Lee, L. C.

    1988-01-01

    The reaction rate constants of HO2 + O3 were measured in the temperature range 233-400 K using a discharge flow system with photofragment emission detection. In the range 233-253 K, the constants are approximately a constant value, and then increase with increasing temperature. This result suggests that the reaction may have two different channels. An expression representing the reaction rate constants is presented.

  15. Rate constant for the reaction of O(3P) with diacetylene from 210 to 423 K

    Science.gov (United States)

    Mitchell, M. B.; Nava, D. F.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction of O(3P) with diacetylene (C4H2) has been measured as a function of pressure and temperature by the flash-photolysis/resonance-fluorescence method. At 298 K and below, no pressure dependence of the rate constant was observed, but at 423 K a moderate (factor-of-2) increase was detected in the range 3 to 75 torr Ar.Results at or near the high-pressure limit are represented by an Arrhenius expression over the temperature range 210 to 423 K. The results are compared with previous determinations, all of which employed the discharge-flow/mass-spectrometry technique. The mechanism of the reaction is considered, including both primary and secondary processes. The heats of formation of the reactants, adducts, and products for the O(3P) + C4H2 reaction are discussed and contrasted with those for O(3P) + C2H2.

  16. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    Science.gov (United States)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  17. Constant rate natural gas production from a well in a hydrate reservoir

    International Nuclear Information System (INIS)

    Ji Chuang; Ahmadi, Goodarz; Smith, Duane H.

    2003-01-01

    Using a computational model, production of natural gas at a constant rate from a well that is drilled into a confined methane hydrate reservoir is studied. It is assumed that the pores in the reservoir are partially saturated with hydrate. A linearized model for an axisymmetric condition with a fixed well output is used in the analysis. For different reservoir temperatures and various well outputs, time evolutions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas region, are evaluated. The distance of the decomposition front from the well as a function of time is also computed. It is shown that to maintain a constant natural gas production rate, the well pressure must be decreased with time. A constant low production rate can be sustained for a long duration of time, but a high production rate demands unrealistically low pressure at the well after a relatively short production time. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability

  18. Effect of selecting a fixed dephosphorylation rate on the estimation of rate constants and rCMRGlu from dynamic [18F] fluorodeoxyglucose/PET data

    International Nuclear Information System (INIS)

    Dhawan, V.; Moeller, J.R.; Strother, S.C.; Evans, A.C.; Rottenberg, D.A.

    1989-01-01

    Several publications have discussed the estimation and physiologic significance of regional [ 18 F]fluorodeoxyglucose (FDG) rate constants and metabolic rates. Most of these studies analyzed dynamic data collected over 45-60 min; three rate constants (k1-k3) and blood volume (Vb) were estimated and the regional cerebral metabolic rate for glucose (rCMRGlu) was subsequently derived using the measured blood glucose value and a regionally invariant value of the lumped constant (LC). The dephosphorylation rate constant (k4) was either neglected, or a fixed value was used in the estimation procedure to obtain the remaining parameters. To compare the rate constants obtained by different authors using different values of k4 is impossible without knowledge of the effect of selecting different fixed values of k4 (including zero) on the estimated rate constants and rCMRGlu. Based on our analysis of FDG/PET data from nine normal volunteer subjects, we conclude that inclusion of a fixed value for k4, in spite of a scaling effect on the absolute values of model parameters, has no effect on the coefficient of variation (CV) of within- and between-subject parameter estimates and glucose metabolic rates

  19. Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing

    Directory of Open Access Journals (Sweden)

    B. Newsome

    2017-12-01

    Full Text Available Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global, use these rate constants. Expert panels evaluate laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the Jet Propulsion Laboratory (JPL and International Union of Pure and Applied Chemistry (IUPAC evaluations we assess the influence of 50 mainly inorganic rate constants and 10 photolysis rates on tropospheric composition through the use of the GEOS-Chem chemistry transport model. We assess the impact on four standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH →M  HNO3 and O3 + NO  →  NO2 + O2 are the two largest sources of uncertainty in these metrics. The absolute magnitude of the change in the metrics is similar if rate constants are increased or decreased by their σ values. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 10, 11, 16 and 16 %, respectively. These are larger than the spread between models in recent model intercomparisons. Remote

  20. Extraction of elementary rate constants from global network analysis of E. coli central metabolism

    Directory of Open Access Journals (Sweden)

    Broderick Gordon

    2008-05-01

    Full Text Available Abstract Background As computational performance steadily increases, so does interest in extending one-particle-per-molecule models to larger physiological problems. Such models however require elementary rate constants to calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic data is available, it is often in the form of aggregated rate laws (ARL that do not specify the required elementary rate constants corresponding to mass-action rate laws (MRL. There is therefore a need to develop a method which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants. Results By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here we present an efficient method operating at a global network level for extracting elementary rate constants from experiment-based aggregated rate law (ARL models. The method combines two techniques that can be used to overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative method performs well in dealing with the issues of high computation cost, stiffness, local

  1. Extraction of elementary rate constants from global network analysis of E. coli central metabolism

    Science.gov (United States)

    Zhao, Jiao; Ridgway, Douglas; Broderick, Gordon; Kovalenko, Andriy; Ellison, Michael

    2008-01-01

    Background As computational performance steadily increases, so does interest in extending one-particle-per-molecule models to larger physiological problems. Such models however require elementary rate constants to calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic data is available, it is often in the form of aggregated rate laws (ARL) that do not specify the required elementary rate constants corresponding to mass-action rate laws (MRL). There is therefore a need to develop a method which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants. Results By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here we present an efficient method operating at a global network level for extracting elementary rate constants from experiment-based aggregated rate law (ARL) models. The method combines two techniques that can be used to overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative method performs well in dealing with the issues of high computation cost, stiffness, local minima and uncertainty

  2. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad

    2014-01-01

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (CO) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (CO), and the prime is used to differentiate different neighboring environments of a methylene group):P1,CO = 7.38 × 10-14 exp(-274 K/T) + 9.17 × 10-12 exp(-2499 K/T) (285-1355 K)S10,CO = 1.20 × 10-11 exp(-2046 K/T) + 2.20 × 10-13 exp(160 K/T) (222-1464 K)S11,CO = 4.50 × 10-11 exp(-3000 K/T) + 8.50 × 10-15 exp(1440 K/T) (248-1302 K)S11′,CO = 3.80 × 10-11 exp(-2500 K/T) + 8.50 × 10-15 exp(1550 K/T) (263-1370 K)S 21,CO = 5.00 × 10-11 exp(-2500 K/T) + 4.00 × 10-13 exp(775 K/T) (297-1376 K) © 2014 the Partner Organisations.

  3. Phototransformation rate constants of PAHs associated with soot particles

    International Nuclear Information System (INIS)

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k p 0 ), the effective diffusion coefficients (D eff ), and the light penetration depths (z 0.5 ) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2–3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z 0.5 is more sensitive to the soot layer thickness than the k p 0 value. As the thickness of the soot layer increases, the z 0.5 values increase, but the k p 0 values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k p 0 and z 0.5 in thinner layers, D eff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. - Highlights: ► PAHs on soot were evaluated by a model of coupled photolysis and diffusion. ► Photodegradation rate at the surface, diffusion coefficient, and light penetration path were determined. ► Low MW PAHs were influenced by fast photodegradation and fast diffusion. ► High MW PAHs were controlled either by slow

  4. A first-passage scheme for determination of overall rate constants for non-diffusion-limited suspensions

    Science.gov (United States)

    Lu, Shih-Yuan; Yen, Yi-Ming

    2002-02-01

    A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.

  5. Ozonation of norfloxacin and levofloxacin in water: Specific reaction rate constants and defluorination reaction.

    Science.gov (United States)

    Ling, Wencui; Ben, Weiwei; Xu, Ke; Zhang, Yu; Yang, Min; Qiang, Zhimin

    2018-03-01

    The degradation kinetics and mechanism of two typical fluoroquinolones (FQs), norfloxacin (NF) and levofloxacin (LOF), by ozone in water were investigated. Semi-continuous mode and competition kinetics mode experiments were conducted to determine the reaction rate constants of target FQs with ozone and OH, separately. Results indicate that both NF and LOF were highly reactive toward ozone, and the reactivity was strongly impacted by the solution pH. The specific reaction rate constants of the diprotonated, monoprotonated and deprotonated species were determined to be 7.20 × 10 2 , 8.59 × 10 3 , 4.54 × 10 5  M -1  s -1 respectively for NF and 1.30 × 10 3 , 1.40 × 10 4 , 1.33 × 10 6  M -1  s -1 respectively for LOF. The reaction rate constants of target FQs toward OH were measured to be (4.81-7.41) × 10 9  M -1  s -1 in the pH range of 6.3-8.3. Furthermore, NF was selected as a model compound to clarify the degradation pathways, with a particular focus on the defluorination reaction. The significant release of F - ions and the formation of three F-free organic byproducts indicated that defluorination was a prevalent pathway in ozonation of FQs, while six F-containing organic byproducts indicated that ozone also attacked the piperazinyl and quinolone moieties. Escherichia coli growth inhibition tests revealed that ozonation could effectively eliminate the antibacterial activity of target FQ solutions, and the residual antibacterial activity had a negative linear correlation with the released F - concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Constant strain rate experiments and constitutive modeling for a class of bitumen

    Science.gov (United States)

    Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali

    2012-08-01

    The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.

  7. Application of accelerated evaluation method of alteration temperature and constant dose rate irradiation on bipolar linear regulator LM317

    International Nuclear Information System (INIS)

    Deng Wei; Wu Xue; Wang Xin; Zhang Jinxin; Zhang Xiaofu; Zheng Qiwen; Ma Wuying; Lu Wu; Guo Qi; He Chengfa

    2014-01-01

    With different irradiation methods including high dose rate irradiation, low dose rate irradiation, alteration temperature and constant dose rate irradiation, and US military standard constant high temperature and constant dose rate irradiation, the ionizing radiation responses of bipolar linear regulator LM317 from three different companies were investigated under the operating and zero biases. The results show that compared with constant high temperature and constant dose rate irradiation method, the alteration temperature and constant dose rate irradiation method can not only very rapidly and accurately evaluate the dose rate effect of three bipolar linear regulators, but also well simulate the damage of low dose rate irradiation. Experiment results make the alteration temperature and constant dose rate irradiation method successfully apply to bipolar linear regulator. (authors)

  8. Rate constant for the reaction SO + BrO yields SO2 + Br

    Science.gov (United States)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  9. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert

    2002-01-01

    To determine the rate constants of spontaneous and activated TCR cycling, we examined TCR endo- and exocytosis in the human T cell line Jurkat by three different methods. Using a simple kinetic model for TCR cycling and non-linear regression analyses, we found that the spontaneous endocytic rate...... constant of the TCR was low (approximately 0.012 min(-1)) whereas the spontaneous exocytic rate constant was similar to that of other cycling receptors (approximately 0.055 min(-1)). Following protein kinase C activation (PKC) the endocytic rate constant was increased tenfold (to approximately 0.128 min(-1......)) whereas the exocytic rate constant was unaffected. Thus, the TCR becomes a rapidly cycling receptor with kinetics similar to classical cycling receptors subsequent to PKC activation. This results in a reduction of the half-life of cell surface expressed TCR from approximately 58 to 6 min and allows rapid...

  10. Rate constants for the reaction of OH radicals with 1-chloroalkanes at 295 K

    DEFF Research Database (Denmark)

    Markert, F.; Nielsen, O.J.

    1992-01-01

    The rate constants for the reaction of OH radicals with a series of 1-chloroalkanes were measured at 295 K and at a total pressure of 1 atm. The rate constants were obtained by using the absolute technique of pulse radiolysis combined with kinetic UV-spectroscopy. The results are discussed in terms...

  11. a comparative study of the drying rate constant, drying efficiency

    African Journals Online (AJOL)

    The drying rate constants for the solar dryer and open- air sun dried bitter leaf were 0.8 and ... of cost benefit but the poorest when other considerations ... J. I. Eze, National Centre for Energy Research and Development (NCERD), University of ...

  12. Arrhenius Rate: constant volume burn

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-06

    A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derived and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.

  13. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction.

    Science.gov (United States)

    Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio

    2015-06-07

    We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 - 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.

  14. Dynamic Monte Carlo rate constants for magnetic Hamiltonians coupled to a phonon bath

    Science.gov (United States)

    Solomon, Lazarus; Novotny, Mark

    2007-03-01

    For quantitative comparisons between experimental time- dependent measurements and dynamic Monte Carlo simulations, a relation between the time constant in the simulation and real time is necessary. We calculate the transition rate for spin S system using the lattice frame method for a rigid spin cluster in an elastic medium [1]. We compare this with the transition rate for an Ising spin 12 system using the quantum- mechanical density-matrix method [2] with the results of ref [1,3]. These transition probabilities are different from those of either the Glauber or the Metropolis dynamics, and reflect the properties of the bosonic bath. Comparison with recent experiments [4] will be discussed. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling (PRB 72, 2006) [2] K. Park, M. A. Novotny, and P. A. Rikvold (PRE 66, 2002) [3] K Saito, S. Takesue, and S. Miyashita, (PRE 61, 2002) [4] T. Meunier et al (Condensed Matter, 2006)

  15. Neural estimation of kinetic rate constants from dynamic PET-scans

    DEFF Research Database (Denmark)

    Fog, Torben L.; Nielsen, Lars Hupfeldt; Hansen, Lars Kai

    1994-01-01

    A feedforward neural net is trained to invert a simple three compartment model describing the tracer kinetics involved in the metabolism of [18F]fluorodeoxyglucose in the human brain. The network can estimate rate constants from positron emission tomography sequences and is about 50 times faster ...

  16. Shock tube measurements of the rate constants for seven large alkanes+OH

    KAUST Repository

    Badra, Jihad

    2015-01-01

    Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R1(5) transition of the OH spectrum near 306.7 nm. The high sensitivity of the diagnostic enabled the use of low reactant concentrations and pseudo-first-order kinetics. Rate constants were measured at temperatures ranging from 880 K to 1440 K and pressures near 1.5 atm. High-temperature measurements of the rate constants for OH + n-hexane and OH + 2,2-dimethyl-butane are in agreement with earlier studies, and the rate constants of the five other alkanes with OH, we believe, are the first direct measurements at combustion temperatures. Using these measurements and the site-specific H-abstraction measurements of Sivaramakrishnan and Michael (2009) [1,2], general expressions for three secondary and two tertiary abstraction rates were determined as follows (the subscripts indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon): S20=1.58×10-11exp(-1550K/T)cm3molecule-1s-1(887-1327K)S30=2.37×10-11exp(-1850K/T)cm3molecule-1s-1(887-1327K)S21=4.5×10-12exp(-793.7K/T)cm3molecule-1s-1(833-1440K)T100=2.85×10-11exp(-1138.3K/T)cm3molecule-1s-1(878-1375K)T101=7.16×10-12exp(-993K/T)cm3molecule-1s-1(883-1362K) © 2014 The Combustion Institute.

  17. Mechanical characterization of zeolite low dielectric constant thin films by nanoindentation

    International Nuclear Information System (INIS)

    Johnson, Mark; Li Zijian; Wang Junlan; Ya, Yushan

    2007-01-01

    With semiconductor technologies continuously pushing the miniaturization limits, there is a growing interest in developing novel low dielectric constant materials to replace the traditional dense SiO 2 insulators. In order to survive the multi-level integration process and provide reliable material and structure for the desired integrated circuits (IC) functions, the new low-k materials have to be mechanically strong and stable. Therefore the material selection and mechanical characterization are vital for the successful development of next generation low-k dielectrics. A new class of low-k materials, nanoporous pure-silica zeolite, is prepared in thin films using IC compatible spin coating process and characterized using depth sensing nanoindentation technique. The elastic modulus of the zeolite thin films is found to be significantly higher than that of other low-k materials with similar porosity and dielectric constants. Correlations between the mechanical, microstructural and electrical properties of the thin films are discussed in detail

  18. The correlation schemes in calculations of the rate constants of some radiation chemical reactions

    International Nuclear Information System (INIS)

    Zagorets, P.A.; Shostenko, A.G.; Kim, V.

    1983-01-01

    The various correlation relationships of the evaluation of the rate constants of radiation chemical reactions of addition, abstraction and isomerization were considered. It was shown that neglection of the influence of solvent can result in errors in calculations of rate constants equalling two orders in magnitude. Several examples of isokinetic relationship are given. The methods of calculation of transmission coefficient of reaction addition have been discussed. (author)

  19. Rate constant and reaction coordinate of Trp-cage folding in explicit water

    NARCIS (Netherlands)

    Juraszek, J.; Bolhuis, P.G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the

  20. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  1. Big bang nucleosynthesis with a varying fine structure constant and nonstandard expansion rate

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Kawasaki, Masahiro

    2004-01-01

    We calculate the primordial abundances of light elements produced during big bang nucleosynthesis when the fine structure constant and/or the cosmic expansion rate take nonstandard values. We compare them with the recent values of observed D, 4 He, and 7 Li abundances, which show a slight inconsistency among themselves in the standard big bang nucleosynthesis scenario. This inconsistency is not solved by considering either a varying fine structure constant or a nonstandard expansion rate separately but solutions are found by their simultaneous existence

  2. Convergence analysis of Chauvin's PCA learning algorithm with a constant learning rate

    Energy Technology Data Exchange (ETDEWEB)

    Lv Jiancheng [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yi Zhang [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)]. E-mail: zhangyi@uestc.edu.cn

    2007-05-15

    The convergence of Chauvin's PCA learning algorithm with a constant learning rate is studied in this paper by using a DDT method (deterministic discrete-time system method). Different from the DCT method (deterministic continuous-time system method), the DDT method does not require that the learning rate converges to zero. An invariant set of Chauvin's algorithm with a constant learning rate is obtained so that the non-divergence of this algorithm can be guaranteed. Rigorous mathematic proofs are provided to prove the local convergence of this algorithm.

  3. The D(+) + H2 reaction: differential and integral cross sections at low energy and rate constants at low temperature.

    Science.gov (United States)

    González-Lezana, Tomás; Scribano, Yohann; Honvault, Pascal

    2014-08-21

    The D(+) + H2 reaction is investigated by means of a time independent quantum mechanical (TIQM) and statistical quantum mechanical (SQM) methods. Differential cross sections and product rotational distributions obtained with these two theoretical approaches for collision energies between 1 meV and 0.1 eV are compared to analyze the dynamics of the process. The agreement observed between the TIQM differential cross sections and the SQM predictions as the energy increases revealed the role played by the complex-forming mechanism. The importance of a good description of the asymptotic regions is also investigated by calculating rate constants for the title reaction at low temperature.

  4. Determination of rate constants for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.; Walter, T.; Stimming, U. [Munich Technical Univ., Garching (Germany). Dept. of Physics

    2008-07-01

    The oxygen reduction reaction (ORR) in fuel cells is a complex and fundamental electrochemical reaction. However, greater insight is needed into this multi-electron reaction in order to develop efficient and innovative catalysts. The rotating ring disc electrode (RRDE) is a useful tool for studying reaction intermediates of the ORR and to better understand the reaction pathway. Carbon materials such as carbon nanofilaments-platelets (CNF-PL) have high electrical conductivity and may be considered for fuel cells. In particular Pt and RuSe{sub x}, deposited on CNF-PL materials could act as efficient catalysts in fuel cells. This study used the RRDE to evaluate the oxygen reduction kinetics of these catalysts in oxygen-saturated, diluted sulphuric acid at room temperature. Kinetic data and hydrogen peroxide formation were determined by depositing a thin-film of the catalyst on the Au disc. The values for the constants k1, k2 and k3 were obtained using diagnostic criteria and expressions to calculate the rate constants of the cathodic oxygen reduction reaction for RuSe on new carbon supports. A potential dependency of the constants k1 and k2 for RuSe{sub x}/CNF-PL was observed. The transition of the Tafel slopes for this catalyst was obtained. 4 refs., 1 fig.

  5. Likelihood inference of non-constant diversification rates with incomplete taxon sampling.

    Science.gov (United States)

    Höhna, Sebastian

    2014-01-01

    Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species) and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family) and thus to maximize diversity (diversified sampling). So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent) diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa). The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa). Furthermore, model selection by means of Akaike's Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model). Finally, I applied six different diversification rate models--ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models--on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species). All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear to be

  6. Measuring Protein Synthesis Rate In Living Object Using Flooding Dose And Constant Infusion Methods

    OpenAIRE

    Ulyarti, Ulyarti

    2018-01-01

    Constant infusion is a method used for measuring protein synthesis rate in living object which uses low concentration of amino acid tracers. Flooding dose method is another technique used to measure the rate of protein synthesis which uses labelled amino acid together with large amount of unlabelled amino acid.  The latter method was firstly developed to solve the problem in determination of precursor pool arise from constant infusion method.  The objective of this writing is to com...

  7. Frost heave susceptibility of saturated soil under constant rate of freezing

    Science.gov (United States)

    Ryokai, K.; Iguro, M.; Yoneyama, K.

    Introduced are the results of experiments carried out to quantitatively obtain the frost heave pressure and displacement of soil subjected to artificial freezing or freezing around in-ground liquefied natural gas storage tanks. This experiment is conducted to evaluate the frost heave susceptibility of saturated soil under overconsolidation. In other words, this experiment was carried out to obtain the relation of the over-burden pressure and freezing rate to the frost heave ratio by observing the frost heave displacement and freezing time of specimens by freezing the specimens at a constant freezing rate under a constant overburden pressure, while letting water freely flow in and out of the system. Introduced are the procedures for frost heave test required to quantitatively obtain the frost heave displacement and pressure of soil. Furthermore, the relation between the frost heave susceptibility and physical properties of soil obtained by this test is reported.

  8. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    Science.gov (United States)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  9. Biodegradation testing of chemicals with high Henry’s constants – separating mass and effective concentration reveals higher rate constants

    DEFF Research Database (Denmark)

    Birch, Heidi; Andersen, Henrik Rasmus; Comber, Mike

    Microextraction (HS-SPME) was applied directly on the test systems to measure substrate depletion by biodegradation relative to abiotic controls. HS-SPME was also applied to determine air to water partitioning ratios. Water phase biodegradation rate constants, kwater, were up to 72 times higher than test system...

  10. On the estimate of the rate constant in the homogeneous dissolution model

    Czech Academy of Sciences Publication Activity Database

    Čupera, Jakub; Lánský, Petr

    2013-01-01

    Roč. 39, č. 10 (2013), s. 1555-1561 ISSN 0363-9045 Institutional support: RVO:67985823 Keywords : dissolution * estimation * rate constant Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.006, year: 2013

  11. The H + HeH(+) → He + H2(+) reaction from the ultra-cold regime to the three-body breakup: exact quantum mechanical integral cross sections and rate constants.

    Science.gov (United States)

    De Fazio, Dario

    2014-06-21

    In this work, we present a quantum mechanical scattering study of the title reaction from 1 mK to 2000 K. Total integral cross sections and thermal rate constants are compared with previous theoretical and experimental data and with simpler theoretical models to understand the range of validity of the approximations used in the previous studies. The obtained quantum reactive observables have been found to be nearly insensitive to the roto-vibrational energy of the reactants at high temperatures. More sensitive to the reactant's roto-vibrational energy are the data in the cold and ultra-cold regimes. The implications of the new data presented here in the early universe scenario are also discussed and analyzed.

  12. Multi-target QSPR modeling for simultaneous prediction of multiple gas-phase kinetic rate constants of diverse chemicals

    Science.gov (United States)

    Basant, Nikita; Gupta, Shikha

    2018-03-01

    The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.

  13. A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    Science.gov (United States)

    Mattei, G.; Ahluwalia, A.

    2018-04-01

    We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.

  14. Critical Review of rate constants for reacitons of hydrated electrons

    International Nuclear Information System (INIS)

    Buxton, G.V.; Greenstock, C.L.; Phillips Helman, W.; Ross, A.B.

    1988-01-01

    Kinetic data for the radicals Hx and xOH in aqueous solution,and the corresponding radical anions, xO - and e/sub =/, have been critically reviewed. Reactions of the radicals in aqueous solution have been studied by pulse radiolysis, flash photolysis and other methods. Rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes

  15. Dose rate constant and energy spectrum of interstitial brachytherapy sources

    International Nuclear Information System (INIS)

    Chen Zhe; Nath, Ravinder

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125 I and 103 Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S K ) standard for 125 I seeds and has also established an S K standard for 103 Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (Λ) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of Λ and to develop a simple method for a quick and accurate estimation of Λ. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that Λ may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S K and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for Λ was derived for point sources with known photon energy spectra. This approach enabled a systematic study of Λ as a function of energy. Using the measured energy spectra, the calculated Λ for 125 I model 6711 and 6702 seeds and for 192 Ir seed agreed with the AAPM recommended values within ±1%. For the 103 Pd model 200 seed, the agreement was 5% with a recently measured value (within the ±7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for Λ proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known

  16. Extrapolation of rate constants of reactions producing H2 and O2 in radiolysis of water at high temperatures

    International Nuclear Information System (INIS)

    Leblanc, R.; Ghandi, K.; Hackman, B.; Liu, G.

    2014-01-01

    One target of our research is to extrapolate known data on the rate constants of reactions and add corrections to estimate the rate constants at the higher temperatures reached by the SCWR reactors. The focus of this work was to extrapolate known data on the rate constants of reactions that produce Hydrogen or Oxygen with a rate constant below 10 10 mol -1 s -1 at room temperature. The extrapolation is done taking into account the change in the diffusion rate of the interacting species and the cage effect with thermodynamic conditions. The extrapolations are done over a wide temperature range and under isobaric conditions. (author)

  17. Site-specific reaction rate constant measurements for various secondary and tertiary H-abstraction by OH radicals

    KAUST Repository

    Badra, Jihad

    2015-02-01

    Reaction rate constants for nine site-specific hydrogen atom (H) abstraction by hydroxyl radicals (OH) have been determined using experimental measurements of the rate constants of Alkane+OH→Products reactions. Seven secondary (S 20, S 21, S 22, S 30, S 31, S 32, and S 33) and two tertiary (T 100 and T 101) site-specific rate constants, where the subscripts refer to the number of carbon atoms (C) connected to the next-nearest-neighbor (N-N-N) C atom, were obtained for a wide temperature range (250-1450K). This was done by measuring the reaction rate constants for H abstraction by OH from a series of carefully selected large branched alkanes. The rate constant of OH with four different alkanes, namely 2,2-dimethyl-pentane, 2,4-dimethyl-pentane, 2,2,4-trimethyl-pentane (iso-octane), and 2,2,4,4-tetramethyl-pentane were measured at high temperatures (822-1367K) using a shock tube and OH absorption diagnostic. Hydroxyl radicals were detected using the narrow-line-width ring-dye laser absorption of the R1(5) transition of OH spectrum near 306.69nm.Previous low-temperature rate constant measurements are added to the current data to generate three-parameter rate expressions that successfully represent the available direct measurements over a wide temperature range (250-1450. K). Similarly, literature values of the low-temperature rate constants for the reaction of OH with seven normal and branched alkanes are combined with the recently measured high-temperature rate constants from our group [1]. Subsequent to that, site-specific rate constants for abstractions from various types of secondary and tertiary H atoms by OH radicals are derived and have the following modified Arrhenius expressions:. S20=8.49×10-17T1.52exp(73.4K/T)cm3molecule-1s-1(250-1450K) S21=1.07×10-15T1.07exp(208.3K/T)cm3molecule-1s-1(296-1440K) S22=2.88×10-13T0.41exp(-291.5K/T)cm3molecule-1s-1(272-1311K) S30=3.35×10-18T1.97exp(323.1K/T)cm3molecule-1s-1(250-1366K) S31=1.60×10-18T2.0exp(500.0K/T)cm3

  18. Design, manufacture and evaluation of a new flexible constant velocity mechanism for transmission of power between parallel shafts

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, Majid [University of Tehran, Tehran (Iran, Islamic Republic of); Sanaeifar, Alireza [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-08-15

    This paper presents a new mechanism (coupling) for power transmission between parallel shafts in more ranges. The mechanism consists of one drive shaft and one driven shaft, 3 S-shape transmitter links and 8 connecting links. The advantage of this mechanism is that the velocity ratio between input and output shafts remains constant at all movements, and its capacity to offset misalignments is greater than that of other couplings. This research also includes a kinematic analysis and simulations using Visual NASTRAN, Autodesk inventor dynamic and COSMOS motion to prove that the mechanism exhibits a constant velocity. Finally, the mechanism was fabricated and evaluated; results showed that the mechanism can practically transmit a constant velocity ratio.

  19. Design, manufacture and evaluation of a new flexible constant velocity mechanism for transmission of power between parallel shafts

    International Nuclear Information System (INIS)

    Yaghoubi, Majid; Sanaeifar, Alireza

    2015-01-01

    This paper presents a new mechanism (coupling) for power transmission between parallel shafts in more ranges. The mechanism consists of one drive shaft and one driven shaft, 3 S-shape transmitter links and 8 connecting links. The advantage of this mechanism is that the velocity ratio between input and output shafts remains constant at all movements, and its capacity to offset misalignments is greater than that of other couplings. This research also includes a kinematic analysis and simulations using Visual NASTRAN, Autodesk inventor dynamic and COSMOS motion to prove that the mechanism exhibits a constant velocity. Finally, the mechanism was fabricated and evaluated; results showed that the mechanism can practically transmit a constant velocity ratio.

  20. Remodeling by fibroblasts alters the rate-dependent mechanical properties of collagen.

    Science.gov (United States)

    Babaei, Behzad; Davarian, Ali; Lee, Sheng-Lin; Pryse, Kenneth M; McConnaughey, William B; Elson, Elliot L; Genin, Guy M

    2016-06-01

    The ways that fibroblasts remodel their environment are central to wound healing, development of musculoskeletal tissues, and progression of pathologies such as fibrosis. However, the changes that fibroblasts make to the material around them and the mechanical consequences of these changes have proven difficult to quantify, especially in realistic, viscoelastic three-dimensional culture environments, leaving a critical need for quantitative data. Here, we observed the mechanisms and quantified the mechanical effects of fibroblast remodeling in engineered tissue constructs (ETCs) comprised of reconstituted rat tail (type I) collagen and human fibroblast cells. To study the effects of remodeling on tissue mechanics, stress-relaxation tests were performed on ETCs cultured for 24, 48, and 72h. ETCs were treated with deoxycholate and tested again to assess the ECM response. Viscoelastic relaxation spectra were obtained using the generalized Maxwell model. Cells exhibited viscoelastic damping at two finite time constants over which the ECM showed little damping, approximately 0.2s and 10-30s. Different finite time constants in the range of 1-7000s were attributed to ECM relaxation. Cells remodeled the ECM to produce a relaxation time constant on the order of 7000s, and to merge relaxation finite time constants in the 0.5-2s range into a single time content in the 1s range. Results shed light on hierarchical deformation mechanisms in tissues, and on pathologies related to collagen relaxation such as diastolic dysfunction. As fibroblasts proliferate within and remodel a tissue, they change the tissue mechanically. Quantifying these changes is critical for understanding wound healing and the development of pathologies such as cardiac fibrosis. Here, we characterize for the first time the spectrum of viscoelastic (rate-dependent) changes arising from the remodeling of reconstituted collagen by fibroblasts. The method also provides estimates of the viscoelastic spectra of

  1. Likelihood inference of non-constant diversification rates with incomplete taxon sampling.

    Directory of Open Access Journals (Sweden)

    Sebastian Höhna

    Full Text Available Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family and thus to maximize diversity (diversified sampling. So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa. The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa. Furthermore, model selection by means of Akaike's Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model. Finally, I applied six different diversification rate models--ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models--on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species. All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear

  2. Effects of step rate manipulation on joint mechanics during running.

    Science.gov (United States)

    Heiderscheit, Bryan C; Chumanov, Elizabeth S; Michalski, Max P; Wille, Christa M; Ryan, Michael B

    2011-02-01

    the objective of this study was to characterize the biomechanical effects of step rate modification during running on the hip, knee, and ankle joints so as to evaluate a potential strategy to reduce lower extremity loading and risk for injury. three-dimensional kinematics and kinetics were recorded from 45 healthy recreational runners during treadmill running at constant speed under various step rate conditions (preferred, ± 5%, and ± 10%). We tested our primary hypothesis that a reduction in energy absorption by the lower extremity joints during the loading response would occur, primarily at the knee, when step rate was increased. less mechanical energy was absorbed at the knee (P running and may prove beneficial in the prevention and treatment of common running-related injuries.

  3. Evaluation of single crystal coefficients from mechanical and x-ray elastic constants of the polycrystal

    International Nuclear Information System (INIS)

    Hauk, V.; Kockelmann, H.

    1979-01-01

    Methods of calculation are developed for determination of single crystal elastic compliance or stiffness constants of cubic and hexagonal materials from mechanical and X-ray elastic constants of polycrystals. The calculations are applied to pure, cubic iron and hexagonal WC. There are no single crystal constants in the literature for WC, because no single crystals suitable for measurement are available. (orig.) [de

  4. The fine-structure constant before quantum mechanics

    International Nuclear Information System (INIS)

    Kragh, Helge

    2003-01-01

    This paper focuses on the early history of the fine-structure constant, largely the period until 1925. Contrary to what is generally assumed, speculations concerning the interdependence of the elementary electric charge and Planck's constant predated Arnold Sommerfeld's 1916 discussion of the dimensionless constant. This paper pays particular attention to a little known work from 1914 in which G N Lewis and E Q Adams derived what is effectively a numerical expression for the fine-structure constant

  5. Simultaneous measurement of glucose blood–brain transport constants and metabolic rate in rat brain using in-vivo 1H MRS

    Science.gov (United States)

    Du, Fei; Zhang, Yi; Zhu, Xiao-Hong; Chen, Wei

    2012-01-01

    Cerebral glucose consumption and glucose transport across the blood–brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMRglc) and glucose transport constants (KT: half-saturation constant; Tmax: maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMRglc, KT, and Tmax via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo 1H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMRglc, Tmax, and KT were determined to be 0.44±0.17 μmol/g per minute, 1.35±0.47 μmol/g per minute, and 13.4±6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMRglc and Tmax are more reliable than that of KT. The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application. PMID:22714049

  6. Free energy correlation of rate constants for electron transfer between organic systems in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, D

    1975-07-15

    Recent experimental data concerning the rate constants for electron transfer reactions of organic systems in aqueous solutions and their equilibrium constants is examined for possible correlation. The data is correlated quite well by the Marcus theory, if a reorganization parameter, lambda, of 18 kcal/mole is used. Assuming that the only contribution to lambda is the free energy of rearrangement of the water molecules, an effective radius of 5 A for the reacting entities is estimated. For the zero free energy change reaction, i.e., electron exchange between a radical ion and its parent molecule, a rate constant of about 5 X 10/sup 7/ M/sup -1/ s/sup -1/ is predicted. (auth)

  7. Determination of rate constants in second-order kinetics using UV-visible spectroscopy

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H. F. M.; Smilde, A. R.

    2001-01-01

    A general method for estimating reaction rate constants of chemical reactions using ultraviolet-visible (UV-vis) spectroscopy is presented. The only requirement is that some of the chemical components involved be spectroscopically active. The method uses the combination of spectroscopic measurements

  8. Bibliographies on radiation chemistry: Pt. 12; Rate constants for reactions of nonmetallic inorganic radicals in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Helman, W P; Ross, A B [Notre Dame Univ., IN (USA). Radiation Chemistry Data Center

    1990-01-01

    Rate constants have been determined by pulse radiolysis, flash photolysis, and other methods, for a wide variety of reactions involving transient radicals in aqueous solution. Reliable rate constants have been established for reactions of radicals from water (e{sub aq}{sup -}, {center dot}H, {center dot}OH/{center dot}O{sup -}) and the data have been tabulated (Buxton, 1988) through 1986. Kinetic data for HO{sub 2}{center dot}/O{sub 2}{center dot}{sup -} were tabulated. (Bielski, 1985) from papers published through 1983. A compilation of rate constants, from the literature through Mid-1987, for other nonmetallic inorganic radicals has also appeared recently (Neta, 1988). Together, these compilations contain rate constants for more than 6,000 different reactions, reported in about 2,000 references. The present bibliography provides a list of relevant references which have been collected since the publication of the above-mentioned compilations. The list contains references received through the end of December, 1989. (author).

  9. Rate constants for the reaction of CF3O radicals with hydrocarbons at 298 K

    DEFF Research Database (Denmark)

    Kelly, C.; Treacy, J.; Sidebottom, H.W.

    1993-01-01

    Rate constant ratios of the reactions of CF3O radicals with a number of hydrocarbons have been determined at 298 +/- 2 K and atmospheric pressure using a relative rate method. Using a previously determined value k(CF30 + C2H6) = 1.2 x 10(-12) cm3 molecule-1 s-1 these rate constant ratios provide...... estimates of the rate constants: k(CF3O + CH4) = (1.2 +/- 0.1) x 10(-14), k(CF3O + c-C3H6) = (3.6 +/- 0.2) x 10(-13), k(CF3O + C3H8) = (4.7 +/- 0.7) x 10(-12), k(CF3O + (CH3)3CH) = (7.2 +/- 0.5) x 10(-12), k(CF3O + C2H4) = (3.0 +/- 0.1) x 10(-11) and k(CF3O + C6H6) = (3.6 +/- 0.1) x 10(-11) cm3 molecule-1 s......-1. The importance of the reactions of CF3O radicals with hydrocarbons under atmospheric conditions is discussed....

  10. The Newton constant and gravitational waves in some vector field adjusting mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Santillán, Osvaldo P. [IMAS (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Scornavacche, Marina, E-mail: firenzecita@hotmail.com, E-mail: marina.scorna@hotmail.com [Departamento de Física, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina)

    2017-10-01

    At the present, there exist some Lorentz breaking scenarios which explain the smallness of the cosmological constant at the present era [1]–[2]. An important aspect to analyze is the propagation of gravitational waves and the screening or enhancement of the Newton constant G {sub N} in these models. The problem is that the Lorentz symmetry breaking terms may induce an unacceptable value of the Newton constant G {sub N} or introduce longitudinal modes in the gravitational wave propagation. Furthermore this breaking may spoil the standard dispersion relation ω= ck . In [3] the authors have presented a model suggesting that the behavior of the gravitational constant is correct for asymptotic times. In the present work, an explicit checking is made and we finally agree with these claims. Furthermore, it is suggested that the gravitational waves are also well behaved for large times. In the process, some new models with the same behavior are obtained, thus enlarging the list of possible adjustment mechanisms.

  11. Determining Role of the Chain Mechanism in the Temperature Dependence of the Gas-Phase Rate of Combustion Reactions

    Science.gov (United States)

    Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.

    2018-05-01

    It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.

  12. Mechanical Properties and Elastic Constants Due to Damage Accumulation and Amorphization in SiC

    International Nuclear Information System (INIS)

    Gao, Fei; Weber, William J.

    2004-01-01

    Damage accumulation due to cascade overlap, which was simulated previously, has been used to study the changes of elastic constants, bulk and elastic moduli as a function of dose. These mechanical properties generally decrease with increasing dose, and the rapid decrease at low-dose level indicates that point defects and small clusters play an important role in the changes of elastic constants rather than topological disorder. The internal strain relaxation has no effect on the elastic constants, C11 and C12, in perfect SiC, but it has a significant influence on all elastic constants calculated in damaged SiC. The elastic constants in the cascade-amorphized (CA) SiC decrease about 19%, 29% and 46% for C11, C12 and C44, respectively. The bulk modulus decrease 23% and the elastic modulus decreases 29%, which is consistent with experimental measurements. The stability of both the perfect SiC and CA-SiC under hydrostatic tension has been also investigated. All mechanical properties in the CA-SiC exhibit behavior similar to that in perfect SiC, but the critical stress at which the CA-SiC becomes structurally unstable is one order of magnitude smaller than that for perfect SiC

  13. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.

    Science.gov (United States)

    De Smet, Els; Jaecques, Siegfried V N; Wevers, Martine; Sloten, Jos Vander; Naert, Ignace E

    2013-06-01

    Strain, frequency, loading time, and strain rate, among others, determine mechanical parameters in osteogenic loading. We showed a significant osteogenic effect on bone mass (BM) by daily peri-implant loading at 1.600µε.s(-1) after 4 weeks. To study the peri-implant osteogenic effect of frequency and strain in the guinea pig tibia by in vivo longitudinal micro-computed tomography (CT) analysis. One week after implant installation in both hind limb tibiae, one implant was loaded daily for 10' during 4 weeks, while the other served as control. Frequencies (3, 10, and 30Hz) and strains varied alike in the three series to keep the strain rate constant at 1.600µε.s(-1) . In vivo micro-CT scans were taken of both tibiae: 1 week after implantation but before loading (v1) and after 2 (v2) and 4 weeks (v3) of loading as well as postmortem (pm). BM (BM (%) bone-occupied area fraction) was calculated as well as the difference between test and control sides (delta BM) RESULTS: All implants (n=78) were clinically stable at 4 weeks. Significant increase in BM was measured between v1 and v2 (pimplant marrow 500 Region of Interest already 2 weeks after loading (p=.01) and was significantly larger (11%) in series 1 compared with series 2 (p=.006) and 3 (p=.016). Within the constraints of constant loading time and strain rate, the effect of early implant loading on the peri-implant bone is strongly dependent on strain and frequency. This cortical bone model has shown to be most sensitive for high force loading at low frequency. © 2011 Wiley Periodicals, Inc.

  14. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    Science.gov (United States)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  15. Rate constants for the reaction of e-aq with EDTA and some metal EDTA-complexes

    International Nuclear Information System (INIS)

    Buitenhuis, R.; Bakker, C.M.N.; Stock, F.R.; Louwrier, P.W.F.

    1977-01-01

    The rate constants for the reaction e - aq + EDTA were measured as a function of the pH by the pulse-radiolysis technique. Between pH = 6and pH = 10 this rate constant can be represented by the equation k = 4.7 x 10 6 x (fraction of HEDTA 3- )+1.0 x 10 8 x (fraction H 2 EDTA 2 -)M -1 s -1 . Also the rate constants for reactions of e - aq with the following metal-EDTA complexes were measured: CuEDTA 2- , HgEDTA 2- , CoEDTA 2- , InEDTA - , NiEDTA 2- , GaEDTA - , MnEDTA 2- , ZnEDTA 2- , CdEDTA 2- , PbEDTA 2- . Ionic strength variation indicates that the reacting ions are not hydrolized to an appreciable amount at pH = 11.5. It is found that some of the products show light absorption in the region between 300 and 400 nm. (orig.) [de

  16. Studies on the catalytic rate constant of ribosomal peptidyltransferase.

    Science.gov (United States)

    Synetos, D; Coutsogeorgopoulos, C

    1987-02-20

    A detailed kinetic analysis of a model reaction for the ribosomal peptidyltransferase is described, using fMet-tRNA or Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The initiation complex (fMet-tRNA X AUG X 70 S ribosome) or (Ac-Phe-tRNA X poly(U) X 70 S ribosome) (complex C) is isolated and then reacted with excess puromycin (S) to give fMet-puromycin or Ac-Phe-puromycin. This reaction (puromycin reaction) is first order at all concentrations of S tested. An important asset of this kinetic analysis is the fact that the relationship between the first order rate constant kobs and [S] shows hyperbolic saturation and that the value of kobs at saturating [S] is a measure of the catalytic rate constant (k cat) of peptidyltransferase in the puromycin reaction. With fMet-tRNA as the donor, this kcat of peptidyltransferase is 8.3 min-1 when the 0.5 M NH4Cl ribosomal wash is present, compared to 3.8 min-1 in its absence. The kcat of peptidyltransferase is 2.0 min-1 when Ac-Phe-tRNA replaces fMet-tRNA in the presence of the ribosomal wash and decreases to 0.8 min-1 in its absence. This kinetic procedure is the best method available for evaluating changes in the activity of peptidyltransferase in vitro. The results suggest that peptidyltransferase is subjected to activation by the binding of fMet-tRNA to the 70 S initiation complex.

  17. Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis

    Directory of Open Access Journals (Sweden)

    Nikolai Slavov

    2014-05-01

    Full Text Available Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration and of mitochondrial folate-mediated NADPH production (required for oxidative defense. The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival.

  18. Confronting the relaxation mechanism for a large cosmological constant with observations

    International Nuclear Information System (INIS)

    Basilakos, Spyros; Bauer, Florian; Solà, Joan

    2012-01-01

    In order to deal with a large cosmological constant a relaxation mechanism based on modified gravity has been proposed recently. By virtue of this mechanism the effect of the vacuum energy density of a given quantum field/string theory (no matter how big is its initial value in the early universe) can be neutralized dynamically, i.e. without fine tuning, and hence a Big Bang-like evolution of the cosmos becomes possible. Remarkably, a large class (F n m ) of models of this kind, namely capable of dynamically adjusting the vacuum energy irrespective of its value and size, has been identified. In this paper, we carefully put them to the experimental test. By performing a joint likelihood analysis we confront these models with the most recent observational data on type Ia supernovae (SNIa), the Cosmic Microwave Background (CMB), the Baryonic Acoustic Oscillations (BAO) and the high redshift data on the expansion rate, so as to determine which ones are the most favored by observations. We compare the optimal relaxation models F n m found by this method with the standard or concordance ΛCDM model, and find that some of these models may appear as almost indistinguishable from it. Interestingly enough, this shows that it is possible to construct viable solutions to the tough cosmological fine tuning problem with models that display the same basic phenomenological features as the concordance model

  19. Mechanism for propagation of rate signals through a 10-layer feedforward neuronal network

    International Nuclear Information System (INIS)

    Jie, Li; Wan-Qing, Yu; Ding, Xu; Feng, Liu; Wei, Wang

    2009-01-01

    Using numerical simulations, we explore the mechanism for propagation of rate signals through a 10-layer feedforward network composed of Hodgkin–Huxley (HH) neurons with sparse connectivity. When white noise is afferent to the input layer, neuronal firing becomes progressively more synchronous in successive layers and synchrony is well developed in deeper layers owing to the feedforward connections between neighboring layers. The synchrony ensures the successful propagation of rate signals through the network when the synaptic conductance is weak. As the synaptic time constant τ syn varies, coherence resonance is observed in the network activity due to the intrinsic property of HH neurons. This makes the output firing rate single-peaked as a function of τ syn , suggesting that the signal propagation can be modulated by the synaptic time constant. These results are consistent with experimental results and advance our understanding of how information is processed in feedforward networks. (cross-disciplinary physics and related areas of science and technology)

  20. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    Science.gov (United States)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  1. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    Science.gov (United States)

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  2. The effect of addition of primary positive salts, complex salt, on the ionic strength and rate constant at various temperatures by reaction kinetics

    Science.gov (United States)

    Kurade, S. S.; Ramteke, A. A.

    2018-05-01

    In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.

  3. Theoretical study and rate constant calculation for the reactions of SH (SD) with Cl2, Br2, and BrCl.

    Science.gov (United States)

    Wang, Li; Liu, Jing-Yao; Li, Ze-Sheng; Sun, Chia-Chung

    2005-01-30

    The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase

  4. An Empirical Rate Constant Based Model to Study Capacity Fading in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Srivatsan Ramesh

    2015-01-01

    Full Text Available A one-dimensional model based on solvent diffusion and kinetics to study the formation of the SEI (solid electrolyte interphase layer and its impact on the capacity of a lithium ion battery is developed. The model uses the earlier work on silicon oxidation but studies the kinetic limitations of the SEI growth process. The rate constant of the SEI formation reaction at the anode is seen to play a major role in film formation. The kinetics of the reactions for capacity fading for various battery systems are studied and the rate constants are evaluated. The model is used to fit the capacity fade in different battery systems.

  5. Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2 Reaction.

    Science.gov (United States)

    Hickson, Kevin M; Suleimanov, Yury V

    2017-03-09

    In the present joint experimental and theoretical study, we report thermal rate constants for the O( 1 D) + H 2 reaction within the 50-300 K temperature range. Experimental kinetics measurements were performed using a continuous supersonic flow reactor coupled with pulsed laser photolysis for O( 1 D) production and pulsed laser-induced fluorescence in the vacuum ultraviolet wavelength range (VUV LIF) for O( 1 D) detection. Theoretical rate constants were obtained using the ring polymer molecular dynamics (RPMD) approach over the two lowest potential energy surfaces 1 1 A' and 1 1 A″, which possess barrierless and thermally activated energy profiles, respectively. Both the experimental and theoretical rate constants exhibit a weak temperature dependence. The theoretical results show the dominant role of the 1 1 A' ground state and that contribution of the 1 1 A″ excited state to the total thermal rate decreases dramatically at lower temperature. Agreement between the experimental and theoretical results is good, and the discrepancy does not exceed 25%. It is argued that these differences are likely to be due to nonadiabatic couplings between the 1 1 A' and 2 1 A' surfaces.

  6. Determination of hydroxyl rate constants by a high-throughput fluorimetric assay: towards a unified reactivity scale for antioxidants

    International Nuclear Information System (INIS)

    Louit, G.; Renault, J.P.; Pin, S.; Coffigny, H.; Hanedanian, M.; Taran, F.; Renault, J.P.; Pin, S.

    2009-01-01

    We describe in this article the development of a new method for the determination of rate constants of reaction of the hydroxyl radical, generated by radiolysis of water, with almost any possible molecule. It has been designed to provide a fast and reliable screening of antioxidant banks using microplates. Our particular approach is based on the use of the coumarin molecule as a competitor against the tested molecules: after a fast pulse of low dose irradiation, the fluorescence of 7-hydroxycoumarin produced by the oxidation of coumarin is measured and is inversely proportional to the scavenging ability of the tested antioxidant. We have validated our protocol using 32 molecules whose rate constants with HO . had already been evaluated and found a good agreement between our rate constants and the latter ones. The scopes and limitations of our method, as well as those of other rate constant determination methods, are discussed. (authors)

  7. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.

    Science.gov (United States)

    Kobayashi, Daisuke; Honma, Chiemi; Matsumoto, Hideyuki; Takahashi, Tomoki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2014-07-01

    Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints

    NARCIS (Netherlands)

    Asheim, G.B.; Buchholz, W.; Hartwick, J.M.; Mitra, T.; Withagen, C.A.A.M.

    2007-01-01

    In the Dasgupta–Heal–Solow–Stiglitz (DHSS) model of capital accumulation and resource depletion we show the following equivalence: if an efficient path has constant (gross and net of population growth) savings rates, then population growth must be quasi-arithmetic and the path is a maximin or a

  9. Divided Saddle Theory: A New Idea for Rate Constant Calculation.

    Science.gov (United States)

    Daru, János; Stirling, András

    2014-03-11

    We present a theory of rare events and derive an algorithm to obtain rates from postprocessing the numerical data of a free energy calculation and the corresponding committor analysis. The formalism is based on the division of the saddle region of the free energy profile of the rare event into two adjacent segments called saddle domains. The method is built on sampling the dynamics within these regions: auxiliary rate constants are defined for the saddle domains and the absolute forward and backward rates are obtained by proper reweighting. We call our approach divided saddle theory (DST). An important advantage of our approach is that it requires only standard computational techniques which are available in most molecular dynamics codes. We demonstrate the potential of DST numerically on two examples: rearrangement of alanine-dipeptide (CH3CO-Ala-NHCH3) conformers and the intramolecular Cope reaction of the fluxional barbaralane molecule.

  10. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing

    Directory of Open Access Journals (Sweden)

    Kircher Michael

    2015-09-01

    Full Text Available Heart Rate Variability studies are a known measure for the autonomous control of the heart rate. In special situations, its interpretation can be ambiguous, since the respiration has a major influence on the heart rate variability. For this reason it has often been proposed to measure Heart Rate Variability, while the subjects are breathing at a constant respiration rate. That way the spectral influence of the respiration is known. In this work we propose to remove this constant respiratory influence from the heart rate and the Heart Rate Variability parameters to gain respiration free autonomous controlled heart rate signal. The spectral respiratory component in the heart rate signal is detected and characterized. Subsequently the respiratory effect on Heart Rate Variability is removed using spectral filtering approaches, such as the Notch filter or the Raised Cosine filter. As a result new decoupled Heart Variability parameters are gained, which could lead to new additional interpretations of the autonomous control of the heart rate.

  11. The rate constant for the CO + H2O2 reaction

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2009-01-01

    The rate constant for the reaction CO + H2O2 -> HOCO + OH (R1) at 713 K is determined based on the batch reactor experiments of Baldwin et al. [ R. R. Baldwin, R. W. Walker, S. J. Webster, Combust. Flame 15 (1970) 167] on decomposition of H2O2 sensitized by CO. The value, k(1) (713 K) = 8.1 x 10...

  12. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    Science.gov (United States)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  13. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    KAUST Repository

    Regnery, J.

    2015-05-29

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e. redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e. less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR.

  14. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    Science.gov (United States)

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Photon spectrometry for the determination of the dose-rate constant of low-energy photon-emitting brachytherapy sources

    International Nuclear Information System (INIS)

    Chen, Zhe Jay; Nath, Ravinder

    2007-01-01

    Accurate determination of dose-rate constant (Λ) for interstitial brachytherapy sources emitting low-energy photons (<50 keV) has remained a challenge in radiation dosimetry because of the lack of a suitable absolute dosimeter for accurate measurement of the dose rates near these sources. Indeed, a consensus value of Λ taken as the arithmetic mean of the dose-rate constants determined by different research groups and dosimetry techniques has to be used at present for each source model in order to minimize the uncertainties associated with individual determinations of Λ. Because the dosimetric properties of a source are fundamentally determined by the characteristics of the photons emitted by the source, a new technique based on photon spectrometry was developed in this work for the determination of dose-rate constant. The photon spectrometry technique utilized a high-resolution gamma-ray spectrometer to measure source-specific photon characteristics emitted by the low-energy sources and determine their dose-rate constants based on the measured photon-energy spectra and known dose-deposition properties of mono-energetic photons in water. This technique eliminates many of the difficulties arising from detector size, the energy dependence of detector sensitivity, and the use of non-water-equivalent solid phantoms in absolute dose rate measurements. It also circumvents the uncertainties that might be associated with the source modeling in Monte Carlo simulation techniques. It was shown that the estimated overall uncertainty of the photon spectrometry technique was less than 4%, which is significantly smaller than the reported 8-10% uncertainty associated with the current thermo-luminescent dosimetry technique. In addition, the photon spectrometry technique was found to be stable and quick in Λ determination after initial setup and calibration. A dose-rate constant can be determined in less than two hours for each source. These features make it ideal to determine

  16. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate

    KAUST Repository

    Wu, Junjun; Khaled, Fathi; Ning, Hongbo; Ma, Liuhao; Farooq, Aamir; Ren, Wei

    2017-01-01

    We report a systematic chemical kinetics study of the H-atom abstractions from ethyl formate (EF) by H, O(3P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range of 500‒2500 K by the transition state theory (TST) in conjunction with asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900‒1321 K and 1.4‒2.0 atm. Our theoretical rate constants of OH + EF → Products agree well with the experimental results within 15% over the experimental temperature range of 900‒1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  17. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate

    KAUST Repository

    Wu, Junjun

    2017-08-03

    We report a systematic chemical kinetics study of the H-atom abstractions from ethyl formate (EF) by H, O(3P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range of 500‒2500 K by the transition state theory (TST) in conjunction with asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900‒1321 K and 1.4‒2.0 atm. Our theoretical rate constants of OH + EF → Products agree well with the experimental results within 15% over the experimental temperature range of 900‒1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  18. Empirical correlation for prediction of the elutriation rate constant

    Directory of Open Access Journals (Sweden)

    Stojkovski Valentino

    2003-01-01

    Full Text Available In vessels containing fluidized solids, the gas leaving carries some suspended particles. This flux of solids is called entrainment, E or carryover and the bulk density of solids on this leaving gas stream is called the holdup. For design we need to know the rate of this entrainment and the size distribution of these entrained particles Rim in relation to the size distribution in the bed, Rib, as well as the variation of both these quantities with gas and solids properties, gas flow rate, bed geometry and location of the leaving gas stream. Steady-state elutriation experiments have been done in a fluidized bed 0,2 m diameter by 2,94 m high freeboard with superficial gas velocities up to 1 m/s using solids ranging in mean size from 0,15 to 0,58 mm and with particle density 2660 kg/m3. When the fine and coarse particles were mixed, the total entrainment flux above the freeboard was increased. None of the published correlations for estimating the elutriation rate constant were useful. A new simple equation, which is developed on the base of experimental results and theory of dimensional analyses, is presented.

  19. Extrapolation of rate constants of reactions producing H{sub 2} and O{sub 2} in radiolysis of water at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, R.; Ghandi, K.; Hackman, B.; Liu, G. [Mount Allison Univ., Sackville, NB (Canada)

    2014-07-01

    One target of our research is to extrapolate known data on the rate constants of reactions and add corrections to estimate the rate constants at the higher temperatures reached by the SCWR reactors. The focus of this work was to extrapolate known data on the rate constants of reactions that produce Hydrogen or Oxygen with a rate constant below 10{sup 10} mol{sup -1} s{sup -1} at room temperature. The extrapolation is done taking into account the change in the diffusion rate of the interacting species and the cage effect with thermodynamic conditions. The extrapolations are done over a wide temperature range and under isobaric conditions. (author)

  20. Determination of Methane and Carbon Dioxide Formation Rate Constants for Semi-Continuously Fed Anaerobic Digesters

    Directory of Open Access Journals (Sweden)

    Jan Moestedt

    2015-01-01

    Full Text Available To optimize commercial-scale biogas production, it is important to evaluate the performance of each microbial step in the anaerobic process. Hydrolysis and methanogenesis are usually the rate-limiting steps during digestion of organic waste and by-products. By measuring biogas production and methane concentrations on-line in a semi-continuously fed reactor, gas kinetics can be evaluated. In this study, the rate constants of the fermentative hydrolysis step (kc and the methanogenesis step (km were determined and evaluated in a continuously stirred tank laboratory-scale reactor treating food and slaughterhouse waste and glycerin. A process additive containing Fe2+, Co2+ and Ni2+ was supplied until day 89, after which Ni2+ was omitted. The omission resulted in a rapid decline in the methanogenesis rate constant (km to 70% of the level observed when Ni2+ was present, while kc remained unaffected. This suggests that Ni2+ mainly affects the methanogenic rather than the hydrolytic microorganisms in the system. However, no effect was initially observed when using conventional process monitoring parameters such as biogas yield and volatile fatty acid concentration. Hence, formation rate constants can reveal additional information on process performance and km can be used as a complement to conventional process monitoring tools for semi-continuously fed anaerobic digesters.

  1. Reaction rate constant of HO2+O3 measured by detecting HO2 from photofragment fluorescence

    Science.gov (United States)

    Manzanares, E. R.; Suto, Masako; Lee, Long C.; Coffey, Dewitt, Jr.

    1986-01-01

    A room-temperature discharge-flow system investigation of the rate constant for the reaction 'HO2 + O3 yields OH + 2O2' has detected HO2 through the OH(A-X) fluorescence produced by photodissociative excitation of HO2 at 147 nm. A reaction rate constant of 1.9 + or - 0.3 x 10 to the -15th cu cm/molecule per sec is obtained from first-order decay of HO2 in excess O3; this agrees well with published data.

  2. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.

    Science.gov (United States)

    Arnold, William A; Oueis, Yan; O'Connor, Meghan; Rinaman, Johanna E; Taggart, Miranda G; McCarthy, Rachel E; Foster, Kimberley A; Latch, Douglas E

    2017-03-22

    Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E 1 ), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E 1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

  3. Discovery of a Significant Acetone•Hydroperoxy Adduct Chaperone Effect and Its Impact on the Determination of Room Temperature Rate Constants for Acetonylperoxy/Hydroperoxy Self-Reactions and Cross Reaction Via Infrared Kinetic Spectroscopy.

    Science.gov (United States)

    Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2017-12-01

    In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than

  4. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    Science.gov (United States)

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  5. Determination of photoformation rates and scavenging rate constants of hydroxyl radicals in natural waters using an automatic light irradiation and injection system

    International Nuclear Information System (INIS)

    Nakatani, Nobutake; Hashimoto, Norichika; Shindo, Hirotaka; Yamamoto, Masatoshi; Kikkawa, Megumi; Sakugawa, Hiroshi

    2007-01-01

    Photoformation rates and scavenging rate constants of hydroxyl radicals (·OH) in natural water samples were determined by an automatic determination system. After addition of benzene as a chemical probe to a water sample in a reaction cell, light irradiation and injection of irradiated water samples into an HPLC as a function of time were performed automatically. Phenol produced by the reaction between ·OH and the benzene added to the water sample was determined to quantify the ·OH formation rate. The rate constants of ·OH formation from the photolysis of nitrate ions, nitrite ions and hydrogen peroxide were comparable with those obtained in previous studies. The percent of expected ·OH photoformation rate from added nitrate ion were high in drinking water (97.4%) and river water (99.3%). On the other hand, the low percent (65.0%) was observed in seawater due to the reaction of ·OH with the high concentrations of chloride and bromide ions. For the automatic system, the coefficient of variance for the determination of the ·OH formation rate was less than 5.0%, which is smaller than that in the previous report. When the complete time sequence of analytical cycle was 40 min for one sample, the detection limit of the photoformation rate and the sample throughput were 8 x 10 -13 M s -1 and 20 samples per day, respectively. The automatic system successfully determined the photoformation rates and scavenging rate constants of ·OH in commercial drinking water and the major source and sink of ·OH were identified as nitrate and bicarbonate ions, respectively

  6. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  7. Evolution of the solar constant

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    The ultimate source of the energy utilized by life on Earth is the Sun, and the behavior of the Sun determines to a large extent the conditions under which life originated and continues to thrive. What can be said about the history of the Sun. Has the solar constant, the rate at which energy is received by the Earth from the Sun per unit area per unit time, been constant at its present level since Archean times. Three mechanisms by which it has been suggested that the solar energy output can vary with time are discussed, characterized by long (approx. 10 9 years), intermediate (approx. 10 8 years), and short (approx. years to decades) time scales

  8. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    Science.gov (United States)

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage

  9. Rate constants for the reactions of OH with HFC-134a (CF3CH2F) and HFC-134 (CHF2CHF2)

    Science.gov (United States)

    Demore, W. B.

    1993-01-01

    Measurements of rate constants for HFC-134 (CF2HCF2H) relative to CH3CCl3, HFC-125, and HFC-134a are reported. The measurements were made in a slow-flow, temperature controlled photochemical reactor, and were based on relative rates of disappearance of the parent compounds as measured by FTIR spectroscopy. Hydroxyl radicals were generated by 254-nm photolysis of O3 in the presence of water vapor. NASA/JPL rate constants for the reference compounds are used to derive temperature-dependent rate constants of both compounds. Rate constants obtained from the different reference compounds are in excellent agreement. The presently recommended rate constant for HFC-134a is about 25 percent too high.

  10. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    Science.gov (United States)

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  11. Atmospheric fate of a series of carbonyl nitrates: photolysis frequencies and OH-oxidation rate constants.

    Science.gov (United States)

    Suarez-Bertoa, R; Picquet-Varrault, B; Tamas, W; Pangui, E; Doussin, J-F

    2012-11-20

    Multifunctional organic nitrates are potential NO(x) reservoirs whose atmospheric chemistry is somewhat little known. They could play an important role in the spatial distribution of reactive nitrogen species and consequently in ozone formation and distribution in remote areas. In this work, the rate constants for the reaction with OH radical and the photolysis frequencies of α-nitrooxyacetone, 3-nitrooxy-2-butanone, and 3-methyl-3-nitrooxy-2-butanone have been determined at room temperature at 1000 mbar total pressure of synthetic air. The rate constants for the OH oxidation were measured using the relative rate technique, with methanol as reference compound. The following rate constants were obtained for the reaction with OH: k(OH) = (6.7 ± 2.5) × 10(-13) cm(3) molecule(-1) s(-1) for α-nitrooxyacetone, (10.6 ± 4.1) × 10(-13) cm(3) molecule(-1) s(-1) for 3-nitrooxy-2-butanone, and (2.6 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) for 3-methyl-3-nitrooxy-2-butanone. The corresponding photolysis frequencies extrapolated to typical atmospheric conditions for July first at noon at 40° latitude North were (4.8 ± 0.3) × 10(-5) s(-1), (5.7 ± 0.3) × 10(-5) s(-1), and (7.4 ± 0.2) × 10(-5) s(-1), respectively. The data show that photolysis is a major atmospheric sink for these organic nitrates.

  12. Rate constants and temperature effects for reactions of Cl2sm-bullet- with unsaturated alcohols and hydrocarbons in aqueous and acetonitrile/water solutions

    International Nuclear Information System (INIS)

    Padmaja, S.; Neta, P.; Huie, R.E.

    1992-01-01

    Absolute rate constants for reactions of the dichlorine radical anion, Cl 2 sm-bullet- , with unsaturated alcohols and hydrocarbons have been measured at various temperatures. The alcohol reactions were measured in aqueous solutions and the hydrocarbon reactions in 1:1 aqueous acetonitirle (ACN) solutions. The rate constants for two alcohols and one hydrocarbon were also examined as a function of solvent composition. The room temperature rate constants varied between 10 6 and 10 9 M -1 s -1 . The pre-exponential factors, A, were about (1-5) x 10 9 M -1 s -1 for the alcohols in aqueous solutions and about (0.1-1) x 10 9 M -1 s -1 for the hydrocarbons in aqueous ACN solutions. The activation energies, E a , varied considerably, between 4 and 12 kJ mol -1 for the alcohols and between 2 and 8 kJ mol -1 for the hydrocarbons. The rate constants, k 298 , decrease with increasing ionization potential (IP) of the unsaturated compound, in agreement with an electrophilic addition mechanism. The activation energies for the unsaturated alcohols decrease when the IP decreases from 9.7 to 9.1 eV but appear to level off at lower IP. Most alkenes studied had IP a . Upon addition of ACN to the aqueous solution, the values of log k 298 decreased linearly by more than 1 order of magnitude with increasing ACN mole fraction. This decrease appears to result from a combination of changes in the activation energy and in the pre-exponential factor. The reason for these changes may lie in changes in the solvation shell of the Cl 2 sm-bullet- radical, which will affect the A factor, in combination with changes in solvation of Cl - , which will affect the energetics of the reactions as well. 20 refs., 7 figs., 6 tabs

  13. Site-specific reaction rate constant measurements for various secondary and tertiary H-abstraction by OH radicals

    KAUST Repository

    Badra, Jihad; Farooq, Aamir

    2015-01-01

    absorption of the R1(5) transition of OH spectrum near 306.69nm.Previous low-temperature rate constant measurements are added to the current data to generate three-parameter rate expressions that successfully represent the available direct measurements over a

  14. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  15. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...

  16. Some chaotic behaviors in a MCA learning algorithm with a constant learning rate

    International Nuclear Information System (INIS)

    Lv Jiancheng; Yi Zhang

    2007-01-01

    Douglas's minor component analysis algorithm with a constant learning rate has both stability and chaotic dynamical behavior under some conditions. The paper explores such dynamical behavior of this algorithm. Certain stability and chaos of this algorithm are derived. Waveform plots, Lyapunov exponents and bifurcation diagrams are presented to illustrate the existence of chaotic behavior

  17. Mechanical properties and local mobility of atactic-polystyrene films under constant-shear deformation

    NARCIS (Netherlands)

    Hudzinskyy, D.; Michels, M.A.J.; Lyulin, A.V.

    2012-01-01

    We have performed molecular-dynamics simulations of atactic polystyrene thin films to study the effect of shear rate, pressure, and temperature on the stress-strain behaviour, the relevant energetic contributions and non-affine displacements of polymer chains during constant-shear deformation. Under

  18. Ion-neutral gas reactions in a collision/reaction cell in inductively coupled plasma mass spectrometry: Correlation of ion signal decrease to kinetic rate constants

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Patrick J. [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States); Department of Chemistry, The Ohio State University, 120 18th Avenue, Columbus, OH 43210 (United States); Olesik, John W., E-mail: olesik.2@osu.edu [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States)

    2015-03-01

    Reaction gas flow rate dependent Ar{sub 2}{sup +} and Ar{sup +} signals are correlated to fundamental kinetic rate coefficients. A simple calculation, assuming that gas exits the reaction cell due only to effusion, is described to estimate the gas pressure in the reaction cell. The value of the product of the kinetic rate constant and the ion residence time in the reaction cell can be determined from experimental measurement of the decrease in an ion signal as a function of reaction gas flow rate. New kinetic rate constants are determined for the reaction of CH{sub 3}F with Ar{sup +} and Ar{sub 2}{sup +}. - Highlights: • How to determine pressure and the product of the kinetic rate constant times the ion residence time in reaction cell • Relate measured ICP-DRC-MS signals versus gas flow rate to kinetic rate constants measured previously using SIFT-MS • Describe how to determine previously unmeasured kinetic rate constants using ICP-DRC-MS.

  19. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  20. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  1. The dissolution rate constant of magnetite in water at different temperatures and neutral or ammoniated chemistry conditions

    International Nuclear Information System (INIS)

    Mohajery, K.; Lister, D.H.

    2012-01-01

    In this study, the dissolution rate constants of magnetite were measured at various water chemistry conditions and different temperatures, corresponding to several feedwater conditions of water-cooled reactors. Sintered magnetite pellets were used as the dissolving material and these were mounted in a jet-impingement apparatus in a recirculating water loop. Exposures were carried out at temperatures of 25, 55 and 140 o C and pHs of neutral and 9.2 in which many FAC (Flow Accelerated Corrosion) studies have been conducted. Average dissolution rate constants were estimated by measuring the volume of lost material with a profilometry technique. The excellent correspondent between the calculated value of dissolution rate constant of 2.20 mm/s for the synthesized magnetite and 2.05 mm/s for the single crystal of magnetite at neutral condition shows that the particle removal from the synthesized pellets is not an obstruction in this technique. Also, good agreement between the values calculated in duplicated runs at neutral condition at room temperature supports the accuracy of the method. (author)

  2. Estimation of Anaerobic Debromination Rate Constants of PBDE Pathways Using an Anaerobic Dehalogenation Model.

    Science.gov (United States)

    Karakas, Filiz; Imamoglu, Ipek

    2017-04-01

    This study aims to estimate anaerobic debromination rate constants (k m ) of PBDE pathways using previously reported laboratory soil data. k m values of pathways are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model. Debromination activities published in the literature in terms of bromine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The range of estimated k m values is between 0.0003 and 0.0241 d -1 . The median and maximum of k m values are found to be comparable to the few available biologically confirmed rate constants published in the literature. The estimated k m values can be used as input to numerical fate and transport models for a better and more detailed investigation of the fate of individual PBDEs in contaminated sediments. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be handled in a more quantitative manner with the help of k m estimated in this study.

  3. Influence of temperature, cold deformation and a constant mechanical load on the microstructural stability of a nitrogen alloyed duplex stainless steel

    International Nuclear Information System (INIS)

    Weisbrodt-Reisch, A.; Brummer, M.; Hadler, B.; Wolbank, B.; Werner, E.A.

    2006-01-01

    The influence of temperature, cold deformation and constant mechanical load on the microstructural stability and the kinetics of phase decomposition of a nitrogen-alloyed duplex stainless steel (0.34 wt.% N) was investigated. Calculation of the phase equilibria was done with THERMOCALC using the steel database TCFE3 in order to predict the stability of the phases and to estimate the influence of temperature on the fraction and chemical composition of the phases. Various ageing treatments between 800 deg. C and 1300 deg. C were performed for different time intervals with controlled heating and cooling rates. In order to determine the influence of deformation, annealing at 800 deg. C after cold deformation as well as dilatometry experiments were performed under a constant mechanical compressive load at 800 deg. C and 900 deg. C. Microstructural characterization was carried out by means of light microscopy, electron microscopy and X-ray diffractometry. It was found that the microstructural evolution under a thermal load alone in the temperature range above 950 deg. C concerns mainly the transformation of austenite to ferrite, while below 950 deg. C ferrite decomposition and precipitation of nitrides occur. Since duplex stainless steels possess a microstructure consisting of paramagnetic austenite and ferromagnetic ferrite, the kinetics of ferrite decomposition can be determined easily by magnetic inductive measurements. The results of the microstructural investigations and the measurements of the saturation magnetization show that there is a satisfactory agreement with the theoretical predictions based on THERMOCALC. Ferrite decomposition is significantly accelerated by strain introduced during cold deformation. Furthermore, even under a small mechanical load the kinetics of phase decomposition behaviour at 900 deg. C is drastically changed. Whereas during short annealing times the microstructure remains nearly stable the same annealing conditions under a constant

  4. Ratiometric analysis in hyperpolarized NMR (I): test of the two-site exchange model and the quantification of reaction rate constants.

    Science.gov (United States)

    Li, Lin Z; Kadlececk, Stephen; Xu, He N; Daye, Dania; Pullinger, Benjamin; Profka, Harrilla; Chodosh, Lewis; Rizi, Rahim

    2013-10-01

    Conventional methods for the analysis of in vivo hyperpolarized (13) C NMR data from the lactate dehydrogenase (LDH) reaction usually make assumptions on the stability of rate constants and/or the validity of the two-site exchange model. In this study, we developed a framework to test the validity of the assumption of stable reaction rate constants and the two-site exchange model in vivo via ratiometric fitting of the time courses of the signal ratio L(t)/P(t). Our analysis provided evidence that the LDH enzymatic kinetics observed by hyperpolarized NMR are in near-equilibrium and satisfy the two-site exchange model for only a specific time window. In addition, we quantified both the forward and reverse exchange rate constants of the LDH reaction for the transgenic and mouse xenograft models of breast cancer using the ratio fitting method developed, which includes only two modeling parameters and is less sensitive to the influence of instrument settings/protocols, such as flip angles, degree of polarization and tracer dosage. We further compared the ratio fitting method with a conventional two-site exchange modeling method, i.e. the differential equation fitting method, using both the experimental and simulated hyperpolarized NMR data. The ratio fitting method appeared to fit better than the differential equation fitting method for the reverse rate constant on the mouse tumor data, with less relative errors on average, whereas the differential equation fitting method also resulted in a negative reverse rate constant for one tumor. The simulation results indicated that the accuracy of both methods depends on the width of the transport function, noise level and rate constant ratio; one method may be more accurate than the other based on the experimental/biological conditions aforementioned. We were able to categorize our tumor models into specific conditions of the computer simulation and to estimate the errors of rate quantification. We also discussed possible

  5. Comments to "Analysis of constant rate period of spray drying of slurry" by Liang et al., 2001

    DEFF Research Database (Denmark)

    Jørgensen, Kåre; Jensen, Anker Degn; Sloth, Jakob

    2006-01-01

    In the study by Liang et al. [2001. Analysis of constant rate period of spray drying of slurry. Chemical Engineering Science 56, 2205-2213] the Darcy flow of liquid through a pore system of primary particles to the surface of a slurry droplet was applied for the constant rate period. Steep primary...... particle concentration gradients inside -25 mu m droplets with a primary particle size of 0.2 mu m were observed. Unfortunately, the boundary condition at the droplet surface for the parabolic second-order PDE did not conserve the solid mass in the droplet, and the plots for the primary particle...

  6. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    Science.gov (United States)

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.

  7. Prediction of ozone tropospheric degradation rate constant of organic compounds by using artificial neural networks

    International Nuclear Information System (INIS)

    Fatemi, M.H.

    2006-01-01

    Ozone tropospheric degradation of organic compound is very important in environmental chemistry. The lifetime of organic chemicals in the atmosphere can be calculated from the knowledge of the rate constant of their reaction with free radicals such as OH and NO 3 or O 3 . In the present work, the rate constant for the tropospheric degradation of 137 organic compounds by reaction with ozone, the least widely and successfully modeled degradation process, are predicted by quantitative structure activity relationships modeling based on a variety of theoretical descriptors, which screened and selected by genetic algorithm variable subset selection procedure. These descriptors which can be used as inputs for generated artificial neural networks are; HOMO-LUMO gap, number of double bonds, number of single bonds, maximum net charge on C atom, minimum (>0.1) bond order of C atom and Minimum e-e repulsion of H atom. After generation, optimization and training of artificial neural network, network was used for the prediction of log KO 3 for the validation set. The root mean square error for the neural network calculated log KO 3 for training, prediction and validation set are 0.357, 0.460 and 0.481, respectively, which are smaller than those obtained by multiple linear regressions model (1.217, 0.870 and 0.968, respectively). Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ozone tropospheric degradations rate constant of organic compounds

  8. Estimation in adults of the glomerular filtration rate in [99mTc] DTPA renography - the rate constant method

    International Nuclear Information System (INIS)

    Carlsen, Ove

    2004-01-01

    The purpose of this study was to design an alternative and robust method for estimation of glomerular filtration rate (GFR) in [ 99 mTc]-diethylenetriaminepentaacetic acid ([ 99 mTc] -DTPA renography with a reliability not significantly lower than that of the conventional Gates' method. Methods: The method is based on renographies lasting 40 min in which regions of interest (ROIs) are manually created over selected parts of certain blood pools (e.g. heart, lungs, spleen, and liver). For each ROI the corresponding time-activity curve (TAC) was generated, decay corrected and exposed to a monoexponential fit in the time interval 10 to 40 min postinjection. The rate constant in min-1 of the monoexponential fit was denoted BETA. Following an iterative procedure comprising usually 5-10 manually created ROIs, the monoexponential fit with the maximum rate constant (BETA max ) was used for estimation of GFR. Results: In a patient material of 54 adult subjects in whom GFR was determined with multiple or one sample techniques with [ 51 Cr]-ethylenediaminetetraacetic acid ([ 51 Cr]-EDTA) the regression curve of standard GFR (GFR std ) (i.e. GFR adjusted to 1.73 m 2 body surface area) showed a close, non-linear relationship with BETA max with a correlation coefficient of 95%. The standard errors of estimate (SEE) were 6.6, 10.6 and 16.8 for GFR std equal to 30, 60, and 120 ml/(min .73 m 2 ), respectively. The corresponding SEE values for almost the same patient material using Gates' method were 8.4, 11.9, and 16.8 ml/(min 1.73 m 2 ). Conclusions: The alternative rate constant method yields estimates of GFR std with SEE values equal to or slightly smaller than in Gates' method. The two methods provide statistically uncorrelated estimates of GFR std . Therefore, pooled estimates of GFR std can be calculated with SEE values approximately 1.41 times smaller than those mentioned above. The reliabilities of the pooled estimate of GFR std separately and of the multiple samples method

  9. Quenching rate for a nonlocal problem arising in the micro-electro mechanical system

    Science.gov (United States)

    Guo, Jong-Shenq; Hu, Bei

    2018-03-01

    In this paper, we study the quenching rate of the solution for a nonlocal parabolic problem which arises in the study of the micro-electro mechanical system. This question is equivalent to the stabilization of the solution to the transformed problem in self-similar variables. First, some a priori estimates are provided. In order to construct a Lyapunov function, due to the lack of time monotonicity property, we then derive some very useful and challenging estimates by a delicate analysis. Finally, with this Lyapunov function, we prove that the quenching rate is self-similar which is the same as the problem without the nonlocal term, except the constant limit depends on the solution itself.

  10. Addition and spin exchange rate constants by longitudinal field μSR: the Mu + NO reaction

    International Nuclear Information System (INIS)

    Senba, Masayoshi; Gonzalez, A.C.; Kempton, J.R.; Arseneau, D.J.; Pan, J.J.; Tempelmann, A.; Fleming, D.G.

    1991-01-01

    The addition reaction Mu + NO + M → MuNO + M and the spin exchange reaction Mu(↑) + NO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N 2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λ c ) demonstrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined as k 0.Mu =(1.10±0.25)x10 -32 cm 6 molecules -2 s -1 , almost 4 times smaller than the corresponding H atom reaction k 0,H =3.90x10 -32 cm 6 molecules -2 s -1 . The average value of the spin exchange rate constants in the 2.5-58 atm pressure range, k SE = (3.16±0.06)x10 -10 cm 3 molecule -1 s -1 , is in good agreement with previous values obtained by transverse field μSR. (orig.)

  11. The importance of the strain rate and creep on the stress corrosion cracking mechanisms and models

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel; Schvartzman, Monica M.A.M.

    2011-01-01

    Stress corrosion cracking is a nuclear, power, petrochemical, and other industries equipment and components (like pressure vessels, nozzles, tubes, accessories) life degradation mode, involving fragile fracture. The stress corrosion cracking failures can produce serious accidents, and incidents which can put on risk the safety, reliability, and efficiency of many plants. These failures are of very complex prediction. The stress corrosion cracking mechanisms are based on three kinds of factors: microstructural, mechanical and environmental. Concerning the mechanical factors, various authors prefer to consider the crack tip strain rate rather than stress, as a decisive factor which contributes to the process: this parameter is directly influenced by the creep strain rate of the material. Based on two KAPL-Knolls Atomic Power Laboratory experimental studies in SSRT (slow strain rate test) and CL (constant load) test, for prediction of primary water stress corrosion cracking in nickel based alloys, it has done a data compilation of the film rupture mechanism parameters, for modeling PWSCC of Alloy 600 and discussed the importance of the strain rate and the creep on the stress corrosion cracking mechanisms and models. As derived from this study, a simple theoretical model is proposed, and it is showed that the crack growth rate estimated with Brazilian tests results with Alloy 600 in SSRT, are according with the KAPL ones and other published literature. (author)

  12. Two-dimensional analytical solutions for chemical transport in aquifers. Part 1. Simplified solutions for sources with constant concentration. Part 2. Exact solutions for sources with constant flux rate

    International Nuclear Information System (INIS)

    Shan, C.; Javandel, I.

    1996-05-01

    Analytical solutions are developed for modeling solute transport in a vertical section of a homogeneous aquifer. Part 1 of the series presents a simplified analytical solution for cases in which a constant-concentration source is located at the top (or the bottom) of the aquifer. The following transport mechanisms have been considered: advection (in the horizontal direction), transverse dispersion (in the vertical direction), adsorption, and biodegradation. In the simplified solution, however, longitudinal dispersion is assumed to be relatively insignificant with respect to advection, and has been neglected. Example calculations are given to show the movement of the contamination front, the development of concentration profiles, the mass transfer rate, and an application to determine the vertical dispersivity. The analytical solution developed in this study can be a useful tool in designing an appropriate monitoring system and an effective groundwater remediation method

  13. Towards Grothendieck constants and LHV models in quantum mechanics

    International Nuclear Information System (INIS)

    Hua, Bobo; Li, Ming; Zhang, Tinggui; Zhou, Chunqin; Li-Jost, Xianqing; Fei, Shao-Ming

    2015-01-01

    We adopt a continuous model to estimate the Grothendieck constants. An analytical formula to compute the lower bounds of Grothendieck constants has been explicitly derived for arbitrary orders, which improves previous bounds. Moreover, our lower bound of the Grothendieck constant of order three gives a refined bound of the threshold value for the nonlocality of the two-qubit Werner states. (paper)

  14. Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

    OpenAIRE

    Youhua Chen

    2014-01-01

    In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR), one-continuous-shift (OCS) and multiplediscrete- shifts (MDS) situations. The OCS diversification model was rejected by γ statistic (γ=-5.556, p⁄ 0.001), implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR...

  15. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. V. Comparison and Properties of Electrochemical and Chemical Rate Constants

    Science.gov (United States)

    Marcus, R. A.

    1962-01-01

    Using a theory of electron transfers which takes cognizance of reorganization of the medium outside the inner coordination shell and of changes of bond lengths inside it, relations between electrochemical and related chemical rate constants are deduced and compared with the experimental data. A correlation is found, without the use of arbitrary parameters. Effects of weak complexes with added electrolytes are included under specified conditions. The deductions offer a way of coordinating a variety of data in the two fields, internally as well as with each those in another. For example, the rate of oxidation or reduction of a series of related reactants by one reagent is correlated with that of another and with that of the corresponding electrochemical oxidation-reduction reaction, under certain specified conditions. These correlations may also provide a test for distinguishing an electron from an atom transfer mechanism. (auth)

  16. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    International Nuclear Information System (INIS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-01-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature. - Highlights: ► Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS) was developed to study electron attachment reaction. ► The rate constants of electron attachment to CCl 4 and CHCl 3 were determined. ► The present experimental results are in good agreement with the previously reported data.

  17. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant for the Dissociation of Ferroin

    Science.gov (United States)

    Sattar, Simeen

    2011-01-01

    Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…

  18. Combination of poroelasticity theory and constant strain rate test in modelling land subsidence due to groundwater extraction

    Science.gov (United States)

    Pham, Tien Hung; Rühaak, Wolfram; Sass, Ingo

    2017-04-01

    Extensive groundwater extraction leads to a drawdown of the ground water table. Consequently, soil effective stress increases and can cause land subsidence. Analysis of land subsidence generally requires a numerical model based on poroelasticity theory, which was first proposed by Biot (1941). In the review of regional land subsidence accompanying groundwater extraction, Galloway and Burbey (2011) stated that more research and application is needed in coupling of stress-dependent land subsidence process. In geotechnical field, the constant rate of strain tests (CRS) was first introduced in 1969 (Smith and Wahls 1969) and was standardized in 1982 through the designation D4186-82 by American Society for Testing and Materials. From the reading values of CRS tests, the stress-dependent parameters of poroelasticity model can be calculated. So far, there is no research to link poroelasticity theory with CRS tests in modelling land subsidence due to groundwater extraction. One dimensional CRS tests using conventional compression cell and three dimension CRS tests using Rowe cell were performed. The tests were also modelled by using finite element method with mixed elements. Back analysis technique is used to find the suitable values of hydraulic conductivity and bulk modulus that depend on the stress or void ratio. Finally, the obtained results are used in land subsidence models. Biot, M. A. (1941). "General theory of three-dimensional consolidation." Journal of applied physics 12(2): 155-164. Galloway, D. L. and T. J. Burbey (2011). "Review: Regional land subsidence accompanying groundwater extraction." Hydrogeology Journal 19(8): 1459-1486. Smith, R. E. and H. E. Wahls (1969). "Consolidation under constant rates of strain." Journal of Soil Mechanics & Foundations Div.

  19. First-Principles Computed Rate Constant for the O + O2 Isotopic Exchange Reaction Now Matches Experiment.

    Science.gov (United States)

    Guillon, Grégoire; Honvault, Pascal; Kochanov, Roman; Tyuterev, Vladimir

    2018-04-19

    We show, by performing exact time-independent quantum molecular scattering calculations, that the quality of the ground electronic state global potential energy surface appears to be of utmost importance in accurately obtaining even as strongly averaged quantities as kinetic rate constants. The oxygen isotope exchange reaction, 18 O + 32 O 2 , motivated by the understanding of a complex long-standing problem of isotopic ozone anomalies in the stratosphere and laboratory experiments, is explored in this context. The thermal rate constant for this key reaction is now in quantitative agreement with all experimental data available to date. A significant recent progress at the frontier of three research domains, advanced electronic structure calculations, ultrasensitive spectroscopy, and quantum scattering calculations, has therefore permitted a breakthrough in the theoretical modeling of this crucial collision process from first principles.

  20. Estimation of rate constants of PCB dechlorination reactions using an anaerobic dehalogenation model.

    Science.gov (United States)

    Karakas, Filiz; Imamoglu, Ipek

    2017-02-15

    This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Flowing afterglow: construction of an apparatus, measurement of rate constants, and consideration of the diffusive behavior of charges

    International Nuclear Information System (INIS)

    Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki; Fujii, Toshihiro.

    1984-01-01

    A flowing afterglow apparatus was constructed and the operation of the afterglow system including data analysis was tested by measuring the rate constants for the reactions N + + NO, N 2 + + NO, He + + N 2 , and SF 6 + e; the results were 5.8 x 10 -10 , 3.9 x 10 -10 , 1.20 x 10 -9 , and 2.1 x 10 -7 cm 3 s -1 respectively. In the measurements an extraction voltage for ion sampling was not applied to the nose cone in order not to introduce an electric field into the reaction region. A ''non-ambipolar'' model developed by us was used for the data analysis of the ion/molecule reactions. For the data analysis of the electron attachment, a typical curve fit mehtod to the product ion signal was used. However, no theoretical curves fit the experimental points. This disagreement is attributed to a change of the ion-sampling efficiency through the nose-cone aperture arising from a change of the electron-dominated plasma to a negative-ion-dominated plasma with an increasing flow rate of SF 6 . Nevertheless, the attachment rate could be determined by fitting the theoretical and experimantal curves in the limited region of the SF 6 flow rate where the negative-ion-dominated plasma is established at the sampling aperture. All the rate constants obtained here agree reasonably well with literature values. Next, errors in the positive ion/molecule reaction rate constants, which would occur if the diffusion coefficients of the ions and neutrals each have a + 10 % error were calculated for the flow model to be -0.4 and +1.2 % respectively, demonstrating that these parameters are not important in the analysis of data. This insensitivity explains why the nose-cone voltage applied in a typical flowing afterglow operation has not caused a significant error in the published rate constants although it disturbs the ion diffusive behavior. (author)

  2. An optimal policy for deteriorating items with time-proportional deterioration rate and constant and time-dependent linear demand rate

    Science.gov (United States)

    Singh, Trailokyanath; Mishra, Pandit Jagatananda; Pattanayak, Hadibandhu

    2017-12-01

    In this paper, an economic order quantity (EOQ) inventory model for a deteriorating item is developed with the following characteristics: (i) The demand rate is deterministic and two-staged, i.e., it is constant in first part of the cycle and linear function of time in the second part. (ii) Deterioration rate is time-proportional. (iii) Shortages are not allowed to occur. The optimal cycle time and the optimal order quantity have been derived by minimizing the total average cost. A simple solution procedure is provided to illustrate the proposed model. The article concludes with a numerical example and sensitivity analysis of various parameters as illustrations of the theoretical results.

  3. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Priti Azad

    Full Text Available BACKGROUND: Constant hypoxia (CH and intermittent hypoxia (IH occur during several pathological conditions such as asthma and obstructive sleep apnea. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. Our current genome-wide study is designed to investigate gene expression changes and identify protective mechanism(s in D. melanogaster after exposure to severe (1% O(2 intermittent or constant hypoxia. METHODOLOGY/PRINCIPAL FINDINGS: Our microarray analysis has identified multiple gene families that are up- or down-regulated in response to acute CH or IH. We observed distinct responses to IH and CH in gene expression that varied in the number of genes and type of gene families. We then studied the role of candidate genes (up-or down-regulated in hypoxia tolerance (adult survival for longer periods (CH-7 days, IH-10 days under severe CH or IH. Heat shock proteins up-regulation (specifically Hsp23 and Hsp70 led to a significant increase in adult survival (as compared to controls of P-element lines during CH. In contrast, during IH treatment the up-regulation of Mdr49 and l(208717 genes (P-element lines provided survival advantage over controls. This suggests that the increased transcript levels following treatment with either paradigm play an important role in tolerance to severe hypoxia. Furthermore, by over-expressing Hsp70 in specific tissues, we found that up-regulation of Hsp70 in heart and brain play critical role in tolerance to CH in flies. CONCLUSIONS/SIGNIFICANCE: We observed that the gene expression response to IH or CH is specific and paradigm-dependent. We have identified several genes Hsp23, Hsp70, CG1600, l(208717 and Mdr49 that play an important role in hypoxia tolerance whether it is in CH or IH. These data provide further clues about the mechanisms by which IH or CH lead to cell injury and morbidity or adaptation and survival.

  4. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism.

    Science.gov (United States)

    Langford, Troy F; Deen, William M; Sikes, Hadley D

    2018-03-22

    Appreciation of peroxiredoxins as the major regulators of H 2 O 2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H 2 O 2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H 2 O 2 -mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H 2 O 2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. USE OF ROUGH SETS AND SPECTRAL DATA FOR BUILDING PREDICTIVE MODELS OF REACTION RATE CONSTANTS

    Science.gov (United States)

    A model for predicting the log of the rate constants for alkaline hydrolysis of organic esters has been developed with the use of gas-phase min-infrared library spectra and a rule-building software system based on the mathematical theory of rough sets. A diverse set of 41 esters ...

  6. Energy dependence of the reaction rate constants of Ar+, Ar++ and N2+ ions with Cl2

    International Nuclear Information System (INIS)

    Lukac, P.; Holubcik, L.; Morva, I.; Lindinger, W.

    2002-01-01

    Dry etching processes using low temperature plasmas in Cl 2 and in Cl 2 -noble gas or nitrogen mixtures are common in the manufacture of semiconductor devices, but their chemical mechanisms are often poorly understood. Results are given for the reaction rate constant measurements of Ar + , Ar ++ , N 2 + ions with chlorine as a function of mean relative kinetic energy. The experiments were performed by using the innsbruck flow drift tube (IFDT) apparatus. Measurements were done at various E/N values, where E is the electric field strength and N the buffer gas density in the drift section. The mean relative kinetic energy KE CM between the ions and the neutral chlorine Cl 2 was calculated using the Wanniers formula. It was found that The N 2 + , Ar + and Ar ++ positive ions react with chlorine Cl 2 very fast and the corresponding reaction rate coefficients depend on the mean relative kinetic energy. For the reaction of Ar - with Cl 2 , its reaction coefficient depends also on the buffer gas. It can imply the enhancement of Cl 2 + ions during etching of Si in the Ar/Cl 2 mixtures. (nevyjel)

  7. Gas-phase reaction rate constants for atmospheric pressure ionization in ion-mobility spectrometry

    International Nuclear Information System (INIS)

    Vandiver, V.J.

    1987-01-01

    Ion-mobility spectrometry (IMS) is an instrumental technique in which gaseous ions are formed from neutral molecules by proton and charge transfer from reactant ions through collisional ionization. An abbreviated rate theory has been proposed for atmospheric pressure ionization (API) in IMS, but supporting experimental measurements have not been reported. The objectives of this thesis were (1) assessment of existing API rate theory using positive and negative product ions in IMS, (2) measurement of API equilibria and kinetics for binary mixtures, and (3) investigating of cross-ionizations with multiple-product ions in API reactions. Although IMS measurements and predictions from rate theory were comparable, shapes and slopes of response curves for both proton transfer and electron capture were not described exactly by existing theory. In particular, terms that are needed for calculation of absolute rate constants were unsuitable in the existing theory. These included recombination coefficients,initial number of reactant ions, and opposing ion densities

  8. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    Science.gov (United States)

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  9. Rate constant of free electrons and holes recombination in thin films CdSe

    International Nuclear Information System (INIS)

    Radychev, N.A.; Novikov, G.F.

    2006-01-01

    Destruction kinetics of electrons generated in thin films CdSe by laser impulse (wave length is 337 nm, period of impulse - 8 nc) is studied by the method of microwave photoconductivity (36 GHz) at 295 K. Model of the process was suggested using the analysis of kinetics of photo-responses decay, and it allowed determination of rate constant of recombination of free electrons and holes in cadmium selenide - (4-6)x10 -11 cm 3 s -1 [ru

  10. Propargyl Recombination: Estimation of the High Temperature, Low Pressure Rate Constant from Flame Measurements

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Skjøth-Rasmussen, Martin Skov; Jensen, Anker

    2005-01-01

    The most important cyclization reaction in hydrocarbon flames is probably recombination of propargyl radicals. This reaction may, depending on reaction conditions, form benzene, phenyl or fulvene, as well as a range of linear products. A number of rate measurements have been reported for C3H3 + C3H......3 at temperatures below 1000 K, while data at high temperature and low pressure only can be obtained from flames. In the present work, an estimate of the rate constant for the reaction at 1400 +/- 50 K and 20 Torr is obtained from analysis of the fuel-rich acetylene flame of Westmoreland, Howard...

  11. The determination methods of the velocity constant for electrochemical reactions

    International Nuclear Information System (INIS)

    Molina, R.

    1963-01-01

    In a brief introduction are recalled the fundamental mechanisms of the electrochemical reaction and the definition of the intrinsic velocity constant of a such reaction. By the nature of the different parameters which enter in this definition are due some experimental problems which are examined. Then are given the principles of the measurement methods of the velocity constant. These methods are developed with the mathematical expression of the different rates of the mass transfer to an electrode. In each case are given the experimental limits of use of the methods and the size order of the velocity constant that can be reached. A list of fundamental works to be consulted conclude this work. (O.M.) [fr

  12. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    Science.gov (United States)

    Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.

    2018-02-01

    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.

  13. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    International Nuclear Information System (INIS)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel

    2007-01-01

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant η. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and η. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has been registered. The right atrium was connected to a programmable stimulator through a pair of pace-maker wires to produce changes in stimulation heart rate (HR) from 80 to 160 bpm. Additionally, local activation of vascular smooth muscle was induced with phenylephrine. After converting pressure and diameter signals into stress and strain respectively, E y η were calculated in control state and during muscle activation. The elastic modulus E did not present significant changes with heart rate. The viscous modulus η decreased 49% with a two-fold acceleration in heart rate from 80 to 160 bpm. However, the product η HR remained stable. The viscous modulus η increased 39% with smooth muscle activation. No significant pressure changes were registered during the experiment. The contractile action of vascular smooth muscle could contribute to increasing arterial wall viscosity. The decrease of η when HR increased might be related to smooth muscle relaxation mediated by endothelium activity, which was stimulated by flow increase. We conclude that HR can modulate arterial wall viscoelasticity through endothelium-dependent mechanisms

  14. Quantum mechanical methods for calculation of force constants

    International Nuclear Information System (INIS)

    Mullally, D.J.

    1985-01-01

    The focus of this thesis is upon the calculation of force constants; i.e., the second derivatives of the potential energy with respect to nuclear displacements. This information is useful for the calculation of molecular vibrational modes and frequencies. In addition, it may be used for the location and characterization of equilibrium and transition state geometries. The methods presented may also be applied to the calculation of electric polarizabilities and infrared and Raman vibrational intensities. Two approaches to this problem are studied and evaluated: finite difference methods and analytical techniques. The most suitable method depends on the type and level of theory used to calculate the electronic wave function. Double point displacement finite differencing is often required for accurate calculation of the force constant matrix. These calculations require energy and gradient calculations on both sides of the geometry of interest. In order to speed up these calculations, a novel method is presented that uses geometry dependent information about the wavefunction. A detailed derivation for the analytical evaluation of force constants with a complete active space multiconfiguration self consistent field wave function is presented

  15. Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides

    International Nuclear Information System (INIS)

    Gordon, S.; Sullivan, J.C.; Ross, A.B.

    1986-01-01

    Rate constants have been critically compiled for reactions of ions of the actinides Am, Cf, Cm, Np, Pu, Th, and U, as well as the element Tc, in different oxidation states with various chemical species in aqueous solution. The reactants include products of the radiolysis of water (hydrated electrons, hydrogen atoms, hydroxyl radicals, hydrogen peroxide) and transient species derived from other solutes (e.g., carbonate radical). The data are useful in the estimation of migration properties of actinides, which are relevant to waste management studies

  16. The ruin probability of a discrete time risk model under constant interest rate with heavy tails

    NARCIS (Netherlands)

    Tang, Q.

    2004-01-01

    This paper investigates the ultimate ruin probability of a discrete time risk model with a positive constant interest rate. Under the assumption that the gross loss of the company within one year is subexponentially distributed, a simple asymptotic relation for the ruin probability is derived and

  17. Rate constant for reaction of vitamin C with protein radicals in γ-irradiated aqueous albumin solution at 295K

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo; Yoshimura, Toru; Mita, Kazuya; Suzuki, Keiji; Watanabe, Masami

    1995-01-01

    When an aqueous solution of albumin (0.1 kg dm -3 ) is irradiated by γ-rays at 295 K, albumin radicals with a long lifetime are observed by ESR. The reaction of vitamin C with the albumin radicals has been studied at 295 K in the albumin solution, which is considered as a model of cells. The rate constant for the reaction of vitamin C with the albumin radicals was measured as 0.014 dm 3 mol -1 S -1 , which is much smaller than the reported constants (10 6 -10 10 dm 3 mol -1 s -1 ) for the reaction of vitamin C with radicals in a dilute aqueous solution. The small rate constant for the reaction of vitamin C is ascribed to the reaction in polymer coils in the albumin solution, since vitamin C and albumin radicals diffuse very slowly in the coils. (author)

  18. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    Science.gov (United States)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A photon spectrometric dose-rate constant determination for the Advantage™ Pd-103 brachytherapy source

    OpenAIRE

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    2010-01-01

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage™ Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant (Λ) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and ...

  20. Constant Leverage And Constant Cost Of Capital: A Common Knowledge Half-Truth

    Directory of Open Access Journals (Sweden)

    Ignacio Vélez–Pareja

    2008-04-01

    In this document we show that for finite cash flows, Ke and hence WACC depend on the discount rate that is used to value the tax shield, TS and as expected, Ke and WACC are not constant with Kd as the discount rate for the tax shield, even if the leverage is constant. We illustrate this situation with a simple example. We analyze five methods: DCF using APV, FCF and traditional and general formulation for WACC, present value of CFE plus debt and Capital Cash Flow, CCF.

  1. Basic study on relationship between estimated rate constants and noise in FDG kinetic analysis

    International Nuclear Information System (INIS)

    Kimura, Yuichi; Toyama, Hinako; Senda, Michio.

    1996-01-01

    For accurate estimation of the rate constants in 18 F-FDG dynamic study, the shape of the estimation function (Φ) is crucial. In this investigation, the relationship between the noise level in tissue time activity curve and the shape of the least squared estimation function which is the sum of squared error between a function of model parameters and a measured data is calculated in 3 parameter model of 18 F-FDG. In the first simulation, by using actual plasma time activity curve, the true tissue curve was generated from known sets of rate constants ranging 0.05≤k 1 ≤0.15, 0.1≤k 2 ≤0.2 and 0.01≤k 3 ≤0.1 in 0.01 step. This procedure was repeated under various noise levels in the tissue time activity curve from 1 to 8% of the maximum value in the tissue activity. In the second simulation, plasma and tissue time activity curves from clinical 18 F-FDG dynamic study were used to calculate the Φ. In the noise-free case, because the global minima is separated from neighboring local minimums, it was easy to find out the optimum point. However, with increasing noise level, the optimum point was buried in many neighboring local minima. Making it difficult to find out the optimum point. The optimum point was found within 20% of the convergence point by standard non-linear optimization method. The shape of Φ for the clinical data was similar to that with the noise level of 3 or 5% in the first simulation. Therefore direct search within the area extending 20% from the result of usual non-linear curve fitting procedure is recommended for accurate estimation of the constants. (author)

  2. Rate Constant of the Reaction between CH3O2 Radicals and OH Radicals Revisited.

    Science.gov (United States)

    Assaf, Emmanuel; Song, Bo; Tomas, Alexandre; Schoemaecker, Coralie; Fittschen, Christa

    2016-11-17

    The reaction between CH 3 O 2 and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH 4 and H 2 O for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF 2 . An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CH 3 O 2 was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF. To remove dubiety from the quantification of CH 3 O 2 by cw-CRDS in the near-infrared, its absorption cross section has been determined at 7489.16 cm -1 using two different methods. A rate constant of k 1 = (1.60 ± 0.4) × 10 -10 cm 3 s -1 has been determined at 295 K, nearly a factor of 2 lower than an earlier determination from our group ((2.8 ± 1.4) × 10 -10 cm 3 s -1 ) using CH 3 I photolysis as a precursor. Quenching of electronically excited I atoms (from CH 3 I photolysis) in collision with OH(v = 0) is suspected to be responsible for a bias in the earlier, fast rate constant.

  3. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault.

    Science.gov (United States)

    Hussain, Ekbal; Wright, Tim J; Walters, Richard J; Bekaert, David P S; Lloyd, Ryan; Hooper, Andrew

    2018-04-11

    Earthquakes are caused by the release of tectonic strain accumulated between events. Recent advances in satellite geodesy mean we can now measure this interseismic strain accumulation with a high degree of accuracy. But it remains unclear how to interpret short-term geodetic observations, measured over decades, when estimating the seismic hazard of faults accumulating strain over centuries. Here, we show that strain accumulation rates calculated from geodetic measurements around a major transform fault are constant for its entire 250-year interseismic period, except in the ~10 years following an earthquake. The shear strain rate history requires a weak fault zone embedded within a strong lower crust with viscosity greater than ~10 20  Pa s. The results support the notion that short-term geodetic observations can directly contribute to long-term seismic hazard assessment and suggest that lower-crustal viscosities derived from postseismic studies are not representative of the lower crust at all spatial and temporal scales.

  4. Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data

    International Nuclear Information System (INIS)

    Koch, Konrad; Drewes, Jörg E.

    2014-01-01

    Highlights: • An alternative to the commonly used first-order approach is presented. • A relationship between k h and the 1% criterion of the VDI 4630 is deduced. • Equation is proposed to directly calculate k h without the need for data fitting. • Hydrolysis constant k h can then easily be read-off from a table. - Abstract: As anaerobic batch tests are easy to conduct, they are commonly used to assess the effects of different operational factors on the anaerobic digestion process. Hydrolysis of particulate material is often assumed to be the rate limiting step in anaerobic digestion. Its velocity is often estimated by data fitting from batch tests. In this study, a Monod-type alternative to the commonly used first-order approach is presented. The approach was adapted from balancing a continuously stirred-tank reactor and better accommodates the fact that even after a long incubation time, some of the methane potential of the substrate remains untapped in the digestate. In addition, an equation is proposed to directly calculate the hydrolysis constant from the time when the daily gas production is less than 1% of the total gas production. The hydrolysis constant can then easily be read-off from a table when the batch test duration is known

  5. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  6. SU-G-201-06: Directional Low-Dose Rate Brachytherapy: Determination of the TG-43 Dose-Rate Constant Analog for a New Pd-103 Source

    Energy Technology Data Exchange (ETDEWEB)

    Aima, M; Culberson, W; Hammer, C; Micka, J; DeWerd, L [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI (United States)

    2016-06-15

    Purpose: The aim of this work is to determine the TG-43 dose-rate constant analog for a new directional low-dose rate brachytherapy source based on experimental methods and comparison to Monte Carlo simulations. The CivaSheet™ is a new commercially available planar source array comprised of a variable number of discrete directional source elements called “CivaDots”. Given the directional nature and non-conventional design of the source, modifications to the AAPM TG-43 protocol for dosimetry are required. As a result, various parameters of the TG-43 dosimetric formalism have to be adapted to accommodate this source. This work focuses on the dose-rate constant analog determination for a CivaDot. Methods: Dose to water measurements of the CivaDot were performed in a polymethyl methacrylate phantom (20×20×12 cm{sup 3}) using thermoluminescent dosimeters (TLDs) and Gafchromic EBT3 film. The source was placed in the center of the phantom, and nine TLD micro-cubes were irradiated along its central axis at a distance of 1 cm. For the film measurements, the TLDs were substituted by a (3×3) cm{sup 2} EBT3 film. Primary air-kerma strength measurements of the source were performed using a variable-aperture free-air chamber. Finally, the source was modeled using the Monte Carlo N-Particle Transport Code 6. Results: Dose-rate constant analog observed for a total of eight CivaDots using TLDs and five CivaDots using EBT3 film was within ±7.0% and ±2.9% of the Monte Carlo predicted value respectively. The average difference observed was −4.8% and −0.1% with a standard deviation of 1.7% and 2.1% for the TLD and the film measurements respectively, which are both within the comparison uncertainty. Conclusion: A preliminary investigation to determine the doserate constant analog for a CivaDot was conducted successfully with good agreement between experimental and Monte Carlo based methods. This work will aid in the eventual realization of a clinically-viable dosimetric

  7. Stress relaxation of entangled polystyrene solution after constant-rate, uniaxial elongation

    DEFF Research Database (Denmark)

    Matsumiya, Yumi; Masubuchi, Yuichi; Watanabe, Hiroshi

    For an entangled solution of linear polystyrene (PS 545k; M = 545k) in dibutyl phthalate (DBP), the stress relaxation after constant-rate uniaxial elongation was examined with an extensional viscosity fixture mounted on ARES (TA Instruments). The PS concentration, c = 52 wt%, was chosen in a way...... that the entanglement density M/Me of the solution coincided with that of PS 290k melt (M = 290k). After the elongation at the Rouse-based Weissenberg number Wi(R) ~ 3 up to the Hencky strain of 3, the short time stress relaxation of the solution was accelerated by a factor of ~4, which was less significant compared...... and the lack of monotonic thinning observed for the semidilute solutions. Results for less concentrated solutions will be also presented on site....

  8. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    International Nuclear Information System (INIS)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    2010-01-01

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant (Λ) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis was measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ( PST Λ) was then compared to those determined by TLD ( TLD Λ) and Monte Carlo ( MC Λ) techniques. A likely consensus Λ value was estimated as the arithmetic mean of the average Λ values determined by each of three different techniques. Results: The average PST Λ value for the three Advantage sources was found to be (0.676±0.026) cGyh -1 U -1 . Intersource variation in PST Λ was less than 0.01%. The PST Λ was within 2% of the reported MC Λ values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported TLD Λ. A likely consensus Λ value was estimated to be (0.688±0.026) cGyh -1 U -1 , similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686±0.033) cGyh -1 U -1 , the NASI (Chatsworth, CA) Model MED3633 (0.688±0.033) cGyh -1 U -1 , and the Best Medical (Springfield, VA) Model 2335 (0.685±0.033) cGyh -1 U -1 103 Pd sources. Conclusions: An independent Λ determination has been performed for the Advantage Pd-103 source. The PST Λ obtained in this work provides additional information

  9. An exclusion process on a tree with constant aggregate hopping rate

    International Nuclear Information System (INIS)

    Mottishaw, Peter; Waclaw, Bartlomiej; Evans, Martin R

    2013-01-01

    We introduce a model of a totally asymmetric simple exclusion process (TASEP) on a tree network where the aggregate hopping rate is constant from level to level. With this choice for hopping rates the model shows the same phase diagram as the one-dimensional case. The potential applications of our model are in the area of distribution networks, where a single large source supplies material to a large number of small sinks via a hierarchical network. We show that mean-field theory (MFT) for our model is identical to that of the one-dimensional TASEP and that this MFT is exact for the TASEP on a tree in the limit of large branching ratio, b (or equivalently large coordination number). We then present an exact solution for the two level tree (or star network) that allows the computation of any correlation function and confirm how mean-field results are recovered as b → ∞. As an example we compute the steady-state current as a function of branching ratio. We present simulation results that confirm these results and indicate that the convergence to MFT with large branching ratio is quite rapid. (paper)

  10. Oxidative kinetics of amino acids by peroxydisulfate: Effect of dielectric constant

    International Nuclear Information System (INIS)

    Khalid, Mohammad A. A.

    2008-01-01

    The kinetics and mechanism of oxidation of alanine, asparagines, cysteine, glutamic acid, lysine, phenylalanine and serine by peroxydisulfate ion have been studied in aqueous acidic (sulfuric acid) medium at the temperature range 60-80C. The rate shows first order dependence on peroxydisulfate concentration and zero order dependence on amino acid concentration. The rate law observed is: -d [S2O82-] /dt = Kobs [S2O82-] [amino acid]0. An autocatalytic effect has been observed in amino acids oxidation due to formation of Schiff's base between the formed aldehyde and parent amino acid. A decrease in the dielectric constant of the medium-adding acetic acid (5-15% v/v) results in a decrease in the rate in all cases studied. Reactions were carried out at different temperature (60-80C) and the thermodynamics parameters have been calculated. The logarithm of the rate constant is linearly interrelated to the square root of the ionic strength. (author)

  11. Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown treat (Salmo trutta)

    Science.gov (United States)

    Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E.

    1998-01-01

    The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMD to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB- contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/ g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMDs was also similar. The rates of uptake generally increased or decreased with increasing K(ow), depending on the assumption of presence or absence of TOC.The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMB to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB-contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and

  12. Sedative and cardiorespiratory effects of detomidine constant rate infusion in sheep.

    Science.gov (United States)

    de Moura, Rauane Sousa; Bittar, Isabela Plazza; da Silva, Luiz Henrique; Villela, Ana Carolina Vasquez; Dos Santos Júnior, Marcelo Borges; Borges, Naida Cristina; Franco, Leandro Guimarães

    2018-02-01

    The use of sheep in experiments is widespread and is increasing worldwide, and so is the need to develop species-specific anaesthetic techniques to ensure animal safety. Previous studies have mentioned several protocols involving the administration of alpha-2 adrenergic agonists in sheep; however, assessment of the efficacy and safety of these infusion techniques is still relatively new. Thus, the aim of the present study is to assess the effectiveness of detomidine constant rate infusion (CRI) in sheep by measuring the cardiovascular and respiratory parameters, blood gas variables and sedation scores. Eight adult female Santa Inês sheep received 20 µg/kg of detomidine hydrochloride intravenously as a bolus loading dose, followed by an infusion rate of 60 µg/kg/h. The heart rates and respiratory rates changed continuously during the CRI period. No arrhythmias were observed. The reduction in arterial partial pressure of oxygen (PaO 2 ) was not significant, but one animal showed signs of hypoxaemia (minimum PaO 2 of 66.9 mmHg). The arterial partial pressure of carbon dioxide (PaCO 2 ) increased, but the animals did not become hypercapnic. The bicarbonate (HCO 3- ), pH and base excess (BE) tended towards metabolic alkalosis. The cardiac output (CO), stroke volume (SV), cardiac index (CI) and ejection fraction (EF%) showed no significant changes. The fractional shortening (FS%) decreased slightly, starting at T 45min . Sedation scores varied between 3 (0/10) after sedation and during recovery and 7 (0/10) during CRI. We concluded that administering detomidine at an infusion rate of 60 µg/kg/h in Santa Inês sheep is a simple technique that produces satisfactory sedation for minimally invasive procedures.

  13. Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla

    Science.gov (United States)

    Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.

    2016-01-01

    Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566

  14. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  15. In situ and laboratory determined first-order degradation rate constants of specific organic compounds in an aerobic aquifer

    DEFF Research Database (Denmark)

    Nielsen, P.H.; Bjerg, P.L.; Nielsen, P.

    1996-01-01

    In situ microcosms (ISM) and laboratory batch microcosms (LBM) were used for determination of the first-order degradation rate constants of benzene, toluene, o-xylene, nitrobenzene, naphthalene, biphenyl, o- and p-dichlorobenzene, 1,1,1 -trichloroethane, tetrachlorometane, trichloroethene......, tetrachloroethene, phenol, o-cresol, 2,4- and 2,6-dichlorophenol, 4,6-o-dichlorocresol, and o- and p-nitrophenol in an aerobic aquifer, All aromatic hydrocarbons were degraded in ISM and LBM experiments. The phenolic hydrocarbons were ail degraded in ISM experiments, but some failed to degrade in LBM experiments....... Chlorinated aliphatic hydrocarbons were degraded neither in ISM nor LBM experiments. Degradation rate constants were determined by a model accounting for kinetic sorption (bicontinuum model), lag phases, and first-order degradation. With a few exceptions, lag phases were less than 2 weeks in both ISM and LBM...

  16. Direct measurements of methoxy removal rate constants for collisions with CH4, Ar, N2, Xe, and CF4 in the temperature range 673--973K

    International Nuclear Information System (INIS)

    Wantuck, P.J.; Oldenborg, R.C.; Baugchum, S.L.; Winn, K.R.

    1988-01-01

    Removal rate constants for CH 3 O by CH 4 , Ar, N 2 , Xe, and CF 4 were measured over a 400K temperature range using a laser photolysis/laser-induced fluorescence technique. Rapid methoxy removal rates are observed for the non-reactive collision partners (Ar, N 2 , Xe, and CF 4 ) at elevated temperatures showing that the dissociation and isomerization channels for CH 3 O are indeed important. The total removal rate constant (reaction /plus/ dissociation and/or isomerization) for CH 4 exhibits a linear dependence on temperature and has a removal rate constant, k/sub r/ /equals/ (1.2 +- 0.6) /times/ 10/sup /minus/8/exp[(/minus/101070 +- 350)/T]cm 3 molecule/sup /minus/1/s/sup /minus/1/. Assuming that the removal rate constant due to dissociation and/or isomerization are similar for CH 4 and CF 4 , the reaction rate constant for CH 3 O /plus/ CH 4 is equal to (1.7 +- 1.0) /times/ 10/sup /minus/10/exp[(/minus/7480 +- 1100)/T]cm 3 molecule/sup /minus/1/s/sup /minus/1/. 7 refs., 4 figs

  17. Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of L-Phenylalanine.

    Science.gov (United States)

    Perez-Benito, Joaquin F; Ferrando, Jordi

    2014-12-26

    The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.

  18. Rate constant for the reaction of OH with CH3CCl2F (HCFC-141b) determined by relative rate measurements with CH4 and CH3CCl3

    Science.gov (United States)

    Huder, Karin; Demore, William B.

    1993-01-01

    Determination of accurate rate constants for OH abstraction is of great importance for the calculation of lifetimes for HCFCs and their impact on the atmosphere. For HCFC-141b there has been some disagreement in the literature for absolute measurements of this rate constant. In the present work rate constant ratios for HCFC-141b were measured at atmospheric pressure in the temperature range of 298-358 K, with CH4 and CH3CCl3 as reference gases. Ozone was photolyzed at 254 nm in the presence of water vapor to produce OH radicals. Relative depletions of 141b and the reference gases were measured by FTIR. Arrhenius expressions for 141b were derived from each reference gas and found to be in good agreement with each other. The combined expression for HCFC-141b which we recommend is 1.4 x 10 exp -12 exp(-1630/T) with k at 298 K being 5.9 x 10 exp -15 cu cm/molec-s. This value is in excellent agreement with the JPL 92-20 recommendation.

  19. Competitive kinetics as a tool to determine rate constants for reduction of ferrylmyoglobin by food components

    DEFF Research Database (Denmark)

    Jongberg, Sisse; Lund, Marianne Nissen; Pattison, David I.

    2016-01-01

    Competitive kinetics were applied as a tool to determine apparent rate constants for the reduction of hypervalent haem pigment ferrylmyoglobin (MbFe(IV)=O) by proteins and phenols in aqueous solution of pH 7.4 and I = 1.0 at 25 °C. Reduction of MbFe(IV)=O by a myofibrillar protein isolate (MPI) f...

  20. Inflation with a smooth constant-roll to constant-roll era transition

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  1. Absolute rate constants for the reaction of NO with a series of peroxy radicals in the gas at 295 K

    DEFF Research Database (Denmark)

    Sehested, J.; Nielsen, O.J.; Wallington, T.J.

    1993-01-01

    The rate constants for the reaction of NO with a series of peroxy radicals: CH3O2, C2H5O2, (CH3)3CCH2O2, (CH3)3CC(CH3)2CH2O2, CH2FO2, CH2ClO2, CH2BrO2, CHF2O2, CF2ClO2, CHF2CF2O2, CF3CF2O2, CFCl2CH2O2 and CF2ClCH2O2 were measured at 298 K and a total pressure of 1 atm. The rate constants were...

  2. A sequential binding mechanism in a PDZ domain

    DEFF Research Database (Denmark)

    Chi, Celestine N; Bach, Anders; Engström, Åke

    2009-01-01

    that ligand binding involves at least a two-step process. By using an ultrarapid continuous-flow mixer, we then detected a hyperbolic dependence of binding rate constants on peptide concentration, corroborating the two-step binding mechanism. Furthermore, we found a similar dependence of the rate constants...

  3. Effects of constant voltage and constant current stress in PCBM:P3HT solar cells

    DEFF Research Database (Denmark)

    Cester, Andrea; Rizzo, Aldo; Bazzega, A.

    2015-01-01

    The aimof this work is the investigation of forward and reverse bias stress effects, cell self-heating and annealing in roll coated organic solar cells with PCBM:P3HT active layer. In reverse bias stress cells show a constant degradation over time. In forward current stress cells alternate...... mechanisms: the decrease of the net generation rate (due to formation of exciton quenching centres or the reduction of exciton separation rate); the formation of small leaky paths between anode and cathode, which reduces the total current extracted from the cell. The stress-induced damage can be recovered...... degradation and annealing phases, which are explained through the high power dissipation during the current stress, and the consequent self-heating. The high temperature is able to recover the cell performances at least until a critical temperature is reached. The degradation can be explained by the following...

  4. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    Science.gov (United States)

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  5. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520 (United States)

    2010-02-15

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis was measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd

  6. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized (13)C labeled pyruvate.

    Science.gov (United States)

    Xu, He N; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim; Li, Lin Z

    2016-02-01

    Clinically translatable hyperpolarized (HP) (13)C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP (13)C-pyruvate into the subject, which is converted to (13)C labeled lactate by the enzyme. Parameters such as (13)C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP (13)C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP (13)C-NMR data and investigate if they can be potential predictors of lung inflammation. Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP (13)C-pyruvate for injecting into the lungs. A 20 mm (1)H/(13)C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the (13)C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of (13)C labeled pyruvate and lactate. The apparent forward rate constant kp =(3.67±3.31)×10(-4) s(-1), reverse rate constant kl =(4.95±2.90)×10(-2) s(-1), rate constant ratio kp /kl =(7.53±5.75)×10(-3) for the control lungs; kp =(11.71±4.35)×10(-4) s(-1), kl =(9.89±3.89)×10(-2) s(-1), and kp /kl =(12.39±4.18)×10(-3) for the inflamed lungs at the 7(th) day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly

  7. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    Science.gov (United States)

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  8. Fluence of dielectric constant (D), (H/sup +/) and (SO/sub 4/sup -2/) on the rate of redox reaction between tris (2,2-bipyridine) iron (II) and ceric sulphate in aqueous sulphuric acid medium

    International Nuclear Information System (INIS)

    Khattak, R.; Naqvi, I.I.; Farrukh, M.A.

    2007-01-01

    Kinetic of the redox reaction between tris (2,2-bipyridine)iron(II) cation and ceric sulphate has been studied in aqueous sulphuric acid medium. Different methods were employed for the determination of order of reaction. The order of reaction is found to be first with respect to reductant however retarding effect of increasing initial concentration of oxidant is found. Influence of (H/sup +/), (SO/sub 4/sup 2-) and dielectric constant (D) on the rate of redox reaction has also been studied. Increase in (H/sup +/) and dielectric constant of the medium retard the rate while enhancement of the (SO/sub 4/sup 2-/) accelerates the rate first and then the reaction goes towards retardation. Effects of (H/sup +/) and (SO/sub 4/sup 2-/) were studied by using acetic acid-sodium acetate buffer for the first one and varying ionic concentrations of the salt sodium sulphate for the latter one, whereas dielectric constant was varied by using 0%, 10% and 20% ethanol-water mixtures. Results of effects of each one of the factors i.e., H/sup +/, SO/sub 4/sup 2-/ and dielectric constant (D) have been compared and on the basis of these factors, (Ce(SO/sub 4/ )/sub 3/)/sup 2-/ is suggested to be the active species of cerium(IV). However a rate law consistent with the observed kinetic data has also been derived supporting the proposed mechanism. (author)

  9. Theoretical growth rates, periods, and pulsation constants for long-period variables

    International Nuclear Information System (INIS)

    Fox, M.W.; Wood, P.R.

    1982-01-01

    Theoretical values of the growth rate, period, and pulsation constant for the first three radial pulsation modes in red giants (Population II and galactic disk) and supergiants have been derived in the linear, nonadiabatic approximation. The effects of altering the surface boundary conditions, the effective temperature (or mixing length), and the opacity in the outer layers have been explored. In the standard models, the Q-value for the first overtone can be much larger (Q 1 1 roughly-equal0.04); in addition, the Q-value for the fundamental mode is reduced from previous values, as is the period ratio P 0 /P 1 . The growth rate for the fundamental mode is found to increase with luminosity on the giant branch while the growth rate for the first overtone decreases. Dynamical instabilities found in previous adiabatic models of extreme red giants do not occur when nonadiabatic effects are included in the models. In some massive, luminous models, period ratios P 0 /P 1 approx.7 occur when P 0 approx.2000--5000 days; it is suggested that the massive galactic supergiants and carbon stars which have secondary periods Papprox.2000--7000 days and primary periods Papprox.300--700 days are first-overtone pulsators in which the long secondary periods are due to excitation of the fundamental mode. Some other consequences of the present results are briefly discussed, with particular emphasis on the mode of pulsation of the Mira variables. Subject headings: stars: long-period variables: stars: pulsation: stars: supergiants

  10. Modification of quantum mechanics at short distances: a simple approach to confinement and asymptotic freedom. [Planck constant

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, S.M.; Qadir, A.; Valanju, P.M.

    1979-07-01

    To make quantum mechanics a suitable description of short-distance (less than or equal to 10/sup -13/ cm) physics, a spatial variation of Planck's constant anti h is introduced. It is shown that the new theory implies asymptotic freedom and quark confinement in a simple way. 10 references.

  11. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  12. Dynamic Characteristics of The DSI-Type Constant-Flow Valves

    Science.gov (United States)

    Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han

    Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.

  13. Wormholes and the cosmological constant problem.

    Science.gov (United States)

    Klebanov, I.

    The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.

  14. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.

    Science.gov (United States)

    Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T

    2017-07-01

    We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  15. Effects of a constant rate infusion of detomidine on cardiovascular function, isoflurane requirements and recovery quality in horses.

    Science.gov (United States)

    Schauvliege, Stijn; Marcilla, Miguel Gozalo; Verryken, Kirsten; Duchateau, Luc; Devisscher, Lindsey; Gasthuys, Frank

    2011-11-01

    To examine the influence of a detomidine constant rate infusion (CRI) on cardiovascular function, isoflurane requirements and recovery quality in horses undergoing elective surgery. Prospective, randomized, blinded, clinical trial. Twenty adult healthy horses. After sedation (detomidine, 10 μg kg(-1) intravenously [IV]) and induction of anaesthesia (midazolam 0.06 mg kg(-1) , ketamine 2.2 mg kg(-1) IV), anaesthesia was maintained with isoflurane in oxygen/air (inspiratory oxygen fraction 55%). When indicated, the lungs were mechanically ventilated. Dobutamine was administered when MAPdetomidine (5 μg kg(-1)  hour(-1) ) (D) or saline (S) CRI, with the anaesthetist unaware of the treatment. Monitoring included end-tidal isoflurane concentration, arterial pH, PaCO(2) , PaO(2) , dobutamine administration rate, heart rate (HR), arterial pressure, cardiac index (CI), systemic vascular resistance (SVR), stroke index and oxygen delivery index (ḊO(2) I). For recovery from anaesthesia, all horses received 2.5 μg kg(-1) detomidine IV. Recovery quality and duration were recorded in each horse. For statistical analysis, anova, Pearson chi-square and Wilcoxon rank sum tests were used as relevant. Heart rate (p=0.0176) and ḊO(2) I (p= 0.0084) were lower and SVR higher (p=0.0126) in group D, compared to group S. Heart rate (p=0.0011) and pH (p=0.0187) increased over time. Significant differences in isoflurane requirements were not detected. Recovery quality and duration were comparable between treatments. A detomidine CRI produced cardiovascular effects typical for α(2) -agonists, without affecting isoflurane requirements, recovery duration or recovery quality. © 2011 The Authors. Veterinary Anaesthesia and Analgesia. © 2011 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  16. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.

    Science.gov (United States)

    Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya

    2017-03-10

    The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  17. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors

    Directory of Open Access Journals (Sweden)

    Nozomu Tsuruoka

    2017-03-01

    Full Text Available The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus. At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k2 values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  18. The constant failure rate model for fault tree evaluation as a tool for unit protection reliability assessment

    International Nuclear Information System (INIS)

    Vichev, S.; Bogdanov, D.

    2000-01-01

    The purpose of this paper is to introduce the fault tree analysis method as a tool for unit protection reliability estimation. The constant failure rate model applies for making reliability assessment, and especially availability assessment. For that purpose an example for unit primary equipment structure and fault tree example for simplified unit protection system is presented (author)

  19. Hysteresis behaviour of silver sputtered in different plasma atmospheres at constant flow rates

    International Nuclear Information System (INIS)

    Rizk, A.; Makar, L.N.; Rizk, N.S.; Shinoda, R.

    1990-01-01

    The effects of ion bombardment on sputtering behaviour of pure silver targets in inert and active gas atmospheres were investigated, using a dc planar magnetron sputtering system. The obtained current-voltage characteristics showed the formation of hysteresis loops without noticeable sharp transitions. Redeposited layers of silver nitride or silver oxide on the target surface when using nitrogen or oxygen in the glow discharge, residual ionization when using dry argon atmosphere were considered the main reasons for the occurrence of these loops. The results indicate that films of AgN x and AgO x can be deposited with controlled x in the range 0 ≤ x ≤ 1 using voltage control at constant gas flow rates. (author)

  20. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  1. Mechanism of Strain Rate Effect Based on Dislocation Theory

    International Nuclear Information System (INIS)

    Kun, Qin; Shi-Sheng, Hu; Li-Ming, Yang

    2009-01-01

    Based on dislocation theory, we investigate the mechanism of strain rate effect. Strain rate effect and dislocation motion are bridged by Orowan's relationship, and the stress dependence of dislocation velocity is considered as the dynamics relationship of dislocation motion. The mechanism of strain rate effect is then investigated qualitatively by using these two relationships although the kinematics relationship of dislocation motion is absent due to complicated styles of dislocation motion. The process of strain rate effect is interpreted and some details of strain rate effect are adequately discussed. The present analyses agree with the existing experimental results. Based on the analyses, we propose that strain rate criteria rather than stress criteria should be satisfied when a metal is fully yielded at a given strain rate. (condensed matter: structure, mechanical and thermal properties)

  2. Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory.

    Science.gov (United States)

    Zhang, Hui; Zhang, Xin; Truhlar, Donald G; Xu, Xuefei

    2017-11-30

    The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C 6 H 6 /C 6 D 6 and D + C 6 H 6 /C 6 D 6 kinetic isotope effects, and we compared our H + C 6 H 6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.

  3. The dissolution rate constant of magnetite in water at different temperatures and pH conditions

    International Nuclear Information System (INIS)

    Mohajery, Khatereh; Deydier de Pierrefeu, Laurent; Lister, Derek H.

    2012-09-01

    Under the nominal conditions of power system coolants, the corrosion of components made of carbon steel is limited by the magnetite films that develop on surfaces. In some situations, the magnetite film loses much of its protective ability and corrosion and loss of iron to the system are exacerbated. Common examples of such situations occur when the system is non-isothermal so that temperature gradients cause differences in magnetite solubility around the circuit; the resulting areas of under-saturation in iron give rise to dissolution of normally protective films. Condensing steam in two-phase systems may also promote oxide dissolution. When the turbulence in the system is high, oxide degradation is aggravated and flow-accelerated corrosion (FAC) results. The subsequent increased loading of systems with iron leads to fouling of flow passages and heat transfer surfaces and in reactor primary coolants to rising radiation fields, while FAC can have disastrous results in terms of pipe wall thinning and eventual rupture. Magnetite dissolution is clearly a key contributor to these processes. Thus, the conventional mechanistic description of FAC postulates magnetite dissolution in series with mass transfer of iron from the film to the bulk coolant. In the resulting equations, if the dissolution rate constant is considerably less than the mass transfer coefficient for a particular situation, dissolution will control and flow should have no effect. This is clearly untenable for FAC, so it is often assumed that mass transfer controls and the contribution from oxide dissolution is ignored - on occasion when data on dissolution kinetics are available and sometimes when those data show that dissolution should control. In most cases, however, dissolution rate constants for magnetite are not available. At UNB Nuclear we have a research program using a high-temperature loop to measure dissolution rates of magnetite in water under various conditions of flow, temperature and

  4. The determination methods of the velocity constant for electrochemical reactions; Les methodes de determination de la constante de vitesse des reactions electrochimiques

    Energy Technology Data Exchange (ETDEWEB)

    Molina, R

    1963-07-01

    In a brief introduction are recalled the fundamental mechanisms of the electrochemical reaction and the definition of the intrinsic velocity constant of a such reaction. By the nature of the different parameters which enter in this definition are due some experimental problems which are examined. Then are given the principles of the measurement methods of the velocity constant. These methods are developed with the mathematical expression of the different rates of the mass transfer to an electrode. In each case are given the experimental limits of use of the methods and the size order of the velocity constant that can be reached. A list of fundamental works to be consulted conclude this work. (O.M.) [French] Dans une breve introduction sont rappeles les mecanismes fondamentaux de la reaction electrochimique et la definition de la constante de vitesse intrinseque d'une telle reaction. De la nature des differents parametres qui entrent dans celle definition, decoulent un certain nombre de problemes experimentaux qui sont passes en revue. On donne ensuite les principes des methodes de mesure de la constante de vitesse. L'exposition de ces methodes est developpee a l'aide de l'expression mathematique des differents regimes de transfert de masse a une electrode. On s'attache dans chaque cas, a donner les limitations experimentales d'utilisation des methodes et l'ordre de grandeur de la constante de vitesse qu'elles permettent d'atteindre. Une liste des ouvrages fondamentaux a consulter conclut ce travail. (auteur)

  5. Constant pH Accelerated Molecular Dynamics Investigation of the pH Regulation Mechanism of Dinoflagellate Luciferase.

    Science.gov (United States)

    Donnan, Patrick H; Ngo, Phong D; Mansoorabadi, Steven O

    2018-01-23

    The bioluminescence reaction in dinoflagellates involves the oxidation of an open-chain tetrapyrrole by the enzyme dinoflagellate luciferase (LCF). The activity of LCF is tightly regulated by pH, where the enzyme is essentially inactive at pH ∼8 and optimally active at pH ∼6. Little is known about the mechanism of LCF or the structure of the active form of the enzyme, although it has been proposed that several intramolecularly conserved histidine residues in the N-terminal region are important for the pH regulation mechanism. Here, constant pH accelerated molecular dynamics was employed to gain insight into the conformational activation of LCF induced by acidification.

  6. Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

    Directory of Open Access Journals (Sweden)

    Youhua Chen

    2014-01-01

    Full Text Available In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR, one-continuous-shift (OCS and multiplediscrete- shifts (MDS situations. The OCS diversification model was rejected by γ statistic (γ=-5.556, p⁄ 0.001, implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR models using “laser” package under R environment. Moreover, MDS models, implemented using another R package “MEDUSA”, indicated that there were sixteen shifts over the internal nodes for amphibian phylogeny. Conclusively, both OCS and MDS models are recommended to compare so as to better quantify rate-shifting trends of species diversification. MDS diversification models should be preferential for large phylogenies using “MEDUSA” package in which any arbitrary numbers of shifts are allowed to model.

  7. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  8. The use of digital simulation to improve the cyclic voltammetric determination of rate constants for homogeneous chemical reactions following charge transfers

    International Nuclear Information System (INIS)

    Mozo, J.D.; Carbajo, J.; Sturm, J.C.; Nunez-Vergara, L.J.; Moscoso, R.; Squella, J.A.

    2011-01-01

    Cyclic voltammetry (CV) is a very useful electrochemical tool used to study reaction systems that include chemical steps that are coupled to electron transfers. This type of system generally involves the chemical reaction of an electrochemically generated free radical. Published methods exist that are used to determine the kinetics of electrochemically initiated chemical reactions from the measurements of the peak current ratio (i pa /i pc ) of a cyclic voltammogram. The published method requires working curves to relate a kinetic parameter to the peak current ratio. In the presented work, a digital simulation package was used to obtain improved working curves for specific working conditions. The curves were compared with the published results for the first- and second-order chemical reactions following the charge transfer step mechanisms. According to the presented results, the previously published working curve is reliable for a mechanism with a first-order chemical reaction; however, a change in the switching potential requires a recalculation of the curve. In the case of mechanisms with a second-order step (dimerisation and disproportionation), several different views exist on how the second-order chemical term should be expressed so that different values of the constant are obtained. Parameters such as electrode type, electrode area, electroactive species concentration, switching potential, scan rate and method for peak current ratio calculation modify the working curves and must always be specified. We propose a standardised method to obtain the most reliable kinetic constant values. The results of this work will permit researchers who handle simulation software to construct their own working curves. Additionally, those who do not have the simulation software could use the working curves described here. The revelations of the presented experiments may be useful to a broad chemistry audience because this study presents a simple and low-cost procedure for the

  9. Constant conditional entropy and related hypotheses

    International Nuclear Information System (INIS)

    Ferrer-i-Cancho, Ramon; Dębowski, Łukasz; Moscoso del Prado Martín, Fermín

    2013-01-01

    Constant entropy rate (conditional entropies must remain constant as the sequence length increases) and uniform information density (conditional probabilities must remain constant as the sequence length increases) are two information theoretic principles that are argued to underlie a wide range of linguistic phenomena. Here we revise the predictions of these principles in the light of Hilberg’s law on the scaling of conditional entropy in language and related laws. We show that constant entropy rate (CER) and two interpretations for uniform information density (UID), full UID and strong UID, are inconsistent with these laws. Strong UID implies CER but the reverse is not true. Full UID, a particular case of UID, leads to costly uncorrelated sequences that are totally unrealistic. We conclude that CER and its particular cases are incomplete hypotheses about the scaling of conditional entropies. (letter)

  10. Estimating reaction rate constants from a two-step reaction: a comparison between two-way and three-way methods

    NARCIS (Netherlands)

    Bijlsma, S.; Smilde, A. K.

    2000-01-01

    In this paper, two different spectral datasets are used in order to estimate reaction rate constants using different algorithms. Dataset 1 consists of short-wavelength near-infrared (SW NIR) spectra taken in time of the two-step epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone using tert-butyl

  11. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Samuel M., E-mail: samuel.greene@chem.ox.ac.uk; Shan, Xiao, E-mail: xiao.shan@chem.ox.ac.uk; Clary, David C., E-mail: david.clary@chem.ox.ac.u [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  12. Ab initio calculation of the transition-state properties and addition rate constants for H + C2H2 and selected isotopic analogues

    International Nuclear Information System (INIS)

    Harding, L.B.; Wagner, A.F.; Bowman, J.M.; Schatz, G.C.; Christoffel, K.

    1982-01-01

    GVB-POL-CI ab initio calculations of the geometries, energetics, and normal mode frequencies of C 2 H 2 , C 2 H 3 , and the transition state for the addition reaction of H + C 2 H 2 are presented. In addition, normal mode frequencies for the isotopic variants D + C 2 D 2 , D + C 2 H 2 , and H + C 2 D 2 are preented. These results are compared to experimental values for C 2 H 2 and to ab initio values of Hagase and Kern, and semiempirical values of Keil, Lynch, Cowfer, and Michael. The results are also used to calculate the apparent bimolecular addition rate constant using conventional RRKM theory for chemical activation. The calculated rate constants and their isotopic variants are compared as a function of temperature and pressure to available experimental information. The agreement is little different from that obtained by Keil et al. with a similar calculation using semiempirical values for acetylene, transition-state, and vinyl radical properties. In particular, the calculated high-pressure limit of the rate constant appears to be at least 1 order of magnitude higher than the experimental limit. Several possible reasons for this discrepancy are discussed

  13. Assessment of volumetric-modulated arc therapy for constant and variable dose rates

    Directory of Open Access Journals (Sweden)

    Mariluz De Ornelas-Couto

    2017-01-01

    Full Text Available Purpose: The aim of this study is to compare the effects of dose rate on volumetric-modulated arc therapy plans to determine optimal dose rates for prostate and head and neck (HN cases. Materials and Methods: Ten prostate and ten HN cases were retrospectively studied. For each case, seven plans were generated: one variable dose rate (VDR and six constant dose rate (CDR (100–600 monitor units [MUs]/min plans. Prescription doses were: 80 Gy to planning target volume (PTV for the prostate cases, and 70, 60, and 54 Gy to PTV1, PTV2, and PTV3, respectively, for HN cases. Plans were normalized to 95% of the PTV and PTV1, respectively, with the prescription dose. Plans were assessed using Dose-Volume-Histogram metrics, homogeneity index, conformity index, MUs, and delivery time. Results: For the prostate cases, significant differences were found for rectum D35 between VDR and all CDR plans, except CDR500. Furthermore, VDR was significantly different than CDR100 and 200 for bladder D50. Delivery time for all CDR plans and MUs for CDR400–600 were significantly higher when compared to VDR. HN cases showed significant differences between VDR and CDR100, 500 and 600 for D2 to the cord and brainstem. Significant differences were found for delivery time and MUs for all CDR plans, except CDR100 for number of MUs. Conclusion: The most significant differences were observed in delivery time and number of MUs. All-in-all, the best CDR for prostate cases was found to be 300 MUs/min and 200 or 300 MUs/min for HN cases. However, VDR plans are still the choice in terms of MU efficiency and plan quality.

  14. The electronic quenching rates of NO(A2Σ+, v'=0-2)

    International Nuclear Information System (INIS)

    Nee, J.B.; Juan, C.Y.; Hsu, J.Y.; Yang, J.C.; Chen, W.J.

    2004-01-01

    The electronic quenching rates of NO(A 2 Σ + , v ' =0-2) are measured for the gases He, Ar, Xe, N 2 , O 2 , CO 2 , N 2 O, and SF 6 . The variations of the fluorescence intensity were measured for the (0,0), (1,0), and (2,0) bands of the γ band system when the quencher gases were added. The quenching rates were determined by using the Stern-Volmer plots with the known radiative lifetimes of the excited states. The electronic quenching rate constants are fast for the group of gases of O 2 , CO 2 , N 2 O, and SF 6 , whose quenching rate constants are in the order of 10 -10 cm 3 /s. The quenching rate constants are slow for the group of gases including He, Ar, Xe, and N 2 whose rate constants are in the order of 10 -14 cm 3 /s. For the slow group, the quenching rate constants increase rapidly for v ' =2 compared with those of v ' =0 and 1. The charge transfer model and collision complex model are used to understand the quenching mechanism. For the fast group which mainly consists of gases with positive electron affinities, the charge transfer model adequately describes the mechanism. For the slow quenching group, a theoretical background is provided by consider the coupling of initial and final states in the complex potential surfaces

  15. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Directory of Open Access Journals (Sweden)

    Andreas Gansäuer

    2013-08-01

    Full Text Available The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG‡ and ΔGR are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  16. Time-Dependent Quantum Wave Packet Study of the Si + OH → SiO + H Reaction: Cross Sections and Rate Constants.

    Science.gov (United States)

    Rivero Santamaría, Alejandro; Dayou, Fabrice; Rubayo-Soneira, Jesus; Monnerville, Maurice

    2017-03-02

    The dynamics of the Si( 3 P) + OH(X 2 Π) → SiO(X 1 Σ + ) + H( 2 S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X 2 A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.

  17. Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane

    Directory of Open Access Journals (Sweden)

    Afshin Taghva Manesh

    2017-02-01

    Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.

  18. Reaction kinetics aspect of U3O8 kernel with gas H2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO2 kernel

    International Nuclear Information System (INIS)

    Damunir

    2007-01-01

    The reaction kinetics aspect of U 3 O 8 kernel with gas H 2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO 2 kernel had been studied. U 3 O 8 kernel was reacted with gas H 2 in a reduction furnace at varied reaction time and temperature. The reaction temperature was varied at 600, 700, 750 and 850 °C with a pressure of 50 mmHg for 3 hours in gas N 2 atmosphere. The reation time was varied at 1, 2, 3 and 4 hours at a temperature of 750 °C using similar conditions. The reaction product was UO 2 kernel. The reaction kinetic aspect between U 3 O 8 and gas H 2 comprised the minimum activation energy (ΔE), the reaction rate constant and the O/U ratio of UO 2 kernel. The minimum activation energy was determined from a straight line slope of equation ln [{D b . R o {(1 - (1 - X b ) ⅓ } / (b.t.Cg)] = -3.9406 x 10 3 / T + 4.044. By multiplying with the straight line slope -3.9406 x 10 3 , the ideal gas constant (R) 1.985 cal/mol and the molarity difference of reaction coefficient 2, a minimum activation energy of 15.644 kcal/mol was obtained. The reaction rate constant was determined from first-order chemical reaction control and Arrhenius equation. The O/U ratio of UO 2 kernel was obtained using gravimetric method. The analysis result of reaction rate constant with chemical reaction control equation yielded reaction rate constants of 0.745 - 1.671 s -1 and the Arrhenius equation at temperatures of 650 - 850 °C yielded reaction rate constants of 0.637 - 2.914 s -1 . The O/U ratios of UO 2 kernel at the respective reaction rate constants were 2.013 - 2.014 and the O/U ratios at reaction time 1 - 4 hours were 2.04 - 2.011. The experiment results indicated that the minimum activation energy influenced the rate constant of first-order reaction and the O/U ratio of UO 2 kernel. The optimum condition was obtained at reaction rate constant of 1.43 s -1 , O/U ratio of UO 2 kernel of 2.01 at temperature of 750 °C and reaction time of 3

  19. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification

    KAUST Repository

    Sudhakaran, Sairam

    2013-03-01

    Ozonation is an oxidation process for the removal of organic micropollutants (OMPs) from water and the chemical reaction is governed by second-order kinetics. An advanced oxidation process (AOP), wherein the hydroxyl radicals (OH radicals) are generated, is more effective in removing a wider range of OMPs from water than direct ozonation. Second-order rate constants (kOH and kO3) are good indices to estimate the oxidation efficiency, where higher rate constants indicate more rapid oxidation. In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1 and 0.04 to 18 * (109) M-1 s-1, respectively. Several molecular descriptors which potentially influence O3 and OH radical oxidation were identified and studied. The QSAR-defining descriptors were double bond equivalence (DBE), ionisation potential (IP), electron-affinity (EA) and weakly-polar component of solvent accessible surface area (WPSA), and the chemical and statistical significance of these descriptors was discussed. Multiple linear regression was used to build the QSAR models, resulting in high goodness-of-fit, r2 (>0.75). The models were validated by internal and external validation along with residual plots. © 2012 Elsevier Ltd.

  20. Parametric imaging of the rate constant K[sub i] using 18Fluoro-L-dopa positron emission tomography in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, M. (Neurodegenerative Disorders Centre, Univ. Hospital, Univ. of British Columbia, Vancouver, BC (Canada) Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf-Virchow, Berlin (Germany)); Snow, B.J. (Neurodegenerative Disorders Centre, Univ. Hospital, Univ. of British Columbia, Vancouver, BC (Canada)); Morrison, S. (TRIUMF, Univ. of British Columbia, Vancouver, BC (Canada)); Sossi, V. (TRIUMF, Univ. of British Columbia, Vancouver, BC (Canada)); Ruth, T.J. (TRIUMF, Univ. of British Columbia, Vancouver, BC (Canada)); Calne, D.B. (Neurodegenerative Disorders Centre, Univ. Hospital, Univ. of British Columbia, Vancouver, BC (Canada))

    1993-01-01

    Positron emission tomography (PET) studies using 18F-L-dopa were carried out in 9 patients with supranuclear palsy and 13 controls. For quantification of PET data a rate constant K[sub i] was calculated for the radiotracer using a graphical method. Corrections for nonspecific activity were performed in both arterial plasma and brain tissue. The purpose of this study was to test the hypothesis that parametric images of the rate constant K mapping can be obtained on a pixel-by-pixel basis using an appropriate mathematical algorithm. K[sub i] values from these parametric images and the graphical approach were compared. Both correlated closely, with y=0.013+0.947[sup *]x, r=0.992 and y=-0.052+1.048[sup *]x, r=0.965 in patients and controls, respectively. Contrast measurements were also performed and showed a striking increase in contrast on parametric images. K mapping offers several advantages over the graphical approach, since parametric images are time-independent, i.e. one image represents the quantitative result of the study. In addition, parmetric images of the rate constant are normalized to arterial plasma radioactivity and corrected for tissue metabolites. Thus, parametric images of K[sub i] in different individuals can be compared directly without further processing in order to assess the nigrostriatal integrity. (orig.)

  1. The effect of cation:anion ratio in solution on the mechanism of barite growth at constant supersaturation: Role of the desolvation process on the growth kinetics

    Science.gov (United States)

    Kowacz, M.; Putnis, C. V.; Putnis, A.

    2007-11-01

    The mechanism of barite growth has been investigated in a fluid cell of an Atomic Force Microscope by passing solutions of constant supersaturation ( Ω) but variable ion activity ratio ( r=a/a) over a barite substrate.The observed dependence of step-spreading velocity on solution stoichiometry can be explained by considering non-equivalent attachment frequency factors for the cation and anion. We show that the potential for two-dimensional nucleation changes under a constant thermodynamic driving force due to the kinetics of barium integration into the surface, and that the growth mode changes from preexisting step advancement to island spreading as the cation/anion activity ratio increases. Scanning electron microscopy studies of crystals grown in bulk solutions support our findings that matching the ion ratio in the fluid to that of the crystal lattice does not result in maximum growth and nucleation rates. Significantly more rapid rates correspond to solution stoichiometries where [Ba 2+] is in excess with respect to [ SO42-]. Experiments performed in dilute aqueous solutions of methanol show that even 0.02 molar fraction of organic cosolvent in the growth solution significantly accelerates step growth velocity and nucleation rates (while keeping Ω the same as in the reference solution in water). Our observations suggest that the effect of methanol on barite growth results first of all from reduction of the barrier that prevents the Ba 2+ from reaching the surface and corroborate the hypothesis that desolvation of the cation and of the surface is the rate limiting kinetic process for two-dimensional nucleation and for crystal growth.

  2. Time-dependent leak behavior of flawed Alloy 600 tube specimens at constant pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Majumdar, Saurin [Argonne National Laboratory, Argonne, IL 60439 (United States); Harris, Charles [United States Nuclear Regulatory Commission, Rockville, MD 20852 (United States)

    2011-10-15

    Leak rate testing has been performed using Alloy 600 tube specimens with throughwall flaws. Some specimens have shown time-dependent leak behavior at constant pressure conditions. Fractographic characterization was performed to identify the time-dependent crack growth mechanism. The fracture surface of the specimens showed the typical features of ductile fracture, as well as the distinct crystallographic facets, typical of fatigue crack growth at low {Delta}K level. Structural vibration appears to have been caused by the oscillation of pressure, induced by a high-pressure pump used in a test facility, and by the water jet/tube structure interaction. Analyses of the leak behaviors and crack growth indicated that both the high-pressure pump and the water jet could significantly contribute to fatigue crack growth. To determine whether the fatigue crack growth during the leak testing can occur solely by the water jet effect, leak rate tests at constant pressure without the high-pressure pump need to be performed. - Highlights: > Leak rate of flawed Alloy 600 tubing increased at constant pressure condition. > Fractography revealed two cases: ductile tearing and crystallographic facets. > Crystallographic facets are typical features of fatigue crack growth at low {Delta}K. > Fatigue source could be water jet-induced vibration and/or high-pressure pump pulsation.

  3. On rates and mechanisms of OH and O3 reactions with isoprene-derived hydroxy nitrates.

    Science.gov (United States)

    Lee, Lance; Teng, Alex P; Wennberg, Paul O; Crounse, John D; Cohen, Ronald C

    2014-03-06

    Eight distinct hydroxy nitrates are stable products of the first step in the atmospheric oxidation of isoprene by OH. The subsequent chemical fate of these molecules affects global and regional production of ozone and aerosol as well as the location of nitrogen deposition. We synthesized and purified 3 of the 8 isoprene hydroxy nitrate isomers: (E/Z)-2-methyl-4-nitrooxybut-2-ene-1-ol and 3-methyl-2-nitrooxybut-3-ene-1-ol. Oxidation of these molecules by OH and ozone was studied using both chemical ionization mass spectrometry and thermo-dissociation laser induced fluorescence. The OH reaction rate constants at 300 K measured relative to propene at 745 Torr are (1.1 ± 0.2) × 10(-10) cm(3) molecule(-1) s(-1) for both the E and Z isomers and (4.2 ± 0.7) × 10(-11) cm(3) molecule(-1) s(-1) for the third isomer. The ozone reaction rate constants for (E/Z)-2-methyl-4-nitrooxybut-2-ene-1-ol are (2.7 ± 0.5) × 10(-17) and (2.9 ± 0.5) × 10(-17) cm(3) molecule(-1) s(-1), respectively. 3-Methyl-2-nitrooxybut-3-ene-1-ol reacts with ozone very slowly, within the range of (2.5-5) × 10(-19) cm(3) molecule(-1) s(-1). Reaction pathways, product yields, and implications for atmospheric chemistry are discussed. A condensed mechanism suitable for use in atmospheric chemistry models is presented.

  4. Recombination rate plasticity: revealing mechanisms by design

    Science.gov (United States)

    Sefick, Stephen; Rushton, Chase

    2017-01-01

    For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222

  5. A comparison of methods to estimate anaerobic capacity: Accumulated oxygen deficit and W' during constant and all-out work-rate profiles.

    Science.gov (United States)

    Muniz-Pumares, Daniel; Pedlar, Charles; Godfrey, Richard; Glaister, Mark

    2017-12-01

    This study investigated (i) whether the accumulated oxygen deficit (AOD) and curvature constant of the power-duration relationship (W') are different during constant work-rate to exhaustion (CWR) and 3-min all-out (3MT) tests and (ii) the relationship between AOD and W' during CWR and 3MT. Twenty-one male cyclists (age: 40 ± 6 years; maximal oxygen uptake [V̇O 2max ]: 58 ± 7 ml · kg -1 · min -1 ) completed preliminary tests to determine the V̇O 2 -power output relationship and V̇O 2max . Subsequently, AOD and W' were determined as the difference between oxygen demand and oxygen uptake and work completed above critical power, respectively, in CWR and 3MT. There were no differences between tests for duration, work, or average power output (P ≥ 0.05). AOD was greater in the CWR test (4.18 ± 0.95 vs. 3.68 ± 0.98 L; P = 0.004), whereas W' was greater in 3MT (9.55 ± 4.00 vs. 11.37 ± 3.84 kJ; P = 0.010). AOD and W' were significantly correlated in both CWR (P W' in CWR and 3MT, between-test differences in the magnitude of AOD and W', suggest that both measures have different underpinning mechanisms.

  6. Oxidation of coals in the course of mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Proidakov; G.A. Kalabin [Irkutsk State University, Irkutsk (Russian Federation)

    2009-04-15

    The results of a study of coal oxidation under stationary conditions and during mechanical treatment are presented. A considerable increase in the reaction rate constants of coal oxidation during mechanical treatment because of oxidative mechanical degradation was found.

  7. Radionuclide mass transfer rates from a pinhole in a waste container for an inventory-limited and a constant concentration source

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1996-03-01

    Analytical solutions for transient and steady state diffusive mass transfer rates from a pinhole in a waste container are developed for constant concentration and inventory-limited source conditions. Mass transport in three media are considered, inside the pinhole (medium 2), outside the container (medium 3) and inside the container (medium 1). Simple equations are developed for radionuclide mass transfer rates from a pinhole. It is shown that the medium with the largest mass transfer resistance need only be considered to provide a conservative estimate of mass transfer rates. (author) 11 refs., 3 figs

  8. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    Science.gov (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  9. SENSITIVITY ANALYSIS OF KINETIC CONSTANTS AS A TOOL FOR ELUCIDATING THE POLYMERIZATION MECHANISM OF ACRYL-FURANIC COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Jurgen Lange

    2013-12-01

    Full Text Available By means of the sensitivity analysis of kinetics constants in a proposed mechanism for radical polymerization of acrylfuranic compounds [Furfuryl Acrylate (FA and Methacrylate (FM],it is elucidated which elementary steps are relevant in the phenomenology. In this analysis, the application of Come's methodology allows to classify the elementary steps of a mechanism in three categories: Non-sensible, Non-determinant, Sensible. The results obtained with this tool in modeling of experimental data in free radical polymerization of FA and FM suggest that kinetic mechanism consists mainly on five elementary steps: 1 Primary initiation, 2 propagation, 3 degradative transfers (which include intermolecular and primary, 4 re-initiation and 5 cross-termination. Thus, taking into account these elementary steps in mathematical modeling, the polymerization of FA and FM in different experimental conditions was successfully simulated.

  10. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

    Science.gov (United States)

    Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H

    2000-02-01

    The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase.

  11. Interactions of poly(amidoamine) dendrimers with human serum albumin: binding constants and mechanisms.

    Science.gov (United States)

    Giri, Jyotsnendu; Diallo, Mamadou S; Simpson, André J; Liu, Yi; Goddard, William A; Kumar, Rajeev; Woods, Gwen C

    2011-05-24

    The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K(b)) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To gain insight into the mechanisms of HSA binding to PAMAM dendrimers, we combined (1)H NMR, saturation transfer difference (STD) NMR, and NMR diffusion ordered spectroscopy (DOSY) of dendrimer-HSA complexes with atomistic molecular dynamics (MD) simulations of dendrimer conformation in aqueous solutions. The binding measurements show that the HSA binding constants (K(b)) of PAMAM dendrimers depend on dendrimer size and terminal group chemistry. The NMR (1)H and DOSY experiments indicate that the interactions between HSA and PAMAM dendrimers are relatively weak. The (1)H NMR STD experiments and MD simulations suggest that the inner shell protons of the dendrimers groups interact more strongly with HSA proteins. These interactions, which are consistently observed for different dendrimer generations (G0-NH(2)vs G4-NH(2)) and terminal groups (G4-NH(2)vs G4-OH with amidoethanol groups), suggest that PAMAM dendrimers adopt backfolded configurations as they form weak complexes with HSA proteins in aqueous solutions at physiological pH (7.4).

  12. Power consumption analysis of constant bit rate data transmission over 3G mobile wireless networks

    DEFF Research Database (Denmark)

    Wang, Le; Ukhanova, Ann; Belyaev, Evgeny

    2011-01-01

    This paper presents the analysis of the power consumption of data transmission with constant bit rate over 3G mobile wireless networks. Our work includes the description of the transition state machine in 3G networks, followed by the detailed energy consumption analysis and measurement results...... of the radio link power consumption. Based on these description and analysis, we propose power consumption model. The power model was evaluated on the smartphone Nokia N900, which follows a 3GPP Release 5 and 6 supporting HSDPA/HSPA data bearers. Further we propose method of parameters selection for 3GPP...... transition state machine that allows to decrease power consumption on the mobile device....

  13. The chemistry of bromine in the stratosphere: Influence of a new rate constant for the reaction BrO + HO2

    Science.gov (United States)

    Pirre, Michel; Marceau, Francois J.; Lebras, Georges; Maguin, Francoise; Poulet, Gille; Ramaroson, Radiela

    1994-01-01

    The impact of new laboratory data for the reaction BrO + HO2 yields HOBr + O2 in the depletion of global stratospheric ozone has been estimated using a one-dimensional photochemical model taking into account the heterogeneous reaction on sulphate aerosols which converts N2O5 into HNO3. Assuring an aerosol loading 2 times as large as the 'background' and a reaction probability of 0.1 for the above heterogeneous reaction, the 6 fold increase in the measured rate constant for the reaction of BrO with HO2 increases the computed depletion of global ozone produced by 20 ppt of total bromine from 2.01 percent to 2.36 percent. The use of the higher rate constant increases the HOBr mixing ratio and makes the bromine partitioning and the ozone depletion very sensitive to the branching ratio of the potential channel forming HBr in the BrO + HO2 reaction.

  14. Varying Constants, Gravitation and Cosmology

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Uzan

    2011-03-01

    Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  15. Power consumption analysis of constant bit rate video transmission over 3G networks

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Belyaev, Evgeny; Wang, Le

    2012-01-01

    This paper presents an analysis of the power consumption of video data transmission with constant bit rate over 3G mobile wireless networks. The work includes the description of the radio resource control transition state machine in 3G networks, followed by a detailed power consumption analysis...... and measurements of the radio link power consumption. Based on this description and analysis, we propose our power consumption model. The power model was evaluated on a smartphone Nokia N900, which follows 3GPP Release 5 and 6 supporting HSDPA/HSUPA data bearers. We also propose a method for parameter selection...... for the 3GPP transition state machine that allows to decrease power consumption on a mobile device taking signaling traffic, buffer size and latency restrictions into account. Furthermore, we discuss the gain in power consumption vs. PSNR for transmitted video and show the possibility of performing power...

  16. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    International Nuclear Information System (INIS)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M.

    2003-01-01

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant

  17. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M

    2003-07-25

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant.

  18. Reactor group constants and benchmark test

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    The evaluated nuclear data files such as JENDL, ENDF/B-VI and JEF-2 are validated by analyzing critical mock-up experiments for various type reactors and assessing applicability for nuclear characteristics such as criticality, reaction rates, reactivities, etc. This is called Benchmark Testing. In the nuclear calculations, the diffusion and transport codes use the group constant library which is generated by processing the nuclear data files. In this paper, the calculation methods of the reactor group constants and benchmark test are described. Finally, a new group constants scheme is proposed. (author)

  19. The rate constant of the reaction NCN + H2 and its role in NCN and NO modeling in low pressure CH4/O2/N2-flames.

    Science.gov (United States)

    Faßheber, Nancy; Lamoureux, Nathalie; Friedrichs, Gernot

    2015-06-28

    Bimolecular reactions of the NCN radical play a key role in modeling prompt-NO formation in hydrocarbon flames. The rate constant of the so-far neglected reaction NCN + H2 has been experimentally determined behind shock waves under pseudo-first order conditions with H2 as the excess component. NCN3 thermal decomposition has been used as a quantitative high temperature source of NCN radicals, which have been sensitively detected by difference UV laser absorption spectroscopy at [small nu, Greek, tilde] = 30383.11 cm(-1). The experiments were performed at two different total densities of ρ≈ 4.1 × 10(-6) mol cm(-3) and ρ≈ 7.4 × 10(-6) mol cm(-3) (corresponding to pressures between p = 324 mbar and p = 1665 mbar) and revealed a pressure independent reaction. In the temperature range 1057 K rate constant can be represented by the Arrhenius expression k/(cm(3) mol(-1) s(-1)) = 4.1 × 10(13) exp(-101 kJ mol(-1)/RT) (Δlog k = ±0.11). The pressure independent reaction as well as the measured activation energy is consistent with a dominating H abstracting reaction channel yielding the products HNCN + H. The reaction NCN + H2 has been implemented together with a set of reactions for subsequent HNCN and HNC chemistry into the detailed GDFkin3.0_NCN mechanism for NOx flame modeling. Two fuel-rich low-pressure CH4/O2/N2-flames served as examples to quantify the impact of the additional chemical pathways. Although the overall NCN consumption by H2 remains small, significant differences have been observed for NO yields with the updated mechanism. A detailed flux analysis revealed that HNC, mainly arising from HCN/HNC isomerization, plays a decisive role and enhances NO formation through a new HNC → HNCO → NH2→ NH → NO pathway.

  20. Modeling the downward transport of 210Pb in Peatlands: Initial Penetration‐Constant Rate of Supply (IP-CRS) model

    International Nuclear Information System (INIS)

    Olid, Carolina; Diego, David; Garcia-Orellana, Jordi; Cortizas, Antonio Martínez; Klaminder, Jonatan

    2016-01-01

    The vertical distribution of 210 Pb is commonly used to date peat deposits accumulated over the last 100–150 years. However, several studies have questioned this method because of an apparent post-depositional mobility of 210 Pb within some peat profiles. In this study, we introduce the Initial Penetration–Constant Rate of Supply (IP-CRS) model for calculating ages derived from 210 Pb profiles that are altered by an initial migration of the radionuclide. This new, two-phased, model describes the distribution of atmospheric-derived 210 Pb ( 210 Pb xs ) in peat taking into account both incorporation of 210 Pb into the accumulating peat matrix as well as an initial flushing of 210 Pb through the uppermost peat layers. The validity of the IP-CRS model is tested in four anomalous 210 Pb peat records that showed some deviations from the typical exponential decay profile not explained by variations in peat accumulation rates. Unlike the most commonly used 210 Pb-dating model (Constant Rate of Supply (CRS)), the IP-CRS model estimates peat accumulation rates consistent with typical growth rates for peatlands from the same areas. Confidence in the IP-CRS chronology is also provided by the good agreement with independent chronological markers (i.e. 241 Am and 137 Cs). Our results showed that the IP-CRS can provide chronologies from peat records where 210 Pb mobility is evident, being a valuable tool for studies reconstructing past environmental changes using peat archives during the Anthropocene. - Highlights: • Accurate age dating of peat and sediment cores is critical for evaluating change. • A new 210 Pb dating model that includes vertical transport of 210 Pb was developed. • The IP-CRS model provided consistent peat accumulation rates. • The IP-CRS ages were consistent with independent chronological markers. • The IP-CRS model derives peat ages where downward 210 Pb transport is evidenced.

  1. Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell monolayer using a particle swarm algorithm.

    Directory of Open Access Journals (Sweden)

    Deep Agnani

    Full Text Available P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the

  2. Site-Specific Rate Constant Measurements for Primary and Secondary H- and D-Abstraction by OH Radicals: Propane and n -Butane

    KAUST Repository

    Badra, Jihad; Nasir, Ehson F.; Farooq, Aamir

    2014-01-01

    Site-specific rate constants for hydrogen (H) and deuterium (D) abstraction by hydroxyl (OH) radicals were determined experimentally by monitoring the reaction of OH with two normal and six deuterated alkanes. The studied alkanes include propane (C3H8), propane 2,2 D2 (CH 3CD2CH3), propane 1,1,1-3,3,3 D6 (CD 3CH2CD3), propane D8 (C3D 8), n-butane (n-C4H10), butane 2,2-3,3 D4 (CH3CD2CD2CH3), butane 1,1,1-4,4,4 D6 (CD3CH2CH2CD3), and butane D10 (C4D10). Rate constant measurements were carried out over 840-1470 K and 1.2-2.1 atm using a shock tube and OH laser absorption. Previous low-temperature data were combined with the current high-temperature measurements to generate three-parameter fits which were then used to determine the site-specific rate constants. Two primary (P1,H and P 1,D) and four secondary (S00,H, S00,D, S 01,H, and S01,D) H- and D-abstraction rate constants, in which the subscripts refer to the number of C atoms connected to the next-nearest-neighbor C atom, are obtained. The modified Arrhenius expressions for the six site-specific abstractions by OH radicals are P1,H = 1.90 × 10-18T2.00 exp(-340.87 K/T) cm 3molecule-1s-1 (210-1294 K); P1,D= 2.72 × 10-17 T1.60 exp(-895.57 K/T) cm 3molecule-1s-1 (295-1317 K); S00,H = 4.40 × 10-18 T1.93 exp(121.50 K/T) cm 3molecule-1s-1 (210-1294 K); S00,D = 1.45 × 10-20 T2.69 exp(282.36 K/T) cm 3molecule-1s-1 (295-1341 K); S01,H = 4.65 × 10-17 T1.60 exp(-236.98 K/T) cm 3molecule-1s-1 (235-1407 K); S01,D = 1.26 × 10-18 T2.07 exp(-77.00 K/T) cm 3molecule-1s-1 (294-1412 K). © 2014 American Chemical Society.

  3. Site-Specific Rate Constant Measurements for Primary and Secondary H- and D-Abstraction by OH Radicals: Propane and n -Butane

    KAUST Repository

    Badra, Jihad

    2014-07-03

    Site-specific rate constants for hydrogen (H) and deuterium (D) abstraction by hydroxyl (OH) radicals were determined experimentally by monitoring the reaction of OH with two normal and six deuterated alkanes. The studied alkanes include propane (C3H8), propane 2,2 D2 (CH 3CD2CH3), propane 1,1,1-3,3,3 D6 (CD 3CH2CD3), propane D8 (C3D 8), n-butane (n-C4H10), butane 2,2-3,3 D4 (CH3CD2CD2CH3), butane 1,1,1-4,4,4 D6 (CD3CH2CH2CD3), and butane D10 (C4D10). Rate constant measurements were carried out over 840-1470 K and 1.2-2.1 atm using a shock tube and OH laser absorption. Previous low-temperature data were combined with the current high-temperature measurements to generate three-parameter fits which were then used to determine the site-specific rate constants. Two primary (P1,H and P 1,D) and four secondary (S00,H, S00,D, S 01,H, and S01,D) H- and D-abstraction rate constants, in which the subscripts refer to the number of C atoms connected to the next-nearest-neighbor C atom, are obtained. The modified Arrhenius expressions for the six site-specific abstractions by OH radicals are P1,H = 1.90 × 10-18T2.00 exp(-340.87 K/T) cm 3molecule-1s-1 (210-1294 K); P1,D= 2.72 × 10-17 T1.60 exp(-895.57 K/T) cm 3molecule-1s-1 (295-1317 K); S00,H = 4.40 × 10-18 T1.93 exp(121.50 K/T) cm 3molecule-1s-1 (210-1294 K); S00,D = 1.45 × 10-20 T2.69 exp(282.36 K/T) cm 3molecule-1s-1 (295-1341 K); S01,H = 4.65 × 10-17 T1.60 exp(-236.98 K/T) cm 3molecule-1s-1 (235-1407 K); S01,D = 1.26 × 10-18 T2.07 exp(-77.00 K/T) cm 3molecule-1s-1 (294-1412 K). © 2014 American Chemical Society.

  4. Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kalnins, E G [Department of Mathematics and Statistics, University of Waikato, Hamilton (New Zealand); Miller, W Jr; Post, S [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: miller@ima.umn.edu

    2010-01-22

    We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  5. Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Kalnins, E G; Miller, W Jr; Post, S

    2010-01-01

    We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  6. On the mechanism of effective chemical reactions with turbulent mixing of reactants and finite rate of molecular reactions

    Energy Technology Data Exchange (ETDEWEB)

    Vorotilin, V. P., E-mail: VPVorotilin@yandex.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)

    2017-01-15

    A generalization of the theory of chemical transformation processes under turbulent mixing of reactants and arbitrary values of the rate of molecular reactions is presented that was previously developed for the variant of an instantaneous reaction [13]. The use of the features of instantaneous reactions when considering the general case, namely, the introduction of the concept of effective reaction for the reactant volumes and writing a closing conservation equation for these volumes, became possible due to the partition of the whole amount of reactants into “active” and “passive” classes; the reactants of the first class are not mixed and react by the mechanism of instantaneous reactions, while the reactants of the second class approach each other only through molecular diffusion, and therefore their contribution to the reaction process can be neglected. The physical mechanism of reaction for the limit regime of an ideal mixing reactor (IMR) is revealed and described. Although formally the reaction rate in this regime depends on the concentration of passive fractions of the reactants, according to the theory presented, the true (hidden) mechanism of the reaction is associated only with the reaction of the active fractions of the reactants with vanishingly small concentration in the volume of the reactor. It is shown that the rate constant of fast chemical reactions can be evaluated when the mixing intensity of reactants is much less than that needed to reach the mixing conditions in an IMR.

  7. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Amber; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 (United States)

    2015-10-07

    We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.

  8. Toward elimination of discrepancies between theory and experiment: The rate constant of the atmospheric conversion of SO3 to H2SO4

    Science.gov (United States)

    Loerting, Thomas; Liedl, Klaus R.

    2000-01-01

    The hydration rate constant of sulfur trioxide to sulfuric acid is shown to depend sensitively on water vapor pressure. In the 1:1 SO3-H2O complex, the rate is predicted to be slower by about 25 orders of magnitude compared with laboratory results [Lovejoy, E. R., Hanson, D. R. & Huey, L. G. (1996) J. Phys. Chem. 100, 19911–19916; Jayne, J. T., Pöschl, U., Chen, Y.-m., Dai, D., Molina, L. T., Worsnop, D. R., Kolb, C. E. & Molina, M. J. (1997) J. Phys. Chem. A 101, 10000–10011]. This discrepancy is removed mostly by allowing a second and third water molecule to participate. An asynchronous water-mediated double proton transfer concerted with the nucleophilic attack and a double proton transfer accompanied by a transient H3O+ rotation are predicted to be the fastest reaction mechanisms. Comparison of the predicted negative apparent “activation” energies with the experimental finding indicates that in our atmosphere, different reaction paths involving two and three water molecules are taken in the process of forming sulfate aerosols and consequently acid rain. PMID:10922048

  9. A constant velocity Moessbauer spectrometer free of long-term instrumental drifts in the count rate

    International Nuclear Information System (INIS)

    Sarma, P.R.; Sharma, A.K.; Tripathi, K.C.

    1979-01-01

    Two new control circuits to be used with a constant velocity Moessbauer spectrometer with a loud-speaker drive have been described. The wave-forms generated in the circuits are of the stair-case type instead of the usual square wave-form, so that in each oscillation of the source it remains stationary for a fraction of the time-period. The gamma-rays counted during this period are monitored along with the positive and negative velocity counts and are used to correct any fluctuation in the count rate by feeding these pulses into the timer. The associated logic circuits have been described and the statistical errors involved in the circuits have been computed. (auth.)

  10. A survey of the reaction rate constants for the thermal dissociation and recombination of nitrogen and oxygen

    Science.gov (United States)

    Marraffa, Lionel; Dulikravich, George S.; Keeney, Timothy C.; Deiwert, George S.

    1988-01-01

    The objective of the present report is to survey the various values of forward and backward reaction rate constants used by investigators in the field of high-temperature (T greater than 2000 K) gas reactions involving nitrogen and oxygen only. The objective is to find those values that correlate well so that they can be used for the studies of hypersonic flow and supersonic combustion with reasonable confidence. Relatively good agreement among these various values is observed for temperatures lower than 10,000 K.

  11. Fine-structure constant: Is it really a constant

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1982-01-01

    It is often claimed that the fine-structure ''constant'' α is shown to be strictly constant in time by a variety of astronomical and geophysical results. These constrain its fractional rate of change alpha-dot/α to at least some orders of magnitude below the Hubble rate H 0 . We argue that the conclusion is not as straightforward as claimed since there are good physical reasons to expect alpha-dot/α 0 . We propose to decide the issue by constructing a framework for a variability based on very general assumptions: covariance, gauge invariance, causality, and time-reversal invariance of electromagnetism, as well as the idea that the Planck-Wheeler length (10 -33 cm) is the shortest scale allowable in any theory. The framework endows α with well-defined dynamics, and entails a modification of Maxwell electrodynamics. It proves very difficult to rule it out with purely electromagnetic experiments. In a cosmological setting, the framework predicts an alpha-dot/α which can be compatible with the astronomical constraints; hence, these are too insensitive to rule out α variability. There is marginal conflict with the geophysical constraints: however, no firm decision is possible because of uncertainty about various cosmological parameters. By contrast the framework's predictions for spatial gradients of α are in fatal conflict with the results of the Eoetvoes-Dicke-Braginsky experiments. Hence these tests of the equivalence principle rule out with confidence spacetime variability of α at any level

  12. CW 316 mechanical properties during thermal transients

    International Nuclear Information System (INIS)

    Cauvin, R.; Boutard, J.L.; Allegraud, G.

    1984-06-01

    During in pile incidents, the cladding can experience higher temperatures than the nominal one; it is necessary to know the mechanical properties of the cladding material during such thermal transients to predict the time and location of rupture. Two types of tests have been developed: first tensile (constant strain rate) tests after a heating at a constant rate and secondly constant load tests where heating is performed until rupture occurs. The tensile tests clearly show the role of the heating rate: the higher is the heating rate, the lower is the cold work recovery. Constant load tests were conducted with either uniaxial or biaxial (burst tests) loading. The same stress/failure temperature relation is found in both types of loading using the Von Mises equivalent stress. To predict failure, the Larson Miller parameter is not adequate, as well as all parameters based on a time/temperature equivalence. The yield stress measured in the two types of tests are very different probably due to a strain rate effect. Indeed the tensile tests are dynamic ones to avoid thermal recovery during the test duration, while the strain rate measured in constant load tests ranges only from 10 -5 s -1 to 10 -3 s -1 , being an increasing function of heating rate (ranging from 1 0 c/s to 100 0 c/s)

  13. Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1994-01-01

    The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20-250-degrees-C gives k(20-degrees-C) = 2.4 x 10(10) M-1 s-1 and the activation energy E......-1 and E(A) = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5-150-degrees-C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction......(A) = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20-degrees-C) = 3.1 x 10(10) M-1 s-1 and E(A) = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5-175-degrees-C. For reaction with H2O2 the values are, k(20-degrees-C) = 1.2 x 10(10) M-1 s...

  14. New perspectives on constant-roll inflation

    Science.gov (United States)

    Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro

    2018-01-01

    We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.

  15. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, Martin Paul [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  16. Absolute rate constants for the reaction of NO3 radicals with a series of dienes at 295 K

    DEFF Research Database (Denmark)

    Ellermann, T.; Nielsen, O.J.; Skov, H.

    1992-01-01

    The rate constants for the reaction of NO3 radicals with a series of 7 dienes, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, trans-1,3-pentadiene, cis-1,3-pentadiene, trans,trans-2,4-hexadiene, and 1,3-cyclohexadiene, were measured at 295 K and at a total pressure of 1 atm. The rate consta...... were obtained using the absolute technique of pulse radiolysis combined with kinetic UV-VIS spectroscopy. The results are discussed in terms of reactivity trends and previous literature data....

  17. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    Science.gov (United States)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  18. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    Directory of Open Access Journals (Sweden)

    Klipp Edda

    2006-12-01

    Full Text Available Abstract Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases.

  19. Lightweight Potential of Welded High-strength Steel Joints from S700 Under Constant and Variable Amplitude Loading by High-frequency Mechanical Impact (HFMI) Treatment

    OpenAIRE

    Yıldırım, Halid Can; Marquis, Gary; Sonsino, Cetin Morris

    2015-01-01

    Investigations with longitudinal stiffeners of the steel grade S700 under fully-reversed, constant amplitude loading and under variable amplitude loading with a straight-line spectrum show impressive fatigue strength improvement by high-frequency mechanical impact (HFMI) treatment. However, the degree of improvement was for variable amplitude loading lower when compared to constant amplitude loading due to local plasticity which occurs during larger load levels and consequently reduces the be...

  20. Constant mortality and fertility over age in Hydra

    DEFF Research Database (Denmark)

    Schaible, R.; Scheuerlein, A.; Danko, M. J.

    2015-01-01

    that 2,256 Hydra from two closely related species in two laboratories in 12 cohorts, with cohort age ranging from 0 to more than 41 y, have extremely low, constant rates of mortality. Fertility rates for Hydra did not systematically decline with advancing age. This falsifies the universality......Senescence, the increase in mortality and decline in fertility with age after maturity, was thought to be inevitable for all multicellular species capable of repeated breeding. Recent theoretical advances and compilations of data suggest that mortality and fertility trajectories can go up or down......, or remain constant with age, but the data are scanty and problematic. Here, we present compelling evidence for constant age-specific death and reproduction rates in Hydra, a basal metazoan, in a set of experiments comprising more than 3.9 million days of observations of individual Hydra. Our data show...

  1. USING IN VIVO GAS UPDATE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPANE AND 2,2-DICHLOROPROPANE

    Science.gov (United States)

    USING IN VIVO GAS UPTAKE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPENE AND 2,2-DICHLOROPROPANE. Mitchell, C T, Evans, M V, Kenyon, E M. NHEERL, U.S. EPA, ORD, ETD, RTP, NC The Safe Drinking Water Act Amendments of 1996 required ...

  2. Tests on mechanical behavior of 304 L stainless steel under constant stress associated with cyclic strain

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.

    1979-01-01

    Mechanical analyses of structures, to be efficient, must incorporate materials behavior data. Among the mechanisms liable to cause collapse, progressive distortion (or ratcheting) has been the subject of only a few basic experiments, most of the investigations being theoretical. In order to get meaningful results to characterize materials behavior, an experimental study on ratcheting of austenitic steels has been undertaken at the C.E.A. This paper gives the first results of tests at room temperature on thin tubes of 304L steel submitted to an axial constant stress (primary stress) to which is added a cyclic shearing strain (secondary stress). The tests cover a large combination of the two loading modes. The main results consist of curves of cumulative iso-deformation in the primary and secondary stress field (Bree type diagrams). Results are given for plastic deformations ranging from 0.1 to 2.5% up to N=100 cycles

  3. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios.

    Science.gov (United States)

    Lakshmanan, Sandhiya; Pratihar, Subha; Machado, Francisco Bolivar Correto; Hase, William Louis

    2018-04-26

    The reaction of 3CH2 with 3O2 is of fundamental importance in combustion and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH2OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H2CO + O(3P), while the singlet surface leads to 8 product channels with their relative importance as: CO + H2O > CO + OH + H ~ H2CO + O(1D) > HCO + OH ~ CO2 + H2 ~ CO + H2 + O(1D) > CO2 + H + H > HCO + O(1D) + H. Reaction on the singlet PES is barrierless, consistent with experiment and the total rate constant on the singlet surface is 0.93 ± 0.22 x 10-12 cm3molecule-1s-1 in comparison to the recommended experimental rate constant of 3.3 x 10-12 cm3molecule-1s-1. The simulation product yields for the singlet PES are compared with experiment and the most significant differences are for H, CO2, and H2O. Reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address the: (1) barrier on the triplet PES for 3CH2 + 3O2 → 3CH2OO; (2) temperature dependence of the 3CH2 + 3O2 reaction rate constant and product branching ratios; and (3) possible non-RRKM dynamics of the 1CH2OO Criegee intermediate.

  4. Cosmological constant--the weight of the vacuum

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    2003-01-01

    Recent cosmological observations suggest the existence of a positive cosmological constant Λ with the magnitude Λ(Gℎ/c 3 )∼10 -123 . This review discusses several aspects of the cosmological constant both from the cosmological (Sections 1-6) and field theoretical (Sections 7-11) perspectives. After a brief introduction to the key issues related to cosmological constant and a historical overview, a summary of the kinematics and dynamics of the standard Friedmann model of the universe is provided. The observational evidence for cosmological constant, especially from the supernova results, and the constraints from the age of the universe, structure formation, Cosmic Microwave Background Radiation (CMBR) anisotropies and a few others are described in detail, followed by a discussion of the theoretical models (quintessence, tachyonic scalar field, ...) from different perspectives. The latter part of the review (Sections 7-11) concentrates on more conceptual and fundamental aspects of the cosmological constant like some alternative interpretations of the cosmological constant, relaxation mechanisms to reduce the cosmological constant to the currently observed value, the geometrical structure of the de Sitter spacetime, thermodynamics of the de Sitter universe and the role of string theory in the cosmological constant problem

  5. Investigating dissolution of mechanically activated olivine for carbonation purposes

    International Nuclear Information System (INIS)

    Haug, Tove Anette; Kleiv, Rolf Arne; Munz, Ingrid Anne

    2010-01-01

    Research highlights: → Dissolution of mechanically activated olivine increased with 3 orders of magnitude. → Crystallinity changes of olivine is important for the observed dissolution rates. → Activation probably decreases with the degree of dissolution of each particle. - Abstract: Mineral carbonation is one of several alternatives for CO 2 sequestration and storage. The reaction rates of appropriate minerals with CO 2 , for instance olivine and serpentine with vast resources, are relatively slow in a CO 2 sequestration context and the rates have to be increased to make mineral carbonation a good storage alternative. Increasing the dissolution rate of olivine has been the focus of this paper. Olivine was milled with very high energy intensity using a laboratory planetary mill to investigate the effect of mechanical activation on the Mg extraction potential of olivine in 0.01 M HCl solution at room temperature and pressure. Approximately 30-40% of each sample was dissolved and water samples were taken at the end of each experiment. The pH change was used to calculate time series of the Mg concentrations, which also were compared to the final Mg concentrations in the water samples. Percentage dissolved and the specific reaction rates were estimated from the Mg concentration time series. The measured particle size distributions could not explain the rate constants found, but the specific surface area gave a good trend versus dissolution for samples milled wet and the samples milled with a small addition of water. The samples milled dry had the lowest measured specific surface areas ( 2 /g), but had the highest rate constants. The crystallinity calculated from X-ray diffractograms, was the material parameter with the best fit for the observed differences in the rate constants. Geochemical modelling of mechanically activated materials indicated that factors describing the changes in the material properties related to the activation must be included. The

  6. Measuring Boltzmann's Constant with Carbon Dioxide

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2013-01-01

    In this paper we present two experiments to measure Boltzmann's constant--one of the fundamental constants of modern-day physics, which lies at the base of statistical mechanics and thermodynamics. The experiments use very basic theory, simple equipment and cheap and safe materials yet provide very precise results. They are very easy and…

  7. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    Science.gov (United States)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  8. Consideration of demand rate in overall equipment effetiveness (OEE on equipment with constant process time

    Directory of Open Access Journals (Sweden)

    Perumal Puvanasvaran

    2013-06-01

    research should be conducted to test the possibility and to verify the definition of such performance ratio including Takt time on those processes of which its operating time is possibly to be reduced, especially those are not constant and fixed. This piece of research is temporarily done on the process where its operating time is constant from time to time and there is no ideal cycle time possible.Practical implications: The awareness of the overproduction should be emphasized and raised in the intention of pursuing higher OEE value. As the definition proposed such, the process with constant cycle time could even be defined in different performance ratio from time to time regarding to the customer demands and corresponding production rate. These two variables can be adjusted and balanced to increase the OEE value through optimization of average cycle time. Over this, optimization of average cycle time on equipment with constant operating time can be achieved through the optimization of loading number per each processing.Originality/value: The novelty of the paper is the inclusion of customer demand in obtaining OEE value of any particular equipment. Besides that, the equipment without ideal cycle time, which means those processes carried out in constant cycle time are possibly to be evaluated with performance ratio. As consequence of that, the machine utilization and capability used could be quantified and visualized using the performance ratio data of the OEE proposed.

  9. Effect of temperature dependence of the Langmuir constant molecular pair potentials on gas hydrates formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, B.; Enayati, M. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of); Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch

    2008-07-01

    Theoretical methods show that crystalline hydrates can form from single-phase systems consisting of both vapor water with gaseous hydrate former and liquid water with dissolved hydrate former. Two phase systems consist of both liquid water with gaseous hydrate former and with liquid hydrate former on the surface. This paper presented a Langmuir constant related model for the prediction of equilibrium pressures and cage occupancies of pure component hydrates. Intermolecular potentials were fit to quantum mechanical energies to obtain the Langmuir constants, which differed from the procedure utilized with the vdWP model. The paper described the experimental method and model calculations. This included the Fugacity model and Van der Waals and Platteeuw model. The paper also discussed pair potential of non-spherical molecules, including the multicentre (site-site) potential; Gaussian overlap potential; Lennard-Jones potential; and Kihara generalized pair potential. It was concluded that fraction of occupied cavities is a function of pair potentials between hard core and empty hydrate lattice. These pair potentials could be calculated from some model as Kihara cell potential, Gaussian potential, Lennard-Jones potential and multicentre pair potential. 49 refs., 3 figs.

  10. Mechanism and kinetics of hydrated electron diffusion

    International Nuclear Information System (INIS)

    Tay, Kafui A.; Coudert, Francois-Xavier; Boutin, Anne

    2008-01-01

    Molecular dynamics simulations are used to study the mechanism and kinetics of hydrated electron diffusion. The electron center of mass is found to exhibit Brownian-type behavior with a diffusion coefficient considerably greater than that of the solvent. As previously postulated by both experimental and theoretical works, the instantaneous response of the electron to the librational motions of surrounding water molecules constitutes the principal mode of motion. The diffusive mechanism can be understood within the traditional framework of transfer diffusion processes, where the diffusive step is akin to the exchange of an extramolecular electron between neighboring water molecules. This is a second-order process with a computed rate constant of 5.0 ps -1 at 298 K. In agreement with experiment the electron diffusion exhibits Arrhenius behavior over the temperature range of 298-400 K. We compute an activation energy of 8.9 kJ mol -1 . Through analysis of Arrhenius plots and the application of a simple random walk model it is demonstrated that the computed rate constant for exchange of an excess electron is indeed the phenomenological rate constant associated with the diffusive process

  11. Stress intensity factors and constant stress terms for interface cracks

    International Nuclear Information System (INIS)

    Fett, T.; Rizzi, G.

    2004-01-01

    In bi-material joints cracks can propagate along the interface or kink into one of the two materials. Whereas the energy release rate can be applied for interface cracks in the same way as usual for homogeneous materials, the computation of stresses in the vicinity of the crack tip is significantly more complicated. In order to assess crack kinking, it is necessary to know the mixed-mode stress intensity factor contributions K I and K II as well as the constant stress terms in the two materials. Whereas the stress intensity factors are available for a large number of infinite and semi-infinite bodies, there is experimental interest in practically used test specimens. This especially holds for the constant x-stress terms. Finite element computations are performed for the special case of a disappearing second Dundurs parameter, i.e. β=0. The fracture mechanics parameters K I , K II , σ 0 for the interface crack are reported in the form of diagrams and approximate relations. (orig.)

  12. The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure

    International Nuclear Information System (INIS)

    Nesseris, Savvas; Blake, Chris; Davis, Tamara; Parkinson, David

    2011-01-01

    We constrain the evolution of Newton's constant using the growth rate of large-scale structure measured by the WiggleZ Dark Energy Survey in the redshift range 0.1 m (assuming General Relativity), and use this to construct a diagnostic to detect the presence of an evolving Newton's constant. Secondly we directly measure the evolution of Newton's constant, G eff , that appears in Modified Gravity theories, without assuming General Relativity to be true. The novelty of these approaches are that, contrary to other methods, they do not require knowledge of the expansion history of the Universe, H(z), making them model independent tests. Our constraints for the second derivative of Newton's constant at the present day, assuming it is slowly evolving as suggested by Big Bang Nucleosynthesis constraints, using the WiggleZ data is G double-dot eff (t 0 ) = −1.19 ± 0.95·10 −20 h 2 yr −2 , where h is defined via H 0 = 100 h km s −1 Mpc −1 , while using both the WiggleZ and the Sloan Digital Sky Survey Luminous Red Galaxy (SDSS LRG) data is G double-dot eff (t 0 ) = −3.6 ± 6.8·10 −21 h 2 yr −2 , both being consistent with General Relativity. Finally, our constraint for the rms mass fluctuation σ 8 using the WiggleZ data is σ 8 = 0.75 ± 0.08, while using both the WiggleZ and the SDSS LRG data σ 8 = 0.77 ± 0.07, both in good agreement with the latest measurements from the Cosmic Microwave Background radiation

  13. High-intensity sprint fatigue does not alter constant-submaximal velocity running mechanics and spring-mass behavior.

    Science.gov (United States)

    Morin, Jean-Benoit; Tomazin, Katja; Samozino, Pierre; Edouard, Pascal; Millet, Guillaume Y

    2012-04-01

    We investigated the changes in constant velocity spring-mass behavior after high intensity sprint fatigue in order to better interpret the results recently reported after ultra-long distance (ULD) exercises. Our hypothesis was that after repeated sprints (RS), subjects may likely experience losses of force such as after ULD, but the necessity to modify their running pattern to attenuate the overall impact at each step (such as after ULD) may not be present. Eleven male subjects performed four sets of five 6-s sprints with 24-s recovery between sprints and 3 min between sets, on a sprint treadmill and on a bicycle ergometer. For each session, their running mechanics and spring-mass characteristics were measured at 10 and 20 km h(-1) on an instrumented treadmill before and after RS. Two-way (period and velocity) ANOVAs showed that high-intensity fatigue did not induce any change in the constant velocity running pattern at low or high velocity, after both running and cycling RS, despite significant decreases (P < 0.001) in maximal power (-27.1 ± 8.2% after running RS and -15.4 ± 11.5 % after cycling RS) and knee extensors maximal voluntary force (-18.8 ± 6.7 % after running RS and -15.0 ± 7.6 % after cycling RS). These results bring indirect support to the hypothesis put forward in recent ULD studies that the changes in running mechanics observed after ULD are likely not related to the decrease in strength capabilities, but rather to the necessity for subjects to adopt a protective running pattern.

  14. Kinetics and mechanism of hydrolysis of scandium sulfate

    International Nuclear Information System (INIS)

    Koshchej, E.V.; Stryapkov, A.V.; Podosenov, D.E.; Makarov, G.V.; Razdobreev, D.A.

    1998-01-01

    The Sc 2 (SO 4 ) 3 -H 2 SO 4 -H 2 O system is studied through the methods of pH-potentiometry, conductometry and turbidimetry at 298 and 318 K and ion force 0.01, 0.1 and 1.0. The hydrolysis mechanism including the processes in the system homogenous and heterogeneous constituents. The hydrolysis rates of scandium salts and their dependences on OH-ions concentration, solution ions force and temperature are found; the constants of the processes rate with participation of OH - and SO 4 2- ions and constants of the solid phase formation rate are calculated [ru

  15. Modeling the downward transport of {sup 210}Pb in Peatlands: Initial Penetration‐Constant Rate of Supply (IP-CRS) model

    Energy Technology Data Exchange (ETDEWEB)

    Olid, Carolina, E-mail: olid.carolina@gmail.com [Department of Ecology and Environmental Science, Umeå University, SE-90187, Umeå (Sweden); Diego, David [Department of Earth Science, University of Bergen, NO-5020 Bergen (Norway); Garcia-Orellana, Jordi [Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Cortizas, Antonio Martínez [Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Klaminder, Jonatan [Department of Ecology and Environmental Science, Umeå University, SE-90187, Umeå (Sweden)

    2016-01-15

    The vertical distribution of {sup 210}Pb is commonly used to date peat deposits accumulated over the last 100–150 years. However, several studies have questioned this method because of an apparent post-depositional mobility of {sup 210}Pb within some peat profiles. In this study, we introduce the Initial Penetration–Constant Rate of Supply (IP-CRS) model for calculating ages derived from {sup 210}Pb profiles that are altered by an initial migration of the radionuclide. This new, two-phased, model describes the distribution of atmospheric-derived {sup 210}Pb ({sup 210}Pb{sub xs}) in peat taking into account both incorporation of {sup 210}Pb into the accumulating peat matrix as well as an initial flushing of {sup 210}Pb through the uppermost peat layers. The validity of the IP-CRS model is tested in four anomalous {sup 210}Pb peat records that showed some deviations from the typical exponential decay profile not explained by variations in peat accumulation rates. Unlike the most commonly used {sup 210}Pb-dating model (Constant Rate of Supply (CRS)), the IP-CRS model estimates peat accumulation rates consistent with typical growth rates for peatlands from the same areas. Confidence in the IP-CRS chronology is also provided by the good agreement with independent chronological markers (i.e. {sup 241}Am and {sup 137}Cs). Our results showed that the IP-CRS can provide chronologies from peat records where {sup 210}Pb mobility is evident, being a valuable tool for studies reconstructing past environmental changes using peat archives during the Anthropocene. - Highlights: • Accurate age dating of peat and sediment cores is critical for evaluating change. • A new {sup 210}Pb dating model that includes vertical transport of {sup 210}Pb was developed. • The IP-CRS model provided consistent peat accumulation rates. • The IP-CRS ages were consistent with independent chronological markers. • The IP-CRS model derives peat ages where downward {sup 210}Pb transport is

  16. A Simulation Analysis of Errors in the Measurement of Standard Electrochemical Rate Constants from Phase-Selective Impedance Data.

    Science.gov (United States)

    1987-09-30

    RESTRICTIVE MARKINGSC Unclassif ied 2a SECURIly CLASSIFICATION ALIIMOA4TY 3 DIS1RSBj~jiOAVAILAB.I1Y OF RkPORI _________________________________ Approved...of the AC current, including the time dependence at a growing DME, at a given fixed potential either in the presence or the absence of an...the relative error in k b(app) is ob relatively small for ks (true) : 0.5 cm s-, and increases rapidly for ob larger rate constants as kob reaches the

  17. Systematics of constant roll inflation

    Science.gov (United States)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  18. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification

    KAUST Repository

    Sudhakaran, Sairam; Amy, Gary L.

    2013-01-01

    . In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1

  19. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    Science.gov (United States)

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  20. A new variable interval schedule with constant hazard rate and finite time range.

    Science.gov (United States)

    Bugallo, Mehdi; Machado, Armando; Vasconcelos, Marco

    2018-05-27

    We propose a new variable interval (VI) schedule that achieves constant probability of reinforcement in time while using a bounded range of intervals. By sampling each trial duration from a uniform distribution ranging from 0 to 2 T seconds, and then applying a reinforcement rule that depends linearly on trial duration, the schedule alternates reinforced and unreinforced trials, each less than 2 T seconds, while preserving a constant hazard function. © 2018 Society for the Experimental Analysis of Behavior.

  1. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua; Wu, Xiaozhi; Wang, Rui; Liu, Qing; Gan, Liyong

    2014-01-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  2. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  3. Constant extension rate testing of Type 304L stainless steel in simulated waste tank environments

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-01-01

    New tanks for storage of low level radioactive wastes will be constructed at the Savannah River Site (SRS) of AISI Type 304L stainless steel (304L). The presence of chlorides and fluorides in the wastes may induce Stress Corrosion Cracking (SCC) in 304L. Constant Extension Rate Tests (CERT) were performed to determine the susceptibility of 304L to SCC in simulated wastes. In five of the six tests conducted thus far 304L was not susceptible to SCC in the simulated waste environments. Conflicting results were obtained in the final test and will be resolved by further tests. For comparison purposes the CERT tests were also performed with A537 carbon steel, a material similar to that utilized for the existing nuclear waste storage tanks at SRS

  4. Microstructure and strain rate effects on the mechanical behavior of particle reinforced epoxy-based reactive materials

    Science.gov (United States)

    White, Bradley William

    The effects of reactive metal particles on the microstructure and mechanical properties of epoxy-based composites is investigated in this work. Particle reinforced polymer composites show promise as structural energetic materials that can provide structural strength while simultaneously being capable of releasing large amounts of chemical energy through highly exothermic reactions occurring between the particles and with the matrix. This advanced class of materials is advantageous due to the decreased amount of high density inert casings needed for typical energetic materials and for their ability to increase payload expectancy and decrease collateral damage. Structural energetic materials can be comprised of reactive particles that undergo thermite or intermetallic reactions. In this work nickel (Ni) and aluminum (Al) particles were chosen as reinforcing constituents due to their well characterized mechanical and energetic properties. Although, the reactivity of nickel and aluminum is well characterized, the effects of their particle size, volume fractions, and spatial distribution on the mechanical behavior of the epoxy matrix and composite, across a large range of strain rates, are not well understood. To examine these effects castings of epoxy reinforced with 20--40 vol.% Al and 0--10 vol.% Ni were prepared, while varying the aluminum nominal particle size from 5 to 50 mum and holding the nickel nominal particle size constant at 50 mum. Through these variations eight composite materials were produced, possessing unique microstructures exhibiting different particle spatial distributions and constituent makeup. In order to correlate the microstructure to the constitutive response of the composites, techniques such as nearest-neighbor distances, and multiscale analysis of area fractions (MSAAF) were used to quantitatively characterize the microstructures. The composites were investigated under quasi-static and dynamic compressive loading conditions to characterize

  5. Constant-roll (quasi-)linear inflation

    Science.gov (United States)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  6. Determination of the rate constant for neuronal and extra-neuronal monoamine oxidase

    International Nuclear Information System (INIS)

    Cassis, L.; Ludwig, J.; Trendelenburg, U.

    1986-01-01

    In the rat vas deferens, neuronal deamination of 3 H-(-) noradrenaline ( 3 H-NA) to 3 H-dihydroxyphenethylglycol ( 3 HDOPEG) cannot be inhibited by pretreatment with a monoamine oxidase (MAO) inhibitor. However, in the extraneuronal compartment of the rat heart, inhibition of MAO abolishes the formation of 3 HDOPEG. To clarify this discrepancy, the authors determined the rate constant for MAO (/sup k/mao/) neuronally (rat vas deferens) and extraneuronally (rat heart). For neuronal /sup k/mao, vasa deferentia were incubated with 3 HNA for 300 minutes, and the cumulative formation of 3 HDOPEG measured. The delay in time before 3 HDOPEG achieves steady state (/sup tau/system), is inversely proportional to /sup k/mao. Because /sup tau/system is very short for neuronal MAO, an appreciable delay was only achieved after partial inhibition of MAO with various parglyline concentrations. To relate to the uninhibited enzyme, the percentage inhibition by pargyline was then determined in homogenate preparations. For extraneuronal MAO, a similar procedure was performed in perfused rat hearts. Results show a significantly greater /sup k/mao of neuronal origin, (/sup k/mao = .57min - 1) which when related to the fractional size of the neuronal compartment suggests a very high activity of neuronal MAO

  7. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.

    Science.gov (United States)

    Peukert, S L; Labbe, N J; Sivaramakrishnan, R; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the reactions CH3 + C2H6 → C2H4 + CH4 + H (1), CH3 + C2H4 → Products + H (2), and CH3 + C2H2 → Products + H (3). Biacetyl, (CH3CO)2, was used as a clean high temperature thermal source for CH3-radicals for all the three reactions studied in this work. For reaction 1, the experiments span a T-range of 1153 K ≤ T ≤ 1297 K, at P ~ 0.4 bar. The experiments on reaction 2 cover a T-range of 1176 K ≤ T ≤ 1366 K, at P ~ 1.0 bar, and those on reaction 3 a T-range of 1127 K ≤ T ≤ 1346 K, at P ~ 1.0 bar. Reflected shock tube experiments performed on reactions 1-3, monitored the formation of H-atoms with H-atom Atomic Resonance Absorption Spectrometric (ARAS). Fits to the H-atom temporal profiles using an assembled kinetics model were used to make determinations for k1, k2, and k3. In the case of C2H6, the measurements of [H]-atoms were used to derive direct high-temperature rate constants, k1, that can be represented by the Arrhenius equation k1(T) = 5.41 × 10(-12) exp(-6043 K/T) cm(3) molecules(-1) s(-1) (1153 K ≤ T ≤ 1297 K) for the only bimolecular process that occurs, H-atom abstraction. TST calculations based on ab initio properties calculated at the CCSD(T)/CBS//M06-2X/cc-pVTZ level of theory show excellent agreement, within ±20%, of the measured rate constants. For the reaction of CH3 with C2H4, the present rate constant results, k2', refer to the sum of rate constants, k(2b) + k(2c), from two competing processes, addition-elimination, and the direct abstraction CH3 + C2H4 → C3H6 + H (2b) and CH3 + C2H4 → C2H2 + H + CH4 (2c). Experimental rate constants for k2' can be represented by the Arrhenius equation k2'(T) = 2.18 × 10(-10) exp(-11830 K/T) cm(3) molecules(-1) s(-1) (1176 K ≤ T ≤ 1366 K). The present results are in excellent agreement with recent theoretical predictions. The present study provides the only direct measurement for the high-temperature rate constants for these channels

  8. Optimized reaction mechanism rate rules for ignition of normal alkanes

    KAUST Repository

    Cai, Liming

    2016-08-11

    The increasing demand for cleaner combustion and reduced greenhouse gas emissions motivates research on the combustion of hydrocarbon fuels and their surrogates. Accurate detailed chemical kinetic models are an important prerequisite for high fidelity reacting flow simulations capable of improving combustor design and operation. The development of such models for many new fuel components and/or surrogate molecules is greatly facilitated by the application of reaction classes and rate rules. Accurate and versatile rate rules are desirable to improve the predictive accuracy of kinetic models. A major contribution in the literature is the recent work by Bugler et al. (2015), which has significantly improved rate rules and thermochemical parameters used in kinetic modeling of alkanes. In the present study, it is demonstrated that rate rules can be used and consistently optimized for a set of normal alkanes including n-heptane, n-octane, n-nonane, n-decane, and n-undecane, thereby improving the predictive accuracy for all the considered fuels. A Bayesian framework is applied in the calibration of the rate rules. The optimized rate rules are subsequently applied to generate a mechanism for n-dodecane, which was not part of the training set for the optimized rate rules. The developed mechanism shows accurate predictions compared with published well-validated mechanisms for a wide range of conditions.

  9. Evaluation of Chemical Kinetic for Mathematics Model Reduction of Cadmium Reaction Rate, Constant and Reaction Orde in to Electrochemical Process

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    The experiment was reduction of cadmium rate with electrochemical influenced by time process, concentration, current strength and type of electrode plate. The aim of the experiment was to know the influence, mathematic model reduction of cadmium the reaction rate, reaction rate constant and reaction orde influenced by time process, concentration, current strength and type of electrode plate. Result of research indicate the time processing if using plate of copper electrode is during 30 minutes and using plate of aluminium electrode is during 20 minutes. Condition of strong current that used in process of electrochemical is only 0.8 ampere and concentration effective is 5.23 mg/l. The most effective type Al of electrode plate for reduction from waste and the efficiency of reduction is 98 %. (author)

  10. Water Exchange Rate Constant as a Biomarker of Treatment Efficacy in Patients With Brain Metastases Undergoing Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Mehrabian, Hatef; Desmond, Kimberly L.; Chavez, Sofia; Bailey, Colleen; Rola, Radoslaw; Sahgal, Arjun; Czarnota, Gregory J.; Soliman, Hany; Martel, Anne L.; Stanisz, Greg J.

    2017-01-01

    Purpose: This study was designed to evaluate whether changes in metastatic brain tumors after stereotactic radiosurgery (SRS) can be seen with quantitative MRI early after treatment. Methods and Materials: Using contrast-enhanced MRI, a 3-water-compartment tissue model consisting of intracellular (I), extracellular-extravascular (E), and vascular (V) compartments was used to assess the intra–extracellular water exchange rate constant (k IE ), efflux rate constant (k ep ), and water compartment volume fractions (M 0,I , M 0,E , M 0,V ). In this prospective study, 19 patients were MRI-scanned before treatment and 1 week and 1 month after SRS. The change in model parameters between the pretreatment and 1-week posttreatment scans was correlated to the change in tumor volume between pretreatment and 1-month posttreatment scans. Results: At 1 week k IE differentiated (P<.001) tumors that had partial response from tumors with stable and progressive disease, and a high correlation (R=−0.76, P<.001) was observed between early changes in the k IE and tumor volume change 1 month after treatment. Other model parameters had lower correlation (M 0,E ) or no correlation (k ep , M 0,V ). Conclusions: This is the first study that measured k IE early after SRS, and it found that early changes in k IE (1 week after treatment) highly correlated with long-term tumor response and could predict the extent of tumor shrinkage at 1 month after SRS.

  11. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  12. Cosmological constant in the quantum multiverse

    International Nuclear Information System (INIS)

    Larsen, Grant; Nomura, Yasunori; Roberts, Hannes L. L.

    2011-01-01

    Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. In this paper, we elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein.

  13. Determination of first order rate constants by natural logarithm of the slope plot exemplified by analysis of Aspergillus niger in batch culture

    NARCIS (Netherlands)

    Poulsen, B.R.; Ruiter, G.; Visser, J.; Iversen, J.J.L.

    2003-01-01

    Finding rate constants from experimental data is often difficult because of offset and noise. A computer program was developed to average experimental data points, reducing the effect of noise, and to produce a loge of slope plot - a plot of the natural logarithm of the slope of a curve -

  14. Constant physics and characteristics of fundamental constant

    International Nuclear Information System (INIS)

    Tarrach, R.

    1998-01-01

    We present some evidence which supports a surprising physical interpretation of the fundamental constants. First, we relate two of them through the renormalization group. This leaves as many fundamental constants as base units. Second, we introduce and a dimensional system of units without fundamental constants. Third, and most important, we find, while interpreting the units of the a dimensional system, that is all cases accessible to experimentation the fundamental constants indicate either discretization at small values or boundedness at large values of the corresponding physical quantity. (Author) 12 refs

  15. Interaction of hydrated electron with dietary flavonoids and phenolic acids. Rate constants and transient spectra studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Cai, Zhongli; Li, Xifeng; Katsumura, Yosuke

    2000-01-01

    The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e aq - at neutral pH were measured. The results suggest that C 4 keto group is the active site for e aq - to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C 2,3 double bond, the C 3 -OH group and glycosylation have little effects on the e aq - scavenging activities. (author)

  16. Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model.

    Science.gov (United States)

    Li, Hua; Lai, Fukun; Luo, Rongmo

    2009-11-17

    A multiphysics model is presented in this paper for analysis of the influence of various equilibrium constants on the smart hydrogel responsive to the ionic strength of environmental solution, and termed the multieffect-coupling ionic-strength stimulus (MECis) model. The model is characterized by a set of partial differential governing equations by consideration of the mass and momentum conservations of the system and coupled chemical, electrical, and mechanical multienergy domains. The Nernst-Planck equations are derived by the mass conservation of the ionic species in both the interstitial fluid of the hydrogel and the surrounding solution. The binding reaction between the fixed charge groups of the hydrogel and the mobile ions in the solution is described by the fixed charge equation, which is based on the Langmuir monolayer theory. As an important effect for the binding reaction, the equilibrium constant is incorporated into the fixed charge equation. The kinetics of the hydrogel swelling/deswelling is illustrated by the mechanical equation, based on the law of momentum conservation for the solid polymeric networks matrix within the hydrogel. The MECis model is examined by comparison of the numerical simulations and experiments from open literature. The analysis of the influence of different equilibrium constants on the responsive characteristics of the ionic-strength-sensitive hydrogel is carried out with detailed discussion.

  17. The time constant of the somatogravic illusion.

    Science.gov (United States)

    Correia Grácio, B J; de Winkel, K N; Groen, E L; Wentink, M; Bos, J E

    2013-02-01

    Without visual feedback, humans perceive tilt when experiencing a sustained linear acceleration. This tilt illusion is commonly referred to as the somatogravic illusion. Although the physiological basis of the illusion seems to be well understood, the dynamic behavior is still subject to discussion. In this study, the dynamic behavior of the illusion was measured experimentally for three motion profiles with different frequency content. Subjects were exposed to pure centripetal accelerations in the lateral direction and were asked to indicate their tilt percept by means of a joystick. Variable-radius centrifugation during constant angular rotation was used to generate these motion profiles. Two self-motion perception models were fitted to the experimental data and were used to obtain the time constant of the somatogravic illusion. Results showed that the time constant of the somatogravic illusion was on the order of two seconds, in contrast to the higher time constant found in fixed-radius centrifugation studies. Furthermore, the time constant was significantly affected by the frequency content of the motion profiles. Motion profiles with higher frequency content revealed shorter time constants which cannot be explained by self-motion perception models that assume a fixed time constant. Therefore, these models need to be improved with a mechanism that deals with this variable time constant. Apart from the fundamental importance, these results also have practical consequences for the simulation of sustained accelerations in motion simulators.

  18. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    Science.gov (United States)

    Visser, William

    utilized to simulate the shock loading and twin evolution for these loading conditions. The second part of this research ties into the modeling efforts. Within the model for predicting twin volume fraction is a twin growth equation and a constant describing the stress at which the twin nucleation will occur. By using a constant value for the twin nucleation stress modeling efforts fail to accurately predict the growth and final twin volume fraction. A second shock loading experimental study combined with high strain rate compression tests using a split Hopkinson pressure bar were completed to determine a twin nucleation stress equation as a function of dislocation density. Steel specimens were subjected to cold rolling to 3% strain and subsequently impacted using the gas gun at different pressures. The increase in dislocation density due to pre-straining substantially increased the twin nucleation stress indicating that twin nucleation stress in dependent upon prior strain history. This has been explained in terms of the velocity and generation rates of both perfect and partial dislocations. An explicit form of the critical twin nucleation stress was developed and parameters were determined through plate impact tests and low temperature (77K) SHPB compression tests. The final component in studying deformation twin mechanisms in BCC steel extends the research to the post-impact mechanical properties and how the twin volume fraction affects the dynamic flow stress. Compression tests between 293K and 923K at an average strain rate of 4700 s-1 were completed on the as-received and 3% pre-strained steels in both the initial condition and after being impacted at pressures of 6GPa and 11GPa. Results of the experimental testing were used in a thermal activation model in order to distinguish separate components in the microstructure contributing to the enhanced flow stress caused by the shock loading. It has been shown that the dislocations generated from shock loading are

  19. Determination of rate constants of N-alkylation of primary amines by 1H NMR spectroscopy.

    Science.gov (United States)

    Li, Chenghong

    2013-09-05

    Macromolecules containing N-diazeniumdiolates of secondary amines are proposed scaffolds for controlled nitrogen oxide (NO) release medical applications. Preparation of these compounds often involves converting primary amine groups to secondary amine groups through N-alkylation. However, N-alkylation results in not only secondary amines but tertiary amines as well. Only N-diazeniumdiolates of secondary amines are suitable for controlled NO release; therefore, the yield of secondary amines is crucial to the total NO load of the carrier. In this paper, (1)H NMR spectroscopy was used to estimate the rate constants for formation of secondary amine (k1) and tertiary amine (k2) for alkylation reagents such as propylene oxide (PO), methyl acrylate (MA), and acrylonitrile (ACN). At room temperature, the ratio of k2/k1 for the three reactions was found to be around 0.50, 0.026, and 0.0072.

  20. Kinetics and Mechanism of Oxidation of Diethyl Ether by Chloramine-T in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Y. I. Hassan

    2012-01-01

    Full Text Available The kinetics of oxidation of diethyl ether (DE with sodium N-chloro-p-toluenesulphonamide (CAT in hydrochloric acid solution has been studied at (313°K.The reaction rate show a first order dependence on [CAT] and fractional order dependence on each [DE] and [H+] .The variation of ionic strength of the medium has no significant effect on the reaction rate , addition of p-toluenesulphonamide (p-TSA affects the reaction rate marginally the rate increased with decreasing dielectric constant of the medium , the stochiometry of the reaction was found to be 1:2 and oxidation products were identified , A Michaelis – Menten type mechanism has been suggested to explain the results.The equilibrium and the decomposition constants of CAT – diethyl ether complex have been evaluated. Thermodynamic parameters were computed by studying reaction at temperatures range ( 308 – 323°K for the rate limiting step and for the observed first order constants by the linear Arrhenius plot. The mechanism proposed and the derived rate law are consistent with observed kinetics.

  1. Asymmetric cell division requires specific mechanisms for adjusting global transcription.

    Science.gov (United States)

    Mena, Adriana; Medina, Daniel A; García-Martínez, José; Begley, Victoria; Singh, Abhyudai; Chávez, Sebastián; Muñoz-Centeno, Mari C; Pérez-Ortín, José E

    2017-12-01

    Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.

    Science.gov (United States)

    Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V

    1994-01-15

    We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.

  3. Determination of constant of chemical reaction rate in the process of steel treatment in the endothermal atmosphere

    International Nuclear Information System (INIS)

    Gyulikhandanov, E.L.; Kislenkov, V.V.

    1978-01-01

    The high-temperature method was applied to measuring a relative variation in the electrical resistance of a thin steel foil prepared from the 12KhN3A, 18Kh2N4VA, 20KhGNR, and 20Kh3MVF steels during its carburization and decarburization, and determined was the temperature dependence of the reaction rate of the interaction of the endothermal atmosphere of different compositions with the analloyed γ-Fe. A connection has been established between the reaction rate constant and the thermodynamic activity of carbon in the alloyed austenite at the temperature of about 925 deg C, corresponding to the cementation temperature. This provides the quantitative estimation of the above value for any alloyed steels and with the presence of numerical values of diffusion coefficients; this also enables one to carry out an accurate calculation of the distribution of carbon throughout the depth of a layer when effecting the cementation in the endothermal atmosphere

  4. Determination of the stability constants of a number of metal fluoride complexes and their rates of formation

    International Nuclear Information System (INIS)

    Hammer, R.R.

    1979-08-01

    The stability constants of the fluoride complexes of Al +3 , H 3 BO 3 , Cr +3 , Cr +6 , Fe +3 , Gd +3 , Nb +5 , UO 2 +2 , and Zr +4 were determined in 0.96 and 2.88 M HNO 3 solutions in the temperature range 25 to 60 0 C with a fluoride specific ion electrode. These data can be used to calculate the concentration of chemical species in solution and will be used to correlate solution properties with solution composition. The solubilities of some fluoride precipitates were also measured in nitric acid solutions. The rates of formation of the fluoborates, aluminum fluoride, and zirconium fluoride complexes were measured with a fluoride specific ion electrode at 25, 35, and 45 0 C. The rates of formation of all complexes, except BF 4 - , AlF +2 , and a fluoride complex with aluminum containing more than three fluorides associated with it, were too fast to measure with the instrumentation used

  5. Radiative lifetimes and two-body collisional deactivation rate constants in argon for Kr(4p 55p) and Kr(4p 55p') states

    International Nuclear Information System (INIS)

    Chang, R.S.F.; Horiguchi, H.; Setser, D.W.

    1980-01-01

    The radiative lifetimes and collisional deactivation rate constants, in argon, of eight Kr(4p 5 [ 2 P/sub 1/2/]5p and [ 2 P/sub 3/2/]5p) levels have been measured by a time-resolved laser-induced fluorescence technique in a flowing afterglow apparatus. The measured radiative lifetimes are compared with other experimental values and with theoretical calculations. Radiative branching ratios of these excited states also were measured in order to assign the absolute transition probabilities of the Kr(5p,5p'--5s, 5s') transition array from the radiative lifetimes. In addition to the total deactivation rate constants, product states from two-body collisions between Kr(5p and 5p') atoms and ground state argon atoms were identified from the laser-induced emission spectra, and product formation rate constants were assigned. Two-body intermultiplet transfer from Kr(4p 5 [ 2 P/sub 1/2/]5p) to the Kr(4p 5 [ 2 P/sub 3/2/]4d) levels occurs with ease. Intermultiplet transfer from the lowest level in the (4p 5 5p) configuration to the Kr(4p 5 5s and 5s') manifold was fast despite the large energy defect. However, this was the only Kr(5p) level that gave appreciable transfer to the Kr(5s or 5s') manifold. Generally the favored product states are within a few kT of the entrance channel

  6. Vanishing cosmological constant in elementary particles theory

    International Nuclear Information System (INIS)

    Pisano, F.; Tonasse, M.D.

    1997-01-01

    The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs

  7. Water Exchange Rate Constant as a Biomarker of Treatment Efficacy in Patients With Brain Metastases Undergoing Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Hatef, E-mail: hatef.mehrabian@sri.utoronto.ca [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Desmond, Kimberly L. [Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Chavez, Sofia [Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario (Canada); Bailey, Colleen [Computer Science Department, University College London, London (United Kingdom); Rola, Radoslaw [Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin (Poland); Sahgal, Arjun [Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Czarnota, Gregory J. [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Soliman, Hany [Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Martel, Anne L. [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Stanisz, Greg J. [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin (Poland)

    2017-05-01

    Purpose: This study was designed to evaluate whether changes in metastatic brain tumors after stereotactic radiosurgery (SRS) can be seen with quantitative MRI early after treatment. Methods and Materials: Using contrast-enhanced MRI, a 3-water-compartment tissue model consisting of intracellular (I), extracellular-extravascular (E), and vascular (V) compartments was used to assess the intra–extracellular water exchange rate constant (k{sub IE}), efflux rate constant (k{sub ep}), and water compartment volume fractions (M{sub 0,I}, M{sub 0,E}, M{sub 0,V}). In this prospective study, 19 patients were MRI-scanned before treatment and 1 week and 1 month after SRS. The change in model parameters between the pretreatment and 1-week posttreatment scans was correlated to the change in tumor volume between pretreatment and 1-month posttreatment scans. Results: At 1 week k{sub IE} differentiated (P<.001) tumors that had partial response from tumors with stable and progressive disease, and a high correlation (R=−0.76, P<.001) was observed between early changes in the k{sub IE} and tumor volume change 1 month after treatment. Other model parameters had lower correlation (M{sub 0,E}) or no correlation (k{sub ep}, M{sub 0,V}). Conclusions: This is the first study that measured k{sub IE} early after SRS, and it found that early changes in k{sub IE} (1 week after treatment) highly correlated with long-term tumor response and could predict the extent of tumor shrinkage at 1 month after SRS.

  8. Do Insect Populations Die at Constant Rates as They Become Older? Contrasting Demographic Failure Kinetics with Respect to Temperature According to the Weibull Model.

    Directory of Open Access Journals (Sweden)

    Petros Damos

    Full Text Available Temperature implies contrasting biological causes of demographic aging in poikilotherms. In this work, we used the reliability theory to describe the consistency of mortality with age in moth populations and to show that differentiation in hazard rates is related to extrinsic environmental causes such as temperature. Moreover, experiments that manipulate extrinsic mortality were used to distinguish temperature-related death rates and the pertinence of the Weibull aging model. The Newton-Raphson optimization method was applied to calculate parameters for small samples of ages at death by estimating the maximum likelihoods surfaces using scored gradient vectors and the Hessian matrix. The study reveals for the first time that the Weibull function is able to describe contrasting biological causes of demographic aging for moth populations maintained at different temperature regimes. We demonstrate that at favourable conditions the insect death rate accelerates as age advances, in contrast to the extreme temperatures in which each individual drifts toward death in a linear fashion and has a constant chance of passing away. Moreover, slope of hazard rates shifts towards a constant initial rate which is a pattern demonstrated by systems which are not wearing out (e.g. non-aging since the failure, or death, is a random event independent of time. This finding may appear surprising, because, traditionally, it was mostly thought as rule that in aging population force of mortality increases exponentially until all individuals have died. Moreover, in relation to other studies, we have not observed any typical decelerating aging patterns at late life (mortality leveling-off, but rather, accelerated hazard rates at optimum temperatures and a stabilized increase at the extremes.In most cases, the increase in aging-related mortality was simulated reasonably well according to the Weibull survivorship model that is applied. Moreover, semi log- probability hazard

  9. Quantum black holes and Planck's constant

    International Nuclear Information System (INIS)

    Ross, D.K.

    1987-01-01

    It is shown that the Planck-scale black holes of quantum gravity must obey a consistency condition relating Planck's constant to the integral of the mass of the black holes over time, if the usual path integral formulation of quantum mechanics is to make sense on physical spacetime. It is also shown, using time-dependent perturbation theory in ordinary quantum mechanics, that a massless particle will not propagate on physical spacetime with the black holes present unless the same condition is met. (author)

  10. Dynamics of the cosmological and Newton’s constant

    International Nuclear Information System (INIS)

    Smolin, Lee

    2016-01-01

    A modification of general relativity is presented in which Newton’s constant, G, and the cosmological constant, Λ, become a conjugate pair of dynamical variables. These are functions of a global time, hence the theory is presented in the framework of shape dynamics, which trades many-fingered time for a local scale invariance and an overall reparametrization of the global time. As a result, due to the fact that these global dynamical variables are canonically conjugate, the field equations are consistent. The theory predicts a relationship with no free parameters between the rates of change of Newton’s constant and the cosmological constant, in terms of the spatial average of the matter Lagrangian density. (paper)

  11. Interaction of hydrated electron with dietary flavonoids and phenolic acids. Rate constants and transient spectra studied by pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhongli; Li, Xifeng; Katsumura, Yosuke [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e{sub aq}{sup -} at neutral pH were measured. The results suggest that C{sub 4} keto group is the active site for e{sub aq}{sup -} to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C{sub 2,3} double bond, the C{sub 3}-OH group and glycosylation have little effects on the e{sub aq}{sup -} scavenging activities. (author)

  12. Predicting the Rate Constant of Electron Tunneling Reactions at the CdSe-TiO2 Interface.

    Science.gov (United States)

    Hines, Douglas A; Forrest, Ryan P; Corcelli, Steven A; Kamat, Prashant V

    2015-06-18

    Current interest in quantum dot solar cells (QDSCs) motivates an understanding of the electron transfer dynamics at the quantum dot (QD)-metal oxide (MO) interface. Employing transient absorption spectroscopy, we have monitored the electron transfer rate (ket) at this interface as a function of the bridge molecules that link QDs to TiO2. Using mercaptoacetic acid, 3-mercaptopropionic acid, 8-mercaptooctanoic acid, and 16-mercaptohexadecanoic acid, we observe an exponential attenuation of ket with increasing linker length, and attribute this to the tunneling of the electron through the insulating linker molecule. We model the electron transfer reaction using both rectangular and trapezoidal barrier models that have been discussed in the literature. The one-electron reduction potential (equivalent to the lowest unoccupied molecular orbital) of each molecule as determined by cyclic voltammetry (CV) was used to estimate the effective barrier height presented by each ligand at the CdSe-TiO2 interface. The electron transfer rate (ket) calculated for each CdSe-ligand-TiO2 interface using both models showed the results in agreement with the experimentally determined trend. This demonstrates that electron transfer between CdSe and TiO2 can be viewed as electron tunneling through a layer of linking molecules and provides a useful method for predicting electron transfer rate constants.

  13. Quantum chemical and conventional TST calculations of rate constants for the OH + alkane reaction

    International Nuclear Information System (INIS)

    Bravo-Perez, Graciela; Alvarez-Idaboy, J. Raul; Jimenez, Annia Galano; Cruz-Torres, Armando

    2005-01-01

    Reactions of OH with methane, ethane, propane, i-butane, and n-butane have been modeled using ab initio (MP2) and hybrid DFT (BHandHLYP) methods, and the 6-311G(d,p) basis set. Furthermore, single-point calculations at the CCSD(T) level were carried out at the optimized geometries. The rate constants have been calculated using the conventional transition-state theory (CTST). Arrhenius equations are proposed in the temperature range of 250-650 K. Hindered Internal Rotation partition functions calculations were explicitly carried out and included in the total partition functions. These corrections showed to be relevant in the determination of the pre-exponential parameters, although not so important as in the NO 3 + alkane reactions [G. Bravo-Perez, J.R. Alvarez-Idaboy, A. Cruz-Torres, M.E. Ruiz, J. Phys. Chem. A 106 (2002) 4645]. The explicit participation of the tunnel effect has been taken into account. The calculated rate coefficients provide a very good agreement with the experimental data. The best agreement for the overall alkane + OH reactions seemed to occur when the BHandHLYP geometries and partition functions are used. For propane and i-butane, in addition to the respective secondary and tertiary H-abstraction channels, the primary one has been considered. These pathways are confirmed to be significant in spite of the large differences in activation energies between primary and secondary or primary and tertiary channels, respectively of propane and i-butane reactions and should not be disregarded

  14. System analysis of the dynamic response of the coronary circulation to a sudden change in heart rate.

    Science.gov (United States)

    Dankelman, J; Stassen, H G; Spaan, J A

    1990-03-01

    In this study the response of driving pressure/flow ration on an abrupt change in heart rate was analysed. The difference between the response obtained with constant pressure and constant flow perfusion was also studied. The responses show a fast initial reversed phase followed by a slow phase caused by regulation. To test whether the initial phase could be the result of mechanical changes in the coronary circulation, a model for regulation was extended by the addition of four different mechanical models originating from the literature. These extended models were able to explain the fast initial phase. However, the mechanical model consisting of an intramyocardial compliance (C = 0.08 ml mm Hg-1 100 g-1) with a variable venous resistance, and the model consisting of a waterfall and a small compliance (C = 0.007 ml mm Hg-1 100g-1) both explained these responses best. The analysis showed that there is no direct relationship between rate of change of vascular tone and rate of change of pressure/flow ratio. However, on the basis of the two extended models, it can be predicted that the half-time for the response of regulation to be complete is about 9s with constant pressure perfusion and 15 s with constant flow perfusion.

  15. Charge quantization of wormholes and the finiteness of Newton's constant

    International Nuclear Information System (INIS)

    Grinstein, B.

    1989-01-01

    We derive, from first principles, the equations of Lee which exhibit wormhole solutions. The interpretation of such solutions becomes more transparent: they are local extrema of the action which contribute to transition amplitudes between states of definite charge. Hence the charge carried by the wormhole is quantized. We briefly review Coleman's mechanism for the vanishing of the cosmological constant, with emphasis on the problem of the vanishing of Newton's constant G. A mechanism is proposed that could naturally make 1/G a bounded function of the wormhole parameters. (orig.)

  16. Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young's modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials.

  17. Analysis of transformations of the ultrafast electron transfer photoreaction mechanism in liquid solutions by the rate distribution approach.

    Science.gov (United States)

    Kuzmin, Michael G; Soboleva, Irina V

    2014-05-01

    Representation of the experimental reaction kinetics in the form of rate distribution is shown to be an effective method for the analysis of the mechanisms of these reactions and for comparisons of the kinetics with QC calculations, as well as with the experimental data on the medium mobility. The rate constant distribution function P(k) can be obtained directly from the experimental kinetics N(t) by an inverse Laplace transform. The application of this approach to kinetic data for several excited-state electron transfer reactions reveals the transformations of their rate control factors in the time domain of 1-1000 ps. In neat electron donating solvents two components are observed. The fastest component (k > 1 ps(-1)) was found to be controlled by the fluctuations of the overall electronic coupling matrix element, involving all the reactant molecules, located inside the interior of the solvent shell, rather than for specific pairs of reactant molecules. The slower component (1 > k > 0.1 ps(-1)) is controlled by the medium reorganization (longitudinal relaxation times, τL). A substantial contribution from the non-stationary diffusion controlled reaction is observed in diluted solutions ([Q] transformation of the rate control factors in the course of the reactions.

  18. Time constant of logarithmic creep and relaxation

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2001-07-15

    Full Text Available length and hardness which vary logarithmically with time. For dimensional reasons, a logarithmic variation must involve a time constant tau characteristic of the process, so that the deformation is proportional to ln(t/tau). Two distinct mechanisms...

  19. Rate and mechanism of facilitated americium(III) transport through a supported liquid membrane containing a bifunctional organophosphorus mobile carrier

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.G.

    1983-01-01

    The facilitated transport of Am(III) from aqueous nitrate solutions to formic acid aqueous solutions through a supported liquid membrane (SLM) is described. The supported liquid membrane consists of a solution of a new (carbamoylmethyl)phosphine oxide in diethylbenzene (DEB) absorbed into a 48 μm thick microporous polypropylene film. The transport mechanism consists of a diffusion process through an aqueous diffusion film, a fast interfacial chemical reaction, and diffusion through the membrane itself. Equations describing the rate of transport are derived. They correlate the membrane permeability coefficient to diffusional parameters and to the chemical composition of the system. Different rate-controlling processes are shown to control the membrane permeability when the composition of the system is varied and as long as the transport occurs. The experimental data are quantitatively explained with the derived equations. The diffusion coefficient of the permeating species and the equilibrium constant of the fast interfacial reactions are evaluated. 13 figures, 1 table

  20. Quantum mechanical calculations of reactive scattering cross sections in bimolecular encounters

    Science.gov (United States)

    Pirkle, J. C., Jr.

    1967-01-01

    Study applies the nonequilibrium collision theory of reaction rates to the estimation of rate constants for simple reactions. The complications in the quantum mechanical description of chemical reactions and the care needed in approximating the exact wave function for the collision are shown.

  1. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    International Nuclear Information System (INIS)

    Tang, Grace; Earl, Matthew A; Yu, Cedric X

    2009-01-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc(TM) deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to ≤± 5 deg. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was

  2. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  3. On the Calculation of Quantum Mechanical Ground States from Classical Geodesic Motion on Certain Spaces of Constant Negative Curvature

    CERN Document Server

    Tomaschitz, R

    1989-01-01

    We consider geodesic motion on three-dimensional Riemannian manifolds of constant negative curvature, topologically equivalent to S x ]0,1[, S a compact surface of genus two. To those trajectories which are bounded and recurrent in both directions of the time evolution a fractal limit set is associated whose Hausdorff dimension is intimately connected with the quantum mechanical energy ground state, determined by the Schrodinger operator on the manifold. We give a rather detailed and pictorial description of the hyperbolic spaces we have in mind, discuss various aspects of classical and quantum mechanical motion on them as far as they are needed to establish the connection between energy ground state and Hausdorff dimension and give finally some examples of ground state calculations in terms of Hausdorff dimensions of limit sets of classical trajectories.

  4. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses

    Directory of Open Access Journals (Sweden)

    Redon Emma

    2008-07-01

    Full Text Available Abstract Background The development of transcriptomic tools has allowed exhaustive description of stress responses. These responses always superimpose a general response associated to growth rate decrease and a specific one corresponding to the stress. The exclusive growth rate response can be achieved through chemostat cultivation, enabling all parameters to remain constant except the growth rate. Results We analysed metabolic and transcriptomic responses of Lactococcus lactis in continuous cultures at different growth rates ranging from 0.09 to 0.47 h-1. Growth rate was conditioned by isoleucine supply. Although carbon metabolism was constant and homolactic, a widespread transcriptomic response involving 30% of the genome was observed. The expression of genes encoding physiological functions associated with biogenesis increased with growth rate (transcription, translation, fatty acid and phospholipids metabolism. Many phages, prophages and transposon related genes were down regulated as growth rate increased. The growth rate response was compared to carbon and amino-acid starvation transcriptomic responses, revealing constant and significant involvement of growth rate regulations in these two stressful conditions (overlap 27%. Two regulators potentially involved in the growth rate regulations, llrE and yabB, have been identified. Moreover it was established that genes positively regulated by growth rate are preferentially located in the vicinity of replication origin while those negatively regulated are mainly encountered at the opposite, thus indicating the relationship between genes expression and their location on chromosome. Although stringent response mechanism is considered as the one governing growth deceleration in bacteria, the rigorous comparison of the two transcriptomic responses clearly indicated the mechanisms are distinct. Conclusion This work of integrative biology was performed at the global level using transcriptomic analysis

  5. Non-minimally coupled varying constants quantum cosmologies

    International Nuclear Information System (INIS)

    Balcerzak, Adam

    2015-01-01

    We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability of transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase

  6. Cosmological Hubble constant and nuclear Hubble constant

    International Nuclear Information System (INIS)

    Horbuniev, Amelia; Besliu, Calin; Jipa, Alexandru

    2005-01-01

    The evolution of the Universe after the Big Bang and the evolution of the dense and highly excited nuclear matter formed by relativistic nuclear collisions are investigated and compared. Values of the Hubble constants for cosmological and nuclear processes are obtained. For nucleus-nucleus collisions at high energies the nuclear Hubble constant is obtained in the frame of different models involving the hydrodynamic flow of the nuclear matter. Significant difference in the values of the two Hubble constant - cosmological and nuclear - is observed

  7. Determination of the absolute second-order rate constant for the reaction Na + O3 → NaO + O2

    International Nuclear Information System (INIS)

    Husain, David; Marshall, Paul; Plane, J.M.C.

    1985-01-01

    The absolute second-order rate constant for the reaction Na + O 3 -> NaO + O 2 (k 1 ) has been determined by time-resolved atomic resonance absorption spectroscopy at lambda = 589 nm [Na(3 2 Psub(j)) 2 Ssub(1/2))] following pulsed irradiation, coupled with monitoring of O 3 by light absorption in the ultra-violet; this yields k 1 (500 K) = 4(+4,-2) x 10 -10 cm 3 molecule -1 s -1 , resolving large differences for various estimates of this important quantity used in modelling the sodium layer in the mesosphere. (author)

  8. Density functional theory study on aqueous aluminum-fluoride complexes: exploration of the intrinsic relationship between water-exchange rate constants and structural parameters for monomer aluminum complexes.

    Science.gov (United States)

    Jin, Xiaoyan; Qian, Zhaosheng; Lu, Bangmei; Yang, Wenjing; Bi, Shuping

    2011-01-01

    Density functional theory (DFT) calculation is carried out to investigate the structures, (19)F and (27)Al NMR chemical shifts of aqueous Al-F complexes and their water-exchange reactions. The following investigations are performed in this paper: (1) the microscopic properties of typical aqueous Al-F complexes are obtained at the level of B3LYP/6-311+G**. Al-OH(2) bond lengths increase with F(-) replacing inner-sphere H(2)O progressively, indicating labilizing effect of F(-) ligand. The Al-OH(2) distance trans to fluoride is longer than other Al-OH(2) distance, accounting for trans effect of F(-) ligand. (19)F and (27)Al NMR chemical shifts are calculated using GIAO method at the HF/6-311+G** level relative to F(H(2)O)(6)(-) and Al(H(2)O)(6)(3+) references, respectively. The results are consistent with available experimental values; (2) the dissociative (D) activated mechanism is observed by modeling water-exchange reaction for [Al(H(2)O)(6-i)F(i)]((3-i)+) (i = 1-4). The activation energy barriers are found to decrease with increasing F(-) substitution, which is in line with experimental rate constants (k(ex)). The log k(ex) of AlF(3)(H(2)O)(3)(0) and AlF(4)(H(2)O)(2)(-) are predicted by three ways. The results indicate that the correlation between log k(ex) and Al-O bond length as well as the given transmission coefficient allows experimental rate constants to be predicted, whereas the correlation between log k(ex) and activation free energy is poor; (3) the environmental significance of this work is elucidated by the extension toward three fields, that is, polyaluminum system, monomer Al-organic system and other metal ions system with high charge-to-radius ratio.

  9. Absolute rate constants for the reaction of CF3O2 and CF3O radicals with NO at 295 K

    DEFF Research Database (Denmark)

    Sehested, J.; Nielsen, O.J.

    1993-01-01

    Using a pulse radiolysis UV absorption technique and subsequent simulations of experimental NO2 and FNO absorption transients, rate constants for reaction between CF3O and CF3O2 radicals with NO were determined, CF3O2+NO-->CF3O+NO2 (3), CF3O+NO-->CF2O+FNO (5). k3 was derived to be (1.68+/-0.26)x10...

  10. RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS AND CL ATOMS WITH DI-N-PROPYL ETHER AND DI-N-BUTYL ETHER AND THEIR DEUTERATED ANALOGS. (R825252)

    Science.gov (United States)

    Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...

  11. Dynamic measurements of the elastic constants of glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2005-01-01

    . But a new mechanical design, which reduces mechanical resonance, is described. The measurements were carried out in atmospheric air at normal pressure, and this causes an oscillatory airflow in the sample. To obtain the elastic constants, the influence of the airflow was subtracted from the data by a new...

  12. Determination of H-atom reaction rate constants by the competition kinetic technique using riboflavin as a standard solute [Paper No. RD-7

    International Nuclear Information System (INIS)

    Kishore, Kamal; Moorthy, P.N.; Rao, K.N.

    1982-01-01

    Riboflavin has been used as a standard solute to evaluate H-atom rate constants of other solutes by steady state radiolytic competition kinetic method. The bleaching of absorbance of riboflavin at 445 nm as a result of its reaction with H-atoms is made use of in estimating its decomposition. The merits and demerits of this method are discussed. (author)

  13. Bioclimatic Thresholds, Thermal Constants and Survival of Mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in Response to Constant Temperatures on Hibiscus

    Science.gov (United States)

    Sreedevi, Gudapati; Prasad, Yenumula Gerard; Prabhakar, Mathyam; Rao, Gubbala Ramachandra; Vennila, Sengottaiyan; Venkateswarlu, Bandi

    2013-01-01

    Temperature-driven development and survival rates of the mealybug, Phenacoccussolenopsis Tinsley (Hemiptera: Pseudococcidae) were examined at nine constant temperatures (15, 20, 25, 27, 30, 32, 35 and 40°C) on hibiscus ( Hibiscus rosa -sinensis L.). Crawlers successfully completed development to adult stage between 15 and 35°C, although their survival was affected at low temperatures. Two linear and four nonlinear models were fitted to describe developmental rates of P . solenopsis as a function of temperature, and for estimating thermal constants and bioclimatic thresholds (lower, optimum and upper temperature thresholds for development: Tmin, Topt and Tmax, respectively). Estimated thresholds between the two linear models were statistically similar. Ikemoto and Takai’s linear model permitted testing the equivalence of lower developmental thresholds for life stages of P . solenopsis reared on two hosts, hibiscus and cotton. Thermal constants required for completion of cumulative development of female and male nymphs and for the whole generation were significantly lower on hibiscus (222.2, 237.0, 308.6 degree-days, respectively) compared to cotton. Three nonlinear models performed better in describing the developmental rate for immature instars and cumulative life stages of female and male and for generation based on goodness-of-fit criteria. The simplified β type distribution function estimated Topt values closer to the observed maximum rates. Thermodynamic SSI model indicated no significant differences in the intrinsic optimum temperature estimates for different geographical populations of P . solenopsis . The estimated bioclimatic thresholds and the observed survival rates of P . solenopsis indicate the species to be high-temperature adaptive, and explained the field abundance of P . solenopsis on its host plants. PMID:24086597

  14. Bioclimatic thresholds, thermal constants and survival of mealybug, Phenacoccus solenopsis (hemiptera: pseudococcidae) in response to constant temperatures on hibiscus.

    Science.gov (United States)

    Sreedevi, Gudapati; Prasad, Yenumula Gerard; Prabhakar, Mathyam; Rao, Gubbala Ramachandra; Vennila, Sengottaiyan; Venkateswarlu, Bandi

    2013-01-01

    Temperature-driven development and survival rates of the mealybug, Phenacoccussolenopsis Tinsley (Hemiptera: Pseudococcidae) were examined at nine constant temperatures (15, 20, 25, 27, 30, 32, 35 and 40°C) on hibiscus (Hibiscusrosa -sinensis L.). Crawlers successfully completed development to adult stage between 15 and 35°C, although their survival was affected at low temperatures. Two linear and four nonlinear models were fitted to describe developmental rates of P. solenopsis as a function of temperature, and for estimating thermal constants and bioclimatic thresholds (lower, optimum and upper temperature thresholds for development: Tmin, Topt and Tmax, respectively). Estimated thresholds between the two linear models were statistically similar. Ikemoto and Takai's linear model permitted testing the equivalence of lower developmental thresholds for life stages of P. solenopsis reared on two hosts, hibiscus and cotton. Thermal constants required for completion of cumulative development of female and male nymphs and for the whole generation were significantly lower on hibiscus (222.2, 237.0, 308.6 degree-days, respectively) compared to cotton. Three nonlinear models performed better in describing the developmental rate for immature instars and cumulative life stages of female and male and for generation based on goodness-of-fit criteria. The simplified β type distribution function estimated Topt values closer to the observed maximum rates. Thermodynamic SSI model indicated no significant differences in the intrinsic optimum temperature estimates for different geographical populations of P. solenopsis. The estimated bioclimatic thresholds and the observed survival rates of P. solenopsis indicate the species to be high-temperature adaptive, and explained the field abundance of P. solenopsis on its host plants.

  15. Acceleration and sensitivity analysis of lattice kinetic Monte Carlo simulations using parallel processing and rate constant rescaling.

    Science.gov (United States)

    Núñez, M; Robie, T; Vlachos, D G

    2017-10-28

    Kinetic Monte Carlo (KMC) simulation provides insights into catalytic reactions unobtainable with either experiments or mean-field microkinetic models. Sensitivity analysis of KMC models assesses the robustness of the predictions to parametric perturbations and identifies rate determining steps in a chemical reaction network. Stiffness in the chemical reaction network, a ubiquitous feature, demands lengthy run times for KMC models and renders efficient sensitivity analysis based on the likelihood ratio method unusable. We address the challenge of efficiently conducting KMC simulations and performing accurate sensitivity analysis in systems with unknown time scales by employing two acceleration techniques: rate constant rescaling and parallel processing. We develop statistical criteria that ensure sufficient sampling of non-equilibrium steady state conditions. Our approach provides the twofold benefit of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis, which provides further speedup relative to finite difference sensitivity analysis. As a result, the likelihood ratio method can be applied to real chemistry. We apply our methodology to the water-gas shift reaction on Pt(111).

  16. THE MONETARY POLICY TRANSMISSION MECHANISM THROUGH INTEREST RATE. EMPIRICAL ANALYSIS: ROMANIA

    OpenAIRE

    Gabriel Bistriceanu

    2008-01-01

    Understanding monetary policy transmission is necessary to moentary policy projection and implementation of monetary policy in a efficient manner. I consider that interest rate monetary policy mechanism is very important because the interest rate is now the main instrument used by the majority of central banks in the world in taking monetary policy decissions and by all central banks wich have inflation targeting strategy. In this paper, I analysed monetary policy transmission mechanism throu...

  17. Rate Constants of PSII Photoinhibition and its Repair, and PSII Fluorescence Parameters in Field Plants in Relation to their Growth Light Environments.

    Science.gov (United States)

    Miyata, Kazunori; Ikeda, Hiroshi; Nakaji, Masayoshi; Kanel, Dhana Raj; Terashima, Ichiro

    2015-09-01

    The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Soil Penetration Rates by Earthworms and Plant Roots- Mechanical and Energetic Considerations

    Science.gov (United States)

    Ruiz, Siul; Schymanski, Stan; Or, Dani

    2016-04-01

    We analyze the implications of different soil burrowing rates by earthworms and growing plant roots using mechanical models that consider soil rheological properties. We estimate the energetic requirements for soil elasto-viscoplastic displacement at different rates for similar burrows and water contents. In the core of the mechanical model is a transient cavity expansion into viscoplastic wet soil that mimic an earthworm or root tip cone-like penetration and subsequent cavity expansion due to pressurized earthworm hydrostatic skeleton or root radial growth. Soil matrix viscoplatic considerations enable separation of the respective energetic requirements for earthworms penetrating at 2 μm/s relative to plant roots growing at 0.2 μm/s . Typical mechanical and viscous parameters are obtained inversely for soils under different fixed water contents utilizing custom miniaturized cone penetrometers at different fixed penetration rates (1 to 1000 μm/s). Experimental results determine critical water contents where soil exhibits pronounced viscoplatic behavior (close to saturation), bellow which the soil strength limits earthworms activity and fracture propagation by expanding plant roots becomes the favorable mechanical mode. The soil mechanical parameters in conjunction with earthworm and plant root physiological pressure limitations (200 kPa and 2000 kPa respectively) enable delineation of the role of soil saturation in regulating biotic penetration rates for different soil types under different moisture contents. Furthermore, this study provides a quantitative framework for estimating rates of energy expenditure for soil penetration, which allowed us to determine maximum earthworm population densities considering soil mechanical properties and the energy stored in soil organic matter.

  19. A small cosmological constant and backreaction of non-finetuned parameters

    International Nuclear Information System (INIS)

    Krause, Axel

    2003-01-01

    We include the backreaction on warped geometry induced by non-finetuned parameters in a two domain-wall set-up to obtain an exponentially small Cosmological Constant Λ4. The mechanism to suppress the Cosmological Constant involves one classical fine-tuning as compared to an infinity of finetunings at the quantum level in standard D = 4 field theory. (author)

  20. Determination of the rate constant for the OH(X2Π) + OH(X2Π) → H2O + O(3P) reaction over the temperature range 295 to 701 K.

    Science.gov (United States)

    Altinay, Gokhan; Macdonald, R Glen

    2014-01-09

    The rate constant for the radical-radical reaction OH(X(2)Π) + OH(X(2)Π) → H2O + O((3)P) has been measured over the temperature and pressure ranges 295-701 K and 2-12 Torr, respectively, in mixtures of CF4, N2O, and H2O. The OH radical was produced by the 193 nm laser photolysis of N2O. The resulting O((1)D) atoms reacted rapidly with H2O to produce the OH radical. The OH radical was detected by high-resolution time-resolved infrared absorption spectroscopy using a single Λ-doublet component of the OH(1,0) P1e/f(4.5) fundamental vibrational transition. A detailed kinetic model was used to determine the reaction rate constant as a function of temperature. These experiments were conducted in a new temperature controlled reaction chamber. The values of the measured rate constants are quite similar to the previous measurements from this laboratory of Bahng and Macdonald (J. Phys. Chem. A 2007 , 111 , 3850 - 3861); however, they cover a much larger temperature range. The results of the present work do not agree with recent measurements of Sangwan and Krasnoperov (J. Phys. Chem. A 2012 , 116 , 11817 - 11822). At 295 K the rate constant of the title reaction was found to be (2.52 ± 0.63) × 10(-12) cm(3) molecule(-1) s(-1), where the uncertainty includes both experimental scatter and an estimate of systematic errors at the 95% confidence limit. Over the temperature range of the experiments, the rate constant can be represented by k1a = 4.79 × 10(-18)T(1.79) exp(879.0/T) cm(3) molecule(-1) s(-1) with a uncertainty of ±24% at the 2σ level, including experimental scatter and systematic error.

  1. Reaction F + C2H4: Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298-950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2018-03-29

    The kinetics and products of the reaction of F + C 2 H 4 have been studied in a discharge flow reactor combined with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium in the temperature range 298-950 K. The total rate constant of the reaction, k 1 = (1.78 ± 0.30) × 10 -10 cm 3 molecule -1 s -1 , determined under pseudo-first-order conditions, monitoring the kinetics of F atom consumption in excess of C 2 H 4 , was found to be temperature independent in the temperature range used. H, C 2 H 3 F, and HF were identified as the reaction products. Absolute measurements of the yields of these species allowed to determine the branching ratios, k 1b / k 1 = (0.73 ± 0.07) exp(-(425 ± 45)/ T) and k 1a / k 1 = 1 - (0.73 ± 0.07) exp(-(425 ± 45)/ T) and partial rate constants for addition-elimination (H + C 2 H 3 F) and H atom abstraction (HF + C 2 H 3 ) pathways of the title reaction: k 1a = (0.80 ± 0.07) × 10 -10 exp(189 ± 37/ T) and k 1b = (1.26 ± 0.13) × 10 -10 exp(-414 ± 45/ T) cm 3 molecule -1 s -1 , respectively, at T = 298-950 K and with 2σ quoted uncertainties. The overall reaction rate constant can be adequately described by both the temperature independent value and as a sum of k 1a and k 1b . The kinetic and mechanistic data from the present study are discussed in comparison with previous absolute and relative measurements and theoretical calculations.

  2. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan

    2001-01-01

    , absolute second-order rate constants for the reactions of HOCl with protein side chains, model compounds, and backbone amide (peptide) bonds have been determined at physiological pH values. The reactivity of HOCl with potential reactive sites in proteins is summarized by the series: Met (3.8 x 10(7) M(-1......Hypochlorous acid (HOCl) is a potent oxidant, which is produced in vivo by activated phagocytes. This compound is an important antibacterial agent, but excessive or misplaced production has been implicated in a number of human diseases, including atherosclerosis, arthritis, and some cancers....... Proteins are major targets for this oxidant, and such reaction results in side-chain modification, backbone fragmentation, and cross-linking. Despite a wealth of qualitative data for such reactions, little absolute kinetic data is available to rationalize the in vitro and in vivo data. In this study...

  3. Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

    Science.gov (United States)

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  4. On the calculation of quantum mechanical ground states from classical geodesic motion on certain spaces of constant negative curvature

    International Nuclear Information System (INIS)

    Tomaschitz, R.

    1989-01-01

    We consider geodesic motion on three-dimensional Riemannian manifolds of constant negative curvature, topologically equivalent to S x ]0,1[, S a compact surface of genus two. To those trajectories which are recurrent in both directions of the time evolution t → +∞, t → -∞ a fractal limit set is associated whose Hausdorff dimension is intimately connected with the quantum mechanical energy ground state, determined by the Schroedinger operator on the manifold. We give a rather detailed and pictorial description of the hyperbolic spaces we have in mind, discuss various aspects of classical and quantum mechanical motion on them as far as they are needed to establish the connection between energy ground state and Hausdorff dimension and give finally some examples of ground state calculations in terms of Hausdorff dimensions of limit sets of classical trajectories. (orig.)

  5. Tissue vitamin concentrations are maintained constant by changing the urinary excretion rate of vitamins in rats' restricted food intake.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2014-01-01

    We previously reported that mild food restriction induces a reduction in tryptophan-nicotinamide conversion, which helps to explain why death secondary to pellagra is pandemic during the hungry season. In this study, we investigated the levels of B-group vitamins in the liver, kidney, blood, and urine in rats that underwent gradual restriction of food intake (80, 60, 40, and 20% restriction vs. ad libitum food intake). No significant differences in the B-group vitamin concentrations (mol/g tissue) in the liver and kidney were observed at any level of food restriction. However, the urine excretion rates exhibited some characteristic phenomena that differed by vitamin. These results show that the tissue concentrations of B-group vitamins were kept constant by changing the urinary elimination rates of vitamins under various levels of food restriction. Only vitamin B12 was the only (exception).

  6. Constant Proportion Debt Obligations (CPDOs)

    DEFF Research Database (Denmark)

    Cont, Rama; Jessen, Cathrine

    2012-01-01

    be made arbitrarily small—and thus the credit rating arbitrarily high—by increasing leverage, but the ratings obtained strongly depend on assumptions on the credit environment (high spread or low spread). More importantly, CPDO loss distributions are found to exhibit a wide range of tail risk measures......Constant Proportion Debt Obligations (CPDOs) are structured credit derivatives that generate high coupon payments by dynamically leveraging a position in an underlying portfolio of investment-grade index default swaps. CPDO coupons and principal notes received high initial credit ratings from...... the major rating agencies, based on complex models for the joint transition of ratings and spreads for all names in the underlying portfolio. We propose a parsimonious model for analysing the performance of CPDO strategies using a top-down approach that captures the essential risk factors of the CPDO. Our...

  7. Constant Fault Slip-Rates Over Hundreds of Millenia Constrained By Deformed Quaternary Palaeoshorelines: the Vibo and Capo D'Orlando Faults, Southern Italy.

    Science.gov (United States)

    Meschis, M.; Roberts, G.; Robertson, J.; Houghton, S.; Briant, R. M.

    2017-12-01

    Whether slip-rates on active faults accumulated over multiple seismic events is constant or varying over tens to hundreds of millenia timescales is an open question that can be addressed through study of deformed Quaternary palaeoshorelines. It is important to know the answer so that one can judge whether shorter timescale measurements (e.g. Holocene palaeoseismology or decadal geodesy) are suitable for determining earthquake recurrence intervals for Probabilistic Seismic Hazard Assessment or more suitable for studying temporal earthquake clustering. We present results from the Vibo Fault and the Capo D'Orlando Fault, that lie within the deforming Calabrian Arc, which has experienced damaging seismic events such as the 1908 Messina Strait earthquake ( Mw 7) and the 1905 Capo Vaticano earthquake ( Mw 7). These normal faults deform uplifted Late Quaternary palaeoshorelines, which outcrop mainly within their hangingwalls, but also partially in their footwalls, showing that a regional subduction and mantle-related uplift outpaces local fault-related subsidence. Through (1) field and DEM-based mapping of palaeoshorelines, both up flights of successively higher, older inner edges, and along the strike of the faults, and (2) utilisation of synchronous correlation of non-uniformly-spaced inner edge elevations with non-uniformly spaced sea-level highstand ages, we show that slip-rates decrease towards fault tips and that slip-rates have remained constant since 340 ka (given the time resolution we obtain). The slip-rates for the Capo D'Orlando Fault and Vibo Fault are 0.61mm/yr and 1mm/yr respectively. We show that the along-strike gradients in slip-rate towards fault tips differ for the two faults hinting at fault interaction and also discuss this in terms of other regions of extension like the Gulf of Corinth, Greece, where slip-rate has been shown to change through time through the Quaternary. We make the point that slip-rates may change through time as fault systems grow

  8. Mechanism of sliding friction on a film-terminated fibrillar interface.

    Science.gov (United States)

    Shen, Lulin; Jagota, Anand; Hui, Chung-Yuen

    2009-03-03

    We study the mechanism of sliding friction on a film-terminated fibrillar interface. It has been shown that static friction increases significantly with increasing spacing between fibrils, and with increasing rate of loading. However, surprisingly, the sliding friction remains substantially unaffected both by geometry and by the rate of loading. The presence of the thin terminal film is a controlling factor in determining the sliding friction. Experimentally, and by a simple model in which the indenter is held up by the tension in the thin film, we show how the indenter maintains a nearly constant contact area that is independent of the fibril spacing, resulting in constant sliding friction. By this mechanism, using the film-terminated structure, one can enhance the static friction without affecting the sliding behavior.

  9. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0.

    Science.gov (United States)

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.

  10. The influence of nonbilinear system-bath coupling on quantum-mechanical activated rate processes

    International Nuclear Information System (INIS)

    Navrotskaya, Irina; Geva, Eitan

    2006-01-01

    The dependence of quantum-mechanical activated rate processes on the system-bath coupling strength was investigated in the case of a double-well nonbilinearly coupled to a harmonic bath, where the system-bath coupling is linear in the bath coordinates and nonlinear in the reaction coordinate. Such nonbilinear coupling is known to give rise to a classical friction kernel which is explicitly dependent on the reaction coordinate. We show that it can also lead to quantum-mechanical barrier-crossing rates, whose dependence on the system-bath coupling strength is qualitatively different from that observed in the quantum-mechanical bilinear case and classical nonbilinear case. More specifically, it is shown that the quantum-mechanical barrier-crossing rate may monotonically increase as a function of the system-bath coupling strength, in cases where the classical barrier-crossing rate goes through a turnover, and that the rate of quantum-mechanical barrier-crossing can be lower than that of classical barrier-crossing. We show that those purely quantum-mechanical effects are of a thermodynamical, rather than dynamical, nature, and that they originate from the difference in friction between the barrier top and the reactant and product wells. Our conclusions are supported by results obtained via the CMD method, which were also found to be in very good agreement with numerically exact calculations based on the QUAPI method

  11. Rate Constants for the Reactions of OH with CH(sub 3)Cl, CH(sub 2) C1(sub 2), CHC1(sub 3)and CH(sub 3)Br

    Science.gov (United States)

    Hsu, H-J.; DeMore, W.

    1994-01-01

    Rate constants for the reactions of OH with CH3C1, CH2Cl2, CHCl3 and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2)and for CH2Cl2, HFC-161 (CH3CH2F).

  12. Application of the constant rate of pressure change method to improve jet pump performance

    International Nuclear Information System (INIS)

    Long, X P; Yang, X L

    2012-01-01

    This paper adopts a new method named the constant rate of pressure change (CRPC) to improve the jet pump performance. The main contribution of this method is that the diffuser generates uniform pressure gradient. The performance of the jet pump with new diffusers designed by the CRPC method, obtained by CFD methods, was compared with that of the jet pump with traditional conical diffusers. It is found that the CRPC diffuser produces a linear pressure increase indeed. The higher friction loss and the separation decrease the CRPC diffuser efficiency and then lower the pump efficiency. The pump with shorter throats has higher efficiency at small flow ratio while its efficiency is lower than the original pump at lager flow ratio and the peak efficiency of the pumps with the throat length of 5-6 Dt is higher than that of the pumps with other throat length. When the throat length is less than 4 Dt, the CRPC diffuser efficiency is higher than the conical diffuser. The CRPC method could also be used to design the nozzle and other situations needing the pressure change gradually.

  13. Mechanics of arterial subfailure with increasing loading rate.

    Science.gov (United States)

    Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A

    2007-01-01

    Arterial subfailure leads to delayed symptomatology and high morbidity and mortality rates, particularly for the thoracic aorta and carotid arteries. Although arterial injuries occur during high-velocity automotive collisions, previous studies of arterial subfailure focused on quasi-static loading. This investigation subjected aortic segments to increasing loading rates to quantify effects on elastic, subfailure, and ultimate vessel mechanics. Sixty-two specimens were axially distracted, and 92% demonstrated subfailure before ultimate failure. With increasing loading rate, stress at initial subfailure and ultimate failure significantly increased, and strain at initial subfailure and ultimate failure significantly decreased. Present results indicate increased susceptibility for arterial subfailure and/or dissection under higher-rate extension. According to the present results, automotive occupants are at greater risk of arterial injury under higher velocity impacts due to greater body segment motions in addition to decreased strain tolerance to subfailure and catastrophic failure.

  14. On time variation of fundamental constants in superstring theories

    International Nuclear Information System (INIS)

    Maeda, K.I.

    1988-01-01

    Assuming the action from the string theory and taking into account the dynamical freedom of a dilaton and its coupling to matter fluid, the authors show that fundamental 'constants' in string theories are independent of the 'radius' of the internal space. Since the scalar related to the 'constants' is coupled to the 4-dimensional gravity and matter fluid in the same way as in the Jordan-Brans Dicke theory with ω = -1, it must be massive and can get a mass easily through some symmetry breaking mechanism (e.g. the SUSY breaking due to a gluino condensation). Consequently, time variation of fundamental constants is too small to be observed

  15. Direct measurements of the total rate constant of the reaction NCN + H and implications for the product branching ratio and the enthalpy of formation of NCN.

    Science.gov (United States)

    Fassheber, Nancy; Dammeier, Johannes; Friedrichs, Gernot

    2014-06-21

    The overall rate constant of the reaction (2), NCN + H, which plays a key role in prompt-NO formation in flames, has been directly measured at temperatures 962 K rate constants are best represented by the combination of two Arrhenius expressions, k2/(cm(3) mol(-1) s(-1)) = 3.49 × 10(14) exp(-33.3 kJ mol(-1)/RT) + 1.07 × 10(13) exp(+10.0 kJ mol(-1)/RT), with a small uncertainty of ±20% at T = 1600 K and ±30% at the upper and lower experimental temperature limits.The two Arrhenius terms basically can be attributed to the contributions of reaction channel (2a) yielding CH + N2 and channel (2b) yielding HCN + N as the products. A more refined analysis taking into account experimental and theoretical literature data provided a consistent rate constant set for k2a, its reverse reaction k1a (CH + N2 → NCN + H), k2b as well as a value for the controversial enthalpy of formation of NCN, ΔfH = 450 kJ mol(-1). The analysis verifies the expected strong temperature dependence of the branching fraction ϕ = k2b/k2 with reaction channel (2b) dominating at the experimental high-temperature limit. In contrast, reaction (2a) dominates at the low-temperature limit with a possible minor contribution of the HNCN forming recombination channel (2d) at T < 1150 K.

  16. Biased Brownian dynamics for rate constant calculation.

    OpenAIRE

    Zou, G; Skeel, R D; Subramaniam, S

    2000-01-01

    An enhanced sampling method-biased Brownian dynamics-is developed for the calculation of diffusion-limited biomolecular association reaction rates with high energy or entropy barriers. Biased Brownian dynamics introduces a biasing force in addition to the electrostatic force between the reactants, and it associates a probability weight with each trajectory. A simulation loses weight when movement is along the biasing force and gains weight when movement is against the biasing force. The sampl...

  17. Direct determination of the rate constant of propagation by pseudo-stationary polymerization technique: screening investigation for the (implicit) penultimate effect

    International Nuclear Information System (INIS)

    Schnoll-Bitai, I.; Friedrich Olaj, O.; Liu Song Yu

    1999-01-01

    The systems styrene-p-methylstyrene, styrene-p-chlorostyrene, methyl methacrylate-p-methylstyrene and methyl methacrylate-p-chlorostyrene were polymerized under pseudo-stationary conditions (rotating sector or pulsed laser) at 25 degree C, 40 degree C and 50 degree C. The respective molecular weight distributions measured by GPC were analysed in order to derive directly the phenomenological rate constant of propagation, κ sub ρ. Copolymer compositions as a function of monomer feed could be described by the terminal model, whereas the kinetic results could only be interpreted in terms of the restricted penultimate model

  18. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    Science.gov (United States)

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  19. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Sung Hwan Park

    2013-01-01

    Full Text Available An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  20. Approximation for the Finite-Time Ruin Probability of a General Risk Model with Constant Interest Rate and Extended Negatively Dependent Heavy-Tailed Claims

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2011-01-01

    Full Text Available We propose a general continuous-time risk model with a constant interest rate. In this model, claims arrive according to an arbitrary counting process, while their sizes have dominantly varying tails and fulfill an extended negative dependence structure. We obtain an asymptotic formula for the finite-time ruin probability, which extends a corresponding result of Wang (2008.

  1. Online feedback-controlled renal constant infusion clearances in rats.

    Science.gov (United States)

    Schock-Kusch, Daniel; Shulhevich, Yury; Xie, Qing; Hesser, Juergen; Stsepankou, Dzmitry; Neudecker, Sabine; Friedemann, Jochen; Koenig, Stefan; Heinrich, Ralf; Hoecklin, Friederike; Pill, Johannes; Gretz, Norbert

    2012-08-01

    Constant infusion clearance techniques using exogenous renal markers are considered the gold standard for assessing the glomerular filtration rate. Here we describe a constant infusion clearance method in rats allowing the real-time monitoring of steady-state conditions using an automated closed-loop approach based on the transcutaneous measurement of the renal marker FITC-sinistrin. In order to optimize parameters to reach steady-state conditions as fast as possible, a Matlab-based simulation tool was established. Based on this, a real-time feedback-regulated approach for constant infusion clearance monitoring was developed. This was validated by determining hourly FITC-sinistrin plasma concentrations and the glomerular filtration rate in healthy and unilaterally nephrectomized rats. The transcutaneously assessed FITC-sinistrin fluorescence signal was found to reflect the plasma concentration. Our method allows the precise determination of the onset of steady-state marker concentration. Moreover, the steady state can be monitored and controlled in real time for several hours. This procedure is simple to perform since no urine samples and only one blood sample are required. Thus, we developed a real-time feedback-based system for optimal regulation and monitoring of a constant infusion clearance technique.

  2. Diffusional falsification of kinetic constants on Lineweaver-Burk plots.

    Science.gov (United States)

    Ghim, Y S; Chang, H N

    1983-11-07

    The effect of mass transfer resistances on the Lineweaver-Burk plots in immobilized enzyme systems has been investigated numerically and with analytical approximate solutions. While Hamilton, Gardner & Colton (1974) studied the effect of internal diffusion resistances in planar geometry, our study was extended to the combined effect of internal and external diffusion in cylindrical and spherical geometries as well. The variation of Lineweaver-Burk plots with respect to the geometries was minimized by modifying the Thiele modulus and the Biot number with the shape factor. Especially for a small Biot number all the three Lineweaver-Burk plots fell on a single line. As was discussed by Hamilton et al. (1974), the curvature of the line for large external diffusion resistances was small enough to be assumed linear, which was confirmed from the two approximate solutions for large and small substrate concentrations. Two methods for obtaining intrinsic kinetic constants were proposed: First, we obtained both maximum reaction rate and Michaelis constant by fitting experimental data to a straight line where external diffusion resistance was relatively large, and second, we obtained Michaelis constant from apparent Michaelis constant from the figure in case we knew maximum reaction rate a priori.

  3. Strain-rate dependent plasticity in thermo-mechanical transient analysis

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.

    1980-01-01

    The thermo-mechanical transient behavior of fuel element cladding and other reactor components is generally governed by the strain-rate properties of the material. Relevant constitutive modeling requires extensive material data in the form of strain-rate response as function of true-stress, temperature, time and environmental conditions, which can then be fitted within a theoretical framework of an inelastic constitutive model. In this paper, we present a constitutive formulation that deals continuously with the entire strain-rate range and has the desirable advantage of utilizing existing material data. The derivation makes use of strain-rate sensitive stress-strain curve and strain-rate dependent yield surface. By postulating a strain-rate dependent on Mises yield function and a strain-rate dependent kinematic hardening rule, we are able to derive incremental stress-strain relations that describe the strain-rate behavior in the entire deformation range spanning high strain-rate plasticity and creep. The model is sufficiently general as to apply to any materials and loading histories for which data is available. (orig.)

  4. Potential constants and centrifugal distortion constants of octahedral hexafluoride molecules

    Energy Technology Data Exchange (ETDEWEB)

    Manivannan, G [Government Thirumagal Mill' s Coll., Gudiyattam, Tamil Nadu (India)

    1981-04-01

    The kinetic constants method outlined by Thirugnanasambandham (1964) based on Wilson's (1955) group theory has been adapted in evaluating the potential constants for SF/sub 6/, SeF/sub 6/, WF/sub 6/, IrF/sub 6/, UF/sub 6/, NpF/sub 6/, and PuF/sub 6/ using the experimentally observed vibrational frequency data. These constants are used to calculate the centrifugal distortion constants for the first time.

  5. A Constant Rate of Spontaneous Mutation in DNA-Based Microbes

    Science.gov (United States)

    Drake, John W.

    1991-08-01

    In terms of evolution and fitness, the most significant spontaneous mutation rate is likely to be that for the entire genome (or its nonfrivolous fraction). Information is now available to calculate this rate for several DNA-based haploid microbes, including bacteriophages with single- or double-stranded DNA, a bacterium, a yeast, and a filamentous fungus. Their genome sizes vary by ≈6500-fold. Their average mutation rates per base pair vary by ≈16,000-fold, whereas their mutation rates per genome vary by only ≈2.5-fold, apparently randomly, around a mean value of 0.0033 per DNA replication. The average mutation rate per base pair is inversely proportional to genome size. Therefore, a nearly invariant microbial mutation rate appears to have evolved. Because this rate is uniform in such diverse organisms, it is likely to be determined by deep general forces, perhaps by a balance between the usually deleterious effects of mutation and the physiological costs of further reducing mutation rates.

  6. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    Science.gov (United States)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Traffic management mechanism for intranets with available-bit-rate access to the Internet

    Science.gov (United States)

    Hassan, Mahbub; Sirisena, Harsha R.; Atiquzzaman, Mohammed

    1997-10-01

    The design of a traffic management mechanism for intranets connected to the Internet via an available bit rate access- link is presented. Selection of control parameters for this mechanism for optimum performance is shown through analysis. An estimate for packet loss probability at the access- gateway is derived for random fluctuation of available bit rate of the access-link. Some implementation strategies of this mechanism in the standard intranet protocol stack are also suggested.

  8. Constant-flow ventilation in canine experimental pulmonary emphysema.

    Science.gov (United States)

    Hachenberg, T; Wendt, M; Meyer, J; Struckmeier, O; Lawin, P

    1989-07-01

    The efficacy of constant-flow ventilation (CFV) was investigated in eight mongrel dogs before (control-phase) and after development of papain-induced panlobular emphysema (PLE-phase). For CFV, heated, humidified and oxygen-enriched air was continuously delivered via two catheters positioned within each mainstem bronchus at flow rates (V) of 0.33, 0.5 and 0.66 l/s. Data obtained during intermittent positive pressure ventilation (IPPV) served as reference. In the control-phase, Pao2 was lower (P less than or equal to 0.05) and alveolo-arterial O2 difference (P(A-a)O2) was higher (P less than or equal to 0.01) during CFV at all flow rates when compared with IPPV. This may be due to inhomogeneities of intrapulmonary gas distribution and increased ventilation-perfusion (VA/Q) mismatching. Paco2 and V showed a hyperbolic relationship; constant normocapnia (5.3 kPa) was achieved at 0.48 +/- 0.21 l/s (V53). Development of PLE resulted in an increase of functional residual capacity (FRC), residual volume (RV) and static compliance (Cstat) (P less than or equal to 0.05). PaO2 had decreased and P(A-a)O2 had increased (P less than or equal to 0.05), indicating moderate pulmonary dysfunction. Oxygenation during CFV was not significantly different in the PLE-phase when compared with the control-phase. Paco2 and V showed a hyperbolic relationship and V5.3 was even lower than in the control-group (0.42 +/- 0.13 l/s). In dogs with emphysematous lungs CFV maintains sufficient gas exchange. This may be due to preferential ventilation of basal lung units, thereby counterbalancing the effects of impaired lung morphometry and increased airtrapping. Conventional mechanical ventilation is more effective in terms of oxygenation and CO2-elimination.

  9. Hydrogen Abstraction Acetylene Addition and Diels-Alder Mechanisms of PAH Formation:  A Detailed Study Using First Principles Calculations.

    Science.gov (United States)

    Kislov, V V; Islamova, N I; Kolker, A M; Lin, S H; Mebel, A M

    2005-09-01

    Extensive ab initio Gaussian-3-type calculations of potential energy surfaces (PES), which are expected to be accurate within 1-2 kcal/mol, combined with statistical theory calculations of reaction rate constants have been applied to study various possible pathways in the hydrogen abstraction acetylene addition (HACA) mechanism of naphthalene and acenaphthalene formation as well as Diels-Alder pathways to acenaphthalene, phenanthrene, and pyrene. The barrier heights; reaction energies; and molecular parameters of the reactants, products, intermediates, and transition states have been generated for all types of reactions involved in the HACA and Diels-Alder mechanisms, including H abstraction from various aromatic intermediates, acetylene addition to radical sites, ring closures leading to the formation of additional aromatic rings, elimination of hydrogen atoms, H disproportionation, C2H2 cycloaddition, and H2 loss. The reactions participating in various HACA sequences (e.g., Frenklach's, alternative Frenklach's, and Bittner and Howard's routes) are demonstrated to have relatively low barriers and high rate constants under combustion conditions. A comparison of the significance of different HACA mechanisms in PAH growth can be made in the future using PES and molecular parameters obtained in the present work. The results show that the Diels-Alder mechanism cannot compete with the HACA pathways even at high combustion temperatures, because of high barriers and consequently low reaction rate constants. The calculated energetic parameters and rate constants have been compared with experimental and theoretical data available in the literature.

  10. Measurement of the ground-state distributions in bistable mechanically interlocked molecules using slow scan rate cyclic voltammetry.

    Science.gov (United States)

    Fahrenbach, Albert C; Barnes, Jonathan C; Li, Hao; Benítez, Diego; Basuray, Ashish N; Fang, Lei; Sue, Chi-Hau; Barin, Gokhan; Dey, Sanjeev K; Goddard, William A; Stoddart, J Fraser

    2011-12-20

    In donor-acceptor mechanically interlocked molecules that exhibit bistability, the relative populations of the translational isomers--present, for example, in a bistable [2]rotaxane, as well as in a couple of bistable [2]catenanes of the donor-acceptor vintage--can be elucidated by slow scan rate cyclic voltammetry. The practice of transitioning from a fast scan rate regime to a slow one permits the measurement of an intermediate redox couple that is a function of the equilibrium that exists between the two translational isomers in the case of all three mechanically interlocked molecules investigated. These intermediate redox potentials can be used to calculate the ground-state distribution constants, K. Whereas, (i) in the case of the bistable [2]rotaxane, composed of a dumbbell component containing π-electron-rich tetrathiafulvalene and dioxynaphthalene recognition sites for the ring component (namely, a tetracationic cyclophane, containing two π-electron-deficient bipyridinium units), a value for K of 10 ± 2 is calculated, (ii) in the case of the two bistable [2]catenanes--one containing a crown ether with tetrathiafulvalene and dioxynaphthalene recognition sites for the tetracationic cyclophane, and the other, tetrathiafulvalene and butadiyne recognition sites--the values for K are orders (one and three, respectively) of magnitude greater. This observation, which has also been probed by theoretical calculations, supports the hypothesis that the extra stability of one translational isomer over the other is because of the influence of the enforced side-on donor-acceptor interactions brought about by both π-electron-rich recognition sites being part of a macrocyclic polyether.

  11. Compression-rate-dependent nonlinear mechanics of normal and impaired porcine knee joints.

    Science.gov (United States)

    Rodriguez, Marcel Leonardo; Li, LePing

    2017-11-14

    The knee joint performs mechanical functions with various loading and unloading processes. Past studies have focused on the kinematics and elastic response of the joint with less understanding of the rate-dependent load response associated with viscoelastic and poromechanical behaviors. Forty-five fresh porcine knee joints were used in the present study to determine the loading-rate-dependent force-compression relationship, creep and relaxation of normal, dehydrated and meniscectomized joints. The mechanical tests of all normal intact joints showed similar strong compression-rate-dependent behavior: for a given compression-magnitude up to 1.2 mm, the reaction force varied 6 times over compression rates. While the static response was essentially linear, the nonlinear behavior was boosted with the increased compression rate to approach the asymptote or limit at approximately 2 mm/s. On the other hand, the joint stiffness varied approximately 3 times over different joints, when accounting for the maturity and breed of the animals. Both a loss of joint hydration and a total meniscectomy greatly compromised the load support in the joint, resulting in a reduction of load support as much as 60% from the corresponding intact joint. However, the former only weakened the transient load support, but the latter also greatly weakened the equilibrium load support. A total meniscectomy did not diminish the compression-rate-dependence of the joint though. These findings are consistent with the fluid-pressurization loading mechanism, which may have a significant implication in the joint mechanical function and cartilage mechanobiology.

  12. Generalized Kolmogorov--von Karman relation and some further implications on the magnitude of the constants

    International Nuclear Information System (INIS)

    Frenzen, P.

    1975-01-01

    The relation between the Kolmogorov and von Karman constants in the atmospheric surface boundary layer appropriate to the special conditions of neutrally stratified and locally dissipating flow is essentially a straightforward combination of the logarithmic wind profile, the one-dimensional spectral relation for turbulent energy density in the inertial subrange, and a reduced turbulent energy equation that balances the dissipation rate with a mechanical production term alone. The effects of the stability-dependent, dimensionless wind shear, the diabatic wind profile (an integral of the above), on the complete energy equation are discussed

  13. ADSORPTION RATE CONSTANTS OF EOSIN IN HUMIN

    OpenAIRE

    anshar, andi muhammad

    2015-01-01

    Eosin is one of the dyes commonly used in the industry and has the potential to cause pollution of the water environment. The Eosin pollution treatment methods used in this study was the adsorption method using humin fraction obtained from the peat land comes from Kalimantan. From the research data showed that the adsorption of eosin in humin result of washing with HCl / HF optimum at pH 4 and a contact time of 60 minutes with the adsorption-order rate was 8,4 x 10-3 min-1

  14. Number of generations related to coupling constants by confusion

    International Nuclear Information System (INIS)

    Bennett, D.L.; Nielsen, H.B.

    1987-01-01

    In the context of random dynamics, the mechanism of confusion is used to obtain a relation between the number of generations and standard model coupling constants. Preliminary results predict the existence of four generations. (orig.)

  15. Reaction paths and rate constants of the reaction of hydroxyl radicals with environmental species under tropospheric conditions

    International Nuclear Information System (INIS)

    Leonard, C.; Wahner, A.; Zetzsch, C.

    1987-01-01

    The uv-laser absorption technique in a multipath cell (with excimer-laser photolysis for radical production) is used to investigate the rate constants of the reaction of OH with carbon monoxide. The pressure dependence and the influence of collision partners (measurements in pure oxygen up to one atmosphere) of this important atmospheric chemical reaction are determined. In the kinetic measurements detection limits of 10 7 OH cm -3 are reached with millisecond time resolution. Furthermore the application of the cw-Laser for stationary OH measurements (for example in smog chambers or the free troposphere) is described. The possibilities and limits of different detection methods are discussed with respect to of noise spectra. Modifications of the apparatus with a frequency modulation technique are presented, with an extrapolated detection limit of 10 5 OH cm -3 . (orig.) With 43 refs., 16 figs [de

  16. Detection of exudates in fundus imagery using a constant false-alarm rate (CFAR) detector

    Science.gov (United States)

    Khanna, Manish; Kapoor, Elina

    2014-05-01

    Diabetic retinopathy is the leading cause of blindness in adults in the United States. The presence of exudates in fundus imagery is the early sign of diabetic retinopathy so detection of these lesions is essential in preventing further ocular damage. In this paper we present a novel technique to automatically detect exudates in fundus imagery that is robust against spatial and temporal variations of background noise. The detection threshold is adjusted dynamically, based on the local noise statics around the pixel under test in order to maintain a pre-determined, constant false alarm rate (CFAR). The CFAR detector is often used to detect bright targets in radar imagery where the background clutter can vary considerably from scene to scene and with angle to the scene. Similarly, the CFAR detector addresses the challenge of detecting exudate lesions in RGB and multispectral fundus imagery where the background clutter often exhibits variations in brightness and texture. These variations present a challenge to common, global thresholding detection algorithms and other methods. Performance of the CFAR algorithm is tested against a publicly available, annotated, diabetic retinopathy database and preliminary testing suggests that performance of the CFAR detector proves to be superior to techniques such as Otsu thresholding.

  17. A systematic evaluation of the dose-rate constant determined by photon spectrometry for 21 different models of low-energy photon-emitting brachytherapy sources.

    Science.gov (United States)

    Chen, Zhe Jay; Nath, Ravinder

    2010-10-21

    The aim of this study was to perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value ((CON)Λ) recommended by the American Association of Physicists in Medicine (AAPM) for 21 low-energy photon-emitting interstitial brachytherapy sources. A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either (125)I (14 models), (103)Pd (6 models) or (131)Cs (1 model) were included in this study. A PST described by Chen and Nath (2007 Med. Phys. 34 1412-30) was used to determine the dose-rate constant ((PST)Λ) for each source model. Source-dependent variations in (PST)Λ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. The values of (PST)Λ for the encapsulated sources of (103)Pd, (125)I and (131)Cs varied from 0.661 to 0.678 cGyh(-1) U(-1), 0.959 to 1.024 cGyh(-1)U(-1) and 1.066 to 1.073 cGyh(-1)U(-1), respectively. The relative variation in (PST)Λ among the six (103)Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in (PST)Λ were observed among the 14 (125)I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some (125)I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the (PST)Λ value to vary from 0.959 to 1.019 cGyh(-1)U(-1) depending on the amount of silver used by a given source model. For those (125)I sources that contain no silver, their (PST)Λ was less variable and had values within 1% of 1.024 cGyh(-1)U(-1). For the 16

  18. Rate Constants for the Reactions of OH with CO, NO and NO2, and of HO2 with NO2 in the Presence of Water Vapour at Lower-Tropospheric Conditions

    Science.gov (United States)

    Rolletter, Michael; Fuchs, Hendrik; Novelli, Anna; Ehlers, Christian; Hofzumahaus, Andreas

    2016-04-01

    Recent studies have shown that the chemistry of gaseous nitrous acid (HONO) in the lower troposphere is not fully understood. Aside from heterogenous reactions, the daytime HONO formation in the gas-phase is not well understood (Li et al., Science, 2014). For a better understanding of HONO in the gas-phase, we have reinvestigated the reaction rate constants of important tropospheric reactions of the HOx radical family (OH and HO2) with nitrogen oxides at realistic conditions of the lower troposphere (at ambient temperature/pressure and in humid air). In this study we apply a direct pump and probe technique with high accuracy, using small radical concentrations to avoid secondary chemistry. Pulsed laser photolysis/laser-induced fluorescence (LP/LIF) was used to investigate the reaction rate constants of OH with CO, NO, NO2, and HO2 with NO2 in synthetic air at different water vapor concentrations (up to 5 x 1017 molecules cm-3). Photolysis of ozone in the presence of gaseous water was the source of OH. The reactions took place in a flow-tube at room temperature and atmospheric pressure. The chemical decay of the radicals was monitored by laser-induced fluorescence detection in a low-pressure cell, which sampled air continuously from the end of the flow-tube. Knowing the reactant concentrations subsequently allowed to calculate the bimolecular reaction rate constants at 1 atm from the pseudo-first-order decays. In order to observe HO2 reactions, OH was converted into HO2 with an excess of CO in the flow-tube. The newly measured rate constants for OH with CO, NO and NO2 agree very well with current recommendations by NASA/JPL and IUPAC and have an improved accuracy (uncertainty < 5%). These rate coefficients are independent of the presence of water vapour. The measured rate constant of HO2 with NO2 was found to depend significantly on the water-vapour concentration (probably due to formation of HO2*H2O complexes) and to exceed current recommendations by NASA/JPL and

  19. Poly(dA-dT).poly(dA-dT) two-pathway proton exchange mechanism. Effect of general and specific base catalysis on deuteration rates

    International Nuclear Information System (INIS)

    Hartmann, B.; Leng, M.; Ramstein, J.

    1986-01-01

    The deuteration rates of the poly(dA-dT).poly(dA-dT) amino and imino protons have been measured with stopped-flow spectrophotometry as a function of general and specific base catalyst concentration. Two proton exchange classes are found with time constants differing by a factor of 10 (4 and 0.4 s-1). The slower class represents the exchange of the adenine amino protons whereas the proton of the faster class has been assigned to the thymine imino proton. The exchange rates of these two classes of protons are independent of general and specific base catalyst concentration. This very characteristic behavior demonstrates that in our experimental conditions the exchange rates of the imino and amino protons in poly(dA-dT).poly(dA-dT) are limited by two different conformational fluctuations. We present a three-state exchange mechanism accounting for our experimental results

  20. The rates and mechanisms of water exchange of actinide aqua ions: A variable temperature 17O NMR study of U(H2O)104+, UF(H2O)93+, and Th(H2O)104+

    International Nuclear Information System (INIS)

    Farkas, I.; Grenthe, I.; Banyai, I.

    2000-01-01

    The rate constants and the activation parameters for the exchange between water solvent and [U(H 2 O) 10 ] 4+ and [UF(H 2 O) 9 ] 3+ , and a lower limit for the rate constant at room temperature for [Th(H 2 O) 10 ] 4+ , were determined by 17 O NMR spectroscopy in the temperature range 255--305 K. The experiments were made at different constant hydrogen ion concentrations, which varied between 0.16 and 0.8 mol kg -1 . The Th(IV) system was investigated using Tb 3+ as a shift reagent. The following kinetic parameters at 25 C were obtained: k ex = (5.4 ± 0.6) 10 6 x -1 , ΔH double dagger = 34 ± 3 kJ mol -1 , ΔS ++ = -16 ± 10 J mol -1 K -1 for U 4+ (aq), k ex = (5.5 ± 0.7) 10 6 x -1 , ΔH d ouble dagger = 34 ± 3 kJ mol -1 , ΔS ++ = 3 ± 15 J mol -1 K -1 for UF 3+ (Iaq), and k ex > 5 10 7 s -1 for Th 4+ (aq), where the uncertainty is given at the 2σ-level. This is the first experimental information on the kinetic parameters for the exchange of water for any M 4+ ion. There is no information on the rates and mechanisms of ligand substitutions involving other mono-dentate ligands, hence the mechanistic interpretation of the data is by necessity provisional. The kinetic data and the known ground-state geometry with a coordination number of 10 ± 1 for the Th(IV) and U(IV) complexes suggest a dissociatively activated interchange mechanism. There is no noticeable effect of coordination of one fluoride or one hydroxide to U(IV) on the water exchange rate. This is unusual, for other metal ions there is a strong labilizing of coordinated water when a second ligand is bonded, e.g., in complexes of aluminum and some d-transition elements. In previous studies of the rates and mechanisms of ligand exchange in uranium (VI) systems the authors found a strong decrease in the lability of coordinated water in some fluoride containing complexes

  1. Kinetics and Mechanism of Oxidation of Triethylene Glycol and Tetraethylene Glycol by Ditelluratoargentate (III in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Jinhuan Shan

    2013-01-01

    Full Text Available The kinetics of oxidation of triethylene glycol and tetraethylene glycol by ditelluratoargentate (III (DTA in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2 K–313.2 K. The reaction rate showed first-order dependence in DTA and fractional order with respect to triethylene glycol or tetraethylene glycol. It was found that the pseudo-first-order rate constant (kobs increased with an increase in concentration of OH− and a decrease in concentration of H4TeO6 2−. There was a negative salt effect and no free radicals were detected. A plausible mechanism involving a two-electron transfer was proposed, and the rate equations derived from the mechanism explained all the experimental results and observations. The activation parameters along with the rate constants of the rate-determining step were calculated.

  2. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    International Nuclear Information System (INIS)

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-01-01

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  3. Control of the Protein Turnover Rates in Lemna minor

    Science.gov (United States)

    Trewavas, A.

    1972-01-01

    The control of protein turnover in Lemna minor has been examined using a method described in the previous paper for determining the rate constants of synthesis and degradation of protein. If Lemna is placed on water, there is a reduction in the rate constants of synthesis of protein and an increase (3- to 6-fold) in the rate constant of degradation. The net effect is a loss of protein from the tissue. Omission of nitrate, phosphate, sulfate, magnesium, or calcium results in increases in the rate constant of degradation of protein. An unusual dual effect of benzyladenine on the turnover constants has been observed. Treatment of Lemna grown on sucrose-mineral salts with benzyladenine results in alterations only in the rate constant of synthesis. Treatment of Lemna grown on water with benzyladenine alters only the rate constant of degradation. Abscisic acid on the other hand alters both rate constants of synthesis and degradation of protein together. Inclusion of growth-inhibiting amino acids in the medium results in a reduction in the rate constants of synthesis and increases in the rate constant of degradation of protein. It is concluded that the rate of turnover of protein in Lemna is very dependent on the composition of the growth medium. Conditions which reduce growth rates also reduce the rates of synthesis of protein and increase those of degradation. PMID:16657895

  4. Liquid metal coolant flow rate regulation

    International Nuclear Information System (INIS)

    Vitkovskij, I.V.; Glukhikh, V.A.; Kirillov, I.R.; Smirnov, A.M.

    1981-01-01

    Some aspects of fast reactor and experimental bench operation related to liquid metal flow rate regulation are considered. Requirements to the devices for the flow rate regulation are formulated. A new type of these devices namely magnetohydrodynamic (MHD) throttles is described. Structural peculiarities of MHD throttles of different types are described as well. It is noted that the MHD throttles with a screw channel have the best energy mass indices. On the basis of the comparison of the MHD throttles with mechanical valves it is concluded that the MHD throttles described are useful for regulating the flow rates of any working media. Smoothness and accuracy of the flow rate regulation by the throttles are determined by the electric control circuit and may be practically anyone. The total coefficient of hydraulic losses in the throttle channel in the absence of a magnetic field is ten and more times lesser than in completely open mechanical valve. Electromagnetic time constant of the MHD throttles does not exceed several tenths of a second [ru

  5. Are fundamental constants really constant

    International Nuclear Information System (INIS)

    Norman, E.B.

    1986-01-01

    Reasons for suspecting that fundamental constants might change with time are reviewed. Possible consequences of such variations are examined. The present status of experimental tests of these ideas is discussed

  6. Assessment of the analgesic potency of constant rate infusion of ...

    African Journals Online (AJOL)

    Parameters determined were heart and respiratory rates, blood glucose level, pain score and body weight. Results showed that mean heart rate, respiratory rate and body weight were not differed significantly (p > 0.05) within and among the groups. Mean blood glucose level of group 4 was significantly higher (p < 0.05) ...

  7. The effect of surfaces on AGR coolant chemistry: critical assessment of gas-phase rate constants relevant to ethane pyrolysis

    International Nuclear Information System (INIS)

    Gonzales, M.D.U.; Norfolk, D.J.

    1988-02-01

    Previous work has shown the ability of a chemical kinetic model, applied using the FACSIMILE computer code, to predict the thermal decomposition of ethane in a silica flow reactor. To optimise the performance of the model, the present report reviews the literature data on the twenty reactions which it incorporates. Critical assessment has shown some discrepancies in the previously used rate constants, especially those leading to ethyne formation. Table 2 of the report gives the kinetic data which, as a result of the present evaluation, are recommended for future work. Use of these data gives significantly improved agreement between the model and the experimental results, particularly for ethyne formation, which had previously been underestimated. (author)

  8. Wave packets in quantum cosmology and the cosmological constant

    International Nuclear Information System (INIS)

    Kiefer, C.

    1990-01-01

    Wave packets are constructed explicitly in minisuperspace of quantum gravity corresponding to a Friedmann universe containing a conformally coupled scalar field with and without a cosmological constant. The construction is performed in close analogy to the case of constructing coherent states in quantum mechanics. Various examples are also depicted numerically. The corresponding lorentzian path integrals are evaluated for some cases. It is emphasized that the new concept of time in quantum gravity demands the imposition of a kind of boundary conditions not encountered in quantum gravity demands the imposition of a kind of boundary conditions not encountered in quantum mechanics. Connection is also made to recent investigations predicting a vanishing cosmological constant. It is shown that the fact of whether this result is generic or not depends on where the boundary conditions are imposed in the configuration space. (orig.)

  9. Radiation dose rate meter

    International Nuclear Information System (INIS)

    Kronenberg, S.; Siebentritt, C.R.

    1981-01-01

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts

  10. Aging and loading rate effects on the mechanical behavior of equine bone

    Science.gov (United States)

    Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.

    2008-06-01

    Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.

  11. Electron exchange by hexakis(tert-butyl-isocyanide)- and hexakis(cyclohexyl isocyanide)manganese(I,II). Solvent effect on the rate constant and the volume of activation

    International Nuclear Information System (INIS)

    Stebler, M.; Nielson, R.M.; Siems, W.F.; Hunt, J.P.; Dodgen, H.W.; Wherland, H.W.

    1988-01-01

    The rate of electron self-exchange of Mn(CNC(CH 3 ) 3 ) 6 +/2+ and Mn(CNC 6 H 11 ) 6 +/2+ as the BF 4 - salts has been measured by 55 Mn NMR line broadening as a function of pressure, temperature, and concentration in acetonitrile, bromobenzene, benzonitrile, acetone, diethyl ketone, methanol, ethanol, methylene chloride, and trimethyl phosphate, and various binary mixtures of methylene chloride, bromobenzene, and acetonitrile. The values of ΔV double dagger obtained are negative and cover a range of ca. 12 cm 3 /mol, which is limited by ion pairing in the solvents of lower dielectric constant. The variation of the ambient pressure rate constant with solvent is qualitatively different for Mn(CNC(CH 3 ) 3 ) 6 +/2+ reaction than was observed for the Mn(CNC 6 H 11 ) 6 +/2+ reaction. This is taken as further evidence for a significant influence of rather subtle differences in solvation on the molecular level that are not approximated by dielectric continuum models. 30 references, 3 tables

  12. Piezooptical constants of Rochelle salt crystals

    OpenAIRE

    V.Yo. Stadnyk; M.O. Romanyuk; V.Yu. Kurlyak; V.F.Vachulovych

    2000-01-01

    The influence of uniaxial mechanical pressure applied along the principal axes and the corresponding bisectors on the birefringent properties of Rochelle salt (RS) crystals are studied. The temperature (77-300 K) and spectral (300-700 nm) dependencies of the effective and absolute piezooptical constants of the RS crystals are calculated. The intercept of dispersion curves of is revealed in the region of the birefringence sign inversion. This testifies that the anizotropy of the piezooptical ...

  13. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.

    Directory of Open Access Journals (Sweden)

    Gabriel D Puccini

    2007-05-01

    Full Text Available Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations in the cortical circuit remains largely unknown. Here, we identify the neurophysiological basis of both the rate of change and anticipation computations on synaptic inputs in a cortical circuit. Through biophysically realistic computer simulations and neuronal recordings, we show that the rate-of-change computation is operated robustly in cortical networks through the combination of two ubiquitous brain mechanisms: short-term synaptic depression and spike-frequency adaptation. We then show how this rate-of-change circuit can be embedded in a convergently connected network to anticipate temporally incoming synaptic inputs, in quantitative agreement with experimental findings on anticipatory responses to moving stimuli in the primary visual cortex. Given the robustness of the mechanism and the widespread nature of the physiological machinery involved, we suggest that rate-of-change computation and temporal anticipation are principal, hard-wired functions of neural information processing in the cortical microcircuit.

  14. Distance constant of the Risø cup anemometer

    DEFF Research Database (Denmark)

    Kristensen, L.; Frost Hansen, O.

    2002-01-01

    The theory for cup-anemometer dynamics is presented in some detail and two methods of obtaining the distance constant lo are discussed. The first method is based on wind tunnel measurements: with a constant wind speed the cup anemometer is released from alocked position of the rotor...... and the increasing rotation rate recorded. It is concluded that the rapid increase in rotation rate makes the method very inaccurate. The second method consists of an analysis of turbulent, atmospheric of wind speed asmeasured by the cup anemometer and a fast-responding sonic anemometer with a spatial eddy...... resolution which is significantly better than that which can be obtained by a cup anemometer. The ratio between the measured power spectra of the horizontal windspeed by the two instruments contains the necessary information for determining the response characteristics of the cup anemometer and thereby lo...

  15. Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues.

    Science.gov (United States)

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2015-02-26

    The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Inverse methods for the mechanical characterization of materials at high strain rates

    Directory of Open Access Journals (Sweden)

    Casas-Rodriguez J.P.

    2012-08-01

    Full Text Available Mechanical material characterization represents a research challenge. Furthermore, special attention is directed to material characterization at high strain rates as the mechanical properties of some materials are influenced by the rate of loading. Diverse experimental techniques at high strain rates are available, such as the drop-test, the Taylor impact test or the Split Hopkinson pressure bar among others. However, the determination of the material parameters associated to a given mathematical constitutive model from the experimental data is a complex and indirect problem. This paper presents a material characterization methodology to determine the material parameters of a given material constitutive model from a given high strain rate experiment. The characterization methodology is based on an inverse technique in which an inverse problem is formulated and solved as an optimization procedure. The input of the optimization procedure is the characteristic signal from the high strain rate experiment. The output of the procedure is the optimum set of material parameters determined by fitting a numerical simulation to the high strain rate experimental signal.

  17. Effect of fiber content on the thermal conductivity and dielectric constant of hair fiber reinforced epoxy composite

    Science.gov (United States)

    Prasad Nanda, Bishnu; Satapathy, Alok

    2018-03-01

    This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.

  18. Kinetics and reaction mechanism for aminolysis of benzyl 4-pyridyl carbonate in H2O: Effect of modification of nucleofuge from 2-pyridyl oxide to 4-pyridyl oxide on reactivity and reaction mechanism

    International Nuclear Information System (INIS)

    Kang, Ji Sun; Um, Ikhwan

    2012-01-01

    Pseudo-first-order rate constants k amine have been measured spectrophotometrically for the reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in H 2 O at 25.0.deg.C. The plots of k amine vs. [amine] curve upward, indicating that the reactions proceed through a stepwise mechanism with two intermediates, a zwitterionic tetrahedral intermediate T ± and its deprotonated form T - . This contrasts to the report that the corresponding reactions of benzyl 2-pyridyl carbonate 5 proceed through a forced concerted pathway. The k amine values for the reactions of 6 have been dissected into the second-order rate constant Kk 2 and the third order rate constant Kk 3 . The Brφnsted-type plots are linear with β nuc = 0.94 and 1.18 for Kk 2 and Kk 3 , respectively. The Kk 2 for the reaction of 6 is smaller than the second-order rate constant k N for the corresponding reaction of 5, although 4-pyridyl oxide in 6 is less basic and a better nucleofuge than 2-pyridyl oxide in 5

  19. Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7

    International Nuclear Information System (INIS)

    Pang Jianjun; Tan Mingjen; Liew, K.M.; Shearwood, Christopher

    2012-01-01

    A binary metallic glass (MG) Cu 49.3 Zr 50.7 in the form of thin film was successfully grown on a Si (1 0 0) substrate by magnetron sputtering. The mechanical properties, specifically, hardness and modulus at various peak loads and loading rates were characterized through instrumented nanoindentation. Unlike other metallic glasses showing an indentation size effect (ISE), the composition of this study does not have an ISE, which is phenomenologically the result of the negligible length scale according to the strain gradient plasticity model. The proportional specimen resistance model is applicable to the load-displacement behaviors and suggests that the frictional effect is too small to contribute to the ISE. The occurrence of plasticity depends on loading rates and can be delayed so that the displacement during the load holding segment increases logarithmically. In addition, the hardness and modulus are both dependent on the loading rates as well, i.e., they increase as the loading rate increases up to 0.1 mN/s and then hold constant, which is independent of creep time (≤100 s). These loading-rate-dependent behaviors are interpreted as the result of viscoelastic effect rather than free volume kinetics.

  20. Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper

    Science.gov (United States)

    Kashiwagi, Takashi; Nambu, Hidesaburo

    1992-01-01

    Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.

  1. Cyclic life of superalloy IN738LC under in-phase and out-of-phase thermo-mechanical fatigue loading

    International Nuclear Information System (INIS)

    Chen Hongjun; Wahi, R.P.; Wever, H.

    1995-01-01

    The cyclic life of IN738LC, a widely used nickel base superalloy for blades in stationary gas turbines, was investigated under thermo-mechanical fatigue loading using a temperature variation range of 1023 to 1223 K, with temperature variation rate in the range of 6 to 15 K/min. Simple thermo-mechanical cycles with linear sequences corresponding to in-phase (IP) and out-of-phase (OP) tests were performed. Both the IP and OP tests were carried out at different constant mechanical strain ranges varied between 0.8 to 2.0% and at a constant mechanical strain rate of 10 -5 s -1 . Thermo-mechanical fatigue lives under both test conditions were compared with each other and with those of isothermal LCF tests at a temperature of 1223 K. The results show that the life under thermo-mechanical fatigue is strongly dependent on the nature of the test, i.e. stress controlled or strain controlled. (orig.)

  2. Strength and rupture-life transitions caused by secondary carbide precipitation in HT-9 during high-temperature low-rate mechanical testing

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Gruber, E.E.; Kramer, J.M.; Hughes, T.H.

    1992-01-01

    The martensitic-ferritic alloy HT-9 is slated for long-term use as a fuel-cladding material in the Integral Fast Reactor. Analysis of published high-temperature mechanical property data suggests that secondary carbide precipitation would occur during service life causing substantial strengthening of the as-heat-treated material. Aspects of the kinetics of this precipitation process are extracted from calculations of the back stress necessary to produce the observed strengthening effect under various creep loading conditions. The resulting Arrhenius factor is shown to agree quantitatively with shifts to higher strength of crept material in reference to the intrinsic strength of HT-9. The results of very low constant strain-rate high-temperature tensile tests on as-heat-treated HT-9 that focus on the transition in strength with precipitation will be presented and related to rupture-life

  3. Th isotopes in the Santa Monica basin: temporal variation, long-term mass balance and model rate constants

    International Nuclear Information System (INIS)

    Huh, Chih-An

    1995-01-01

    Distribution and flux of 234 Th, 232 Th and 230 Th in the water column of central Santa Monica basin observed over a period of seven years show seasonal and interannual variabilities. A steady-state model is applied to the integrated data to calculate long term average flux and model rate constants of Th isotopes. Mass balance calculations show that the basin acts like a closed system for short-lived 234 Th, but not for the long-lived isotopes 230 Th and 232 Th. Most 230 Th in the basin is transported from elsewhere. Of the incoming Th, 40-55% of the 230 Th and 14-26% of the 232 Th enter the surface water in dissolved form. In the upper 100m, the residence time of dissolved Th with respect to adsorption onto suspended particulates, 70-80 days, is about one order of magnitude higher than the residence time of suspended particles with respect to aggregation into sinking particles, 7-10 days. (author)

  4. Mechanism for automatic regulation of combustion. Regolazione automatica della combustione

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, L.; Tagliaferro, B.; Cossalter, V.; Da Lio, M. (Padua Univ. (Italy))

    1993-09-01

    The article describes an original application of a mechanism for the automatic regulation of burners. The aim is to maintain a constant air-fuel ratio even with variations occurring in ambient temperature and fuel supply. To obtain the correct mixture, the air damper is opened with a double mechanism by an ambient temperature transducer and by a screw for the setting up of the rate of fuel supply.

  5. Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions

    Science.gov (United States)

    Zubairi, Omair; Weber, Fridolin

    2013-04-01

    In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.

  6. Equilibrium and Dynamic Osmotic Behaviour of Aqueous Solutions with Varied Concentration at Constant and Variable Volume

    Science.gov (United States)

    Minkov, Ivan L.; Manev, Emil D.; Sazdanova, Svetla V.; Kolikov, Kiril H.

    2013-01-01

    Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment. PMID:24459448

  7. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita

    2017-11-01

    Designing of advanced oxidation process (AOP) requires knowledge of the aqueous phase hydroxyl radical ( ● OH) reactions rate constants (k OH ), which are strictly dependent upon the pH and temperature of the medium. In this study, pH- and temperature-dependent quantitative structure-property relationship (QSPR) models based on the decision tree boost (DTB) approach were developed for the prediction of k OH of diverse organic contaminants following the OECD guidelines. Experimental datasets (n = 958) pertaining to the k OH values of aqueous phase reactions at different pH (n = 470; 1.4 × 10 6 to 3.8 × 10 10  M -1  s -1 ) and temperature (n = 171; 1.0 × 10 7 to 2.6 × 10 10  M -1  s -1 ) were considered and molecular descriptors of the compounds were derived. The Sanderson scale electronegativity, topological polar surface area, number of double bonds, and halogen atoms in the molecule, in addition to the pH and temperature, were found to be the relevant predictors. The models were validated and their external predictivity was evaluated in terms of most stringent criteria parameters derived on the test data. High values of the coefficient of determination (R 2 ) and small root mean squared error (RMSE) in respective training (> 0.972, ≤ 0.12) and test (≥ 0.936, ≤ 0.16) sets indicated high generalization and predictivity of the developed QSPR model. Other statistical parameters derived from the training and test data also supported the robustness of the models and their suitability for screening new chemicals within the defined chemical space. The developed QSPR models provide a valuable tool for predicting the ● OH reaction rate constants of emerging new water contaminants for their susceptibility to AOPs.

  8. Reaction rate constant for uranium in water and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    TRIMBLE, D.J.

    1998-11-09

    The literature on uranium oxidation in water and oxygen free water vapor was reviewed. Arrhenius rate equations were developed from the review data. These data and equations will be used as a baseline from which to compare reaction rates measured for K Basin fuel.

  9. Bardeen-Cooper-Schrieffer universal constants generalized

    International Nuclear Information System (INIS)

    Hazaimeh, A.H.

    1992-01-01

    Weak- and moderate-coupling BCS superconductivity theory is shown to admit a more general T c formula, wherein T c approaches zero somewhat faster than with the familiar BCS T c -formula. This theory leads to a departure from the universal behavior of the gap-to-T c ratio and is consistent with some recent empirical values for exotic superconductors. This ratio is smaller than the universal BCS value of 3.53 in a way which is consistent with weak electron-boson coupling. Similarly, other universal constants related to specific heat and critical magnetic field are modified. In this dissertation, The author investigates the latter constants for weak-coupling and moderate-coupling and carry out detailed comparisons with experimental data for the cuprates and with the corresponding predictions of strong-coupling theory. This effort is to elucidate the nature of these superconductors with regards to coupling strength within an electron-boson mechanism

  10. Fracture patterns and the energy release rate of phosphorene.

    Science.gov (United States)

    Liu, Ning; Hong, Jiawang; Pidaparti, Ramana; Wang, Xianqiao

    2016-03-14

    Phosphorene, also known as monolayer black phosphorus, has been enjoying popularity in electronic devices due to its superior electrical properties. However, it's relatively low Young's modulus, low fracture strength and susceptibility to structural failure have limited its application in mechanical devices. Therefore, in order to design more mechanically reliable devices that utilize phosphorene, it is necessary to explore the fracture patterns and energy release rate of phosphorene. In this study, molecular dynamics simulations are performed to investigate phosphorene's fracture mechanism. The results indicate that fracture under uniaxial tension along the armchair direction is attributed to a break in the interlayer bond angles, while failure in the zigzag direction is triggered by the break in both intra-layer angles and bonds. Furthermore, we developed a modified Griffith criterion to analyze the energy release rate of phosphorene and its dependence on the strain rates and orientations of cracks. Simulation results indicate that phosphorene's energy release rate remains almost unchanged in the armchair direction while it fluctuates intensively in the zigzag direction. Additionally, the strain rate was found to play a negligible role in the energy release rate. The geometrical factor α in the Griffith's criterion is almost constant when the crack orientation is smaller than 45 degree, regardless of the crack orientation and loading direction. Overall, these findings provide helpful insights into the mechanical properties and failure behavior of phosphorene.

  11. Radiolysis: an efficient method of studying radicalar antioxidant mechanisms

    International Nuclear Information System (INIS)

    Gardes-Albert, M.; Jore, D.

    1998-01-01

    The use of the radiolysis method for studying radicalar antioxidant mechanisms offers the different following possibilities: 1- quantitative evaluation of antioxidant activity of molecules soluble in aqueous or non aqueous media (oxidation yields, molecular mechanisms, rate constants), 2- evaluation of the yield of prevention towards polyunsaturated fatty acids peroxidation, 3- evaluation of antioxidant activity towards biological systems such as liposomes or low density lipoproteins (LDL), 4- simple comparison in different model systems of drags effect versus natural antioxidants. (authors)

  12. From the Rydberg constant to the fundamental constants metrology; De la constante de Rydberg a la metrologie des constantes fondamentales

    Energy Technology Data Exchange (ETDEWEB)

    Nez, F

    2005-06-15

    This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)

  13. The Locus of the apices of projectile trajectories under constant drag

    OpenAIRE

    Hernández-Saldaña, H.

    2017-01-01

    We present an analytical solution for the projectile coplanar motion under constant drag parametrised by the velocity angle. We found the locus formed by the apices of the projectile trajectories. The range and time of flight are obtained numerically and we find that the optimal launching angle is smaller than in the free drag case. This is a good example of problems with constant dissipation of energy that includes curvature, and it is proper for intermediate courses of mechanics.

  14. Dose rate constants for 125I, 103Pd, 192Ir and 169Yb brachytherapy sources: an EGS4 Monte Carlo study

    International Nuclear Information System (INIS)

    Mainegra, Ernesto; Capote, Roberto; Lopez, Ernesto

    1998-01-01

    An exhaustive revision of dosimetry data for 192 Ir, 125 I, 103 Pd and 169 Yb brachytherapy sources has been performed by means of the EGS4 simulation system. The DLC-136/PHOTX cross section library, water molecular form factors, bound Compton scattering and Doppler broadening of the Compton-scattered photon energy were considered in the calculations. The absorbed dose rate per unit contained activity in a medium at 1 cm in water and air-kerma strength per unit contained activity for each seed model were calculated, allowing the dose rate constant (DRC) Λ to be estimated. The influence of the calibration procedure on source strength for low-energy brachytherapy seeds is discussed. Conversion factors for 125 I and 103 Pd seeds to obtain the dose rate in liquid water from the dose rate measured in a solid water phantom with a detector calibrated for dose to water were calculated. A theoretical estimate of the DRC for a 103 Pd model 200 seed equal to 0.669±0.002 cGy h -1 U -1 is obtained. Comparison of obtained DRCs with measured and calculated published results shows agreement within 1.5% for 192 Ir, 169 Yb and 125 I sources. (author)

  15. Respiratory mechanics by least squares fitting in mechanically ventilated patients: application on flow-limited COPD patients.

    Science.gov (United States)

    Volta, Carlo A; Marangoni, Elisabetta; Alvisi, Valentina; Capuzzo, Maurizia; Ragazzi, Riccardo; Pavanelli, Lina; Alvisi, Raffaele

    2002-01-01

    Although computerized methods of analyzing respiratory system mechanics such as the least squares fitting method have been used in various patient populations, no conclusive data are available in patients with chronic obstructive pulmonary disease (COPD), probably because they may develop expiratory flow limitation (EFL). This suggests that respiratory mechanics be determined only during inspiration. Eight-bed multidisciplinary ICU of a teaching hospital. Eight non-flow-limited postvascular surgery patients and eight flow-limited COPD patients. Patients were sedated, paralyzed for diagnostic purposes, and ventilated in volume control ventilation with constant inspiratory flow rate. Data on resistance, compliance, and dynamic intrinsic positive end-expiratory pressure (PEEPi,dyn) obtained by applying the least squares fitting method during inspiration, expiration, and the overall breathing cycle were compared with those obtained by the traditional method (constant flow, end-inspiratory occlusion method). Our results indicate that (a) the presence of EFL markedly decreases the precision of resistance and compliance values measured by the LSF method, (b) the determination of respiratory variables during inspiration allows the calculation of respiratory mechanics in flow limited COPD patients, and (c) the LSF method is able to detect the presence of PEEPi,dyn if only inspiratory data are used.

  16. SOFC regulation at constant temperature: Experimental test and data regression study

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Cinti, G.; Ottaviano, A.

    2016-01-01

    Highlights: • SOFC operating temperature impacts strongly on its performance and lifetime. • Experimental tests were carried out varying electric load and feeding mixture gas. • Three different anodic inlet gases were tested maintaining constant temperature. • Cathodic air flow rate was used to maintain constant its operating temperature. • Regression law was defined from experimental data to regulate the air flow rate. - Abstract: The operating temperature of solid oxide fuel cell stack (SOFC) is an important parameter to be controlled, which impacts the SOFC performance and its lifetime. Rapid temperature change implies a significant temperature differences between the surface and the mean body leading to a state of thermal shock. Thermal shock and thermal cycling introduce stress in a material due to temperature differences between the surface and the interior, or between different regions of the cell. In this context, in order to determine a control law that permit to maintain constant the fuel cell temperature varying the electrical load and the infeed fuel mixture, an experimental activity were carried out on a planar SOFC short stack to analyse stack temperature. Specifically, three different anodic inlet gas compositions were tested: pure hydrogen, reformed natural gas with steam to carbon ratio equal to 2 and 2.5. By processing the obtained results, a regression law was defined to regulate the air flow rate to be provided to the fuel cell to maintain constant its operating temperature varying its operating conditions.

  17. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Otsuka, Kensuke; Yoshida, Kazuo

    2015-01-01

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  18. Planck Constant Determination from Power Equivalence

    Science.gov (United States)

    Newell, David B.

    2000-04-01

    Equating mechanical to electrical power links the kilogram, the meter, and the second to the practical realizations of the ohm and the volt derived from the quantum Hall and the Josephson effects, yielding an SI determination of the Planck constant. The NIST watt balance uses this power equivalence principle, and in 1998 measured the Planck constant with a combined relative standard uncertainty of 8.7 x 10-8, the most accurate determination to date. The next generation of the NIST watt balance is now being assembled. Modification to the experimental facilities have been made to reduce the uncertainty components from vibrations and electromagnetic interference. A vacuum chamber has been installed to reduce the uncertainty components associated with performing the experiment in air. Most of the apparatus is in place and diagnostic testing of the balance should begin this year. Once a combined relative standard uncertainty of one part in 10-8 has been reached, the power equivalence principle can be used to monitor the possible drift in the artifact mass standard, the kilogram, and provide an accurate alternative definition of mass in terms of fundamental constants. *Electricity Division, Electronics and Electrical Engineering Laboratory, Technology Administration, U.S. Department of Commerce. Contribution of the National Institute of Standards and Technology, not subject to copyright in the U.S.

  19. Kinetics of protein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps

    Science.gov (United States)

    Tiwary, Pratyush; Limongelli, Vittorio; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    The ability to predict the mechanisms and the associated rate constants of protein–ligand unbinding is of great practical importance in drug design. In this work we demonstrate how a recently introduced metadynamics-based approach allows exploration of the unbinding pathways, estimation of the rates, and determination of the rate-limiting steps in the paradigmatic case of the trypsin–benzamidine system. Protein, ligand, and solvent are described with full atomic resolution. Using metadynamics, multiple unbinding trajectories that start with the ligand in the crystallographic binding pose and end with the ligand in the fully solvated state are generated. The unbinding rate koff is computed from the mean residence time of the ligand. Using our previously computed binding affinity we also obtain the binding rate kon. Both rates are in agreement with reported experimental values. We uncover the complex pathways of unbinding trajectories and describe the critical rate-limiting steps with unprecedented detail. Our findings illuminate the role played by the coupling between subtle protein backbone fluctuations and the solvation by water molecules that enter the binding pocket and assist in the breaking of the shielded hydrogen bonds. We expect our approach to be useful in calculating rates for general protein–ligand systems and a valid support for drug design. PMID:25605901

  20. Variability of filtration and food assimilation rates, respiratory activity and multixenobiotic resistance (MXR mechanism in the mussel Perna perna under lead influence

    Directory of Open Access Journals (Sweden)

    M. L. PESSATTI

    Full Text Available The economic importance that myticulture is conquering in Santa Catarina State (South of Brazil explains the crescent search for new coastal sites for farming. Physiological and biochemical studies of the mussel Perna perna are important to the establishment of methodologies for program assessment and environmental monitoring, allowing to infer about site quality and possible influences of xenobiotic agents on coastal areas. In order to evaluate effects caused by lead poisoning (1.21 mumol.L-1, the mussels were maintained at constant temperature (25ºC and fed with Chaetoceros gracilis for 15 days. The control group was acclimatized in sea water 30‰. At the end of this period time, physiological measurements were carried out along with statistic analysis for filtration rates, lead assimilation and overall respiratory activity. The mechanism of multixenobiotic resistance (MXR was particularly evaluated in standardized gill fragments using rhodamine B accumulation and its quantification under fluorescence optical microscopy. Regarding the control group, results had shown that the mussels maintenance in a lead-poisoned environment caused higher filtration rates (1.04 and 2.3 and L.h-1.g-1; p < 0.05 and lower assimilation rates (71.96% and 54.1%, respectively. Also it was confirmed a lesser rhodamine B accumulation in the assays under influence of lead, suggesting that this metal induces the MXR mechanism expression in mussel P. perna. These results indicate that such physiological and biochemical alterations in the mussels can modify the energy fluxes of its metabolism, resulting in possible problems on the coastal systems used as cultivating sites.

  1. Variability of filtration and food assimilation rates, respiratory activity and multixenobiotic resistance (MXR mechanism in the mussel Perna perna under lead influence

    Directory of Open Access Journals (Sweden)

    PESSATTI M. L.

    2002-01-01

    Full Text Available The economic importance that myticulture is conquering in Santa Catarina State (South of Brazil explains the crescent search for new coastal sites for farming. Physiological and biochemical studies of the mussel Perna perna are important to the establishment of methodologies for program assessment and environmental monitoring, allowing to infer about site quality and possible influences of xenobiotic agents on coastal areas. In order to evaluate effects caused by lead poisoning (1.21 mumol.L-1, the mussels were maintained at constant temperature (25ºC and fed with Chaetoceros gracilis for 15 days. The control group was acclimatized in sea water 30?. At the end of this period time, physiological measurements were carried out along with statistic analysis for filtration rates, lead assimilation and overall respiratory activity. The mechanism of multixenobiotic resistance (MXR was particularly evaluated in standardized gill fragments using rhodamine B accumulation and its quantification under fluorescence optical microscopy. Regarding the control group, results had shown that the mussels maintenance in a lead-poisoned environment caused higher filtration rates (1.04 and 2.3 and L.h-1.g-1; p < 0.05 and lower assimilation rates (71.96% and 54.1%, respectively. Also it was confirmed a lesser rhodamine B accumulation in the assays under influence of lead, suggesting that this metal induces the MXR mechanism expression in mussel P. perna. These results indicate that such physiological and biochemical alterations in the mussels can modify the energy fluxes of its metabolism, resulting in possible problems on the coastal systems used as cultivating sites.

  2. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R; Wang, J [Peking University Third Hospital, Beijing, Beijing (China)

    2014-06-01

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  3. Mechanism and kinetics of LiX(X=H, D, T) + H2O reaction

    International Nuclear Information System (INIS)

    Lei Hongjie; Duan Hao; Xing Pifeng; Tang Yongjian

    2011-01-01

    The reaction mechanism of LiX(X=H, D, T) with H 2 O was investigated at MP2/6-311G (d) level using ab initio quantum chemistry in Gaussian 03 software. The equilibrium geometries, harmonic frequencies and energy of various stationary points on the potential energy surfaces were calculated in the lowest singlet states. Considering the quantum correction, the reaction rate constants were calculated using classical transition state theory. The results show the reaction of LiH (LiD, LiT) with H 2 O was considerably dependent on temperature that it is lower, the reaction rate constants are smaller. (authors)

  4. Site study plan for non-routine laboratory rock mechanics, Deaf Smith County Site, Texas: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    This Site Study Plan describes the non-routine rock mechanics and thermal properties laboratory testing program planned for the characterization of site-specific geologic materials for the Deaf Smith County site, Texas. The study design provides for measurements of index, mechanical, thermomechanical, thermal and special properties for the host salt, and where appropriate, for nonhost lithologies. The types of tests which will be conducted are constant stress (creep) tests, constant strain (stress relaxation) tests, constant strain-rate tests, constant stress-rate tests, cyclic loading tests, hollow cylinder tests, uniaxial and triaxial compression tests, direct tension tests, indirect (triaxial) shear tests, thermal property determinations (conductivity, specific heat, expansivity, and diffusivity), fracture healing tests, thermal decrepitation tests, moisture content determinations, and petrographic and micromechanics analyses. Tests will be conducted at confining pressures up to 30 MPa and temperatures up to 300/degree/C. These data are used to construct mathematical models for the phenomenology of salt deformation. The models are then used in finite-element codes to predict repository response. A tentative testing schedule and milestone log are given. The duration of the testing program is expected to be approximately 5 years. 44 refs., 13 figs., 13 tabs

  5. Sedimentation of phytoplankton during a diatom bloom : Rates and mechanisms

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Hansen, J.L.S.; Alldredge, A.L.

    1996-01-01

    Phytoplankton blooms are uncoupled from grazing and are normally terminated by sedimentation. There are several potential mechanisms by which phytoplankton cells may settle out of the photic zone: sinking of individual cells or chains, coagulation of cells into aggregates with high settling...... velocities, settling of cells attached to marine snow aggregates formed from discarded larvacean houses or pteropod feeding webs, and packaging of cells into rapidly falling zooplankton fecal pellets. We quantified the relative significance of these different mechanisms during a diatom bloom in a temperate...... to marine snow aggregates formed from discarded larvacean houses, whereas settling of unaggregated cells was insignificant. Formation rates of phytoplankton aggregates by physical coagulation was very low, and losses by this mechanism were much less than 0.07 d(-1); phytoplankton aggregates were neither...

  6. A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality

    Science.gov (United States)

    Liu, Li; Zhuang, Xinhua

    2009-01-01

    It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.

  7. Application of a mechanism-based rate equation to black liquor gasification rate data

    Energy Technology Data Exchange (ETDEWEB)

    Overacker, N.L.; Waag, K.J.; Frederick, W.J. [Oregon State University, OR (United States). Dept. of Chemical Engineering; Whitty, K.J.

    1995-09-01

    There is growing interest worldwide to develop alternate chemical recovery processes for paper mills which are cheaper, safer, more efficient and more environmentally sound than traditional technology. Pressurized gasification of black liquor is the basis for many proposed schemes and offers the possibility to double the amount of electricity generated per unit of dry black liquor solids. Such technology also has capital, safety and environmental advantages. One of the most important considerations regarding this emerging technology is the kinetics of the gasification reaction. This has been studied empirically at Aabo Akademi University for the pressurized gasification with carbon dioxide and steam. For the purposes of reactor modeling and scale-up, however, a thorough understanding of the mechanism behind the reaction is desirable. This report discusses the applicability of a mechanism-based rate equation to gasification of black liquor. The mechanism considered was developed for alkali-catalyzed gasification of carbon and is tested using black liquor gasification data obtained during simultaneous reaction with H{sub 2}O and CO. Equilibrium considerations and the influence of the water-gas shift reaction are also discussed. The work presented here is a cooperative effort between Aabo Akademi University and Oregon State University. The experimental work and some of the data analysis was performed at Aabo Akademi University. Development of the models and consideration of their applicability was performed primarily at Oregon State University

  8. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  9. First-principles method for calculating the rate constants of internal-conversion and intersystem-crossing transitions.

    Science.gov (United States)

    Valiev, R R; Cherepanov, V N; Baryshnikov, G V; Sundholm, D

    2018-02-28

    A method for calculating the rate constants for internal-conversion (k IC ) and intersystem-crossing (k ISC ) processes within the adiabatic and Franck-Condon (FC) approximations is proposed. The applicability of the method is demonstrated by calculation of k IC and k ISC for a set of organic and organometallic compounds with experimentally known spectroscopic properties. The studied molecules were pyrromethene-567 dye, psoralene, hetero[8]circulenes, free-base porphyrin, naphthalene, and larger polyacenes. We also studied fac-Alq 3 and fac-Ir(ppy) 3 , which are important molecules in organic light emitting diodes (OLEDs). The excitation energies were calculated at the multi-configuration quasi-degenerate second-order perturbation theory (XMC-QDPT2) level, which is found to yield excitation energies in good agreement with experimental data. Spin-orbit coupling matrix elements, non-adiabatic coupling matrix elements, Huang-Rhys factors, and vibrational energies were calculated at the time-dependent density functional theory (TDDFT) and complete active space self-consistent field (CASSCF) levels. The computed fluorescence quantum yields for the pyrromethene-567 dye, psoralene, hetero[8]circulenes, fac-Alq 3 and fac-Ir(ppy) 3 agree well with experimental data, whereas for the free-base porphyrin, naphthalene, and the polyacenes, the obtained quantum yields significantly differ from the experimental values, because the FC and adiabatic approximations are not accurate for these molecules.

  10. Asynchronous Rate Chaos in Spiking Neuronal Circuits.

    Directory of Open Access Journals (Sweden)

    Omri Harish

    2015-07-01

    Full Text Available The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results.

  11. Asynchronous Rate Chaos in Spiking Neuronal Circuits

    Science.gov (United States)

    Harish, Omri; Hansel, David

    2015-01-01

    The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679

  12. Theoretical study of inspiratory flow waveforms during mechanical ventilation on pulmonary blood flow and gas exchange.

    Science.gov (United States)

    Niranjan, S C; Bidani, A; Ghorbel, F; Zwischenberger, J B; Clark, J W

    1999-08-01

    A lumped two-compartment mathematical model of respiratory mechanics incorporating gas exchange and pulmonary circulation is utilized to analyze the effects of square, descending and ascending inspiratory flow waveforms during mechanical ventilation. The effects on alveolar volume variation, alveolar pressure, airway pressure, gas exchange rate, and expired gas species concentration are evaluated. Advantages in ventilation employing a certain inspiratory flow profile are offset by corresponding reduction in perfusion rates, leading to marginal effects on net gas exchange rates. The descending profile provides better CO2 exchange, whereas the ascending profile is more advantageous for O2 exchange. Regional disparities in airway/lung properties create maldistribution of ventilation and a concomitant inequality in regional alveolar gas composition and gas exchange rates. When minute ventilation is maintained constant, for identical time constant disparities, inequalities in compliance yield pronounced effects on net gas exchange rates at low frequencies, whereas the adverse effects of inequalities in resistance are more pronounced at higher frequencies. Reduction in expiratory air flow (via increased airway resistance) reduces the magnitude of upstroke slope of capnogram and oxigram time courses without significantly affecting end-tidal expired gas compositions, whereas alterations in mechanical factors that result in increased gas exchanges rates yield increases in CO2 and decreases in O2 end-tidal composition values. The model provides a template for assessing the dynamics of cardiopulmonary interactions during mechanical ventilation by combining concurrent descriptions of ventilation, capillary perfusion, and gas exchange. Copyright 1999 Academic Press.

  13. Locus of the apices of projectile trajectories under constant drag

    Science.gov (United States)

    Hernández-Saldaña, H.

    2017-11-01

    Using the hodograph method, we present an analytical solution for projectile coplanar motion under constant drag, parametrised by the velocity angle. We find the locus formed by the apices of the projectile trajectories, and discuss its implementation for the motion of a particle on an inclined plane in presence of Coulomb friction. The range and time of flight are obtained numerically, and we find that the optimal launching angle is smaller than in the drag-free case. This is a good example of a problem with constant dissipation of energy that includes curvature; it is appropriate for intermediate courses of mechanics.

  14. Dark Energy and the Cosmological Constant: A Brief Introduction

    Science.gov (United States)

    Harvey, Alex

    2009-01-01

    The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…

  15. Statistical orientation fluctuations: constant angular momentum versus constant rotational frequency constraints

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A L [Tulane Univ., New Orleans, LA (United States)

    1992-08-01

    Statistical orientation fluctuations are calculated with two alternative assumptions: the rotational frequency remains constant as the shape orientation fluctuates; and, the average angular momentum remains constant as the shape orientation fluctuates. (author). 2 refs., 3 figs.

  16. Advances in constant-velocity Moessbauer instrumentation

    International Nuclear Information System (INIS)

    Veiga, A.; Martinez, N.; Zelis, P. Mendoza; Pasquevich, G. A.; Sanchez, F. H.

    2006-01-01

    A prototype of a programmable constant-velocity scaler is presented. This instrument allows the acquisition of partial Moessbauer spectra in selected energy regions using standard drivers and transducers. It can be fully operated by a remote application, thus data acquisition can be automated. The instrument consists of a programmable counter and a constant-velocity reference. The reference waveform generator is amplitude modulated with 13-bit resolution, and is programmable in a wide range of frequencies and waveforms in order to optimize the performance of the transducer. The counter is compatible with most standard SCA, and is configured as a rate-meter that provides counts per selectable time slice at the programmed velocity. As a demonstration of the instrument applications, a partial Moessbauer spectrum of a natural iron foil was taken. Only positive energies were studied in 512 channels, accumulating 20 s per channel. A line width of 0.20 mm/s was achieved, performing with an efficiency of 80%.

  17. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  18. The reaction of fluorine atoms with methanol: yield of CH3O/CH2OH and rate constant of the reactions CH3O + CH3O and CH3O + HO2.

    Science.gov (United States)

    Assaf, Emmanuel; Schoemaecker, Coralie; Vereecken, Luc; Fittschen, Christa

    2018-04-25

    Xenondifluoride, XeF2, has been photolysed in the presence of methanol, CH3OH. Two reaction pathways are possible: F + CH3OH → CH2OH + HF and F + CH3OH → CH3O + HF. Both products, CH2OH and CH3O, will be converted to HO2 in the presence of O2. The rate constants for the reaction of both radicals with O2 differ by more than 3 orders of magnitude, which allows an unequivocal distinction between the two reactions when measuring HO2 concentrations in the presence of different O2 concentrations. The following yields have then been determined from time-resolved HO2 profiles: φCH2OH = (0.497 ± 0.013) and φCH3O = (0.503 ± 0.013). Experiments under low O2 concentrations lead to reaction mixtures containing nearly equal amounts of HO2 (converted from the first reaction) and CH3O (from the second reaction). The subsequent HO2 decays are very sensitive to the rate constants of the reaction between these two radicals and the following rate constants have been obtained: k(CH3O + CH3O) = (7.0 ± 1.4) × 10-11 cm3 s-1 and k(CH3O + HO2) = (1.1 ± 0.2) × 10-10 cm3 s-1. The latter reaction has also been theoretically investigated on the CCSD(T)//M06-2X/aug-cc-pVTZ level of theory and CH3OH + O2 have been identified as the main products. Using μVTST, a virtually pressure independent rate constant of k(CH3O + HO2) = 4.7 × 10-11 cm3 s-1 has been obtained, in good agreement with the experiment.

  19. Title: Elucidation of Environmental Fate of Artificial Sweeteners (Aspartame, Acesulfame K and Saccharin) by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Possible Reaction By-Products

    Science.gov (United States)

    Teraji, T.; Arakaki, T.; Suzuka, T.

    2012-12-01

    Use of artificial sweeteners in beverages and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame, acefulfame K and saccharin and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far for aspartame was (2.6±1.2)×109 M-1 s-1 at pH = 3.0 and (4.9±2.3)×109 M-1 s-1 at pH = 5.5. Little effect was seen by changing the temperatures between 15 and 40 oC. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, +8.5 kJ mol-1 at pH = 5.5, which could be regarded as zero. We will report bimolecular rate constants at different pHs and temperatures for acesulfame K and saccharin, as well. Possible reaction by-products for aspartame will be also reported. We will further discuss the fate of aspartame in the coastal environment.

  20. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Asbahi, Bandar Ali, E-mail: alasbahibandar@gmail.com [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Science, Sana' a University (Yemen); Jumali, Mohammad Hafizuddin Haji, E-mail: hafizhj@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Yap, Chi Chin; Flaifel, Moayad Husein [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2013-10-15

    Photophysical properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/2-butyl-6- (butylamino)benzo [de] isoquinoline-1,3-dione (Fluorol 7GA) and energy transfer between them have been investigated. In this work, both PFO and Fluorol 7GA act as donor and acceptor, respectively. Based on the absorption and luminescence measurements, the photophysical and energy transfer properties such as fluorescence quantum yield (Φ{sub f}), fluorescence lifetime (τ), radiative rate constant (k{sub r}), non-radiative rate constant (k{sub nr}), quenching rate constant (k{sub SV}), energy transfer rate constant (k{sub ET}), energy transfer probability (P{sub DA}), energy transfer efficiency (η), critical concentration of acceptor (C{sub o}), energy transfer time (τ{sub ET}) and critical distance of energy transfer (R{sub o}) were calculated. Large values of k{sub SV}, k{sub ET} and R{sub o} suggested that Förster-type energy transfer was the dominant mechanism for the energy transfer between the excited donor and ground state acceptor molecules. It was observed that the Förster energy transfer together with the trapping process are crucial for performance improvement in ITO/(PFO/Fluorol7GA)/Al device. -- Highlights: • The efficient of energy transfer from PFO to Fluorol 7GA was evidenced. • The resonance energy transfer (Förster type) is the dominant mechanism. • Hsu et al. model was used to calculate Φ{sub f}, τ, k{sub r} and k{sub nr} of PFO thin film. • Several of the photophysical and energy transfer properties were calculated. • Trapping process and Förster energy transfer led to improve the device performance.

  1. Effect of material constants on power output in piezoelectric vibration-based generators.

    Science.gov (United States)

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  2. Rate Constant and RRKM Product Study for the Reaction Between CH3 and C2H3 at T = 298K

    Science.gov (United States)

    Thorn, R. Peyton, Jr.; Payne, Walter A., Jr.; Chillier, Xavier D. F.; Stief, Louis J.; Nesbitt, Fred L.; Tardy, D. C.

    2000-01-01

    The total rate constant k1 has been determined at P = 1 Torr nominal pressure (He) and at T = 298 K for the vinyl-methyl cross-radical reaction CH3 + C2H3 yields products. The measurements were performed in a discharge flow system coupled with collision-free sampling to a mass spectrometer operated at low electron energies. Vinyl and methyl radicals were generated by the reactions of F with C2H4 and CH4, respectively. The kinetic studies were performed by monitoring the decay of C2H3 with methyl in excess, 6 rate coefficient was determined to be k1(298 K) = (1.02 +/- 0.53)x10(exp -10) cubic cm/molecule/s with the quoted uncertainty representing total errors. Numerical modeling was required to correct for secondary vinyl consumption by reactions such as C2H3 + H and C2H3 + C2H3. The present result for k1 at T = 298 K is compared to two previous studies at high pressure (100-300 Torr He) and to a very recent study at low pressure (0.9-3.7 Torr He). Comparison is also made with the rate constant for the similar reaction CH3 + C2H5 and with a value for k1 estimated by the geometric mean rule employing values for k(CH3 + CH3) and k(C2H3 + C2H3). Qualitative product studies at T = 298 K and 200 K indicated formation of C3H6, C2H2, and C2H5 as products of the combination-stabilization, disproportionation, and combination-decomposition channels, respectively, of the CH3 + C2H3 reaction. We also observed the secondary C4H8 product of the subsequent reaction of C3H5 with excess CH3; this observation provides convincing evidence for the combination-decomposition channel yielding C3H5 + H. RRKM calculations with helium as the deactivator support the present and very recent experimental observations that allylic C-H bond rupture is an important path in the combination reaction. The pressure and temperature dependencies of the branching fractions are also predicted.

  3. The reaction O((3)P) + HOBr: Temperature dependence of the rate constant and importance of the reaction as an HOBr stratospheric loss process

    Science.gov (United States)

    Nesbitt, F. L.; Monks, P. S.; Payne, W. A.; Stief, L. J.; Toumi, R.

    1995-01-01

    The absolute rate constant for the reaction O((3)P) + HOBr has been measured between T = 233K and 423K using the discharge-flow kinetic technique coupled to mass spectrometric detection. The value of the rate coefficient at room temperature is (2.5 +/- 0.6) x 10(exp -11)cu cm/molecule/s and the derived Arrhenius expression is (1.4 +/- 0.5) x 10(exp -10) exp((-430 +/- 260)/T)cu cm/molecule/s. From these rate data the atmospheric lifetime of HOBr with respect to reaction with O((3)P) is about 0.6h at z = 25 km which is comparable to the photolysis lifetime based on recent measurements of the UV cross section for HOBr. Implications for HOBr loss in the stratosphere have been tested using a 1D photochemical box model. With the inclusion of the rate parameters and products for the O + HOBr reaction, calculated concentration profiles of BrO increase by up to 33% around z = 35 km. This result indicates that the inclusion of the O + HOBr reaction in global atmospheric chemistry models may have an impact on bromine partitioning in the middle atmosphere.

  4. Biocorrosion rate and mechanism of metallic magnesium in model arterial environments

    Science.gov (United States)

    Bowen, Patrick K.

    A new paradigm in biomedical engineering calls for biologically active implants that are absorbed by the body over time. One popular application for this concept is in the engineering of endovascular stents that are delivered concurrently with balloon angioplasty. These devices enable the injured vessels to remain patent during healing, but are not needed for more than a few months after the procedure. Early studies of iron- and magnesium-based stents have concluded that magnesium is a potentially suitable base material for such a device; alloys can achieve acceptable mechanical properties and do not seem to harm the artery during degradation. Research done up to the onset of research contained in this dissertation, for the most part, failed to define realistic physiological corrosion mechanisms, and failed to correlate degradation rates between in vitro and in vivo environments. Six previously published works form the basis of this dissertation. The topics of these papers include (1) a method by which tensile testing may be applied to evaluate biomaterial degradation; (2) a suite of approaches that can be used to screen candidate absorbable magnesium biomaterials; (3) in vivo-in vitro environmental correlations based on mechanical behavior; (4) a similar correlation on the basis of penetration rate; (5) a mid-to-late stage physiological corrosion mechanism for magnesium in an arterial environment; and (6) the identification of corrosion products in degradable magnesium using transmission electron microscopy.

  5. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1993-01-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  6. Automated real time constant-specificity surveillance for disease outbreaks

    Directory of Open Access Journals (Sweden)

    Brownstein John S

    2007-06-01

    Full Text Available Abstract Background For real time surveillance, detection of abnormal disease patterns is based on a difference between patterns observed, and those predicted by models of historical data. The usefulness of outbreak detection strategies depends on their specificity; the false alarm rate affects the interpretation of alarms. Results We evaluate the specificity of five traditional models: autoregressive, Serfling, trimmed seasonal, wavelet-based, and generalized linear. We apply each to 12 years of emergency department visits for respiratory infection syndromes at a pediatric hospital, finding that the specificity of the five models was almost always a non-constant function of the day of the week, month, and year of the study (p Conclusion Modeling the variance of visit patterns enables real-time detection with known, constant specificity at all times. With constant specificity, public health practitioners can better interpret the alarms and better evaluate the cost-effectiveness of surveillance systems.

  7. The reaction set, rate constants and g-values for the simulation of the radiolysis of light water over the range 20 deg to 350 deg C based on information available in 2008

    International Nuclear Information System (INIS)

    Elliot, A.J.; Bartels, D.M.

    2009-08-01

    An understanding of the aqueous radiolysis-induced chemistry in nuclear reactors is an important key to the understanding of materials integrity issues in reactor systems. Significant materials and chemistry issues have emerged in Pressurized Water Reactors (PWR), Boiling Water Reactors (BWR) and CANDU reactors that have required a detailed understanding of the radiation chemistry of the coolant. For each reactor type, specific computer radiolysis models have been developed to gain insight into radiolysis processes and to make chemistry control adjustments to address the particular issues. The objective of this report is to compile and review the radiolysis data now available and, where possible, correct the reported g-values and rate constants to provide a recommendation for the best values to use in high temperature modelling of light water radiolysis up to 350 o C. With a few exceptions, the review has been limited to those reactions that occur in slightly acid and slightly alkaline solutions, e.g., it does not address reactions involving the oxide radical anion, O - , or ionized forms of hydrogen peroxide, HO 2 - , beyond their acid-base equilibria reactions. However, a few reactions have been included where the rate constant for a reaction involving O - is significantly larger than the corresponding hydroxyl radical reaction rate constant and thus can influence the chemistry below the pK A of the hydroxyl radical. (author)

  8. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  9. Mimicking the cosmological constant: Constant curvature spherical solutions in a nonminimally coupled model

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Paramos, Jorge

    2011-01-01

    The purpose of this study is to describe a perfect fluid matter distribution that leads to a constant curvature region, thanks to the effect of a nonminimal coupling. This distribution exhibits a density profile within the range found in the interstellar medium and an adequate matching of the metric components at its boundary. By identifying this constant curvature with the value of the cosmological constant and superimposing the spherical distributions arising from different matter sources throughout the universe, one is able to mimic a large-scale homogeneous cosmological constant solution.

  10. Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology

    International Nuclear Information System (INIS)

    Ellis, George F.R.; Platts, Emma; Weltman, Amanda; Sloan, David

    2016-01-01

    We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof of principle, with no definite claim on the physical mechanism required for the present dark energy to decay

  11. Constant-pH molecular dynamics using stochastic titration

    Science.gov (United States)

    Baptista, António M.; Teixeira, Vitor H.; Soares, Cláudio M.

    2002-09-01

    A new method is proposed for performing constant-pH molecular dynamics (MD) simulations, that is, MD simulations where pH is one of the external thermodynamic parameters, like the temperature or the pressure. The protonation state of each titrable site in the solute is allowed to change during a molecular mechanics (MM) MD simulation, the new states being obtained from a combination of continuum electrostatics (CE) calculations and Monte Carlo (MC) simulation of protonation equilibrium. The coupling between the MM/MD and CE/MC algorithms is done in a way that ensures a proper Markov chain, sampling from the intended semigrand canonical distribution. This stochastic titration method is applied to succinic acid, aimed at illustrating the method and examining the choice of its adjustable parameters. The complete titration of succinic acid, using constant-pH MD simulations at different pH values, gives a clear picture of the coupling between the trans/gauche isomerization and the protonation process, making it possible to reconcile some apparently contradictory results of previous studies. The present constant-pH MD method is shown to require a moderate increase of computational cost when compared to the usual MD method.

  12. Influx of CO2 from Soil Incubated Organic Residues at Constant Temperature

    Directory of Open Access Journals (Sweden)

    Shoukat Ali Abro

    2016-06-01

    Full Text Available Temperature induced CO2 from genotypic residue substances is still less understood. Two types of organic residues (wheat- maize were incubated at a constant temperature (25°C to determine the rate and cumulative influx of CO2 in laboratory experiment for 40 days. Further, the effect of surface and incorporated crop residues with and without phosphorus addition was also studied. Results revealed that mixing of crop residues increased CO2-C evolution significantly & emission rare was 37% higher than that of control. At constant temperature, soil mixed residues, had higher emission rates CO2-C than the residues superimposed. There was linear correlation of CO2-C influxed for phosphorus levels and residue application ways with entire incubation at constant temperature. The mixing of organic residues to soil enhanced SOC levels and biomass of microbially bound N; however to little degree ammonium (NH4-N and nitrate NO3-N nitrogen were decreased.

  13. Molecular equilibrium structures from experimental rotational constants and calculated vibration-rotation interaction constants

    DEFF Research Database (Denmark)

    Pawlowski, F; Jorgensen, P; Olsen, Jeppe

    2002-01-01

    A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...

  14. Invited Article: A precise instrument to determine the Planck constant, and the future kilogram

    International Nuclear Information System (INIS)

    Haddad, D.; Seifert, F.; Williams, C.; Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Schlamminger, S.

    2016-01-01

    A precise instrument, called a watt balance, compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. We describe in this paper the fourth-generation watt balance at the National Institute of Standards and Technology (NIST), and report our initial determination of the Planck constant obtained from data taken in late 2015 and the beginning of 2016. A comprehensive analysis of the data and the associated uncertainties led to the SI value of the Planck constant, h = 6.626 069 83(22) × 10 −34 J s. The relative standard uncertainty associated with this result is 34 × 10 −9 .

  15. Invited Article: A precise instrument to determine the Planck constant, and the future kilogram

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, D., E-mail: darine.haddad@nist.gov; Seifert, F.; Williams, C. [National Institute of Standards and Technology (NIST), 100 Bureau Drive Stop 8171, Gaithersburg, Maryland 20899 (United States); University of Maryland, Joint Quantum Institute, College Park, Maryland 20742 (United States); Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Schlamminger, S., E-mail: stephan.schlamminger@nist.gov [National Institute of Standards and Technology (NIST), 100 Bureau Drive Stop 8171, Gaithersburg, Maryland 20899 (United States)

    2016-06-15

    A precise instrument, called a watt balance, compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. We describe in this paper the fourth-generation watt balance at the National Institute of Standards and Technology (NIST), and report our initial determination of the Planck constant obtained from data taken in late 2015 and the beginning of 2016. A comprehensive analysis of the data and the associated uncertainties led to the SI value of the Planck constant, h = 6.626 069 83(22) × 10{sup −34} J s. The relative standard uncertainty associated with this result is 34 × 10{sup −9}.

  16. Long-Term Efficacy of Constant Current Deep Brain Stimulation in Essential Tremor.

    Science.gov (United States)

    Rezaei Haddad, Ali; Samuel, Michael; Hulse, Natasha; Lin, Hsin-Ying; Ashkan, Keyoumars

    2017-07-01

    Ventralis intermedius deep brain stimulation is an established intervention for medication-refractory essential tremor. Newer constant current stimulation technology offers theoretical advantage over the traditional constant voltage systems in terms of delivering a more biologically stable therapy. There are no previous reports on the outcomes of constant current deep brain stimulation in the treatment of essential tremor. This study aimed to evaluate the long-term efficacy of ventralis intermedius constant current deep brain stimulation in patients diagnosed with essential tremor. Essential tremor patients implanted with constant current deep brain stimulation for a minimum of three years were evaluated. Clinical outcomes were assessed using the Fahn-Tolosa-Marin tremor rating scale at baseline and postoperatively at the time of evaluation. The quality of life in the patients was assessed using the Quality of Life in Essential Tremor questionnaire. Ten patients were evaluated with a median age at evaluation of 74 years (range 66-79) and a mean follow up time of 49.7 (range 36-78) months since starting stimulation. Constant current ventralis intermedius deep brain stimulation was well tolerated and effective in all patients with a mean score improvement from 50.7 ± 5.9 to 17.4 ± 5.7 (p = 0.0020) in the total Fahn-Tolosa-Marin rating scale score (65.6%). Furthermore, the total combined mean Quality of Life in Essential Tremor score was improved from 56.2 ± 4.9 to 16.8 ± 3.5 (p value = 0.0059) (70.1%). This report shows that long-term constant current ventralis intermedius deep brain stimulation is a safe and effective intervention for essential tremor patients. © 2017 International Neuromodulation Society.

  17. On the mechanisms governing the repetition rate of mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    We investigate the mechanisms influencing the synchronization locking range of mode-locked lasers. We find that changes in repetition rates can be accomodated through a joint interplay of dispersion and pulse shaping effects....

  18. Measurement of the strong coupling constant using τ decays

    Science.gov (United States)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-06-01

    The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.

  19. Stabilized power constant alimentation; Alimentation regulee a puissance constante

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)

  20. Stabilized power constant alimentation; Alimentation regulee a puissance constante

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)