WorldWideScience

Sample records for mechanism involving caspase

  1. Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: A role for the IAPs

    International Nuclear Information System (INIS)

    Cheung, Herman H.; Lynn Kelly, N.; Liston, Peter; Korneluk, Robert G.

    2006-01-01

    Dysregulation of apoptosis is involved in a wide spectrum of disease ranging from proliferative to degenerative disorders. An emerging area of study in apoptosis is the critical contribution of the endoplasmic reticulum (ER) in both mitochondrial and ER specific apoptosis pathways. Here we show that brefeldin A and tunicamycin-mediated ER stress lead to caspase-dependent apoptosis involving caspase-2. Confocal microscopy and subcellular fractionation indicate that caspase-2 is localized to the ER, and following ER stress, the processing of caspase-2 and -9 is an early event preceding the activation of caspase-3 and -7 and the cleavage of the caspase substrate poly(ADP-ribose) polymerase (PARP). Inhibition and silencing of either caspase-2 or caspase-9 suppress ER stress-induced apoptosis, as demonstrated by annexin V binding. Similarly, transduction with an adenovirus encoding either Inhibitors of Apoptosis (IAP) protein HIAP1/c-IAP2 or HIAP2/c-IAP1 also suppresses ER stress-induced apoptosis. However, among HIAP1, HIAP2 and XIAP, only HIAP2 binds and inhibits caspase-2. Our results thus indicate a novel mechanism by which HIAP2 can regulate ER-initiated apoptosis by modulating the activity of caspase-2

  2. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  3. Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis

    Science.gov (United States)

    Liu, Lei; Zhang, Yingjie; Wang, Xianwang

    2009-02-01

    Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.

  4. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF and this process is inhibited by equine estrogens

    Directory of Open Access Journals (Sweden)

    Bhavnani Bhagu R

    2006-06-01

    Full Text Available Abstract Background Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22. Results Glutamate-induced apoptotic cell death in neuronal cells was associated with characteristic DNA fragmentation, morphological changes, activation of calpain and caspase-3 as well as the upregulation and/or translocation of AIF from mitochondria into cytosol and nuclei. Our results reveal that primary cortical cells and HT22 cells display different patterns of regulation of these genes/proteins. In primary cortical cells, glutamate induces activation of calpain, caspase-3 and translocation of AIF from mitochondria to cytosol and nuclei. In contrast, in HT22 cells, only the activation of calpain and upregulation and translocation of AIF occurred. In both cell types, these processes were inhibited/reversed by 17β-estradiol and Δ8,17β-estradiol with the latter being more potent. Conclusion Depending upon the neuronal cell type, at least two mechanisms are involved in glutamate-induced apoptosis: a caspase-3-dependent pathway and a caspase-independent pathway involving calpain and AIF. Since HT22 cells lack caspase-3, glutamate-induced apoptosis is mediated via the caspase-independent pathway in this cell line. Kinetics of this apoptotic pathway further indicate that calpain rather than caspase-3, plays a critical role in the glutamate-induced apoptosis. Our studies further indicate

  5. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hengwen [Department of Radiation, Cancer Center of Guangdong General Hospital (Guangdong Academy of Medical Science), Guangzhou, 510080, Guangdong (China); Yang, Shana; Li, Jianhua [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Gao, Dongsheng [Department of Oncology, Guangdong Medical College Affiliated Pengpai Memorial Hospital, Hai Feng, 516400, Gungdong (China); Zhao, Shenting, E-mail: zhaoshenting@126.com [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China)

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  6. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    International Nuclear Information System (INIS)

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  7. Caspase-1 is involved in the genesis of inflammatory hypernociception by contributing to peripheral IL-1β maturation

    Directory of Open Access Journals (Sweden)

    Zamboni Dario S

    2010-10-01

    Full Text Available Abstract Background Caspase-1 is a cysteine protease responsible for the processing and secretion of IL-1β and IL-18, which are closely related to the induction of inflammation. However, limited evidence addresses the participation of caspase-1 in inflammatory pain. Here, we investigated the role of caspase-1 in inflammatory hypernociception (a decrease in the nociceptive threshold using caspase-1 deficient mice (casp1-/-. Results Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. The production of cytokines, PGE2 and neutrophil migration were evaluated by ELISA, radioimmunoassay and myeloperoxidase activity, respectively. The interleukin (IL-1β and cyclooxygenase (COX-2 protein expression were evaluated by western blotting. The mechanical hypernociception induced by intraplantar injection of carrageenin, tumour necrosis factor (TNFα and CXCL1/KC was reduced in casp1-/- mice compared with WT mice. However, the hypernociception induced by IL-1β and PGE2 did not differ in WT and casp1-/- mice. Carrageenin-induced TNF-α and CXCL1/KC production and neutrophil recruitment in the paws of WT mice were not different from casp1-/- mice, while the maturation of IL-1β was reduced in casp1-/- mice. Furthermore, carrageenin induced an increase in the expression of COX-2 and PGE2 production in the paw of WT mice, but was reduced in casp1-/- mice. Conclusion These results suggest that caspase-1 plays a critical role in the cascade of events involved in the genesis of inflammatory hypernociception by promoting IL-1β maturation. Because caspase-1 is involved in the induction of COX-2 expression and PGE2 production, our data support the assertion that caspase-1 is a key target to control inflammatory pain.

  8. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda.

    Science.gov (United States)

    Huang, Ning; Civciristov, Srgjan; Hawkins, Christine J; Clem, Rollie J

    2013-05-01

    Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Expression and activation of Daphnia pulex Caspase-3 are involved in regulation of aging.

    Science.gov (United States)

    Tong, Qiaoqiong; Zhang, Mengmeng; Cao, Xiao; Xu, Shanliang; Wang, Danli; Zhao, Yunlong

    2017-11-15

    Death-mediating proteases such as Caspases have been implicated in aging. Remarkably, active Caspase-3 can trigger widespread damage and degeneration, playing a key role in causing cell death. In order to explore the relationship between Caspase-3 and aging in Daphnia pulex, we cloned and analyzed the full-length cDNA sequence of its Caspase-3 gene. Both mRNA expression and activity of D. pulex Caspase-3 increased with age. Moreover, different forms of Caspase-3 appeared with aging. The expression of casp3-L was higher and decreased with age, while that of casp3-S was weak and increased with age, consistent with the trend in Caspase-3 activity. Mhc mRNA expression declined over time and was negatively correlated with age and Caspase-3. In situ hybridization results showed that Caspase-3 mRNA was expressed in different growth and reproduction stages, and its expression levels in embryos and larva were lower than that in adult D. pulex. Western blot analysis revealed the presence of Caspase-3 in the form of zymogens with a molecular weight of ~36kDa. Overall, this study explored age-associated gene regulation to provide a basis for the molecular mechanism of D. pulex reproductive conversion. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. TSA-induced cell death in prostate cancer cell lines is caspase-2 dependent and involves the PIDDosome.

    Science.gov (United States)

    Taghiyev, Agshin F; Guseva, Natalya V; Glover, Rebecca A; Rokhlin, Oskar W; Cohen, Michael B

    2006-09-01

    The histone deacetylase inhibitor Trichostatin A (TSA) has previously been found to induce caspase activity in the human prostate cancer cell lines DU145 and LNCaP. TSA treatment resulted in the release of cytochrome c and Smac/DIABLO from mitochondria in DU145, and activation of caspase-9 in both cell lines. We concluded that TSA mediated its effect via the mitochondrial pathway. The aim of the current study was to determine how TSA initiated the caspase cascade. The results revealed that caspase-2 plays an important role in TSA-induced apoptosis. Inhibition of caspase-2 by siRNA or expression of caspase-2dn substantially decreased caspase activity after TSA treatment in both cell lines, siRNA caspase-2 also inhibited TSA-induced cell death. Caspase-2 acts upstream of caspase-8 and -9 and mediates mitochondrial cytochrome c release. Coimmunoprecipitation experiments show that caspase-2 formed protein complexes with RADD/RAIDD and PIDD. Together, these data indicate that caspase-2 initiates caspase cascade after TSA treatment and involves the formation of the PIDDosome.

  11. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation.

    Science.gov (United States)

    Faustin, Benjamin; Lartigue, Lydia; Bruey, Jean-Marie; Luciano, Frederic; Sergienko, Eduard; Bailly-Maitre, Beatrice; Volkmann, Niels; Hanein, Dorit; Rouiller, Isabelle; Reed, John C

    2007-03-09

    Interleukin (IL)-1beta maturation is accomplished by caspase-1-mediated proteolysis, an essential element of innate immunity. NLRs constitute a recently recognized family of caspase-1-activating proteins, which contain a nucleotide-binding oligomerization domain and leucine-rich repeat (LRR) domains and which assemble into multiprotein complexes to create caspase-1-activating platforms called "inflammasomes." Using purified recombinant proteins, we have reconstituted the NALP1 inflammasome and have characterized the requirements for inflammasome assembly and caspase-1 activation. Oligomerization of NALP1 and activation of caspase-1 occur via a two-step mechanism, requiring microbial product, muramyl-dipeptide, a component of peptidoglycan, followed by ribonucleoside triphosphates. Caspase-1 activation by NALP1 does not require but is enhanced by adaptor protein ASC. The findings provide the biochemical basis for understanding how inflammasome assembly and function are regulated, and shed light on NALP1 as a direct sensor of bacterial components in host defense against pathogens.

  12. Caspases in retinal ganglion cell death and axon regeneration

    Science.gov (United States)

    Thomas, Chloe N; Berry, Martin; Logan, Ann; Blanch, Richard J; Ahmed, Zubair

    2017-01-01

    Retinal ganglion cells (RGC) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspases through genetic or pharmacological approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic role of inflammatory caspases in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and inflammatory caspase responses in RGC specifically, their involvement in RGC degeneration and explore their potential as therapeutic targets. PMID:29675270

  13. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  14. Caspase-12 and the inflammatory response to Yersinia pestis.

    Science.gov (United States)

    Ferwerda, Bart; McCall, Matthew B B; de Vries, Maaike C; Hopman, Joost; Maiga, Boubacar; Dolo, Amagana; Doumbo, Ogobara; Daou, Modibo; de Jong, Dirk; Joosten, Leo A B; Tissingh, Rudi A; Reubsaet, Frans A G; Sauerwein, Robert; van der Meer, Jos W M; van der Ven, André J A M; Netea, Mihai G

    2009-09-01

    Caspase-12 functions as an antiinflammatory enzyme inhibiting caspase-1 and the NOD2/RIP2 pathways. Due to increased susceptibility to sepsis in individuals with functional caspase-12, an early-stop mutation leading to the loss of caspase-12 has replaced the ancient genotype in Eurasia and a significant proportion of individuals from African populations. In African-Americans, it has been shown that caspase-12 inhibits the pro-inflammatory cytokine production. We assessed whether similar mechanisms are present in African individuals, and whether evolutionary pressures due to plague may have led to the present caspase-12 genotype population frequencies. No difference in cytokine induction through the caspase-1 and/or NOD2/RIP2 pathways was observed in two independent African populations, among individuals with either an intact or absent caspase-12. In addition, stimulations with Yersinia pestis and two other species of Yersinia were preformed to investigate whether caspase-12 modulates the inflammatory reaction induced by Yersinia. We found that caspase-12 did not modulate cytokine production induced by Yersinia spp. Our experiments demonstrate for the first time the involvement of the NOD2/RIP2 pathway for recognition of Yersinia. However, caspase-12 does not modulate innate host defense against Y. pestis and alternative explanations for the geographical distribution of caspase-12 should be sought.

  15. Zinc-mediated Allosteric Inhibition of Caspase-6*

    Science.gov (United States)

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  16. Perfluorononanoic acid-induced apoptosis in rat spleen involves oxidative stress and the activation of caspase-independent death pathway

    International Nuclear Information System (INIS)

    Fang, Xuemei; Feng, Yixing; Wang, Jianshe; Dai, Jiayin

    2010-01-01

    Perfluoroalkyl acid (PFAA)-induced apoptosis has been reported in many cell types. However, minimal information on its mode of action is available. This study explored the possible involvement of apoptotic signaling pathways in a nine-carbon-chain length PFAA-perfluorononanoic acid (PFNA)-induced splenocyte apoptosis. After a 14-day exposure to PFNA, rat spleens showed dose-dependent levels of apoptosis. The production of pro-inflammatory and anti-inflammatory cytokines was significantly increased and decreased, respectively. However, protein levels of tumor necrosis factor receptor 1 (TNFR1), fas-associated protein with death domain (FADD), caspase 8 and caspase 3, which are involved in inflammation-related and caspase-dependent apoptosis, were discordant. Peroxisome proliferator-activated receptors alpha (PPARα) and PPARγ genes expression was up-regulated in rats treated with 3 or 5 mg/kg/day of PFNA, and the level of hydrogen peroxide (H 2 O 2 ) increased concurrently in rats treated with the highest dose. Moreover, superoxide dismutase (SOD) activity and Bcl-2 protein levels were dramatically decreased in spleens after treatment with 3 and 5 mg/kg/day of PFNA. However, protein levels of Bax were unchanged. Apoptosis-inducing factor (AIF), an initiator of caspase-independent apoptosis, was significantly increased in all PFNA-dosed rats. Thus, oxidative stress and the activation of a caspase-independent apoptotic signaling pathway contributed to PFNA-induced apoptosis in rat splenocytes.

  17. The Fas-associated death domain protein/caspase-8/c-FLIP signaling pathway is involved in TNF-induced activation of ERK

    International Nuclear Information System (INIS)

    Lueschen, Silke; Falk, Markus; Scherer, Gudrun; Ussat, Sandra; Paulsen, Maren; Adam-Klages, Sabine

    2005-01-01

    The cytokine TNF activates multiple signaling pathways leading to cellular responses ranging from proliferation and survival to apoptosis. While most of these pathways have been elucidated in detail over the past few years, the molecular mechanism leading to the activation of the MAP kinases ERK remains ill defined and is controversially discussed. Therefore, we have analyzed TNF-induced ERK activation in various human and murine cell lines and show that it occurs in a cell-type-specific manner. In addition, we provide evidence for the involvement of the signaling components Fas-associated death domain protein (FADD), caspase-8, and c-FLIP in the pathway activating ERK in response to TNF. This conclusion is based on the following observations: (I) Overexpression of FADD, caspase-8, or a c-FLIP protein containing the death effector domains only leads to enhanced and prolonged ERK activation after TNF treatment. (II) TNF-induced ERK activation is strongly diminished in the absence of FADD. Interestingly, the enzymatic function of caspase-8 is not required for TNF-induced ERK activation. Additional evidence suggests a role for this pathway in the proliferative response of murine fibroblasts to TNF

  18. Ginsenoside Rh2 Induces Human Hepatoma Cell Apoptosisvia Bax/Bak Triggered Cytochrome C Release and Caspase-9/Caspase-8 Activation

    Directory of Open Access Journals (Sweden)

    Xiao-Xi Guo

    2012-11-01

    Full Text Available Ginsenoside Rh2 (G-Rh2 has been shown to induce apoptotic cell death in a variety of cancer cells. However, the details of the signal transduction cascade involved in G-Rh2-induced cell death is unclear. In this manuscript we elucidate the molecular mechanism of G-Rh2-induced apoptosis in human hepatoma SK-HEP-1 cells by demonstrating that G-Rh2 causes rapid and dramatic translocation of both Bak and Bax, which subsequently triggers mitochondrial cytochrome c release and consequent caspase activation. Interestingly, siRNA-based gene inactivation of caspase-8 effectively delays caspase-9 activation and apoptosis induced by G-Rh2, indicating that caspase-8 also plays an important role in the G-Rh2-induced apoptosis program. Taken together, our results indicate that G-Rh2 employs a multi pro-apoptotic pathway to execute cancer cell death, suggesting a potential role for G-Rh2 as a powerful chemotherapeutic agent.

  19. Caspase-2 associates with FAN through direct interaction and overlapping functionality.

    Science.gov (United States)

    Forsberg, Jeremy; Li, Xinge; Zamaraev, Aleksey V; Panaretakis, Theocharis; Zhivotovsky, Boris; Olsson, Magnus

    2018-05-23

    Caspase-2 has been implicated in diverse cellular processes, and the identification of factors with which it interacts has steadily increased. In the present study, we report a direct interaction between caspase-2 and factor associated with neutral sphingomyelinase activation (FAN) using yeast two-hybrid screening and co-immunoprecipitation. Further, stable suppression of caspase-2 expression in HEK293T and HeLa cells enabled a systematic investigation of putative novel enzyme functionalities, especially with respect to ceramide production, cell migration, IL-6 production and vesicular homeostasis, all of which have been previously reported to be associated with FAN. Lipidomics excluded the involvement of caspase-2 in the generation of ceramide species, but caspase-2-dependent deregulation of IL-6 release, vesicular size and delayed cell relocation supported an association between caspase-2 and FAN. Collectively, these data identify a novel caspase-2-interacting factor, FAN, and expand the role for the enzyme in seemingly non-apoptotic cellular mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Caspase Activation in Fetal Rat Brain Following Experimental Intrauterine Inflammation

    Science.gov (United States)

    Sharangpani, Aditi; Takanohashi, Asako; Bell, Michael J.

    2009-01-01

    Intrauterine inflammation has been implicated in developmental brain injuries, including the development of periventricular leukomalacia (PVL) and cerebral palsy (CP). Previous studies in our rat model of intrauterine inflammation demonstrated apoptotic cell death in fetal brains within the first 5 days after lipopolysaccharide (LPS) administration to mothers and eventual dysmyelination. Cysteine-containing, aspartate-specific proteases, or caspases, are proteins involved with apoptosis through both intracellular (intrinsic pathway) and extracellular (extrinsic pathway) mechanisms. We hypothesized that cell death in our model would occur mainly via activation of the extrinsic pathway. We further hypothesized that Fas, a member of the tumor necrosis factor receptor (TNFR) superfamily, would be increased and the death inducing signaling complex (DISC) would be detectable. Pregnant rats were injected intracervically with LPS at E15 and immunoblotting, immunohistochemical and immunoprecipitation analyses were performed. The presence of the activated form of the effector caspase (caspase-3) was observed 24 h after LPS administration. Caspase activity assays demonstrated rapid increases in (i) caspases-9 and -10 within 1 h, (ii) caspase-8 at 2 h and (iii) caspase-3 at 4 h. At 24 h after LPS, activated caspase-3+/Fas+ cells were observed within the developing white matter. Lastly, the DISC complex (caspase-8, Fas and Fas-associated Death Domain (FADD)) was observed within 30 min by immunoprecipitation. Apoptosis in our model occurs via both extrinsic and intrinsic pathways, and activation of Fas may play a role. Understanding the mechanisms of cell death in models of intrauterine inflammation may affect development of future strategies to mitigate these injuries in children. PMID:18289516

  1. Caspase-1 from the silkworm, Bombyx mori, is involved in Bombyx mori nucleopolyhedrovirus infection.

    Science.gov (United States)

    Wang, Qiang; Ju, Xiaoli; Chen, Liang; Chen, Keping

    2017-03-01

    Caspase-1 is one of the effector caspases in mammals that plays a central role in apoptosis. However, the lepidopteran caspase-1, especially the Bombyx mori caspase-1 (Bm-caspase-1), has not been investigated in detail. In this study, Bm-caspase-1 was identified from an expressed sequence tag database in B. mori by BLAST search. The open reading frame of Bm-caspase-1 contained 879 nucleotides and encoded 293 amino acids with a predicted molecular mass of 33 kDa. Bm-caspase-1 contained two consensus amino acid motifs of caspase cleavage sites, DEGDA and TETDG. Caspase activity assays revealed significant proteolytic activity of the Ac-DEVD-pNA substrate. Bm-caspase-1 can be detected in all tissues and developmental stages by a semi quantitative polymerase chain reaction assay. More importantly, the expression level of Bm-caspase-1 is increased upon baculovirus infection and up-regulated in BmNPV-resistant silkworms. Taken together, these results indicate that Bm-caspase-1 plays an important role during baculovirus infection.

  2. Caspase-9 mediates synaptic plasticity and memory deficits of Danish dementia knock-in mice: caspase-9 inhibition provides therapeutic protection

    Directory of Open Access Journals (Sweden)

    Tamayev Robert

    2012-12-01

    Full Text Available Abstract Background Mutations in either Aβ Precursor protein (APP or genes that regulate APP processing, such as BRI2/ITM2B and PSEN1/PSEN2, cause familial dementias. Although dementias due to APP/PSEN1/PSEN2 mutations are classified as familial Alzheimer disease (FAD and those due to mutations in BRI2/ITM2B as British and Danish dementias (FBD, FDD, data suggest that these diseases have a common pathogenesis involving toxic APP metabolites. It was previously shown that FAD mutations in APP and PSENs promote activation of caspases leading to the hypothesis that aberrant caspase activation could participate in AD pathogenesis. Results Here, we tested whether a similar mechanism applies to the Danish BRI2/ITM2B mutation. We have generated a genetically congruous mouse model of FDD, called FDDKI, which presents memory and synaptic plasticity deficits. We found that caspase-9 is activated in hippocampal synaptic fractions of FDDKI mice and inhibition of caspase-9 activity rescues both synaptic plasticity and memory deficits. Conclusion These data directly implicate caspase-9 in the pathogenesis of Danish dementia and suggest that reducing caspase-9 activity is a valid therapeutic approach to treating human dementias.

  3. Possible involvement of caspase-6 and -7 but not caspase-3 in the regulation of hypoxia-induced apoptosis in tube-forming endothelial cells

    International Nuclear Information System (INIS)

    Eguchi, Ryoji; Tone, Shigenobu; Suzuki, Akio; Fujimori, Yoshihiro; Nakano, Takashi; Kaji, Kazuhiko; Ohta, Toshiro

    2009-01-01

    We recently reported that a broad-spectrum caspase inhibitor zVAD-fmk failed, while p38 inhibitor SB203580 succeeded, to prevent chromatin condensation and nuclear fragmentation induced by hypoxia in tube-forming HUVECs. In this study, we investigated the reasons for zVAD-fmk's inability to inhibit these morphological changes at the molecular level. The inhibitor effectively inhibited DNA ladder formation and activation of caspase-3 and -6, but it surprisingly failed to inhibit caspase-7 activation. On the other hand, SB203580 successfully inhibited all of these molecular events. When zLEHD-fmk, which specifically inhibits initiator caspase-9 upstream of caspase-3, was used, it inhibited caspase-3 activation but failed to inhibit caspase-6 and -7 activation. It also failed to inhibit hypoxia-induced chromatin condensation, nuclear fragmentation and DNA ladder formation. Taken together, our results indicate that, during hypoxia, caspase-7 is responsible for chromatin condensation and nuclear fragmentation while caspase-6 is responsible for DNA ladder formation

  4. The Enigmatic Roles of Caspases in Tumor Development

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, Richard; Zwacka, Ralf M., E-mail: ralf.zwacka@nuigalway.ie [National University of Ireland, Galway, National Centre for Biomedical Engineering Science and Apoptosis Research Centre, Molecular Therapeutics Group, Galway (Ireland)

    2010-11-24

    One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may

  5. The Enigmatic Roles of Caspases in Tumor Development

    International Nuclear Information System (INIS)

    Jäger, Richard; Zwacka, Ralf M.

    2010-01-01

    One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may

  6. BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori.

    Science.gov (United States)

    Yi, Hua-Shan; Pan, Cai-Xia; Pan, Chun; Song, Juan; Hu, Yan-Fen; Wang, La; Pan, Min-Hui; Lu, Cheng

    2014-02-28

    In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a (169)QACRG(173) sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Caspase-10 Is the Key Initiator Caspase Involved in Tributyltin-Mediated Apoptosis in Human Immune Cells

    Directory of Open Access Journals (Sweden)

    Harald F. Krug

    2012-01-01

    Full Text Available Tributyltin (TBT is one of the most toxic compounds produced by man and distributed in the environment. A multitude of toxic activities have been described, for example, immunotoxic, neurotoxic, and endocrine disruptive effects. Moreover, it has been shown for many cell types that they undergo apoptosis after treatment with TBT and the cell death of immune cells could be the molecular background of its immunotoxic effect. As low as 200 nM up to 1 μM of TBT induces all signs of apoptosis in Jurkat T cells within 1 to 24 hrs of treatment. When compared to Fas-ligand control stimulation, the same sequence of events occurs: membrane blebbing, phosphatidylserine externalisation, the activation of the “death-inducing signalling complex,” and the following sequence of cleavage processes. In genetically modified caspase-8-deficient Jurkat cells, the apoptotic effects are only slightly reduced, whereas, in FADD-negative Jurkat cells, the TBT effect is significantly diminished. We could show that caspase-10 is recruited by the TRAIL-R2 receptor and apoptosis is totally prevented when caspase-10 is specifically inhibited in all three cell lines.

  8. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34.

    Science.gov (United States)

    Marlin, Jerry W; Chang, Yu-Wen E; Ober, Margaret; Handy, Amy; Xu, Wenhao; Jakobi, Rolf

    2011-06-01

    p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.

  9. A genetic screen for modifiers of Drosophila caspase Dcp-1 reveals caspase involvement in autophagy and novel caspase-related genes

    Directory of Open Access Journals (Sweden)

    Ahnn Joohong

    2010-01-01

    Full Text Available Abstract Background Caspases are cysteine proteases with essential functions in the apoptotic pathway; their proteolytic activity toward various substrates is associated with the morphological changes of cells. Recent reports have described non-apoptotic functions of caspases, including autophagy. In this report, we searched for novel modifiers of the phenotype of Dcp-1 gain-of-function (GF animals by screening promoter element- inserted Drosophila melanogaster lines (EP lines. Results We screened ~15,000 EP lines and identified 72 Dcp-1-interacting genes that were classified into 10 groups based on their functions and pathways: 4 apoptosis signaling genes, 10 autophagy genes, 5 insulin/IGF and TOR signaling pathway genes, 6 MAP kinase and JNK signaling pathway genes, 4 ecdysone signaling genes, 6 ubiquitination genes, 11 various developmental signaling genes, 12 transcription factors, 3 translation factors, and 11 other unclassified genes including 5 functionally undefined genes. Among them, insulin/IGF and TOR signaling pathway, MAP kinase and JNK signaling pathway, and ecdysone signaling are known to be involved in autophagy. Together with the identification of autophagy genes, the results of our screen suggest that autophagy counteracts Dcp-1-induced apoptosis. Consistent with this idea, we show that expression of eGFP-Atg5 rescued the eye phenotype caused by Dcp-1 GF. Paradoxically, we found that over-expression of full-length Dcp-1 induced autophagy, as Atg8b-GFP, an indicator of autophagy, was increased in the eye imaginal discs and in the S2 cell line. Taken together, these data suggest that autophagy suppresses Dcp-1-mediated apoptotic cell death, whereas Dcp-1 positively regulates autophagy, possibly through feedback regulation. Conclusions We identified a number of Dcp-1 modifiers that genetically interact with Dcp-1-induced cell death. Our results showing that Dcp-1 and autophagy-related genes influence each other will aid future

  10. Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism.

    Science.gov (United States)

    Qi, Jian Hua; Anand-Apte, Bela

    2015-04-01

    Tissue inhibitor of metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in ECs in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in ECs expressing KDR (PAE/KDR), but not in ECs expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway.

  11. ATP Induces IL-1β Secretion in Neisseria gonorrhoeae-Infected Human Macrophages by a Mechanism Not Related to the NLRP3/ASC/Caspase-1 Axis

    Directory of Open Access Journals (Sweden)

    Killen García

    2016-01-01

    Full Text Available Neisseria gonorrhoeae (Ngo has developed multiple immune evasion mechanisms involving the innate and adaptive immune responses. Recent findings have reported that Ngo reduces the IL-1β secretion of infected human monocyte-derived macrophages (MDM. Here, we investigate the role of adenosine triphosphate (ATP in production and release of IL-1β in Ngo-infected MDM. We found that the exposure of Ngo-infected MDM to ATP increases IL-1β levels about ten times compared with unexposed Ngo-infected MDM (P0.05 and caspase-1 (CASP1, P>0.05. In addition, ATP was not able to modify caspase-1 activity in Ngo-infected MDM but was able to increase pyroptosis (P>0.01. Notably ATP treatment defined an increase of positive staining for IL-1β with a distinctive intracellular pattern of distribution. Collectively, these data demonstrate that ATP induces IL-1β secretion by a mechanism not related to the NLRP3/ASC/caspase-1 axis and likely is acting at the level of vesicle trafficking or pore formation.

  12. Inhibition of Histone Deacetylases Permits Lipopolysaccharide-Mediated Secretion of Bioactive IL-1β via a Caspase-1-Independent Mechanism.

    Science.gov (United States)

    Stammler, Dominik; Eigenbrod, Tatjana; Menz, Sarah; Frick, Julia S; Sweet, Matthew J; Shakespear, Melanie R; Jantsch, Jonathan; Siegert, Isabel; Wölfle, Sabine; Langer, Julian D; Oehme, Ina; Schaefer, Liliana; Fischer, Andre; Knievel, Judith; Heeg, Klaus; Dalpke, Alexander H; Bode, Konrad A

    2015-12-01

    Histone deacetylase (HDAC) inhibitors (HDACi) are clinically approved anticancer drugs that have important immune-modulatory properties. We report the surprising finding that HDACi promote LPS-induced IL-1β processing and secretion in human and murine dendritic cells and murine macrophages. HDACi/LPS-induced IL-1β maturation and secretion kinetics differed completely from those observed upon inflammasome activation. Moreover, this pathway of IL-1β secretion was dependent on caspase-8 but was independent of the inflammasome components NACHT, LRR, and PYD domains-containing protein 3, apoptosis-associated speck-like protein containing a carboxyl-terminal caspase-recruitment domain, and caspase-1. Genetic studies excluded HDAC6 and HDAC10 as relevant HDAC targets in this pathway, whereas pharmacological inhibitor studies implicated the involvement of HDAC11. Treatment of mice with HDACi in a dextran sodium sulfate-induced colitis model resulted in a strong increase in intestinal IL-1β, confirming that this pathway is also operative in vivo. Thus, in addition to the conventional inflammasome-dependent IL-1β cleavage pathway, dendritic cells and macrophages are capable of generating, secreting, and processing bioactive IL-1β by a novel, caspase-8-dependent mechanism. Given the widespread interest in the therapeutic targeting of IL-1β, as well as the use of HDACi for anti-inflammatory applications, these findings have substantial clinical implications. Copyright © 2015 by The American Association of Immunologists, Inc.

  13. Ofloxacin induces apoptosis in microencapsulated juvenile rabbit chondrocytes by caspase-8-dependent mitochondrial pathway

    International Nuclear Information System (INIS)

    Sheng Zhiguo; Cao Xiaojuan; Peng Shuangqing; Wang Changyong; Li Qianqian; Wang Yimei; Liu Mifeng

    2008-01-01

    Quinolones (QNs)-induced arthropathy is an important toxic effect in immature animals leading to restriction of their therapeutic use in pediatrics. However, the exact mechanism still remains unclear. Recently, we have demonstrated that ofloxacin, a typical QN, induces apoptosis of alginate microencapsulated juvenile rabbit joint chondrocytes by disturbing the β 1 integrin functions and inactivating the ERK/MAPK signaling pathway. In this study, we extend our initial observations to further elucidate the mechanism(s) of ofloxacin-induced apoptosis by utilizing specific caspase inhibitors. Pretreatment with both caspase-9-specific inhibitor zLEHD-fmk and caspase-8 inhibitor zIETD-fmk attenuated ofloxacin-induced apoptosis and activation of caspase-3 of chondrocyte in a concentration-dependent manner, as determined by fluorescent dye staining, enzyme activity assay and immunoblotting. Furthermore, the activation of caspase-9, -8 and -3 stimulated by ofloxacin was significantly inhibited in the presence of zIETD-fmk while pretreatment with zLEHD-fmk only blocked the activation of caspase-9 and -3. Ofloxacin also stimulated a concentration-dependent translocation of cytochrome c from mitochondria into the cytosol and a decrease of mitochondrial transmembrane potential, which was completely inhibited by zIETD-fmk. In addition, ofloxacin was found to increase the level of Bax, tBid, p53 in a concentration- and time-dependent manner. Taken together, The current results indicate that the caspase-8-dependent mitochondrial pathway is primarily involved in the ofloxacin-induced apoptosis of microencapsulated juvenile rabbit joint chondrocytes

  14. Feedback regulation of mitochondria by caspase-9 in the B cell receptor-mediated apoptosis.

    Science.gov (United States)

    Eeva, J; Nuutinen, U; Ropponen, A; Mättö, M; Eray, M; Pellinen, R; Wahlfors, J; Pelkonen, J

    2009-12-01

    During the germinal centre reaction (GC), B cells with non-functional or self-reactive antigen receptors are negatively selected by apoptosis to generate B cell repertoire with appropriate antigen specificities. We studied the molecular mechanism of Fas/CD95- and B cell receptor (BCR)-induced apoptosis to shed light on the signalling events involved in the negative selection of GC B cells. As an experimental model, we used human follicular lymphoma (FL) cell line HF1A3, which originates from a GC B cell, and transfected HF1A3 cell lines overexpressing Bcl-x(L), c-FLIP(long) or dominant negative (DN) caspase-9. Fas-induced apoptosis was dependent on the caspase-8 activation, since the overexpression of c-FLIP(long), a natural inhibitor of caspase-8 activation, blocked apoptosis induced by Fas. In contrast, caspase-9 activation was not involved in Fas-induced apoptosis. BCR-induced apoptosis showed the typical characteristics of mitochondria-dependent (intrinsic) apoptosis. Firstly, the activation of caspase-9 was involved in BCR-induced DNA fragmentation, while caspase-8 showed only marginal role. Secondly, overexpression of Bcl-x(L) could block all apoptotic changes induced by BCR. As a novel finding, we demonstrate that caspase-9 can enhance the cytochrome-c release and collapse of mitochondrial membrane potential (DeltaPsi(m)) during BCR-induced apoptosis. The requirement of different signalling pathways in apoptosis induced by BCR and Fas may be relevant, since Fas- and BCR-induced apoptosis can thus be regulated independently, and targeted to different subsets of GC B cells.

  15. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species.

    Science.gov (United States)

    De Milito, Angelo; Iessi, Elisabetta; Logozzi, Mariantonia; Lozupone, Francesco; Spada, Massimo; Marino, Maria Lucia; Federici, Cristina; Perdicchio, Maurizio; Matarrese, Paola; Lugini, Luana; Nilsson, Anna; Fais, Stefano

    2007-06-01

    Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.

  16. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng Tien [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Weng, Te I. [Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Chen, Li Ping [Department of Dentistry, Chang Gang Memorial Hospital, Chang Gang University, Taoyuan, Taiwan (China); Chiang, Chih Kang [Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Liu, Shing Hwa, E-mail: shinghwaliu@ntu.edu.tw [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China)

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  17. Prostaglandin F2alpha- and FAS-activating antibody-induced regression of the corpus luteum involves caspase-8 and is defective in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Flavell Richard A

    2003-02-01

    Full Text Available Abstract We recently demonstrated that caspase-3 is important for apoptosis during spontaneous involution of the corpus luteum (CL. These studies tested if prostaglandin F2α (PGF2α or FAS regulated luteal regression, utilize a caspase-3 dependent pathway to execute luteal cell apoptosis, and if the two receptors work via independent or potentially shared intracellular signaling components/pathways to activate caspase-3. Wild-type (WT or caspase-3 deficient female mice, 25–26 days old, were given 10 IU equine chorionic gonadotropin (eCG intraperitoneally (IP followed by 10 IU human chorionic gonadotropin (hCG IP 46 h later to synchronize ovulation. The animals were then injected with IgG (2 micrograms, i.v., the FAS-activating antibody Jo2 (2 micrograms, i.v., or PGF2α (10 micrograms, i.p. at 24 or 48 h post-ovulation. Ovaries from each group were collected 8 h later for assessment of active caspase-3 enzyme and apoptosis (measured by the TUNEL assay in the CL. Regardless of genotype or treatment, CL in ovaries collected from mice injected 24 h after ovulation showed no evidence of active caspase-3 or apoptosis. However, PGF2α or Jo2 at 48 h post-ovulation and collected 8 h later induced caspase-3 activation in 13.2 ± 1.8% and 13.7 ± 2.2 % of the cells, respectively and resulted in 16.35 ± 0.7% (PGF2α and 14.3 ± 2.5% TUNEL-positive cells when compared to 1.48 ± 0.8% of cells CL in IgG treated controls. In contrast, CL in ovaries collected from caspase-3 deficient mice whether treated with PGF2α , Jo2, or control IgG at 48 h post-ovulation showed little evidence of active caspase-3 or apoptosis. CL of WT mice treated with Jo2 at 48 h post-ovulation had an 8-fold increase in the activity of caspase-8, an activator of caspase-3 that is coupled to the FAS death receptor. Somewhat unexpectedly, however, treatment of WT mice with PGF2α at 48 h post-ovulation resulted in a 22-fold increase in caspase-8 activity in the CL, despite the fact

  18. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance

    International Nuclear Information System (INIS)

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-01-01

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells

  19. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance.

    Science.gov (United States)

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-05-10

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells.

  20. Caspases : more than just killers?

    OpenAIRE

    Los, Marek Jan; Stroh, C.; Janicke, R. U.; Engels, I. H.; Schulze-Osthoff, K.

    2001-01-01

    Proteases of the caspase family constitute the central executioners of apoptosis, Several recent observations suggest that caspases and apoptosis-regulatory molecules exert important functions beyond that of cell death, including the control of T-cell proliferation and cell-cycle progression. Here, Los and colleagues propose a model that directly connects cell suicide mechanisms to the regulation of cell-cycle progression.

  1. Caspases: more than just killers?

    Science.gov (United States)

    Los, M; Stroh, C; Jänicke, R U; Engels, I H; Schulze-Osthoff, K

    2001-01-01

    Proteases of the caspase family constitute the central executioners of apoptosis. Several recent observations suggest that caspases and apoptosis-regulatory molecules exert important functions beyond that of cell death, including the control of T-cell proliferation and cell-cycle progression. Here, Los and colleagues propose a model that directly connects cell suicide mechanisms to the regulation of cell-cycle progression.

  2. Both the caspase CSP-1 and a caspase-independent pathway promote programmed cell death in parallel to the canonical pathway for apoptosis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Daniel P Denning

    Full Text Available Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3, of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell

  3. Caspase-1 Deficiency Alleviates Dopaminergic Neuronal Death via Inhibiting Caspase-7/AIF Pathway in MPTP/p Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Qiao, Chen; Zhang, Lin-Xia; Sun, Xi-Yang; Ding, Jian-Hua; Lu, Ming; Hu, Gang

    2017-08-01

    Caspase family has been recognized to be involved in dopaminergic (DA) neuronal death and to exert an unfavorable role in Parkinson's disease (PD) pathology. Our previous study has revealed that caspase-1, as an important component of NLRP3 inflammasome, induces microglia-mediated neuroinflammation in the pathogenesis of PD. However, the role of caspase-1 in DA neuronal degeneration in the onset of PD remains unclear. Here, we showed that caspase-1 knockout ameliorated DA neuronal loss and dyskinesia in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model mice. We further found that caspase-1 knockout decreased MPTP/p-induced caspase-7 cleavage, subsequently inhibited nuclear translocation of poly (ADP-ribose) polymerase 1 (PARP1), and reduced the release of apoptosis-inducing factor (AIF). Consistently, we demonstrated that caspase-1 inhibitor suppressed caspase-7/PARP1/AIF-mediated apoptosis pathway by 1-methyl-4-phenylpyridinium ion (MPP + ) stimulation in SH-SY5Y cells. Caspase-7 overexpression reduced the protective effects of caspase-1 inhibitor on SH-SY5Y cell apoptosis. Collectively, our results have revealed that caspase-1 regulates DA neuronal death in the pathogenesis of PD in mice via caspase-7/PARP1/AIF pathway. These findings will shed new insight into the potential of caspase-1 as a target for PD therapy.

  4. Transient protective effect of caspase inhibitors in RCS rat.

    Science.gov (United States)

    Perche, O; Doly, M; Ranchon-Cole, I

    2008-03-01

    In most retinal degenerations in humans and in animal models, photoreceptor cells die by apoptosis. Although the biochemical features are similar in all apoptotic cells, different molecular events lead the cell to death. In the present study we used a rat model of inherited retinal degeneration, the RCS rats, to investigate the involvement of the proteases, caspases and/or calpains, in photoreceptor apoptosis. In the first experiments, rats were untreated or injected intravitreally at post natal day 27 (P27) with the large broad spectrum caspase inhibitor, ZVAD, the calpain inhibitor, MuhPhe, or with the vehicle, DMSO. Retinal status was evaluated at P35 and P42 by electroretinography, morphometry and apoptotic nuclei detection. DMSO and MuhPhe had no effect on RCS retinas as evidenced by equivalent loss of function and equivalent number of apoptotic cells than in untreated group. ZVAD transiently reduced apoptotic cells and preserved photoreceptor function at P35 but not at P42. These results suggest that caspases but not calpains are involved in retinal degeneration in the RCS. In the second experiments, RCS rats were injected twice at P27 and P35 with ZVAD or DMSO. Although ZVAD-treated retinas were preserved at P35 compared to the DMSO controls, the second injection of ZVAD did not extend the preserving effect to P42. Moreover, a single injection of ZVAD at P35 had no preserving effect at P42. All these data taken together suggest that caspases do not play a pivotal role after P35. In a fourth set of experiments, we used specific caspase inhibitors to elucidate which caspase was activated. The caspase-1/4 inhibitor (YVAD) or the caspase-3/7 inhibitor (DEVD) were injected intravitreally at P27 and retinal status was evaluated at P35 and P42. Electroretinograms and apoptotic nuclei detection demonstrated that YVAD and DEVD preserved photoreceptors at P35 but not at P42. These results suggest that both caspase-1/4 and caspase-3/7 play a major role in the apoptotic

  5. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Hyeok; Seo, Sung-Keum [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); An, Sungkwan; Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  6. Activation of caspase-3 in radioinduced apoptosis in developing brain

    International Nuclear Information System (INIS)

    Michelin, Severino C.; Perez, Maria del R.; Gisone, Pablo; Dubner, Diana

    2001-01-01

    ICE/ced-3 related proteases (caspases) have been implicated in programmed cell death in a wide variety of cell types. However, their roles in radiation-induced cell death in cultures of mixed, neuronal and glial precursors cells are poorly understood. In order to further elucidate the molecular mechanisms underlying radiation induced death in this system; we have examined the ability of ionizing radiation to induce cell death and the caspase-3 activity. Survival decreased in a dose-dependent manner 24 h after a single 0,1 to 4 Gy dose of ionizing radiation. Irradiation resulted in a significant induction in caspase-3 activity, as measured by increased cleavage of colorimetric caspase substrates. Specific inhibitor of caspase-3, zDEVD-fmk, protected only partially from radiation induced cell death. These results demonstrate that cell death occurred despite of caspase-3 inhibition, and suggest that radio-induced cell death may occur by other mechanisms. (author)

  7. Caspase dependent and independent mechanisms of apoptosis across gestation in a sheep model of placental insufficiency and intrauterine growth restriction.

    Science.gov (United States)

    Monson, Troy; Wright, Tanner; Galan, Henry L; Reynolds, Paul R; Arroyo, Juan A

    2017-05-01

    Increased placental apoptosis is a hallmark of intrauterine growth restricted (IUGR). Several molecules have been shown to be involved in the control of apoptosis during this disease. Our objective was to determine the expression of Bcl2, Bax, phospho XIAP, AIF, caspase 3 and 9, and telomerase activity across gestation in an ovine hyperthermia-induced model of IUGR. Pregnant sheep were placed in hyperthermic (HT) conditions to induce IUGR along with age-matched controls. Placental tissues were collected at 55 (early), 95 (mid-gestation) and 130 (near-term) days of gestational age (dGA) to determine the expression of apoptotic molecules during the development of IUGR. Compared to the control placenta, IGUR pregnancies showed: significantly reduced placental Bcl2 in early gestation (55 dGA) with a significant increase observed at mid gestation (95 dGA); decreased placental pXIAP at both mid and near term gestational days (95 and 130 dGA); placental AIF increased only at 55 dGA (early gestation); active caspase 3 increased at both mid and near term gestational days (95 and 130 dGA); caspase 9 only increased at mid gestation (95 dGA) and decreased Telomerase activity near term. Placental apoptosis, mediated in part by the apoptosis related molecule, participates in the development of IUGR. Findings from this study suggest a caspase-independent apoptotic pathway during early gestation and caspase-dependent apoptosis at mid and near term gestation. The data also implicate decreased activation of XIAP as a plausible factor involved in the control of placental apoptosis during IUGR.

  8. Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability?

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available BACKGROUND: Macrophage death in advanced lesion has been confirmed to play an important role in plaque instability. However, the mechanism underlying lesion macrophage death still remains largely unknown. METHODS AND RESULTS: Immunohistochemistry showed that caspase-1 activated in advanced lesion and co-located with macrophages and TUNEL positive reaction. In in-vitro experiments showed that ox-LDL induced caspase-1 activation and this activation was required for ox-LDL induced macrophages lysis, IL-1β and IL-18 production as well as DNA fragmentation. Mechanism experiments showed that CD36 and NLRP3/caspase-1/pathway involved in ox-LDL induced macrophage pyroptosis. CONCLUSION: Our study here identified a novel cell death, pyroptosis in ox-LDL induced human macrophage, which may be implicated in lesion macrophages death and play an important role in lesion instability.

  9. Autoregulatory Feedback Mechanism of P38MAPK/Caspase-8 in Photodynamic Therapy-Hydrophilic/Lipophilic Tetra-α-(4-carboxyphenoxy Phthalocyanine Zinc-Induced Apoptosis of Human Hepatocellular Carcinoma Bel-7402 Cells

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Photodynamic therapy (PDT is a novel and promising antitumor treatment. Our previous study showed that hydrophilic/lipophilic tetra-α-(4-carboxyphenoxy phthalocyanine zinc- (TαPcZn- mediated PDT (TαPcZn-PDT inhibits the proliferation of human hepatocellular carcinoma Bel-7402 cells by triggering apoptosis and arresting cell cycle. However, mechanisms of TαPcZn-PDT-induced apoptosis of Bel-7402 cells have not been fully clarified. In the present study, therefore, effect of TαPcZn-PDT on apoptosis, P38MAPK, p-P38MAPK, Caspase-8, Caspase-3, Bcl-2, Bid, Cytochrome c, and mitochondria membrane potential in Bel-7402 cells without or with P38MAPK inhibitor SB203580 or Caspase-8 inhibitor Ac-IEFD-CHO was investigated by haematoxylin and eosin (HE staining assay, flow cytometry analysis of annexin V-FITC/propidium iodide (PI double staining cells and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1, and immunoblot assay. We found that TαPcZn-PDT resulted in apoptosis induction, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. In contrast, SB203580 or Ac-IEFD-CHO attenuated induction of apoptosis, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. Taken together, we conclude that Caspase-3, Bcl-2, Bid, and mitochondria are involved in autoregulatory feedback of P38MAPK/Caspase-8 during TαPcZn-PDT-induced apoptosis of Bel-7402 cells.

  10. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages.

    Directory of Open Access Journals (Sweden)

    Antje Bast

    2014-03-01

    Full Text Available The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1

  11. Inhibitor specificity of recombinant and endogenous caspase-9.

    Science.gov (United States)

    Ryan, Ciara A; Stennicke, Henning R; Nava, Victor E; Burch, Jennifer B; Hardwick, J Marie; Salvesen, Guy S

    2002-01-01

    Apoptosis triggered through the intrinsic pathway by radiation and anti-neoplastic drugs is initiated by the activation of caspase-9. To elucidate control mechanisms in this pathway we used a range of synthetic and natural reagents. The inhibitory potency of acetyl-Asp-Glu-Val-Asp-aldehyde ('Ac-DEVD-CHO'), benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone ('Z-VAD-FMK') and the endogenous caspase inhibitor X-chromosome-linked inhibitor of apoptosis protein ('XIAP') against recombinant caspase-9 were predictive of the efficacy of these compounds in a cell-free system. However, the viral proteins CrmA and p35, although potent inhibitors of recombinant caspase-9, had almost no ability to block caspase-9 in this system. These findings were also mirrored in cell expression studies. We hypothesize that the viral inhibitors CrmA and p35 are excluded from reacting productively with the natural form of active caspase-9 in vivo, making the potency of inhibitors highly context-dependent. This is supported by survival data from a mouse model of apoptosis driven by Sindbis virus expressing either p35 or a catalytic mutant of caspase-9. These results consolidate previous findings that CrmA is a potent inhibitor of caspase-9 in vitro, yet fails to block caspase-9-mediated cell death. PMID:12067274

  12. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation

    International Nuclear Information System (INIS)

    Chou, C.-T.; He Shiping; Jan, C.-R.

    2007-01-01

    Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH 2 -terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca 2+ ] i increases which involved the mobilization of intracellular Ca 2+ stored in the endoplasmic reticulum and Ca 2+ influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca 2+ chelator, to prevent paroxetine-induced [Ca 2+ ] i increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca 2+ -independent apoptosis via inducing p38 MAPK-associated caspase-3 activation

  13. Involvement of major components from Sporothrix schenckii cell wall in the caspase-1 activation, nitric oxide and cytokines production during experimental sporotrichosis.

    Science.gov (United States)

    Gonçalves, Amanda Costa; Maia, Danielle Cardoso Geraldo; Ferreira, Lucas Souza; Monnazzi, Luis Gustavo Silva; Alegranci, Pâmela; Placeres, Marisa Campos Polesi; Batista-Duharte, Alexander; Carlos, Iracilda Zeppone

    2015-02-01

    Sporotrichosis is a chronic infection caused by the dimorphic fungus Sporothrix schenckii, involving all layers of skin and the subcutaneous tissue. The role of innate immune toll-like receptors 2 and 4 in the defense against this fungus has been reported, but so far, there were no studies on the effect of cell wall major components over the cytosolic oligo-merization domain (NOD)-like receptors, important regulators of inflammation and responsible for the maturation of IL-1β and IL-18, whose functions are dependents of the caspase-1 activation, that can participate of inflammasome. It was evaluated the percentage of activation of caspase-1, the production of IL-1β, IL-18, IL-17, IFN-γ and nitric oxide in a Balb/c model of S. schenckii infection. It was observed a decreased activity of caspase-1 during the fourth and sixth weeks of infection accompanied by reduced secretion of the cytokines IL-1β, IL-18 and IL-17 and high production of nitric oxide. IFN-γ levels were elevated during the entire time course of infection. This temporal reduction in caspase-1 activity coincides exactly with the reported period of fungal burden associated with a transitory immunosuppression induced by this fungus and detected in similar infection models. These results indicate the importance of interaction between caspase-1, cytokines IL-1β and IL-18 in the host defense against S. schenckii infection, suggesting a participation the inflammasome in this response.

  14. Caspase-9 has a nonapoptotic function in Xenopus embryonic primitive blood formation.

    Science.gov (United States)

    Tran, Hong Thi; Fransen, Mathias; Dimitrakopoulou, Dionysia; Van Imschoot, Griet; Willemarck, Nicolas; Vleminckx, Kris

    2017-07-15

    Caspases constitute a family of cysteine proteases centrally involved in programmed cell death, which is an integral part of normal embryonic and fetal development. However, it has become clear that specific caspases also have functions independent of cell death. In order to identify novel apoptotic and nonapoptotic developmental caspase functions, we designed and transgenically integrated novel fluorescent caspase reporter constructs in developing Xenopus embryos and tadpoles. This model organism has an external development, allowing direct and continuous monitoring. These studies uncovered a nonapoptotic role for the initiator caspase-9 in primitive blood formation. Functional experiments further corroborated that caspase-9, but possibly not the executioners caspase-3 and caspase-7, are required for primitive erythropoiesis in the early embryo. These data reveal a novel nonapoptotic function for the initiator caspase-9 and, for the first time, implicate nonapoptotic caspase activity in primitive blood formation. © 2017. Published by The Company of Biologists Ltd.

  15. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    Science.gov (United States)

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  16. Involvement of ERK, Bcl-2 family and caspase 3 in recombinant human activin A-induced apoptosis in A549

    International Nuclear Information System (INIS)

    Wang Baiding; Feng Yuling; Song Xingbo; Liu Qingqing; Ning Yunye; Ou Xuemei; Yang Jie; Zhang Xiaohong; Wen, Fuqiang

    2009-01-01

    Background: Activins are members of the transforming growth factor-β (TGF-β) superfamily. Previous studies have shown that activin A may have a central role in regulating both apoptosis and proliferation. However, direct studies of recombination human activin A on human NSCLC A549 cells have not yet been reported. The purpose of this study was to investigate whether activin A could induce apoptosis in A549 cells and the possible mechanisms via which it worked. Methods: Cellular apoptosis induced by activin A was detected by TUNEL assay and the levels of protein expression were detected by western blot. Results: Recombination human activin A induced apoptosis in human NSCLC A549 cells in a concentrate-dependent manner. Activin A-induced A549 apoptosis was accompanied by the up-regulation of Bax, Bad and Bcl-Xs and down-regulation of Bcl-2. Moreover, activin A treatment increased the expression of its typeII receptors, activated ERK and caspase 3 in A549. These results clearly demonstrate that the induction of apoptosis by activin-A involves multiple cellular/molecular pathways and strongly suggest that pro- and anti-apoptotic Bcl-2 family proteins and caspase 3 participate in activin A-induced apoptotic process in A549 cells. On the other hand, activin A treatment had little effect on primary human small airway epithelial cells (SAECs). Conclusion: Recombination human activin A induced apoptosis in A549 cells, at least partially, through ERK and mitochondrial pathway. The result that activin A did not affect the normal SAEC revealed activin A might be considered as a potential anticancer agent and worthy of further studies

  17. Essential roles of caspases and their upstream regulators in rotenone-induced apoptosis

    International Nuclear Information System (INIS)

    Lee Jihjong; Huang, M.-S.; Yang, I-C.; Lai, T.-C.; Wang, J.-L.; Pang, V.F.; Hsiao, M.; Kuo, M.Y.P.

    2008-01-01

    In the present study, we examined whether caspases and their upstream regulators are involved in rotenone-induced cytotoxicity. Rotenone significantly inhibited the proliferation of oral cancer cell lines in a dose-dependent manner compared to normal oral mucosal fibroblasts. Flow cytometric analysis of DNA content showed that rotenone treatment induced apoptosis following G2/M arrest. Western blotting showed activation of both the caspase-8 and caspase-9 pathways, which differed from previous studies conducted in other cell types. Furthermore, p53 protein and its downstream pro-apoptotic target, Bax, were induced in SAS cells after treatment with rotenone. Rotenone-induced apoptosis was inhibited by antioxidants (glutathione, N-acetylcysteine, and tiron). In conclusion, our results demonstrate significant involvement of caspases and their upstream regulators in rotenone-induced cytotoxicity

  18. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    Science.gov (United States)

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  19. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

    Directory of Open Access Journals (Sweden)

    Jasmin Balmer

    2015-07-01

    Full Text Available Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3 both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg. Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE cells, primary retinal cells, and the cone photoreceptor (PRC cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1 was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.

  20. SfDredd, a Novel Initiator Caspase Possessing Activity on Effector Caspase Substrates in Spodoptera frugiperda.

    Science.gov (United States)

    Yang, Zhouning; Zhou, Ke; Liu, Hao; Wu, Andong; Mei, Long; Liu, Qingzhen

    2016-01-01

    Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells.

  1. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation

    International Nuclear Information System (INIS)

    Yamakawa, Nobuhiro; Takahashi, Akihisa; Mori, Eiichiro; Imai, Yuichiro; Ohnishi, Ken; Kirita, Tadaaki; Ohnishi, Takeo; Furusawa, Yoshiya

    2008-01-01

    Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/μm), or Fe-ion beams (200 KeV/μm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/μm, and then decreased at values over 100 KeV/μm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53. (author)

  2. Caspase-3 activation as a bifurcation point between plasticity and cell death

    Institute of Scientific and Technical Information of China (English)

    Shikha Snigdha; Erica D Smith; G Aleph Prieto; Carl W Cotman

    2012-01-01

    Death-mediating proteases such as caspases and caspase-3 in particular,have been implicated in neurodegenerative processes,aging and Alzheimer's disease.However,emerging evidence suggests that in addition to their classical role in cell death,caspases play a key role in modulating synaptic function.It is remarkable that active caspases-3,which can trigger widespread damage and degeneration,aggregates in structures as delicate as synapses and persists in neurons without causing acute cell death.Here,we evaluate this dichotomy,and discuss the hypothesis that caspase-3 may be a bifurcation point in cellular signaling,able to orient the neuronal response to stress down either pathological/apoptotic pathways or towards physiological cellular remodeling.We propose that temporal,spatial and other regulators of caspase activity are key determinants of the ultimate effect of caspase-3 activation in neurons.This concept has implications for differential roles of caspase-3 activation across the lifespan.Specifically,we propose that limited caspase-3 activation is critical for synaptic function in the healthy adult brain while chronic activation is involved in degenerative processes in the aging brain.

  3. Caspase inhibitors of the P35 family are more active when purified from yeast than bacteria.

    Directory of Open Access Journals (Sweden)

    Ingo L Brand

    Full Text Available Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a "reactive site loop" within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins may underestimate their activity.

  4. A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly.

    Directory of Open Access Journals (Sweden)

    Frédérique Végran

    Full Text Available Alternative splicing of caspase-3 produces a short isoform caspase-3s that antagonizes caspase-3 apoptotic activity. However, the mechanism of apoptosis inhibition by caspase-3s remains unknown. Here we show that exogenous caspase-3 sensitizes MCF-7 and HBL100 breast cancers cells to chemotherapeutic treatments such as etoposide and methotrexate whereas co-transfection with caspase-3s strongly inhibits etoposide and methotrexate-induced apoptosis underlying thus the anti-apoptotic role of caspase-3s. In caspase-3 transfected cells, lamin-A and α-fodrin were cleaved when caspase-3 was activated by etoposide or methotrexate. When caspase-3s was co-transfected, this cleavage was strongly reduced. Depletion of caspase-3 by RNA interference in HBL100 containing endogenous caspase-3s caused reduction in etoposide and methotrexate-induced apoptosis, whereas the depletion of caspase-3s sensitized cells to chemotherapy. In the presence of caspase-3s, a lack of interaction between caspase-3 and caspase-9 was observed. Immunoprecipitation assays showed that caspase-3s binds the pro-forms of caspase-3. This result suggested that the absence of interaction with caspase-9 when both variants of caspase-3 are present contribute to block the apoptosome assembly and inhibit apoptosis. These data support that caspases-3s negatively interferes with caspase-3 activation and apoptosis in breast cancer, and that it can play key roles in the modulation of response to chemotherapeutic treatments.

  5. Role of HIF-1α and CASPASE-3 in cystogenesis of odontogenic cysts and tumors.

    Science.gov (United States)

    da Costa, Natacha M M; de Siqueira, Adriane S; Ribeiro, André L R; da Silva Kataoka, Maria S; Jaeger, Ruy G; de Alves-Júnior, Sérgio M; Smith, Andrew M; de Jesus Viana Pinheiro, João

    2018-01-01

    Odontogenic cysts and tumors are the most relevant lesions that affect the gnathic bones. These lesions have in common the formation of cystic areas and this common feature may suggest involvement of similar mechanisms. The hypoxia inducible factor 1 alpha (HIF-1α), a responsive protein to hypoxia and caspase-3, an irreversible apoptosis marker, may contribute to cyst formation. Thus, this study aimed to investigate the immunoexpression of these proteins in odontogenic cysts and tumors. Twenty cases of ameloblastoma, keratocystic odontogenic tumor (KOT) (n = 20), radicular cyst (RC) (n = 18), dentigerous cyst (DC) (n = 11), calcifying cystic odontogenic tumor (n = 8), and dental follicle (DF) (n = 10) were used to investigate HIF-1α and caspase-3 expression in sequential serial cuts by immunohistochemistry. HIF-1α was overexpressed in RC, DC, and ameloblastoma when compared with DF. The basal and sometimes the lower suprabasal layer showed no or very low expression in DC, KOT, and ameloblastoma, the last also showing strong expression in solid epithelial areas and initial cystic formation regions. Caspase-3 was found to be overexpressed in all lesions, with the highest expression in odontogenic cysts compared to tumors. HIF-1α and caspase-3 were localized in similar areas of the same lesions, especially in the epithelium surrounding cystic formations. This study showed distinct immunoexpression of HIF-1α and caspase-3 in odontogenic cyst and tumors, with higher expression observed in odontogenic cysts. These findings suggest a possible correlation between hypoxia, apoptosis, and cystogenesis, leading to understand the mechanisms responsible to cystic formation in odontogenic lesions.

  6. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.

    Science.gov (United States)

    Weber, Thomas; Namikawa, Kazuhiko; Winter, Barbara; Müller-Brown, Karina; Kühn, Ralf; Wurst, Wolfgang; Köster, Reinhard W

    2016-11-15

    The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTAC TM ) further expands the repertoire of genetic tools for conditional interrogation of cellular functions. © 2016. Published by The Company of Biologists Ltd.

  7. Caspase-1 deficiency reduces intestinal and hepatic triglyceride-rich lipoprotein secretion

    NARCIS (Netherlands)

    Diepen, van Janna A.; Stienstra, Rinke; Hooiveld, Guido; Willems van Dijk, Ko; Rensen, Patrick C.

    2013-01-01

    Background and Aims: Inflammasome-mediated caspase-1 activity regulates the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-18. Recently, we showed that caspase-1 deficiency strongly reduces high fat diet-induced adiposity although the mechanism is still unclear.

  8. A novel bicistronic sensor vector for detecting caspase-3 activation.

    Science.gov (United States)

    Vagner, Tatyana; Mouravlev, Alexandre; Young, Deborah

    2015-01-01

    Apoptosis is involved in pathological cell death of a wide range of human diseases. One of the most important biochemical markers of apoptosis is activation of caspase-3. Ability to detect caspase-3 activation early in the pathological process is important for determining the timing for interfering with apoptosis initiation and prevention of cell damage. Techniques allowing detection of caspase-3 activity at a single cell level show increased sensitivity, compared to biochemical assays; therefore, we developed a novel bicistronic caspase-3 sensor vector enabling detection of caspase-3 activity in individual cells. We employed green fluorescent protein (GFP) as a reporter for caspase-3 activation in our constructs and assessed the functionality of the generated constructs in transiently transfected Neuro2A and HEK293 cells under basal conditions and following application of okadaic acid (OA) or staurosporine (STS) to induce apoptosis. To ensure responsiveness of the new sensor vector to active caspase-3, we co-transfected the sensor with plasmid(s) overexpressing active caspase-3 and quantified GFP fluorescence using a plate reader. We observed an increase in GFP expression in cells transfected with the new bicistronic caspase-3 sensor in response to both OA and STS. We also showed a significant increase in GFP fluorescence intensity in cells co-expressing the sensor with the plasmid(s) encoding active caspase-3. We generated a novel bicistronic caspase-3 sensor vector which relies on a transcription factor/response element system. The obtained sensor combines high sensitivity of the single cell level detection with the possibility of automated quantification. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Dopamine-induced programmed cell death is associated with cytochrome c release and caspase-3 activation in snail salivary gland cells.

    Science.gov (United States)

    Pirger, Zsolt; Rácz, Boglárka; Kiss, Tibor

    2009-02-01

    PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands). SG cells in active feeding animals revealed multiple morphological changes characteristic of PCD. Nerve stimulation and DA (dopamine) increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling)-positive cells both in inactive and feeding animals. The DA-induced PCD was prevented by TEA (tetraethylammonium chloride) and eticlopride, emphasizing the role of K channels and D2 receptors in the PCD of cystic cells. DA enhanced cyto-c (cytochrome c) translocation into the cytosol and methyl-beta-cyclodextrin prevented it, suggesting apoptosome formation and ceramide involvement in the PCD linking of the surface DA receptor to mitochondria. Western blot analysis revealed that the release of cyto-c was under the control of Bcl-2 and Bad. DA also increased the active caspase-3 in gland cells while D2 receptor antagonists and TEA attenuated it. Our results provide evidence for a type of transmitter-mediated pathway that regulates the PCD of secretory cells in a mitochondrial-caspase-dependent manner. The activation of specific molecules, such as K channels, DA receptors, cyto-c, ceramide, Bcl-2 proteins and caspase-3, but not caspase-8, was demonstrated in cells involved in the DA-induced PCD, suggesting that PCD is a physiological method for the release of saliva from SG cells.

  10. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    Science.gov (United States)

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  11. Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans cell cultures

    Directory of Open Access Journals (Sweden)

    Schel Jan HN

    2010-08-01

    Full Text Available Abstract Background The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. Results Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. Conclusions To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts.

  12. Saikosaponin d induces cell death through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian hepatic stellate cells

    International Nuclear Information System (INIS)

    Chen, Ming-Feng; Huang, S. Joseph; Huang, Chao-Cheng; Liu, Pei-Shan; Lin, Kun-I; Liu, Ching-Wen; Hsieh, Wen-Chuan; Shiu, Li-Yen; Chen, Chang-Han

    2016-01-01

    Saikosaponin d (SSd) is one of the main active triterpene saponins in Bupleurum falcatum. It has a steroid-like structure, and is reported to have pharmacological activities, including liver protection in rat, cell cycle arrest and apoptosis induction in several cancer cell lines. However, the biological functions and molecular mechanisms of mammalian cells under SSd treatment are still unclear. The cytotoxicity and apoptosis of hepatic stellate cells (HSCs) upon SSd treatment were discovered by MTT assay, colony formation assay and flow cytometry. The collage I/III, caspase activity and apoptotic related genes were examined by quantitative PCR, Western blotting, immunofluorescence and ELISA. The mitochondrial functions were monitored by flow cytometry, MitoTracker staining, ATP production and XF24 bioenergetic assay. This study found that SSd triggers cell death via an apoptosis path. An example of this path might be typical apoptotic morphology, increased sub-G1 phase cell population, inhibition of cell proliferation and activation of caspase-3 and caspase-9. However, the apoptotic effects induced by SSd are partially blocked by the caspase-3 inhibitor, Z-DEVD-FMK, suggesting that SSd may trigger both HSC-T6 and LX-2 cell apoptosis through caspase-3-dependent and independent pathways. We also found that SSd can trigger BAX and BAK translocation from the cytosol to the mitochondria, resulting in mitochondrial function inhibition, membrane potential disruption. Finally, SSd also increases the release of apoptotic factors. The overall analytical data indicate that SSd-elicited cell death may occur through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian HSCs, and thus can delay the formation of liver fibrosis by reducing the level of HSCs

  13. Expression of caspase-3 predicts prognosis in advanced noncardia gastric cancer.

    Science.gov (United States)

    Amptoulach, Sousana; Lazaris, Andreas C; Giannopoulou, Ioanna; Kavantzas, Nikolaos; Patsouris, Efstratios; Tsavaris, Nikolaos

    2015-01-01

    There is strong evidence that tumor growth is not only a result of uncontrolled cell proliferation but also of decreased apoptosis. Caspase-3 is a member of interleukin-1 beta-converting enzyme which is involved in the induction of apoptosis. Data on the expression of caspase-3 in patients with gastric cancer and its association with patient outcome are somewhat contradictory. We aimed to investigate the potential relation of the expression of caspase-3 protein with response to therapy and overall survival in patients with advanced noncardia gastric cancer. Tumor tissue samples collected from 359 consecutive patients with gastric cancer stage IV were retrospectively analyzed for the expression of caspase-3 in the primary tumor. The DNA apoptotic index assessed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling method. All patients were followed up until death. Caspase-3 was expressed in 43.5 % of tumors. Caspase-3 expression compared to no expression was related with a higher DNA apoptotic index (p gastric cancer is a predictor of poor response to treatment and survival. Further studies are needed to fully elucidate the prognostic value of caspase-3 expression in these patients.

  14. Induction of Manduca sexta Larvae Caspases Expression in Midgut Cells by Bacillus thuringiensis Cry1Ab Toxin

    Directory of Open Access Journals (Sweden)

    Helena Porta

    2011-01-01

    Full Text Available Bacillus thuringiensis produces crystal toxins known as Cry that are highly selective against important agricultural and human health-related insect pests. Cry proteins are pore-forming toxins that interact with specific receptors in the midgut cell membrane of susceptible larvae making pores that cause osmotic shock, leading finally to insect death. In the case of pore-forming toxins that are specific to mammalian cells, death responses at low doses may induce apoptosis or pyroptosis, depending on the cell type. The death mechanism induced by Cry toxins in insect midgut cells is poorly understood. Here, we analyze the caspases expression by RT-PCR analysis, showing that the initial response of Manduca sexta midgut cells after low dose of Cry1Ab toxin administration involves a fast and transient accumulation of caspase-1 mRNA, suggesting that pyroptosis was activated by Cry1Ab toxin as an initial response but was repressed later. In contrast, caspase-3 mRNA requires a longer period of time of toxin exposure to be activated but presents a sustained activation, suggesting that apoptosis may be a cell death mechanism induced also at low dose of toxin.

  15. Human herpesvirus 6A induces apoptosis of primary human fetal astrocytes via both caspase-dependent and -independent pathways

    Directory of Open Access Journals (Sweden)

    Gu Bin

    2011-12-01

    Full Text Available Abstract Background Human herpesvirus 6 (HHV-6 is a T-lymphtropic and neurotropic virus that can infect various types of cells. Sequential studies reported that apoptosis of glia and neurons induced by HHV-6 might act a potential trigger for some central nervous system (CNS diseases. HHV-6 is involved in the pathogenesis of encephalitis, multiple sclerosis (MS and fatigue syndrome. However, the mechanisms responsible for the apoptosis of infected CNS cells induced by HHV-6 are poorly understood. In this study, we investigated the cell death processes of primary human fetal astrocytes (PHFAs during productive HHV-6A infection and the underlying mechanisms. Results HHV-6A can cause productive infection in primary human fetal astrocytes. Annexin V-PI staining and electron microscopic analysis indicated that HHV-6A was an inducer of apoptosis. The cell death was associated with activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP, which is known to be an important substrate for activated caspase-3. Caspase-8 and -9 were also significantly activated in HHV-6A-infected cells. Moreover, HHV-6A infection led to Bax up-regulation and Bcl-2 down-regulation. HHV-6A infection increased the release of Smac/Diablo, AIF and cytochrome c from mitochondria to cytosol, which induced apoptosis via the caspase-dependent and -independent pathways. In addition, we also found that anti-apoptotic factors such as IAPs and NF-κB decreased in HHV-6A infected PHFAs. Conclusion This is the first demonstration of caspase-dependent and -independent apoptosis in HHV-6A-infected glial cells. These findings would be helpful in understanding the mechanisms of CNS diseases caused by HHV-6.

  16. Annonaceous acetogenin mimic AA005 induces cancer cell death via apoptosis inducing factor through a caspase-3-independent mechanism.

    Science.gov (United States)

    Han, Bing; Wang, Tong-Dan; Shen, Shao-Ming; Yu, Yun; Mao, Chan; Yao, Zhu-Jun; Wang, Li-Shun

    2015-03-18

    Annonaceous acetogenins are a family of natural products with antitumor activities. Annonaceous acetogenin mimic AA005 reportedly inhibits mammalian mitochondrial NADH-ubiquinone reductase (Complex I) and induces gastric cancer cell death. However, the mechanisms underlying its cell-death-inducing activity are unclear. We used SW620 colorectal adenocarcinoma cells to study AA005 cytotoxic activity. Cell deaths were determined by Trypan blue assay and flow cytometry, and related proteins were characterized by western blot. Immunofluorescence and subcellular fractionation were used to evaluate AIF nuclear translocation. Reactive oxygen species were assessed by using redox-sensitive dye DCFDA. AA005 induces a unique type of cell death in colorectal adenocarcinoma cells, characterized by lack of caspase-3 activation or apoptotic body formation, sensitivity to poly (ADP-ribose) polymerase inhibitor Olaparib (AZD2281) but not pan-caspase inhibitor Z-VAD.fmk, and dependence on apoptosis-inducing factor (AIF). AA005 treatment also reduced expression of mitochondrial Complex I components, and leads to accumulation of intracellular reactive oxygen species (ROS) at the early stage. Blocking ROS formation significantly suppresses AA005-induced cell death in SW620 cells. Moreover, blocking activation of RIP-1 by necroptosis inhibitor necrotatin-1 inhibits AIF translocation and partially suppresses AA005-induced cell death in SW620 cells demonstrating that RIP-1 protein may be essential for cell death. AA005 may trigger the cell death via mediated by AIF through caspase-3 independent pathway. Our work provided new mechanisms for AA005-induced cancer cell death and novel clues for cancer treatment via AIF dependent cell death.

  17. Ciglitazone induces caspase-independent apoptosis via p38-dependent AIF nuclear translocation in renal epithelial cells

    International Nuclear Information System (INIS)

    Kwon, Chae Hwa; Yoon, Chang Soo; Kim, Yong Keun

    2008-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been reported to induce apoptosis in a variety of cell types including renal proximal epithelial cells. However, the underlying mechanism of cell death induced by PPARγ agonists has not been clearly defined in renal proximal tubular cells. This study was therefore undertaken to determine the mechanism by which ciglitazone, a synthetic PPARγ agonist, induces apoptosis in opossum kidney (OK) cells, an established renal epithelial cell line. Ciglitazone treatment induced apoptotic cell death in a dose- and time-dependent manner. Ciglitazone caused a transient activation of ERK and sustained activation of p38 MAP kinase. Ciglitazone-mediated cell death was attenuated by the p38 inhibitor SB203580 and transfection of dominant-negative form of p38, but not by the MEK inhibitor U0126, indicating that p38 MAP kinase activation is involved in the ciglitazone-induced cell death. Although ciglitazone-induced caspase-3 activation, the ciglitazone-mediated cell death was not affected by the caspase-3 inhibitor DEVD-CHO. Ciglitazone-induced mitochondrial membrane depolarization and apoptosis-inducing factor (AIF) nuclear translocation and these effects were prevented by the p38 inhibitor. These results suggest that ciglitazone induces caspase-independent apoptosis through p38 MAP kinase-dependent AIF nuclear translocation in OK renal epithelial cells

  18. Inhibition of CUG-binding protein 1 and activation of caspases are critically involved in piperazine derivative BK10007S induced apoptosis in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ju-Ha Kim

    Full Text Available Though piperazine derivative BK10007S was known to induce apoptosis in pancreatic cancer xenograft model as a T-type CaV3.1 a1G isoform calcium channel blocker, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the antitumor mechanism of BK10007S was elucidated in hepatocellular carcinoma cells (HCCs. Herein, BK10007S showed significant cytotoxicity by 3-[4,5-2-yl]-2,5-diphenyltetra-zolium bromide (MTT assay and anti-proliferative effects by colony formation assay in HepG2 and SK-Hep1 cells. Also, apoptotic bodies and terminal deoxynucleotidyl transferase (TdT dUTP Nick End Labeling (TUNEL positive cells were observed in BK10007S treated HepG2 and SK-Hep1 cells by 4',6-diamidino-2-phenylinodole (DAPI staining and TUNEL assay, respectively. Consistently, BK10007S increased sub G1 population in HepG2 and SK-Hep1 cells by cell cycle analysis. Furthermore, Western blotting revealed that BK10007S activated the caspase cascades (caspase 8, 9 and 3, cleaved poly (ADP-ribose polymerase (PARP, and downregulated the expression of cyclin D1, survivin and for CUG-binding protein 1 (CUGBP1 or CELF1 in HepG2 and SK-Hep1 cells. Conversely, overexpression of CUGBP1 reduced cleavages of PARP and caspase 3, cytotoxicity and subG1 population in BK10007S treated HepG2 cells. Overall, these findings provide scientific evidences that BK10007S induces apoptosis via inhibition of CUGBP1 and activation of caspases in hepatocellular carcinomas as a potent anticancer candidate.

  19. The death effector domains of caspase-8 induce terminal differentiation.

    Directory of Open Access Journals (Sweden)

    Ainhoa Mielgo

    2009-11-01

    Full Text Available The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DEDs, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156 in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence.

  20. Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion

    NARCIS (Netherlands)

    Diepen, J.A. van; Stienstra, R.; Vroegrijk, I.O.C.M.; Berg, S.A.A. van den; Salvatori, D.; Hooiveld, G.J.; Kersten, S.; Tack, C.J.; Netea, M.G.; Smit, J.W.A.; Joosten, L.A.B.; Havekes, L.M.; Dijk, K.W. van; Rensen, P.C.N.

    2013-01-01

    Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by

  1. Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death.

    Science.gov (United States)

    Anania, Veronica G; Yu, Kebing; Gnad, Florian; Pferdehirt, Rebecca R; Li, Han; Ma, Taylur P; Jeon, Diana; Fortelny, Nikolaus; Forrest, William; Ashkenazi, Avi; Overall, Christopher M; Lill, Jennie R

    2016-07-01

    Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the "unfolded protein response" (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Expression levels of cleaved caspase-3 and caspase-3 in tumorigenesis and prognosis of oral tongue squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Pei-Feng Liu

    Full Text Available Apoptosis plays a dual role in cancer development and malignancy. The role of apoptosis-related caspases in cancer remains controversial, particularly in oral tongue squamous cell carcinoma (OTSCC. In this study, we examined the protein levels of cleaved caspase-3, caspase-3, caspase-8, and caspase-9 on tissue microarrays consisting of samples from 246 OTSCC patients by immunohistochemistry. Wilcoxon signed-rank test indicated that the protein levels of cleaved caspase-3, caspase-3, caspase-8, and caspase-9 in tumor tissues were significantly higher compared to those in adjacent normal tissues (all p<0.001. The expression level of caspase-8 in tumors was elevated in patients with lymph node invasion. Moreover, positive expression of cleaved caspase-3 was associated with shorter disease-free survival (DFS in OTSCC patients with moderate differentiation and lymph node invasion. Combination of either positive cleaved caspase-3 or higher caspase-3 expression or both was associated with poor DFS. Interestingly, stratification analysis showed that co-expression levels of positive cleaved caspase-3 or/and higher caspase-3 were associated with better disease-specific survival in patients with advanced stages of the disease, such as large tumor size and lymph node invasion, whereas it was associated with poor DFS in OTSCC patients with moderate cell differentiation and small tumor size. Taken together, cleaved caspase-3 and caspase-3/8/9 could be biomarkers for tumorigenesis in OTSCC patients. The co-expression level of cleaved caspase-3 and caspase-3 might be a prognostic biomarker for OTSCC patients, particular in those patients with certain tumor stages and cell differentiation status.

  3. The anti-apoptotic activity of BAG3 is restricted by caspases and the proteasome.

    Directory of Open Access Journals (Sweden)

    Victoria M Virador

    Full Text Available Caspase-mediated cleavage and proteasomal degradation of ubiquitinated proteins are two independent mechanisms for the regulation of protein stability and cellular function. We previously reported BAG3 overexpression protected ubiquitinated clients, such as AKT, from proteasomal degradation and conferred cytoprotection against heat shock. We hypothesized that the BAG3 protein is regulated by proteolysis.Staurosporine (STS was used as a tool to test for caspase involvement in BAG3 degradation. MDA435 and HeLa human cancer cell lines exposed to STS underwent apoptosis with a concomitant time and dose-dependent loss of BAG3, suggesting the survival role of BAG3 was subject to STS regulation. zVAD-fmk or caspase 3 and 9 inhibitors provided a strong but incomplete protection of both cells and BAG3 protein. Two putative caspase cleavage sites were tested: KEVD (BAG3(E345A/D347A within the proline-rich center of BAG3 (PXXP and the C-terminal LEAD site (BAG3(E516A/D518A. PXXP deletion mutant and BAG3(E345A/D347A, or BAG3(E516A/D518A respectively slowed or stalled STS-mediated BAG3 loss. BAG3, ubiquitinated under basal growth conditions, underwent augmented ubiquitination upon STS treatment, while there was no increase in ubiquitination of the BAG3(E516A/D518A caspase-resistant mutant. Caspase and proteasome inhibition resulted in partial and independent protection of BAG3 whereas inhibitors of both blocked BAG3 degradation. STS-induced apoptosis was increased when BAG3 was silenced, and retention of BAG3 was associated with cytoprotection.BAG3 is tightly controlled by selective degradation during STS exposure. Loss of BAG3 under STS injury required sequential caspase cleavage followed by polyubiquitination and proteasomal degradation. The need for dual regulation of BAG3 in apoptosis suggests a key role for BAG3 in cancer cell resistance to apoptosis.

  4. Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75

    Directory of Open Access Journals (Sweden)

    Leoh Lai

    2009-08-01

    Full Text Available Abstract Background Hormone-refractory prostate cancer (HRPC is characterized by poor response to chemotherapy and high mortality, particularly among African American men when compared to other racial/ethnic groups. It is generally accepted that docetaxel, the standard of care for chemotherapy of HRPC, primarily exerts tumor cell death by inducing mitotic catastrophe and caspase-dependent apoptosis following inhibition of microtubule depolymerization. However, there is a gap in our knowledge of mechanistic events underlying docetaxel-induced caspase-independent cell death, and the genes that antagonize this process. This knowledge is important for circumventing HRPC chemoresistance and reducing disparities in prostate cancer mortality. Results We investigated mechanistic events associated with docetaxel-induced death in HRPC cell lines using various approaches that distinguish caspase-dependent from caspase-independent cell death. Docetaxel induced both mitotic catastrophe and caspase-dependent apoptosis at various concentrations. However, caspase activity was not essential for docetaxel-induced cytotoxicity since cell death associated with lysosomal membrane permeabilization still occurred in the presence of caspase inhibitors. Partial inhibition of docetaxel-induced cytotoxicity was observed after inhibition of cathepsin B, but not inhibition of cathepsins D and L, suggesting that docetaxel induces caspase-independent, lysosomal cell death. Simultaneous inhibition of caspases and cathepsin B dramatically reduced docetaxel-induced cell death. Ectopic expression of lens epithelium-derived growth factor p75 (LEDGF/p75, a stress survival autoantigen and transcription co-activator, attenuated docetaxel-induced lysosomal destabilization and cell death. Interestingly, LEDGF/p75 overexpression did not protect cells against DTX-induced mitotic catastrophe, and against apoptosis induced by tumor necrosis factor related apoptosis inducing ligand (TRAIL

  5. Geranylated 4-Phenylcoumarins Exhibit Anticancer Effects against Human Prostate Cancer Cells through Caspase-Independent Mechanism.

    Directory of Open Access Journals (Sweden)

    Noor Shahirah Suparji

    Full Text Available Geranylated 4-phenylcoumarins, DMDP-1 & -2 isolated from Mesua elegans were investigated for anticancer potential against human prostate cancer cells. Treatment with DMDP-1 & -2 resulted in cell death in a time and dose dependent manner in an MTT assay on all cancer cell lines tested with the exception of lung adenocarcinoma cells. DMDP-1 showed highest cytotoxic efficacy in PC-3 cells while DMDP-2 was most potent in DU 145 cells. Flow cytometry indicated that both coumarins were successful to induce programmed cell death after 24 h treatment. Elucidation on the mode-of-action via protein arrays and western blotting demonstrated death induced without any significant expressions of caspases, Bcl-2 family proteins and cleaved PARP, thus suggesting the involvement of caspase-independent pathways. In identifying autophagy, analysis of GFP-LC3 showed increased punctate in PC-3 cells pre-treated with CQ and treated with DMDP-1. In these cells decreased expression of autophagosome protein, p62 and cathepsin B further confirmed autophagy. In contrary, the DU 145 cells pre-treated with CQ and treated with DMDP-2 has reduced GFP-LC3 punctate although the number of cells with obvious GFP-LC3 puncta was significantly increased in the inhibitor-treated cells. The increase level of p62 suggested leakage of cathepsin B into the cytosol to trigger potential downstream death mediators. This correlated with increased expression of cathepsin B and reduced expression after treatment with its inhibitor, CA074. Also auto-degradation of calpain-2 upon treatment with DMDP-1 &-2 and its inhibitor alone, calpeptin compared with the combination treatment, further confirmed involvement of calpain-2 in PC-3 and DU 145 cells. Treatment with DMDP-1 & -2 also showed up-regulation of total and phosphorylated p53 levels in a time dependent manner. Hence, DMDP-1 & -2 showed ability to activate multiple death pathways involving autophagy, lysosomal and endoplasmic reticulum death

  6. Programmed Cell Death and Caspase Functions During Neural Development.

    Science.gov (United States)

    Yamaguchi, Yoshifumi; Miura, Masayuki

    2015-01-01

    Programmed cell death (PCD) is a fundamental component of nervous system development. PCD serves as the mechanism for quantitative matching of the number of projecting neurons and their target cells through direct competition for neurotrophic factors in the vertebrate peripheral nervous system. In addition, PCD plays roles in regulating neural cell numbers, canceling developmental errors or noise, and tissue remodeling processes. These findings are mainly derived from genetic studies that prevent cells from dying by apoptosis, which is a major form of PCD and is executed by activation of evolutionarily conserved cysteine protease caspases. Recent studies suggest that caspase activation can be coordinated in time and space at multiple levels, which might underlie nonapoptotic roles of caspases in neural development in addition to apoptotic roles. © 2015 Elsevier Inc. All rights reserved.

  7. Molecular and functional characterization of caspase-8 from the big-belly seahorse (Hippocampus abdominalis).

    Science.gov (United States)

    Oh, Minyoung; Elvitigala, Don Anushka Sandaruwan; Bathige, S D N K; Lee, Seongdo; Kim, Myoung-Jin; Lee, Jehee

    2016-11-01

    Apoptosis is a physiological process that can also participate in host immune defense mechanisms, including tumor growth suppression along with homeostasis and maturation of immune cells. Caspases are known to be involved in cellular apoptotic signaling; among them, caspase-8 plays an important role in the initiation phase of the apoptotic death cascade. In the current study, we molecularly characterized a caspase-8 homolog (designated as HaCasp-8) from Hippocampus abdominalis. The HaCasp-8 gene harbors a 1476 bp open reading frame (ORF) that codes for a protein of 492 amino acids (aa) with a predicted molecular mass of 55 kDa. HaCasp-8 houses the typical domain architecture of known initiator caspases, including the death effector domain and the carboxyl-terminal catalytic domain. As expected, phylogenetic analysis reflected a closer evolutionary relationship of HaCasp-8 with its teleostean similitudes. The results of our qPCR assays confirmed the ubiquitous expression of HaCasp-8 in physiologically important tissues examined, with pronounced expression levels in ovary tissues, followed by blood cells. HaCasp-8 expression at the mRNA level was found to be significantly modulated by lipopolysaccharide, polyinosinic:polycytidylic acid, Streptococcus iniae, and Edwardsiella tarda injection. Overexpression of HaCasp-8 could trigger a significant level of cell death in HEK293T cells, suggesting its putative role in cell death. Taken together, our findings suggest that HaCasp-8 is an important component in the caspase cascade, and its expression can be significantly modulated under pathogen stress conditions in the big-belly seahorse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in Drosophila S2 cells.

    Science.gov (United States)

    Zhang, Baoyan; Xu, Zhiping; Zhang, Yixi; Shao, Xusheng; Xu, Xiaoyong; Cheng, Jiaogao; Li, Zhong

    2015-03-01

    Fipronil is the first phenylpyrazole insecticide widely used in controlling pests, including pyrethroid, organophosphate and carbamate insecticides. It is generally accepted that fipronil elicits neurotoxicity via interactions with GABA and glutamate receptors, although alternative mechanisms have recently been proposed. This study evaluates the genotoxicity of fipronil and its likely mode of action in Drosophila S2 cells, as an in vitro model. Fipronil administrated the concentration- and time-dependent S2 cell proliferation. Intracellular biochemical assays showed that fipronil-induced S2 cell apoptosis coincided with a decrease in the mitochondrial membrane potential and an increase reactive oxygen species generation, a significant decrease of Bcl-2 and DIAP1, and a marked augmentation of Cyt c and caspase-3. Because caspase-3 is the major executioner caspase downstream of caspase-9 in Drosophila, enzyme activity assays were used to determine the activities of caspase-3 and caspase-9. Our results indicated that fipronil effectively induced apoptosis in Drosophila S2 cells through caspase-dependent mitochondrial pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Triglyceride-induced macrophage cell death is triggered by caspase-1.

    Science.gov (United States)

    Son, Sin Jee; Rhee, Ki-Jong; Lim, Jaewon; Kim, Tae Ue; Kim, Tack-Joong; Kim, Yoon Suk

    2013-01-01

    Triglyceride (TG) induces macrophage cell death which contributes to the development of atherosclerosis. We confirmed that exogenous TG accumulates in human THP-1 macrophages and causes cell death. TG treated THP-1 macrophages exhibited no change in tumor necrosis factor (TNF)-α, interleukin (IL)-18, macrophage inflammatory protein (MIP)-1α, and IL-1R1 receptor mRNA expression. However, there was a marked decrease in IL-1β mRNA expression but an increase in IL-1β protein secretion. Decreased expression of IL-1β mRNA and increased secretion of IL-1β protein was not the direct cause of cell death. Until now, TG was assumed to induce necrotic cell death in macrophages. Since caspase-1 is known to be involved in activation and secretion of IL-1β protein and pyroptotic cell death, next we determined whether caspase-1 is associated with TG-induced macrophage cell death. We found an increase in caspase-1 activity in TG-treated THP-1 macrophages and inhibition of caspase-1 activity using a specific inhibitor partially rescued cell death. These results suggest activation of the pyroptotic pathway by TG. This is the first report implicating the activation of caspase-1 and the triggering of the pyroptosis pathway in TG-induced macrophage cell death.

  10. Contribution of caspase-3 differs by p53 status in apoptosis induced by X-irradiation

    International Nuclear Information System (INIS)

    Kobayashi, Daisuke; Tokino, Takashi; Watanabe, Naoki

    2001-01-01

    We investigated the effect of p53 status on involvement of caspase-3 activation in cell death induced by X-irradiation, using rat embryonic fibroblasts (REFs) transduced with a temperature-sensitive mutant (mt) p53 gene. Cells with wild-type (wt) p53 showed greater resistance to X-irradiation than cells with mt p53. In cells with wt p53, X-irradiation-induced apoptosis was not inhibited by the caspase-3 inhibitor acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspartyl-aldehyde (Ac-DMQD-CHO) and caspase-3 activity was not elevated following X-irradiation, although induction of p53 and p21/WAF-1 protein was observed. In contrast, irradiated cells with mt p53 showed 89% inhibition of cell death with Ac-DMQD-CHO and 98% inhibition with the antioxidant N-acetyl-L-cysteine (NAC). In cells with mt p53, caspase-3 activity was increased approximately 5 times beyond baseline activity at 24 h after irradiation. This increase was almost completely inhibited by NAC. However, inhibition of caspase-3 by Ac-DMQD-CHO failed to decrease production of reactive oxygen species by cells with mt p53. Differential involvement of caspase-3 is a reason for differences in sensitivity to X-irradiation in cells with different p53 status. Caspase-3 activation appears to occur downstream from generation of reactive oxygen species occurring independently of wt p53 during X-irradiation-induced cell death. (author)

  11. Caspase-2 cleavage of tau reversibly impairs memory.

    Science.gov (United States)

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  12. Caspase activation increases beta-amyloid generation independently of caspase cleavage of the beta-amyloid precursor protein (APP).

    Science.gov (United States)

    Tesco, Giuseppina; Koh, Young Ho; Tanzi, Rudolph E

    2003-11-14

    The amyloid precursor protein (APP) undergoes "alternative" proteolysis mediated by caspases. Three major caspase recognition sites have been identified in the APP, i.e. one at the C terminus (Asp720) and two at the N terminus (Asp197 and Asp219). Caspase cleavage at Asp720 has been suggested as leading to increased production of Abeta. Thus, we set out to determine which putative caspase sites in APP, if any, are cleaved in Chinese hamster ovary cell lines concurrently with the increased Abeta production that occurs during apoptosis. We found that cleavage at Asp720 occurred concurrently with caspase 3 activation and the increased production of total secreted Abeta and Abeta1-42 in association with staurosporine- and etoposide-induced apoptosis. To investigate the contribution of caspase cleavage of APP to Abeta generation, we expressed an APP mutant truncated at Asp720 that mimics APP caspase cleavage at the C-terminal site. This did not increase Abeta generation but, in contrast, dramatically decreased Abeta production in Chinese hamster ovary cells. Furthermore, the ablation of caspase-dependent cleavage at Asp720, Asp197, and Asp219 (by site-directed mutagenesis) did not prevent enhanced Abeta production following etoposide-induced apoptosis. These findings indicate that the enhanced Abeta generation associated with apoptosis does not require cleavage of APP at its C-terminal (Asp720) and/or N-terminal caspase sites.

  13. Sox11 Reduces Caspase-6 Cleavage and Activity.

    Directory of Open Access Journals (Sweden)

    Elaine Waldron-Roby

    Full Text Available The apoptotic cascade is an orchestrated event, whose final stages are mediated by effector caspases. Regulatory binding proteins have been identified for caspases such as caspase-3, -7, -8, and -9. Many of these proteins belong to the inhibitor of apoptosis (IAP family. By contrast, caspase-6 is not believed to be influenced by IAPs, and little is known about its regulation. We therefore performed a yeast-two-hybrid screen using a constitutively inactive form of caspase-6 for bait in order to identify novel regulators of caspase-6 activity. Sox11 was identified as a potential caspase-6 interacting protein. Sox11 was capable of dramatically reducing caspase-6 activity, as well as preventing caspase-6 self- cleavage. Several regions, including amino acids 117-214 and 362-395 within sox11 as well as a nuclear localization signal (NLS all contributed to the reduction in caspase-6 activity. Furthermore, sox11 was also capable of decreasing other effector caspase activity but not initiator caspases -8 and -9. The ability of sox11 to reduce effector caspase activity was also reflected in its capacity to reduce cell death following toxic insult. Interestingly, other sox proteins also had the ability to reduce caspase-6 activity but to a lesser extent than sox11.

  14. Serial killers: ordering caspase activation events in apoptosis.

    Science.gov (United States)

    Slee, E A; Adrain, C; Martin, S J

    1999-11-01

    Caspases participate in the molecular control of apoptosis in several guises; as triggers of the death machinery, as regulatory elements within it, and ultimately as a subset of the effector elements of the machinery itself. The mammalian caspase family is steadily growing and currently contains 14 members. At present, it is unclear whether all of these proteases participate in apoptosis. Thus, current research in this area is focused upon establishing the repertoire and order of caspase activation events that occur during the signalling and demolition phases of cell death. Evidence is accumulating to suggest that proximal caspase activation events are typically initiated by molecules that promote caspase aggregation. As expected, distal caspase activation events are likely to be controlled by caspases activated earlier in the cascade. However, recent data has cast doubt upon the functional demarcation of caspases into signalling (upstream) and effector (downstream) roles based upon their prodomain lengths. In particular, caspase-3 may perform an important role in propagating the caspase cascade, in addition to its role as an effector caspase within the death programme. Here, we discuss the apoptosis-associated caspase cascade and the hierarchy of caspase activation events within it.

  15. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Koerner, Michael R., E-mail: mkoern2@illinois.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Lampe, Jed N. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Farhood, Anwar [Department of Pathology, Brackenridge Hospital, Austin, TX 78701 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2011-12-15

    The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice. The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only < 0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, > 20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. Conclusion: Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change. -- Highlights: Black-Right-Pointing-Pointer During acetaminophen overdose caspase-3 can be activated in fed mice of certain outbred strains. Black-Right-Pointing-Pointer Hepatic ATP levels are not the determining factor for caspase

  16. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB

    International Nuclear Information System (INIS)

    Bae, Yunju; Lee, Soyoung; Kim, Sang-Hyun

    2011-01-01

    A great number of people are suffering from allergic inflammatory diseases such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid contained in propolis, blue passion flower, and fruits. Several studies reported that chrysin has beneficial effects including anti-tumor and anti-oxidant activities. The aim of the present study was to elucidate whether chrysin modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. Chrysin inhibited immediate-type systemic hypersensitivity and serum histamine release. Chrysin attenuated immunoglobulin E-mediated local anaphylaxis. These inhibitory effects of chrysin on the systemic and local allergic reaction were more potent than cromolyn, a known anti-allergic drug. Chrysin reduced histamine release from mast cells. The inhibitory effect of chrysin on the histamine release was mediated by the modulation of intracellular calcium. In addition, chrysin decreased gene expression of pro-inflammatory cytokines such as, tumor necrosis factor-α, IL (interleukin)-1β, IL-4, and IL-6 in mast cells. The inhibitory effect of chrysin on the pro-inflammatory cytokine was nuclear factor-κB and caspase-1 dependent. Our findings provide evidence that chrysin inhibits mast cell-derived allergic inflammatory reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic inflammatory effect of chrysin suggests a possible therapeutic application of this agent in allergic inflammatory diseases. - Research Highlights: → Discovery of drugs for the allergic inflammation is important in human health. → Chrysin is a natural flavonoid contained in propolis, blue passion flower, and fruits. → Chrysin inhibited

  17. Engineering a light-activated caspase-3 for precise ablation of neurons in vivo.

    Science.gov (United States)

    Smart, Ashley D; Pache, Roland A; Thomsen, Nathan D; Kortemme, Tanja; Davis, Graeme W; Wells, James A

    2017-09-26

    The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases. Here, we describe the engineering of a light-activated human caspase-3 (Caspase-LOV) by exploiting its natural spring-loaded activation mechanism through rational insertion of the light-sensitive LOV2 domain that expands upon illumination. We apply the light-activated caspase (Caspase-LOV) to study neurodegeneration in larval and adult Drosophila Using the tissue-specific expression system (UAS)-GAL4, we express Caspase-LOV specifically in three neuronal cell types: retinal, sensory, and motor neurons. Illumination of whole flies or specific tissues containing Caspase-LOV-induced cell death and allowed us to follow the time course and sequence of neurodegenerative events. For example, we find that global synchronous activation of caspase-3 drives degeneration with a different time-course and extent in sensory versus motor neurons. We believe the Caspase-LOV tool we engineered will have many other uses for neurobiologists and others for specific temporal and spatial ablation of cells in complex organisms.

  18. Real-time monitoring of caspase cascade activation in living cells.

    Science.gov (United States)

    Zhu, Lei; Huang, Xinglu; Choi, Ki Young; Ma, Ying; Zhang, Fan; Liu, Gang; Lee, Seulki; Chen, Xiaoyuan

    2012-10-10

    We introduce a simple, versatile and robust one-step technique that enables real-time imaging of multiple intracellular caspase activities in living cells without the need for complicated synthetic protocols. Conventional fluorogenic probes or recently reported activatable probes have been designed to target various proteases but are limited to extracellular molecules. Only a few have been applied to image intracellular proteases in living cells because most of these probes have limited cell-permeability. Our platform does not need complicated synthetic processes; instead it involves a straightforward peptide synthesis and a simple mixing step with a commercial transfection agent. The transfection agent efficiently delivered the highly quenched fluorogenic probes, comprised of distinctive pairs of dyes and quenchers, to the initiator caspase-8 and the effector caspase-3 in MDA-MB-435 cells, allowing dual-imaging of the activities of both caspases during the apoptotic process induced by TNF-related apoptosis induced ligand (TRAIL). With the combination of multiple fluorogenic probes, this simple platform can be applied to multiplexed imaging of selected intracellular proteases to study apoptotic processes in pathologies or for cell-based high throughput screening systems for drug discovery. Published by Elsevier B.V.

  19. P53-dependent ceramide generation in response ro ionizing irradiation is caspase-dependent

    International Nuclear Information System (INIS)

    Dbaibo, G.; El-Assaad, W.

    2000-01-01

    Full text.We have previously reported that p53-dependent apoptosis is accompanied by ceramide accumulation. Lack of p53 prevents ceramide accumulation in response to induces such as ionizing irradiation. The mechanisms of ceramide accumulation have not been explored. P53 has been reported to function by inducing the death receptors Fas and DR5 both of which function by initiating a caspase cascade that results in apoptosis. We decided to examine the role of caspases in the elevation of cellular ceramide levels. We treated Molt-4 cells with 5Gy of ionizing irradiation and examined the effects of co-treatment with the general caspase inhibitor z-VAD-fmk at concentration of 50 and 100μM. We found that z-VAD blocked apoptosis induced by irradiation without interfering with p53 accumulation indicating that it was not functioning upstream of p53. However, z-VAD treatment resulted in a significant decrease in ceramide accumulation. Additionally, z-VAD partially blocked the loss of glutathione in response to irradiation. This was important since glutathione has been described as an inhibitor of neutral sphindomyelinase, a major source of cellular ceramide via sphingomyelin hydrolysis. These studies indicate that p53 induces ceramide accumulation in a caspase-dependent manner and that the regulation of cellular glutathione by caspases may be a mechanism by which they regulate ceramide accumulation

  20. The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Kotler, Mónica L

    2011-08-01

    Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, chronic exposure to high levels of Mn in occupational or environmental settings can lead to its accumulation in the brain resulting in a degenerative brain disorder referred to as Manganism. Astrocytes are the main Mn store in the central nervous system and several lines of evidence implicate these cells as major players in the role of Manganism development. In the present study, we employed rat astrocytoma C6 cells as a sensitive experimental model for investigating molecular mechanisms involved in Mn neurotoxicity. Our results show that C6 cells undergo reactive oxygen species-mediated apoptotic cell death involving caspase-8 and mitochondrial-mediated pathways in response to Mn. Exposed cells exhibit typical apoptotic features, such as chromatin condensation, cell shrinkage, membrane blebbing, caspase-3 activation and caspase-specific cleavage of the endogenous substrate poly (ADP-ribose) polymerase. Participation of the caspase-8 dependent pathway was assessed by increased levels of FasL, caspase-8 activation and Bid cleavage. The involvement of the mitochondrial pathway was demonstrated by the disruption of the mitochondrial membrane potential, the opening of the mitochondrial permeability transition pore, cytochrome c release, caspase-9 activation and the increased mitochondrial levels of the pro-apoptotic Bcl-2 family proteins. In addition, our data also shows for the first time that mitochondrial fragmentation plays a relevant role in Mn-induced apoptosis. Taking together, these findings contribute to a deeper elucidation of the molecular signaling mechanisms underlying Mn-induced apoptosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage

    International Nuclear Information System (INIS)

    Oh, Seon-Hee; Lee, Byung-Hoon

    2004-01-01

    20-O-(β-D-Glucopyranosyl)-20(S)-protopanaxadiol (IH901), an intestinal bacterial metabolite of ginseng saponin formed from ginsenosides Rb1, Rb2, and Rc, is suggested to be a potential chemopreventive agent. Here, we show that IH901 induces apoptosis in human hepatoblastoma HepG2 cells. IH901 led to an early activation of procaspase-3 (12 h posttreatment), and the activation of caspase-8 became evident only later (18 h posttreatment). Caspase activation was a necessary requirement for apoptosis because caspase inhibitors significantly inhibited cell death by IH901. Treatment of HepG2 cells with IH901 also induced the cleavage of cytosolic factors such as Bid and Bax and translocation of truncated Bid (tBid) to mitochondria. A time-dependent release of cytochrome c from mitochondria was observed, which was accompanied by activation of caspase-9. A broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), and a specific inhibitor for caspase-8, N-benzyloxycarbonyl-Ile-Glu-Thr-Asp-fluoromethylketone (zIETD-fmk), abrogated Bid processing and translocation, and caspase-3 activation. Cytochrome c release was inhibited by zVAD-fmk, however, the inhibition by zIETD-fmk was not complete. The activation of caspase-8 was inhibited not only by zIETD-fmk but also by zVAD-fmk. The results, together with the kinetic change of caspase activation, indicate that activation of caspase-8 occurred downstream of caspase-3 and -9. Our data suggest that the activation of caspase-8 after early caspase-3 activation might act as an amplification loop necessary for successful apoptosis. Primary hepatocytes isolated from normal Sprague-Dawley rats were not affected by IH901 (0-60 μM). The very low toxicity in normal hepatocytes and high activity in hepatoblastoma HepG2 cells suggest that IH901 is a promising experimental cancer chemopreventive agent

  2. Protective mechanism of Korean Red Ginseng in cisplatin-induced ototoxicity through attenuation of nuclear factor-κB and caspase-1 activation.

    Science.gov (United States)

    Kim, Su-Jin; Kwak, Hyun Jeong; Kim, Dae-Seung; Choi, Hyun-Myung; Sim, Jung-Eun; Kim, Sung-Hoon; Um, Jae-Young; Hong, Seung-Heon

    2015-07-01

    Cisplatin is an effective anti-cancer drug; however, one of its side effects is irreversible sensorineural hearing damage. Korean Red Ginseng (KRG) has been used clinically for the treatment of various diseases; however, the underlying mechanism of KRG treatment of ototoxicity has not been studied extensively. The present study aimed to further investigate the mechanism of KRG on cisplatin-induced toxicity in auditory HEI-OC1 cells in vitro, as well as in vivo. The pharmacological effects of KRG on cisplatin-induced changes in the hearing threshold of mice were determined, as well as the effect on the impairment of hair cell arrays. In addition, in order to elucidate the protective mechanisms of KRG, the regulatory effects of KRG on cisplatin-induced apoptosis-associated gene levels and nuclear factor-κB (NF-κB) activation were investigated in auditory cells. The results revealed that KRG prevented cisplatin-induced alterations in the hearing threshold of mice as well as the destruction of hair cell arrays in rat organ of Corti primary explants. In addition, KRG inhibited cisplatin-mediated cell toxicity, reactive oxygen species generation, interleukin-6 production, cytochrome c release and activation of caspases-3 in the HEI-OC1 auditory cell line. Furthermore, the results demonstrated that KRG inhibited the activation of NF-κB and caspase-1. In conclusion, these results provided a model for the pharmacological mechanism of KRG and provided evidence for potential therapies against ototoxicity.

  3. Caspase-8 Binding to Cardiolipin in Giant Unilamellar Vesicles Provides a Functional Docking Platform for Bid

    DEFF Research Database (Denmark)

    Jalmar, Olivier; Franc¸ois-Moutal, Liberty; García-Sáez, Ana-Jesus

    2013-01-01

    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activa...

  4. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7.

    Science.gov (United States)

    Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria

    2016-07-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. SAG/ROC-SCFβ-TrCP E3 Ubiquitin Ligase Promotes Pro-Caspase-3 Degradation as a Mechanism of Apoptosis Protection

    Directory of Open Access Journals (Sweden)

    Mingjia Tan

    2006-12-01

    Full Text Available Skp1-cullin-F-box protein (SCF is a multicomponent E3 ubiquitin (Ub ligase that ubiquitinates a number of important biologic molecules such as p27, β-catenin, and lκB for proteasomal degradation, thus regulating cell proliferation and survival. One SCF component, SAG/ROC2/Rbx2/Hrt2, a RING finger protein, was first identified as a redox-inducible protein, which, when overexpressed, inhibited apoptosis both in vitro and in vivo. We report here that sensitive to apoptosis gene (SAG, as well as its family member ROC1/Rbxi, bound to the proinactive form of caspase-3 (pro-caspase-3. Binding was likely mediated through F-box protein, β-transducin repeat-containing protein (β-TrCP, which binds to the first 38 amino acids of pro-caspase-3. Importantly, β-TrCP1 expression significantly shortened the protein half-life of pro-caspase-3, whereas expression of a dominant-negative β-TrCP1 mutant with the F-box domain deleted extended it. An in vitro ubiquitination assay showed that SAG/ROC-SCF -Trcp promoted ubiquitination of pro-caspase-3. Furthermore, endogenous levels of pro-caspase-3 were decreased by overexpression of SAG/ROC-SCFβ-TrCP E3 Ub ligases, but increased on siRNA silencing of SAG, regulator of cullin-1 (ROC1, or β-TrCPs, leading to increased apoptosis by etoposide and TNF-related apoptosis-inducing ligand through increased activation of caspase-3. Thus, pro-caspase-3 appears to be a substrate of SAG/ROC-SCFβ-TrCP E3 Ub ligase, which protects cells from apoptosis through increased apoptosis threshold by reducing the basal level of pro-caspase-3.

  6. Apoptotic block in colon cancer cells may be rectified by lentivirus mediated overexpression of caspase-9.

    Science.gov (United States)

    Xu, D; Wang, C; Shen, X; Yu, Y; Rui, Y; Zhang, D; Zhou, Z

    2013-12-01

    At present, the inhibition of apoptosis during pathogenesis of colorectal cancer is widely recognized while the role of caspase-9 in this process remains controversial. We aimed to investigate the differential expression of caspase-9 and evaluate the therapeutic potential of expression intervention in this study. We first examined the different expression of caspase-9 in normal colon mucosa, adenoma and cancer, investigating the relationship between its expression and clinico-pathological characteristics. Secondly, overexpression of caspase-9 was established in colon cancer cell lines by lentivirus infection to study the changes in growth, proliferation and apoptosis. Compared with normal colon mucosa, the expression of caspase-9 was higher in adenoma while lower in cancer both at mRNA and protein level (P expression is more common in poorly differentiated cancers (P expression of caspase-9, poorer colony formation and slower cell proliferation. In terms of apoptosis related indicators, caspase-9 overexpression leads to higher apoptosis rate and GO/G1 arrest, while up-regulating the expression of caspase-3 (P expression from colon mucosa, adenoma to cancer suggested it may be involved in the carcinogenesis of colon cancer. The overexpression of caspase-9 exhibits an inhibitory role in cancer growth and proliferation while promoting apoptosis. However, a non-apoptotic role of caspase-9 facilitating differentiation was also implied.

  7. Caspase-3/-8/-9, Bax and Bcl-2 expression in the cerebellum, lymph nodes and leukocytes of dogs naturally infected with canine distemper virus.

    Science.gov (United States)

    Del Puerto, H L; Martins, A S; Moro, L; Milsted, A; Alves, F; Braz, G F; Vasconcelos, A C

    2010-01-26

    Canine distemper is an immunosuppressive disease caused by the canine distemper virus (CDV). Pathogenesis mainly involves the central nervous system and immunosuppression. Dogs naturally infected with CDV develop apoptotic cells in lymphoid tissues and the cerebellum, but this apoptotic mechanism is not well characterized. To better understand this process, we evaluated the expression of Bax, Bcl-2, and caspase-3, -8 and -9, by evaluating mRNA levels in the peripheral blood, lymph nodes and cerebellum of CDV-infected (CDV+) and uninfected (CDV-) dogs by real-time polymerase chain reaction (PCR). Blood samples from 12 CDV+ and 8 CDV- dogs, diagnosed by reverse transcription-PCR, were subjected to hematological analysis and apoptotic gene expression was evaluated using real-time-PCR. Tissues from the cerebellum and lymph nodes of four CDV+ and three CDV-dogs were also subjected to real time-PCR. No significant differences were found between CDV+ and CDV- dogs in the hemotological results or in the expression of caspase-3, -8, -9, Bax, and Bcl-2 in the peripheral blood. However, expression of Bax, caspase-3, -8 and -9 was significantly higher in the cerebellum of CDV+ compared to CDV- dogs. Expression of caspase-3 and -8 was significantly higher in the lymph nodes of CDV+ compared to CDV- dogs. We concluded that infection with CDV induces apoptosis in the cerebellum and lymph nodes in different ways. Lymph node apoptosis apparently occurs via caspase-3 activation, through the caspase-8 pathway, and cerebellum apoptosis apparently occurs via caspase-3 activation, through the caspase-8 and mitochondrial pathways.

  8. Insight into the mechanism of action and selectivity of caspase-3 reversible inhibitors through in silico studies

    Science.gov (United States)

    Minini, Lucía; Ferraro, Florencia; Cancela, Saira; Merlino, Alicia

    2017-11-01

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide for which there is currently no cure. Recently, caspase-3 has been proposed as a potential therapeutic target for treating AD. Since this enzyme is overexpressed in brains from AD patients its selective modulation by non-covalent inhibitors becomes an interesting strategy in the search of potential drugs against this neuropathology. With this in mind, we have combined molecular docking, molecular dynamics simulations and QM calculations of unliganded caspase-3 and caspase-7 and in complex with a series of known inhibitors of caspase-3 described in the literature in order to assess the structural features responsible for good inhibitory activity and selectivity against this potential target. This work has allowed us to identify hotspots for drug binding as well as the importance of shape and charge distribution for interacting into the substrate binding cleft or into the dimer interface in each enzyme. Our results showed that most selective compounds against caspsase-3 bind into the substrate binding cleft acting as competitive inhibitors whereas in caspase-7 they bind close to an allosteric site at the dimer interface but since they are weakly bound their presence would not be affecting enzyme dynamics or function. In addition, for both enzymes we have found evidence indicating that differences in shape and accessibility exist between the substrate binding site of each monomer which could be modulating the binding affinity of non-covalent molecules.

  9. Cadmium induces Ca2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells.

    Science.gov (United States)

    Wang, Hong; Zhai, Nianhui; Chen, Ying; Xu, Haibin; Huang, Kehe

    2017-07-01

    Calcium, as a ubiquitous second messenger, governs a large array of cellular processes and is necessary for cell survival. More recently, it was observed that the cytosolic Ca 2+ concentration ([Ca 2+ ] c ) elevation could induce apoptosis in primary cultured rat proximal tubular (rPT) cells exposed to cadmium (Cd), but the concrete mechanism is still unclear. This study was designed to investigate the signal pathway involved in [Ca 2+ ] c elevation-mediated apoptosis. The results confirmed the elevation of [Ca 2+ ] c by confocal microscopy and enhancement of the apoptosis by Hoechst 33258 staining and flow cytometer when rPT cells were exposed to Cd for 12h. Then we demonstrated that Cd enhanced the protein levels of active calpain-1 and caspase-3 in rPT cells. Pretreatment with a cytosolic Ca 2+ chelator, 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), markedly blocked the up-regulation of active calpain-1 and caspase-3 and inhibited the apoptosis induced by Cd. Further, rPT cells were pretreated with a cell-permeable selective calpain-1 inhibitor, 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) and caspase-3 inhibitor, N-Acetyl-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), respectively. PD150606 significantly attenuated the up-regulation of active caspase-3 and the apoptosis induced by Cd. As expected, inhibition of active caspase-3 by Ac-DEVD-CHO decreased the apoptosis induced by Cd. Taken together, it could be concluded that [Ca 2+ ] c elevation did act as a pro-apoptotic signal in Cd-induced cytotoxicity of rPT cells, triggered calpain-1 and caspase-3 activation in turn, and induced apoptosis of rPT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Molecular mechanisms involved in cochlear implantation trauma and the protection of hearing and auditory sensory cells by inhibition of c-Jun-N-terminal kinase signaling.

    Science.gov (United States)

    Eshraghi, Adrien A; Gupta, Chhavi; Van De Water, Thomas R; Bohorquez, Jorge E; Garnham, Carolyn; Bas, Esperanza; Talamo, Victoria Maria

    2013-03-01

    To investigate the molecular mechanisms involved in electrode insertion trauma (EIT) and to test the otoprotective effect of locally delivered AM-111. An animal model of cochlear implantation. Guinea pigs' hearing thresholds were measured by auditory brainstem response (ABR) before and after cochlear implantation in four groups: EIT; pretreated with hyaluronate gel 30 minutes before EIT (EIT+Gel); pretreated with hyaluronate gel/AM-111 30 minutes before EIT (EIT+AM-111); and unoperated contralateral ears as controls. Neurofilament, synapsin, and fluorescein isothiocyanate (FITC)-phalloidin staining for hair cell counts were performed at 90 days post-EIT. Immunostaining for 4-hydroxy-2-nonenal (HNE), activated caspase-3, CellROX, and phospho-c-Jun were performed at 24 hours post-EIT. ABR thresholds increased post-EIT in the cochleae of EIT only and EIT+Gel treated animals. There was no significant increase in hearing thresholds in cochleae from either EIT+AM-111 treated or unoperated control ears. AM-111 protection of organ of Corti sensory elements (i.e., hair cells [HCs], supporting cells [SCs], nerve fibers, and synapses) was documented at 3 months post-EIT. Immunostaining of 24-hour post-EIT specimens demonstrated increased levels of HNE in HCs and SCs; increased levels of CellROX and activation of caspase-3 was observed only in SCs, and phosphorylation of c-Jun occurred only in HCs of the EIT-only and EIT+Gel specimens. There was no immunostaining for either HNE, CellROX, caspase-3, or phospho-c-Jun in the organ of Corti specimens from AM-111 treated cochleae. Molecular mechanisms involved in programmed cell death of HCs are different than the ones involved in programmed cell death of SCs. Local delivery of AM-111 provided a significant level of protection against EIT-induced hearing losses, HC losses, and damage to neural elements. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  11. Metabolic Regulation of CaMKII Protein and Caspases in Xenopus laevis Egg Extracts*

    Science.gov (United States)

    McCoy, Francis; Darbandi, Rashid; Chen, Si-Ing; Eckard, Laura; Dodd, Keela; Jones, Kelly; Baucum, Anthony J.; Gibbons, Jennifer A.; Lin, Sue-Hwa; Colbran, Roger J.; Nutt, Leta K.

    2013-01-01

    The metabolism of the Xenopus laevis egg provides a cell survival signal. We found previously that increased carbon flux from glucose-6-phosphate (G6P) through the pentose phosphate pathway in egg extracts maintains NADPH levels and calcium/calmodulin regulated protein kinase II (CaMKII) activity to phosphorylate caspase 2 and suppress cell death pathways. Here we show that the addition of G6P to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase 2 by protein phosphatase 1. Thus, G6P sustains the phosphorylation of caspase 2 by CaMKII at Ser-135, preventing the induction of caspase 2-mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways. PMID:23400775

  12. Cell Death Mechanisms in Sulfur Mustard Injury: Basis for Therapeutics Development

    International Nuclear Information System (INIS)

    Ray, R.; Keyser, B.; Benton, B.; Rosenthal, D. S.

    2007-01-01

    Sulfur mustard (SM, bis-(2-chloroethyl) sulfide), commonly called mustard gas, is a vesicant chemical warfare agent and a potential terrorism agent. SM is relatively easy to make and to deploy, which makes this chemical most likely to be used. SM exposure causes debilitating skin blisters (vesication) and injury to the eyes and the respiratory tract. Therefore, developing an effective medical countermeasure to protect against the dermal, ocular and airway injuries due to this dreaded chemical agent is an urgent priority of the US Army. SM pathophysiology is consistent with epithelial cell damage, particularly basal cell apoptosis. SM-induced apoptosis may occur via multiple pathways dependent on one or more of the following: (a) abnormal Ca2plus homeostasis, (b) disturbed cellular bioenergetics, and (c) Fas (death receptor) response. Apoptosis pathways are characterized by the involvement of the pathway-specific caspases (cysteine aspartase). We determined caspase activity by assay of fluorogenic caspase type-specific peptide substrate hydrolysis. We studied caspase processing, i.e., proteolytic conversion of procaspase to active caspase by immunoblot analyses utilizing caspase type-specific antibodies. Our results in cell culture models of both human epidermal keratinocytes and human airway epithelial cells indicated that SM activates (a) caspase-9, an indicator of the Ca2plus/CaM-mediated mitochondrial pathway, (b) caspase-8, a marker for the Fas-mediated pathway, and (c) caspase-3, the executioner caspase involved in both pathways. A peptide caspase inhibitor, specific for caspase-3 (AC-DEVD-CHO), added to cells prior to SM decreased apoptosis. These observations suggest apoptosis as a mechanism of SM toxicity and caspase inhibitors as prospective medical countermeasures.(author)

  13. Midazolam induces apoptosis in MA-10 mouse Leydig tumor cells through caspase activation and the involvement of MAPK signaling pathway

    Directory of Open Access Journals (Sweden)

    So EC

    2014-02-01

    Full Text Available Edmund Cheung So,1,2 Yu-Xuan Lin,3 Chi Hao Tseng,1 Bo-Syong Pan,3 Ka-Shun Cheng,2 Kar-Lok Wong,2 Lyh-Jyh Hao,4 Yang-Kao Wang,5 Bu-Miin Huang2 1Department of Anesthesia, Tainan Municipal An Nan Hospital, China Medical University, Tainan, Taiwan; 2Department of Anesthesia, China Medical University, Taichung, Taiwan; 3Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan; 4Department of Internal Medicine, Division of Endocrinology and Metabolism, Kaohsiung Veteran General Hospital Tainan Branch Tainan, Taiwan; 5Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan Purpose: The present study aims to investigate how midazolam, a sedative drug for clinical use with cytotoxicity on neuronal and peripheral tissues, induced apoptosis in MA-10 mouse Leydig tumor cells. Methods: The apoptotic effect and underlying mechanism of midazolam to MA-10 cells were investigated by flow cytometry assay and Western blotting methods. Results: Data showed that midazolam induced the accumulation of the MA-10 cell population in the sub-G1 phase and a reduction in the G2/M phase in a time- and dose-dependent manner, suggesting an apoptotic phenomenon. Midazolam could also induce the activation of caspase-8, -9, and -3 and poly (ADP-ribose polymerase proteins. There were no changes in the levels of Bax and cytochrome-c, whereas Bid was significantly decreased after midazolam treatment. Moreover, midazolam decreased both pAkt and Akt expression. In addition, midazolam stimulated the phosphorylation of p38 and c-Jun NH2-terminal kinase but not extracellular signal-regulated kinase. Conclusion: Midazolam could induce MA-10 cell apoptosis through the activation of caspase cascade, the inhibition of pAkt pathway, and the induction of p38 and c-Jun NH2-terminal kinase pathways. Keywords: midazolam, apoptosis, MA-10 cell, caspase, Akt, MAPKs

  14. Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells

    International Nuclear Information System (INIS)

    Chaudhari, Manjari; Jayaraj, R.; Bhaskar, A.S.B.; Lakshmana Rao, P.V.

    2009-01-01

    T-2 toxin is the most toxic trichothecene and both humans and animals suffer from several pathological conditions after consumption of foodstuffs contaminated with trichothecenes. We investigated the molecular mechanism of T-2 toxin induced cytotoxicity and cell death in HeLa cells. T-2 toxin at LC50 of 10 ng/ml caused time dependent increase in cytotoxicity as assessed by dye uptake, lactatedehydrogenase leakage and MTT assay. The toxin caused generation of reactive oxygen species as early as 30 min followed by significant depletion of glutathione levels and increased lipid peroxidation. The results indicate oxidative stress as underlying mechanism of cytotoxicity. Single stranded DNA damage after T-2 treatment was observed as early as 2 and 4 h by DNA diffusion assay. The cells exhibited apoptotic morphology like condensed chromatin and nuclear fragmentation after 4 h of treatment. Downstream of T-2 induced oxidative stress and DNA damage a time dependent increase in expression level of p53 protein was observed. The increase in Bax/Bcl2 ratio indicated shift in response, in favour of apoptotic process in T-2 toxin treated cells. Western blot analysis showed increase in levels of mitochondrial apoptogenic factors Bax, Bcl-2, cytochrome-c followed by activation of caspases-9, -3 and -7 leading to DNA fragmentation and apoptosis. In addition to caspase-dependent pathway, our results showed involvement of caspase-independent AIF pathway in T-2 induced apoptosis. Broad spectrum caspase inhibitor z-VAD-fmk could partially protect the cells from DNA damage but could not inhibit AIF induced oligonucleosomal DNA fragmentation beyond 4 h. Results of the study clearly show that oxidative stress is the underlying mechanism by which T-2 toxin causes DNA damage and apoptosis.

  15. Caspase-10 Negatively Regulates Caspase-8-Mediated Cell Death, Switching the Response to CD95L in Favor of NF-κB Activation and Cell Survival

    Directory of Open Access Journals (Sweden)

    Sebastian Horn

    2017-04-01

    Full Text Available Formation of the death-inducing signaling complex (DISC initiates extrinsic apoptosis. Caspase-8 and its regulator cFLIP control death signaling by binding to death-receptor-bound FADD. By elucidating the function of the caspase-8 homolog, caspase-10, we discover that caspase-10 negatively regulates caspase-8-mediated cell death. Significantly, we reveal that caspase-10 reduces DISC association and activation of caspase-8. Furthermore, we extend our co-operative/hierarchical binding model of caspase-8/cFLIP and show that caspase-10 does not compete with caspase-8 for binding to FADD. Utilizing caspase-8-knockout cells, we demonstrate that caspase-8 is required upstream of both cFLIP and caspase-10 and that DISC formation critically depends on the scaffold function of caspase-8. We establish that caspase-10 rewires DISC signaling to NF-κB activation/cell survival and demonstrate that the catalytic activity of caspase-10, and caspase-8, is redundant in gene induction. Thus, our data are consistent with a model in which both caspase-10 and cFLIP coordinately regulate CD95L-mediated signaling for death or survival.

  16. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    Science.gov (United States)

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.

  17. Caspase-8 regulates the expression of pro- and anti-inflammatory cytokines in human bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Moen, Siv H; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J; Sponaas, Anne-Marit; Standal, Therese

    2016-09-01

    Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll-like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase-8 is involved in activation of NF-kB downstream of TLRs in immune cells. Here we investigated the role of caspase-8 in regulating TLR-induced cytokine production from human bone marrow-derived mesenchymal stromal cells (hBMSCs). Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase-8 were silenced using siRNA. Caspase-8 was also inhibited using a caspase-8 inhibitor, z-IEDT. We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro-inflammatory cytokines in a TLR-dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti-inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase-8 was involved in the induction of IL- IL-1β, IL-6, CXCL10, and in the inhibition of HGF and TGFβ. Caspase-8 appears to modulate hBMSCs into gaining a pro-inflammatory phenotype. Therefore, inhibiting caspase-8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders.

  18. Membrane receptor-mediated apoptosis and caspase activation in the differentiated EoL-1 eosinophilic cell line.

    Science.gov (United States)

    Al-Rabia, Mohammed W; Blaylock, Morgan G; Sexton, Darren W; Walsh, Garry M

    2004-06-01

    Caspases are key molecules in the control of apoptosis, but relatively little is known about their contribution to eosinophil apoptosis. We examined caspase-3, -8, and -9 activities in receptor ligation-dependent apoptosis induction in the differentiated human eosinophilic cell line EoL-1. Differentiated EoL-1 exhibited bi-lobed nuclei, eosinophil-associated membrane receptors, and basic granule proteins. Annexin-V fluorescein isothiocyanate binding to EoL-1 revealed significant (PEoL-1 but had no effect on constitutive (baseline) apoptosis at 16 and 20 h. Caspase activity was analyzed using the novel CaspaTag trade mark technique and flow cytometry. EoL-1 treated with pan-CD45, CD45RA, CD45RB, and CD95 mAb exhibited caspase-3 and -9 activation at 12 h post-treatment, which increased at 16 and 20 h. Activated caspase-8 was detected 12 and 16 h after ligation with CD45, CD45RA, CD45RB, and CD95 mAb followed by a trend toward basal levels at 20 h. CD69 ligation resulted in caspase-3 activation, a modest but significant activation of caspase-8, and a loss in mitochondrial transmembrane potential but had no significant effect on activation of caspase-9. Thus, the intrinsic and extrinsic caspase pathways are involved in controlling receptor ligation-mediated apoptosis induction in human eosinophils, findings that may aid the development of a more targeted, anti-inflammatory therapy for asthma.

  19. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C.P. [Medical Research Council Toxicology Unit, Hodgkin Building, Lancaster Road, University of Leicester, Leicester LE1 9HN (United Kingdom); Chow, S.C., E-mail: chow.sek.chuen@monash.edu [School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan (Malaysia)

    2012-11-15

    The caspase inhibitors, benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) and benzyloxycarbonyl (Cbz)-Ile-Glu (OMe)-Thr-Asp (OMe)-FMK (z-IETD-FMK) at non-toxic doses were found to be immunosuppressive and inhibit human T cell proliferation induced by mitogens and IL-2 in vitro. Both caspase inhibitors were shown to block NF-κB in activated primary T cells, but have little inhibitory effect on the secretion of IL-2 and IFN-γ during T cell activation. However, the expression of IL-2 receptor α-chain (CD25) in activated T cells was inhibited by both z-VAD-FMK and z-IETD-FMK, whereas the expression of the early activated T cell marker, CD69 was unaffected. During primary T cell activation via the antigen receptor, both caspase-8 and caspase-3 were activated and processed to their respective subunits, but neither caspase inhibitors had any effect on the processing of these two caspases. In sharp contrast both caspase inhibitors readily blocked apoptosis and the activation of caspases during FasL-induced apoptosis in activated primary T cells and Jurkat T cells. Collectively, the results demonstrate that both z-VAD-FMK and z-IETD-FMK are immunosuppressive in vitro and inhibit T cell proliferation without blocking the processing of caspase-8 and caspase-3. -- Highlights: ► Caspase-8 and caspase-3 were activated during T cell activation and proliferation. ► T cell proliferation was blocked by caspase inhibitors. ► Caspase activation during T cell proliferation was not block by caspase inhibitors.

  20. Caspase-Independent Apoptosis Induced by Reperfusion Following Ischemia without Bile Duct Occlusion in Rat Liver.

    Science.gov (United States)

    Matsui, Nobuaki; Yoshioka, Rie; Nozawa, Asako; Kobayashi, Naonobu; Shichijo, Yukari; Yoshikawa, Tadatoshi; Akagi, Masaaki

    2017-01-01

    The contribution of caspases to hepatic ischemia/reperfusion (I/R)-induced apoptosis has not been completely understood yet. Several studies have demonstrated increased caspase activity during I/R and the protective effect of caspase inhibitors against I/R injuries. However, reports with opposing results also exist. Herein, we examined the contribution of caspases to the I/R-induced hepatic apoptosis in rats using caspase inhibitors and specific substrates of caspases. Hepatic I/R was induced via a 2-h occlusion of the portal vein and the hepatic artery, without conducting bile duct occlusion. DNA laddering and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL)-positive cells were increased at 3 h after reperfusion. Pretreatment with caspase inhibitors (Z-Asp-2,6-dichlorobenzoyloxymethylketone (Z-Asp-cmk) 2 or 10 mg/kg intravenously (i.v.), 20 mg/kg intraperitoneally (i.p.), Z-Val-Ala-Asp(OMe)-fluoromethylketone (Z-VAD-fmk) 3 mg/kg i.v.) failed to reduce apoptosis induced by I/R. Interestingly, apoptosis induced by the portal triad (hepatic artery, portal vein, and bile duct) occlusion/reperfusion could be marginally attenuated using Z-Asp-cmk (2 mg/kg i.v.). The cleavage activity for Ac-DEVD-α-(4-methylcoumaryl-7-amide) (MCA), a caspase-3/7/8/9 substrate, was significantly increased by I/R. Conversely, the cleavage activities for Ac-DNLD-MCA and MCA-VDQVDGW[K-DNP]-NH 2 , specific substrates for caspase-3 and -7 respectively, were decreased by I/R. Protein expression of the cellular inhibitor of apoptosis protein 2 (c-IAP2), an endogenous caspase inhibitor, was increased by ischemia. Nuclear translocation of the apoptosis-inducing factor (AIF), an initiator protein of caspase-independent apoptosis, was also increased during I/R. These results suggest that caspases are inhibited by c-IAP2 induced during ischemia and that AIF may be involved in initiation of apoptosis induced by hepatic I/R without

  1. Pripper: prediction of caspase cleavage sites from whole proteomes

    Directory of Open Access Journals (Sweden)

    Salmi Jussi

    2010-06-01

    Full Text Available Abstract Background Caspases are a family of proteases that have central functions in programmed cell death (apoptosis and inflammation. Caspases mediate their effects through aspartate-specific cleavage of their target proteins, and at present almost 400 caspase substrates are known. There are several methods developed to predict caspase cleavage sites from individual proteins, but currently none of them can be used to predict caspase cleavage sites from multiple proteins or entire proteomes, or to use several classifiers in combination. The possibility to create a database from predicted caspase cleavage products for the whole genome could significantly aid in identifying novel caspase targets from tandem mass spectrometry based proteomic experiments. Results Three different pattern recognition classifiers were developed for predicting caspase cleavage sites from protein sequences. Evaluation of the classifiers with quality measures indicated that all of the three classifiers performed well in predicting caspase cleavage sites, and when combining different classifiers the accuracy increased further. A new tool, Pripper, was developed to utilize the classifiers and predict the caspase cut sites from an arbitrary number of input sequences. A database was constructed with the developed tool, and it was used to identify caspase target proteins from tandem mass spectrometry data from two different proteomic experiments. Both known caspase cleavage products as well as novel cleavage products were identified using the database demonstrating the usefulness of the tool. Pripper is not restricted to predicting only caspase cut sites, but it gives the possibility to scan protein sequences for any given motif(s and predict cut sites once a suitable cut site prediction model for any other protease has been developed. Pripper is freely available and can be downloaded from http://users.utu.fi/mijopi/Pripper. Conclusions We have developed Pripper, a tool for

  2. Benzene activates caspase-4 and -12 at the transcription level, without an association with apoptosis, in mouse bone marrow cells lacking the p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jung-Yeon; Han, Jeong-Hee; Yoon, Byung-Il [Kangwon National University, School of Veterinary Medicine, Chuncheon, Gangwon (Korea); Hirabayashi, Yoko; Kodama, Yukio; Kanno, Jun [National Institute of Health Sciences, Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, Tokyo (Japan); Choi, Yang-Kyu [Konkuk University, College of Veterinary Medicine, Seoul (Korea); Inoue, Tohru [National Institute of Health Sciences, Biological Safety and Research Center, Tokyo (Japan)

    2009-08-15

    Benzene is a well-known environmental pollutant that can induce hematotoxicity, aplastic anemia, acute myelogenous leukemia, and lymphoma. However, although benzene metabolites are known to induce oxidative stress and disrupt the cell cycle, the mechanism underlying lympho/leukemogenicity is not fully understood. Caspase-4 (alias caspase-11) and -12 are inflammatory caspases implicated in inflammation and endoplasmic reticulum stress-induced apoptosis. The objectives of this study were to investigate the altered expression of caspase-4 and -12 in mouse bone marrow after benzene exposure and to determine whether their alterations are associated with benzene-induced bone marrow toxicity, especially cellular apoptosis. In addition, we evaluated whether the p53 gene is involved in regulating the mechanism, using both wild-type (WT) mice and mice lacking the p53 gene. For this study, 8-week-old C57BL/6 mice [WT and p53 knockout (KO)] were administered a benzene solution (150 mg/kg diluted in corn oil) via oral gavage once daily, 5 days/week, for 1 or 2 weeks. Blood and bone marrow cells were collected and cell counts were measured using a Coulter counter. Total mRNA and protein extracts were prepared from the harvested bone marrow cells. Then qRT-PCR and Western blotting were performed to detect changes in the caspases at the mRNA and protein level, respectively. A DNA fragmentation assay and Annexin-V staining were carried out on the bone marrow cells to detect apoptosis. Results indicated that when compared to the control, leukocyte number and bone marrow cellularity decreased significantly in WT mice. The expression of caspase-4 and -12 mRNA increased significantly after 12 days of benzene treatment in the bone marrow cells of benzene-exposed p53KO mice. However, apoptosis detection assays indicated no evidence of apoptosis in p53KO or WT mice. In addition, no changes of other apoptosis-related caspases, such as caspase-3 and -9, were found in WT or p53KO mice at the

  3. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    International Nuclear Information System (INIS)

    Ding, L.; Wu, J.P.; Xu, G.; Zhu, B.; Zeng, Q.M.; Li, D.F.; Lu, W.

    2014-01-01

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis

  4. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Wu, J.P. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China); Xu, G. [Fudan University, Jinshan Hospital, Center Laboratory, Shanghai, China, Center Laboratory, Jinshan Hospital, Fudan University, Shanghai (China); Zhu, B.; Zeng, Q.M.; Li, D.F.; Lu, W. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China)

    2014-05-09

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  5. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Directory of Open Access Journals (Sweden)

    L. Ding

    2014-06-01

    Full Text Available Current studies find that degenerated cartilage endplates (CEP of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  6. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents

    NARCIS (Netherlands)

    Hatting, M.; Zhao, G.; Schumacher, F.; Sellge, G.; Masaoudi, Al M.; Gaßler, N.; Boekschoten, M.V.; Müller, M.R.; Liedtke, C.; Cubero, F.J.; Trautwein, C.

    2013-01-01

    In human and murine models of nonalcoholic steatohepatitis (NASH), increased hepatocyte apoptosis is a critical mechanism contributing to inflammation and fibrogenesis. Caspase 8 (Casp8) is essential for death-receptor-mediated apoptosis activity and therefore its modulation might be critical for

  7. Fenretinide-induced caspase-8 activation and apoptosis in an established model of metastatic neuroblastoma

    International Nuclear Information System (INIS)

    Raguénez, Gilda; Mühlethaler-Mottet, Annick; Meier, Roland; Duros, Caroline; Bénard, Jean; Gross, Nicole

    2009-01-01

    Resistance of high-risk metastatic neuroblastoma (HR-NB) to high dose chemotherapy (HD-CT) raises a major therapeutic challenge in pediatric oncology. Patients are treated by maintenance CT. For some patients, an adjuvant retinoid therapy is proposed, such as the synthetic retinoid fenretinide (4-HPR), an apoptotic inducer. Recent studies demonstrated that NB metastasis process is enhanced by the loss of caspase-8 involved in the Integrin-Mediated Death (IMD) process. As the role of caspase-8 appears to be critical in preventing metastasis, we aimed at studying the effect of 4-HPR on caspase-8 expression in metastatic neuroblasts. We used the human IGR-N-91 MYCN-amplified NB experimental model, able to disseminate in vivo from the primary nude mouse tumor xenograft (PTX) into myocardium (Myoc) and bone marrow (BM) of the animal. NB cell lines, i.e., IGR-N-91 and SH-EP, were treated with various doses of Fenretinide (4-HPR), then cytotoxicity was analyzed by MTS proliferation assay, apoptosis by the propidium staining method, gene or protein expressions by RT-PCR and immunoblotting and caspases activity by colorimetric protease assays. The IGR-N-91 parental cells do not express detectable caspase-8. However the PTX cells established from the primary tumor in the mouse, are caspase-8 positive. In contrast, metastatic BM and Myoc cells show a clear down-regulation of the caspase-8 expression. In parallel, the caspases -3, -9, -10, Bcl-2, or Bax expressions were unchanged. Our data show that in BM, compared to PTX cells, 4-HPR up-regulates caspase-8 expression that parallels a higher sensitivity to apoptotic cell death. Stable caspase-8-silenced SH-EP cells appear more resistant to 4-HPR-induced cell death compared to control SH-EP cells. Moreover, 4-HPR synergizes with drugs since apoptosis is restored in VP16- or TRAIL-resistant-BM cells. These results demonstrate that 4-HPR in up-regulating caspase-8 expression, restores and induces apoptotic cell death in

  8. Caspase-12 and the inflammatory response to Yersinia pestis.

    NARCIS (Netherlands)

    Ferwerda, B.; McCall, M.B.B.; Vries, M.C. de; Hopman, J.C.W.; Maiga, B.; Dolo, A.; Doumbo, O.; Daou, M.; Jong, D.J. de; Joosten, L.A.B.; Tissingh, R.A.; Reubsaet, F.A.; Sauerwein, R.W.; Meer, J.W.M. van der; Ven, A.J.A.M. van der; Netea, M.G.

    2009-01-01

    BACKGROUND: Caspase-12 functions as an antiinflammatory enzyme inhibiting caspase-1 and the NOD2/RIP2 pathways. Due to increased susceptibility to sepsis in individuals with functional caspase-12, an early-stop mutation leading to the loss of caspase-12 has replaced the ancient genotype in Eurasia

  9. TRAIL Activates a Caspase 9/7-Dependent Pathway in Caspase 8/10-Defective SK-N-SH Neuroblastoma Cells with Two Functional End Points: Induction of Apoptosis and PGE2 Release

    Directory of Open Access Journals (Sweden)

    Giorgio Zauli

    2003-09-01

    Full Text Available Most neuroblastoma cell lines do not express apical caspases 8 and 10, which play a key role in mediating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL cytotoxicity in a variety of malignant cell types. In this study, we demonstrated that TRAIL induced a moderate but significant increase of apoptosis in the caspase 8/10-deficient SK-N-SH neuroblastoma cell line, through activation of a novel caspase 9/7 pathway. Concomitant to the induction of apoptosis, TRAIL also promoted a significant increase of prostaglandin E2 (PGE2 release by SKN-SH cells. Moreover, coadministration of TRAIL plus indomethacin, a pharmacological inhibitor of cyclooxygenase (COX, showed an additive effect on SKN-SH cell death. In spite of the ability of TRAIL to promote the phosphorylation of both ERKi/2 and p38/MAPK, which have been involved in the control of COX expression/activity, neither PD98059 nor SB203580, pharmacological inhibitors of the ERKi/2 and p38/MAPK pathways, respectively, affected either PGE2 production or apoptosis induced by TRAIL. Finally, both induction of apoptosis and PGE2 release were completely abrogated by the broad caspase inhibitor z-VAD4mk, suggesting that both biologic end points were regulated in SK-N-SH cells through a caspase 9/7-dependent pathway.

  10. Caspase-3 controls AML1-ETO-driven leukemogenesis via autophagy modulation in a ULK1-dependent manner.

    Science.gov (United States)

    Man, Na; Tan, Yurong; Sun, Xiao-Jian; Liu, Fan; Cheng, Guoyan; Greenblatt, Sarah M; Martinez, Camilo; Karl, Daniel L; Ando, Koji; Sun, Ming; Hou, Dan; Chen, Bingyi; Xu, Mingjiang; Yang, Feng-Chun; Chen, Zhu; Chen, Saijuan; Nimer, Stephen D; Wang, Lan

    2017-05-18

    AML1-ETO (AE), a fusion oncoprotein generated by t(8;21), can trigger acute myeloid leukemia (AML) in collaboration with mutations including c-Kit, ASXL1/2, FLT3, N-RAS, and K-RAS. Caspase-3, a key executor among its family, plays multiple roles in cellular processes, including hematopoietic development and leukemia progression. Caspase-3 was revealed to directly cleave AE in vitro, suggesting that AE may accumulate in a Caspase-3-compromised background and thereby accelerate leukemogenesis. Therefore, we developed a Caspase-3 knockout genetic mouse model of AML and found that loss of Caspase-3 actually delayed AML1-ETO9a (AE9a)-driven leukemogenesis, indicating that Caspase-3 may play distinct roles in the initiation and/or progression of AML. We report here that loss of Caspase-3 triggers a conserved, adaptive mechanism, namely autophagy (or macroautophagy), which acts to limit AE9a-driven leukemia. Furthermore, we identify ULK1 as a novel substrate of Caspase-3 and show that upregulation of ULK1 drives autophagy initiation in leukemia cells and that inhibition of ULK1 can rescue the phenotype induced by Caspase-3 deletion in vitro and in vivo. Collectively, these data highlight Caspase-3 as an important regulator of autophagy in AML and demonstrate that the balance and selectivity between its substrates can dictate the pace of disease. © 2017 by The American Society of Hematology.

  11. Novel HTS strategy identifies TRAIL-sensitizing compounds acting specifically through the caspase-8 apoptotic axis.

    Directory of Open Access Journals (Sweden)

    Darren Finlay

    Full Text Available Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL is potentially a very important therapeutic as it shows selectivity for inducing apoptosis in cancer cells whilst normal cells are refractory. TRAIL binding to its cognate receptors, Death Receptors-4 and -5, leads to recruitment of caspase-8 and classical activation of downstream effector caspases, leading to apoptosis. As with many drugs however, TRAIL's usefulness is limited by resistance, either innate or acquired. We describe here the development of a novel 384-well high-throughput screening (HTS strategy for identifying potential TRAIL-sensitizing agents that act solely in a caspase-8 dependent manner. By utilizing a TRAIL resistant cell line lacking caspase-8 (NB7 compared to the same cells reconstituted with the wild-type protein, or with a catalytically inactive point mutant of caspase-8, we are able to identify compounds that act specifically through the caspase-8 axis, rather than through general toxicity. In addition, false positive hits can easily be "weeded out" in this assay due to their activity in cells lacking caspase-8-inducible activity. Screening of the library of pharmacologically active compounds (LOPAC was performed as both proof-of-concept and to discover potential unknown TRAIL sensitizers whose mechanism is caspase-8 mediated. We identified known TRAIL sensitizers from the library and identified new compounds that appear to sensitize specifically through caspase-8. In sum, we demonstrate proof-of-concept and discovery of novel compounds with a screening strategy optimized for the detection of caspase-8 pathway-specific TRAIL sensitizers. This screen was performed in the 384-well format, but could easily be further miniaturized, allows easy identification of artifactual false positives, and is highly scalable to accommodate diverse libraries.

  12. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells

    International Nuclear Information System (INIS)

    Cho, Sung-Hee; Chung, Kyung-Sook; Choi, Jung-Hye; Kim, Dong-Hyun; Lee, Kyung-Tae

    2009-01-01

    Compound K [20-O-β-(D-glucopyranosyl)-20(S)-protopanaxadiol], a metabolite of the protopanaxadiol-type saponins of Panax ginseng C.A. Meyer, has been reported to possess anti-tumor properties to inhibit angiogenesis and to induce tumor apoptosis. In the present study, we investigated the effect of Compound K on apoptosis and explored the underlying mechanisms involved in HL-60 human leukemia cells. We examined the effect of Compound K on the viabilities of various cancer cell lines using MTT assays. DAPI assay, Annexin V and PI double staining, Western blot assay and immunoprecipitation were used to determine the effect of Compound K on the induction of apoptosis. Compound K was found to inhibit the viability of HL-60 cells in a dose- and time-dependent manner with an IC 50 of 14 μM. Moreover, this cell death had typical features of apoptosis, that is, DNA fragmentation, DNA ladder formation, and the externalization of Annexin V targeted phosphatidylserine residues in HL-60 cells. In addition, compound-K induced a series of intracellular events associated with both the mitochondrial- and death receptor-dependent apoptotic pathways, namely, (1) the activation of caspases-3, -8, and -9; (2) the loss of mitochondrial membrane potential; (3) the release of cytochrome c and Smac/DIABLO to the cytosol; (4) the translocation of Bid and Bax to mitochondria; and (5) the downregulations of Bcl-2 and Bcl-xL. Furthermore, a caspase-8 inhibitor completely abolished caspase-3 activation, Bid cleavage, and subsequent DNA fragmentation by Compound K. Interestingly, the activation of caspase-3 and -8 and DNA fragmentation were significantly prevented in the presence of cycloheximide, suggesting that Compound K-induced apoptosis is dependent on de novo protein synthesis. The results indicate that caspase-8 plays a key role in Compound K-stimulated apoptosis via the activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation

  13. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells

    Directory of Open Access Journals (Sweden)

    Choi Jung-Hye

    2009-12-01

    Full Text Available Abstract Background Compound K [20-O-β-(D-glucopyranosyl-20(S-protopanaxadiol], a metabolite of the protopanaxadiol-type saponins of Panax ginseng C.A. Meyer, has been reported to possess anti-tumor properties to inhibit angiogenesis and to induce tumor apoptosis. In the present study, we investigated the effect of Compound K on apoptosis and explored the underlying mechanisms involved in HL-60 human leukemia cells. Methods We examined the effect of Compound K on the viabilities of various cancer cell lines using MTT assays. DAPI assay, Annexin V and PI double staining, Western blot assay and immunoprecipitation were used to determine the effect of Compound K on the induction of apoptosis. Results Compound K was found to inhibit the viability of HL-60 cells in a dose- and time-dependent manner with an IC50 of 14 μM. Moreover, this cell death had typical features of apoptosis, that is, DNA fragmentation, DNA ladder formation, and the externalization of Annexin V targeted phosphatidylserine residues in HL-60 cells. In addition, compound-K induced a series of intracellular events associated with both the mitochondrial- and death receptor-dependent apoptotic pathways, namely, (1 the activation of caspases-3, -8, and -9; (2 the loss of mitochondrial membrane potential; (3 the release of cytochrome c and Smac/DIABLO to the cytosol; (4 the translocation of Bid and Bax to mitochondria; and (5 the downregulations of Bcl-2 and Bcl-xL. Furthermore, a caspase-8 inhibitor completely abolished caspase-3 activation, Bid cleavage, and subsequent DNA fragmentation by Compound K. Interestingly, the activation of caspase-3 and -8 and DNA fragmentation were significantly prevented in the presence of cycloheximide, suggesting that Compound K-induced apoptosis is dependent on de novo protein synthesis. Conclusions The results indicate that caspase-8 plays a key role in Compound K-stimulated apoptosis via the activation of caspase-3 directly or indirectly through

  14. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available Death signaling provided by tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC, a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1, and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.

  15. Cr(VI) induces mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Son, Young-Ok; Hitron, J. Andrew; Wang Xin; Chang Qingshan; Pan Jingju; Zhang Zhuo; Liu Jiankang; Wang Shuxia; Lee, Jeong-Chae; Shi Xianglin

    2010-01-01

    Cr(VI) compounds are known to cause serious toxic and carcinogenic effects. Cr(VI) exposure can lead to a severe damage to the skin, but the mechanisms involved in the Cr(VI)-mediated toxicity in the skin are unclear. The present study examined whether Cr(VI) induces cell death by apoptosis or necrosis using mouse skin epidermal cell line, JB6 Cl41 cells. We also investigated the cellular mechanisms of Cr(VI)-induced cell death. This study showed that Cr(VI) induced apoptotic cell death in a dose-dependent manner, as demonstrated by the appearance of cell shrinkage, the migration of cells into the sub-G1 phase, the increase of Annexin V positively stained cells, and the formation of nuclear DNA ladders. Cr(VI) treatment resulted in the increases of mitochondrial membrane depolarization and caspases activation. Electron spin resonance (ESR) and fluorescence analysis revealed that Cr(VI) increased intracellular levels of reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anion radical in dose-dependent manner. Blockage of p53 by si-RNA transfection suppressed mitochondrial changes of Bcl-2 family composition, mitochondrial membrane depolarization, caspase activation and PARP cleavage, leading to the inhibition of Cr(VI)-induced apoptosis. Further, catalase treatment prevented p53 phosphorylation stimulated by Cr(VI) with the concomitant inhibition of caspase activation. These results suggest that Cr(VI) induced a mitochondrial-mediated and caspase-dependent apoptosis in skin epidermal cells through activation of p53, which are mainly mediated by reactive oxidants generated by the chemical.

  16. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre...... embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 µM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI...

  17. Artemisinin induces ROS-mediated caspase3 activation in ASTC-a-1 cells

    Science.gov (United States)

    Xiao, Feng-Lian; Chen, Tong-Sheng; Qu, Jun-Le; Liu, Cheng-Yi

    2010-02-01

    Artemisinin (ART), an antimalarial phytochemical from the sweet wormwood plant or a naturally occurring component of Artemisia annua, has been shown a potential anticancer activity by apoptotic pathways. In our report, cell counting kit (CCK-8) assay showed that treatment of human lung adenocarcinoma (ASTC-a-1) cells with ART effectively increase cell death by inducing apoptosis in a time- and dose-dependent fashion. Hoechst 33258 staining was used to detect apoptosis as well. Reactive oxygen species (ROS) generation was observed in cells exposed to ART at concentrations of 400 μM for 48 h. N-acetyl-L-cysteine (NAC), an oxygen radical scavenger, suppressed the rate of ROS generation and inhibited the ART-induced apoptosis. Moreover, AFC assay (Fluorometric assay for Caspase3 activity) showed that ROS was involved in ART-induced caspase3 acitvation. Taken together, our data indicate that ART induces ROS-mediated caspase3 activation in a time-and dose-dependent way in ASCT-a-1 cells.

  18. Simvastatin induces caspase-independent apoptosis in LPS-activated RAW264.7 macrophage cells

    International Nuclear Information System (INIS)

    Kim, Yong Chan; Song, Seok Bean; Lee, Mi Hee; Kang, Kwang Il; Lee, Hayyoung; Paik, Sang-Gi; Kim, Kyoon Eon; Kim, Young Sang

    2006-01-01

    Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We examined the effect of simvastatin on the LPS-induced proinflammatory macrophage RAW264.7 cells. Co-treatment of LPS and a non-toxic dose of simvastatin induced cell death in RAW264.7 cells. The cell death was accompanied by disruption of mitochondrial membrane potential (MMP), genomic DNA fragmentation, and caspase-3 activation. Surprisingly, despite caspase-dependent apoptotic cascade being completely blocked by Z-VAD-fmk, a pan-caspase inhibitor, the cell death was only partially repressed. In the presence of Z-VAD-fmk, DNA fragmentation was blocked, but DNA condensation, disruption of MMP, and nuclear translocation of apoptosis inducing factor were obvious. The cell death by simvastatin and LPS was effectively decreased by both the FPP and GGPP treatments as well as mevalonate. Our findings indicate that simvastatin triggers the cell death of LPS-treated RAW264.7 cells through both caspase-dependent and -independent apoptotic pathways, suggesting a novel mechanism of statins for the severe inflammatory disease therapy

  19. p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3.

    Science.gov (United States)

    Pham, Dan Duc; Do, Hai Thi; Bruelle, Céline; Kukkonen, Jyrki P; Eriksson, Ove; Mogollón, Isabel; Korhonen, Laura T; Arumäe, Urmas; Lindholm, Dan

    2016-05-13

    Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation.

    Science.gov (United States)

    Wride, M A; Parker, E; Sanders, E J

    1999-09-01

    The optical clarity of the lens is ensured by the programmed removal of nuclei and other organelles from the lens fibre cells during development. The morphology of the degenerating nuclei is similar to that observed during apoptosis and is accompanied by DNA fragmentation. Proteins encoded by the bcl-2 proto-oncogene family are important in either promoting or inhibiting apoptosis, and caspases are involved in downstream proteolytic events. Here, the expression of bcl-2 family members (bcl-2, bax, bad, and bcl-x(s/l)) and caspases-1, -2, -3, -4, and -6 was investigated through a range of stages of chick lens development using immunocytochemistry, Western blotting, and affinity labelling for caspases using biotinylated caspase inhibitors. Using differentiating lens epithelial cell cultures, it was demonstrated that the addition to cultures of synthetic peptide inhibitors of caspases -1, -2, -4, -6, and -9 brought about a 50-70% reduction in the number of degenerating nuclei per unit area of culture, as assessed by image analysis. These effects were comparable to those seen when general inhibitors of caspases were added to cultures. On the other hand, inhibitors of caspases-3 and -8 were not effective in significantly reducing the number of TUNEL-labelled nuclei. Expression of the caspase substrates poly(ADP-ribose) polymerase (PARP) and the 45-kDa subunit of DNA fragmentation factor (DFF 45) was also observed in the developing lens. Western blots of cultures to which caspase inhibitors were added revealed alterations in the PARP cleavage pattern, but not in that of DFF. These results demonstrate a role for members of the bcl-2 family and caspases in the degeneration of lens fibre cell nuclei during chick secondary lens fibre development and support the proposal that this process has many characteristics in common with apoptosis. Copyright 1999 Academic Press.

  1. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  2. Caspase-3 Inhibition Attenuates the Cytopathic Effects of EV71 Infection

    Directory of Open Access Journals (Sweden)

    Fengmei Song

    2018-04-01

    Full Text Available Previous studies demonstrate that human enterovirus 71 (EV71, a primary causative agent for hand, foot, and mouth disease, activates caspase-3 through the non-structural viral 3C protein to induce host cell apoptosis; however, until now it was unclear how 3C activates caspase-3 and how caspase-3 activation affects viral production. Our results demonstrate that 3C binds caspase-8 and caspase-9 but does not directly bind caspase-3 to activate them, and that the proteolytic activity of 3C is required by the activation of caspase-8, caspase-9, and caspase-3. Inhibition of caspase-3 activity attenuates apoptosis in 3C-transfected cells. Furthermore, caspase-3 inhibitor protects host cells from the cytopathic effect of EV71 infection and prevents cell cycle arrest, which is known to be favored for EV71 viral replication. Inhibition of caspase-3 activity decreases EV71 viral protein expression and viral production, but has no effect on viral entry, replication, even polyprotein translation. Therefore, caspase-3 is exploited functionally by EV71 to facilitate its production, which suggests a novel therapeutic approach for the treatment and prevention of hand, foot, and mouth disease.

  3. Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors.

    Directory of Open Access Journals (Sweden)

    Fabio Bucchieri

    Full Text Available Epidemiologic studies have demonstrated important links between air pollution and asthma. Amongst these pollutants, environmental cigarette smoke is a risk factor both for asthma pathogenesis and exacerbation. As the barrier to the inhaled environment, the bronchial epithelium is a key structure that is exposed to cigarette smoke.Since primary bronchial epithelial cells (PBECs from asthmatic donors are more susceptible to oxidant-induced apoptosis, we hypothesized that they would be susceptible to cigarette smoke-induced cell death.PBECs from normal and asthmatic donors were exposed to cigarette smoke extract (CSE; cell survival and apoptosis were assessed by fluorescence-activated cell sorting, and protective effects of antioxidants evaluated. The mechanism of cell death was evaluated using caspase inhibitors and immunofluorescent staining for apoptosis-inducing factor (AIF.Exposure of PBEC cultures to CSE resulted in a dose-dependent increase in cell death. At 20% CSE, PBECs from asthmatic donors exhibited significantly more apoptosis than cells from non-asthmatic controls. Reduced glutathione (GSH, but not ascorbic acid (AA, protected against CSE-induced apoptosis. To investigate mechanisms of CSE-induced apoptosis, caspase-3 or -9 inhibitors were tested, but these failed to prevent apoptosis; in contrast, CSE promoted nuclear translocation of AIF from the mitochondria. GSH reduced the number of nuclear-AIF positive cells whereas AA was ineffective.Our results show that PBECs from asthmatic donors are more susceptible to CSE-induced apoptosis. This response involves AIF, which has been implicated in DNA damage and ROS-mediated cell-death. Epithelial susceptibility to CSE may contribute to the impact of environmental tobacco smoke in asthma.

  4. Function of caspase-14 in trophoblast differentiation

    Directory of Open Access Journals (Sweden)

    Charles Adrian K

    2009-09-01

    Full Text Available Abstract Background Within the human placenta, the cytotrophoblast consists of a proliferative pool of progenitor cells which differentiate to replenish the overlying continuous, multi-nucleated syncytiotrophoblast, which forms the barrier between the maternal and fetal tissues. Disruption to trophoblast differentiation and function may result in impaired fetal development and preeclampsia. Caspase-14 expression is limited to barrier forming tissues. It promotes keratinocyte differentiation by cleaving profilaggrin to stabilise keratin intermediate filaments, and indirectly providing hydration and UV protection. However its role in the trophoblast remains unexplored. Methods Using RNA Interference the reaction of control and differentiating trophoblastic BeWo cells to suppressed caspase-14 was examined for genes pertaining to hormonal, cell cycle and cytoskeletal pathways. Results Transcription of hCG, KLF4 and cytokeratin-18 were increased following caspase-14 suppression suggesting a role for caspase-14 in inhibiting their pathways. Furthermore, hCG, KLF4 and cytokeratin-18 protein levels were disrupted. Conclusion Since expression of these molecules is normally increased with trophoblast differentiation, our results imply that caspase-14 inhibits trophoblast differentiation. This is the first functional study of this unusual member of the caspase family in the trophoblast, where it has a different function than in the epidermis. This knowledge of the molecular underpinnings of trophoblast differentiation may instruct future therapies of trophoblast disease.

  5. New insights into the apoptotic process in mollusks: characterization of caspase genes in Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Alejandro Romero

    2011-02-01

    Full Text Available Apoptosis is an essential biological process in the development and maintenance of immune system homeostasis. Caspase proteins constitute the core of the apoptotic machinery and can be categorized as either initiators or effectors of apoptosis. Although the genes encoding caspase proteins have been described in vertebrates and in almost all invertebrate phyla, there are few reports describing the initiator and executioner caspases or the modulation of their expression by different stimuli in different apoptotic pathways in bivalves. In the present work, we characterized two initiator and four executioner caspases in the mussel Mytilus galloprovincialis. Both initiators and executioners showed structural features that make them different from other caspase proteins already described. Evaluation of the genes' tissue expression patterns revealed extremely high expression levels within the gland and gills, where the apoptotic process is highly active due to the clearance of damaged cells. Hemocytes also showed high expression values, probably due to of the role of apoptosis in the defense against pathogens. To understand the mechanisms of caspase gene regulation, hemocytes were treated with UV-light, environmental pollutants and pathogen-associated molecular patterns (PAMPs and apoptosis was evaluated by microscopy, flow cytometry and qPCR techniques. Our results suggest that the apoptotic process could be tightly regulated in bivalve mollusks by overexpression/suppression of caspase genes; additionally, there is evidence of caspase-specific responses to pathogens and pollutants. The apoptotic process in mollusks has a similar complexity to that of vertebrates, but presents unique features that may be related to recurrent exposure to environmental changes, pollutants and pathogens imposed by their sedentary nature.

  6. Diosgenin induces apoptosis in IGF-1-stimulated human thyrocytes through two caspase-dependent pathways

    International Nuclear Information System (INIS)

    Mu, Shumin; Tian, Xingsong; Ruan, Yongwei; Liu, Yuantao; Bian, Dezhi; Ma, Chunyan; Yu, Chunxiao; Feng, Mei; Wang, Furong; Gao, Ling; Zhao, Jia-jun

    2012-01-01

    Highlights: ► Diosgenin induces apoptosis in IGF-1-treated thyrocytes through two caspase pathways. ► Diosgenin inhibits FLIP and activates caspase-8 in FAS related-pathway. ► Diosgenin increases ROS, regulates the ratio of Bax/Bcl-2 in mitochondrial pathway. -- Abstract: Insulin-like growth factor-1 (IGF-1) is a growth factor of the thyroid that has been shown in our previous study to possess proliferative and antiapoptotic effects in FRTL-5 cell lines through the upregulation of cyclin D and Fas-associated death domain-like interleukin-1-converting enzyme (FLICE)-inhibitory protein (FLIP). Diosgenin, a natural steroid sapogenin from plants, has been shown to induce apoptosis in many cell lines, with the exception of thyroid cells. In this report, we investigated the apoptotic effect and mechanism of diosgenin in IGF-1-stimulated primary human thyrocytes. Primary human thyrocytes were preincubated with or without IGF-1 for 24 h and subsequently exposed to varying concentrations of diosgenin for different times. We found that diosgenin induced apoptosis in human thyrocytes pretreated with IGF-1 in a dose-dependent manner through the activation of caspase cascades. Moreover, diosgenin inhibited FLIP and activated caspase-8 in the FAS-related apoptotic pathway. Diosgenin increased the production of ROS, regulated the balance of Bax and Bcl-2 and cleaved caspase-9 in the mitochondrial apoptotic pathway. These results indicate that diosgenin induces apoptosis in IGF-1-stimulated primary human thyrocytes through two caspase-dependent pathways.

  7. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Charalambous, Christiana; Pitta, Chara A; Constantinou, Andreas I

    2013-01-01

    Soy phytoestrogens, such as daidzein and its metabolite equol, have been proposed to be responsible for the low breast cancer rate in Asian women. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen, the basic objective of this study is to determine whether equol enhances tamoxifen’s anti-tumor effect, and to identify the molecular mechanisms involved. For this purpose, we examined the individual and combined effects of equol and tamoxifen on the estrogen-dependent MCF-7 breast cancer cells using viability assays, annexin-V/PI staining, cell cycle and western blot analysis. We found that equol (>50 μM) and 4-hydroxy-tamoxifen (4-OHT; >100 nM) significantly reduced the MCF-7 cell viability. Furthermore, the combination of equol (100 μM) and 4-OHT (10 μM) induced apoptosis more effectively than each compound alone. Subsequent treatment of MCF-7 cells with the pan-caspase inhibitor Z-VAD-FMK inhibited equol- and 4-OHT-mediated apoptosis, which was accompanied by PARP and α-fodrin cleavage, indicating that apoptosis is mainly caspase-mediated. These compounds also induced a marked reduction in the bcl-2:bax ratio, which was accompanied by caspase-9 and caspase-7 activation and cytochrome-c release to the cytosol. Taken together, these data support the notion that the combination of equol and tamoxifen activates the intrinsic apoptotic pathway more efficiently than each compound alone. Consequently, equol may be used therapeutically in combination treatments and clinical studies to enhance tamoxifen’s effect by providing additional protection against estrogen-responsive breast cancers

  8. Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-05-01

    Full Text Available Objective(s: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its underlying mechanisms. Materials and Methods:NCI-H460 and A549 cells were treated with TRAIL alone, cisplatin alone or combination treatment in this study. The cytotoxicity was evaluated according to Sulforhodamine B assay, and apoptosis was examined using Hoechst 33342 staining and flow cytometry. The mRNA and protein levels of TRAIL receptors and apoptotic proteins including caspase-8, caspase-9, Bcl-2 and Bax were determined by RT-PCR and Western blotting, respectively. Results:Our results showed that NCI-H460 cells were sensitive to TRAIL, whereas A549 cells were resistant. However, subtoxic-dose cisplatin could enhance the both cells to TRAIL-mediated cell proliferation inhibition and apoptosis. The underlying mechanisms might be associated with the down-regulation of DcR2 and up-regulation of Caspase-8, Caspase-9 and Bax. Conclusion:Subtoxic-dose cisplatin could enhance both TRAIL- sensitive and TRAIL- resistant NSCLC cells to TRAIL-mediated apoptosis. These findings motivated further studies to evaluate such a combinatory therapeutic strategy against NSCLC in the animal models.

  9. Anesthetic propofol attenuates the isoflurane-induced caspase-3 activation and Aβ oligomerization.

    Directory of Open Access Journals (Sweden)

    Yiying Zhang

    Full Text Available Accumulation and deposition of β-amyloid protein (Aβ are the hallmark features of Alzheimer's disease. The inhalation anesthetic isoflurane has been shown to induce caspase activation and increase Aβ accumulation. In addition, recent studies suggest that isoflurane may directly promote the formation of cytotoxic soluble Aβ oligomers, which are thought to be the key pathological species in AD. In contrast, propofol, the most commonly used intravenous anesthetic, has been reported to have neuroprotective effects. We therefore set out to compare the effects of isoflurane and propofol alone and in combination on caspase-3 activation and Aβ oligomerization in vitro and in vivo. Naïve and stably-transfected H4 human neuroglioma cells that express human amyloid precursor protein, the precursor for Aβ; neonatal mice; and conditioned cell culture media containing secreted human Aβ40 or Aβ42 were treated with isoflurane and/or propofol. Here we show for the first time that propofol can attenuate isoflurane-induced caspase-3 activation in cultured cells and in the brain tissues of neonatal mice. Furthermore, propofol-mediated caspase inhibition occurred when there were elevated levels of Aβ. Finally, isoflurane alone induces Aβ42, but not Aβ40, oligomerization, and propofol can inhibit the isoflurane-mediated oligomerization of Aβ42. These data suggest that propofol may mitigate the caspase-3 activation by attenuating the isoflurane-induced Aβ42 oligomerization. Our findings provide novel insights into the possible mechanisms of isoflurane-induced neurotoxicity that may aid in the development of strategies to minimize potential adverse effects associated with the administration of anesthetics to patients.

  10. Regulation of caspase-3 expression to maintain fetal growth in Porphyromonas gingivalis-infected pregnant rats

    Directory of Open Access Journals (Sweden)

    Banun Kusumawardani

    2016-04-01

    Full Text Available Periodontal disease has been involved in a variety of systemic disorders and suspected as a potential risk factor for fetal growth restriction. Periodontal pathogenic bacteria may actively regulate embryonic development, implantation and placental trophoblast cell invasion. This study aimed to analyze the role of TNF-α, IL-10 and caspase-3 to maintain fetal growth in Porphyromonasgingivalis-infected pregnant rats. Female rats were infected with live-Porphyromonas gingivalis at concentration of 2x109 cells/ml into subgingival sulcus area of the maxillary first molar before and during pregnancy. They were sacrificed on gestational day (GD-14 and GD20. The weight and length of placentas and fetuses were evaluated. The expression of TNF-α, IL-10 and caspase-3 in macrophages and trophoblast cells were detected by immunohistochemistry. On GD14, TNF-α (R2=0.416;P=0.000 and IL-10 (R2=0.187;P=0.012 had an important role to increase expression of caspase-3 in the placenta, but only TNF-α (R2=0.393;P=0.000 was able to increase the expression of caspase-3 on GD20. TNF-α and caspase-3 also had an important role (P0.000. The increasing expressions of TNF-α and IL-10 did not only enhance immune protection, but also maintained the trophoblast cells survival by regulating expression of caspase-3. Porphyromonas gingivalis infection in maternal periodontal tissue can lead to decrease in placental weight, fetal weight and fetal length which mediated by increasing expression of TNF-α, IL-10 and caspase-3 in the placenta.

  11. Pharmacological caspase inhibitors: Research towards therapeutic perspectives

    Czech Academy of Sciences Publication Activity Database

    Kudělová, J.; Fleischmannová, Jana; Adamová, Eva; Matalová, Eva

    2015-01-01

    Roč. 66, č. 4 (2015), s. 473-482 ISSN 0867-5910 R&D Projects: GA ČR GB14-37368G Institutional support: RVO:67985904 Keywords : caspase * caspase inhibitor * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.804, year: 2015

  12. Peroxynitrite induces apoptosis of mouse cochlear hair cells via a Caspase-independent pathway in vitro.

    Science.gov (United States)

    Cao, Zhixin; Yang, Qianqian; Yin, Haiyan; Qi, Qi; Li, Hongrui; Sun, Gaoying; Wang, Hongliang; Liu, Wenwen; Li, Jianfeng

    2017-11-01

    Peroxynitrite (ONOO - ) is a potent and versatile oxidant implicated in a number of pathophysiological processes. The present study was designed to investigate the effect of ONOO - on the cultured cochlear hair cells (HCs) of C57BL/6 mice in vitro as well as the possible mechanism underlying the action of such an oxidative stress. The in vitro primary cultured cochlear HCs were subjected to different concentrations of ONOO - , then, the cell survival and morphological changes were examined by immunofluorescence and transmission electron microscopy (TEM), the apoptosis was determined by Terminal deoxynucleotidyl transferase dUNT nick end labeling (TUNEL) assay, the mRNA expressions of Caspase-3, Caspase-8, Caspase-9, Apaf1, Bcl-2, and Bax were analyzed by RT-PCR, and the protein expressions of Caspase-3 and AIF were assessed by immunofluorescence. This work demonstrated that direct exposure of primary cultured cochlear HCs to ONOO - could result in a base-to-apex gradient injury of HCs in a concentration-dependent manner. Furthermore, ONOO - led to much more losses of outer hair cells than inner hair cells mainly through the induction of apoptosis of HCs as evidenced by TEM and TUNEL assays. The mRNA expressions of Caspase-8, Caspase-9, Apaf1, and Bax were increased and, meanwhile, the mRNA expression of Bcl-2 was decreased in response to ONOO - treatment. Of interesting, the expression of Caspase-3 had no significant change, whereas, the expression alteration of AIF was observed. These results suggested that ONOO - can effectively damage the survival of cochlear HCs via triggering the apoptotic pathway. The findings from this work suggest that ONOO - -induced apoptosis is mediated, at least in part, via a Caspase-independent pathway in cochlear HCs.

  13. Pharmacological caspase inhibitors: Research towards therapeutic perspectives

    Czech Academy of Sciences Publication Activity Database

    Kudělová, J.; Fleischmannová, J.; Adamová, E.; Matalová, Eva

    2015-01-01

    Roč. 66, č. 4 (2015), s. 473-482 ISSN 0867-5910 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : caspase * caspase inhibitor * apoptosis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.804, year: 2015

  14. Diosgenin induces apoptosis in IGF-1-stimulated human thyrocytes through two caspase-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Shumin [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Hospital Affiliated to Shandong Traditional Chinese Medicine University, Jinan 250011 (China); Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021 (China); Tian, Xingsong; Ruan, Yongwei [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Liu, Yuantao [The Second Hospital of Shandong University, Jinan 250033 (China); Bian, Dezhi [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Jining Medical College, Jining 272013 (China); Ma, Chunyan [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Yu, Chunxiao [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021 (China); Feng, Mei [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Wang, Furong [Shandong University of Traditional Chinese Medicine, Jinan 250011 (China); Gao, Ling [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021 (China); Zhao, Jia-jun, E-mail: jjzhao@medmail.com.cn [Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021 (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Diosgenin induces apoptosis in IGF-1-treated thyrocytes through two caspase pathways. Black-Right-Pointing-Pointer Diosgenin inhibits FLIP and activates caspase-8 in FAS related-pathway. Black-Right-Pointing-Pointer Diosgenin increases ROS, regulates the ratio of Bax/Bcl-2 in mitochondrial pathway. -- Abstract: Insulin-like growth factor-1 (IGF-1) is a growth factor of the thyroid that has been shown in our previous study to possess proliferative and antiapoptotic effects in FRTL-5 cell lines through the upregulation of cyclin D and Fas-associated death domain-like interleukin-1-converting enzyme (FLICE)-inhibitory protein (FLIP). Diosgenin, a natural steroid sapogenin from plants, has been shown to induce apoptosis in many cell lines, with the exception of thyroid cells. In this report, we investigated the apoptotic effect and mechanism of diosgenin in IGF-1-stimulated primary human thyrocytes. Primary human thyrocytes were preincubated with or without IGF-1 for 24 h and subsequently exposed to varying concentrations of diosgenin for different times. We found that diosgenin induced apoptosis in human thyrocytes pretreated with IGF-1 in a dose-dependent manner through the activation of caspase cascades. Moreover, diosgenin inhibited FLIP and activated caspase-8 in the FAS-related apoptotic pathway. Diosgenin increased the production of ROS, regulated the balance of Bax and Bcl-2 and cleaved caspase-9 in the mitochondrial apoptotic pathway. These results indicate that diosgenin induces apoptosis in IGF-1-stimulated primary human thyrocytes through two caspase-dependent pathways.

  15. Divergent modulation of neuronal differentiation by caspase-2 and -9.

    Directory of Open Access Journals (Sweden)

    Giuseppa Pistritto

    Full Text Available Human Ntera2/cl.D1 (NT2 cells treated with retinoic acid (RA differentiate towards a well characterized neuronal phenotype sharing many features with human fetal neurons. In view of the emerging role of caspases in murine stem cell/neural precursor differentiation, caspases activity was evaluated during RA differentiation. Caspase-2, -3 and -9 activity was transiently and selectively increased in differentiating and non-apoptotic NT2-cells. SiRNA-mediated selective silencing of either caspase-2 (si-Casp2 or -9 (si-Casp9 was implemented in order to dissect the role of distinct caspases. The RA-induced expression of neuronal markers, i.e. neural cell adhesion molecule (NCAM, microtubule associated protein-2 (MAP2 and tyrosine hydroxylase (TH mRNAs and proteins, was decreased in si-Casp9, but markedly increased in si-Casp2 cells. During RA-induced NT2 differentiation, the class III histone deacetylase Sirt1, a putative caspase substrate implicated in the regulation of the proneural bHLH MASH1 gene expression, was cleaved to a ∼100 kDa fragment. Sirt1 cleavage was markedly reduced in si-Casp9 cells, even though caspase-3 was normally activated, but was not affected (still cleaved in si-Casp2 cells, despite a marked reduction of caspase-3 activity. The expression of MASH1 mRNA was higher and occurred earlier in si-Casp2 cells, while was reduced at early time points during differentiation in si-Casp9 cells. Thus, caspase-2 and -9 may perform opposite functions during RA-induced NT2 neuronal differentiation. While caspase-9 activation is relevant for proper neuronal differentiation, likely through the fine tuning of Sirt1 function, caspase-2 activation appears to hinder the RA-induced neuronal differentiation of NT2 cells.

  16. Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity.

    Directory of Open Access Journals (Sweden)

    Johannes Asplund-Samuelsson

    Full Text Available Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18% were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota. Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes.

  17. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages.

    Directory of Open Access Journals (Sweden)

    Toshihiko Suzuki

    2007-08-01

    Full Text Available Shigella infection, the cause of bacillary dysentery, induces caspase-1 activation and cell death in macrophages, but the precise mechanisms of this activation remain poorly understood. We demonstrate here that caspase-1 activation and IL-1beta processing induced by Shigella are mediated through Ipaf, a cytosolic pattern-recognition receptor of the nucleotide-binding oligomerization domain (NOD-like receptor (NLR family, and the adaptor protein apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC. We also show that Ipaf was critical for pyroptosis, a specialized form of caspase-1-dependent cell death induced in macrophages by bacterial infection, whereas ASC was dispensable. Unlike that observed in Salmonella and Legionella, caspase-1 activation induced by Shigella infection was independent of flagellin. Notably, infection of macrophages with Shigella induced autophagy, which was dramatically increased by the absence of caspase-1 or Ipaf, but not ASC. Autophagy induced by Shigella required an intact bacterial type III secretion system but not VirG protein, a bacterial factor required for autophagy in epithelial-infected cells. Treatment of macrophages with 3-methyladenine, an inhibitor of autophagy, enhanced pyroptosis induced by Shigella infection, suggesting that autophagy protects infected macrophages from pyroptosis. Thus, Ipaf plays a critical role in caspase-1 activation induced by Shigella independently of flagellin. Furthermore, the absence of Ipaf or caspase-1, but not ASC, regulates pyroptosis and the induction of autophagy in Shigella-infected macrophages, providing a novel function for NLR proteins in bacterial-host interactions.

  18. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2

    Science.gov (United States)

    Andersen, Joshua L; Johnson, Carrie E; Freel, Christopher D; Parrish, Amanda B; Day, Jennifer L; Buchakjian, Marisa R; Nutt, Leta K; Thompson, J Will; Moseley, M Arthur; Kornbluth, Sally

    2009-01-01

    The apoptotic initiator caspase-2 has been implicated in oocyte death, in DNA damage- and heat shock-induced death, and in mitotic catastrophe. We show here that the mitosis-promoting kinase, cdk1–cyclin B1, suppresses apoptosis upstream of mitochondrial cytochrome c release by phosphorylating caspase-2 within an evolutionarily conserved sequence at Ser 340. Phosphorylation of this residue, situated in the caspase-2 interdomain, prevents caspase-2 activation. S340 was susceptible to phosphatase 1 dephosphorylation, and an interaction between phosphatase 1 and caspase-2 detected during interphase was lost in mitosis. Expression of S340A non-phosphorylatable caspase-2 abrogated mitotic suppression of caspase-2 and apoptosis in various settings, including oocytes induced to undergo cdk1-dependent maturation. Moreover, U2OS cells treated with nocodazole were found to undergo mitotic catastrophe more readily when endogenous caspase-2 was replaced with the S340A mutant to lift mitotic inhibition. These data demonstrate that for apoptotic stimuli transduced by caspase-2, cell death is prevented during mitosis through the inhibitory phosphorylation of caspase-2 and suggest that under conditions of mitotic arrest, cdk1–cyclin B1 activity must be overcome for apoptosis to occur. PMID:19730412

  19. NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus.

    Science.gov (United States)

    Ando, Kiyohiro; Parsons, Melissa J; Shah, Richa B; Charendoff, Chloé I; Paris, Sheré L; Liu, Peter H; Fassio, Sara R; Rohrman, Brittany A; Thompson, Ruth; Oberst, Andrew; Sidi, Samuel; Bouchier-Hayes, Lisa

    2017-06-05

    The PIDDosome (PIDD-RAIDD-caspase-2 complex) is considered to be the primary signaling platform for caspase-2 activation in response to genotoxic stress. Yet studies of PIDD-deficient mice show that caspase-2 activation can proceed in the absence of PIDD. Here we show that DNA damage induces the assembly of at least two distinct activation platforms for caspase-2: a cytoplasmic platform that is RAIDD dependent but PIDD independent, and a nucleolar platform that requires both PIDD and RAIDD. Furthermore, the nucleolar phosphoprotein nucleophosmin (NPM1) acts as a scaffold for PIDD and is essential for PIDDosome assembly in the nucleolus after DNA damage. Inhibition of NPM1 impairs caspase-2 processing, apoptosis, and caspase-2-dependent inhibition of cell growth, demonstrating that the NPM1-dependent nucleolar PIDDosome is a key initiator of the caspase-2 activation cascade. Thus we have identified the nucleolus as a novel site for caspase-2 activation and function. © 2017 Ando et al.

  20. RNA silencing of Mcl-1 enhances ABT-737-mediated apoptosis in melanoma: role for a caspase-8-dependent pathway.

    Science.gov (United States)

    Keuling, Angela M; Felton, Kathleen E A; Parker, Arabesque A M; Akbari, Majid; Andrew, Susan E; Tron, Victor A

    2009-08-17

    Malignant melanoma is resistant to almost all conventional forms of chemotherapy. Recent evidence suggests that anti-apoptotic proteins of the Bcl-2 family are overexpressed in melanoma and may contribute to melanoma's striking resistance to apoptosis. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xl and Bcl-w, has demonstrated efficacy in several forms of leukemia, lymphoma as well as solid tumors. However, overexpression of Mcl-1, a frequent observance in melanoma, is known to confer ABT-737 resistance. Here we report that knockdown of Mcl-1 greatly reduces cell viability in combination with ABT-737 in six different melanoma cell lines. We demonstrate that the cytotoxic effect of this combination treatment is due to apoptotic cell death involving not only caspase-9 activation but also activation of caspase-8, caspase-10 and Bid, which are normally associated with the extrinsic pathway of apoptosis. Caspase-8 (and caspase-10) activation is abrogated by inhibition of caspase-9 but not by inhibitors of the death receptor pathways. Furthermore, while caspase-8/-10 activity is required for the full induction of cell death with treatment, the death receptor pathways are not. Finally, we demonstrate that basal levels of caspase-8 and Bid correlate with treatment sensitivity. Our findings suggest that the combination of ABT-737 and Mcl-1 knockdown represents a promising, new treatment strategy for malignant melanoma. We also report a death receptor-independent role for extrinsic pathway proteins in treatment response and suggest that caspase-8 and Bid may represent potential markers of treatment sensitivity.

  1. Atrial natriuretic peptide down-regulates LPS/ATP-mediated IL-1β release by inhibiting NF-kB, NLRP3 inflammasome and caspase-1 activation in THP-1 cells.

    Science.gov (United States)

    Mezzasoma, Letizia; Antognelli, Cinzia; Talesa, Vincenzo Nicola

    2016-02-01

    Atrial natriuretic peptide (ANP) is an hormone/paracrine/autocrine factor regulating cardiovascular homeostasis by guanylyl cyclase natriuretic peptide receptor (NPR-1). ANP plays an important role also in regulating inflammatory and immune systems by altering macrophages functions and cytokines secretion. Interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine involved in a wide range of biological responses, including the immunological one. Unlike other cytokines, IL-1β production is rigorously controlled. Primarily, NF-kB activation is required to produce pro-IL-1β; subsequently, NALP3 inflammasome/caspase-1 activation is required to cleave pro-IL-1β into the active secreted protein. NALP3 is a molecular platform capable of sensing a large variety of signals and a major player in innate immune defense. Due to their pleiotropism, IL-1β and NALP3 dysregulation is a common feature of a wide range of diseases. Therefore, identifying molecules regulating IL-1β/NALP3/caspase-1 expression is an important step in the development of new potential therapeutic agents. The aim of our study was to evaluate the effect of ANP on IL-1β/NALP3/caspase-1 expression in LPS/ATP-stimulated human THP1 monocytes. We provided new evidence of the direct involvement of ANP/NPR-1/cGMP axis on NF-kB/NALP3/caspase-1-mediated IL-1β release and NF-kB-mediated pro-IL-1β production. In particular, ANP inhibited both NF-kB and NALP3/caspase-1 activation leading to pro- and mature IL-1β down-regulation. Our data, pointing out a modulatory role of this endogenous peptide on IL-1β release and on NF-kB/NALP3/caspase-1 activation, indicate an important anti-inflammatory and immunomodulatory effect of ANP via these mechanisms. We suggest a possible employment of ANP for the treatment of inflammatory/immune-related diseases and IL-1β/NALP3-associated disorders, affecting millions of people worldwide.

  2. Metabolic Enhancer Piracetam Attenuates the Translocation of Mitochondrion-Specific Proteins of Caspase-Independent Pathway, Poly [ADP-Ribose] Polymerase 1 Up-regulation and Oxidative DNA Fragmentation.

    Science.gov (United States)

    Verma, Dinesh Kumar; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Sivarama Raju, K; Wahajuddin, Mu; Singh, Sarika

    2018-03-12

    Piracetam, a nootropic drug, has been clinically used for decades; however, its mechanism of action still remains enigmatic. The present study was undertaken to evaluate the role of mitochondrion-specific factors of caspase-independent pathway like apoptotic-inducing factor (AIF) and endonuclease-G (endo-G) in piracetam-induced neuroprotection. N2A cells treated with lipopolysaccharide (LPS) exhibited significant cytotoxicity, impaired mitochondrial activity, and reactive oxygen species generation which was significantly attenuated with piracetam co-treatment. Cells co-treated with LPS and piracetam exhibited significant uptake of piracetam in comparison to only piracetam-treated cells as estimated by liquid chromatography-mass spectrometry (LC-MSMS). LPS treatment caused significant translocation of AIF and endonuclease-G in neuronal N2A cells which were significantly attenuated with piracetam co-treatment. Significant over-expression of proinflammatory cytokines was also observed after treatment of LPS to cells which was inhibited with piracetam co-treatment demonstrating its anti-inflammatory property. LPS-treated cells exhibited significant oxidative DNA fragmentation and poly [ADP-ribose] polymerase-1 (PARP-1) up-regulation in nucleus, both of which were attenuated with piracetam treatment. Antioxidant melatonin but not z-VAD offered the inhibited LPS-induced DNA fragmentation indicating the involvement of oxidative DNA fragmentation. Further, we did not observe the altered caspase-3 level after LPS treatment initially while at a later time point, significantly augmented level of caspase-3 was observed which was not inhibited with piracetam treatment. In total, our findings indicate the interference of piracetam in mitochondrion-mediated caspase-independent pathway, as well as its anti-inflammatory and antioxidative properties. Graphical Abstract Graphical abstract indicating the novel interference of metabolic enhancer piracetam (P) in neuronal death

  3. THE EXPRESSION OF Bcl-2 AND PRO-CASPASE 3 IN HEAD AND NECK SQUAMOUS CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Andrej Cör

    2002-12-01

    Full Text Available Background. Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer and accounts for 6% of cancers worldwide. A better understanding of its biology could lead to improved treatment options. Generally, the goal of cancer treatment is to abolish cell proliferation and to induce necrotic or aptoptotic cell death. Apoptosis has been recognized as a key mechanism of tumour cell elimination. Different apoptotic signals converge to induce caspase cascade activation. Caspase 3 is the central executioner caspase and is necessary for effective apoptotic cell death. Bcl-2 protein family regulates apoptosis. The Bcl-2 protein itself is a product of a proto-oncogene and has an antiapoptotic action.Methods. In our study, the expression of Bcl-2 and pro-caspase 3 by immunohistochemistry in 28 HNSCC graded into well, moderately and poorly differentiated cancers were investigated.Results. Our results of Bcl-2 expression confirm and extend previous reports in which Bcl-2 over-expression has been recognised as an important parameter in HNSCC biological behaviour. Three of 28 tumours (11% showed significant Bcl-2 expression. Two of them were poorly and one was moderately differentiated. Pro-caspase 3 immunoreactivity was confined mainly to the cytoplasm. Absent or low pro-caspase 3 immunoreactivity was found only in 1 of 6 well differentiated and in 1of 10 moderately differentiated tumours in contrast to 5 of 12 poorly differentiated tumours. In six of 12 poorly differentiated tumours procasapse 3 immunoreactivity was strongly positive. In two cases hyperplastic epithelium was strongly positive in contrast to adjacent HNSCC in the same slide which was completely negative for pro-caspase 3.Conclusions. Our results indicate downregulation of pro-caspase 3 expression, especially in poorly differentiated HNSCC. Further studies are needed to test whether this is related to HNSCC behaviour and predict treatment outcome.

  4. Caspase-1 but Not Caspase-11 Is Required for NLRC4-Mediated Pyroptosis and Restriction of Infection by Flagellated Legionella Species in Mouse Macrophages and In Vivo.

    Science.gov (United States)

    Cerqueira, Daiane M; Pereira, Marcelo S F; Silva, Alexandre L N; Cunha, Larissa D; Zamboni, Dario S

    2015-09-01

    Gram-negative bacteria from the Legionella genus are intracellular pathogens that cause a severe form of pneumonia called Legionnaires' disease. The bacteria replicate intracellularly in macrophages, and the restriction of bacterial replication by these cells is critical for host resistance. The activation of the NAIP5/NLRC4 inflammasome, which is readily triggered in response to bacterial flagellin, is essential for the restriction of bacterial replication in murine macrophages. Once activated, this inflammasome induces pore formation and pyroptosis and facilitates the restriction of bacterial replication in macrophages. Because investigations related to the NLRC4-mediated restriction of Legionella replication were performed using mice double deficient for caspase-1 and caspase-11, we assessed the participation of caspase-1 and caspase-11 in the functions of the NLRC4 inflammasome and the restriction of Legionella replication in macrophages and in vivo. By using several species of Legionella and mice singly deficient for caspase-1 or caspase-11, we demonstrated that caspase-1 but not caspase-11 was required for pore formation, pyroptosis, and restriction of Legionella replication in macrophages and in vivo. By generating F1 mice in a mixed 129 × C57BL/6 background deficient (129 × Casp-11(-/-) ) or sufficient (129 × C57BL/6) for caspase-11 expression, we found that caspase-11 was dispensable for the restriction of Legionella pneumophila replication in macrophages and in vivo. Thus, although caspase-11 participates in flagellin-independent noncanonical activation of the NLRP3 inflammasome, it is dispensable for the activities of the NLRC4 inflammasome. In contrast, functional caspase-1 is necessary and sufficient to trigger flagellin/NLRC4-mediated restriction of Legionella spp. infection in macrophages and in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. RNA silencing of Mcl-1 enhances ABT-737-mediated apoptosis in melanoma: role for a caspase-8-dependent pathway.

    Directory of Open Access Journals (Sweden)

    Angela M Keuling

    Full Text Available BACKGROUND: Malignant melanoma is resistant to almost all conventional forms of chemotherapy. Recent evidence suggests that anti-apoptotic proteins of the Bcl-2 family are overexpressed in melanoma and may contribute to melanoma's striking resistance to apoptosis. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xl and Bcl-w, has demonstrated efficacy in several forms of leukemia, lymphoma as well as solid tumors. However, overexpression of Mcl-1, a frequent observance in melanoma, is known to confer ABT-737 resistance. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that knockdown of Mcl-1 greatly reduces cell viability in combination with ABT-737 in six different melanoma cell lines. We demonstrate that the cytotoxic effect of this combination treatment is due to apoptotic cell death involving not only caspase-9 activation but also activation of caspase-8, caspase-10 and Bid, which are normally associated with the extrinsic pathway of apoptosis. Caspase-8 (and caspase-10 activation is abrogated by inhibition of caspase-9 but not by inhibitors of the death receptor pathways. Furthermore, while caspase-8/-10 activity is required for the full induction of cell death with treatment, the death receptor pathways are not. Finally, we demonstrate that basal levels of caspase-8 and Bid correlate with treatment sensitivity. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the combination of ABT-737 and Mcl-1 knockdown represents a promising, new treatment strategy for malignant melanoma. We also report a death receptor-independent role for extrinsic pathway proteins in treatment response and suggest that caspase-8 and Bid may represent potential markers of treatment sensitivity.

  6. Chromic-P32 phosphate treatment of implanted pancreatic carcinoma: mechanism involved.

    Science.gov (United States)

    Liu, Lu; Feng, Guo-Sheng; Gao, Hong; Tong, Guan-Sheng; Wang, Yu; Gao, Wen; Huang, Ying; Li, Cheng

    2005-04-14

    To study the effects of chromic-P32 phosphate (32P colloids) interstitial administration in Pc-3 implanted pancreatic carcinoma, and investigate its anticancer mechanism. Ninety-eight tumor bearing nude mice were killed at different time points after the injection of 32P colloids to the tumor core with observed radioactivity. The light microscopy, transmission electron microscopy (TEM) and immuno-histochemistry and flow cytometry were used to study the rates of tumor cell necrosis, proliferating cell nuclear antigen index, the micro vessel density (MVD). The changes of the biological response to the lymphatic transported 32P colloids in the inguinal lymph node (ILN) were dynamically observed, and the percentage of tumor cell apoptosis, and Apo2.7, caspase-3, Bcl-2, Bax-related gene expression were observed too. The half-life of effective medication is 13 d after injection of 32P colloids to the tumor stroma, in 1-6 groups, the tumor cell necrosis rates were 20%, 45%, 65%, 70%, 95% and 4%, respectively (F = 4.14-105.36, Pscabs detached, and those in control group increased in size prominently with plenty of hypodermic blood vessels. In all animals the ILN were enlarged but in medicated animals they appeared later and smaller than those in control group. The extent of irradiative injury in ILN was positively correlated to the dosage of medication. Typical tumor cell apoptosis could be found under TEM in animals with intra-tumoral injection of low dosed 32P colloids. The peak of apoptosis occurred in 2.96 MBq group and 24 h after irradiation. In the course of irradiation-induced apoptosis, the value of Bcl-2/Bax was down regulated; Apo2.7 and caspase-3 protein expression were prominently increased dose dependently. 32P colloids intra-tumor injection having prominent anticancer effectiveness may reveal the ability of promoting cell differentiation. The low dose 32P colloids may induce human pancreatic carcinoma Pc-3 implanted tumor cell apoptosis; Apo2.7, caspase-3

  7. Imaging of activated caspase-3 in living cell by fluorescence resonance energy transfer during photosensitization-induced apoptosis

    Science.gov (United States)

    Wu, Yunxia; Xing, Da; Chen, Qun; Tang, Yonghong

    2005-01-01

    Photodynamic therapy (PDT) is a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in cell, and activation of caspase-3 is considered to be the final step in many apoptosis pathways. The changes of caspase-3 activation in cell during TNFα- and photodynamic therapy-induced apoptosis was measured by fluorescence resonance energy transfer (FRET) analysis. FRET probe consisting of fusions of an enhanced cyan fluorescent protein (ECFP), Venus and a linker peptide containing the caspase-3 cleavage sequence DEVD was utilized. Therefore, activated caspase-3 cleaved the linker peptide of FRET probe and disrupted the FRET signal. Human lung adenocarcinoma cell line (ASTC-a-1) were stably transfected with the plasmid (ECFP-DEVD-Venus) and then were treated by TNF-α and PDT, respectively. Experimental results indicated that caspase-3 activation resulted in cleavage of linker peptide and subsequent disruption of the FRET signal during TNFα- and photodynamic therapy-induced apoptosis, and that the activation of caspase-3 induced by photodynamic therapy was faster than that induce by TNF-α. The study supports that using FRET technique and different recombinant substrates as FRET probes could be used to detect the process of PDT-induced apoptosis and provide a new means to investigate apoptotic mechanism of PDT.

  8. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    Directory of Open Access Journals (Sweden)

    Fuqiang Xing

    Full Text Available Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant. Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  9. Cordycepin, a Natural Antineoplastic Agent, Induces Apoptosis of Breast Cancer Cells via Caspase-dependent Pathways.

    Science.gov (United States)

    Wang, Di; Zhang, Yongfeng; Lu, Jiahui; Wang, Yang; Wang, Junyue; Meng, Qingfan; Lee, Robert J; Wang, Di; Teng, Lesheng

    2016-01-01

    Cordycepin, a major compound separated from Cordyceps sinensis, is known as a potential novel candidate for cancer therapy. Breast cancer, the most typical cancer diagnosed among women, remains a global health problem. In this study, the anti-breast cancer property of cordycepin and its underlying mechanisms was investigated. The direct effects of cordycepin on breast cancer cells both in in vitro and in vivo experiments were evaluated. Cordycepin exerted cytotoxicity in MCF-7 and MDA-MB-231 cells confirmed by reduced cell viability, inhibition of cell proliferation, enhanced lactate dehydrogenase release and reactive oxygen species accumulation, induced mitochondrial dysfunction and nuclear apoptosis in human breast cancer cells. Cordycepin increased the activation of pro-apoptotic proteins, including caspase-8, caspase-9, caspase-3 and Bax, and suppressed the expression of the anti-apoptotic protein, B-cell lymphoma 2 (Bcl-2). The inhibition on MCF-7-xenografted tumor growth in nude mice further confirmed cordycepin's anti-breast cancer effect. These aforementioned results reveal that cordycepin induces apoptosis in human breast cancer cells via caspase-dependent pathways. The data shed light on the possibility of cordycepin being a safe agent for breast cancer treatment.

  10. N,N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells

    International Nuclear Information System (INIS)

    Kim, Byeong Mo; Choi, Yun Jung; Han, Youngsoo; Yun, Yeon-Sook; Hong, Sung Hee

    2009-01-01

    N,N-dimethyl phytosphingosine (DMPS) blocks the conversion of sphingosine to sphingosine-1-phosphate (S1P) by the enzyme sphingosine kinase (SK). In this study, we elucidated the apoptotic mechanisms of DMPS action on a human leukemia cell line using functional pharmacologic and genetic approaches. First, we demonstrated that DMPS-induced apoptosis is evidenced by nuclear morphological change, distinct internucleosomal DNA fragmentation, and an increased sub-G1 cell population. DMPS treatment led to the activation of caspase-9 and caspase-3, accompanied by the cleavage of poly(ADP-ribose) polymerase (PARP) and led to cytochrome c release, depolarization of the mitochondrial membrane potential, and downregulation of the anti-apoptotic members of the bcl-2 family. Ectopic expression of bcl-2 and bcl-xL conferred resistance of HL-60 cells to DMPS-induced cell death, suggesting that DMPS-induced apoptosis occurs predominantly through the activation of the intrinsic mitochondrial pathway. We also observed that DMPS activated the caspase-8-Bid-Bax pathway and that the inhibition of caspase-8 by z-IETD-fmk or small interfering RNA suppressed the cleavage of Bid, cytochrome c release, caspase-3 activation, and apoptotic cell death. In addition, cells subjected to DMPS exhibited significantly increased reactive oxygen species (ROS) generation, and ROS scavengers, such as quercetin and Tiron, but not N-acetylcysteine (NAC), inhibited DMPS-induced activations of caspase-8, -3 and subsequent apoptotic cell death, indicating the role of ROS in caspase-8-mediated apoptosis. Taken together, these results indicate that caspase-8 acts upstream of caspase-3, and that the caspase-8-mediated mitochondrial pathway is important in DMPS-induced apoptosis. Our results also suggest that ROS are critical regulators of caspase-8-mediated apoptosis in DMPS-treated leukemia cells.

  11. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells.

    Science.gov (United States)

    Li, Lan; Cao, Zhiheng; Jia, Pengfei; Wang, Ziren

    2010-04-01

    In order to investigate whether calcium signals participate in paraoxon (POX)-induced apoptosis in EL4 cells, real-time laser scanning confocal microscopy (LSCM) was used to detect Ca(2+) changes during the POX application. Apoptotic rates of EL4 cells and caspase-12 expression were also evaluated. POX (1-10nM) increased intracellular calcium concentration ([Ca(2+)]i) in EL4 cells in a dose-dependent manner at early stage (0-2h) of POX application, and apoptotic rates of EL4 cells after treatment with POX for 16h were also increased in a dose-dependent manner. Pre-treatment with EGTA, heparin or procaine attenuated POX-induced [Ca(2+)]i elevation and apoptosis. Additionally, POX up-regulated caspase-12 expression in a dose-dependent manner, and pre-treatment with EGTA, heparin or procaine significantly inhibited POX-induced increase of caspase-12 expression. Our results suggested that POX induced [Ca(2+)]i elevation in EL4 cells at the early stage of POX-induced apoptosis, which might involve Ca(2+) efflux from the endoplasmic reticulum (ER) and Ca(2+) influx from extracellular medium. Calcium signals and caspase-12 were important upstream messengers in POX-induced apoptosis in EL4 cells. The ER-associated pathway possibly operated in this apoptosis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Sustained high serum caspase-3 concentrations and mortality in septic patients.

    Science.gov (United States)

    Lorente, L; Martín, M M; Pérez-Cejas, A; González-Rivero, A F; López, R O; Ferreres, J; Solé-Violán, J; Labarta, L; Díaz, C; Palmero, S; Jiménez, A

    2018-02-01

    Caspase-3 is the main executor of the apoptotic process. Higher serum caspase-3 concentrations in non-survivor compared to survivor septic patients have been found. The objectives of this work (with the increase of sample size to 308 patients, and the determination of serum caspase-3 concentrations also on days 4 and 8 of diagnosis of severe sepsis) were to know whether an association between serum caspase-3 concentrationss during the first week, degree of apoptosis, sepsis severity, and sepsis mortality exists. We collected serum samples of 308 patients with severe sepsis from eight intensive care units on days 1, 4 and 8 to measure concentrations of caspase-3 and caspase-cleaved cytokeratin (CCCK)-18 (to assess degree of apoptosis). End point was 30-day mortality. We found higher serum concentrations of caspase-3 and CCCK-18 in non-survivors compared to survivors on days 1 (p < 0.001), 4 (p < 0.001), and 8 (p < 0.001). We found an association between serum caspase-3 concentrations on days 1, 4 and 8 of severe sepsis diagnosis and serum CCCK-18 concentrations (p < 0.001), SOFA (p < 0.001), serum acid lactic concentrations (p < 0.001), and 30-day sepsis mortality (p < 0.001). The new findings of this work were that an association between serum caspase-3 concentrations during the first week, apoptosis degree, sepsis severity, and sepsis mortality exists.

  13. Cell Morphological Change and Caspase-3 Protein Expression on Epithelial Cells under Stimulation of Oral Bacterium Streptococcus sanguinis

    Directory of Open Access Journals (Sweden)

    Suryani Hutomo

    2015-07-01

    Full Text Available Oral commensal bacterium Streptococcus sanguinis may find in periodontal lesions, deep seated infection, and infective endocarditis that are usually dominated by anaerobes. This bacterium caused cell death on some cells but host responses to this species remained unclear. Objective: This study was aimed to detect cell morphologica change and role of caspase-3 in cell death mechanism induced by S. sanguinis. Methods: HeLa cells as representative model for oral epithelial cells were exposed to 107 cells/ml bacteria for 48 h. Morphological change was observed microscopically after hematoxyline-eosin staining. Expression of active caspase-3 was examined by immunocytochemical analysis after cell stimulation for 36 and 48 h with wild type supragingival S. sanguinis. Doxorubicin (0.5625 μg/ml was used as positive control for caspase-3 activation. Results: The results showed cell shrinkage of bacterial-treated cells; and active caspase-3 molecules were detected after 36 and 48 hours cell stimulation. Conclusion: This study would suggest cell shrinkage and caspase-3-dependent apoptotic cell death induced by S. sanguinis.DOI: 10.14693/jdi.v22i1.375

  14. Dietary n-3 PUFAs augment caspase 8 activation in Staphylococcal aureus enterotoxin B stimulated T-cells

    Energy Technology Data Exchange (ETDEWEB)

    Gill, R. [Department of Immunology and Microbiology, Wayne State University, Detroit, MI (United States); Jen, K.L. [Department of Nutrition and Food Science, Wayne State University, Detroit, MI (United States); Center for Urban Responses to Environmental Stressors (CURES), Wayne State University, Detroit, MI (United States); McCabe, M.J.J. [Department of Environmental Medicine, University of Rochester, Rochester, NY (United States); Rosenspire, A., E-mail: arosenspire@wayne.edu [Department of Immunology and Microbiology, Wayne State University, Detroit, MI (United States); Center for Urban Responses to Environmental Stressors (CURES), Wayne State University, Detroit, MI (United States)

    2016-10-15

    Epidemiological studies have linked consumption of n-3 PUFAs with a variety of beneficial health benefits, particularly with respect to putative anti-inflammatory effects. Unfortunately, many of these results remain somewhat controversial because in most instances there has not been a linkage to specific molecular mechanisms. For instance, dietary exposure to low levels of mercury has been shown to be damaging to neural development, but concomitant ingestion of n-3 PUFAs as occurs during consumption of fish, has been shown to counteract the detrimental effects. As the mechanisms mediating the neurotoxicity of environmental mercury are not fully delineated, it is difficult to conceptualize a testable molecular mechanism explaining how n-3 PUFAs negate its neurotoxic effects. However, environmental exposure to mercury also has been linked to increased autoimmunity. By way of a molecular understanding of this immuno-toxic association, disruption of CD95 signaling is well established as a triggering factor for autoimmunity, and we have previously shown that environmentally relevant in vitro and dietary exposures to mercury interfere with CD95 signaling. In particular we have shown that activation of caspase 8, as well as downstream activation of caspase 3, in response to CD95 agonist stimulation is depressed by mercury. More recently we have shown in vitro that the n-3 PUFA docosahexaenoic acid counteracts the negative effect of mercury on CD95 signaling by restoring caspase activity. We hypothesized that concomitant ingestion of n-3 PUFAs with mercury might be protective from the immuno-toxic effects of mercury, as it is with mercury's neuro-toxic effects, and in the case of immuno-toxicity this would be related to restoration of CD95 signal strength. We now show that dietary ingestion of n-3 PUFAs generally promotes CD95 signaling by upregulating caspase 8 activation. Apart from accounting for the ability of n-3 PUFAs to specifically counteract autoimmune

  15. Dietary n-3 PUFAs augment caspase 8 activation in Staphylococcal aureus enterotoxin B stimulated T-cells

    International Nuclear Information System (INIS)

    Gill, R.; Jen, K.L.; McCabe, M.J.J.; Rosenspire, A.

    2016-01-01

    Epidemiological studies have linked consumption of n-3 PUFAs with a variety of beneficial health benefits, particularly with respect to putative anti-inflammatory effects. Unfortunately, many of these results remain somewhat controversial because in most instances there has not been a linkage to specific molecular mechanisms. For instance, dietary exposure to low levels of mercury has been shown to be damaging to neural development, but concomitant ingestion of n-3 PUFAs as occurs during consumption of fish, has been shown to counteract the detrimental effects. As the mechanisms mediating the neurotoxicity of environmental mercury are not fully delineated, it is difficult to conceptualize a testable molecular mechanism explaining how n-3 PUFAs negate its neurotoxic effects. However, environmental exposure to mercury also has been linked to increased autoimmunity. By way of a molecular understanding of this immuno-toxic association, disruption of CD95 signaling is well established as a triggering factor for autoimmunity, and we have previously shown that environmentally relevant in vitro and dietary exposures to mercury interfere with CD95 signaling. In particular we have shown that activation of caspase 8, as well as downstream activation of caspase 3, in response to CD95 agonist stimulation is depressed by mercury. More recently we have shown in vitro that the n-3 PUFA docosahexaenoic acid counteracts the negative effect of mercury on CD95 signaling by restoring caspase activity. We hypothesized that concomitant ingestion of n-3 PUFAs with mercury might be protective from the immuno-toxic effects of mercury, as it is with mercury's neuro-toxic effects, and in the case of immuno-toxicity this would be related to restoration of CD95 signal strength. We now show that dietary ingestion of n-3 PUFAs generally promotes CD95 signaling by upregulating caspase 8 activation. Apart from accounting for the ability of n-3 PUFAs to specifically counteract autoimmune

  16. The neuroprotective effect of nicotine in Parkinson’s disease models is associated with inhibiting PARP-1 and caspase-3 cleavage

    Directory of Open Access Journals (Sweden)

    Justin Y.D. Lu

    2017-10-01

    Full Text Available Clinical evidence points to neuroprotective effects of smoking in Parkinson’s disease (PD, but the molecular mechanisms remain unclear. We investigated the pharmacological pathways involved in these neuroprotective effects, which could provide novel ideas for developing targeted neuroprotective treatments for PD. We used the ETC complex I inhibitor methylpyridinium ion (MPP+ to induce cell death in SH-SY5Y cells as a cellular model for PD and found that nicotine inhibits cell death. Using choline as a nicotinic acetylcholine receptor (nAChR agonist, we found that nAChR stimulation was sufficient to protect SH-SY5Y cells against cell death from MPP+. Blocking α7 nAChR with methyllycaconitine (MLA prevented the protective effects of nicotine, demonstrating that these receptors are necessary for the neuroprotective effects of nicotine. The neuroprotective effect of nicotine involves other pathways relevant to PD. Cleaved Poly (ADP-ribose polymerase-1 (PARP-1 and cleaved caspase-3 were decreased by nicotine in 6-hydroxydopamine (6-OHDA lesioned mice and in MPP+-treated SH-SY5Y cells. In conclusion, our data indicate that nicotine likely exerts neuroprotective effects in PD through the α7 nAChR and downstream pathways including PARP-1 and caspase-3. This knowledge could be pursued in future research to develop neuroprotective treatments for PD.

  17. TLR3 mediates release of IL-1β and cell death in keratinocytes in a caspase-4 dependent manner.

    Science.gov (United States)

    Grimstad, Øystein; Husebye, Harald; Espevik, Terje

    2013-10-01

    Inflammation and timely cell death are important elements in host defence and healing processes. Keratinocytes express high levels of Toll-like receptor 3 (TLR3), and stimulation of the receptor with its ligand polyinosinic-polycytidylic acid (polyI:C) is a powerful signal for release of a variety of proinflammatory cytokines. Caspase-4 is required for maturation of pro-IL-1β through activation of caspase-1 in keratinocytes. TLR3 in keratinocytes was stimulated with polyI:C. Induction of messenger RNA of pro-IL-1β and inflammasomal components was measured using quantitative polymerase chain reaction methodology. Protein expression of IL-1β was analysed with ELISA and Western blot techniques. Activation of apoptotic caspases was measured with flow cytometry, and cytotoxicity was determined. TLR3 induced release of substantial amounts of pro-IL-1β in keratinocytes. NLRP3 or ASC dependent processing of IL-1β into its cleaved bioactive form was found to be minimal. The release of IL-1β was due to polyI:C induced cell death that occurred through a caspase-4 dependent manner. Caspase-1 did not seem to be involved in the polyI:C induced cytotoxicity despite that TLR3 stimulation induced activation of caspase-1. In addition, the apoptotic caspases -8, -9 and -3/7 were activated by polyI:C. TLR3 stimulation in keratinocytes induces a caspase-4 dependent release of pro-IL-1β, but further processing to active IL-1β is limited. Furthermore, TLR3 stimulation results in pyroptotic- and apoptotic cell death. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Fas-Induced Apoptosis of Renal Cell Carcinoma is Mediated by Apoptosis Signal-Regulating Kinase 1 via Mitochondrial Damage-Dependent Caspase-8 Activation

    Directory of Open Access Journals (Sweden)

    Mohamed Hassan

    2009-01-01

    Full Text Available Renal cell carcinoma (RCC is a prototype of a chemo refractory tumour. It remains the most lethal of the common urologic cancers and is highly resistant to conventional therapy. Here, we confirmed the efficiency of anti-Fas monoclonal antibody (CH11 as alternative therapeutic approach for the treatment of RCC and investigated the molecular mechanism(s, whereby CH11 induces apoptosis of RCC cells. The present study shows an essential role for apoptosis signal-regulating kinase 1 (ASK1, together with both c-jun-N-terminal kinase (JNK and p38 pathways, and caspase-8 in this process. Furthermore, CH11-dependent induction of the ASK1–JNK/p38 pathways was found to activate the transcription factors AP-1 and ATF-2, and FADD-caspase-8-Bid signalling, resulting in the translocation of both Bax and Bak proteins, and subsequently mitochondrial dysregulation that is characterized by the loss of mitochondrial membrane potential (ΔΨm, cytochrome c release and cleavage of caspase-9, caspase-3 and PARP. Thus, the described molecular mechanisms of CH11-induced apoptosis suggest the reliability of Fas activation as an alternative therapeutic approach for the treatment of patients with advanced renal cell carcinoma.

  19. Construction and analysis of a modular model of caspase activation in apoptosis

    Directory of Open Access Journals (Sweden)

    Ho Kenneth L

    2008-12-01

    Full Text Available Abstract Background A key physiological mechanism employed by multicellular organisms is apoptosis, or programmed cell death. Apoptosis is triggered by the activation of caspases in response to both extracellular (extrinsic and intracellular (intrinsic signals. The extrinsic and intrinsic pathways are characterized by the formation of the death-inducing signaling complex (DISC and the apoptosome, respectively; both the DISC and the apoptosome are oligomers with complex formation dynamics. Additionally, the extrinsic and intrinsic pathways are coupled through the mitochondrial apoptosis-induced channel via the Bcl-2 family of proteins. Results A model of caspase activation is constructed and analyzed. The apoptosis signaling network is simplified through modularization methodologies and equilibrium abstractions for three functional modules. The mathematical model is composed of a system of ordinary differential equations which is numerically solved. Multiple linear regression analysis investigates the role of each module and reduced models are constructed to identify key contributions of the extrinsic and intrinsic pathways in triggering apoptosis for different cell lines. Conclusion Through linear regression techniques, we identified the feedbacks, dissociation of complexes, and negative regulators as the key components in apoptosis. The analysis and reduced models for our model formulation reveal that the chosen cell lines predominately exhibit strong extrinsic caspase, typical of type I cell, behavior. Furthermore, under the simplified model framework, the selected cells lines exhibit different modes by which caspase activation may occur. Finally the proposed modularized model of apoptosis may generalize behavior for additional cells and tissues, specifically identifying and predicting components responsible for the transition from type I to type II cell behavior.

  20. Ethanol Extract of Evodia rutaecarpa Attenuates Cell Growth through Caspase-Dependent Apoptosis in Benign Prostatic Hyperplasia-1 Cells

    Directory of Open Access Journals (Sweden)

    Eunsook Park

    2018-04-01

    Full Text Available The dried fruits of Evodia rutaecarpa Bentham have been used widely as a herbal medicine for the treatment of inflammatory disorders and abdominal pain. Benign prostatic hyperplasia (BPH is a nonmalignant disease characterized by overgrowth of prostates. Despite the pharmacological efficacy of the fruits of E. rutaecarpa against various diseases, their effects against BPH have not been reported. Here, we investigated the inhibitory activity of a 70% ethanol extract of E. rutaecarpa (EEER against BPH, and its underlying mechanisms regarding cell growth of BPH using BPH-1 cells. An in vitro 5α-reductase activity assay showed that EEER exhibited inhibitory activity against 5α-reductase. In BPH-1 cells, EEER treatment inhibited cell viability and reduced the expression of the proliferating cell nuclear antigen proliferating cell nuclear antigen (PCNA, cyclin D1, and phosphor-ERK1/2 proteins. Moreover, EEER also induced apoptosis, with chromatin condensation, apoptotic bodies, and internucleosomal DNA fragmentation. Regarding its underlying mechanisms, EEER exacerbated the activation of caspase-8 and caspase-3 in a concentration-dependent manner and eventually caused the cleavage of PARP. Taken together, these data demonstrated that EEER had a potent 5α-reductase inhibitory activity and that EEER treatment in BPH-1 cells inhibited cell viability via caspase-8- and caspase-3-dependent apoptosis. Therefore, EEER may be a potential phytotherapeutic agent for the treatment of BPH.

  1. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3

    Science.gov (United States)

    Murthy, Aditya; Li, Yun; Peng, Ivan; Reichelt, Mike; Katakam, Anand Kumar; Noubade, Rajkumar; Roose-Girma, Merone; Devoss, Jason; Diehl, Lauri; Graham, Robert R.; van Lookeren Campagne, Menno

    2014-02-01

    Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.

  2. Caspase-11 Plays a Protective Role in Pulmonary Acinetobacter baumannii Infection.

    Science.gov (United States)

    Wang, Wei; Shao, Yue; Li, Shengjun; Xin, Na; Ma, Tingxian; Zhao, Chenghai; Song, Min

    2017-10-01

    Activation of caspase-11 by some Gram-negative bacteria triggers the caspase-1/interleukin 1β (IL-1β) pathway, independent of canonical inflammasomes. Acinetobacter baumannii is a Gram-negative, conditionally pathogenic bacterium that can cause severe pulmonary infection in hospitalized patients. A. baumannii was revealed to activate canonical and noncanonical inflammasome pathways in bone marrow-derived macrophages (BMDMs). Pulmonary infection of caspase-11 -/- mice with A. baumannii showed that caspase-11 deficiency impaired A. baumannii clearance, exacerbated pulmonary pathological changes, and enhanced susceptibility to A. baumannii These data indicate that the caspase-11-mediated innate immune response plays a crucial role in defending against A. baumannii . Copyright © 2017 American Society for Microbiology.

  3. Early Activation of Apoptosis and Caspase-independent Cell Death Plays an Important Role in Mediating the Cytotoxic and Genotoxic Effects of WP 631 in Ovarian Cancer Cells.

    Science.gov (United States)

    Gajek, Arkadiusz; Denel-Bobrowska, Marta; Rogalska, Aneta; Bukowska, Barbara; Maszewski, Janusz; Marczak, Agnieszka

    2015-01-01

    The purpose of this study was to provide a detailed explanation of the mechanism of bisanthracycline,?WP 631 in comparison to doxorubicin (DOX), a first generation anthracycline, currently the most widely used pharmaceutical in clinical oncology. Experiments were performed in SKOV-3 ovarian cancer cells which are otherwise resistant to standard drugs such as cis-platinum and adriamycin. As attention was focused on the ability of WP 631 to induce apoptosis, this was examined using a double staining method with Annexin V and propidium iodide probes, with measurement of the level of intracellular calcium ions and cytosolic cytochrome c. The western blotting technique was performed to confirm PARP cleavage. We also investigated the involvement of caspase activation and DNA degradation (comet assay and immunocytochemical detection of phosphorylated H2AX histones) in the development of apoptotic events. WP 631 demonstrated significantly higher effectiveness as a pro-apoptotic drug than DOX. This was evident in the higher levels of markers of apoptosis, such as the externalization of phosphatidylserine and the elevated level of cytochrome c. An extension of incubation time led to an increase in intracellular calcium levels after treatment with DOX. Lower changes in the calcium content were associated with the influence of WP 631. DOX led to the activation of all tested caspases, 8, 9 and 3, whereas WP 631 only induced an increase in caspase 8 activity after 24h of treatment and consequently led to the cleavage of PARP. The lack of active caspase 3 had no outcome on the single and double-stranded DNA breaks. The obtained results show that WP 631 was considerably more genotoxic towards the investigated cell line than DOX. This effect was especially visible after longer times of incubation. The above detailed studies indicate that WP 631 generates early apoptosis and cell death independent of caspase-3, detected at relatively late time points. The observed differences in the

  4. Caspase-1 inhibitor regulates humoral responses in experimental autoimmune myasthenia gravis via IL-6- dependent inhibiton of STAT3.

    Science.gov (United States)

    Wang, Cong-Cong; Zhang, Min; Li, Heng; Li, Xiao-Li; Yue, Long-Tao; Zhang, Peng; Liu, Ru-Tao; Chen, Hui; Li, Yan-Bin; Duan, Rui-Sheng

    2017-08-24

    We have previously demonstrated that Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor ameliorates experimental autoimmune myasthenia gravis (EAMG) by inhibited cellular immune response, via suppressing DC IL-1 β, CD4 + T and γdT cells IL-17 pathways. In this study, we investigated the effect of caspase-1 inhibitor on humoral immune response of EAMG and further explore the underlying mechanisms. An animal model of MG was induced by region 97-116 of the rat AChR α subunit (R97-116 peptide) in Lewis rats. Rats were treated with caspase-1 inhibitor Ac-YVAD-cmk intraperitoneally (i.p.) every second day from day 13 after the first immunization. Flow cytometry, western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the neuroprotective effect of caspase-1 inhibitor on humoral immune response of EAMG. The results showed that caspase-1 inhibitor reduced the relative affinity of anti-R97-116 IgG, suppressed germinal center response, decreased follicular helper T cells, and increased follicular regulatory T cells and regulatory B cells. In addition, we found that caspase-1 inhibitor inhibited humoral immunity response in EAMG rats via suppressing IL-6-STAT3-Bcl-6 pathways. These results suggest that caspase-1 inhibitor ameliorates EAMG by regulating humoral immune response, thus providing new insights into the development of myasthenia gravis and other autoimmune diseases therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Chronic sleep restriction induces changes in the mandibular condylar cartilage of rats: roles of Akt, Bad and Caspase-3.

    Science.gov (United States)

    Zhu, Yong; Wu, Gaoyi; Zhu, Guoxiong; Ma, Chuan; Zhao, Huaqiang

    2014-01-01

    The aim of the present study was to observe changes in the temporomandibular joint (TMJ) of rats that had been subjected to chronic sleep restriction and to investigate whether Akt, Bad and Caspase3 play a role in the mechanism underlying the changes. One hundred and eighty male Wistar rats were randomly divided into three groups (n = 60 in each): cage control group, large-platform control group, and sleep restriction group. Each group was divided into three subgroups (n = 20 in each) of three different time points (7, 14 and 21 days), respectively. The modified multiple platform method was used to induce chronic sleep restriction. The TMJ tissue histology was studied by staining with haematoxylin and eosin. The expression of Akt, p-Aktser473, Bad, p-Badser136 and Caspase3 proteins was detected by immunohistochemistry and western blotting. The expression of Akt, Bad and Caspase3 mRNAs was measured by real-time quantitative polymerase chain reaction (RT-qPCR). Compared with the large-platform and cage control groups, condylar cartilage pathological alterations were found in the sleep restriction group. There were significantly decreased expression levels of Akt, p-Aktser473 and p-Badser136 and significantly increased expression levels of Bad and Caspase3 after sleep restriction. These data suggest that sleep restriction may induce pathological alterations in the condylar cartilage of rats. Alterations in Akt, Bad and Caspase3 may be associated with the potential mechanism by which chronic sleep restriction influences the condylar cartilage.

  6. Acute fasting inhibits central caspase-1 activity reducing anxiety-like behavior and increasing novel object and object location recognition.

    Science.gov (United States)

    Towers, Albert E; Oelschlager, Maci L; Patel, Jay; Gainey, Stephen J; McCusker, Robert H; Freund, Gregory G

    2017-06-01

    Inflammation within the central nervous system (CNS) is frequently comorbid with anxiety. Importantly, the pro-inflammatory cytokine most commonly associated with anxiety is IL-1β. The bioavailability and activity of IL-1β are regulated by caspase-1-dependent proteolysis vis-a-vis the inflammasome. Thus, interventions regulating the activation or activity of caspase-1 should reduce anxiety especially in states that foster IL-1β maturation. Male C57BL/6j, C57BL/6j mice treated with the capase-1 inhibitor biotin-YVAD-cmk, caspase-1 knockout (KO) mice and IL-1R1 KO mice were fasted for 24h or allowed ad libitum access to food. Immediately after fasting, caspase-1 activity was measured in brain region homogenates while activated caspase-1 was localized in the brain by immunohistochemistry. Mouse anxiety-like behavior and cognition were tested using the elevated zero maze and novel object/object location tasks, respectively. A 24h fast in mice reduced the activity of caspase-1 in whole brain and in the prefrontal cortex, amygdala, hippocampus, and hypothalamus by 35%, 25%, 40%, 40%, and 40% respectively. A 24h fast also reduced anxiety-like behavior by 40% and increased novel object and object location recognition by 21% and 31%, respectively. IL-1β protein, however, was not reduced in the brain by fasting. ICV administration of YVAD decreased caspase-1 activity in the prefrontal cortex and amygdala by 55%, respectively leading to a 64% reduction in anxiety like behavior. Importantly, when caspase-1 KO or IL1-R1 KO mice are fasted, no fasting-dependent reduction in anxiety-like behavior was observed. Results indicate that fasting decrease anxiety-like behavior and improves memory by a mechanism tied to reducing caspase-1 activity throughout the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. CASC2/miR-24/miR-221 modulates the TRAIL resistance of hepatocellular carcinoma cell through caspase-8/caspase-3.

    Science.gov (United States)

    Jin, Xiaoxin; Cai, Lifeng; Wang, Changfa; Deng, Xiaofeng; Yi, Shengen; Lei, Zhao; Xiao, Qiangsheng; Xu, Hongbo; Luo, Hongwu; Sun, Jichun

    2018-02-23

    Hepatocellular carcinoma is one of the most common solid tumors in the digestive system. The prognosis of patients with hepatocellular carcinoma is still poor due to the acquisition of multi-drug resistance. TNF Related Apoptosis Inducing Ligand (TRAIL), an attractive anticancer agent, exerts its effect of selectively inducing apoptosis in tumor cells through death receptors and the formation of the downstream death-inducing signaling complex, which activates apical caspases 3/8 and leads to apoptosis. However, hepatocellular carcinoma cells are resistant to TRAIL. Non-coding RNAs, including long non-coding RNAs (lncRNAs) and miRNAs have been regarded as major regulators of normal development and diseases, including cancers. Moreover, lncRNAs and miRNAs have been reported to be associated with multi-drug resistance. In the present study, we investigated the mechanism by which TRAIL resistance of hepatocellular carcinoma is affected from the view of non-coding RNA regulation. We selected and validated candidate miRNAs, miR-24 and miR-221, that regulated caspase 3/8 expression through direct targeting, and thereby affecting TRAIL-induced tumor cell apoptosis TRAIL resistance of hepatocellular carcinoma. In addition, we revealed that CASC2, a well-established tumor suppressive long non-coding RNA, could serve as a "Sponge" of miR-24 and miR-221, thus modulating TRAIL-induced tumor cell apoptosis TRAIL resistance of hepatocellular carcinoma. Taken together, we demonstrated a CASC2/miR-24/miR-221 axis, which can affect the TRAIL resistance of hepatocellular carcinoma through regulating caspase 3/8; through acting as a "Sponge" of miR-24 and miR-221, CASC2 may contribute to improving hepatocellular carcinoma TRAIL resistance, and finally promoting the treatment efficiency of TRAIL-based therapies.

  8. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    International Nuclear Information System (INIS)

    Mühlethaler-Mottet, Annick; Flahaut, Marjorie; Bourloud, Katia Balmas; Auderset, Katya; Meier, Roland; Joseph, Jean-Marc; Gross, Nicole

    2006-01-01

    Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL

  9. Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway.

    Science.gov (United States)

    Alonso, Michelle; Tamasdan, Cristina; Miller, Douglas C; Newcomb, Elizabeth W

    2003-02-01

    Flavopiridol is a synthetic flavone, which inhibits growth in vitro and in vivo of several solid malignancies such as renal, prostate, and colon cancers. It is a potent cyclin-dependent kinase inhibitor presently in clinical trials. In this study, we examined the effect of flavopiridol on a panel of glioma cell lines having different genetic profiles: five of six have codeletion of p16(INK4a) and p14(ARF); three of six have p53 mutations; and one of six shows overexpression of mouse double minute-2 (MDM2) protein. Independent of retinoblastoma and p53 tumor suppressor pathway alterations, flavopiridol induced apoptosis in all cell lines but through a caspase-independent mechanism. No cleavage products for caspase 3 or its substrate poly(ADP-ribose) polymerase or caspase 8 were detected. The pan-caspase inhibitor Z-VAD-fmk did not inhibit flavopiridol-induced apoptosis. Mitochondrial damage measured by cytochrome c release and transmission electron microscopy was not observed in drug-treated glioma cells. In contrast, flavopiridol treatment induced translocation of apoptosis-inducing factor from the mitochondria to the nucleus. The proteins cyclin D(1) and MDM2 involved in the regulation of retinoblastoma and p53 activity, respectively, were down-regulated early after flavopiridol treatment. Given that MDM2 protein can confer oncogenic properties under certain circumstances, loss of MDM2 expression in tumor cells could promote increased chemosensitivity. After drug treatment, a low Bcl-2/Bax ratio was observed, a condition that may favor apoptosis. Taken together, the data indicate that flavopiridol has activity against glioma cell lines in vitro and should be considered for clinical development in the treatment of glioblastoma multiforme.

  10. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    Science.gov (United States)

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Caspase-dependant activation of chymotrypsin-like proteases mediates nuclear events during Jurkat T cell apoptosis

    International Nuclear Information System (INIS)

    O'Connell, A.R.; Lee, B.W.; Stenson-Cox, C.

    2006-01-01

    Apoptosis involves a cascade of biochemical and morphological changes resulting in the systematic disintegration of the cell. Caspases are central mediators of this process. Supporting and primary roles for serine proteases as pro-apoptotic mediators have also been highlighted. Evidence for such roles comes largely from the use of pharmacological inhibitors; as a consequence information regarding their apoptotic function and biochemical properties has been limited. Here, we circumvented limitations associated with traditional serine protease inhibitors through use of a fluorescently labelled inhibitor of serine proteases (FLISP) that allowed for analysis of the specificity, regulation and positioning of apoptotic serine proteases within a classical apoptotic cascade. We demonstrate that staurosporine triggers a caspase-dependant induction of chymotrypsin-like activity in the nucleus of apoptotic Jurkat T cells. We show that serine protease activity is required for the generation of late stage nuclear events including condensation, fragmentation and DNA degradation. Furthermore, we reveal caspase-dependant activation of two chymotrypsin-like protein species that we hypothesize mediate cell death-associated nuclear events

  12. Association of caspase-1 polymorphisms with Chagas cardiomyopathy among individuals in Santa Cruz, Bolivia.

    Science.gov (United States)

    Fu, Katherine Yih-Jia; Zamudio, Roxana; Henderson-Frost, Jo; Almuedo, Alex; Steinberg, Hannah; Clipman, Steven Joseph; Duran, Gustavo; Marcus, Rachel; Crawford, Thomas; Alyesh, Daniel; Colanzi, Rony; Flores, Jorge; Gilman, Robert Hugh; Bern, Caryn

    2017-01-01

    Trypanosoma cruzi (Tc) infection is usually acquired in childhood in endemic areas, leading to Chagas disease, which progresses to Chagas cardiomyopathy in 20-30% of infected individuals over decades. The pathogenesis of Chagas cardiomyopathy involves the host inflammatory response to T. cruzi, in which upstream caspase-1 activation prompts the cascade of inflammatory chemokines/cytokines, cardiac remodeling, and myocardial dysfunction. The aim of the present study was to examine the association of two caspase-1 single nucleotide polymorphisms (SNPs) with cardiomyopathy. We recruited infected (Tc+, n = 149) and uninfected (Tc-, n = 87) participants in a hospital in Santa Cruz, Bolivia. Cardiac status was classified (I, II, III, IV) based on Chagas cardiomyopathy-associated electrocardiogram findings and ejection fractions on echocardiogram. Genotypes were determined using Taqman probes via reverse transcription-polymerase chain reaction of peripheral blood DNA. Genotype frequencies were analyzed according to three inheritance patterns (dominant, recessive, additive) using logistic regression adjusted for age and sex. The AA allele for the caspase-1 SNP rs501192 was more frequent in Tc+ cardiomyopathy (classes II, III, IV) patients compared to those with a normal cardiac status (class I) [odds ratio (OR) = -2.18, p = 0.117]. This trend approached statistical significant considering only Tc+ patients in class I and II (OR = -2.64, p = 0.064). Caspase-1 polymorphisms may play a role in Chagas cardiomyopathy development and could serve as markers to identify individuals at higher risk for priority treatment.

  13. Measuring T cell-mediated cytotoxicity using fluorogenic caspase substrates.

    Science.gov (United States)

    Chahroudi, A; Silvestri, G; Feinberg, M B

    2003-10-01

    Cytotoxic T lymphocytes (CTLs) play a major role in the immune response against viruses and other intracellular pathogens. In addition, CTLs are implicated in the control of tumor cells in certain settings. Accurate measures of CTL function are of critical importance to study the pathogenesis of infectious diseases and to evaluate the efficacy of new vaccines and immunotherapies. To this end, we have recently developed a flow cytometry-based CTL (FCC) assay that measures the CTL-induced caspase activation within target cells using cell permeable fluorogenic caspase substrates. This novel assay reliably detects, by flow cytometry or fluorescence/confocal microscopy, antigen-specific CTLs in a wide variety of human and murine systems, and is safer and more informative than the standard 51Cr-release assay. In addition, the flow cytometric CTL (FCC) assay provides an alternative method that is often more sensitive and physiologically informative when compared to previously described FCC assays, as it measures a biological indicator of apoptosis within the target cell. The FCC assay may thus represent a useful tool to further understand the molecular and cellular mechanisms that underlie CTL-mediated killing during tumorigenesis or following infection with viruses or other intracellular pathogens.

  14. Caspase-12 ablation preserves muscle function in the mdx mouse

    Science.gov (United States)

    Moorwood, Catherine; Barton, Elisabeth R.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin. Several downstream consequences of dystrophin deficiency are triggers of endoplasmic reticulum (ER) stress, including loss of calcium homeostasis, hypoxia and oxidative stress. During ER stress, misfolded proteins accumulate in the ER lumen and the unfolded protein response (UPR) is triggered, leading to adaptation or apoptosis. We hypothesized that ER stress is heightened in dystrophic muscles and contributes to the pathology of DMD. We observed increases in the ER stress markers BiP and cleaved caspase-4 in DMD patient biopsies, compared with controls, and an increase in multiple UPR pathways in muscles of the dystrophin-deficient mdx mouse. We then crossed mdx mice with mice null for caspase-12, the murine equivalent of human caspase-4, which are resistant to ER stress. We found that deleting caspase-12 preserved mdx muscle function, resulting in a 75% recovery of both specific force generation and resistance to eccentric contractions. The compensatory hypertrophy normally found in mdx muscles was normalized in the absence of caspase-12; this was found to be due to decreased fibre sizes, and not to a fibre type shift or a decrease in fibrosis. Fibre central nucleation was not significantly altered in the absence of caspase-12, but muscle fibre degeneration found in the mdx mouse was reduced almost to wild-type levels. In conclusion, we have identified heightened ER stress and abnormal UPR signalling as novel contributors to the dystrophic phenotype. Caspase-4 is therefore a potential therapeutic target for DMD. PMID:24879640

  15. Caspase-14 Expression Impairs Retinal Pigment Epithelium Barrier Function: Potential Role in Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Selina Beasley

    2014-01-01

    Full Text Available We recently showed that caspase-14 is a novel molecule in retina with potential role in accelerated vascular cell death during diabetic retinopathy (DR. Here, we evaluated whether caspase-14 is implicated in retinal pigment epithelial cells (RPE dysfunction under hyperglycemia. The impact of high glucose (HG, 30 mM D-glucose on caspase-14 expression in human RPE (ARPE-19 cells was tested, which showed significant increase in caspase-14 expression compared with normal glucose (5 mM D-glucose + 25 mM L-glucose. We also evaluated the impact of modulating caspase-14 expression on RPE cells barrier function, phagocytosis, and activation of other caspases using ARPE-19 cells transfected with caspase-14 plasmid or caspase-14 siRNA. We used FITC-dextran flux assay and electric cell substrate impedance sensing (ECIS to test the changes in RPE cell barrier function. Similar to HG, caspase-14 expression in ARPE-19 cells increased FITC-dextran leakage through the confluent monolayer and decreased the transcellular electrical resistance (TER. These effects of HG were prevented by caspase-14 knockdown. Furthermore, caspase-14 knockdown prevented the HG-induced activation of caspase-1 and caspase-9, the only activated caspases by HG. Phagocytic activity was unaffected by caspase-14 expression. Our results suggest that caspase-14 contributes to RPE cell barrier disruption under hyperglycemic conditions and thus plays a role in the development of diabetic macular edema.

  16. Ultraviolet-Ray-Induced Sea Cucumber (Stichopus japonicus) Melting Is Mediated by the Caspase-Dependent Mitochondrial Apoptotic Pathway.

    Science.gov (United States)

    Su, Li; Yang, Jing-Feng; Fu, Xi; Dong, Liang; Zhou, Da-Yong; Sun, Li-Ming; Gong, Zhenwei

    2018-01-10

    Sea cucumber body-wall melting occurs under certain circumstances. We have shown that apoptosis but not autolysis plays a critical role in the initial stage. However, it is still unclear how apoptosis is triggered in this process. In this study, we examined the levels of reactive oxygen species (ROS), the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax) proteins, the depolarization of mitochondrial transmembrane potentials, and cytochrome c (Cyt c) release during sea cucumber melting induced by ultraviolet (UV) exposure. We also investigated the contribution of caspase in this process by injecting a pan-caspase inhibitor. Our data showed that UV exposure stimulates ROS production, dysfunction of mitochondria, and the release of Cyt c in sea cucumber coelomic fluid cells and body walls. We found a decrease of Bcl-2 and increase of Bax in the mitochondria after UV exposure. We also demonstrated that these changes are associated with elevated caspase-9 and -3 activity. Finally, our data showed that the inhibition of caspases-9 and -3 using an inhibitor suppresses UV-induced sea cucumber melting. These results suggest that apoptosis during sea cucumber melting is mediated by mitochondrial dysfunction and follows the activation of the caspase-signaling pathway. This study presents a novel insight into the mechanism of sea cucumber melting.

  17. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway

    Directory of Open Access Journals (Sweden)

    Li Chen

    2014-04-01

    Full Text Available Dicitrinone B, a rare carbon-bridged citrinin dimer, was isolated from the marine-derived fungus, Penicillium citrinum. It was reported to have antitumor effects on tumor cells previously; however, the details of the mechanism remain unclear. In this study, we found that dicitrinone B inhibited the proliferation of multiple tumor types. Among them, the human malignant melanoma cell, A375, was confirmed to be the most sensitive. Morphologic evaluation, cell cycle arrest and apoptosis rate analysis results showed that dicitrinone B significantly induced A375 cell apoptosis. Subsequent observation of reactive oxygen species (ROS accumulation and mitochondrial membrane potential (MMP reduction revealed that the apoptosis induced by dicitrinone B may be triggered by over-producing ROS. Further studies indicated that the apoptosis was associated with both intrinsic and extrinsic apoptosis pathways under the regulation of Bcl-2 family proteins. Caspase-9, caspase-8 and caspase-3 were activated during the process, leading to PARP cleavage. The pan-caspase inhibitor, Z-VAD-FMK, could reverse dicitrinone B-induced apoptosis, suggesting that it is a caspase-dependent pathway. Our data for the first time showed that dicitrinone B inhibits the proliferation of tumor cells by inducing cell apoptosis. Moreover, compared with the first-line chemotherapy drug, 5-fluorouracil (5-Fu, dicitrinone B showed much more potent anticancer efficacy, suggesting that it might serve as a potential antitumor agent.

  18. The use of caspase inhibitors in pulsed-field gel electrophoresis may improve the estimation of radiation-induced DNA repair and apoptosis

    International Nuclear Information System (INIS)

    Balart, Josep; Pueyo, Gemma; Llobet, Lara I de; Baro, Marta; Sole, Xavi; Marin, Susanna; Casanovas, Oriol; Mesia, Ricard; Capella, Gabriel

    2011-01-01

    Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA repair. Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone H2AX activation (γH2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors. We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation, regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA fragments as was measured by γH2AX decrease and PFGE data. We were able to eliminate interference of apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself. The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate, provides new insights for using the PFGE methodology as functional assay

  19. Implication of Caspase-3 as a Common Therapeutic Target for Multineurodegenerative Disorders and Its Inhibition Using Nonpeptidyl Natural Compounds

    Directory of Open Access Journals (Sweden)

    Saif Khan

    2015-01-01

    Full Text Available Caspase-3 has been identified as a key mediator of neuronal apoptosis. The present study identifies caspase-3 as a common player involved in the regulation of multineurodegenerative disorders, namely, Alzheimer’s disease (AD, Parkinson’s disease (PD, Huntington’s disease (HD, and amyotrophic lateral sclerosis (ALS. The protein interaction network prepared using STRING database provides a strong evidence of caspase-3 interactions with the metabolic cascade of the said multineurodegenerative disorders, thus characterizing it as a potential therapeutic target for multiple neurodegenerative disorders. In silico molecular docking of selected nonpeptidyl natural compounds against caspase-3 exposed potent leads against this common therapeutic target. Rosmarinic acid and curcumin proved to be the most promising ligands (leads mimicking the inhibitory action of peptidyl inhibitors with the highest Gold fitness scores 57.38 and 53.51, respectively. These results were in close agreement with the fitness score predicted using X-score, a consensus based scoring function to calculate the binding affinity. Nonpeptidyl inhibitors of caspase-3 identified in the present study expeditiously mimic the inhibitory action of the previously identified peptidyl inhibitors. Since, nonpeptidyl inhibitors are preferred drug candidates, hence, discovery of natural compounds as nonpeptidyl inhibitors is a significant transition towards feasible drug development for neurodegenerative disorders.

  20. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    International Nuclear Information System (INIS)

    Li, Lin; Yue, Grace G.L.; Lau, Clara B.S.; Sun, Handong; Fung, Kwok Pui; Leung, Ping Chung; Han, Quanbin; Leung, Po Sing

    2012-01-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  1. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Yue, Grace G.L. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Lau, Clara B.S. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Sun, Handong [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan (China); Fung, Kwok Pui [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Leung, Ping Chung [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Han, Quanbin, E-mail: simonhan@hkbu.edu.hk [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); School of Chinese Medicine, The Hong Kong Baptist University, Hong Kong (China); Leung, Po Sing, E-mail: psleung@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China)

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  2. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    International Nuclear Information System (INIS)

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-01

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV XS ; 400 μg/ml), UV-irradiated virus (CIV UV ; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV UV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV UV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV UV , CIV XS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and

  3. Apoptose e expressão de Bcl-2 e das caspases 3 e 8 em placenta bovina, em diferentes estádios de gestação Apoptosis and expression of Bcl-2 and caspases 3 and 8 in placenta of cows at different pregnancy stages

    Directory of Open Access Journals (Sweden)

    K.K.O.L. Meça

    2010-04-01

    Full Text Available Apoptose e seus mecanismos reguladores são eventos fisiológicos cruciais para a manutenção da homeostase placentária, e o desequilíbrio desses processos pode comprometer a função placentária e, consequentemente, o sucesso da gravidez. Neste estudo, investigou-se a apoptose utilizando-se histomorfometria em lâminas coradas em HE e submetidas à reação de TUNEL. Além disso, avaliou-se a expressão de Bcl-2 e das caspases 8 e 3, pela reação de polimerase em cadeia em tempo real, em placentas saudáveis em diferentes estádios de gestação. Amostras de placentônios de vacas com quatro, seis e nove meses de gestação foram colhidas e processadas. O índice apoptótico aumentou progressivamente com o avanço da gestação. Tanto o Bcl-2 quanto as caspases 3 e 8 foram expressas nos três períodos estudados, sendo a expressão de Bcl-2 menor que a de caspase 8, que é menor que a de caspase 3. Estes resultados indicam que essas moléculas estão envolvidas na via apoptótica ativada na maturação placentária, exibindo um padrão de expressão ao longo da gestação e contribuindo para o equilíbrio fisiológico da celularidade e renovação celular na placenta bovina.Apoptosis and its regulating mechanisms are crucial physiological events for the maintenance of the placental homostasis; and disequilibrium of these processes may compromise placental function and the success of the pregnancy. In this study, apoptosis was investigated by histomorphometry using slides stained with HE and TUNEL reaction. Besides that, Bcl-2 and caspases 8 and 3 expression were evaluated by real time polymerase chain reaction in healthy placentas under different gestacional ages. Samples of placentones of cows at 4th, 6th, and 9th months of gestation were harvested and processed. The apoptotic index gradually increased with the advance of the gestation. Bcl-2 and caspases 3 and 8 were expressed in all the studied periods, being the expression of Bcl-2

  4. [Changes in Ca(2+)concentration and caspase-3 expression and their relationship in Raji cells exposed to electromagnetic radiation].

    Science.gov (United States)

    Wang, Wei; Liu, Huan-xin; Wang, De-wen; Zuo, Hong-yan; Peng, Rui-yun

    2013-02-01

    To study the effects of electromagnetic pulse (EMP), S-band high power microwave (S-HPM), and X-band high power microwave (X-HPM) on the Ca(2+) concentration and caspase-3 expression in Raji cells and the relationship between Ca(2+) concentration and caspase-3 expression, and to investigate the regulatory mechanism of electromagnetic radiation damage. Raji cells were cultured conventionally. Some cells were irradiated by EMP, S-HPM, and X-HPM in the logarithmic growth phase for 6 hours and then collected; others received sham irradiation as a control. The Ca(2+) concentration in the cells was measured by laser scanning confocal microscope; the caspase-3 expression in the cells was evaluated by Western blot. Compared with the control group (Ca(2+) fluorescence intensity = 43.08 ± 2.08; caspase-3 expression level = 0.444 ± 0.13), the EMP,S-HPM, and X-HPM groups had significantly increased Ca(2+) concentrations, with Ca(2+) fluorescence intensities of 69.56 ± 1.71, 50.06 ± 1.89, and 70.68 ± 1.59, respectively (P < 0.01), and had upregulated caspase-3 expression, with expression levels of 0.964 ± 0.12, 0.586 ± 0.16, and 0.970 ± 0.07, respectively (P < 0.01). Each of the EMP and X-HPM groups had significantly higher Ca(2+) fluorescence intensity and caspase-3 expression level than the S-HPM group (P < 0.01), but there were no significant differences between the EMP and X-HPM groups. The linear regression analysis showed that the caspase-3 expression was upregulated as the Ca(2+) concentration increased, with a positive correlation between them (P < 0.01). EMP, S-HPM, and X-HPM cause damage probably by increasing the Ca(2+) concentration in cells and in turn inducing caspase-3 overexpression.

  5. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  6. Caspase-Mediated Anti-Apoptotic Effect of Ginsenoside Rg5, a Main Rare Ginsenoside, on Acetaminophen-Induced Hepatotoxicity in Mice.

    Science.gov (United States)

    Wang, Zi; Hu, Jun-Nan; Yan, Meng-Han; Xing, Jing-Jing; Liu, Wen-Cong; Li, Wei

    2017-10-25

    Frequent overdose of acetaminophen (APAP) is one of the most common and important incentives of acute hepatotoxicity. Prior to this work, our research group confirmed that black ginseng (Panax ginseng, BG) showed powerful protective effects on APAP-induced ALI. However, it is not clear which kind of individual ginsenoside from BG plays such a liver protection effect. The objective of the current investigation was to evaluate whether ginsenoside Rg5 (G-Rg5) protected against APAP-induced hepatotoxicity and the involved action mechanisms. Mice were administrated with G-Rg5 at two dosages of 10 or 20 mg/kg for 7 consecutive days. After the last treatment, all of the animals that received a single intraperitoneal injection of APAP (250 mg/kg) showed severe liver toxicity after 24 h, and the liver protection effects of G-Rg5 were examined. The results clearly indicated that pretreatment with G-Rg5 remarkably inhibited the production of serum tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) compared with the APAP group. Meanwhile, G-Rg5 decreased the hepatic malondialdehyde (MDA) content, the protein expression levels of 4-hydroxynonenal (4-HNE) and cytochrome P450 2E1 (CYP2E1) in the liver tissues. G-Rg5 decreased APAP caused the hepatic overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Furthermore, analysis of immunohistochemistry and Western blotting also indicated that G-Rg5 pretreatment inhibited activation of apoptotic pathways mainly via increasing the expression of Bcl-2 protein, decreasing the expression of Bax protein, proliferating cell nuclear antigen (PCNA), cytochrome c, caspase-3, caspase-8, and caspase-9. Liver histopathological observation provided further evidence that pretreatment with G-Rg5 could significantly inhibit hepatocyte necrosis, inflammatory cell infiltration, and apoptosis caused by APAP. In conclusion, the present study clearly demonstrates that G-Rg5 exerts a liver protection effect against

  7. BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane

    NARCIS (Netherlands)

    Schug, Z. T.; Gonzalvez, F.; Houtkooper, R. H.; Vaz, F. M.; Gottlieb, E.

    2011-01-01

    Caspase-8 stably inserts into the mitochondrial outer membrane during extrinsic apoptosis. Inhibition of caspase-8 enrichment on the mitochondria impairs caspase-8 activation and prevents apoptosis. However, the function of active caspase-8 on the mitochondrial membrane remains unknown. In this

  8. H2O2 INDUCES APOPTOSIS OF RABBIT CHONDROCYTES VIA BOTH THE EXTRINSIC AND THE CASPASE-INDEPENDENT INTRINSIC PATHWAYS

    Directory of Open Access Journals (Sweden)

    CAIPING ZHUANG

    2013-07-01

    Full Text Available Osteoarthritis (OA, one of the most common joint diseases with unknown etiology, is characterized by the progressive destruction of articular cartilage and the apoptosis of chondrocytes. The purpose of this study is to elucidate the molecular mechanisms of H2O2-mediated rabbit chondrocytes apoptosis. CCK-8 assay showed that H2O2 treatment induced a remarkable reduction of cell viability, which was further verified by the remarkable phosphatidylserine externalization after H2O2 treatment for 1 h, the typical characteristics of apoptosis. H2O2 treatment induced a significant dysfunction of mitochondrial membrane potential (ΔΨm, but did not induce casapse-9 activation, indicating that H2O2 treatment induced caspase-independent intrinsic apoptosis that was further verified by the fact that silencing of AIF but not inhibiting caspase-9 potently prevented H2O2-induced apoptosis. H2O2 treatment induced a significant increase of caspase-8 and -3 activation, and inhibition of caspase-8 or -3 significantly prevented H2O2-induced apoptosis, suggesting that the extrinsic pathway played an important role. Collectively, our findings demonstrate that H2O2 induces apoptosis via both the casapse-8-mediated extrinsic and the caspase-independent intrinsic apoptosis pathways in rabbit chondrocytes.

  9. Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: mechanism for urate-induced nephropathy.

    Science.gov (United States)

    Choe, Jung-Yoon; Park, Ki-Yeun; Kim, Seong-Kyu

    2015-01-01

    The aim of this study is to clarify the effect of oxidative stress on monosodium urate (MSU)-mediated apoptosis of renal cells. Quantitative real-time polymerase chain reaction and immunoblotting for Bcl-2, caspase-9, caspase-3, iNOS, cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-18, TNF receptor-associated factor-6 (TRAF-6), and mitogen-activated protein kinases were performed on human embryonic kidney 293 (HEK293) cells, which were stimulated by MSU crystals. Fluorescence-activated cell sorting was performed using annexin V for assessment of apoptosis. Reactive oxygen species (ROS) were measured. IL-1β siRNA was used for blocking IL-1β expression. MSU crystals promoted ROS, iNOS, and COX-2 expression and also increased TRAF-6 and IL-1β expression in HEK293 cells, which was inhibited by an antioxidant ascorbic acid. Caspase-dependent renal cell apoptosis was induced through attenuation of Bcl-2 and enhanced caspase-3 and caspase-9 expression by MSU crystals, which was significantly reversed by ascorbic acid and transfection of IL-1β siRNA to HEK293 cells. Ascorbic acid inhibited phosphorylation of extracellular signal-regulated kinase and Jun N-terminal protein kinase stimulated by MSU crystals. ROS accumulation and iNOS and COX-2 mRNA expression by MSU crystals was also suppressed by transfection with IL-1β siRNA. Oxidative stress generated by MSU crystals promotes renal apoptosis through the mitochondrial caspase-dependent apoptosis pathway.

  10. The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8

    Energy Technology Data Exchange (ETDEWEB)

    Manzo-Merino, Joaquin [Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080 (Mexico); Massimi, Paola [International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste (Italy); Lizano, Marcela, E-mail: lizanosoberon@gmail.com [Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080 (Mexico); Banks, Lawrence, E-mail: banks@icgeb.org [International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste (Italy)

    2014-02-15

    The HPV-16 E6 and E6{sup ⁎} proteins have been shown previously to be capable of regulating caspase 8 activity. We now show that the capacity of E6 to interact with caspase 8 is common to diverse HPV types, being also seen with HPV-11 E6, HPV-18 E6 and HPV-18 E6{sup ⁎}. Unlike most E6-interacting partners, caspase 8 does not appear to be a major proteasomal target of E6, but instead E6 appears able to stimulate caspase 8 activation, without affecting the overall apoptotic activity. This would appear to be mediated in part by the ability of the HPV E6 oncoproteins to recruit active caspase 8 to the nucleus. - Highlights: • Multiple HPV E6 oncoproteins interact with the caspase 8 DED domain. • HPV E6 stimulates activation of caspase 8. • HPV E6 promotes nuclear accumulation of caspase 8.

  11. The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8

    International Nuclear Information System (INIS)

    Manzo-Merino, Joaquin; Massimi, Paola; Lizano, Marcela; Banks, Lawrence

    2014-01-01

    The HPV-16 E6 and E6 ⁎ proteins have been shown previously to be capable of regulating caspase 8 activity. We now show that the capacity of E6 to interact with caspase 8 is common to diverse HPV types, being also seen with HPV-11 E6, HPV-18 E6 and HPV-18 E6 ⁎ . Unlike most E6-interacting partners, caspase 8 does not appear to be a major proteasomal target of E6, but instead E6 appears able to stimulate caspase 8 activation, without affecting the overall apoptotic activity. This would appear to be mediated in part by the ability of the HPV E6 oncoproteins to recruit active caspase 8 to the nucleus. - Highlights: • Multiple HPV E6 oncoproteins interact with the caspase 8 DED domain. • HPV E6 stimulates activation of caspase 8. • HPV E6 promotes nuclear accumulation of caspase 8

  12. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    Directory of Open Access Journals (Sweden)

    Yanfang Zong

    2015-01-01

    Full Text Available Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE, cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc. Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury.

  13. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    International Nuclear Information System (INIS)

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng; Shi, Xianglin; Kim, Jong-Ghee; Heo, Jung Sun; Choe, Youngji; Jeon, Young-Mi; Lee, Jeong-Chae

    2012-01-01

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G 2 /M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  14. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Ngoc, Tam Dan [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Son, Young-Ok [Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Lim, Shin-Saeng [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin [Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Kim, Jong-Ghee [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Heo, Jung Sun [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Choe, Youngji [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jeon, Young-Mi, E-mail: young@jbnu.ac.kr [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Jeong-Chae, E-mail: leejc88@jbnu.ac.kr [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  15. Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC regulates inflammasomes

    Directory of Open Access Journals (Sweden)

    Rojanasakul Yon

    2010-05-01

    Full Text Available Abstract Background The apoptotic speck-like protein containing a caspase recruitment domain (ASC is the essential adaptor protein for caspase 1 mediated interleukin (IL-1β and IL-18 processing in inflammasomes. It bridges activated Nod like receptors (NLRs, which are a family of cytosolic pattern recognition receptors of the innate immune system, with caspase 1, resulting in caspase 1 activation and subsequent processing of caspase 1 substrates. Hence, macrophages from ASC deficient mice are impaired in their ability to produce bioactive IL-1β. Furthermore, we recently showed that ASC translocates from the nucleus to the cytosol in response to inflammatory stimulation in order to promote an inflammasome response, which triggers IL-1β processing and secretion. However, the precise regulation of inflammasomes at the level of ASC is still not completely understood. In this study we identified and characterized three novel ASC isoforms for their ability to function as an inflammasome adaptor. Methods To establish the ability of ASC and ASC isoforms as functional inflammasome adaptors, IL-1β processing and secretion was investigated by ELISA in inflammasome reconstitution assays, stable expression in THP-1 and J774A1 cells, and by restoring the lack of endogenous ASC in mouse RAW264.7 macrophages. In addition, the localization of ASC and ASC isoforms was determined by immunofluorescence staining. Results The three novel ASC isoforms, ASC-b, ASC-c and ASC-d display unique and distinct capabilities to each other and to full length ASC in respect to their function as an inflammasome adaptor, with one of the isoforms even showing an inhibitory effect. Consistently, only the activating isoforms of ASC, ASC and ASC-b, co-localized with NLRP3 and caspase 1, while the inhibitory isoform ASC-c, co-localized only with caspase 1, but not with NLRP3. ASC-d did not co-localize with NLRP3 or with caspase 1 and consistently lacked the ability to function as an

  16. N-terminal region of gelsolin induces apoptosis of activated hepatic stellate cells by a caspase-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Budhaditya Mazumdar

    Full Text Available Activated hepatic stellate cells (HSCs are the major source for alteration of extracellular matrix in fibrosis and cirrhosis. Conditioned medium (CM collected from immortalized human hepatocytes (IHH have earlier been shown to be responsible for apoptosis of HSCs. In this study, we have shown that antibodies raised against a peptide derived from a linear B-cell epitope in the N-terminal region of gelsolin identified a gelsolin fragment in IHH CM. Analysis of activated stellate cell death by CM collected from Huh7 cells transfected with plasmids encoding gelsolin deletion mutants suggested that the N-terminal half of gelsolin contained sequences which were responsible for stellate cell death. Further analysis determined that this activity was restricted to a region encompassing amino acids 1-70 in the gelsolin sequence; antibody directed to an epitope within this region was able to neutralize stellate cell death. Gelsolin modulation of cell death using this fragment involved upregulation of TRAIL-R1 and TRAIL-R2, and involved caspase 3 activation by extrinsic pathway. The apoptotic activity of N-terminal gelsolin fragments was restricted to activated but not quiescent stellate cells indicating its potential application in therapeutic use as an anti-fibrotic agent. Gelsolin fragments encompassing N-terminal regions in polypeptides of different molecular sizes were detected by N-terminal peptide specific antiserum in IHH CM immunoprecipitated with chronically HCV infected patient sera, suggesting the presence of autoantibodies generated against N-terminal gelsolin fragments in patients with chronic liver disease.

  17. Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis.

    Science.gov (United States)

    Sergeeva, Tatiana F; Shirmanova, Marina V; Zlobovskaya, Olga A; Gavrina, Alena I; Dudenkova, Varvara V; Lukina, Maria M; Lukyanov, Konstantin A; Zagaynova, Elena V

    2017-03-01

    A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Protective role of Nrf2 against mechanical-stretch-induced apoptosis in mouse fibroblasts: a potential therapeutic target of mechanical-trauma-induced stress urinary incontinence.

    Science.gov (United States)

    Li, Qiannan; Li, Bingshu; Liu, Cheng; Wang, Linlin; Tang, Jianming; Hong, Li

    2018-01-10

    We investigated the protective effect and underlying molecular mechanism of nuclear factor-E2-related factor 2 (Nrf2) against mechanical-stretch-induced apoptosis in mouse fibroblasts. Normal cells, Nrf2 silencing cells, and Nrf2 overexpressing cells were respectively divided into two groups-nonintervention and cyclic mechanical strain (CMS)-subjected to CMS of 5333 μ (1.0 Hz for 4 h), six groups in total (control, CMS, shNfe212, shNfe212 + CMS, LV-shNfe212, and LV-shNfe212 + CMS). After treatment, cell apoptosis; cell-cycle distribution; expressions of Nrf2, Bax, Bcl-2, Cyt-C, caspase-3, caspase-9, cleaved-caspase-3, and cleaved-caspase-9; mitochondrial membrane potential (ΔΨm); reactive oxygen species (ROS); and malondialdehyde (MDA) levels were measured. Thirty virgin female C57BL/6 mice were divided into two groups: control (without intervention) and vaginal distension (VD) groups, which underwent VD for 1 h with an 8-mm dilator (0.3 ml saline). Leak-point pressure (LPP) was tested on day 7 after VD; Nrf2 expression, apoptosis, and MDA levels were then measured in urethra and anterior vaginal wall. Mechanical stretch decreased Nrf2 messenger RNA (mRNA) and protein expressions. Overexpression of Nrf2 alleviated mechanical-stretch-induced cell apoptosis; S-phase arrest of cell cycle; up-regulation of Bax, cytochrome C (Cyt-C), ROS, MDA, ratio of cleaved-caspase-3/caspase-3 and cleaved-caspase-9/caspase-9; and exacerbated the decrease of Bcl2 and ΔΨm in L929 cells. On the contrary, silencing of Nrf2 showed opposite effects. Besides, VD reduced LPP levels and Nrf2 expression and increased cell apoptosis and MDA generation in the urethra and anterior vaginal wall. Nrf2 exhibits a protective role against mechanical-stretch -induced apoptosis on mouse fibroblasts, which might indicate a potential therapeutic target of mechanical-trauma-induced stress urinary incontinence (SUI).

  19. Lack of involvement of strand s1'A of the viral serpin CrmA in anti-apoptotic or caspase-inhibitory functions

    Energy Technology Data Exchange (ETDEWEB)

    Simonovic, Miljan; Denault, Jean-Bernard; Salvesen, Guy S.; Volz, Karl; Gettins, Peter G.W. (Brunham); (UIC); (Burnham)

    2010-11-30

    CrmA is a cowpox virus serpin required for full host infectivity and virulence. Residues 51-56 (DKNKDD), the only region that differs significantly from related viral serpins, were investigated for functional importance. A 1.6 {angstrom} X-ray structure reported here showed that this region can adopt either structured or unstructured conformations. Three variants were expressed, one with the region 51-56 deleted, one substituted by alanines, and one in which this region was replaced by the sequence encoded in smallpox virus. NMR showed that the region is an exposed, flexible loop that can be deleted without perturbing the serpin. The region is also very susceptible to proteolysis. Significantly, inhibition of caspases 1 and 8 was unaffected by the mutations, and each of the variants was as effective as wild-type CrmA in promoting survival from apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Thus, although the 51-56 region of CrmA is unique, and is exposed and highly susceptible to proteolysis, any in vivo role must involve a function other than proteinase inhibition or cell sparing.

  20. EspC, an Autotransporter Protein Secreted by Enteropathogenic Escherichia coli, Causes Apoptosis and Necrosis through Caspase and Calpain Activation, Including Direct Procaspase-3 Cleavage

    Directory of Open Access Journals (Sweden)

    Antonio Serapio-Palacios

    2016-06-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC has the ability to antagonize host apoptosis during infection through promotion and inhibition of effectors injected by the type III secretion system (T3SS, but the total number of these effectors and the overall functional relationships between these effectors during infection are poorly understood. EspC produced by EPEC cleaves fodrin, paxillin, and focal adhesion kinase (FAK, which are also cleaved by caspases and calpains during apoptosis. Here we show the role of EspC in cell death induced by EPEC. EspC is involved in EPEC-mediated cell death and induces both apoptosis and necrosis in epithelial cells. EspC induces apoptosis through the mitochondrial apoptotic pathway by provoking (i a decrease in the expression levels of antiapoptotic protein Bcl-2, (ii translocation of the proapoptotic protein Bax from cytosol to mitochondria, (iii cytochrome c release from mitochondria to the cytoplasm, (iv loss of mitochondrial membrane potential, (v caspase-9 activation, (vi cleavage of procaspase-3 and (vii an increase in caspase-3 activity, (viii PARP proteolysis, and (ix nuclear fragmentation and an increase in the sub-G1 population. Interestingly, EspC-induced apoptosis was triggered through a dual mechanism involving both independent and dependent functions of its EspC serine protease motif, the direct cleavage of procaspase-3 being dependent on this motif. This is the first report showing a shortcut for induction of apoptosis by the catalytic activity of an EPEC protein. Furthermore, this atypical intrinsic apoptosis appeared to induce necrosis through the activation of calpain and through the increase of intracellular calcium induced by EspC. Our data indicate that EspC plays a relevant role in cell death induced by EPEC.

  1. Differential regulation of caspase-9 by ionizing radiation- and UV-induced apoptotic pathways in thymic cells

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Mayumi; Koga, Satomi [Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023 (Japan); Tatsuka, Masaaki, E-mail: tatsuka@pu-hiroshima.ac.jp [Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023 (Japan)

    2010-06-01

    In mouse thymic lymphoma 3SB cells bearing wild type p53, ionizing radiation (IR) and UV light are potent triggers of caspase-3-dependent apoptosis. Although cytochrome c was released from mitochondria as expected, caspase-9 activation was not observed in UV-exposed cells. Laser scanning confocal microscopy analysis showed that caspase-9 is localized in an unusual punctuated pattern in UV-induced apoptotic cells. In agreement with differences in the status of caspase-9 activation between IR and UV, subcellular protein fractionation experiments showed that pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1), normally a part of the apoptosome assembled in response to the release of cytochrome c from mitochondria, and B-cell lymphoma extra long (Bcl-xL), an inhibitor of the change in mitochondrial membrane permeability, were redistributed by the IR-exposure but not by the UV-exposure. Instead of the sequestration of the capase-9/apoptosome activation in UV-induced apoptotic cells, the extrinsic apoptotic signaling generated by caspase-8 activation and consequent activation of B-cell lymphoma extra long (Bid) to release cytochrome c from mitochondria was observed. Thus, the post-mitochondrial apoptotic pathway downstream of cytochrome c release cannot operate the apoptosome function in UV-induced apoptosis in thymic 3SB cells. The intracellular redistribution and sequestration of apoptosis-related proteins upon mitochondrion-based apoptotic signaling was identified as a novel cellular mechanism to respond to DNA damage in an agent type-specific manner. This finding suggests that the kind of the critical ultimate apoptosis-inducing DNA lesion complex form resulting from the agent-specific DNA damage responses is important to determine which of apoptosis signals would be activated.

  2. Interaction of translationally controlled tumor protein with Apaf-1 is involved in the development of chemoresistance in HeLa cells

    International Nuclear Information System (INIS)

    Jung, Jaehoon; Kim, Hyo Young; Maeng, Jeehye; Kim, Moonhee; Shin, Dong Hae; Lee, Kyunglim

    2014-01-01

    Translationally controlled tumor protein (TCTP), alternatively called fortilin, is believed to be involved in the development of the chemoresistance of tumor cells against anticancer drugs such as etoposide, taxol, and oxaliplatin, the underlying mechanisms of which still remain elusive. Cell death analysis of TCTP-overexpressing HeLa cells was performed following etoposide treatment to assess the mitochondria-dependent apoptosis. Apoptotic pathway was analyzed through measuring the cleavage of epidermal growth factor receptor (EGFR) and phospholipase C-γ (PLC-γ), caspase activation, mitochondrial membrane perturbation, and cytochrome c release by flow cytometry and western blotting. To clarify the role of TCTP in the inhibition of apoptosome, in vitro apoptosome reconstitution and immunoprecipitation was used. Pull-down assay and silver staining using the variants of Apaf-1 protein was applied to identify the domain that is responsible for its interaction with TCTP. In the present study, we confirmed that adenoviral overexpression of TCTP protects HeLa cells from cell death induced by cytotoxic drugs such as taxol and etoposide. TCTP antagonized the mitochondria-dependent apoptotic pathway following etoposide treatment, including mitochondrial membrane damage and resultant cytochrome c release, activation of caspase-9, and -3, and eventually, the cleavage of EGFR and PLC-γ. More importantly, TCTP interacts with the caspase recruitment domain (CARD) of Apaf-1 and is incorporated into the heptameric Apaf-1 complex, and that C-terminal cleaved TCTP specifically associates with Apaf-1 of apoptosome in apoptosome-forming condition thereby inhibiting the amplification of caspase cascade. TCTP protects the cancer cells from etoposide-induced cell death by inhibiting the mitochondria-mediated apoptotic pathway. Interaction of TCTP with Apaf-1 in apoptosome is involved in the molecular mechanism of TCTP-induced chemoresistance. These findings suggest that TCTP may serve

  3. Caspase-Dependent Apoptosis Induced by Telomere Cleavage and TRF2 Loss

    Directory of Open Access Journals (Sweden)

    Asha S. Multani

    2000-07-01

    Full Text Available Chromosomal abnormalities involving telomeric associations (TAs often precede replicative senescence and abnormal chromosome configurations. We report here that telomere cleavage following exposure to proapoptotic agents is an early event in apoptosis. Exposure of human and murine cancer cells to a variety of pro-apoptotic stimuli (staurosporine, thapsigargin, anti-Fas antibody, cancer chemotherapeutic agents resulted in telomere cleavage and aggregation, finally their extrusion from the nuclei. Telomere loss was associated with arrest of cells in G2/M phase and preceded DNA fragmentation. Telomere erosion and subsequent large-scale chromatin cleavage were inhibited by overexpression of the anti -apoptotic protein, bcl-2, two peptide caspase inhibitors (BACMK and zVADfmk, indicating that both events are regulated by caspase activation. The results demonstrate that telomere cleavage is an early chromatin alteration detected in various cancer cell lines leading to drug-induced apoptosis, suggest that this event contributes to mitotic catastrophe and induction of cell death. Results also suggest that the decrease of telomeric-repeat binding factor 2 (TRF2 may be the earliest event in the ara-C-induced telomere shortening, induction of endoreduplication and chromosomal fragmentation leading to cell death.

  4. Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells.

    Science.gov (United States)

    Inayat-Hussain, S H; Annuar, B O; Din, L B; Ali, A M; Ross, D

    2003-08-01

    Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.

  5. Detection of Mitochondrial Caspase Activity in Real Time In Situ in Live Cells

    Science.gov (United States)

    Zhang, Yingpei; Haskins, Catherine; Lopez-Cruzan, Marisa; Zhang, Jianhua; Centonze, Victoria E.; Herman, Brian

    2004-08-01

    Apoptosis plays an important role in many physiological and pathological processes. The initiation and execution of the cell death program requires activation of multiple caspases in a stringently temporal order. Here we describe a method that allows real-time observation of caspase activation in situ in live cells based on fluorescent resonance energy transfer (FRET) measurement using the prism and reflector imaging spectroscopy system (PARISS). When a fusion protein consisting of CFP connected to YFP via an intervening caspase substrate that has been targeted to a specific subcellular location is excited with a light source whose wavelength matches the cyan fluorescent protein (CFP) excitation peak, the energy absorbed by the CFP fluorophore is not emitted as fluorescence. Instead, the excitation energy is absorbed by the nearby yellow fluorescent protein (YFP) fluorophore that is covalently linked to CFP through a short peptide containing the caspase substrate. Cleavage of the linker peptide by caspases results in loss of FRET due to the separation of CFP and YFP fluorophores. Using a mitochondrially targeted CFP caspase 3 substrate YFP construct (mC3Y), we demonstrate for the first time that there is caspase-3-like activity in the mitochondrial matrix of some cells at very late stage of apoptosis.

  6. The Anti-Apoptotic Activity of BAG3 Is Restricted by Caspases and the Proteasome

    OpenAIRE

    Virador, Victoria M.; Davidson, Ben; Czechowicz, Josephine; Mai, Alisha; Kassis, Jareer; Kohn, Elise C.

    2009-01-01

    Background Caspase-mediated cleavage and proteasomal degradation of ubiquitinated proteins are two independent mechanisms for the regulation of protein stability and cellular function. We previously reported BAG3 overexpression protected ubiquitinated clients, such as AKT, from proteasomal degradation and conferred cytoprotection against heat shock. We hypothesized that the BAG3 protein is regulated by proteolysis. Methodology/Principal Findings Staurosporine (STS) was used as a tool to test ...

  7. O-GlcNAc regulates NEDD4-1 stability via caspase-mediated pathway

    International Nuclear Information System (INIS)

    Jiang, Kuan; Bai, Bingyang; Ta, Yajie; Zhang, Tingling; Xiao, Zikang; Wang, Peng George; Zhang, Lianwen

    2016-01-01

    O-GlcNAc modification of cytosolic and nuclear proteins regulates essential cellular processes such as stress responses, transcription, translation, and protein degradation. Emerging evidence indicates O-GlcNAcylation has a dynamic interplay with ubiquitination in cellular regulation. Here, we report that O-GlcNAc indirectly targets a vital E3 ubiquitin ligase enzyme of NEDD4-1. The protein level of NEDD4-1 is accordingly decreased following an increase of overall O-GlcNAc level upon PUGNAc or glucosamine stimulation. O-GlcNAc transferase (OGT) knockdown, overexpression and mutation results confirm that the stability of NEDD4-1 is negatively regulated by cellular O-GlcNAc. Moreover, the NEDD4-1 degradation induced by PUGNAc or GlcN is significantly inhibited by the caspase inhibitor. Our study reveals a regulation mechanism of NEDD4-1 stability by O-GlcNAcylation. - Highlights: • Reduced NEDD4-1 correlates with increased overall O-GlcNAc level. • OGT negatively regulates NEDD4-1 stability. • O-GlcNAc regulates NEDD4-1 through caspase-mediated pathway.

  8. Simple route of caspase-3 FRET sensor synthesis using “click chemistry”

    OpenAIRE

    Lišková, M. (Marcela); Křenková, J. (Jana); Klepárník, K. (Karel); Pazdera, P.; Foret, F. (František)

    2015-01-01

    Programmed cell death or apoptosis is regulated process of cell suicide. The central role in apoptosis play cysteine proteases called caspases. Caspases recognize tetra-peptide sequences Asp-Glu-Val-Asp (DEVD) on their substrates and hydrolyze peptide bonds after aspartic acid residues. Various techniques for the determination of caspase-3 are commercially available e.g. Enzyme Linked Immuno-Sorbent Assay (ELISA), Western blotting or flow cytometric analysis. The products of the cleavage can ...

  9. A caspase-2-RFXANK interaction and its implication for MHC class II expression.

    Science.gov (United States)

    Forsberg, Jeremy; Li, Xinge; Akpinar, Birce; Salvatori, Roger; Ott, Martin; Zhivotovsky, Boris; Olsson, Magnus

    2018-01-23

    Despite recent achievements implicating caspase-2 in tumor suppression, the enzyme stands out from the apoptotic caspase family as a factor whose function requires further clarification. To specify enzyme characteristics through the definition of interacting proteins in apoptotic or non-apoptotic settings, a yeast 2-hybrid (Y2H) screen was performed using the full-length protein as bait. The current report describes the analysis of a captured prey and putative novel caspase-2 interacting factor, the regulatory factor X-associated ankyrin-containing protein (RFXANK), previously associated with CIITA, the transactivator regulating cell-type specificity and inducibility of MHC class II gene expression. The interaction between caspase-2 and RFXANK was verified by co-immunoprecipitations using both exogenous and endogenous proteins, where the latter approach suggested that binding of the components occurs in the cytoplasm. Cellular co-localization was confirmed by transfection of fluorescently conjugated proteins. Enhanced caspase-2 processing in RFXANK-overexpressing HEK293T cells treated with chemotherapeutic agents further supported Y2H data. Yet, no distinct differences with respect to MHC class II expression were observed in plasma membranes of antigen-presenting cells derived from wild type and caspase-2 -/- mice. In contrast, increased levels of the total MHC class II protein was evident in protein lysates from caspase-2 RNAi-silenced leukemia cell lines and B-cells isolated from gene-targeted mice. Together, these data identify a novel caspase-2-interacting factor, RFXANK, and indicate a potential non-apoptotic role for the enzyme in the control of MHC class II gene regulation.

  10. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma hyopneumoniae in a porcine lung epithelial cell line with the involvement of caspase 3 and the MAPK pathway.

    Science.gov (United States)

    Ni, B; Bai, F F; Wei, Y; Liu, M J; Feng, Z X; Xiong, Q Y; Hua, L Z; Shao, G Q

    2015-09-25

    Lipid-associated membrane proteins (LAMPs) are important in the pathogenicity of the Mycoplasma genus of bacteria. We investigated whether Mycoplasma hyopneumoniae LAMPs have pathogenic potential by inducing apoptosis in a St. Jude porcine lung epithelial cell line (SJPL). LAMPs from a pathogenic strain of M. hyopneumoniae (strain 232) were used in the research. Our investigation made use of diamidino-phenylindole (DAPI) and acridine orange/ethidium bromide (AO/EB) staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) analysis, and Annexin-V-propidium iodide staining. After LAMP treatment for 24 h, typical changes were induced, chromosomes were concentrated, apoptotic bodies were observed, the 3'-OH groups of cleaved genomes were exposed, and the percentage of apoptotic cells reached 36.5 ± 11.66%. Caspase 3 and caspase 8 were activated and cytochrome c (cyt c) was released from the mitochondria into the cytoplasm; poly ADP ribose polymerase (PARP) was digested into two fragments; p38 mitogen-activated protein kinase (MAPK) was phosphorylated; and the expression of pro-apoptosis protein Bax increased while the anti-apoptosis protein Bcl-2 decreased. LAMPs also stimulated SJPL cells to produce nitric oxide (NO) and superoxide. This study demonstrated that LAMPs from M. hyopneumoniae can induce apoptosis in SJPL cells through the activation of caspase 3, caspase 8, cyt c, Bax, and p38 MAPK, thereby contributing to our understanding of the pathogenesis of M. hyopneumoniae, which should improve the treatment of M. hyopneumoniae infections.

  11. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    Science.gov (United States)

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536].

  12. Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway.

    Science.gov (United States)

    Kim, Jae-Sung; Park, Mi-Ra; Lee, Sook-Young; Kim, Do Kyoung; Moon, Sung-Min; Kim, Chun Sung; Cho, Seung Sik; Yoon, Goo; Im, Hee-Jeong; You, Jae-Seek; Oh, Ji-Su; Kim, Su-Gwan

    2014-02-01

    Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 µM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico‑A‑induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and -3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico‑A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer.

  13. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  14. Caspases and osteogenic markers-in vitro screening of inhibition impact

    Czech Academy of Sciences Publication Activity Database

    Adamová, Eva; Janečková, Eva; Klepárník, Karel; Matalová, Eva

    2016-01-01

    Roč. 52, č. 2 (2016), s. 144-148 ISSN 1071-2690 R&D Projects: GA ČR(CZ) GB14-37368G; GA ČR(CZ) GA14-28254S Institutional support: RVO:67985904 ; RVO:68081715 Keywords : osteogenesis * chondrogenesis * caspases * caspase-3 * gene expression Subject RIV: EA - Cell Biology; CB - Analytical Chemistry, Separation (UIACH-O) Impact factor: 0.897, year: 2016

  15. Apoptosis induced by chlormethine and ionizing radiations in normal and tumoral lymphocytes: role of caspase-3; Apoptose induite par la chlormethine et les radiations ionisantes dans les lymphocytes normaux et tumoraux: role de la caspase-3

    Energy Technology Data Exchange (ETDEWEB)

    Holl, V.P

    2000-07-01

    Apoptosis can be induced by various stimuli like ionizing radiations or alkylating agents. Recent works have shown that apoptosis due to ionizing radiations can be initiated by DNA and cell membrane alterations, via radical species generation, implying the in fine activation of effector caspases, and in particular caspase-3. The main goal of this work is to clarify the role of caspase-3 in the radio-induced apoptosis mechanisms and to study the effects of apoptosis inhibition on the behaviour of the damaged cells. The effects of activation and caspase-3 activity inhibition on the progress of spontaneous, radio-induced or chlormethine-induced apoptosis have been evaluated for normal and tumoral lymphocytes. A chemical molecule, the ebselen, which can mime the action of the endogenous glutathione peroxidase, and a tetra-peptide inhibitor, AC-DEVD-CHO, selective of effector caspases, have been selected. The results indicate an inhibition by ebselen of all morphological and biochemical characteristics of chlormethine-induced apoptosis and a restoring of the cells viability. This seleno-organic compound also reduces the drop of the intra-cellular glutathione level and the loss of the trans-membrane potential (M) of the mitochondrion in the MOLT-4 tumoral cells treated with chlormethine. In parallel, the AC-DEVD-CHO effect on apoptosis induction has been tested. This inhibitor stops some chlormethine-induced criteria of apoptosis without affecting the final loss of the mitochondrial M and the cells proliferation. AC-DEVD-CHO has been also incubated just before the irradiation of the culture cells. The inhibition of the specific DEVD caspases prevents the inter-nucleosomal fragmentation of DNA and partially delays the externalization of phosphatidylserine without changing the viability of the irradiated cells. Moreover, the analysis of the AC-DEVD-CHO pre-treated irradiated cells floating on the surface shows a strong mitochondrial lactate dehydrogenase activity, which

  16. Progesterone production requires activation of caspase-3 in preovulatory granulosa cells in a serum starvation model.

    Science.gov (United States)

    An, Li-Sha; Yuan, Xiao-Hua; Hu, Ying; Shi, Zi-Yun; Liu, Xiao-Qin; Qin, Li; Wu, Gui-Qing; Han, Wei; Wang, Ya-Qin; Ma, Xu

    2012-11-01

    Granulosa cells proliferate, differentiate, and undergo apoptosis throughout follicular development. Previous studies have demonstrated that stimulation of progesterone production is accompanied by caspase-3 activation. Moreover, we previously reported that arsenic enhanced caspase-3 activity coupled with progesterone production. Inhibition of caspase-3 activity can significantly inhibit progesterone production induced by arsenic or follicle-stimulating hormone (FSH). Here, we report that serum starvation induces caspase-3 activation coupled with augmentation of progesterone production. Serum starvation also increased the levels of cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein, both of which may contribute to progesterone synthesis in preovulatory granulosa cells. Inhibition of caspase-3 activity resulted in a decrease in progesterone production. Deactivation of caspase-3 activity by caspase-3 specific inhibitor also resulted in decreases in P450scc and StAR expression, which may partly contribute to the observed decrease in progesterone production. Our study demonstrates for the first time that progesterone production in preovulatory granulosa cells is required for caspase-3 activation in a serum starvation model. Inhibition of caspase-3 activity can result in decreased expression of the steroidogenic proteins P450scc and StAR. Our work provides further details on the relationship between caspase-3 activation and steroidogenesis and indicates that caspase-3 plays a critical role in progesterone production by granulosa cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection

    Science.gov (United States)

    Vojtech, Lucia N.; Scharping, Nichole; Woodson, James C.; Hansen, John D.

    2012-01-01

    The interleukin-1 family of cytokines are essential for the control of pathogenic microbes but are also responsible for devastating autoimmune pathologies. Consequently, tight regulation of inflammatory processes is essential for maintaining homeostasis. In mammals, interleukin-1 beta (IL-1β) is primarily regulated at two levels, transcription and processing. The main pathway for processing IL-1β is the inflammasome, a multiprotein complex that forms in the cytosol and which results in the activation of inflammatory caspase (caspase 1) and the subsequent cleavage and secretion of active IL-1β. Although zebrafish encode orthologs of IL-1β and inflammatory caspases, the processing of IL-1β by activated caspase(s) has never been examined. Here, we demonstrate that in response to infection with the fish-specific bacterial pathogen Francisella noatunensis, primary leukocytes from adult zebrafish display caspase-1-like activity that results in IL-1β processing. Addition of caspase 1 or pancaspase inhibitors considerably abrogates IL-1β processing. As in mammals, this processing event is concurrent with the secretion of cleaved IL-1β into the culture medium. Furthermore, two putative zebrafish inflammatory caspase orthologs, caspase A and caspase B, are both able to cleave IL-1β, but with different specificities. These results represent the first demonstration of processing and secretion of zebrafish IL-1β in response to a pathogen, contributing to our understanding of the evolutionary processes governing the regulation of inflammation.                   

  18. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila.

    Directory of Open Access Journals (Sweden)

    Takahiro Chihara

    2014-06-01

    Full Text Available Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity, we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs, Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.

  19. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila.

    Science.gov (United States)

    Chihara, Takahiro; Kitabayashi, Aki; Morimoto, Michie; Takeuchi, Ken-ichi; Masuyama, Kaoru; Tonoki, Ayako; Davis, Ronald L; Wang, Jing W; Miura, Masayuki

    2014-06-01

    Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity), we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs), Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.

  20. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing.

    Science.gov (United States)

    Zhang, Ruowen; Wu, Jiahui; Ferrandon, Sylvain; Glowacki, Katie J; Houghton, Janet A

    2016-12-06

    The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61.

  1. PIDDosome Expression and the Role of Caspase-2 Activation for Chemotherapy-Induced Apoptosis in RCCs

    Directory of Open Access Journals (Sweden)

    Sebastian Heikaus

    2010-01-01

    Full Text Available Background: The importance of caspase-2 activation for mediating apoptosis in cancer is not clear and seems to differ between different tumour types. Furthermore, only few data have been obtained concerning the expression of caspase-2, which can be alternatively spliced into caspase-2L and caspase-2S, and the other PIDDosome members PIDD and RAIDD in human tumours in vivo. We, therefore, investigated their expression in renal cell carcinomas (RCCs of the clear cell type in vivo and analysed the role of caspase-2 in chemotherapy-induced apoptosis in RCCs in vitro.

  2. Altered DNA methylation: a secondary mechanism involved in carcinogenesis.

    Science.gov (United States)

    Goodman, Jay I; Watson, Rebecca E

    2002-01-01

    This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?

  3. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Denamur, Sophie; Boland, Lidvine [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Beyaert, Maxime [Université catholique de Louvain, de Duve Institute, Laboratory of Physiological Chemistry, UCL B1.75.08, avenue Hippocrate, 75 B -1200 Brussels (Belgium); Verstraeten, Sandrine L. [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Fillet, Marianne [University of Liege, CIRM, Department of Pharmacy, Laboratory for the Analysis of Medicines, Quartier Hopital, Avenue Hippocrate, 15, B36, Tower 4, 4000 Liège 1 (Belgium); Tulkens, Paul M. [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium); Bontemps, Françoise [Université catholique de Louvain, de Duve Institute, Laboratory of Physiological Chemistry, UCL B1.75.08, avenue Hippocrate, 75 B -1200 Brussels (Belgium); Mingeot-Leclercq, Marie-Paule [Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, UCL B1.73.05, avenue E. Mounier, 73 – B1200 Brussels (Belgium)

    2016-10-15

    Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2α, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2α. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines. - Highlights: • Gentamicin induces apoptosis through p53 pathway. • Gentamicin inhibits proteosomal activity. • Gentamicin activates caspase-12.

  4. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum

    International Nuclear Information System (INIS)

    Denamur, Sophie; Boland, Lidvine; Beyaert, Maxime; Verstraeten, Sandrine L.; Fillet, Marianne; Tulkens, Paul M.; Bontemps, Françoise; Mingeot-Leclercq, Marie-Paule

    2016-01-01

    Gentamicin, an aminoglycoside used to treat severe bacterial infections, may cause acute renal failure. In the renal cell line LLC-PK1, gentamicin accumulates in lysosomes, induces alterations of their permeability, and triggers the mitochondrial pathway of apoptosis via activation of caspase-9 and -3 and changes in Bcl-2 family proteins. Early ROS production in lysosomes has been associated with gentamicin induced lysosomal membrane permeabilization. In order to better understand the multiple interconnected pathways of gentamicin-induced apoptosis and ensuing renal cell toxicity, we investigated the effect of gentamicin on p53 and p21 levels. We also studied the potential effect of gentamicin on proteasome by measuring the chymotrypsin-, trypsin- and caspase-like activities, and on endoplasmic reticulum by determining phopho-eIF2α, caspase-12 activation and GRP78 and 94. We observed an increase in p53 levels, which was dependent on ROS production. Accumulation of p53 resulted in accumulation of p21 and of phospho-eIF2α. These effects could be related to an impairment of proteasome as we demonstrated an inhibition of trypsin-and caspase-like activities. Moderate endoplasmic reticulum stress could also participate to cellular toxicity induced by gentamicin, with activation of caspase-12 without change in GRP74 and GRP98. All together, these data provide new mechanistic insights into the apoptosis induced by aminoglycoside antibiotics on renal cell lines. - Highlights: • Gentamicin induces apoptosis through p53 pathway. • Gentamicin inhibits proteosomal activity. • Gentamicin activates caspase-12.

  5. Apoptosis induced by chlormethine and ionizing radiations in normal and tumoral lymphocytes: role of caspase-3

    International Nuclear Information System (INIS)

    Holl, V.P.

    2000-01-01

    Apoptosis can be induced by various stimuli like ionizing radiations or alkylating agents. Recent works have shown that apoptosis due to ionizing radiations can be initiated by DNA and cell membrane alterations, via radical species generation, implying the in fine activation of effector caspases, and in particular caspase-3. The main goal of this work is to clarify the role of caspase-3 in the radio-induced apoptosis mechanisms and to study the effects of apoptosis inhibition on the behaviour of the damaged cells. The effects of activation and caspase-3 activity inhibition on the progress of spontaneous, radio-induced or chlormethine-induced apoptosis have been evaluated for normal and tumoral lymphocytes. A chemical molecule, the ebselen, which can mime the action of the endogenous glutathione peroxidase, and a tetra-peptide inhibitor, AC-DEVD-CHO, selective of effector caspases, have been selected. The results indicate an inhibition by ebselen of all morphological and biochemical characteristics of chlormethine-induced apoptosis and a restoring of the cells viability. This seleno-organic compound also reduces the drop of the intra-cellular glutathione level and the loss of the trans-membrane potential (M) of the mitochondrion in the MOLT-4 tumoral cells treated with chlormethine. In parallel, the AC-DEVD-CHO effect on apoptosis induction has been tested. This inhibitor stops some chlormethine-induced criteria of apoptosis without affecting the final loss of the mitochondrial M and the cells proliferation. AC-DEVD-CHO has been also incubated just before the irradiation of the culture cells. The inhibition of the specific DEVD caspases prevents the inter-nucleosomal fragmentation of DNA and partially delays the externalization of phosphatidylserine without changing the viability of the irradiated cells. Moreover, the analysis of the AC-DEVD-CHO pre-treated irradiated cells floating on the surface shows a strong mitochondrial lactate dehydrogenase activity, which

  6. Berberine Induces Apoptotic Cell Death via Activation of Caspase-3 and -8 in HL-60 Human Leukemia Cells: Nuclear Localization and Structure-Activity Relationships.

    Science.gov (United States)

    Okubo, Shinya; Uto, Takuhiro; Goto, Aya; Tanaka, Hiroyuki; Nishioku, Tsuyoshi; Yamada, Katsushi; Shoyama, Yukihiro

    2017-01-01

    Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5[Formula: see text]min to 15[Formula: see text]min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an [Formula: see text]-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.

  7. Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell-Independent Tumor Proliferation.

    Science.gov (United States)

    Zeng, Qi; Fu, Juan; Korrer, Michael; Gorbounov, Mikhail; Murray, Peter J; Pardoll, Drew; Masica, David L; Kim, Young J

    2018-05-01

    Immunosuppressive myeloid-derived suppressive cells (MDSCs) are characterized by their phenotypic and functional heterogeneity. To better define their T cell-independent functions within the tumor, sorted monocytic CD14 + CD11b + HLA-DR low/- MDSCs (mMDSC) from squamous cell carcinoma patients showed upregulated caspase-1 activity, which was associated with increased IL1β and IL18 expression. In vitro studies demonstrated that mMDSCs promoted caspase-1-dependent proliferation of multiple squamous carcinoma cell lines in both human and murine systems. In vivo , growth rates of B16, MOC1, and Panc02 were significantly blunted in chimeric mice adoptively transferred with caspase-1 null bone marrow cells under T cell-depleted conditions. Adoptive transfer of wild-type Gr-1 + CD11b + MDSCs from tumor-bearing mice reversed this antitumor response, whereas caspase-1 inhibiting thalidomide-treated MDSCs phenocopied the antitumor response found in caspase-1 null mice. We further hypothesized that MDSC caspase-1 activity could promote tumor-intrinsic MyD88-dependent carcinogenesis. In mice with wild-type caspase-1, MyD88-silenced tumors displayed reduced growth rate, but in chimeric mice with caspase-1 null bone marrow cells, MyD88-silenced tumors did not display differential tumor growth rate. When we queried the TCGA database, we found that caspase-1 expression is correlated with overall survival in squamous cell carcinoma patients. Taken together, our findings demonstrated that caspase-1 in MDSCs is a direct T cell-independent mediator of tumor proliferation. Cancer Immunol Res; 6(5); 566-77. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis.

    Science.gov (United States)

    Ye, Deju; Shuhendler, Adam J; Pandit, Prachi; Brewer, Kimberly D; Tee, Sui Seng; Cui, Lina; Tikhomirov, Grigory; Rutt, Brian; Rao, Jianghong

    2014-10-01

    Non-invasive detection of caspase-3/7 activity in vivo has provided invaluable predictive information regarding tumor therapeutic efficacy and anti-tumor drug selection. Although a number of caspase-3/7 targeted fluorescence and positron emission tomography (PET) imaging probes have been developed, there is still a lack of gadolinium (Gd)-based magnetic resonance imaging (MRI) probes that enable high spatial resolution detection of caspase-3/7 activity in vivo . Here we employ a self-assembly approach and develop a caspase-3/7 activatable Gd-based MRI probe for monitoring tumor apoptosis in mice. Upon reduction and caspase-3/7 activation, the caspase-sensitive nano-aggregation MR probe (C-SNAM: 1 ) undergoes biocompatible intramolecular cyclization and subsequent self-assembly into Gd-nanoparticles (GdNPs). This results in enhanced r 1 relaxivity-19.0 (post-activation) vs. 10.2 mM -1 s -1 (pre-activation) at 1 T in solution-and prolonged accumulation in chemotherapy-induced apoptotic cells and tumors that express active caspase-3/7. We demonstrate that C-SNAM reports caspase-3/7 activity by generating a significantly brighter T 1 -weighted MR signal compared to non-treated tumors following intravenous administration of C-SNAM, providing great potential for high-resolution imaging of tumor apoptosis in vivo .

  9. Caspase Activation of p21-Activated Kinase 2 Occurs During Cisplatin-Induced Apoptosis of SH-SY5Y Neuroblastoma Cells and in SH-SY5Y Cell Culture Models of Alzheimer’s and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jerry W. Marlin

    2010-04-01

    Full Text Available p21-activated kinase 2 (PAK-2 appears to have a dual function in the regulation of cell survival and cell death. Activation of full-length PAK-2 by the p21 G-proteins Rac or Cdc42 stimulates cell survival. However, PAK-2 is unique among the PAK family because it is also activated through proteolytic cleavage by caspase 3 or similar caspases to generate the constitutively active PAK-2p34 fragment. Caspase activation of PAK-2 correlates with the induction of apoptosis in response to many stimuli and recombinant expression of PAK-2p34 has been shown to stimulate apoptosis in several human cell lines. Here, we show that caspase activation of PAK-2 also occurs during cisplatin-induced apoptosis of SH-SY5Y neuroblastoma cells as well as in SH-SY5Y cell culture models for Alzheimer’s and Parkinson’s disease. Inhibition of mitochondrial complex I or of ubiquitin/proteasome-mediated protein degradation, which both appear to be involved in Parkinson’s disease, induce apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Overexpression of the amyloid precursor protein, which results in accumulation and aggregation of β-amyloid peptide, the main component of β-amyloid plaques in Alzheimer’s disease, also induces apoptosis and caspase activation of PAK-2 in SH-SY5Y cells. Expression of the PAK-2 regulatory domain inhibits caspase-activated PAK-2p34 and prevents apoptosis in 293T human embryonic kidney cells, indicating that caspase activation of PAK-2 is directly involved in the apoptotic response. This is the first evidence that caspase activation of PAK-2 correlates with apoptosis in cell culture models of Alzheimer’s and Parkinson’s disease and that selective inhibition of caspase-activated PAK-2p34 could prevent apoptosis.

  10. A mechanism for suppression of the CDP-choline pathway during apoptosis

    OpenAIRE

    Morton, Craig C.; Aitchison, Adam J.; Gehrig, Karsten; Ridgway, Neale D.

    2013-01-01

    Inhibition of the CDP-choline pathway during apoptosis restricts the availability of phosphatidylcholine (PtdCho) for assembly of membranes and synthesis of signaling factors. The N-terminal nuclear localization signal (NLS) in CTP:phosphocholine cytidylyltransferase (CCT)α is removed during apoptosis but the caspase(s) involved and the contribution to suppression of the CDP-choline pathway is unresolved. In this study we utilized siRNA silencing of caspases in HEK293 cells and caspase 3-defi...

  11. The Natural Antiangiogenic Compound AD0157 Induces Caspase-Dependent Apoptosis in Human Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Melissa García-Caballero

    2017-11-01

    Full Text Available Evasion of apoptosis is a hallmark of cancer especially relevant in the development and the appearance of leukemia drug resistance mechanisms. The development of new drugs that could trigger apoptosis in aggressive hematological malignancies, such as AML and CML, may be considered a promising antileukemic strategy. AD0157, a natural marine pyrrolidinedione, has already been described as a compound that inhibits angiogenesis by induction of apoptosis in endothelial cells. The crucial role played by defects in the apoptosis pathways in the pathogenesis, progression and response to conventional therapies of several forms of leukemia, moved us to analyze the effect of this compound on the growth and death of leukemia cells. In this work, human myeloid leukemia cells (HL60, U937 and KU812F were treated with AD0157 ranging from 1 to 10 μM and an experimental battery was applied to evaluate its apoptogenic potential. We report here that AD0157 was highly effective to inhibit cell growth by promotion of apoptosis in human myeloid leukemia cells, and provide evidence of its mechanisms of action. The apoptogenic activity of AD0157 on leukemia cells was verified by an increased chromatin condensation and DNA fragmentation, and confirmed by an augmentation in the apoptotic subG1 population, translocation of the membrane phosphatidylserine from the inner face of the plasma membrane to the cell surface and by cleavage of the apoptosis substrates PARP and lamin-A. In addition, AD0157 in the low micromolar range significantly enhanced the activities of the initiator caspases-8 and -9, and the effector caspases-3/-7 in a dose-dependent manner. Results presented here throw light on the apoptogenic mechanism of action of AD0157, mediated through caspase-dependent cascades, with an especially relevant role played by mitochondria. Altogether, these results suggest the therapeutic potential of this compound for the treatment of human myeloid leukemia.

  12. Molecular dynamics-assisted pharmacophore modeling of caspase-3-isatin sulfonamide complex: Recognizing essential intermolecular contacts and features of sulfonamide inhibitor class for caspase-3 binding.

    Science.gov (United States)

    Kumar, Sivakumar Prasanth; Patel, Chirag N; Jha, Prakash C; Pandya, Himanshu A

    2017-12-01

    The identification of isatin sulfonamide as a potent small molecule inhibitor of caspase-3 had fuelled the synthesis and characterization of the numerous sulfonamide class of inhibitors to optimize for potency. Recent works that relied on the ligand-based approaches have successfully shown the regions of optimizations for sulfonamide scaffold. We present here molecular dynamics-based pharmacophore modeling of caspase-3-isatin sulfonamide crystal structure, to elucidate the essential non-covalent contacts and its associated pharmacophore features necessary to ensure caspase-3 optimal binding. We performed 20ns long dynamics of this crystal structure to extract global conformation states and converted into structure-based pharmacophore hypotheses which were rigorously validated using an exclusive focussed library of experimental actives and inactives of sulfonamide class by Receiver Operating Characteristic (ROC) statistic. Eighteen structure-based pharmacophore hypotheses with better sensitivity and specificity measures (>0.6) were chosen which collectively showed the role of pocket residues viz. Cys163 (S 1 sub-site; required for covalent and H bonding with Michael acceptor of inhibitors), His121 (S 1 ; π stack with bicyclic isatin moiety), Gly122 (S 1 ; H bond with carbonyl oxygen) and Tyr204 (S 2 ; π stack with phenyl group of the isatin sulfonamide molecule) as stringent binding entities for enabling caspase-3 optimal binding. The introduction of spatial pharmacophore site points obtained from dynamics-based pharmacophore models in a virtual screening strategy will be helpful to screen and optimize molecules belonging to sulfonamide class of caspase-3 inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A ROS-dependent and Caspase-3-mediated apoptosis in sheep bronchial epithelial cells in response to Mycoplasma Ovipneumoniae infections.

    Science.gov (United States)

    Xue, Di; Li, Yanan; Jiang, Zhongjia; Deng, Guangcun; Li, Min; Liu, Xiaoming; Wang, Yujiong

    2017-05-01

    Mycoplasma Ovipneumoniae (M. ovipneumoniae) is a primary etiological agent of enzootic pneumonia in sheep and goats. It can enter and colonize ovine respiratory epithelial cells to establish an infection, which leads a serious cell death of epithelial cells. However, the nature of the interaction between pathogen of M. ovipneumoniae and host cells in the cell injury is currently not well understood. In this study, we investigated the epithelial cell apoptosis caused by an infection of M. ovipneumoniae in sheep primary air-liquid interface (ALI) epithelial cultures. The results showed that M. ovipneumoniae could specifically bind to ciliated cells at early stage of infection. Flow cytometric analysis demonstrated that an infection of M. ovipneumoniae induced a time-dependent cell apoptotic cell death, accompanied with an increased production of extracellular nitric oxide (NO), intracellular reactive oxygen species (ROS) production and activation of caspase-3 signaling in sheep bronchial epithelial cells. The induced cell apoptosis was further confirmed by a transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) assay. Interestingly, the M. ovipneumoniae-induced apoptosis and activation of caspase-3 were correlated with the production of ROS but not NO. Mechanistically, M. ovipneumoniae-induced cell apoptosis was mediated by a mechanism by increasing the expression of phosphorylation of p38 and pro-apoptotic proteins, and activating caspase-3, caspase-8 and poly ADP-ribose polymerase (PARP) cleavage. These results suggest a ROS-dependent and caspase-3-mediated cell apoptosis in sheep bronchial epithelial cells in response to M. ovipneumoniae infections. Copyright © 2017. Published by Elsevier B.V.

  14. Rhein triggers apoptosis via induction of endoplasmic reticulum stress, caspase-4 and intracellular calcium in primary human hepatic HL-7702 cells

    Energy Technology Data Exchange (ETDEWEB)

    KoraMagazi, Arouna [Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu (China); Wang, Dandan [Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu (China); Yousef, Bashir; Guerram, Mounia [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu (China); Yu, Feng, E-mail: yufengcpu14@yahoo.com [Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu (China); Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, Jiangsu (China)

    2016-04-22

    Rhein is an active component of rhubarb; a traditional Chinese medicine reported to induce apoptosis and cause liver toxicity. However, rhein's apoptotic-inducing effects, as well as its molecular mechanisms of action on hepatic cells need to be further explored. In the present study, rhein was found to trigger apoptosis in primary human hepatic HL-7702 cells as showed by annexin V/PI double staining assay and nuclear morphological changes demonstrated by Hoechst 33258 staining. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was caspase-dependent, presumably via ER-stress associated pathways, as illustrated by up-regulation of glucose-regulated protein 78 (GRP 78), PKR-like ER kinase (PERK), C-Jun N-terminal kinase (JNK) and CCAAT/enhancer-binding protein homologous protein (CHOP). Meanwhile, caspase-4 as a hallmark of ER-stress, was also showed to be activated following by caspase-3 activation. Furthermore, rhein also promoted intracellular elevation of calcium that contributed in apoptosis induction. Interestingly, pre-treatment with calpain inhibitor I reduced the effects of rhein on apoptosis induction and JNK activation. These data suggested that rhein-induced apoptosis through ER-stress and elevated intracellular calcium level in HL-7702 cells. - Highlights: • Rhein triggers apoptotic cell death on primary human hepatic HL-7702 cells. • Rhein leads to caspase-4 activation in HL-7702 cells. • Rhein induces endoplasmic reticulum stress pathways in HL-7702 cells. • Rhein causes elevation of intracellular calcium concentrations in HL-7702 cells.

  15. Caspase 8/10 are not mediating apoptosis in neuroblastoma cells treated with CDK inhibitory drugs

    OpenAIRE

    Ribas i Fortuny, Judit; Gómez Arbonés, Javier; Boix Torras, Jacint

    2005-01-01

    Olomoucine and Roscovitine are pharmacological inhibitors of cyclin-dependent kinases (CDK) displaying a promising profile as anticancer agents. Both compounds are effective inductors of apoptosis in a human neuroblastoma cell line, SH-SY5Y. The characterization of this process had suggested the involvement of an extrinsic pathway [Ribas, J., Boix, J., 2004. Cell differentiation, Caspase inhibition, and macromolecular synthesis blockage, but not Bcl-2 or Bcl-XL proteins, protect SH-SY5Y cells...

  16. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway.

    Science.gov (United States)

    Deng, Lin; Adachi, Tetsuya; Kitayama, Kikumi; Bungyoku, Yasuaki; Kitazawa, Sohei; Ishido, Satoshi; Shoji, Ikuo; Hotta, Hak

    2008-11-01

    We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).

  17. A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway.

    Science.gov (United States)

    Balachandran, C; Sangeetha, B; Duraipandiyan, V; Raj, M Karunai; Ignacimuthu, S; Al-Dhabi, N A; Balakrishna, K; Parthasarathy, K; Arulmozhi, N M; Arasu, M Valan

    2014-12-05

    The aim of this study was to investigate the anticancer activity of a flavonoid type of compound isolated from soil derived filamentous bacterium Streptomyces sp. (ERINLG-4) and to explore the molecular mechanisms of action. Cytotoxic properties of ethyl acetate extract was carried out against A549 lung cancer cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cytotoxic properties of isolated compound were investigated in A549 lung cancer cell line, COLO320DM cancer cell line and Vero cells. The compound showed potent cytotoxic properties against A549 lung cancer cell line and moderate cytotoxic properties against COLO320DM cancer cell line. Isolated compound showed no toxicity up to 2000 μg/mL in Vero cells. So we have chosen the A549 lung cancer cell line for further anticancer studies. Intracellular visualization was done by using a laser scanning confocal microscope. Apoptosis was measured using DNA fragmentation technique. Treatment of the A549 cancer cells with isolated compound significantly reduced cell proliferation, increased formation of fragmented DNA and apoptotic body. Activation of caspase-9 and caspase-3 indicated that compound may be inducing intrinsic and extrinsic apoptosis pathways. Bcl-2, p53, pro-caspases, caspase-3, caspase-9 and cytochrome c release were detected by western blotting analysis after compound treatment (123 and 164 μM). The activities of pro-caspases-3, caspase-9 cleaved to caspase-3 and caspase-9 gradually increased after the addition of isolated compound. But Bcl-2 protein was down regulated after treatment with isolated compound. Molecular docking studies showed that the compound bound stably to the active sites of caspase-3 and caspase-9. These results strongly suggest that the isolated compound induces apoptosis in A549 cancer cells via caspase activation through cytochrome c release from mitochondria. The present results might provide helpful suggestions for the design of

  18. Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway

    Science.gov (United States)

    KIM, JAE-SUNG; PARK, MI-RA; LEE, SOOK-YOUNG; KIM, DO KYOUNG; MOON, SUNG-MIN; KIM, CHUN SUNG; CHO, SEUNG SIK; YOON, GOO; IM, HEE-JEONG; YOU, JAE-SEEK; OH, JI-SU; KIM, SU-GWAN

    2014-01-01

    Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 μM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico-A-induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and −3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico-A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer. PMID:24337492

  19. Biological Characteristics of Caspase-14 and Its Expression in Neoplastic Diseases in the View of Translational Medicine

    Directory of Open Access Journals (Sweden)

    Kang-sheng LIU

    2016-06-01

    Full Text Available Caspase-14, a member of caspase family, only exists in mammals. As the most divergent member in the family of mammalian caspases, caspase-14 displays a variety of unique characteristics. It is expressed in a limited number of tissues and has the shortest amino acid sequence within the caspase protein family. At present, it has been found that caspase-14 is functionally different from the inflammatory reaction group of typical caspase family members. It exerts a certain effect in the promotion of final differentiation of epidermal cells and hydration of stratum corneum so as to maintain the steady state of skin barrier. In recent years, caspase-14 expression has been discovered in neoplastic diseases. Translational medicine integrates experimental research results and clinical guidance into the optimal implementation criteria for promoting the prediction, prevention and treatment of diseases. Via human genomics and molecular biology, translational medicine offers a possibility of screening molecular markers so that it can be used to diagnose the neoplastic diseases. In this article, the biological characteristics and substrates of caspase-14 as well as its expression in embryonic period and neoplastic diseases were reviewed.

  20. Melatonin partially protects 661W cells from H2O2-induced death by inhibiting Fas/FasL-caspase-3.

    Science.gov (United States)

    Sánchez-Bretaño, Aída; Baba, Kenkichi; Janjua, Uzair; Piano, Ilaria; Gargini, Claudia; Tosini, Gianluca

    2017-01-01

    Previous studies have shown that melatonin (MEL) signaling is involved in the modulation of photoreceptor viability during aging. Recent work by our laboratory suggested that MEL may protect cones by modulating the Fas/FasL-caspase-3 pathway. In this study, we first investigated the presence of MEL receptors (MT 1 and MT 2 ) in 661W cells, then whether MEL can prevent H 2 O 2 -induced cell death, and last, through which pathway MEL confers protection. The mRNA and proteins of the MEL receptors were detected with quantitative PCR (q-PCR) and immunocytochemistry, respectively. To test the protective effect of MEL, 661W cells were treated with H 2 O 2 for 2 h in the presence or absence of MEL, a MEL agonist, and an antagonist. To study the pathways involved in H 2 O 2 -mediated cell death, a Fas/FasL antagonist was used before the exposure to H 2 O 2 . Finally, Fas/FasL and caspase-3 mRNA was analyzed with q-PCR and immunocytochemistry in cells treated with H 2 O 2 and/or MEL. Cell viability was analyzed by using Trypan Blue. Both MEL receptors (MT 1 and MT 2 ) were detected at the mRNA and protein levels in 661W cells. MEL partially prevented H 2 O 2 -mediated cell death (20-25%). This effect was replicated with IIK7 (a melatonin receptor agonist) when used at a concentration of 1 µM. Preincubation with luzindole (a melatonin receptor antagonist) blocked MEL protection. Kp7-6, an antagonist of Fas/FasL, blocked cell death caused by H 2 O 2 similarly to what was observed for MEL. Fas, FasL, and caspase-3 expression was increased in cells treated with H 2 O 2 , and this effect was prevented by MEL. Finally, MEL treatment partially prevented the activation of caspase-3 caused by H 2 O 2 . The results demonstrate that MEL receptors are present and functional in 661W cells. MEL can prevent photoreceptor cell death induced by H 2 O 2 via the inhibition of the proapoptotic pathway Fas/FasL-caspase-3.

  1. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis

    International Nuclear Information System (INIS)

    Kim, Sun Don; Moon, Chang Kyu; Eun, Su-Yong; Ryu, Pan Dong; Jo, Sangmee Ahn

    2005-01-01

    Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis

  2. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    Full Text Available BACKGROUND: Fucoidan extract (FE, an enzymatically digested compound with a low molecular weight, is extracted from brown seaweed. As a natural compound with various actions, FE is attractive, especially in Asian countries, for improving the therapeutic efficacy and safety of cancer treatment. The present study was carried out to investigate the anti-tumor properties of FE in human carcinoma cells and further examine the underlying mechanisms of its activities. METHODOLOGY/PRINCIPAL FINDING: FE inhibits the growth of MCF-7, MDA-MB-231, HeLa, and HT1080 cells. FE-mediated apoptosis in MCF-7 cancer cells is accompanied by DNA fragmentation, nuclear condensation, and phosphatidylserine exposure. FE induces mitochondrial membrane permeabilization (MMP through loss of mitochondrial membrane potential (ΔΨm and regulation of the expression of Bcl-2 family members. Release of apoptosis-inducing factor (AIF and cytochrome c precedes MMP. AIF release causes DNA fragmentation, the final stage of apoptosis, via a caspase-independent mitochondrial pathway. Additionally, FE was found to induce phosphorylation of c-Jun N-terminal kinase (JNK, p38, and extracellular signal-regulated kinase (ERK 1/2, and apoptosis was found to be attenuated by inhibition of JNK. Furthermore, FE-mediated apoptosis was found to involve the generation of reactive oxygen species (ROS, which are responsible for the decrease of ΔΨm and phosphorylation of JNK, p38, and ERK1/2 kinases. CONCLUSIONS/SIGNIFICANCE: These data suggest that FE activates a caspase-independent apoptotic pathway in MCF-7 cancer cells through activation of ROS-mediated MAP kinases and regulation of the Bcl-2 family protein-mediated mitochondrial pathway. They also provide evidence that FE deserves further investigation as a natural anticancer and cancer preventive agent.

  3. Structural basis for alpha fetoprotein-mediated inhibition of caspase-3 activity in hepatocellular carcinoma cells.

    Science.gov (United States)

    Lin, Bo; Zhu, Mingyue; Wang, Wenting; Li, Wei; Dong, Xu; Chen, Yi; Lu, Yan; Guo, Junli; Li, Mengsen

    2017-10-01

    Alpha-fetoprotein (AFP) is an early serum growth factor in the foetal liver development and hepatic carcinogenesis; However, the precise biological role of cytoplasmic AFP remains elusive. Although we recently demonstrated that cytoplasmic AFP might interact with caspase-3 and inhibit the signal transduction of apoptosis in human hepatocellular carcinoma (HCC) cells, the details of this interaction are not clear. To reveal the molecular relationship between AFP and caspase-3, we performed molecular docking, co-immunoprecipitation (Co-IP), laser confocal microscopy, site-directed mutagenesis and functional experiments to analyse the key amino acid residues in the binding site of caspase-3. The results of Co-IP, laser confocal microscopy and functional analyses were consistent with the computational model. We also used the model to explain why AFP cannot bind to caspase-8. These results provide the molecular basis for the AFP-mediated inhibition of caspase-3 activity in HCC cells. Altogether, we found that AFP interacts with caspase-3 through precise amino acids, namely loop-4 residues Glu-248, Asp-253 and His-257. The results further demonstrated that AFP plays a critical role in the inhibition of the apoptotic signal transduction that mediated by caspase-3. Thus, AFP might represent a novel biotarget for the therapy of HCC patients. © 2017 UICC.

  4. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques

    Science.gov (United States)

    Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li

    2010-07-01

    Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.

  5. Molecular Mechanisms Regulating Ocular Apoptosis in Zebrafish gdf6a Mutants

    DEFF Research Database (Denmark)

    Pant, Sameer D.; March, Lindsey D.; Famulski, Jakub K.

    2013-01-01

    intrinsic or extrinsic apoptotic mechanisms were involved, morpholino antisense oligonucleotides targeting baxa, baxb, and p53 were employed. Caspase-3 immunohistochemistry (IHC) was performed to assay apoptosis. Pharmacologic inhibition (using SB203580) and IHC were used to investigate the role of p38...... occurs 28 hours post fertilization (hpf) in gdf6a(-/-) mutants that is mediated independently of p53 by intrinsic mechanisms involving Bax proteins. Also, gdf6a(-/-) mutants exhibit markedly increased p38 MAP kinase activation that can be inhibited to significantly reduce retinal apoptosis. A reduction...... in retinal smad1 expression was also noted in gdf6a(-/-) mutants. CONCLUSIONS. gdf6a(-/-)-induced apoptosis is characterized by the involvement of intrinsic apoptotic pathways, p38 MAP kinases, and dysregulated smad expression. Modulation of key mediators can inhibit retinal apoptosis offering potential...

  6. Mercury-Induced Externalization of Phosphatidylserine and Caspase 3 Activation in Human Liver Carcinoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-03-01

    Full Text Available Apoptosis arises from the active initiation and propagation of a series of highly orchestrated specific biochemical events leading to the demise of the cell. It is a normal physiological process, which occurs during embryonic development as well as in the maintenance of tissue homeostasis. Diverse groups of molecules are involved in the apoptosis pathway and it functions as a mechanism to eliminate unwanted or irreparably damaged cells. However, inappropriate induction of apoptosis by environmental agents has broad ranging pathologic implications and has been associated with several diseases including cancer. The toxicity of several heavy metals such as mercury has been attributed to their high affinity to sulfhydryl groups of proteins and enzymes, and their ability to disrupt cell cycle progression and/or apoptosis in various tissues. The aim of this study was to assess the potential for mercury to induce early and late-stage apoptosis in human liver carcinoma (HepG2 cells. The Annexin-V and Caspase 3 assays were performed by flow cytometric analysis to determine the extent of phosphatidylserine externalization and Caspase 3 activation in mercury-treated HepG2 cells. Cells were exposed to mercury for 10 and 48 hours respectively at doses of 0, 1, 2, and 3 μg/mL based on previous cytotoxicity results in our laboratory indicating an LD50 of 3.5 ± 0.6 μg/mL for mercury in HepG2 cells. The study data indicated a dose response relationship between mercury exposure and the degree of early and late-stage apoptosis in HepG2 cells. The percentages of cells undergoing early apoptosis were 0.03 ± 0.03%, 5.19 ± 0.04%, 6.36 ± 0.04%, and 8.84 ± 0.02% for 0, 1, 2, and 3 μg/mL of mercury respectively, indicating a gradual increase in apoptotic cells with increasing doses of mercury. The percentages of Caspase 3 positive cells undergoing late apoptosis were 3.58 ± 0.03%, 17.06 ± 0

  7. Transcriptome analysis of the Spodoptera frugiperda ascovirus in vivo provides insights into how its apoptosis inhibitors and caspase promote increased synthesis of viral vesicles and virion progeny.

    Science.gov (United States)

    Zaghloul, Heba; Hice, Robert; Arensburger, Peter; Federici, Brian A

    2017-09-27

    Ascoviruses are ds DNA viruses that attack caterpillars and differ from all other viruses by inducing nuclear lysis followed by cleavage of host cells into numerous anucleate vesicles in which virus replication continues as these grow in the blood. Ascoviruses are also unusual in that most encode apoptosis inhibitors and caspase or caspase-like proteins. A robust cell line to study the novel molecular biology of ascovirus replication in vitro is lacking. Therefore, we used strand-specific RNA-Seq to study transcription in vivo in third instars of Spodoptera frugiperda infected with the Spodoptera frugiperda ascovirus, a member of the type species, Spodoptera frugiperda ascovirus (SfAV-1a), sampling transcripts at different time points after infection. We targeted transcription of two types of SfAV-1a genes; first, 44 core genes that occur in several ascovirus species, and second, 26 genes predicted in silico to have metabolic functions likely involved in synthesizing viral vesicle membranes. Gene cluster analysis showed differences in temporal expression of SfAV-1a genes, enabling their assignment to three temporal classes; early, late and very late. Inhibitors of apoptosis (IAP-like proteins; ORF016, ORF025 and ORF074) were expressed early, whereas its caspase (ORF073) was expressed very late, which correlated with apoptotic events leading to viral vesicle formation. Expression analysis revealed that a Diedel gene homolog (ORF121), the only known "virokine," was highly expressed, implying this ascovirus protein helps evade innate host immunity. Lastly, single-nucleotide resolution of RNA-Seq data revealed 15 bicistronic and tricistronic messages along the genome, an unusual occurrence for large ds DNA viruses. IMPORTANCE Unlike all other DNA viruses, ascoviruses code for an executioner caspase, apparently involved in a novel cytopathology in which viral replication induces nuclear lysis followed by cell cleavage yielding numerous large anucleate viral vesicles

  8. Apoptosis induction is involved in UVA-induced autolysis in sea cucumber Stichopus japonicus.

    Science.gov (United States)

    Qi, Hang; Fu, Hui; Dong, Xiufang; Feng, Dingding; Li, Nan; Wen, Chengrong; Nakamura, Yoshimasa; Zhu, Beiwei

    2016-05-01

    Autolysis easily happens to sea cucumber (Stichopus japonicus, S. japonicus) for external stimulus like UV exposure causing heavy economic losses. Therefore, it is meaningful to reveal the mechanism of S. japonicas autolysis. In the present study, to examine the involvement of apoptosis induction in UVA-induced autolysis of S. japonicas, we investigated the biochemical events including the DNA fragmentation, caspase-3 activation, mitogen-activated protein kinases (MAPKs) phosphorylation and free radical formation. Substantial morphological changes such as intestine vomiting and dermatolysis were observed in S. japonicus during the incubation after 1-h UVA irradiation (10W/m(2)). The degradation of the structural proteins and enhancement of cathepsin L activity were also detected, suggesting the profound impact of proteolysis caused by the UVA irradiation even for 1h. Furthermore, the DNA fragmentation and specific activity of caspase-3 was increased up to 12h after UVA irradiation. The levels of phosphorylated p38 mitogen activated protein kinase (MAPK) and phosphorylated c-Jun.-N-terminal kinase (JNK) were significantly increased by the UVA irradiation for 1h. An electron spin resonance (ESR) analysis revealed that UVA enhanced the free radical formation in S. japonicas, even through we could not identify the attributed species. These results suggest that UVA-induced autolysis in S. japonicas at least partially involves the oxidative stress-sensitive apoptosis induction pathway. These data present a novel insight into the mechanisms of sea cucumber autolysis induced by external stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. An Allergic Lung Microenvironment Suppresses Carbon Nanotube-Induced Inflammasome Activation via STAT6-Dependent Inhibition of Caspase-1.

    Directory of Open Access Journals (Sweden)

    Kelly A Shipkowski

    Full Text Available Multi-walled carbon nanotubes (MWCNTs represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2 cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation.THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses.Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased

  10. JS-K, a nitric oxide prodrug, induces cytochrome c release and caspase activation in HL-60 myeloid leukemia cells.

    Science.gov (United States)

    Udupi, Vidya; Yu, Margaret; Malaviya, Swati; Saavedra, Joseph E; Shami, Paul J

    2006-10-01

    Nitric oxide (NO) induces differentiation and apoptosis in acute myelogenous leukemia (AML) cells. The NO prodrug O2-(2,4-dinitrophenyl)1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate, or JS-K, has potent antileukemic activity. JS-K induces apoptosis in HL-60 cells by a caspase-dependent mechanism. The purpose of this study was to determine the pathway through which JS-K induces apoptosis. We show that JS-K alters mitochondrial membrane potential (DeltaPsim) and induces cytochrome c release from mitochondria into the cytoplasm. Treatment with JS-K resulted in activation of Caspase (Casp) 9, Casp 3 and Casp 8. JS-K constitutes a promising lead for a new class of anti-leukemic agents.

  11. Bicaudal is a conserved substrate for Drosophila and mammalian caspases and is essential for cell survival.

    LENUS (Irish Health Repository)

    Creagh, Emma M

    2009-01-01

    Members of the caspase family of cysteine proteases coordinate cell death through restricted proteolysis of diverse protein substrates and play a conserved role in apoptosis from nematodes to man. However, while numerous substrates for the mammalian cell death-associated caspases have now been described, few caspase substrates have been identified in other organisms. Here, we have utilized a proteomics-based approach to identify proteins that are cleaved by caspases during apoptosis in Drosophila D-Mel2 cells, a subline of the Schneider S2 cell line. This approach identified multiple novel substrates for the fly caspases and revealed that bicaudal\\/betaNAC is a conserved substrate for Drosophila and mammalian caspases. RNAi-mediated silencing of bicaudal expression in Drosophila D-Mel2 cells resulted in a block to proliferation, followed by spontaneous apoptosis. Similarly, silencing of expression of the mammalian bicaudal homologue, betaNAC, in HeLa, HEK293T, MCF-7 and MRC5 cells also resulted in spontaneous apoptosis. These data suggest that bicaudal\\/betaNAC is essential for cell survival and is a conserved target of caspases from flies to man.

  12. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells

    Directory of Open Access Journals (Sweden)

    Chen YH

    2013-07-01

    -Jun NH2-terminal kinase, extracellular signal-regulated kinase, and p38 protein phosphorylations. Moreover, cordycepin plus cisplatin cotreatment significantly activated those proteins with much better effects among three cell lines. Conclusion: Cordycepin plus cisplatin have better apoptotic effect by activating caspase activation with possible MAPK pathway involvement in HNSCC cells. Keywords: cordycepin, cisplatin, apoptosis, caspase, MAPK, HNSCC

  13. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    Directory of Open Access Journals (Sweden)

    R.L. Figueira

    2016-01-01

    Full Text Available Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC. This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group: 1 preterm control (PTC, 2 preterm ventilated (PTV, 3 preterm asphyxiated (PTA, 4 preterm asphyxiated and ventilated (PTAV, 5 term control (TC, 6 term ventilated (TV, 7 term asphyxiated (TA, and 8 term asphyxiated and ventilated (TAV. We measured body, brain, and intestine weights and respective ratios [(BW, (BrW, (IW, (BrW/BW and (IW/BW]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus and intestine (jejunum/ileum tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP. IW was lower in the TA than in the other terms (P<0.05, and the IW/BW ratio was lower in the TA than in the TAV (P<0.005. PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex and TA (cortex/hippocampus (P<0.005. I-FABP was higher in PTAV (P<0.005 and TA (ileum (P<0.05. I-FABP expression was increased in PTAV subgroup (P<0.0001. Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.

  14. The interaction between the light source dose and caspase-dependent and -independent apoptosis in human SK-MEL-3 skin cancer cells following photodynamic therapy with zinc phthalocyanine: A comparative study.

    Science.gov (United States)

    Doustvandi, Mohammad Amin; Mohammadnejad, Fateme; Mansoori, Behzad; Mohammadi, Ali; Navaeipour, Farzaneh; Baradaran, Behzad; Tajalli, Habib

    2017-11-01

    The aim of this study is to determine the behavior of relative expression of Bcl-2, caspase-8, caspase-9, and caspase-3 genes of/in SK-MEL-3 cancer cells and explore molecular mechanisms responsible for the apoptosis response during an in vitro photodynamic therapy (PDT) with Zinc Phthalocyanine (ZnPc) using different doses of the light source. In this study, firstly the cytotoxic effects of ZnPc-PDT on SK-MEL-3 cells were evaluated. By irradiating the laser, ZnPc induced a significant amount of apoptosis on SK-MEL-3 cells in three IC 50 s including 0.064±0.01, 0.043±0.01, and 0.036±0.01μg/mL at the doses of 8, 16, and 24J/cm 2 , respectively. Moreover, flow cytometry and QRT-PCR experiments were done. The high percentage of apoptotic cells was seen in the early apoptosis stage. The expression of Bcl-2 and caspase-8 genes at all doses of laser experienced an obvious reduction in comparison to the control group. On the other hand, although the expression of caspase-9 and caspase-3 genes remains almost constant at 8J/cm 2 , but they faced an increment at 16 and 24J/cm 2 doses. These data reveal caspase-dependent apoptosis in high and caspase-independent apoptosis in low doses of laser. Based on the results of present work, it can be suggested that the dose of the light source is a key factor in induction of caspase-dependent and caspase-independent apoptosis pathways following PDT. Copyright © 2017. Published by Elsevier B.V.

  15. In vivo imaging of hierarchical spatiotemporal activation of caspase-8 during apoptosis.

    Directory of Open Access Journals (Sweden)

    Katsuya Kominami

    Full Text Available BACKGROUND: Activation of caspases is crucial for the execution of apoptosis. Although the caspase cascade associated with activation of the initiator caspase-8 (CASP8 has been investigated in molecular and biochemical detail, the dynamics of CASP8 activation are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: We have established a biosensor based on fluorescence resonance energy transfer (FRET for visualizing apoptotic signals associated with CASP8 activation at the single-cell level. Our dual FRET (dual-FRET system, comprising a triple fusion fluorescent protein, enabled us to simultaneously monitor the activation of CASP8 and its downstream effector, caspase-3 (CASP3 in single live cells. With the dual-FRET-based biosensor, we detected distinct activation patterns of CASP8 and CASP3 in response to various apoptotic stimuli in mammalian cells, resulting in the positive feedback amplification of CASP8 activation. We reproduced these observations by in vitro reconstitution of the cascade, with a recombinant protein mixture that included procaspases. Furthermore, using a plasma membrane-bound FRET-based biosensor, we captured the spatiotemporal dynamics of CASP8 activation by the diffusion process, suggesting the focal activation of CASP8 is sufficient to propagate apoptotic signals through death receptors. CONCLUSIONS: Our new FRET-based system visualized the activation process of both initiator and effector caspases in a single apoptotic cell and also elucidated the necessity of an amplification loop for full activation of CASP8.

  16. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris.

    Directory of Open Access Journals (Sweden)

    Camille Luyet

    Full Text Available The majority of pemphigus vulgaris (PV patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis. The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG, PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice as well as PV patients' biopsies (n=6. A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other

  17. Isolation and identification of gene mediating radiation-induced apoptosis in human leukemia U937 cells

    International Nuclear Information System (INIS)

    Tong Xin; Luo Ying; Dong Yan; Sun Zhixian

    1998-01-01

    Objective: Increasing evidences suggest that Caspase family proteases play an important role in the effector mechanism of apoptotic cell death. Radiation (IR) can induce apoptosis in tumor cells, so it is very important to isolate and identify the member of the Caspase family proteases involved in IR-induced apoptosis, and this would contribute to the understanding of the mechanism responsible for apoptosis execution. Methods: A PCR approach to isolate genes for IR-induced apoptosis was developed. The approach used degenerated oligonucleotide encoding the highly conserved peptides that were present in all known Caspases. Results: Protease inhibitors special for Caspases could block the apoptotic cell death caused by IR, and Caspase-3 was isolated from irradiated human leukemia U937 cells. Conclusion: Caspases involve in IR-induced apoptosis, and Caspase-3 is the pivotal element of IR-induced apoptosis

  18. Ecstasy-Induced Caspase Expression Alters Following Ginger Treatment

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Asl

    2013-11-01

    Full Text Available Introduction: Exposure to 3-4, methylenedioxymethamphetamine (MDMA leads to cell death. Herein, we studied the protective effects of ginger on MDMA- induced apoptosis. Methods: 15 Sprague dawley male rats were administrated with 0, 10 mg/kg MDMA, or MDMA along with 100mg/kg ginger, IP for 7 days. Brains were removed to study the caspase 3, 8, and 9 expressions in the hippocampus by RT-PCR. Data was analyzed by SPSS 16 software using the one-way ANOVA test. Results: MDMA treatment resulted in a significant increase in caspase 3, 8, and 9 as compared to the sham group (p<0.001. Ginger administration however, appeared to significantly decrease the same (p<0.001. Discussion: Our findings suggest that ginger consumption may lead to the improvement of MDMA-induced neurotoxicity.

  19. Protein phosphatases 2A as well as reactive oxygen species involved in tributyltin-induced apoptosis in mouse livers.

    Science.gov (United States)

    Zhang, Yali; Chen, Yonggang; Sun, Lijun; Liang, Jing; Guo, Zonglou; Xu, Lihong

    2014-02-01

    Tributyltin (TBT), a highly toxic environmental contaminant, has been shown to induce caspase-3-dependent apoptosis in human amniotic cells through protein phosphatase 2A (PP2A) inhibition and consequent JNK activation. This in vivo study was undertaken to further verify the results derived from our previous in vitro study. Mice were orally dosed with 0, 10, 20, and 60 mg/kg of body weight TBT, and levels of PP2A, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), Bax/Bcl-2, and caspase-3 were detected in the mouse livers. Apoptosis was also evaluated using the TUNEL assay. The results showed that PP2A activity was inhibited, ROS levels were elevated, and MAPKs including ERK, JNK, and p38 were activated in mouse livers treated with the highest dose of TBT. Additionally, the ratio of Bax/Bcl-2 was increased, caspase-3 was activated, and apoptosis in mouse livers could be detected in the highest dose group. Therefore, a possible signaling pathway in TBT-induced apoptosis in mouse livers involves PP2A inhibition and ROS elevation serving a pivotal function as upstream activators of MAPKs; activation of MAPKs in turn leads to an increase in the Bax/Bcl-2 ratio, ultimately leading to the activation of caspase-3. The results give a comprehensive and novel description of the mechanism of TBT-induced toxicity. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  20. Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells.

    Science.gov (United States)

    Bergadà, Laura; Sorolla, Annabel; Yeramian, Andree; Eritja, Nuria; Mirantes, Cristina; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-08-01

    Histone deacetylase inhibitors such as Vorinostat display anti-neoplastic activity against a variety of solid tumors. Here, we have investigated the anti-tumoral activity of Vorinostat on endometrial cancer cells. We have found that Vorinostat caused cell growth arrest, loss of clonogenic growth and apoptosis of endometrial cancer cells. Vorinostat-induced the activation of caspase-8 and -9, the initiators caspases of the extrinsic and the intrinsic apoptotic pathways, respectively. Next, we investigated the role of the extrinsic pathway in apoptosis triggered by Vorinostat. We found that Vorinostat caused a dramatic decrease of FLIP mRNA and protein levels. However, overexpression of the long from of FLIP did not block Vorinostat-induced apoptosis. To further investigate the role of extrinsic apoptotic pathway in Vorinostat-induced apoptosis, we performed an shRNA-mediated knock-down of caspase-8. Surprisingly, downregulation of caspase-8 alone caused a marked decrease in clonogenic ability and reduced the growth of endometrial cancer xenografts in vivo, revealing that targeting caspase-8 may be an attractive target for anticancer therapy on endometrial tumors. Furthermore, combination of caspase-8 inhibition and Vorinostat treatment caused an enhancement of apoptotic cell death and a further decrease of clonogenic growth of endometrial cancer cells. More importantly, combination of Vorinostat and caspase-8 inhibition caused a nearly complete inhibition of tumor xenograft growth. Finally, we demonstrate that cell death triggered by Vorinostat alone or in combination with caspase-8 shRNAs was inhibited by the anti-apoptotic protein Bcl-XL. Our results suggest that combinatory therapies using Vorinostat treatment and caspase-8 inhibition can be an effective treatment for endometrial carcinomas. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release

    Directory of Open Access Journals (Sweden)

    Zhang YueMei

    2005-02-01

    Full Text Available Abstract Background Apoptosis plays a key role in cell death observed in neurodegenerative diseases marked by a progressive loss of neurons as seen in Alzheimer's disease. Although the exact cause of apoptosis is not known, a number of factors such as free radicals, insufficient levels of nerve growth factors and excessive levels of glutamate have been implicated. We and others, have previously reported that in a stable HT22 neuronal cell line, glutamate induces apoptosis as indicated by DNA fragmentation and up- and down-regulation of Bax (pro-apoptotic, and Bcl-2 (anti-apoptotic genes respectively. Furthermore, these changes were reversed/inhibited by estrogens. Several lines of evidence also indicate that a family of cysteine proteases (caspases appear to play a critical role in neuronal apoptosis. The purpose of the present study is to determine in primary cultures of cortical cells, if glutamate-induced neuronal apoptosis and its inhibition by estrogens involve changes in caspase-3 protease and whether this process is mediated by Fas receptor and/or mitochondrial signal transduction pathways involving release of cytochrome c. Results In primary cultures of rat cortical cells, glutamate induced apoptosis that was associated with enhanced DNA fragmentation, morphological changes, and up-regulation of pro-caspase-3. Exposure of cortical cells to glutamate resulted in a time-dependent cell death and an increase in caspase-3 protein levels. Although the increase in caspase-3 levels was evident after 3 h, cell death was only significantly increased after 6 h. Treatment of cells for 6 h with 1 to 20 mM glutamate resulted in a 35 to 45% cell death that was associated with a 45 to 65% increase in the expression of caspase-3 protein. Pretreatment with caspase-3-protease inhibitor z-DEVD or pan-caspase inhibitor z-VAD significantly decreased glutamate-induced cell death of cortical cells. Exposure of cells to glutamate for 6 h in the presence or

  2. Lindane induces testicular apoptosis in adult Wistar rats through the involvement of Fas-FasL and mitochondria-dependent pathways

    International Nuclear Information System (INIS)

    Saradha, B.; Vaithinathan, S.; Mathur, P.P.

    2009-01-01

    Lindane, an organochlorine pesticide, is known to impair testicular functions and fertility. To elucidate the mechanism(s) underpinning the gonadal effects of lindane, we sought to investigate the levels of apoptosis-related proteins, namely cytochrome c, caspase-3 and-9, Fas and FasL in the testis of adult rats. Furthermore, the study aims to delineate whether nuclear factor kappa B (NF-κB) is involved in meditating the testicular effects of lindane. Animals were administered with a single dose of lindane (5 mg/kg body weight) and sacrificed at specific post-treatment intervals (0, 3, 6, 12, 24 and 72 h). Significant elevations in the levels of cytosolic cytochrome c with a parallel increase in pro-caspase-9 were observed as early as 6 h following exposure. Time-dependent elevations in the levels of Fas, FasL and caspase-3 were observed. Immunofluorescence studies revealed increased colocalization of Fas and caspase-3 in peritubular germ cells. FasL levels were increased in Sertoli and peritubular germ cells. The cytoplasmic levels of NF-κB p65 decreased from 3 h following exposure with a maximal decline at 12 and 24 h. Changes in the localization of NF-κB were observed with maximal nuclear translocation in germ cells at 12 and 24 h. Terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL) assay revealed a time-dependent increase in the number of apoptotic cells. Taken together, the data illustrate induction of testicular apoptosis in adult rats following exposure to a single dose of lindane. Early activation of NF-κB in contrast to late increase in Fas expression suggests a pro-apoptotic role of NF-κB in testicular response to lindane

  3. The mechanisms involved at the cell level

    International Nuclear Information System (INIS)

    Leblanc, G.; Pourcher, Th.; Perron, B.; Guillain, F.; Quemeneur, E.; Fritsch, P.

    2003-01-01

    The mechanisms responsible at the cell level for inducing toxic reactions after contamination are as yet only imperfectly known. Work still needs to be done for both contaminants that have a biological role, such as iodine, and those that do not, such as cadmium, uranium and plutonium. In particular, these mechanisms bring into play, in biological membranes, carriers which are the physiological partners responsible for material exchange with the environment or inside the body. As they lack absolute selectivity, these carriers, which are involved in the assimilation and accumulation of vital mineral elements, also have the ability to transport toxic elements and isotopes. (authors)

  4. Antioxidants impair anti-tumoral effects of Vorinostat, but not anti-neoplastic effects of Vorinostat and caspase-8 downregulation.

    Science.gov (United States)

    Bergadà, Laura; Yeramian, Andree; Sorolla, Annabel; Matias-Guiu, Xavier; Dolcet, Xavier

    2014-01-01

    We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition.

  5. Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila.

    Science.gov (United States)

    Liu, Ying; Sheng, Zhentao; Liu, Hanhan; Wen, Di; He, Qianyu; Wang, Sheng; Shao, Wei; Jiang, Rong-Jing; An, Shiheng; Sun, Yaning; Bendena, William G; Wang, Jian; Gilbert, Lawrence I; Wilson, Thomas G; Song, Qisheng; Li, Sheng

    2009-06-01

    Juvenile hormone (JH) regulates many developmental and physiological events in insects, but its molecular mechanism remains conjectural. Here we report that genetic ablation of the corpus allatum cells of the Drosophila ring gland (the JH source) resulted in JH deficiency, pupal lethality and precocious and enhanced programmed cell death (PCD) of the larval fat body. In the fat body of the JH-deficient animals, Dronc and Drice, two caspase genes that are crucial for PCD induced by the molting hormone 20-hydroxyecdysone (20E), were significantly upregulated. These results demonstrated that JH antagonizes 20E-induced PCD by restricting the mRNA levels of Dronc and Drice. The antagonizing effect of JH on 20E-induced PCD in the fat body was further confirmed in the JH-deficient animals by 20E treatment and RNA interference of the 20E receptor EcR. Moreover, MET and GCE, the bHLH-PAS transcription factors involved in JH action, were shown to induce PCD by upregulating Dronc and Drice. In the Met- and gce-deficient animals, Dronc and Drice were downregulated, whereas in the Met-overexpression fat body, Dronc and Drice were significantly upregulated leading to precocious and enhanced PCD, and this upregulation could be suppressed by application of the JH agonist methoprene. For the first time, we demonstrate that JH counteracts MET and GCE to prevent caspase-dependent PCD in controlling fat body remodeling and larval-pupal metamorphosis in Drosophila.

  6. Evaluation of the neuronal apoptotic pathways involved in cytoskeletal disruption-induced apoptosis.

    Science.gov (United States)

    Jordà, Elvira G; Verdaguer, Ester; Jimenez, Andrés; Arriba, S Garcia de; Allgaier, Clemens; Pallàs, Mercè; Camins, Antoni

    2005-08-01

    The cytoskeleton is critical to neuronal functioning and survival. Cytoskeletal alterations are involved in several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We studied the possible pathways involved in colchicine-induced apoptosis in cerebellar granule neurons (CGNs). Although colchicine evoked an increase in caspase-3, caspase-6 and caspase-9 activation, selective caspase inhibitors did not attenuate apoptosis. Inhibitors of other cysteine proteases such as PD150606 (a calpain-specific inhibitor), Z-Phe-Ala fluoromethyl ketone (a cathepsins-inhibitors) and N(alpha)-p-tosyl-l-lysine chloromethyl ketone (serine-proteases inhibitor) also had no effect on cell death/apoptosis induced by colchicine. However, BAPTA-AM 10 microM (intracellular calcium chelator) prevented apoptosis mediated by cytoskeletal alteration. These data indicate that calcium modulates colchicine-induced apoptosis in CGNs. PARP-1 inhibitors did not prevent apoptosis mediated by colchicine. Finally, colchicine-induced apoptosis in CGNs was attenuated by kenpaullone, a cdk5 inhibitor. Kenpaullone and indirubin also prevented cdk5/p25 activation mediated by colchicine. These findings indicate that cytoskeletal alteration can compromise cdk5 activation, regulating p25 formation and suggest that cdk5 inhibitors attenuate apoptosis mediated by cytoskeletal alteration. The present data indicate the potential therapeutic value of drugs that prevent the formation of p25 for the treatment of neurodegenerative disorders.

  7. Structural Insights into DD-Fold Assembly and Caspase-9 Activation by the Apaf-1 Apoptosome.

    Science.gov (United States)

    Su, Tsung-Wei; Yang, Chao-Yu; Kao, Wen-Pin; Kuo, Bai-Jiun; Lin, Shan-Meng; Lin, Jung-Yaw; Lo, Yu-Chih; Lin, Su-Chang

    2017-03-07

    Death domain (DD)-fold assemblies play a crucial role in regulating the signaling to cell survival or death. Here we report the crystal structure of the caspase recruitment domain (CARD)-CARD disk of the human apoptosome. The structure surprisingly reveals that three 1:1 Apaf-1:procaspase-9 CARD protomers form a novel helical DD-fold assembly on the heptameric wheel-like platform of the apoptosome. The small-angle X-ray scattering and multi-angle light scattering data also support that three protomers could form an oligomeric complex similar to the crystal structure. Interestingly, the quasi-equivalent environment of CARDs could generate different quaternary CARD assemblies. We also found that the type II interaction is conserved in all DD-fold complexes, whereas the type I interaction is found only in the helical DD-fold assemblies. This study provides crucial insights into the caspase activation mechanism, which is tightly controlled by a sophisticated and highly evolved CARD assembly on the apoptosome, and also enables better understanding of the intricate DD-fold assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hypocapnia induces caspase-3 activation and increases Abeta production.

    Science.gov (United States)

    Xie, Zhongcong; Moir, Robert D; Romano, Donna M; Tesco, Giuseppina; Kovacs, Dora M; Tanzi, Rudolph E

    2004-01-01

    At least half of all cases of early onset (<60) familial Alzheimer's disease (FAD) are caused by any of over 150 mutations in three genes: the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2). Mutant forms of PS1 have been shown to sensitize cells to apoptotic cell death. We investigated the effects of hypocapnia, a risk factor for both cognitive and neurodevelopment deficits, on caspase-3 activation, apoptosis, and amyloid beta-protein (Abeta) production, and assessed the influence of the PS1Delta9 FAD mutation on these effects. For this purpose, we exposed stably transfected H4 human neuroglioma cells to conditions consistent with hypocapnia (PCO2<40 mm Hg) and hypocapnia plus hypoxia (PO2<21%). Hypocapnia (20 mm Hg CO2 for 6 h) induced caspase-3 activation and apoptosis; the PS1Delta9 FAD mutation significantly potentiated these effects. Moreover, the combination of hypocapnia (20 mm Hg CO2) and hypoxia (5%O2) induced caspase-3 activation and apoptosis in a synergistic manner. Hypocapnia (5 and 20 mm Hg CO2 for 6 h) also led to an increased Abeta production. The findings suggest that hypocapnia (e.g. during general anesthesia) could exacerbate AD neuropathogenesis. Copyright (c) 2004 S. Karger AG, Basel.

  9. Osteogenic Potential of Caspases Related to Endochondral Ossification

    Czech Academy of Sciences Publication Activity Database

    Janečková, E.; Bíliková, P.; Matalová, Eva

    2018-01-01

    Roč. 66, č. 1 (2018), s. 47-58 ISSN 0022-1554 Institutional support: RVO:67985904 Keywords : caspases * endochronal ossification * growth plate Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 2.511, year: 2016

  10. Tanshinone IIA attenuates the cerebral ischemic injury-induced increase in levels of GFAP and of caspases-3 and -8.

    Science.gov (United States)

    Zhou, L; Bondy, S C; Jian, L; Wen, P; Yang, F; Luo, H; Li, W; Zhou, Jun

    2015-03-12

    Tanshinone IIA (TSA) is a lipid soluble agent derived from the root of Salvia miltiorrhiza (Danshen). This plant is a traditional Chinese herb, which has been used widely in China especially for enhancing circulation. However mechanisms underlying its efficacy remain poorly understood. The present study was designed to illuminate events that may underlie the apparently neuroprotective effects of TSA following ischemic insult. Adult Sprague-Dawley rats were subjected to transient focal cerebral ischemia by use of a middle cerebral artery occlusion model. They were then randomly divided into a sham-operated control group, and cerebral ischemia/reperfusion groups receiving a two-hour occlusion. Further subsets of groups received the same durations of occlusion or were sham-operated but then received daily i.p. injections of high or low doses of TSA, for seven or 15days. Hematoxylin and eosin staining revealed lesions in the entorhinal cortex of both rats subject to ischemia and to a lesser extent to those receiving TSA after surgery. Levels of glial fibrillary acidic protein (GFAP), caspase-3 and caspase-8, were quantified by both immunohistochemistry and Western blotting. TSA treatment after middle cerebral artery occlusion, markedly reduced infarct size, and reduced the expression of caspase-3 and caspase-8. These changes were considered protective and were generally proportional to the dose of TSA used. These results suggest that TSA may effect neuroprotection by way of reduction of the extent of cell inflammation and death within affected regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. A quantitative method for the specific assessment of caspase-6 activity in cell culture

    DEFF Research Database (Denmark)

    Ehrnhoefer, Dagmar E; Skotte, Niels H; Savill, Jane

    2011-01-01

    Aberrant activation of caspase-6 has recently emerged as a major contributor to the pathogeneses of neurodegenerative disorders such as Alzheimer's and Huntington disease. Commercially available assays to measure caspase-6 activity commonly use the VEID peptide as a substrate. However these metho...

  12. Mechanisms involved in the transport of mercuric ions in target tissues

    Science.gov (United States)

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  13. Active caspase-3 detection to evaluate apoptosis induced by Verbena officinalis essential oil and citral in chronic lymphocytic leukaemia cells

    Directory of Open Access Journals (Sweden)

    Laura De Martino

    2011-10-01

    Full Text Available Verbena officinalis L., Verbenaceae, commonly known as vervain, is a plant widely used in medicine. Despite of its widespread use in different traditional practices, the mechanisms of pharmacological actions of the plant and its volatile oil are still unclear. We evaluated the pro-apoptotic activity of V. officinalis essential oil and of its main component, citral, on lymphocytes collected from ten patients with chronic lymphocytic leukaemia (CLL, a disease in which a faulty apoptotic mechanism is still retained one of the primary pathogenic events, by adding to treated mononuclear cells, annexin-V, propidium iodide, and CD19. Apoptosis was also evaluated using anti-active-caspase-3 monoclonal antibody after permeabilization of the cells. Both V. officinalis essential oil and citral were found able to induce apoptosis in CLL cells and to activate caspase-3, which is considered the way by means they active apoptosis in B neoplastic cells. This data further support evidences that indicate natural compounds as possible lead structure to develop new therapeutic agents for CLL.

  14. Active caspase-3 detection to evaluate apoptosis induced by Verbena officinalis essential oil and citral in chronic lymphocytic leukaemia cells

    Directory of Open Access Journals (Sweden)

    Laura De Martino

    2011-05-01

    Full Text Available Verbena officinalis L., Verbenaceae, commonly known as vervain, is a plant widely used in medicine. Despite of its widespread use in different traditional practices, the mechanisms of pharmacological actions of the plant and its volatile oil are still unclear. We evaluated the pro-apoptotic activity of V. officinalis essential oil and of its main component, citral, on lymphocytes collected from ten patients with chronic lymphocytic leukaemia (CLL, a disease in which a faulty apoptotic mechanism is still retained one of the primary pathogenic events, by adding to treated mononuclear cells, annexin-V, propidium iodide, and CD19. Apoptosis was also evaluated using anti-active-caspase-3 monoclonal antibody after permeabilization of the cells. Both V. officinalis essential oil and citral were found able to induce apoptosis in CLL cells and to activate caspase-3, which is considered the way by means they active apoptosis in B neoplastic cells. This data further support evidences that indicate natural compounds as possible lead structure to develop new therapeutic agents for CLL.

  15. Ethyl Alcohol Extract of Hizikia fusiforme Induces Caspase ...

    African Journals Online (AJOL)

    Ethyl Alcohol Extract of Hizikia fusiforme Induces Caspase-dependent Apoptosis in Human Leukemia U937 Cells by Generation of Reactive Oxygen Species. C-H Kang, S-H Kang, S-H Boo, S-Y Park, D-O Moon, G-Y Kim ...

  16. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  17. Impacts of Bone Marrow Stem Cells on Caspase-3 Levels after Spinal Cord Injury in Mice

    Directory of Open Access Journals (Sweden)

    Noushin Gashmardi

    2017-11-01

    Full Text Available Spinal cord injury (SCI is a drastic disability that leads to spinal cord impairment. This study sought to determine the effects of bone marrow stem cells (BMSCs on caspase-3 levels after acute SCI in mice. Forty-two mice were randomly divided into 3 groups: control (2 subcategories, subjected to no intervention; sham (3 subcategories, subjected to acute SCI; and experimental (2 subcategories, subjected to SCI and cell transplantation. In the experimental group, 2×105 BMSCs were injected intravenously 1 day after SCI. The mesenchymal property of the cells was assessed. The animals in the 3 groups were sacrificed 1, 21, and 35 days after the induction of injury and caspase-3 levels were evaluated using a caspase-3 assay kit. The obtained values were analyzed with ANOVA and Tukey tests using GraphPad and SPSS. Based on the assessments, the transplanted cells were spindle-shaped and were negative for the hematopoietic markers of CD34 and CD45 and positive for the expression of the mesenchymal marker of CD90 and osteogenic induction. The caspase-3 levels showed a significant increase in the sham and experimental groups in comparison to the control group. One day after SCI, the caspase-3 level was significantly higher in the sham group (1.157±0.117 than in the other groups (P<0.000. Twenty-one days after SCI, the caspase-3 level was significantly lower in the experimental group than in the sham group (0.4±0.095 vs. 0.793±0.076; P˂0.000. Thirty-five days following SCI, the caspase-3 level was lower in the experimental group than in the sham group (0.223±0.027 vs. 0.643±0.058; P˂0.000. We conclude that BMSC transplantation was able to downregulate the caspase-3 level after acute SCI, underscoring the role of caspase-3 as a marker for the assessment of treatment efficacy in acute SCI.

  18. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    International Nuclear Information System (INIS)

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho

    2007-01-01

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 μM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins

  19. Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway

    International Nuclear Information System (INIS)

    Ramanathan, Mathura P.; Chambers, Jerome A.; Pankhong, Panyupa; Chattergoon, Michael; Attatippaholkun, Watcharee; Dang, Kesen; Shah, Neelima; Weiner, David B.

    2006-01-01

    The West Nile Virus (WNV) non-structural proteins 2B and 3 (NS2B-NS3) constitute the proteolytic complex that mediates the cleavage and processing of the viral polyprotein. NS3 recruits NS2B and NS5 proteins to direct protease and replication activities. In an effort to investigate the biology of the viral protease, we cloned cDNA encoding the NS2B-NS3 proteolytic complex from brain tissue of a WNV-infected dead crow, collected from the Lower Merion area (Merion strain). Expression of the NS2B-NS3 gene cassette induced apoptosis within 48 h of transfection. Electron microscopic analysis of NS2B-NS3-transfected cells revealed ultra-structural changes that are typical of apoptotic cells including membrane blebbing, nuclear disintegration and cytoplasmic vacuolations. The role of NS3 or NS2B in contributing to host cell apoptosis was examined. NS3 alone triggers the apoptotic pathways involving caspases-8 and -3. Experimental results from the use of caspase-specific inhibitors and caspase-8 siRNA demonstrated that the activation of caspase-8 was essential to initiate apoptotic signaling in NS3-expressing cells. Downstream of caspase-3 activation, we observed nuclear membrane ruptures and cleavage of the DNA-repair enzyme, PARP in NS3-expressing cells. Nuclear herniations due to NS3 expression were absent in the cells treated with a caspase-3 inhibitor. Expression of protease and helicase domains themselves was sufficient to trigger apoptosis generating insight into the apoptotic pathways triggered by NS3 from WNV

  20. Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis.

    Science.gov (United States)

    Richard, A; Tulasne, D

    2012-03-08

    Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host-apoptosis-virus triangle.

  1. Molecular cloning, immunohistochemical localization, characterization and expression analysis of caspase-9 from the purse red common carp (Cyprinus carpio) exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dian; Xu, Zhen’e [Medical College of Nanchang University, Nanchang 330006 (China); Institute of Immunotherapy, Nanchang University, Nanchang 330006 (China); Zhang, Xiaoyan [Medical College of Nanchang University, Nanchang 330006 (China); Wang, Hongmei [Medical College of Nanchang University, Nanchang 330006 (China); Institute of Immunotherapy, Nanchang University, Nanchang 330006 (China); Wang, Yannan [Medical College of Nanchang University, Nanchang 330006 (China); Min, Weiping, E-mail: weiping.min@gmail.com [Medical College of Nanchang University, Nanchang 330006 (China); Institute of Immunotherapy, Nanchang University, Nanchang 330006 (China); Jiangxi Academy of Medical Sciences, Nanchang 330006 (China)

    2013-10-15

    Highlights: •The cDNA of caspase-9 in common carp was cloned. •The evolutionary conservation including caspase recruitment domain, large and small subunits was clarified. •The mRNA level of caspase-9 cannot be used as a major marker at an earlier point in the apoptotic cascade. •Caspase-9 cleavage form was detected. •Immunopositive staining was limited to the cytoplasm of renal tubular epithelial cells. -- Abstract: Caspase-9, the essential initiator caspase is believed to play a central role in mitochondria-mediated apoptosis signaling. In this study, we isolated the caspase-9 gene from common carp, one of the most important industrial aquatic animals in China using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of caspase-9, composed of 436 amino acids, showed approximately 47.6% identity and 64.7% similarity to human caspase-9. It also possessed a conserved caspase-associated recruitment domain (CARD), a large subunit and a small subunit. Phylogenetic analysis clearly demonstrated that caspase-9 formed a clade with cyprinid fish caspase-9. Real-time quantitative PCR analysis revealed that caspase-9 transcripts were not significantly increased in kidney after exposure to cadmium (Cd). Whereas caspase-9 cleaved fragments were detected using Western blot analysis with the same Cd treatment condition. Furthermore, the result of immunohistochemical detection showed immunoreactivities were predominantly limited to the cytoplasm of renal tubular epithelial cells and no remarkable changes of immunopositive staining were observed after Cd treatment. Accordingly, the results signify that caspase-9 may play an essential role in Cd induced apoptosis.

  2. Identification of Early Intermediates of Caspase Activation Using Selective Inhibitors and Activity-Based Probes

    NARCIS (Netherlands)

    Berger, Alicia B.; Witte, Martin D.; Denault, Jean-Bernard; Sadaghiani, Amir Masoud; Sexton, Kelly M.B.; Salvesen, Guy S.; Bogyo, Matthew

    2006-01-01

    Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active

  3. 13-methyltetradecanoic acid exhibits anti-tumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating caspase-3.

    Directory of Open Access Journals (Sweden)

    Qingqing Cai

    Full Text Available 13-Methyltetradecanoic acid (13-MTD, a saturated branched-chain fatty acid purified from soy fermentation products, induces apoptosis in human cancer cells. We investigated the inhibitory effects and mechanism of action of 13-MTD on T-cell non-Hodgkin's lymphoma (T-NHL cell lines both in vitro and in vivo. Growth inhibition in response to 13-MTD was evaluated by the cell counting kit-8 (CCK-8 assay in three T-NHL cell lines (Jurkat, Hut78, EL4 cells. Flow cytometry analyses were used to monitor the cell cycle and apoptosis. Proteins involved in 13-MTD-induced apoptosis were examined in Jurkat cells by western blotting. We found that 13-MTD inhibited proliferation and induced the apoptosis of T-NHL cell lines. 13-MTD treatment also induced a concentration-dependent arrest of Jurkat cells in the G1-phase. During 13-MTD-induced apoptosis in Jurkat cells, the cleavage of caspase-3 and poly ADP-ribose polymerase (PARP, a caspase enzymolysis product were detected after incubation for 2 h, and increased after extending the incubation time. However, there was no change in the expression of Bcl-2 or c-myc proteins. The appearance of apoptotic Jurkat cells was accompanied by the inhibition of AKT and nuclear factor-kappa B (NF-κB phosphorylation. In addition, 13-MTD could also effectively inhibit the growth of T-NHL tumors in vivo in a xenograft model. The tumor inhibition rate in the experimental group was 40%. These data indicate that 13-MTD inhibits proliferation and induces apoptosis through the down-regulation of AKT phosphorylation followed by caspase activation, which may provide a new approach for treating T-cell lymphomas.

  4. Expression of Caspase-1 in breast cancer tissues and its effects on cell proliferation, apoptosis and invasion.

    Science.gov (United States)

    Sun, Yanxia; Guo, Yingzhen

    2018-05-01

    The present study aimed to detect the expression of Caspase-1 in the tumor tissues and tumor-adjacent tissues of patients with breast cancer, and to investigate the effects of Caspase-1 on the proliferation, apoptosis and invasion of breast cancer cells. Reverse transcription-quantitative polymerase chain reaction was used to detect Caspase-1 mRNA expression in breast cancer tissues and tumor-adjacent tissues from patients. Additionally, the human breast cancer MDA-MB-231 cell line was treated with the Caspase-1 small molecule inhibitor Ac-YVAD-CMK, following which the changes to Caspase-1 protein expression were detected via western blotting. The MTT method detected the changes to cell proliferation, flow cytometry detected the rate of apoptosis, and a Transwell assay was employed to assess invasion. Caspase-1 mRNA expression was significantly decreased in the breast cancer tissues of patients, compared with in the tumor-adjacent tissues, a difference that was statistically significant (P<0.05). Treatment with the Ac-YVAD-CMK markedly decreased the protein expression of Caspase-1 in MDA-MB-231 cells, and the difference was statistically significant (P<0.05). Following this treatment of Ac-YVAD-CMK cells, the proliferation and invasion abilities markedly increased, while the apoptotic levels significantly decreased (P<0.05). In conclusion, the expression of Caspase-1 is low in breast cancer tissues, which may promote the proliferation and invasion of breast cancer cells and could be closely associated with the occurrence and development of breast cancer.

  5. Large-scale preparation of active caspase-3 in E. coli by designing its thrombin-activatable precursors

    Directory of Open Access Journals (Sweden)

    Park Sung

    2008-12-01

    Full Text Available Abstract Background Caspase-3, a principal apoptotic effector that cleaves the majority of cellular substrates, is an important medicinal target for the treatment of cancers and neurodegenerative diseases. Large amounts of the protein are required for drug discovery research. However, previous efforts to express the full-length caspase-3 gene in E. coli have been unsuccessful. Results Overproducers of thrombin-activatable full-length caspase-3 precursors were prepared by engineering the auto-activation sites of caspase-3 precursor into a sequence susceptible to thrombin hydrolysis. The engineered precursors were highly expressed as soluble proteins in E. coli and easily purified by affinity chromatography, to levels of 10–15 mg from 1 L of E. coli culture, and readily activated by thrombin digestion. Kinetic evaluation disclosed that thrombin digestion enhanced catalytic activity (kcat/KM of the precursor proteins by two orders of magnitude. Conclusion A novel method for a large-scale preparation of active caspase-3 was developed by a strategic engineering to lack auto-activation during expression with amino acid sequences susceptible to thrombin, facilitating high-level expression in E. coli. The precursor protein was easily purified and activated through specific cleavage at the engineered sites by thrombin, generating active caspase-3 in high yields.

  6. High Ca2+ Influx During Traumatic Brain Injury Leads to Caspase-1-Dependent Neuroinflammation and Cell Death.

    Science.gov (United States)

    Abdul-Muneer, P M; Long, Mathew; Conte, Adriano Andrea; Santhakumar, Vijayalakshmi; Pfister, Bryan J

    2017-08-01

    We investigated the hypothesis that high Ca 2+ influx during traumatic brain injury induces the activation of the caspase-1 enzyme, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury and an in vivo model of fluid percussion injury (FPI). We first established that stretch injury causes a rapid increase in the intracellular Ca 2+ level, which activates interleukin-converting enzyme caspase-1. The increase in the intracellular Ca 2+ level and subsequent caspase-1 activation culminates into neuroinflammation via the maturation of IL-1β. Further, we analyzed caspase-1-mediated apoptosis by TUNEL staining and PARP western blotting. The voltage-gated sodium channel blocker, tetrodotoxin, mitigated the stretch injury-induced neuroinflammation and subsequent apoptosis by blocking Ca 2+ influx during the injury. The effect of tetrodotoxin was similar to the caspase-1 inhibitor, zYVAD-fmk, in neuronal culture. To validate the in vitro results, we demonstrated an increase in caspase-1 activity, neuroinflammation and neurodegeneration in fluid percussion-injured animals. Our data suggest that neuronal injury/traumatic brain injury (TBI) can induce a high influx of Ca 2+ to the cells that cause neuroinflammation and cell death by activating caspase-1, IL-1β, and intrinsic apoptotic pathways. We conclude that excess IL-1β production and cell death may contribute to neuronal dysfunction and cognitive impairment associated with TBI.

  7. Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins.

    Science.gov (United States)

    Strasser, Bettina; Mlitz, Veronika; Fischer, Heinz; Tschachler, Erwin; Eckhart, Leopold

    2015-05-01

    The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent. © 2015 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  8. Study on radiation protective effect of resveratrol and its molecular mechanism

    International Nuclear Information System (INIS)

    Lv Qiujun; Wen Liqing; Zhang Min; Guo Shaoming; Chen Yuanyuan; Wu Zuze

    2004-01-01

    Objective: To investigate radiation-protective effect of resveratrol and its molecular mechanism. Methods: Kunming mice were administered with resveratrol before 60 Co γ-irradiation. Thirty-day survival rate and the average life span of dead mice post-irradiation were observed. The apoptosis of spleen from irradiated mice was detected by FACS and in situ terminal labeling method. The effect of resveratrol on the activities of Caspase-3 and Caspase-8, and the expression levels of Bcl-2 and Fas were examined. Results: Administration with resveratrol resulted in increases of 30-day survival rate and prolongation of average life span of the dead mice. Apoptotic rate of spleen cells decreased, expression level of bcl-2 increased, the expression of Fas did not change, and the activities of Caspase-3 and Caspase-8 increased in spleen cells of irradiation groups. Conclusion: The results indicate that resveratrol has radiation-protective effect and its mechanism might be related with its suppression of apoptosis of radiation-sensitive cells

  9. TAF15 and the leukemia-associated fusion protein TAF15-CIZ/NMP4 are cleaved by caspases-3 and -7

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Juliano, E-mail: jalves@gnf.org [Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (United States); Wurdak, Heiko [Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (United States); Garay-Malpartida, Humberto M. [Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Lineu Prestes 1524, Sao Paulo, SP, CEP 05508-900 (Brazil); Harris, Jennifer L. [Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (United States); Protease Biochemistry, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (United States); Occhiucci, Joao M.; Belizario, Jose E. [Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Lineu Prestes 1524, Sao Paulo, SP, CEP 05508-900 (Brazil); Li, Jun, E-mail: jli2@gnf.org [Protease Biochemistry, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (United States)

    2009-07-10

    Caspases are central players in proteolytic pathways that regulate cellular processes such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAF15 as a novel caspase substrate in a trial study. We find that TAF15 was specifically cleaved by caspases-3 and -7. Site-directed mutagenesis revealed the consensus sequence {sup 106}DQPD/Y{sup 110} as the only site recognized by these caspases. Surprisingly, TAF15 was cleaved at more than one site in staurosporine-treated Jurkat cells. In addition, we generated two oncogenic TAF15-CIZ/NMP4-fused proteins which have been found in acute myeloid leukemia and demonstrate that caspases-3 and -7 cleave the fusion proteins at one single site. Broad application of this combination approach should expedite identification of novel caspase-interacting proteins and provide new insights into the regulation of caspase pathways leading to cell death in normal and cancer cells.

  10. Caspase activity and expression of cell death genes during development of human preimplantation embryos.

    Science.gov (United States)

    Spanos, S; Rice, S; Karagiannis, P; Taylor, D; Becker, D L; Winston, R M L; Hardy, K

    2002-09-01

    It has been observed that apoptosis occurs in human blastocysts. In other types of cell, the characteristic morphological changes seen in apoptotic cells are executed by caspases, which are regulated by the BCL-2 family of proteins. This study investigated whether these components of the apoptotic cascade are present throughout human preimplantation development. Developing and arrested two pronucleate embryos at all stages were incubated with a fluorescently tagged caspase inhibitor that binds only to active caspases, fixed, counterstained with 4,6-diamidino-2-phenylindole (DAPI) to assess nuclear morphology and examined using confocal microscopy. Active caspases were detected only after compaction, at the morula and blastocyst stages, and were frequently associated with apoptotic nuclei. Occasional labelling was seen in arrested embryos. Expression of proapoptotic BAX and BAD and anti-apoptotic BCL-2 was examined in single embryos using RT-PCR and immunohistochemistry. BAX and BCL-2 mRNAs were expressed throughout development, whereas BAD mRNA was expressed mainly after compaction. Simultaneous expression of BAX and BCL-2 proteins within individual embryos was confirmed using immunohistochemistry. The onset of caspase activity and BAD expression after compaction correlates with the previously reported appearance of apoptotic nuclei. As in other types of cell, human embryos express common molecular components of the apoptotic cascade, although apoptosis appears to be suppressed before compaction and differentiation.

  11. CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice

    Directory of Open Access Journals (Sweden)

    Shivakumar Subbanna

    2018-02-01

    Full Text Available Alcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD. However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7 mice to ethanol activates caspase-3 via cannabinoid receptor type-1 (CB1R in neonatal mice and causes a reduction in methylated DNA binding protein (MeCP2 levels. The developmental expression of MeCP2 in mice is closely correlated with synaptogenesis and neuronal maturation. It was shown that ethanol treatment of P7 mice enhanced Mecp2 mRNA levels but reduced protein levels. The genetic deletion of CB1R prevented, and administration of a CB1R antagonist before ethanol treatment of P7 mice inhibited caspase-3 activation. Additionally, it reversed the loss of MeCP2 protein, cAMP response element binding protein (CREB activation, and activity-regulated cytoskeleton-associated protein (Arc expression. The inhibition of caspase-3 activity prior to ethanol administration prevented ethanol-induced loss of MeCP2, CREB activation, epigenetic regulation of Arc expression, long-term potentiation (LTP, spatial memory deficits and activity-dependent impairment of several signaling molecules, including MeCP2, in adult mice. Collectively, these results reveal that the ethanol-induced CB1R-mediated activation of caspase-3 degrades the MeCP2 protein in the P7 mouse brain and causes long-lasting neurobehavioral deficits in adult mice. This CB1R-mediated instability of MeCP2 during active synaptic maturation may disrupt synaptic circuit maturation and lead to neurobehavioral abnormalities, as observed in this animal model of FASD.

  12. Estudo citofotométrico da expressão dos marcadores tumorais Caspase-3 e Ki-67 no adenocarcinoma gástrico Cytophotometric study of the expression of tumoral markers Caspase-3 and Ki-67 in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Pedro Manuel Gonzales Cuellar

    2007-06-01

    marcadores Ki-67 e Caspase-3 com a leitura de 14 lâminas, observamos que existe diferença significativa (PBACKGROUND: Gastric tumorigenesis is a complex mechanism where genetic, enviromental and infeccious interferences may occur. In the last few years, advances in molecular biology brought a new way in the research of the malignancies using tumoral markers and imunohistochemistry. AIM: To describe the cytophotometric expression of tumoral markers Ki-67 and caspase-3, analyzing optical density and labeling index as parameters in gastric adenocarcinoma. To compare the labeling index and optical density of Ki-67 and Caspase-3 in gastric adenocarcinoma. METHODS: Fifty eight paraffin blocks containing gastric adenocarcinomas specimens were collected in the Serviços de Anátomo-Patologia do Hospital do Gama - Brasília (DF and Hospital Dom Orione - Araguaina (TO, being analyzed at CITOLAB - Cytology and Hystopathology Laboratory Ltda, in Curitiba (PR. A total of 31 of the blocks were used for hystological studies. Immunohistochemistry was performed utilizing the SAMBA 4000 computerized analysis system. RESULTS: Of the 31 slides studies, 15 (48% were marked by Ki-67, 22 (71% were marked by Caspase-3 and 14 (45% were marked by both of the tumoral markers. CONCLUSIONS: Cytophotometric expression of Ki-67 was observed in 15 of the slides studied, presenting an average labeling index of 36,85%, where as the optical density showed an average of 29,33 pixels. Cytophotometric expression of Caspase-3 was observed in a total of 22 slides, presenting an average labeling index of 87,71% and optical density of 60,74 pixels. When comparing the labeling indexes of both of the tumoral markers Ki-67 and Caspase-3 concerning the 14 slides analyzed, a significant difference (P<0,001

  13. Paradoxical sleep deprivation changes testicular malondialdehyde and caspase-3 expression in male rats

    Directory of Open Access Journals (Sweden)

    Fitranto Arjadi

    2015-08-01

    Full Text Available BACKGROUND Sleep deprivation is a significant problem among adult men and is considered as a risk factor for several diseases. Paradoxical sleep deprivation (PSD induces Leydig cell apoptosis through elevation of corticosterone, with testicular malondialdehyde (MDA and Leydig cell caspase-3 expression as parameters. The aim of this study was to observe testicular MDA level and caspase-3 expression treated with paradoxical sleep deprivation (PSD, immobilization, and footshock stress and to determine the stress model with a significant effect in white male rats (Rattus norvegicus . METHODS This experimental randomized study of posttest only with control group design was conducted on 24 white male Wistar strain rats, randomly allocated into four treatment groups, i.e. control (K1 without any stress treatment, PSD (KII, immobilization (KIII, and footshock stress (KIV. Treatments were given for 25 days to produce chronic stress. Testicular MDA concentration was examined by the ELISA method while caspase-3 was examined by the TUNEL method. RESULTS Mean testicular MDA concentration with one-way ANOVA test showed differences in means between the groups (p=0.000 and post hoc Tukey-HSD test showed significant results between PSD stress group versus control, immobilization and footshock stress groups. One-way ANOVA test showed a significant difference in caspase-3 expression in at least two treatment groups (p=0.008 and post-hoc Tuckey-LSD test showed significant differences between controls and all stress groups. CONCLUSION Sleep deprivation is a type of stress inducing changes in testicular MDA concentration and caspase-3 expression in male rat testes.

  14. The Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release in the Absence of Caspase-1 Protease Activity.

    Science.gov (United States)

    Schneider, Katharina S; Groß, Christina J; Dreier, Roland F; Saller, Benedikt S; Mishra, Ritu; Gorka, Oliver; Heilig, Rosalie; Meunier, Etienne; Dick, Mathias S; Ćiković, Tamara; Sodenkamp, Jan; Médard, Guillaume; Naumann, Ronald; Ruland, Jürgen; Kuster, Bernhard; Broz, Petr; Groß, Olaf

    2017-12-26

    Inflammasomes activate the protease caspase-1, which cleaves interleukin-1β and interleukin-18 to generate the mature cytokines and controls their secretion and a form of inflammatory cell death called pyroptosis. By generating mice expressing enzymatically inactive caspase-1 C284A , we provide genetic evidence that caspase-1 protease activity is required for canonical IL-1 secretion, pyroptosis, and inflammasome-mediated immunity. In caspase-1-deficient cells, caspase-8 can be activated at the inflammasome. Using mice either lacking the pyroptosis effector gasdermin D (GSDMD) or expressing caspase-1 C284A , we found that GSDMD-dependent pyroptosis prevented caspase-8 activation at the inflammasome. In the absence of GSDMD-dependent pyroptosis, the inflammasome engaged a delayed, alternative form of lytic cell death that was accompanied by the release of large amounts of mature IL-1 and contributed to host protection. Features of this cell death modality distinguished it from apoptosis, suggesting it may represent a distinct form of pro-inflammatory regulated necrosis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Estrous cycle dependent changes in expression and distribution of Fas, Fas ligand, Bcl-2, Bax, and pro- and active caspase-3 in the rat ovary

    NARCIS (Netherlands)

    Slot, K.A.; Voorendt, M.; Boer-Brouwer, de M.; Vugt, van H.H.; Teerds, K.J.

    2006-01-01

    In the present investigation, the localization of proteins involved in ovarian apoptosis were studied throughout the estrous cycle in the presence of fluctuating hormone levels. Fas, Fas ligand, Bcl-2, Bax and caspase-3 mRNA expression and proteins were detected in all ovarian tissue extracts,

  16. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis.

    Science.gov (United States)

    Verma, Dinesh Kumar; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Singh, Abhishek; Gupta, Parul; Tiwari, Shubhangini; Sivarama Raju, K; Chaturvedi, Swati; Wahajuddin, M; Singh, Sarika

    2018-03-16

    Piracetam, a nootropic drug that has been clinically used for decades but remains enigmatic due to no distinct understanding of its mechanism of action. The present study aimed to investigate the role of caspase independent pathway in piracetam mediated neuroprotection. LPS administration caused significant alterations in oxidative stress related parameters like glutathione, glutathione reductase and increased lipid peroxidation. LPS administration also caused augmented expression of inflammatory cytokines and astrocytes activation. Piracetam treatment offered significant protection against LPS induced oxidative and inflammatory parameters and inhibited astrocytes activation. LPS administration caused augmented level of reactive oxygen species and depleted mitochondrial membrane potential which were attenuated with piracetam treatment. This study for the first time demonstrates the role of caspase independent death factors in piracetam induced neuroprotective effects in rat brain. Translocation of mitochondrial resident apoptosis inducing factor and endonuclease G to nucleus through cytosol after LPS administration was significantly blocked with piracetam treatment. Further, LPS induced DNA fragmentation along with up regulated Poly [ADP-ribose] polymerase 1 (PARP1) levels were also inhibited with piracetam treatment. Apoptotic death was confirmed by the cleavage of caspase 3 as well as histological alteration in rat brain regions. LPS administration caused significantly increased level of cleaved caspase 3, altered neuronal morphology and decreased neuronal density which were restored with piracetam treatment. Collectively our findings indicate that piracetam offered protection against LPS induced inflammatory responses and cellular death including its antioxidative antiapoptotic activity with its attenuation against mitochondria mediated caspase independent pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection.

    Science.gov (United States)

    da Silva, Vanessa Kappel; de Freitas, Betânia Souza; da Silva Dornelles, Arethuza; Nery, Laura Roesler; Falavigna, Lucio; Ferreira, Rafael Dal Ponte; Bogo, Maurício Reis; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Crippa, José Alexandre S; Schröder, Nadja

    2014-02-01

    We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's and Alzheimer's, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.

  18. Effect of folic acid and vitamin B12 on the expression of PPAR?, caspase-3 and caspase-8 mRNA in the abdominal aortas of rats with hyperlipidemia

    OpenAIRE

    LV, FENG-HUA; GAO, JIAN-ZHI; TENG, QING-LEI; ZHANG, JIN-YING

    2013-01-01

    Hyperlipidemia may lead to endothelial injury, due to its effects on homocysteine and vascular endothelial growth factor in the serum, and the mRNA expression levels of peroxisome proliferator-activated receptor-? (PPAR?), and caspase-3 and -8 in the vascular wall. In order to prevent and mitigate the high-fat state that results from endothelial injury, this study examined the effect of folic acid (FA) and vitamin B12 (VB12) on the expression of PPAR? and caspase-3 and -8 mRNA in the abdomina...

  19. Modulatory effect of curcumin on ketamine-induced toxicity in rat thymocytes: Involvement of reactive oxygen species (ROS and the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt pathway

    Directory of Open Access Journals (Sweden)

    Svetlana Pavlovic

    2018-03-01

    Full Text Available Ketamine is a widely used anesthetic in pediatric clinical practice. Previous studies have demonstrated that ketamine induces neurotoxicity and has a modulatory effect on the cells of the immune system. Here, we evaluated the potential protective effect and underlying mechanisms of natural phenolic compound curcumin against ketamine-induced toxicity in rat thymocytes. Rat thymocytes were exposed to 100 µM ketamine alone or combined with increasing concentrations of curcumin (0.3, 1, and 3 μM for 24 hours. Cell viability was analyzed with CCK-8 assay kit. Apoptosis was analyzed using flow cytometry and propidium iodide as well as Z-VAD-FMK and Z-LEHD-FMK inhibitors. Reactive oxygen species (ROS production and mitochondrial membrane potential [MMP] were measured by flow cytometry. Colorimetric assay with DEVD-pNA substrate was used for assessing caspase-3 activity. Involvement of phosphoinositide 3-kinase (PI3K/protein kinase B (Akt signaling pathway was tested with Wortmannin inhibitor. Ketamine induced toxicity in cells, increased the number of hypodiploid cells, caspase-3 activity and ROS production, and inhibited the MMP. Co-incubation of higher concentrations of curcumin (1 and 3 μM with ketamine markedly decreased cytotoxicity, apoptosis rate, caspase-3 activity, and ROS production in rat thymocytes, and increased the MMP. Application of Z-VAD-FMK (a pan caspase inhibitor or Z-LEHD-FMK (caspase-9 inhibitor with ketamine effectively attenuated the ketamine-induced apoptosis in rat thymocytes. Administration of Wortmannin (a PI3K inhibitor with curcumin and ketamine significantly decreased the protective effect of curcumin on rat thymocytes. Our results indicate that ketamine-induced toxicity in rat thymocytes mainly occurs through the mitochondria-mediated apoptotic pathway and that the PI3K/Akt signaling pathway is involved in the anti-apoptotic effect of curcumin.

  20. Dynamin inhibitors induce caspase-mediated apoptosis following cytokinesis failure in human cancer cells and this is blocked by Bcl-2 overexpression

    Directory of Open Access Journals (Sweden)

    Braithwaite Antony W

    2011-06-01

    Full Text Available Abstract Background The aim of both classical (e.g. taxol and targeted anti-mitotic agents (e.g. Aurora kinase inhibitors is to disrupt the mitotic spindle. Such compounds are currently used in the clinic and/or are being tested in clinical trials for cancer treatment. We recently reported a new class of targeted anti-mitotic compounds that do not disrupt the mitotic spindle, but exclusively block completion of cytokinesis. This new class includes MiTMAB and OcTMAB (MiTMABs, which are potent inhibitors of the endocytic protein, dynamin. Like other anti-mitotics, MiTMABs are highly cytotoxic and possess anti-proliferative properties, which appear to be selective for cancer cells. The cellular response following cytokinesis failure and the mechanistic pathway involved is unknown. Results We show that MiTMABs induce cell death specifically following cytokinesis failure via the intrinsic apoptotic pathway. This involves cleavage of caspase-8, -9, -3 and PARP, DNA fragmentation and membrane blebbing. Apoptosis was blocked by the pan-caspase inhibitor, ZVAD, and in HeLa cells stably expressing the anti-apoptotic protein, Bcl-2. This resulted in an accumulation of polyploid cells. Caspases were not cleaved in MiTMAB-treated cells that did not enter mitosis. This is consistent with the model that apoptosis induced by MiTMABs occurs exclusively following cytokinesis failure. Cytokinesis failure induced by cytochalasin B also resulted in apoptosis, suggesting that disruption of this process is generally toxic to cells. Conclusion Collectively, these data indicate that MiTMAB-induced apoptosis is dependent on both polyploidization and specific intracellular signalling components. This suggests that dynamin and potentially other cytokinesis factors are novel targets for development of cancer therapeutics.

  1. Feasibility study for clinical application of caspase-3 inhibitors in Pemphigus vulgaris.

    Science.gov (United States)

    Hariton, William V J; Galichet, Arnaud; Vanden Berghe, Tom; Overmiller, Andrew M; Mahoney, My G; Declercq, Wim; Müller, Eliane J

    2017-12-01

    The potentially severe side effects of systemic corticosteroids and immunosuppressants used in Pemphigus vulgaris (PV) call for novel therapeutic approaches. In this context, pharmacological inhibition of major pathogenic signalling effectors represents a promising alternative. However, we have also shown that overinhibition of effectors required for epidermal homeostasis can exacerbate PV pathophysiology implicating transepidermal keratinocyte fragility. A feedforward target validation therefore preferentially includes studies on knockout mouse models. We previously reported on successful amelioration of PV blisters following inhibition of non-apoptotic, low-level caspase-3. Here, we use conditional, keratinocyte-specific caspase-3-deficient mice (casp3 EKO ) to demonstrate (i) absence of keratinocyte fragility upon injection of the potent Dsg3-specific antibody AK23 and (ii) amelioration of blistering on the background of known signalling effectors. Our results provide the experimental proof of concept justifying translation of the caspase-3 inhibitor approach into PV clinical trials. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Independent Induction of Caspase-8 and cFLIP Expression during Colorectal Carcinogenesis in Sporadic and HNPCC Adenomas and Carcinomas

    Directory of Open Access Journals (Sweden)

    D. M. Heijink

    2007-01-01

    Full Text Available Background: TNF-Related Apoptosis Inducing Ligand (TRAIL is a promising agent for the induction of apoptosis in neoplastic tissues. Important determinants of TRAIL sensitivity are two intracellular proteins of the TRAIL pathway, caspase-8 and its anti-apoptotic competitor cellular Flice-Like Inhibitory Protein (cFLIP. Methods: The aim of this study was to investigate basic expression of caspase-8 and cFLIP in normal colorectal epithelium (n = 20, colorectal adenomas (n = 66 and colorectal carcinomas (n = 44 using immunohistochemistry performed on both sporadic and Hereditary Non-Polyposis Colorectal Cancer (HNPCC or Lynch syndrome-associated adenomas and carcinomas. Results: Expression of both caspase-8 and cFLIP was similar in cases with sporadic and hereditary origin. Expression of caspase-8 in colorectal adenomas and carcinomas was increased when compared to normal colon tissue (P = 0.02. Nuclear, paranuclear as well as cytoplasmic localizations of caspase-8 were detected. Immunohistochemistry revealed an upregulation of cFLIP in colorectal carcinomas in comparison to normal epithelium and colorectal adenomas (P < 0.001. A large variation in the caspase-8/cFLIP ratio was observed between the individual adenomas and carcinomas. Conclusion: Caspase-8 and cFLIP are upregulated during colorectal carcinogenesis. Upregulation of caspase-8 and/or downregulation of cFLIP may be interesting approaches to maximize TRAIL sensitivity in colorectal neoplasms.

  3. Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase.

    Science.gov (United States)

    Jiménez, Carlos; Capasso, Juan M; Edelstein, Charles L; Rivard, Christopher J; Lucia, Scott; Breusegem, Sophia; Berl, Tomás; Segovia, María

    2009-01-01

    Programmed cell death is necessary for homeostasis in multicellular organisms and it is also widely recognized to occur in unicellular organisms. However, the mechanisms through which it occurs in unicells, and the enzymes involved within the final response is still the subject of heated debate. It is shown here that exposure of the unicellular microalga Dunaliella viridis to several environmental stresses, induced different cell death morphotypes, depending on the stimulus received. Senescent cells demonstrated classical and unambiguous apoptotic-like characteristics such as chromatin condensation, DNA fragmentation, intact organelles, and blebbing of the cell membrane. Acute heat shock caused general swelling and altered plasma membrane, but the presence of chromatin clusters and DNA strand breaks suggested a necrotic-like event. UV irradiated cells presented changes typical for necrosis, together with apoptotic characteristics resembling an intermediate cell-death phenotype termed aponecrosis-like. Cells subjected to hyperosmotic shock revealed chromatin spotting without DNA fragmentation, and extensive cytoplasmic swelling and vacuolization, comparable to a paraptotic-like cell death phenotype. Nitrogen-starved cells showed pyknosis, blebbing, and cytoplasmic consumption, indicating a similarity to autophagic/vacuolar-like cell death. The caspase-like activity DEVDase was measured by using the fluorescent substrate Ac-DEVD-AMC and antibodies against the human caspase-3 active enzyme cross-reacted with bands, the intensity of which paralleled the activity. All the environmental stresses tested produced a substantial increase in both DEVDase activity and protein levels. The irreversible caspase-3 inhibitor Z-DEVD-FMK completely inhibited the enzymatic activity whereas serine and aspartyl proteases inhibitors did not. These results show that cell death in D. viridis does not conform to a single pattern and that environmental stimuli may produce different types of

  4. Involvement of protein kinase C-δ activation in betulininduced ...

    African Journals Online (AJOL)

    Purpose: To investigate the clinical benefits and underlying mechanisms of action of betulin in the treatment of cancer using a neuroblastoma (NB) cell model. Method: Cell viability ... of tumor recurrence. Keywords: Betulin, Neuroblastoma, Apoptosis, protein kinase C-δ, Adjuvant chemotherapy, Tumor recurrence, Caspase ...

  5. Involvement of MAPK proteins in bystander effects induced by chemicals and ionizing radiation

    International Nuclear Information System (INIS)

    Asur, Rajalakshmi; Balasubramaniam, Mamtha; Marples, Brian; Thomas, Robert A.; Tucker, James D.

    2010-01-01

    Many studies have examined bystander effects induced by ionizing radiation, however few have evaluated the ability of chemicals to induce similar effects. We previously reported the ability of two chemicals, mitomycin C (MMC) and phleomycin (PHL) to induce bystander effects in normal human lymphoblastoid cell lines. The focus of the current study was to determine the involvement of the MAPK proteins in bystander effects induced by physical and chemical DNA damaging agents and to evaluate the effects of MAPK inhibition on bystander-induced caspase 3/7 activation. The phosphorylation levels of the MAPK proteins ERK1/2, JNK, and p38, were measured from 1 to 24 h following direct or bystander exposure to MMC, PHL or radiation. We observed transient phosphorylation, at early time points, of all 3 proteins in bystander cells. We also evaluated the effect of MAPK inhibition on bystander-induced caspase 3/7 activity to determine the role of MAPK proteins in bystander-induced apoptosis. We observed bystander-induced activation of caspase 3/7 in bystander cells. Inhibition of MAPK proteins resulted in a decrease in caspase 3/7 activity at the early time points, and the caspase activity increased (in the case of ERK inhibition) or returned to basal levels (in the case of JNK or p38 inhibition) between 12 and 24 h. PHL is considered to be a radiomimetic agent, however in the present study PHL behaved more like a chemical and not like radiation in terms of MAPK phosphorylation. These results point to the involvement of MAPK proteins in the bystander effect induced by radiation and chemicals and provide additional evidence that this response is not limited to radiation but is a generalized stress response in cells.

  6. The proteasome inhibitor MG-132 sensitizes PC-3 prostate cancer cells to ionizing radiation by a DNA-PK-independent mechanism

    International Nuclear Information System (INIS)

    Pajonk, Frank; Ophoven, Arndt van; Weissenberger, Christian; McBride, William H

    2005-01-01

    By modulating the expression levels of specific signal transduction molecules, the 26S proteasome plays a central role in determining cell cycle progression or arrest and cell survival or death in response to stress stimuli, including ionizing radiation. Inhibition of proteasome function by specific drugs results in cell cycle arrest, apoptosis and radiosensitization of many cancer cell lines. This study investigates whether there is also a concomitant increase in cellular radiosensitivity if proteasome inhibition occurs only transiently before radiation. Further, since proteasome inhibition has been shown to activate caspase-3, which is involved in apoptosis, and caspase-3 can cleave DNA-PKcs, which is involved in DNA-double strand repair, the hypothesis was tested that caspase-3 activation was essential for both apoptosis and radiosensitization following proteasome inhibition. Prostate carcinoma PC-3 cells were treated with the reversible proteasome inhibitor MG-132. Cell cycle distribution, apoptosis, caspase-3 activity, DNA-PKcs protein levels and DNA-PK activity were monitored. Radiosensitivity was assessed using a clonogenic assay. Inhibition of proteasome function caused cell cycle arrest and apoptosis but this did not involve early activation of caspase-3. Short-time inhibition of proteasome function also caused radiosensitization but this did not involve a decrease in DNA-PKcs protein levels or DNA-PK activity. We conclude that caspase-dependent cleavage of DNA-PKcs during apoptosis does not contribute to the radiosensitizing effects of MG-132

  7. Induction of Fas mediated caspase-8 independent apoptosis in immune cells by Armigeres subalbatus saliva.

    Directory of Open Access Journals (Sweden)

    Shanshan Liu

    Full Text Available BACKGROUND: It is widely recognized that the introduction of saliva of bloodsucking arthropods at the site of pathogen transmission might play a central role in vector-borne infections. However, how the interaction between salivary components and the host immune system takes place and which physiological processes this leads to has yet to be investigated. Armigeres subalbatus is one of the prominent types of mosquitoes involved in the transmission of parasitic and viral diseases in humans and animals. METHODOLOGY/PRINCIPAL FINDINGS: Using murine peritoneal macrophages and lymphocytes, and human peripheral mononuclear cells (PBMCs, this study shows that saliva of the female Ar. subalbatus induces apoptosis via interaction with the Fas receptor within a few hours but without activating caspase-8. The process further activates downstream p38 MAPK signaling, a cascade that leads to the induction of apoptosis in capase-3 dependent manner. We further illustrate that Ar. subalbatus saliva suppresses proinflammatory cytokines without changing IL-10 levels, which might happen as a result of apoptosis. CONCLUSIONS: Our study shows for the first time that saliva-induced apoptosis is the leading phenomenon exerted by Ar.subalbatus that impede immune cells leading to the suppression of their effecter mechanism.

  8. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yu-Qin; Xiao, Chuan-Xing; Lin, Bi-Yun; Shi, Ying; Liu, Yun-Peng; Liu, Jing-Jing; Guleng, Bayasi; Ren, Jian-Lin

    2013-01-01

    The role of Pokemon (POK erythroid myeloid ontogenic actor), a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC) and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma) as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy.

  9. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yu-Qin Zhang

    Full Text Available The role of Pokemon (POK erythroid myeloid ontogenic actor, a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy.

  10. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Li Xiaoming; Song Tianbao

    1999-01-01

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  11. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    International Nuclear Information System (INIS)

    Ji Lili; Chen Ying; Liu Tianyu; Wang Zhengtao

    2008-01-01

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 μM)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability. Polyubiquitination of Bcl-xL was detected after incubation with 100 μM clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 μM) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway

  12. BmDredd is an initiator caspase and participates in Emodin-induced apoptosis in the silkworm, Bombyx mori.

    Science.gov (United States)

    Wang, La; Song, Juan; Bao, Xi-Yan; Chen, Peng; Yi, Hua-Shan; Pan, Min-Hui; Lu, Cheng

    2016-10-15

    The identification and analysis of the caspases is essential to research into apoptosis in lepidoptera insects. The domesticated silkworm, Bombyx mori, is the model system for lepidopterans. In this study, we cloned and characterized a B. mori Dredd gene, BmDredd, the proposed insect homologue of human caspase-8, which encoded a polypeptide of 543 amino acids. BmDredd possesses a long N-terminal prodomain, a p20 domain, and a p10 domain. When transiently expressed in Escherichia coli cells, BmDredd underwent spontaneous cleavage and exhibited high proteolytic activity for caspase-8 substrate but relatively low for caspase-3 or -9 substrate. In addition, BmDredd induced apoptosis when transiently expressed in BmN-SWU1 cells, an ovarian cell line of B. mori. Moreover, after the treatment of Emodin, a novel apoptosis inducer, endogenous BmDredd expression level, the caspase-8 activity and the apoptotic rate increased notably in BmN-SWU1 cells. When BmDredd was subjected to interference in BmN-SWU1 cells and Emodin treatment, BmDredd expression levels decreased and the apoptotic rate also decreased significantly. These results suggest BmDredd is the homologue of human caspase-8 and plays a role in Emodin-induced apoptosis in BmN-SWU1 cells of B. mori. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Expressão da CASPASE-3 e CD-34 no adenocarcinoma de próstata

    Directory of Open Access Journals (Sweden)

    Vicente Paulo da Motta

    Full Text Available OBJETIVO: 1. Avaliar em qual percentual as células tumorais se marcam com caspase-3 e CD-34; 2. quantificá-los nas células tumorais; 3. verificar correlação entre quantificação e grau de malignidade tumoral; 4. correlacioná-los entre si. MÉTODOS: Estudaram-se 38 blocos com adenocarcinoma, classificados por Gleason e marcação imunoistoquímica para caspase-3 e CD-34. As proteínas imunomarcadas foram quantificadas no software Immuno do Sistema Samba 4000 de citofotometria de imagem, pelo índice de marcagem e densidade óptica. RESULTADOS: Imunomarcou-se 25 lâminas para caspase-3 e 34 para CD-34. As quantificações da caspase-3 para o índice de marcagem foram acima de 50 em 76% e, para densidade óptica, abaixo de 50 para 96%. Em relação ao CD-34, índice de marcagem foi acima de 50 em 59% e densidade óptica abaixo de 50 em 56%. As correlações entre expressões dos marcadores e a gravidade do tumor, assim como entre os marcadores, não evidenciaram significância estatística. Não se mostrou relação de expressão com o score de Gleason. CONCLUSÃO: A presença caspase-3 e CD-34 foi de 73,5% e 100%, respectivamente; 2. caspase-3 e CD-34 apresentaram alta expressão do índice de marcagem, e baixa para densidade óptica; 3. não houve correlação entre as quantificações com a classificação de Gleason; 4. não houve correlação das expressões dos dois marcadores entre si.

  14. The 19?kDa Mycobacterium tuberculosis Lipoprotein (LpqH) Induces Macrophage Apoptosis through Extrinsic and Intrinsic Pathways: A Role for the Mitochondrial Apoptosis-Inducing Factor

    OpenAIRE

    S?nchez, Alejandro; Espinosa, Patricia; Garc?a, Teresa; Mancilla, Ra?l

    2012-01-01

    We describe the association of caspase-dependent and caspase-independent mechanisms in macrophage apoptosis induced by LpqH, a 19 kDa Mycobacterium tuberculosis lipoprotein. LpqH triggered TLR2 activation, with upregulation of death receptors and ligands, which was followed by a death receptor signaling cascade with activation of initiator caspase 8 and executioner caspase 3. In this caspase-mediated phase, mitochondrial factors were involved in loss of mitochondrial transmembrane potential (...

  15. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Rajah, T.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2014-07-15

    The caspase inhibitor benzyloxycarbony (Cbz)-L-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.

  16. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress

    International Nuclear Information System (INIS)

    Rajah, T.; Chow, S.C.

    2014-01-01

    The caspase inhibitor benzyloxycarbony (Cbz)-L-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH

  17. TNF/TNFR1 pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    International Nuclear Information System (INIS)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing

    2014-01-01

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR 1 pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR 1 , TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR 1 was suppressed with its siRNA. The protein levels of TNFα, TNFR 1 and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR 1 and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR 1 , Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR 1 –siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR 1 pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners.

  18. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  19. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8

    International Nuclear Information System (INIS)

    Chacko, Alex D; Liberante, Fabio; Paul, Ian; Longley, Daniel B; Fennell, Dean A

    2010-01-01

    Activation of the extrinsic apoptosis pathway by tumour necrosis factor related apoptosis inducing ligand (TRAIL) is a novel therapeutic strategy for treating cancer that is currently under clinical evaluation. Identification of molecular biomarkers of resistance is likely to play an important role in predicting clinical anti tumour activity. The involvement of the mitochondrial type 1 voltage dependent anion channel (VDAC1) in regulating apoptosis has been highly debated. To date, a functional role in regulating the extrinsic apoptosis pathway has not been formally excluded. We carried out stable and transient RNAi knockdowns of VDAC1 in non-small cell lung cancer cells, and stimulated the extrinsic apoptotic pathway principally by incubating cells with the death ligand TRAIL. We used in-vitro apoptotic and cell viability assays, as well as western blot for markers of apoptosis, to demonstrate that TRAIL-induced toxicity is VDAC1 dependant. Confocal microscopy and mitochondrial fractionation were used to determine the importance of mitochondria for caspase-8 activation. Here we show that either stable or transient knockdown of VDAC1 is sufficient to antagonize TRAIL mediated apoptosis in non-small cell lung cancer (NSCLC) cells. Specifically, VDAC1 is required for processing of procaspase-8 to its fully active p18 form at the mitochondria. Loss of VDAC1 does not alter mitochondrial sensitivity to exogenous caspase-8-cleaved BID induced mitochondrial depolarization, even though VDAC1 expression is essential for TRAIL dependent activation of the intrinsic apoptosis pathway. Furthermore, expression of exogenous VDAC1 restores the apoptotic response to TRAIL in cells in which endogenous VDAC1 has been selectively silenced. Expression of VDAC1 is required for full processing and activation of caspase-8 and supports a role for mitochondria in regulating apoptosis signaling via the death receptor pathway

  20. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    Science.gov (United States)

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  1. JNK signaling pathway regulates sorbitol-induced Tau proteolysis and apoptosis in SH-SY5Y cells by targeting caspase-3.

    Science.gov (United States)

    Olivera Santa-Catalina, Marta; Caballero Bermejo, Montaña; Argent, Ricardo; Alonso, Juan C; Centeno, Francisco; Lorenzo, María J

    2017-12-15

    Growing evidence suggests that Diabetes Mellitus increases the risk of developing Alzheimer's disease. It is well known that hyperglycemia, a key feature of Diabetes Mellitus, may induce plasma osmolarity disturbances. Both hyperglycemia and hyperosmolarity promote the altered post-translational regulation of microtubule-associated protein Tau. Interestingly, abnormal hyperphosphorylation and cleavage of Tau have been proven to lead to the genesis of filamentous structures referred to as neurofibrillary tangles, the main pathological hallmark of Alzheimer's disease. We have previously described that hyperosmotic stress induced by sorbitol promotes Tau proteolysis and apoptosis in SH-SY5Y cells via caspase-3 activation. In order to gain insights into the regulatory mechanisms of such processes, in this work we explored the intracellular signaling pathways that regulate these events. We found that sorbitol treatment significantly enhanced the activation of conventional families of MAPK in SH-SY5Y cells. Tau proteolysis was completely prevented by JNK inhibition but not affected by either ERK1/2 or p38 MAPK blockade. Moreover, inhibition of JNK, but not ERK1/2 or p38 MAPK, efficiently prevented sorbitol-induced apoptosis and caspase-3 activation. In summary, we provide evidence that JNK signaling pathway is an upstream regulator of hyperosmotic stress-induced Tau cleavage and apoptosis in SH-SY5Y through the control of caspase-3 activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hepatoprotective Role of Hydrangea macrophylla against Sodium Arsenite-Induced Mitochondrial-Dependent Oxidative Stress via the Inhibition of MAPK/Caspase-3 Pathways

    Directory of Open Access Journals (Sweden)

    Md Rashedunnabi Akanda

    2017-07-01

    Full Text Available Sodium arsenite (NaAsO2 has been recognized as a worldwide health concern. Hydrangea macrophylla (HM is used as traditional Chinese medicine possessing antioxidant activities. The study was performed to investigate the therapeutic role and underlying molecular mechanism of HM on NaAsO2-induced toxicity in human liver cancer (HepG2 cells and liver in mice. The hepatoprotective role of HM in HepG2 cells was assessed by using 3-(4,5-dimethylthiazol-2-Yl-2,5-diphenyltetrazolium bromide (MTT, reactive oxygen species (ROS, and lactate dehydrogenase (LDH assays. Histopathology, lipid peroxidation, serum biochemistry, quantitative real-time polymerase chain reaction (qPCR and Western blot analyses were performed to determine the protective role of HM against NaAsO2 intoxication in liver tissue. In this study, we found that co-treatment with HM significantly attenuated the NaAsO2-induced cell viability loss, intracellular ROS, and LDH release in HepG2 cells in a dose-dependent manner. Hepatic histopathology, lipid peroxidation, and the serum biochemical parameters alanine aminotransferase (ALT and aspartate aminotransferase (AST were notably improved by HM. HM effectively downregulated the both gene and protein expression level of the mitogen-activated protein kinase (MAPK cascade. Moreover, HM well-regulated the Bcl-2-associated X protein (Bax/B-cell lymphoma-2 (Bcl-2 ratio, remarkably suppressed the release of cytochrome c, and blocked the expression of the post-apoptotic transcription factor caspase-3. Therefore, our study provides new insights into the hepatoprotective role of HM through its reduction in apoptosis, which likely involves in the modulation of MAPK/caspase-3 signaling pathways.

  3. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB 1 receptor antagonist AM251, but not with the selective CB 2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB 1 receptor, but not by the CB 2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB 1 receptor, but not by the CB 2 receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB 1 receptors

  4. NF-κB inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats

    International Nuclear Information System (INIS)

    Zhong Caiyun; Zhou Yamei; Pinkerton, Kent E.

    2008-01-01

    Apoptosis is a vital mechanism for the regulation of cell turnover and plays a critical role in tissue homeostasis and development of many disease processes. Previous studies have demonstrated the apoptotic effect of tobacco smoke; however, the molecular mechanisms by which tobacco smoke triggers apoptosis remain unclear. In the present study we investigated the effects of tobacco smoke on the induction of apoptosis in the lungs of rats and modulation of nuclear factor-kappa B (NF-κB) in this process. Exposure of rats to 80 mg/m 3 tobacco smoke significantly induced apoptosis in the lungs. Tobacco smoke resulted in inhibition of NF-κB activity, noted by suppression of inhibitor of κB (IκB) kinase (IKK), accumulation of IκBα, decrease of NF-κB DNA binding activity, and downregulation of NF-κB-dependent anti-apoptotic proteins, including Bcl-2, Bcl-xl, and inhibitors of apoptosis. Initiator caspases for the death receptor pathway (caspase 8) and the mitochondrial pathway (caspase 9) as well as effector caspase 3 were activated following tobacco smoke exposure. Tobacco smoke exposure did not alter the levels of p53 and Bax proteins. These findings suggest the role of NF-κB pathway in tobacco smoke-induced apoptosis

  5. Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats.

    Science.gov (United States)

    Feng, Zhenhua; Zheng, Wenhao; Tang, Qian; Cheng, Liang; Li, Hang; Ni, Wenfei; Pan, Xiaoyun

    2017-08-01

    Steroid-induced avascular necrosis of the femoral head (SANFH) is a major limitation of long-term or excessive clinical administration of glucocorticoids. Fludarabine, which is a compound used to treat various hematological malignancies, such as chronic lymphocytic leukemia, acts by down-regulating signal transducer and activator of transcription 1 (STAT1) by inhibiting STAT1 phosphorylation in both normal and cancer cells. This study assessed the effects of fludarabine in vitro (primary murine osteoblasts) and in vivo (rat SANFH model). In vitro, pretreatment with fludarabine significantly inhibited Dexamethasone (Dex)-induced apoptosis in osteoblasts, which was examined by TUNEL staining. Treatment with Dex caused a remarkable decrease in the expression of Bcl-2; an increase in cytochrome c release; activation of BAX, caspase-9, and caspase-3; and an obvious enhancement in STAT1 phosphorylation. However, treatment resulted in the up-regulation of caspase-3 expression. Enhanced P-STAT1 activity and up-regulation of caspase-3 expression were also observed in osteoblasts. In vivo, the subchondral trabeculae in fludarabine-treated rats exhibited less bone loss and a lower ratio of empty lacunae. Taken together, our results suggest that STAT1-mediated up-regulation of caspase-3 is involved in osteoblast apoptosis induced by Dex and indicates that fludarabine may serve as a potential agent for the treatment of SANFH.

  6. Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells.

    Science.gov (United States)

    Tanel, André; Pallepati, Pragathi; Bettaieb, Ahmed; Morin, Patrick; Averill-Bates, Diana A

    2014-05-01

    Acrolein, a highly reactive α,β-unsaturated aldehyde, is a product of endogenous lipid peroxidation. It is a ubiquitous environmental pollutant that is generated mainly by smoke, overheated cooking oil and vehicle exhaust. Acrolein damages cellular proteins, which could lead to accumulation of aberrantly-folded proteins in the endoplasmic reticulum (ER). This study determines the mechanisms involved in acrolein-induced apoptosis mediated by the ER and possible links with the ER stress response in human A549 lung cells. The exposure of cells to acrolein (15-50μM) for shorter times of 15 to 30min activated several ER stress markers. These included the ER chaperone protein BiP and the three ER sensors: (i) the survival/rescue molecules protein kinase RNA (PKR)-like ER kinase (PERK) and eukaryotic initiation factor 2 alpha (eIF2α) were phosphorylated; (ii) cleavage of activating transcription factor 6 (ATF6) occurred, and (iii) inositol-requiring protein-1 alpha (IRE1α) was phosphorylated. Acrolein (25-50μM) caused apoptotic cell death mediated by the ER after 2h, which was characterised by the induction of CHOP and activation of ER proteases calpain and caspase-4. Calpain and caspase-7 were the initiating factors for caspase-4 activation in acrolein-induced apoptosis. These results increase our knowledge about cellular responses to acrolein in lung cells, which have implications for human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Confocal Microscopy and Image Analysis Indicates a Region-Specific Relation between Active Caspases and Cytoplasm in Ejaculated and Epididymal Sperm

    Science.gov (United States)

    García Vazquez, Susana; Aragón Martínez, Andrés; Flores-Alonso, Juan Carlos

    2012-01-01

    Previously, it was suggested a relation between the presence of apoptosis markers with cytoplasm in mammalian sperm. In this work, flow cytometry, confocal microscopy and image analysis were used to analyze the relationship between active caspase-3 and -7 and intracellular esterases expression in ejaculated or epididymal ram sperm. Sperm obtained from ejaculates from the caput, corpus, or cauda of the epididymis were treated with an inhibitor of active caspase-3 and -7 and a marker of cytoplasmic esterases. Additionally, ejaculated sperm were incubated for one, two, or three hours before evaluation for active caspases. Sperm subpopulations positive for active caspases and/or intracellular esterases were detected by flow cytometry and confocal microscopy; however, image analysis of confocal images showed that the correlation between active caspases and cytoplasmic esterases in sperm is region-specific. Lower values of Spearman correlation coefficients were found when whole sperm or head sperm was analyzed; however, a high correlation was observed for midpiece sperm. Incubation of sperm for two or three hours promoted the autoactivation of caspases. It has been suggested that the presence of apoptotic markers in sperm are related with a process of abortive apoptosis and with errors during spermiogenesis. Our results permit us suggest that the origin of the relationship between active caspases and cytoplasmic esterases is due to differentiation errors occurring during spermiogenesis because the percentages of sperm with active caspases are not different in the caput, corpus, or cauda of the epididymis. In this study we demonstrate that existing sperm subpopulations can express active caspases and intracellular esterases and that the correlation between these molecules is high in midpiece sperm. PMID:22530029

  8. Caspase-dependent inhibition of store-operated Ca2+ entry into apoptosis-committed Jurkat cells

    International Nuclear Information System (INIS)

    Onopiuk, Marta; Wierzbicka, Katarzyna; Brutkowski, Wojciech; Szczepanowska, Joanna; Zablocki, Krzysztof

    2010-01-01

    Activation of T-cells triggers store-operated Ca 2+ entry, which begins a signaling cascade leading to induction of appropriate gene expression and eventually lymphocyte proliferation and differentiation. The simultaneous enhancement of Fas ligand gene expression in activated cells allows the immune response to be limited by committing the activated cells to apoptosis. In apoptotic cells the store-operated calcium entry is significantly inhibited. It has been documented that moderate activation of Fas receptor may cause reversible inhibition of store-operated channels by ceramide released from hydrolyzed sphingomyelin. Here we show that activation of Fas receptor in T-cells results in caspase-dependent decrease of cellular STIM1 and Orai1 protein content. This effect may be responsible for the substantial inhibition of Ca 2+ entry into Jurkat cells undergoing apoptosis. In turn, this inhibition might prevent overloading of cells with calcium and protect them against necrosis. -- Research highlights: → Fas activation reduces STIM1 and Orai1 protein content in caspase dependent manner. → Fas activation partially reduces mitochondrial potential in caspase dependent manner. → Fas stimulation inhibits of store-operated Ca 2+ entry in caspase dependent manner. → Inhibition of Ca 2+ entry in apoptotic cells may protect them from secondary necrosis.

  9. Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death.

    Science.gov (United States)

    Basso, Pauline; Wallet, Pierre; Elsen, Sylvie; Soleilhac, Emmanuelle; Henry, Thomas; Faudry, Eric; Attrée, Ina

    2017-10-01

    Pathogenic bacteria secrete protein toxins that provoke apoptosis or necrosis of eukaryotic cells. Here, we developed a live-imaging method, based on incorporation of a DNA-intercalating dye into membrane-damaged host cells, to study the kinetics of primary bone marrow-derived macrophages (BMDMs) mortality induced by opportunistic pathogen Pseudomonas aeruginosa expressing either Type III Secretion System (T3SS) toxins or the pore-forming toxin, Exolysin (ExlA). We found that ExlA promotes the activation of Caspase-1 and maturation of interleukin-1β. BMDMs deficient for Caspase-1 and Caspase-11 were resistant to ExlA-induced death. Furthermore, by using KO BMDMs, we determined that the upstream NLRP3/ASC complex leads to the Caspase-1 activation. We also demonstrated that Pseudomonas putida and Pseudomonas protegens and the Drosophila pathogen Pseudomonas entomophila, which naturally express ExlA-like toxins, are cytotoxic toward macrophages and provoke the same type of pro-inflammatory death as does ExlA + P. aeruginosa. These results demonstrate that ExlA-like toxins of two-partner secretion systems from diverse Pseudomonas species activate the NLRP3 inflammasome and provoke inflammatory pyroptotic death of macrophages. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Xylopine Induces Oxidative Stress and Causes G2/M Phase Arrest, Triggering Caspase-Mediated Apoptosis by p53-Independent Pathway in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Luciano de Souza Santos

    2017-01-01

    Full Text Available Xylopine is an aporphine alkaloid that has cytotoxic activity to cancer cells. In this study, the underlying mechanism of xylopine cytotoxicity was assessed in human colon carcinoma HCT116 cells. Xylopine displayed potent cytotoxicity in different cancer cell lines in monolayer cultures and in a 3D model of cancer multicellular spheroids formed from HCT116 cells. Typical morphology of apoptosis, cell cycle arrest in the G2/M phase, increased internucleosomal DNA fragmentation, loss of the mitochondrial transmembrane potential, and increased phosphatidylserine externalization and caspase-3 activation were observed in xylopine-treated HCT116 cells. Moreover, pretreatment with a caspase-3 inhibitor (Z-DEVD-FMK, but not with a p53 inhibitor (cyclic pifithrin-α, reduced xylopine-induced apoptosis, indicating induction of caspase-mediated apoptosis by the p53-independent pathway. Treatment with xylopine also caused an increase in the production of reactive oxygen/nitrogen species (ROS/RNS, including hydrogen peroxide and nitric oxide, but not superoxide anion, and reduced glutathione levels were decreased in xylopine-treated HCT116 cells. Application of the antioxidant N-acetylcysteine reduced the ROS levels and xylopine-induced apoptosis, indicating activation of ROS-mediated apoptosis pathway. In conclusion, xylopine has potent cytotoxicity to different cancer cell lines and is able to induce oxidative stress and G2/M phase arrest, triggering caspase-mediated apoptosis by the p53-independent pathway in HCT116 cells.

  11. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Mazen Alzaharna

    Full Text Available Andrographolide (Andro has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death.

  12. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells

    Science.gov (United States)

    Alzaharna, Mazen; Alqouqa, Iyad; Cheung, Hon-Yeung

    2017-01-01

    Andrographolide (Andro) has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi) has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS)-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α) decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP) plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death. PMID:28182713

  13. Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production

    International Nuclear Information System (INIS)

    Shen, S.-C.; Ko, C.H.; Tseng, S.-W.; Tsai, S.-H.; Chen, Y.-C.

    2004-01-01

    Flavonoids exist extensively in plants and Chinese herbs, and several biological effects of flavonoids have been demonstrated. The antitumor effects in colorectal carcinoma cells (HT29, COLO205, and COLO320HSR) of eight flavanones including flavanone, 2'-OH flavanone, 4'-OH flavanone, 6-OH flavanone, 7-OH flavanone, naringenin, nargin, and taxifolin were investigated. Results of the MTT assay indicate that 2'-OH flavanone showed the most potent cytotoxic effect on these three cells, and cell death induced by 2'-OH flavanone was via the occurrence of DNA ladders, apoptotic bodies, and hypodiploid cells, all characteristics of apoptosis. Induction of caspase 3 protein processing and enzyme activity associated with cleavage of poly(ADP-ribose) polymerase (PARP) was identified in 2'-OH flavanone-treated cells, and a peptidyl inhibitor (Ac-DEVD-FMK) of caspase 3 attenuated the cytotoxicity of 2'-OH flavanone in COLO205 and HT-29 cells. Elevation of p21 (but not p53) and a decrease in Mcl-1 protein were found in 2'-OH flavanone-treated COLO205 and HT-29 cells. Elevation of intracellular reactive oxygen species (ROS) was detected in 2'-OH flavanone-treated cells by the 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA) assay, and ROS scavengers including 4,5-dihydro-1,3-benzene disulfonic acid (tiron), catalase, superoxide dismutase (SOD), and pyrrolidine dithiocarbamate (PDTC) suppressed the 2'-OH flavanone-induced cytotoxic effect. Subcutaneous injection of COLO205 induced tumor formation in nude mice, and 2'-OH flavanone showed a significant inhibitory effect on tumor formation. The appearance of apoptotic cells with H and E staining, and an increase in p21, but not p53, protein by immunohistochemistry were observed in tumor tissues under 2'-OH flavanone treatment. Primary tumor cells (COLO205-X) derived from a tumor specimen elicited by COLO205 were established, and 2'-OH flavanone showed an significant apoptotic effect in COLO205-X cells in accordance with the

  14. 3-Monochloro-1,2-propanediol (3-MCPD) induces apoptosis via mitochondrial oxidative phosphorylation system impairment and the caspase cascade pathway

    International Nuclear Information System (INIS)

    Peng, Xiaoli; Gan, Jing; Wang, Qian; Shi, Zhenqiang; Xia, Xiaodong

    2016-01-01

    3-Monochloro-1,2-propanediol (3-MCPD) is the most toxic chloropropanols compounds in foodstuff which mainly generated during thermal processing. Kidney is one of the primary target organs for 3-MCPD. Using human embryonic kidney cell (HEK293FT) as an in vitro model, we found that 3-MCPD caused concentration-dependent increase in cytoxicity as assessed by dye uptake, lactatedehydrogenase (LDH) leakage and MTT assays. HEK293FT cell treated with 3-MCPD suffered the decrease of mitochondrial membrane potential and the impairment of mitochondrial oxidative phosphorylation system, especially the reduced amount of mRNA expression and protein synthesis of electron transport chain complex II, complex IV, and complex III. More importantly, energy release (ATP synthesis) was significantly inhibited by 3-MCPD resulting from the down regulation expressions of ATP synthase (ATP6 and ATP8), as well as the loss of transmembrane potential required for synthesis of ATP. The decreased ratio of mitochondrial apoptogenic factors Bax/Bcl-2 and the cytochrome-c release from mitochondria to cytosol followed by the activation of apoptotic initiators caspase 9 and apoptotic executioners (caspase 3, caspase 6 and caspase 7) leading to apoptosis. The activation of caspase 8 and caspase 2 implied that there were probably other factors to induce the caspase-dependent apoptosis.

  15. The Significance of Caspase-Cleaved Cytokeratin 18 in Pleural Effusion

    Science.gov (United States)

    Lee, Keu Sung; Chung, Joo Yang; Jung, Yun Jung; Chung, Wou Young; Park, Joo Hun; Sheen, Seung Soo; Lee, Kyi Beom

    2014-01-01

    Background Apoptosis plays a role in the development of pleural effusion. Caspase-cleaved cytokeratin 18, a marker for epithelial cell apoptosis, was evaluated in pleural effusion. Methods A total of 79 patients with pleural effusion were enrolled. The underlying causes were lung cancer (n=24), parapneumonic effusion (n=15), tuberculous effusion (n=28), and transudates (n=12). The levels of M30, an epitope of caspase-cleaved cytokeratin 18, were measured in blood and pleural fluids using enzyme-linked immunosorbent assay along with routine cellular and biochemical parameters. The expression of M30 was evaluated in the pleural tissues using immunohistochemistry for M30. Results The M30 levels in pleural fluid were significantly higher in patients with tuberculosis (2,632.1±1,467.3 U/mL) than in patients with lung cancer (956.5±618.5 U/mL), parapneumonic effusion (689.9±413.6 U/mL), and transudates (273.6±144.5 U/mL; all peffusion from all other effusions was 0.93. In the immunohistochemical analysis of M30, all pathologic types of cancer cells showed moderate to high expression, and the epithelioid cells in granulomas showed high expression in tuberculous pleural tissues. Conclusion Caspase-cleaved cytokeratin 18 was most prominently observed in tuberculous pleural effusion and showed utility as a clinical marker. The main source of M30 was found to be the epithelioid cells of granulomas in tuberculous pleural tissues. PMID:24523813

  16. Involvement of TR3/Nur77 translocation to the endoplasmic reticulum in ER stress-induced apoptosis

    International Nuclear Information System (INIS)

    Liang Bin; Song Xuhong; Liu Gefei; Li Rui; Xie Jianping; Xiao Lifeng; Du Mudan; Zhang Qiaoxia; Xu Xiaoyuan; Gan Xueqiong; Huang Dongyang

    2007-01-01

    Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 μM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca 2+ from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death

  17. TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing, E-mail: dmx@mail.hzau.edu.cn

    2014-04-15

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR{sub 1}, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR{sub 1} was suppressed with its siRNA. The protein levels of TNFα, TNFR{sub 1} and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR{sub 1} and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR{sub 1}, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR{sub 1}–siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR{sub 1} pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and

  18. TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract.

    Science.gov (United States)

    Li, Guoxing; Song, Huiyang; Chen, Lei; Yang, Weihua; Nan, Kaihui; Lu, Peirong

    2017-07-01

    Age-related cataract is among the most common chronic disorders of ageing and the apoptosis of lens epithelial cells contributes to non-congenital cataract development. We amid to explore the role of TUG1 and miR-421 in the age-related cataract. The expression level of TUG1, miR-421 and caspase-3 were detected by RT-qPCR. The apoptotic-related protein, caspase-3, Bax and blc-2 were analyzed by western blot. We performed ultraviolet (UV) irradiation to induce SAR01/04 cell apoptosis which was analyzed by flow cytometry. RIP pull-down and luciferase reporter assay were used to verified the combination and regulating among TUG1, miR-421 and caspase-3. Here, we observed that the expression level of TUG1 and caspase-3 in the anterior lens capsules of age-related cataract were significantly higher and miR-421 was significantly lower than that in the normal anterior lens capsules. The apoptosis-related protein, caspase-3, Bax and blc-2 were abnormal expression in the anterior lens capsules of age-related cataract tissue. Our data showed that the expression level of TUG1 and caspase-3 and cell apoptosis rate in SAR01/04 cells treated with UV irradiation was remarkably higher than that in the control. TUG1 negatively regulated miR-421 expression and promoted UV irradiation-induced SAR01/04 cell apoptosis. However, miR-421 inhibitor and pcDNA-caspase-3 could reverse the action of the SRA01/04 cell apoptosis by si-TUG1, which suggested TUG1 promoted UV irradiation-induced apoptosis through downregulating miR-421 expression. Furthermore, this study confirmed TUG1 could been in combination with miR-421, and TUG1 and caspase-3 were both a directly target of miR-421. TUG1 modulated lens epithelial cell apoptosis through miR-421/caspase-3 axis. These findings will offer a novel insight into the pathogenesis of cataract. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor α-Induced Necroptosis

    Directory of Open Access Journals (Sweden)

    Bram Laukens

    2011-10-01

    Full Text Available Searching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells. Interestingly, Smac mimetic- and TNFα-mediated cell death occurs without characteristic features of apoptosis (i.e., caspase activation, DNA fragmentation in FADD-deficient cells. By comparison, Smac mimetic and TNFα trigger activation of caspase-8, -9, and -3 and DNA fragmentation in wild-type cells. Consistently, the caspase inhibitor zVAD.fmk fails to block Smac mimetic- and TNFα-triggered cell death in FADD- or caspase-8-deficient cells, while it confers protection in wild-type cells. By comparison, necrostatin-1, an RIP1 kinase inhibitor, abolishes Smac mimetic- and TNFα-induced cell death in FADD- or caspase-8-deficient. Thus, Smac mimetic enhances TNFα-induced cell death in leukemia cells via two distinct pathways in a context-dependent manner: it primes apoptosis-resistant cells lacking FADD or caspase-8 to TNFα-induced, RIP1-dependent and caspase-independent necroptosis, whereas it sensitizes apoptosis-proficient cells to TNFα-mediated, caspase-dependent apoptosis. These findings have important implications for the therapeutic exploitation of necroptosis as an alternative cell death program to overcome apoptosis resistance.

  20. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  1. Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation.

    Science.gov (United States)

    Allavena, Giulia; Cuomo, Francesca; Baumgartner, Georg; Bele, Tadeja; Sellgren, Alexander Yarar; Oo, Kyaw Soe; Johnson, Kaylee; Gogvadze, Vladimir; Zhivotovsky, Boris; Kaminskyy, Vitaliy O

    2018-01-01

    Macroautophagy/autophagy inhibition under stress conditions is often associated with increased cell death. We found that under nutrient limitation, activation of CASP8/caspase-8 was significantly increased in autophagy-deficient lung cancer cells, which precedes mitochondria outer membrane permeabilization (MOMP), CYCS/cytochrome c release, and activation of CASP9/caspase-9, indicating that under such conditions the activation of CASP8 is a primary event in the initiation of apoptosis as well as essential to reduce clonogenic survival of autophagy-deficient cells. Starvation leads to suppression of CFLAR proteosynthesis and accumulation of CASP8 in SQSTM1 puncta. Overexpression of CFLARs reduces CASP8 activation and apoptosis during starvation, while its silencing promotes efficient activation of CASP8 and apoptosis in autophagy-deficient U1810 lung cancer cells even under nutrient-rich conditions. Similar to starvation, inhibition of protein translation leads to efficient activation of CASP8 and cell death in autophagy-deficient lung cancer cells. Thus, here for the first time we report that suppressed translation leads to activation of CASP8-dependent apoptosis in autophagy-deficient NSCLC cells under conditions of nutrient limitation. Our data suggest that targeting translational machinery can be beneficial for elimination of autophagy-deficient cells via the CASP8-dependent apoptotic pathway.

  2. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis*

    Science.gov (United States)

    Leroy, Catherine; Belkina, Natalya V.; Long, Thavy; Deruy, Emeric; Dissous, Colette; Shaw, Stephen; Tulasne, David

    2016-01-01

    The lymphocyte-oriented kinase (LOK), also called serine threonine kinase 10 (STK10), is synthesized mainly in lymphocytes. It is involved in lymphocyte migration and polarization and can phosphorylate ezrin, radixin, and moesin (the ERM proteins). In a T lymphocyte cell line and in purified human lymphocytes, we found LOK to be cleaved by caspases during apoptosis. The first cleavage occurs at aspartic residue 332, located between the kinase domain and the coiled-coil regulation domain. This cleavage generates an N-terminal fragment, p50 N-LOK, containing the kinase domain and a C-terminal fragment, which is further cleaved during apoptosis. Although these cleavages preserve the entire kinase domain, p50 N-LOK displays no kinase activity. In apoptotic lymphocytes, caspase cleavages of LOK are concomitant with a decrease in ERM phosphorylation. When non-apoptotic lymphocytes from mice with homozygous and heterozygous LOK knockout were compared, the latter showed a higher level of ERM phosphorylation, but when apoptosis was induced, LOK−/− and LOK+/− lymphocytes showed the same low level, confirming in vivo that LOK-induced ERM phosphorylation is prevented during lymphocyte apoptosis. Our results demonstrate that cleavage of LOK during apoptosis abolishes its kinase activity, causing a decrease in ERM phosphorylation, crucial to the role of the ERM proteins in linking the plasma membrane to actin filaments. PMID:26945071

  3. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis.

    Science.gov (United States)

    Leroy, Catherine; Belkina, Natalya V; Long, Thavy; Deruy, Emeric; Dissous, Colette; Shaw, Stephen; Tulasne, David

    2016-05-06

    The lymphocyte-oriented kinase (LOK), also called serine threonine kinase 10 (STK10), is synthesized mainly in lymphocytes. It is involved in lymphocyte migration and polarization and can phosphorylate ezrin, radixin, and moesin (the ERM proteins). In a T lymphocyte cell line and in purified human lymphocytes, we found LOK to be cleaved by caspases during apoptosis. The first cleavage occurs at aspartic residue 332, located between the kinase domain and the coiled-coil regulation domain. This cleavage generates an N-terminal fragment, p50 N-LOK, containing the kinase domain and a C-terminal fragment, which is further cleaved during apoptosis. Although these cleavages preserve the entire kinase domain, p50 N-LOK displays no kinase activity. In apoptotic lymphocytes, caspase cleavages of LOK are concomitant with a decrease in ERM phosphorylation. When non-apoptotic lymphocytes from mice with homozygous and heterozygous LOK knockout were compared, the latter showed a higher level of ERM phosphorylation, but when apoptosis was induced, LOK(-/-) and LOK(+/-) lymphocytes showed the same low level, confirming in vivo that LOK-induced ERM phosphorylation is prevented during lymphocyte apoptosis. Our results demonstrate that cleavage of LOK during apoptosis abolishes its kinase activity, causing a decrease in ERM phosphorylation, crucial to the role of the ERM proteins in linking the plasma membrane to actin filaments. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM.

    Science.gov (United States)

    Chung, Lawton K; Philip, Naomi H; Schmidt, Valentina A; Koller, Antonius; Strowig, Till; Flavell, Richard A; Brodsky, Igor E; Bliska, James B

    2014-07-01

    YopM is a leucine-rich repeat (LRR)-containing effector in several Yersinia species, including Yersinia pestis and Y. pseudotuberculosis. Different Yersinia strains encode distinct YopM isoforms with variable numbers of LRRs but conserved C-terminal tails. A 15-LRR isoform in Y. pseudotuberculosis YPIII was recently shown to bind and inhibit caspase-1 via a YLTD motif in LRR 10, and attenuation of YopM(-) YPIII was reversed in mice lacking caspase-1, indicating that caspase-1 inhibition is a major virulence function of YopM(YPIII). To determine if other YopM proteins inhibit caspase-1, we utilized Y. pseudotuberculosis strains natively expressing a 21-LRR isoform lacking the YLTD motif (YopM(32777)) or ectopically expressing a Y. pestis 15-LRR version with a functional (YopM(KIM)) or inactivated (YopM(KIM) D271A) YLTD motif. Results of mouse and macrophage infections with these strains showed that YopM(32777), YopM(KIM), and YopM(KIM) D271A inhibit caspase-1 activation, indicating that the YLTD motif is dispensable for this activity. Analysis of YopM(KIM) deletion variants revealed that LRRs 6 to 15 and the C-terminal tail are required to inhibit caspase-1 activation. YopM(32777), YopM(KIM), and YopM(KIM) deletion variants were purified, and binding partners in macrophage lysates were identified. Caspase-1 bound to YopM(KIM) but not YopM(32777). Additionally, YopM(KIM) bound IQGAP1 and the use of Iqgap1(-/-) macrophages revealed that this scaffolding protein is important for caspase-1 activation upon infection with YopM(-) Y. pseudotuberculosis. Thus, while multiple YopM isoforms inhibit caspase-1 activation, their variable LRR domains bind different host proteins to perform this function and the LRRs of YopM(KIM) target IQGAP1, a novel regulator of caspase-1, in macrophages. Importance: Activation of caspase-1, mediated by macromolecular complexes termed inflammasomes, is important for innate immune defense against pathogens. Pathogens can, in turn, subvert

  5. Caspase 3 activity in isolated fetal rat lung fibroblasts and rat periodontal ligament fibroblasts: cigarette smoke-induced alterations

    Directory of Open Access Journals (Sweden)

    James Elliot Scott

    2016-03-01

    Full Text Available Background Cigarette smoking is the leading cause of preventable death in the world. It has been implicated in the pathogenesis of pulmonary, oral and systemic diseases. Smoking during pregnancy is clearly a risk factor for the developing fetus and may be a major cause of infant mortality. Moreover, the oral cavity is the first site of exposure to cigarette smoke and may be a possible source for the spread of toxins to other organs of the body. Fibroblasts in general are morphologically heterogeneous connective tissue cells with diverse functions. Apoptosis or programmed cell death is a crucial process during embryogenesis and for the maintenance of homeostasis throughout life. Deregulation of apoptosis has been implicated in abnormal lung development in the fetus and disease progression in adults. Caspases, are proteases which belong to the family of cysteine aspartic acid proteases and are the key components for the downstream amplification of intra-cellular apoptotic signals. Of the 14 caspases known, caspase-3 is the key executioner of apoptosis. Fetal rat lung fibroblasts but not PDL viability is reduced by exposure to CSE. In addition Caspase 3 activity is elevated after CSE exposure in fetal lung fibroblasts but not in PDLs. Expression of caspase 3 is induced in CSE exposed lung fibroblasts but not in PDLs. Caspase 3 was localized to the cytoplasm in both cell types.

  6. Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts

    Science.gov (United States)

    Zherdeva, Victoria; Kazachkina, Natalia I.; Shcheslavskiy, Vladislav; Savitsky, Alexander P.

    2018-03-01

    Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.

  7. Induction of apoptosis by pinostrobin in human cervical cancer cells: Possible mechanism of action.

    Directory of Open Access Journals (Sweden)

    Alka Jaudan

    Full Text Available Pinostrobin (PN is a naturally occurring dietary bioflavonoid, found in various medicinal herbs/plants. Though anti-cancer potential of many such similar constituents has been demonstrated, critical biochemical targets and exact mechanism for their apoptosis-inducing actions have not been fully elucidated. The present study was aimed to investigate if PN induced apoptosis in cervical cancer cells (HeLa of human origin. It is demonstrated that PN at increasing dose effectivity reduced the cell viability as well as GSH and NO2- levels. Condensed nuclei with fragmented chromatin and changes in mitochondrial matrix morphology clearly indicated the role of mitochondria in PN induced apoptosis. A marked reduction in mitochondrial membrane potential and increased ROS production after PN treatment showed involvement of free radicals, which in turn further augment ROS levels. PN treatment resulted in DNA damage, which could have been triggered by an increase in ROS levels. Decrease in apoptotic cells in the presence of caspase 3 inhibitor in PN-treated cells suggested that PN induced apoptosis via caspase dependent pathways. Additionally, a significant increase in the expression of proteins of extrinsic (TRAIL R1/DR4, TRAIL R2/DR5, TNF RI/TNFRSF1A, FADD, Fas/TNFRSF6 and intrinsic pathway (Bad, Bax, HTRA2/Omi, SMAC/Diablo, cytochrome C, Pro-Caspase-3, Cleaved Caspase-3 was observed in the cells exposed to PN. Taken together, these observations suggest that PN efficiently induces apoptosis through ROS mediated extrinsic and intrinsic dependent signaling pathways, as well as ROS mediated mitochondrial damage in HeLa cells.

  8. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection.

    Directory of Open Access Journals (Sweden)

    Marco A Ataide

    2014-01-01

    Full Text Available Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1β. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-γ-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1β expression required a second stimulation with LPS and was also dependent on IFN-γ-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1β upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14(+CD16(-Caspase-1(+ and CD14(dimCD16(+Caspase-1(+ monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1β after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1β and hypersensitivity to secondary bacterial infection during malaria.

  9. 3-Monochloro-1,2-propanediol (3-MCPD) induces apoptosis via mitochondrial oxidative phosphorylation system impairment and the caspase cascade pathway.

    Science.gov (United States)

    Peng, Xiaoli; Gan, Jing; Wang, Qian; Shi, Zhenqiang; Xia, Xiaodong

    2016-11-30

    3-Monochloro-1,2-propanediol (3-MCPD) is the most toxic chloropropanols compounds in foodstuff which mainly generated during thermal processing. Kidney is one of the primary target organs for 3-MCPD. Using human embryonic kidney cell (HEK293FT) as an in vitro model, we found that 3-MCPD caused concentration-dependent increase in cytoxicity as assessed by dye uptake, lactatedehydrogenase (LDH) leakage and MTT assays. HEK293FT cell treated with 3-MCPD suffered the decrease of mitochondrial membrane potential and the impairment of mitochondrial oxidative phosphorylation system, especially the reduced amount of mRNA expression and protein synthesis of electron transport chain complex II, complex IV, and complex III. More importantly, energy release (ATP synthesis) was significantly inhibited by 3-MCPD resulting from the down regulation expressions of ATP synthase (ATP6 and ATP8), as well as the loss of transmembrane potential required for synthesis of ATP. The decreased ratio of mitochondrial apoptogenic factors Bax/Bcl-2 and the cytochrome-c release from mitochondria to cytosol followed by the activation of apoptotic initiators caspase 9 and apoptotic executioners (caspase 3, caspase 6 and caspase 7) leading to apoptosis. The activation of caspase 8 and caspase 2 implied that there were probably other factors to induce the caspase-dependent apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Abrogation of the presenilin 1/beta-catenin interaction and preservation of the heterodimeric presenilin 1 complex following caspase activation.

    Science.gov (United States)

    Tesco, G; Kim, T W; Diehlmann, A; Beyreuther, K; Tanzi, R E

    1998-12-18

    beta-Catenin has previously been shown to interact with presenilin 1 (PS1) in transfected cells. Here we report that beta-catenin co-immunoprecipitates with the endogenous C-terminal fragment of presenilin 1 (PS1-CTF) but not with the endogenous CTF of presenilin 2 (PS2-CTF) in H4 human neuroglioma cells. During staurosporine (STS)-induced cell death, beta-catenin and PS1-CTF undergo a caspase-mediated cleavage. After 12 h of STS treatment, the beta-catenin.PS1-CTF interaction is abrogated. While PS1-CTF immunoprecipitated with all caspase-cleaved species of beta-catenin, beta-catenin holoprotein did not co-immunoprecipitate with the "alternative" caspase-derived PS1-CTF (PS1-aCTF). Thus, the abrogation of the beta-catenin.PS1-CTF complex was due to caspase cleavage of PS1-CTF. beta-Catenin co-immunoprecipitated with PS1-NTF, but only when PS1-NTF was associated with PS1-CTF. Even though PS1-NTF.CTF complex stability was not altered by caspase cleavage, its ability to bind beta-catenin was abolished. Thus, while the PS1-NTF.CTF complex is preserved after caspase cleavage, it may no longer be fully functional.

  11. Nascent histamine induces α-synuclein and caspase-3 on human cells

    Energy Technology Data Exchange (ETDEWEB)

    Caro-Astorga, Joaquín; Fajardo, Ignacio; Ruiz-Pérez, María Victoria; Sánchez-Jiménez, Francisca; Urdiales, José Luis, E-mail: jlurdial@uma.es

    2014-09-05

    Highlights: • Nascent histamine alters cyclin expression pattern. • Nascent histamine increases expression of α-synuclein. • Nascent histamine activates caspase-3. - Abstract: Histamine (Hia) is the most multifunctional biogenic amine. It is synthetized by histidine decarboxylase (HDC) in a reduced set of mammalian cell types. Mast cells and histaminergic neurons store Hia in specialized organelles until the amine is extruded by exocytosis; however, other immune and cancer cells are able to produce but not store Hia. The intracellular effects of Hia are still not well characterized, in spite of its physiopathological relevance. Multiple functional relationships exist among Hia metabolism/signaling elements and those of other biogenic amines, including growth-related polyamines. Previously, we obtained the first insights for an inhibitory effect of newly synthetized Hia on both growth-related polyamine biosynthesis and cell cycle progression of non-fully differentiated mammalian cells. In this work, we describe progress in this line. HEK293 cells were transfected to express active and inactive versions of GFP-human HDC fusion proteins and, after cell sorting by flow cytometry, the relative expression of a large number of proteins associated with cell signaling were measured using an antibody microarray. Experimental results were analyzed in terms of protein–protein and functional interaction networks. Expression of active HDC induced a cell cycle arrest through the alteration of the levels of several proteins such as cyclin D1, cdk6, cdk7 and cyclin A. Regulation of α-synuclein and caspase-3 was also observed. The analyses provide new clues on the molecular mechanisms underlying the regulatory effects of intracellular newly synthetized Hia on cell proliferation/survival, cell trafficking and protein turnover. This information is especially interesting for emergent and orphan immune and neuroinflammatory diseases.

  12. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    International Nuclear Information System (INIS)

    Brenes, J.C.; Broiz, A.C.; Bassi, G.S.; Schwarting, R.K.W.; Brandão, M.L.

    2012-01-01

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by Y -aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG

  13. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    Energy Technology Data Exchange (ETDEWEB)

    Brenes, J.C. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Broiz, A.C.; Bassi, G.S. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Schwarting, R.K.W. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Brandão, M.L. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-09

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by {sub Y}-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

  14. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    Science.gov (United States)

    Borges, Juliana Pereira; Lessa, Marcos Adriano

    2015-01-01

    Background Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions. PMID:25830711

  15. Education on invasive mechanical ventilation involving intensive care nurses: a systematic review.

    Science.gov (United States)

    Guilhermino, Michelle C; Inder, Kerry J; Sundin, Deborah

    2018-03-26

    Intensive care unit nurses are critical for managing mechanical ventilation. Continuing education is essential in building and maintaining nurses' knowledge and skills, potentially improving patient outcomes. The aim of this study was to determine whether continuing education programmes on invasive mechanical ventilation involving intensive care unit nurses are effective in improving patient outcomes. Five electronic databases were searched from 2001 to 2016 using keywords such as mechanical ventilation, nursing and education. Inclusion criteria were invasive mechanical ventilation continuing education programmes that involved nurses and measured patient outcomes. Primary outcomes were intensive care unit mortality and in-hospital mortality. Secondary outcomes included hospital and intensive care unit length of stay, length of intubation, failed weaning trials, re-intubation incidence, ventilation-associated pneumonia rate and lung-protective ventilator strategies. Studies were excluded if they excluded nurses, patients were ventilated for less than 24 h, the education content focused on protocol implementation or oral care exclusively or the outcomes were participant satisfaction. Quality was assessed by two reviewers using an education intervention critical appraisal worksheet and a risk of bias assessment tool. Data were extracted independently by two reviewers and analysed narratively due to heterogeneity. Twelve studies met the inclusion criteria for full review: 11 pre- and post-intervention observational and 1 quasi-experimental design. Studies reported statistically significant reductions in hospital length of stay, length of intubation, ventilator-associated pneumonia rates, failed weaning trials and improvements in lung-protective ventilation compliance. Non-statistically significant results were reported for in-hospital and intensive care unit mortality, re-intubation and intensive care unit length of stay. Limited evidence of the effectiveness of

  16. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    International Nuclear Information System (INIS)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2012-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K 3 ) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of ATP

  17. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  18. A quantized mechanism for activation of pannexin channels

    Science.gov (United States)

    Chiu, Yu-Hsin; Jin, Xueyao; Medina, Christopher B.; Leonhardt, Susan A.; Kiessling, Volker; Bennett, Brad C.; Shu, Shaofang; Tamm, Lukas K.; Yeager, Mark; Ravichandran, Kodi S.; Bayliss, Douglas A.

    2017-01-01

    Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels. PMID:28134257

  19. Cytosolic and nuclear caspase-8 have opposite impact on survival after liver resection for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Koschny, Ronald; Schemmer, Peter; Schirmacher, Peter; Ganten, Tom M; Brost, Sylvia; Hinz, Ulf; Sykora, Jaromir; Batke, Emanuela M; Singer, Stephan; Breuhahn, Kai; Stremmel, Wolfgang; Walczak, Henning

    2013-01-01

    An imbalance between proliferation and apoptosis is one of the main features of carcinogenesis. TRAIL (TNF-related apoptosis-inducing ligand) induces apoptosis upon binding to the TRAIL death receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2, whereas binding to TRAIL-R3 and TRAIL-R4 might promote cell survival and proliferation. The anti-tumor activity of TRAIL-R1 and TRAIL-R2 agonists is currently investigated in clinical trials. To gain further insight into the regulation of apoptosis in hepatocellular carcinoma (HCC), we investigated the TRAIL pathway and the regulators of apoptosis caspase-8, Bcl-xL and Mcl-1 in patients with HCC regarding patient survival. We analyzed 157 hepatocellular carcinoma patients who underwent partial liver resection or orthotopic liver transplantation and healthy control liver tissue using immunohistochemistry on tissue microarrays for the expression of TRAIL-R1 to TRAIL-R4, caspase-8, Bcl-xL and Mcl-1. Immunohistochemical data were evaluated for potential associations with clinico-pathological parameters and survival. Whereas TRAIL-R1 was downregulated in HCC in comparison to normal liver tissue, TRAIL-R2 and –R4 were upregulated in HCC, especially in G2 and G3 tumors. TRAIL-R1 downregulation and upregulation of TRAIL-R2 and TRAIL-R4 correlated with tumor dedifferentiation (G2/G3). TRAIL-R3, Bcl-xL and Mcl-1 showed no differential expression in tumor tissue compared to normal tissue. The expression levels of TRAIL receptors did not correlate with patient survival after partial hepatectomy. Interestingly, in tumor tissue, but not in normal hepatocytes, caspase-8 showed a strong nuclear staining. Low cytosolic and high nuclear staining intensity of caspase-8 significantly correlated with impaired survival after partial hepatectomy, which, for cytosolic caspase-8, was independent from tumor grade. Assessment of TRAIL-receptor expression patterns may have therapeutic implications for the use of TRAIL receptor agonists in HCC therapy

  20. Apoptosis-inducing factor plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells.

    Science.gov (United States)

    Son, Young-Ok; Jang, Yong-Suk; Heo, Jung-Sun; Chung, Wan-Tae; Choi, Ki-Choon; Lee, Jeong-Chae

    2009-06-01

    It has been proposed that continuously generated hydrogen peroxide (H(2)O(2)) inhibits typical apoptosis and instead initiates an alternate, apoptosis-inducing factor (AIF)-dependent process. Aside from the role of AIF, however, the detailed morphological characterization of H(2)O(2)-induced cell death is not complete. This study examined the cellular mechanism(s) by which the continuous presence of H(2)O(2) induces cell death. We also further analyzed the precise role of AIF by inhibiting its expression with siRNA. Exposure of cells to H(2)O(2) generated by glucose oxidase caused mitochondrion-mediated, caspase-independent cell death. In addition, H(2)O(2) exposure resulted in cell shrinkage and chromatin condensation without nuclear fragmentation, indicating that H(2)O(2) stimulates a pyknotic cell death. Further analysis of AIF-transfected cells clearly demonstrated that nuclear translocation of AIF is the most important event required for nuclear condensation, phosphatidyl serine translocation, and ultimately cell death in H(2)O(2)-exposed cells. Furthermore, ATP was rapidly and severely depleted in cells exposed to H(2)O(2) generated by glucose oxidase but not by H(2)O(2) added as a bolus. Suppression of the H(2)O(2)-mediated ATP depletion by 3-aminobenzamide led to a significant increase of nuclear fragmentation in glucose oxidase-exposed cells. Collectively, these findings suggest that an acute energy reduction by H(2)O(2) causes caspase-independent and AIF-dependent cell death.

  1. Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease

    Directory of Open Access Journals (Sweden)

    Bissada Nagat

    2011-08-01

    Full Text Available Abstract Background Huntington Disease (HD is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2 activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/- to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. Results YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. Conclusions The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD.

  2. The Fas pathway is involved in pancreatic beta cell secretory function

    DEFF Research Database (Denmark)

    Schumann, Desiree M; Maedler, Kathrin; Franklin, Isobel

    2007-01-01

    Pancreatic beta cell mass and function increase in conditions of enhanced insulin demand such as obesity. Failure to adapt leads to diabetes. The molecular mechanisms controlling this adaptive process are unclear. Fas is a death receptor involved in beta cell apoptosis or proliferation, depending...... on the activity of the caspase-8 inhibitor FLIP. Here we show that the Fas pathway also regulates beta cell secretory function. We observed impaired glucose tolerance in Fas-deficient mice due to a delayed and decreased insulin secretory pattern. Expression of PDX-1, a beta cell-specific transcription factor...... regulating insulin gene expression and mitochondrial metabolism, was decreased in Fas-deficient beta cells. As a consequence, insulin and ATP production were severely reduced and only partly compensated for by increased beta cell mass. Up-regulation of FLIP enhanced NF-kappaB activity via NF...

  3. Analysis of Apoptosis in Ultraviolet-Induced Sea Cucumber (Stichopus japonicus) Melting Using Terminal Deoxynucleotidyl-Transferase-Mediated dUTP Nick End-Labeling Assay and Cleaved Caspase-3 Immunohistochemistry.

    Science.gov (United States)

    Yang, Jing-Feng; Gao, Rong-Chun; Wu, Hai-Tao; Li, Peng-Fei; Hu, Xian-Shu; Zhou, Da-Yong; Zhu, Bei-Wei; Su, Yi-Cheng

    2015-11-04

    The sea cucumber body wall melting phenomenon occurs under certain circumstances, and the mechanism of this phenomenon remains unclear. This study investigated the apoptosis in the ultraviolet (UV)-induced sea cucumber melting phenomenon. Fresh sea cucumbers (Stichopus japonicus) were exposed to UV radiation for half an hour at an intensity of 0.056 mW/cm(2) and then held at room temperature for melting development. The samples were histologically processed into formalin-fixed paraffin-embedded tissues. The apoptosis of samples was analyzed with the terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) assay and cleaved caspase-3 immunohistochemistry. The emergence of TUNEL-positive cells speeds up between 0.5 and 2 h after UV irradiation. Cleaved caspase-3 positive cells were obviously detected in sample tissues immediately after the UV irradiation. These results demonstrated that sea cucumber melting induced by UV irradiation was triggered by the activation of caspase-3 followed by DNA fragmentation in sea cucumber tissue, which was attributed to apoptosis but was not a consequence of autolysis activity.

  4. A novel small molecule, Rosline, inhibits growth and induces caspase-dependent apoptosis in human lung cancer cells A549 through a reactive oxygen species-dependent mechanism.

    Science.gov (United States)

    Zhao, Ting; Feng, Yang; Jin, Wenling; Pan, Hui; Li, Haizhou; Zhao, Yang

    2016-06-01

    Chemical screening using synthetic small molecule libraries has provided a huge amount of novel active molecules. It generates lead compound for drug development and brings focus on molecules for mechanistic investigations on many otherwise intangible biological processes. In this study, using non-small cell lung cancer cell A549 to screen against a structurally novel and diverse synthetic small molecule library of 2,400 compounds, we identified a molecule named rosline that has strong anti-proliferation activity on A549 cells with a 50% cell growth inhibitory concentration (IC50 ) of 2.87 ± 0.39 µM. We showed that rosline treatment increased the number of Annexin V-positive staining cell, as well as G2/M arrest in their cell cycle progression. Further, we have demonstrated that rosline induces a decrease of mitochondrial membrane potential (Δφm ) and an increase of caspases 3/7 and 9 activities in A549 cells, although having no effect on the activity of caspase 8. Moreover, we found that rosline could induce the production of reactive oxygen species (ROS) and inhibit the phosphorylation of signaling molecule Akt in A549 cells. Alternatively, an antioxidant N-acetyl-L-cysteine (NAC) significantly attenuated rosline's effects on the mitochondrial membrane potential, caspases 3/7 and 9 activities, cell viabilities and the phosphorylation of Akt. Our results demonstrated that ROS played an important role in the apoptosis of A549 cells induced by rosline. © 2016 International Federation for Cell Biology.

  5. Anticancer Effect of Ursodeoxycholic Acid in Human Oral Squamous Carcinoma HSC-3 Cells through the Caspases

    Science.gov (United States)

    Pang, Liang; Zhao, Xin; Liu, Weiwei; Deng, Jiang; Tan, Xiaotong; Qiu, Lihua

    2015-01-01

    Bear bile was used as a traditional medicine or tonic in East Asia, and ursodeoxycholic acid (UDCA) is the most important compound in bear bile. Further, synthetic UDCA is also used in modern medicine and nutrition; therefore, its further functional effects warrant research, in vitro methods could be used for the fundamental research of its anticancer effects. In this study, the apoptotic effects of UDCA in human oral squamous carcinoma HSC-3 cells through the activation of caspases were observed by the experimental methods of MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay, DAPI (4’,6-diamidino-2-phenylindole) staining, flow cytometry analysis, RT-PCR (reverse transcription-polymerase chain reaction) assay and Western blot assay after HSC-3 cells were treated by different concentrations of UDCA. With 0 to 400 μg/mL UDCA treatment, UDCA had strong growth inhibitory effects in HSC-3 cells, but had almost no effect in HOK normal oral cells. At concentrations of 100, 200 and 400 μg/mL, UDCA could induce apoptosis compared to untreated control HSC-3 cells. Treatment of 400 μg/mL UDCA could induce more apoptotic cancer cells than 100 and 200 μg/mL treatment; the sub-G1 DNA content of 400 μg/mL UDCA treated cancer cells was 41.3% versus 10.6% (100 μg/mL) and 22.4% (200 μg/mL). After different concentrations of UDCA treatment, the mRNA and protein expressions of caspase-3, caspase-8, caspase-9, Bax, Fas/FasL (Fas ligand), TRAIL (TNF-related apoptosis-inducing ligand), DR4 (death receptor 4) and DR5 (death receptor 5) were increased in HSC-3 cells, and mRNA and protein expressions of Bcl-2 (B-cell lymphoma 2), Bcl-xL (B-cell lymphoma-extra large), XIAP (X-linked inhibitor of apoptosis protein), cIAP-1 (cellular inhibitor of apoptosis 1), cIAP-2 (cellular inhibitor of apoptosis 2) and survival were decreased. Meanwhile, at the highest concentration of 400 μg/mL, caspase-3, caspase-8, caspase-9, Bax, Fas/FasL, TRAIL, DR4, DR5, and Iκ

  6. Anticancer Effect of Ursodeoxycholic Acid in Human Oral Squamous Carcinoma HSC-3 Cells through the Caspases

    Directory of Open Access Journals (Sweden)

    Liang Pang

    2015-05-01

    Full Text Available Bear bile was used as a traditional medicine or tonic in East Asia, and ursodeoxycholic acid (UDCA is the most important compound in bear bile. Further, synthetic UDCA is also used in modern medicine and nutrition; therefore, its further functional effects warrant research, in vitro methods could be used for the fundamental research of its anticancer effects. In this study, the apoptotic effects of UDCA in human oral squamous carcinoma HSC-3 cells through the activation of caspases were observed by the experimental methods of MTT (3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide assay, DAPI (4’,6-diamidino-2-phenylindole staining, flow cytometry analysis, RT-PCR (reverse transcription-polymerase chain reaction assay and Western blot assay after HSC-3 cells were treated by different concentrations of UDCA. With 0 to 400 μg/mL UDCA treatment, UDCA had strong growth inhibitory effects in HSC-3 cells, but had almost no effect in HOK normal oral cells. At concentrations of 100, 200 and 400 μg/mL, UDCA could induce apoptosis compared to untreated control HSC-3 cells. Treatment of 400 μg/mL UDCA could induce more apoptotic cancer cells than 100 and 200 μg/mL treatment; the sub-G1 DNA content of 400 μg/mL UDCA treated cancer cells was 41.3% versus 10.6% (100 μg/mL and 22.4% (200 μg/mL. After different concentrations of UDCA treatment, the mRNA and protein expressions of caspase-3, caspase-8, caspase-9, Bax, Fas/FasL (Fas ligand, TRAIL (TNF-related apoptosis-inducing ligand, DR4 (death receptor 4 and DR5 (death receptor 5 were increased in HSC-3 cells, and mRNA and protein expressions of Bcl-2 (B-cell lymphoma 2, Bcl-xL (B-cell lymphoma-extra large, XIAP (X-linked inhibitor of apoptosis protein, cIAP-1 (cellular inhibitor of apoptosis 1, cIAP-2 (cellular inhibitor of apoptosis 2 and survival were decreased. Meanwhile, at the highest concentration of 400 μg/mL, caspase-3, caspase-8, caspase-9, Bax, Fas/FasL, TRAIL, DR4, DR5, and

  7. E-Cigarette Vapor Induces an Apoptotic Response in Human Gingival Epithelial Cells Through the Caspase-3 Pathway.

    Science.gov (United States)

    Rouabhia, Mahmoud; Park, Hyun Jin; Semlali, Abdelhabib; Zakrzewski, Andrew; Chmielewski, Witold; Chakir, Jamila

    2017-06-01

    Electronic cigarettes represent an increasingly significant proportion of today's consumable tobacco products. E-cigarettes contain several chemicals which may promote oral diseases. The aim of this study was to investigate the effect of e-cigarette vapor on human gingival epithelial cells. Results show that e-cigarette vapor altered the morphology of cells from small cuboidal form to large undefined shapes. Both single and multiple exposures to e-cigarette vapor led to a bulky morphology with large faint nuclei and an enlarged cytoplasm. E-cigarette vapor also increased L-lactate dehydrogenase (LDH) activity in the targeted cells. This activity was greater with repeated exposures. Furthermore, e-cigarette vapor increased apoptotic/necrotic epithelial cell percentages compared to that observed in the control. Epithelial cell apoptosis was confirmed by TUNEL assay showing that exposure to e-cigarette vapor increased apoptotic cell numbers, particularly after two and three exposures. This negative effect involved the caspase-3 pathway, the activity of which was greater with repeated exposure and which decreased following the use of caspase-3 inhibitor. The adverse effects of e-cigarette vapor on gingival epithelial cells may lead to dysregulated gingival cell function and result in oral disease. J. Cell. Physiol. 232: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Endogenous α-crystallin inhibits expression of caspase-3 induced by hypoxia in retinal neurons.

    Science.gov (United States)

    Ying, Xi; Peng, Yanli; Zhang, Jiaping; Wang, Xingli; Wu, Nan; Zeng, Yuxiao; Wang, Yi

    2014-08-28

    To investigate the expression of endogenous, hypoxic stress-induced α-crystallin and caspase-3 in rat retinal neurons in vitro. Retinal neurons were cultured from Long-Evans rats. The expression of endogenous α-crystallin was analyzed by immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). Furthermore, hypoxic exposure was performed in cultured cells, and the expression of endogenous α-crystallin and caspase-3 was assayed by Western blotting. Positive α-crystallin staining was observed in cultured retinal neurons, and expression of endogenous α-crystallin mRNA peaked 3-5d after inoculation (Pendogenous, hypoxic stress-induced α-crystallin expression increased gradually, peaking 6h after hypoxia. The expression was more abundant compared to the control (Pendogenous α-crystallin in retinal neurons, especially over-expression induced by hypoxic stress, results in the down regulation of caspase-3. The data suggest that endogenous α-crystallin may act as an endogenous neuroprotective factor in retinal neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Adenoviral delivery of pan-caspase inhibitor p35 enhances bystander killing by P450 gene-directed enzyme prodrug therapy using cyclophosphamide+

    International Nuclear Information System (INIS)

    Doloff, Joshua C; Su, Ting; Waxman, David J

    2010-01-01

    Cytochrome P450-based suicide gene therapy for cancer using prodrugs such as cyclophosphamide (CPA) increases anti-tumor activity, both directly and via a bystander killing mechanism. Bystander cell killing is essential for the clinical success of this treatment strategy, given the difficulty of achieving 100% efficient gene delivery in vivo using current technologies. Previous studies have shown that the pan-caspase inhibitor p35 significantly increases CPA-induced bystander killing by tumor cells that stably express P450 enzyme CYP2B6 (Schwartz et al, (2002) Cancer Res. 62: 6928-37). To further develop this approach, we constructed and characterized a replication-defective adenovirus, Adeno-2B6/p35, which expresses p35 in combination with CYP2B6 and its electron transfer partner, P450 reductase. The expression of p35 in Adeno-2B6/p35-infected tumor cells inhibited caspase activation, delaying the death of the CYP2B6 'factory' cells that produce active CPA metabolites, and increased bystander tumor cell killing compared to that achieved in the absence of p35. Tumor cells infected with Adeno-2B6/p35 were readily killed by cisplatin and doxorubicin, indicating that p35 expression is not associated with acquisition of general drug resistance. Finally, p35 did not inhibit viral release when the replication-competent adenovirus ONYX-017 was used as a helper virus to facilitate co-replication and spread of Adeno-2B6/p35 and further increase CPA-induced bystander cell killing. The introduction of p35 into gene therapeutic regimens constitutes an effective approach to increase bystander killing by cytochrome P450 gene therapy. This strategy may also be used to enhance other bystander cytotoxic therapies, including those involving the production of tumor cell toxic protein products

  10. Acute myeloid leukemia-targeted toxin activates both apoptotic and necroptotic death mechanisms.

    Directory of Open Access Journals (Sweden)

    Henrick Horita

    Full Text Available BACKGROUND: Acute myelogenous leukemia (AML is the second most common leukemia with approximately 13,410 new cases and 8,990 deaths annually in the United States. A novel fusion toxin treatment, diphtheria toxin GM-CSF (DT-GMCSF has been shown to selectively eliminate leukemic repopulating cells that are critical for the formation of AML. We previously showed that DT-GMCSF treatment of U937 cells, an AML cell line, causes activation of caspases and the induction of apoptosis. METHODS AND FINDINGS: In this study we further investigate the mechanisms of cell death induced by DT-GMCSF and show that, in addition to the activation of caspase-dependent apoptosis, DT-GMCSF also kills AML cells by simultaneously activating caspase-independent necroptosis. These mechanisms depend on the ability of the targeted toxin to inhibit protein synthesis, and are not affected by the receptor that is targeted or the mechanism through which protein synthesis is blocked. CONCLUSIONS: We conclude that fusion toxin proteins may be effective for treating AML cells whether or not they are defective in apoptosis.

  11. Rational approach to identify newer caspase-1 inhibitors using pharmacophore based virtual screening, docking and molecular dynamic simulation studies.

    Science.gov (United States)

    Patel, Shivani; Modi, Palmi; Chhabria, Mahesh

    2018-05-01

    Caspase-1 is a key endoprotease responsible for the post-translational processing of pro-inflammatory cytokines IL-1β, 18 & 33. Excessive secretion of IL-1β leads to numerous inflammatory and autoimmune diseases. Thus caspase-1 inhibition would be considered as an important therapeutic strategy for development of newer anti-inflammatory agents. Here we have employed an integrated virtual screening by combining pharmacophore mapping and docking to identify small molecules as caspase-1 inhibitors. The ligand based 3D pharmacophore model was generated having the essential structural features of (HBA, HY & RA) using a data set of 27 compounds. A validated pharmacophore hypothesis (Hypo 1) was used to screen ZINC and Minimaybridge chemical databases. The retrieved virtual hits were filtered by ADMET properties and molecular docking analysis. Subsequently, the cross-docking study was also carried out using crystal structure of caspase-1, 3, 7 and 8 to identify the key residual interaction for specific caspase-1 inhibition. Finally, the best mapped and top scored (ZINC00885612, ZINC72003647, BTB04175 and BTB04410) molecules were subjected to molecular dynamics simulation for accessing the dynamic structure of protein after ligand binding. This study identifies the most promising hits, which can be leads for the development of novel caspase-1 inhibitors as anti-inflammatory agents. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Design and application of a fluorogenic assay for monitoring inflammatory caspase activity.

    Science.gov (United States)

    Ranganathan, Raj; Lenti, Gena; Tassone, Nicholas M; Scannell, Brian J; Southern, Cathrine A; Karver, Caitlin E

    2018-02-15

    Various fluorogenic assays exist for monitoring the activity of inflammatory caspases. However, there are no continuous assays that provide C-terminal substrate sequence specificity for inflammatory caspases. As a first step towards this, we have developed a continuous in vitro assay that relies on monitoring emission from tryptophan after cleavage of a quenching coumarin chromophore. The coumarin can be attached as an amino acid side chain or capping the C-terminus of the peptide. When the coumarin is a side chain, it allows for C-terminal and N-terminal sequence specificities to be explored. Using this assay, we obtained Michaelis-Menten kinetic data for four proof-of-principle peptides: WEHD-AMC (K M  = 15 ± 2 μM), WEHD-MCA (K M  = 93 ± 19 μM), WEHDG-MCA (K M  = 21 ± 6 μM) and WEHDA-MCA (K M  = 151 ± 37 μM), where AMC is 7-amino-4-methylcoumarin and MCA is β-(7-methoxy-coumarin-4-yl)-Ala. The results indicate the viability of this new assay approach in the design of effective fluorogenic substrates for inflammatory caspases. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells.

    Science.gov (United States)

    Wang, Zheng; Cheng, Xingan; Meng, Qianqian; Wang, Peidan; Shu, Benshui; Hu, Qiongbo; Hu, Meiying; Zhong, Guohua

    2015-07-01

    Azadirachtin as a kind of botanical insecticide has been widely used in pest control. We previously reported that azadirachtin could induce apoptosis of Spodoptera litura cultured cell line Sl-1, which involves in the up-regulation of P53 protein. However, the detailed mechanism of azadirachtin-induced apoptosis is not clearly understood in insect cultured cells. The aim of the present study was to address the involvement of lysosome and lysosomal protease in azadirachtin-induced apoptosis in Sf9 cells. The result confirmed that azadirachtin indeed inhibited proliferation and induced apoptosis. The lysosomes were divided into different types as time-dependent manner, which suggested that changes of lysosomes were necessarily physiological processes in azadirachtin-induced apoptosis in Sf9 cells. Interestingly, we noticed that azadirachtin could trigger lysosomal membrane permeabilization and cathepsin L releasing to cytosol. Z-FF-FMK (a cathepsin L inhibitor), but not CA-074me (a cathepsin B inhibitor), could effectively hinder the apoptosis induced by azadirachtin in Sf9 cells. Meanwhile, the activity of caspase-3 could also be inactivated by the inhibition of cathepsin L enzymatic activity induced by Z-FF-FMK. Taken together, our findings suggest that azadirachtin could induce apoptosis in Sf9 cells in a lysosomal pathway, and cathepsin L plays a pro-apoptosis role in this process through releasing to cytosol and activating caspase-3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nitrosative stress induces DNA strand breaks but not caspase mediated apoptosis in a lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Bentz Brandon G

    2004-12-01

    Full Text Available Abstract Background Key steps crucial to the process of tumor progression are genomic instability and escape from apoptosis. Nitric oxide and its interrelated reactive intermediates (collectively denoted as NOX have been implicated in DNA damage and mutational events leading to cancer development, while also being implicated in the inhibition of apoptosis through S-nitrosation of key apoptotic enzymes. The purpose of this study was to explore the interrelationship between NOX-mediated DNA strand breaks (DSBs and apoptosis in cultured tumor cell lines. Methods Two well-characterized cell lines were exposed to increasing concentrations of exogenous NOX via donor compounds. Production of NOX was quantified by the Greiss reaction and spectrophotometery, and confirmed by nitrotyrosine immunostaining. DSBs were measured by the alkaline single-cell gel electrophoresis assay (the COMET assay, and correlated with cell viability by the MTT assay. Apoptosis was analyzed both by TUNEL staining and Annexin V/propidium iodine FACS. Finally, caspase enzymatic activity was measured using an in-vitro fluorogenic caspase assay. Results Increases in DNA strand breaks in our tumor cells, but not in control fibroblasts, correlated with the concentration as well as rate of release of exogenously administered NOX. This increase in DSBs did not correlate with an increase in cell death or apoptosis in our tumor cell line. Finally, this lack of apoptosis was found to correlate with inhibition of caspase activity upon exposure to thiol- but not NONOate-based NOX donor compounds. Conclusions Genotoxicity appears to be highly interrelated with both the concentration and kinetic delivery of NOX. Moreover, alterations in cell apoptosis can be seen as a consequence of the explicit mechanisms of NOX delivery. These findings lend credence to the hypothesis that NOX may play an important role in tumor progression, and underscores potential pitfalls which should be considered when

  15. Effect of different materials of all-ceramic crowns on viability of fibroblasts and preliminary exploration of possible molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Ju Li

    2016-02-01

    Full Text Available Objective: To study the effect of different materials of all-ceramic crowns on viability of fibroblasts and the possible molecular mechanisms. Methods: Fibroblast cell lines L929 were cultured, extracting solution of diatomite ceramic, casting ceramic, heat-pressed ceramic, infiltrated ceramic and Ni-Cr alloy porcelain was prepared and used to process L929 cells, and then cell apoptosis, percentages of cell cycle as well as expression levels of Bcl-2, Bax, Caspase-3, Caspase-8 and Caspase-9 were detected. Results: Cell apoptosis indexes, number of early apoptosis, number of aponecrosis, percentages of G1 phase, S phase and G2 phase cells as well as expression levels of Bcl-2, Bax, Caspase-3, Caspase-8 and Caspase-9 of diatomite ceramic group, casting ceramic group, heat-pressed ceramic group and infiltrated ceramic group had no differences from those of control group; cell apoptosis indexes, number of early apoptosis, number of aponecrosis, percentages of G2 phase cells as well as expression levels of Bax, Caspase-3, Caspase-8 and Caspase-9 of diatomite ceramic group, casting ceramic group, heat-pressed ceramic group and infiltrated ceramic group were lower than those of Ni-Cr alloy porcelain group, and percentages of G1 phase and S phase cells as well as expression levels of Bcl-2 were significantly higher than those of Ni-Cr alloy porcelain group. Conclusion: The effect of different materials of all-ceramic crowns on viability of fibroblasts has no differences and is weaker than that of Ni-Cr alloy porcelain crown, and biocompatibility of diatomite ceramic is equivalent to that of casting ceramic, heat-pressed ceramic, infiltrated ceramic and Ni-Cr alloy porcelain; mechanisms of different materials of all-ceramic crowns to regulate cell viability include Bcl-2/Bax pathway and Caspase pathway.

  16. Evaluation of Bcl-2, Bcl-x and Cleaved Caspase-3 in Malignant Peripheral Nerve Sheath Tumors and Neurofibromas

    Directory of Open Access Journals (Sweden)

    KARIN S. CUNHA

    2013-11-01

    Full Text Available AIMS: To study the expression of Bcl-2, Bcl-x, as well the presence of cleaved caspase-3 in neurofibromas and malignant peripheral nerve sheath tumors. The expression of Bcl-2 and Bcl-x and the presence of cleaved caspase 3 were compared to clinicopathological features of malignant peripheral nerve sheath tumors and their impact on survival rates were also investigated. MATERIALS AND METHODS: The evaluation of Bcl-2, Bcl-x and cleaved caspase-3 was performed by immunohistochemistry using tissue microarrays in 28 malignant peripheral nerve sheath tumors and 38 neurofibromas. Immunoquantification was performed by computerized digital image analysis. CONCLUSIONS: Apoptosis is altered in neurofibromas and mainly in malignant peripheral nerve sheath tumors. High levels of cleaved caspase-3 are more common in tumors with more aggressive histological features and it is associated with lower disease free survival of patients with malignant peripheral nerve sheath tumors.

  17. Lack of caspase-3 attenuates immobilization-induced muscle atrophy and loss of tension generation along with mitigation of apoptosis and inflammation

    Science.gov (United States)

    Zhu, Shimei; Nagashima, Michio; Khan, Mahammad A.S; Yasuhara, Shingo; Kaneki, Masao; Jeevendra Martyn, J. A.

    2012-01-01

    Introduction Immobilization by casting induces disuse muscle atrophy (DMA). Methods Using wild type (WT) and caspase-3 knockout (KO) mice, we evaluated the effect of caspase-3 on muscle mass, apoptosis and inflammation during DMA. Results Caspase-3 deficiency significantly attenuated muscle mass decrease [gastrocnemius: 28 ± 1% in KO vs. 41 ± 3% in WT; soleus: 47 ± 2% in KO vs. 56 ± 2% in WT; (P immobilized versus contralateral hindlimb. Lack of caspase-3 decreased immobilization-induced increased apoptotic myonuclei (3.2-fold) and macrophage infiltration (2.2-fold) in soleus muscle and attenuated increased monocyte chemoattractant protein-1 mRNA expression (2-fold in KO vs. 18-fold in WT) in gastrocnemius. Conclusion Caspase-3 plays a key role in DMA and associated decreased tension, presumably by acting on the apoptosis and inflammation pathways. PMID:23401051

  18. Study of apoptosis and Caspase-3, Fas expression in rat glioma after treatment with gamma knife

    International Nuclear Information System (INIS)

    Zhao Qingqiu; Zhao Wenqing; Yue Xiangyong; Du Yali; Dong Liying; Zhou Lixia

    2003-01-01

    Objective: To investigate the apoptosis and Caspase-3, Fas expression in rat glioma after treatment with gamma knife. Methods: Setting up C6 glioma model with 60 rats, which were divided into a treatment group ( n= 30) and a control group (n=30). On the 14 th day after planting glioma cells, rats of the treatment group were subjected to gamma knife irradiation. At the 12 th hr, 24 th hr, 48 th hr, 7 th day, 14 th day, 21 st day, flow cytometry was performed to estimate the glioma cells' apoptosis and the expression of Caspase-3 and Fas. The relation between apoptosis and the two kinds of proteins was analysed. Results: Compared with the control group, the apoptosis rate of the glioma cells in the treatment group increased obviously (P th hr reached its peak, then decreased gradually. The expression of Caspase-3 and Fas was positively correlated with apoptosis (r 1 =0.928, r 2 =0.916). Conclusion: The apoptosis of the tumor cells is a kind of effect of gamma knife treatment. Caspase-3 and Fas gene may take part in the regulation of apoptosis

  19. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes.

    Science.gov (United States)

    Guyenet, Stephan J; Nguyen, Hong T; Hwang, Bang H; Schwartz, Michael W; Baskin, Denis G; Thaler, Joshua P

    2013-05-28

    Astrocytes respond to multiple forms of central nervous system (CNS) injury by entering a reactive state characterized by morphological changes and a specific pattern of altered protein expression. Termed astrogliosis, this response has been shown to strongly influence the injury response and functional recovery of CNS tissues. This pattern of CNS inflammation and injury associated with astrogliosis has recently been found to occur in the energy homeostasis centers of the hypothalamus during diet-induced obesity (DIO) in rodent models, but the characterization of the astrocyte response remains incomplete. Here, we report that astrocytes in the mediobasal hypothalamus respond robustly and rapidly to purified high-fat diet (HFD) feeding by cleaving caspase-3, a protease whose cleavage is often associated with apoptosis. Although obesity develops in HFD-fed rats by day 14, caspase-3 cleavage occurs by day 3, prior to the development of obesity, suggesting the possibility that it could play a causal role in the hypothalamic neuropathology and fat gain observed in DIO. Caspase-3 cleavage is not associated with an increase in the rate of apoptosis, as determined by TUNEL staining, suggesting it plays a non-apoptotic role analogous to the response to excitotoxic neuron injury. Our results indicate that astrocytes in the mediobasal hypothalamus respond rapidly and robustly to HFD feeding, activating caspase-3 in the absence of apoptosis, a process that has the potential to influence the course of DIO. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Caspase activity and apoptotic signaling in proliferating C2C12 cells following cisplatin or A23187 exposure

    Directory of Open Access Journals (Sweden)

    Darin Bloemberg

    2016-06-01

    Full Text Available Investigating cell death signaling using cell culture is commonly performed to examine the effects of novel pharmaceuticals or to further characterize discrete cellular signaling pathways. Here, we provide data regarding the cell death response to either cisplatin or A23187 in sub-confluent C2C12 cells, by utilizing several concentrations and incubation times for each chemical. These data include an assessment of the activation of the proteolytic enzymes caspase-3, caspase-8, caspase-9, calpain, and cathepsin B/L. Additionally, the expression of the apoptosis-regulating proteins Bax, Bcl2, and p53 are presented.

  1. Mechanism of immunotoxicological effects of tributyltin chloride on murine thymocytes.

    Science.gov (United States)

    Sharma, Neelima; Kumar, Anoop

    2014-04-01

    Tributyltin-chloride, a well-known organotin compound, is a widespread environmental toxicant. The immunotoxic effects of tributyltin-chloride on mammalian system and its mechanism is still unclear. This study is designed to explore the mode of action of tributyltin-induced apoptosis and other parallel apoptotic pathways in murine thymocytes. The earliest response in oxidative stress followed by mitochondrial membrane depolarization and caspase-3 activation has been observed. Pre-treatment with N-acetyl cysteine and buthionine sulfoximine effectively inhibited the tributyltin-induced apoptotic DNA and elevated the sub G1 population, respectively. Caspase inhibitors pretreatment prevent tributyltin-induced apoptosis. Western blot and flow cytometry indicate no translocation of apoptosis-inducing factor and endonuclease G in the nuclear fraction from mitochondria. Intracellular Ca(2+) levels are significantly raised by tributyltin chloride. These results clearly demonstrate caspase-dependent apoptotic pathway and support the role of oxidative stress, mitochondrial membrane depolarization, caspase-3 activation, and calcium during tributyltin-chloride (TBTC)-induced thymic apoptosis.

  2. Colorimetric Detection of Caspase 3 Activity and Reactive Oxygen Derivatives: Potential Early Indicators of Thermal Stress in Corals

    Directory of Open Access Journals (Sweden)

    Mickael Ros

    2016-01-01

    Full Text Available There is an urgent need to develop and implement rapid assessments of coral health to allow effective adaptive management in response to coastal development and global change. There is now increasing evidence that activation of caspase-dependent apoptosis plays a key role during coral bleaching and subsequent mortality. In this study, a “clinical” approach was used to assess coral health by measuring the activity of caspase 3 using a commercial kit. This method was first applied while inducing thermal bleaching in two coral species, Acropora millepora and Pocillopora damicornis. The latter species was then chosen to undergo further studies combining the detection of oxidative stress-related compounds (catalase activity and glutathione concentrations as well as caspase activity during both stress and recovery phases. Zooxanthellae photosystem II (PSII efficiency and cell density were measured in parallel to assess symbiont health. Our results demonstrate that the increased caspase 3 activity in the coral host could be detected before observing any significant decrease in the photochemical efficiency of PSII in the algal symbionts and/or their expulsion from the host. This study highlights the potential of host caspase 3 and reactive oxygen species scavenging activities as early indicators of stress in individual coral colonies.

  3. Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation

    International Nuclear Information System (INIS)

    Zhou, Wei-Jie; Wang, Sheng; Hu, Zhuang; Zhou, Zhen-Yu; Song, Cai-Juan

    2015-01-01

    Angelica sinensis polysaccharide (ASP) is purified from the fresh roots of Angelica sinensis (AS). This traditional Chinese medicine has been used for thousands of years for treating gynecological diseases and used in functional foods for the prevention and treatment of various diseases, such as inflammation and cancer. The antitumor activity of ASP is related to its biological activities, because it suppresses a variety of pro-proliferative or anti-apoptotic factors that are dramatically expressed in cancer cells of given types. In this study, we show that angelica sinensis polysaccharide induced apoptosis in breast cancer cells of T47D over-expressing the Cyclic AMP response element binding protein (CREB), inducing apoptosis-related signaling pathway activity. The result also found that ASP caused cell death was linked to caspase activity, accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. We found that ASP significantly affected the poly-ADP-ribose polymerase (PARP), Bcl-2 Associated X Protein (Bax), Bcl-2, Bcl-xL and apoptotic protease activating facter-1 (Apaf1) protein expression in a dose- and time-dependent manner. DAPI staining and Flow cytometry were used to analyze apoptosis. The nude mice xenograft model was used to evaluate the antitumor effect of ASP in vivo. ASP has profound antitumor effect on T47D cells, probably by inducing apoptosis through CREB signaling pathway. Thus, these results suggest that ASP would be a promising therapeutic agent for breast cancer. - Highlights: • CREB and Caspase-3 signaling pathways are involved in the ASP induced breast cancer cells apoptosis. • ROCK1/Mlc signaling pathway plays a critical role in this ASP-mediated apoptosis. • Angelica sinensis polysaccharide (ASP) affected the PARP, Bax, Bcl-2, Bcl-xL and Apaf1 protein expression. • The activation of CREB and ROCK1 promotes caspase-3 activation and apoptosis induced

  4. Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei-Jie; Wang, Sheng [Department of Breast and Thyroid Surgery, Huaihe Hospital, Henan University, Kaifeng 475000 (China); Hu, Zhuang, E-mail: zhuanghu475000@sina.com [Department of Breast and Thyroid Surgery, Huaihe Hospital, Henan University, Kaifeng 475000 (China); Zhengzhou Center for Disease Control and Prevention, Zhengzhou 475000 (China); Zhou, Zhen-Yu; Song, Cai-Juan [Department of Breast and Thyroid Surgery, Huaihe Hospital, Henan University, Kaifeng 475000 (China); Zhengzhou Center for Disease Control and Prevention, Zhengzhou 475000 (China)

    2015-11-20

    Angelica sinensis polysaccharide (ASP) is purified from the fresh roots of Angelica sinensis (AS). This traditional Chinese medicine has been used for thousands of years for treating gynecological diseases and used in functional foods for the prevention and treatment of various diseases, such as inflammation and cancer. The antitumor activity of ASP is related to its biological activities, because it suppresses a variety of pro-proliferative or anti-apoptotic factors that are dramatically expressed in cancer cells of given types. In this study, we show that angelica sinensis polysaccharide induced apoptosis in breast cancer cells of T47D over-expressing the Cyclic AMP response element binding protein (CREB), inducing apoptosis-related signaling pathway activity. The result also found that ASP caused cell death was linked to caspase activity, accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. We found that ASP significantly affected the poly-ADP-ribose polymerase (PARP), Bcl-2 Associated X Protein (Bax), Bcl-2, Bcl-xL and apoptotic protease activating facter-1 (Apaf1) protein expression in a dose- and time-dependent manner. DAPI staining and Flow cytometry were used to analyze apoptosis. The nude mice xenograft model was used to evaluate the antitumor effect of ASP in vivo. ASP has profound antitumor effect on T47D cells, probably by inducing apoptosis through CREB signaling pathway. Thus, these results suggest that ASP would be a promising therapeutic agent for breast cancer. - Highlights: • CREB and Caspase-3 signaling pathways are involved in the ASP induced breast cancer cells apoptosis. • ROCK1/Mlc signaling pathway plays a critical role in this ASP-mediated apoptosis. • Angelica sinensis polysaccharide (ASP) affected the PARP, Bax, Bcl-2, Bcl-xL and Apaf1 protein expression. • The activation of CREB and ROCK1 promotes caspase-3 activation and apoptosis induced

  5. Acrylamide induces immunotoxicity through reactive oxygen species production and caspase-dependent apoptosis in mice splenocytes via the mitochondria-dependent signaling pathways.

    Science.gov (United States)

    Zamani, Ehsan; Shaki, Fatemeh; AbedianKenari, Saeid; Shokrzadeh, Mohammad

    2017-10-01

    Acrylamide (AA), a well-known food neo-contamination, can be produced during food preparing at high temperature. The immunotoxicity of AA have been revealed in the experimental animals. In this study, we explored the molecular mechanism responsible for the immunotoxicity of AA. The mice splenocytes exposed to AA concentrations (0,5,10 and 25 mM) and apoptosis cell death was measured through Annexin V/Propidium Iodide staining by flow cytometry method. The role of extrinsic and intrinsic pathways were evaluated respectively by activity of caspase-8 and-9. Furthermore, the spleen mitochondria were obtained using differential centrifugation from mice and mitochondrial toxicity endpoints were determined after AA exposure. Exposure of splenocytes to AA increased the splenocytes' apoptotic cell death. Also, increased activation of both caspase-8 and-9 were observed in mice splenocytes after AA exposure. Treatment of isolated mitochondria with AA lead to disturbance in activity of complex I and III of mitochondrial electron transfer chain that result in increased reactive oxygen species (ROS) production, lipid peroxidation and glutathione oxidation. These events were accompanied by mitochondrial membrane swelling, collapse of mitochondrial membrane potential and significant falling of mitochondrial activity. AA-mediated mitochondrial dysfunction along with mitochondrial oxidative damage seems to be critical events leading to activation of caspase cascade and apoptotic cell death in spleen that finally can attenuate immune system's function. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways.

    Science.gov (United States)

    Looi, Chung Yeng; Moharram, Bushra; Paydar, Mohammadjavad; Wong, Yi Li; Leong, Kok Hoong; Mohamad, Khalit; Arya, Aditya; Wong, Won Fen; Mustafa, Mohd Rais

    2013-07-10

    Centratherum anthelminticum (L.) Kuntze (scientific synonyms: Vernonia anthelmintica; black cumin) is one of the ingredients of an Ayurvedic preparation, called "Kayakalp", commonly applied to treat skin disorders in India and Southeast Asia. Despite its well known anti-inflammatory property on skin diseases, the anti-cancer effect of C. anthelminticum seeds on skin cancer is less documented. The present study aims to investigate the anti-cancer effect of Centratherum anthelminticum (L.) seeds chloroform fraction (CACF) on human melanoma cells and to elucidate the molecular mechanism involved. A chloroform fraction was extracted from C. anthelminticum (CACF). Bioactive compounds of the CACF were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Human melanoma cell line A375 was treated with CACF in vitro. Effects of CACF on growth inhibition, morphology, stress and survival of the cell were examined with MTT, high content screening (HSC) array scan and flow cytometry analyses. Involvement of intrinsic or extrinsic pathways in the CACF-induced A375 cell death mechanism was examined using a caspase luminescence assay. The results were further verified with different caspase inhibitors. In addition, Western blot analysis was performed to elucidate the changes in apoptosis-associated molecules. Finally, the effect of CACF on the NF-κB nuclear translocation ability was assayed. The MTT assay showed that CACF dose-dependently inhibited cell growth of A375, while exerted less cytotoxic effect on normal primary epithelial melanocytes. We demonstrated that CACF induced cell growth inhibition through apoptosis, as evidenced by cell shrinkage, increased annexin V staining and formation of membrane blebs. CACF treatment also resulted in higher reactive oxygen species (ROS) production and lower Bcl-2 expression, leading to decrease mitochondrial membrane potential (MMP). Disruption of the MMP facilitated the release of mitochondrial cytochrome c, which

  7. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Directory of Open Access Journals (Sweden)

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  8. RUNX3 is involved in caspase-3-dependent apoptosis induced by a combination of 5-aza-CdR and TSA in leukaemia cell lines.

    Science.gov (United States)

    Zhai, Feng-Xian; Liu, Xiang-Fu; Fan, Rui-Fang; Long, Zi-Jie; Fang, Zhi-Gang; Lu, Ying; Zheng, Yong-Jiang; Lin, Dong-Jun

    2012-03-01

    Epigenetic therapy has had a significant impact on the management of haematologic malignancies. The aim of this study was to assess whether 5-aza-CdR and TSA inhibit the growth of leukaemia cells and induce caspase-3-dependent apoptosis by upregulating RUNX3 expression. K562 and Reh cells were treated with 5-aza-CdR, TSA or both compounds. RT-PCR and Western blot analyses were used to examine the expression of RUNX3 at the mRNA and protein levels, respectively. Immunofluorescence microscopy was used to detect the cellular location of RUNX3. Additionally, after K562 cells were transfected with RUNX3, apoptosis and proliferation were studied using Annexin V staining and MTT assays. The expression of RUNX3 in leukaemia cell lines was markedly less than that in the controls. Demethylating drug 5-aza-CdR could induce RUNX3 expression, but the combination of TSA and 5-aza-CdR had a greater effect than did treatment with a single compound. The combination of 5-aza-CdR and TSA induced the translocation of RUNX3 from the cytoplasm into the nucleus. TSA enhanced apoptosis induced by 5-aza-CdR, and Annexin V and Hoechst 33258 staining showed that the combination induced apoptosis but not necrosis. Furthermore, apoptosis was dependent on the caspase-3 pathway. RUNX3 overexpression in K562 cells led to growth inhibition and apoptosis and potentiated the effects of 5-aza-CdR induction. RUNX3 plays an important role in leukaemia cellular functions, and the induction of RUNX3-mediated effects may contribute to the therapeutic value of combination TSA and 5-aza-CdR treatment.

  9. Involvement of the phosphoinositide 3-kinase/Akt pathway in apoptosis induced by capsaicin in the human pancreatic cancer cell line PANC-1.

    Science.gov (United States)

    Zhang, Jian-Hong; Lai, Fu-Ji; Chen, Hui; Luo, Jiang; Zhang, Ri-Yuan; Bu, He-Qi; Wang, Zhao-Hong; Lin, Hong-Hai; Lin, Sheng-Zhang

    2013-01-01

    Capsaicin, one of the major pungent ingredients found in red peppers, has been recently demonstrated to induce apoptosis in various malignant cell lines through an unclear mechanism. In this study, the effect of capsaicin on proliferation and apoptosis in the human pancreatic cancer cell line PANC-1 and its possible mechanism(s) of action were investigated. The results of a Cell Counting Kit-8 (CCK-8) assay revealed that capsaicin significantly decreased the viability of PANC-1 cells in a dose-dependent manner. Capsaicin induced G0/G1 phase cell cycle arrest and apoptosis in PANC-1 cells as demonstrated by a flow cytometric assessment. Caspase-3 expression at both the protein and mRNA level was promoted following capsaicin treatment. Furthermore, we revealed that phospho-PI3 Kinase p85 (Tyr458) and phospho-Akt (Ser473) in PANC-1 cells were downregulated in response to capsaicin. Moreover, capsaicin gavage significantly inhibited the growth of pancreatic cancer PANC-1 cell xenografts in athymic nude mice. An increased number of TUNEL-positive cells and cleaved caspase-3 were observed in capsaicin-treated mice. In vivo, capsaicin downregulated the expression of phospho-PI3 Kinase p85 (Tyr458) and phospho-Akt (Ser473). In conclusion, we have demonstrated that capsaicin is an inhibitor of growth of PANC-1 cells, and downregulation of the phosphoinositide 3-kinase/Akt pathway may be involved in capsaicin-induced apoptosis in vitro and in vivo.

  10. [Effect of Recombinant Adenovirus AdE-SH2-Caspase 8 on the Apoptosis of Imatinib-resistant K562/G01 Cell Line].

    Science.gov (United States)

    Wang, Lin; Fei, Chang; Huang, Zheng-Lan; Li, Hui; Liu, Zhang-Lin; Feng, Wen-Li

    2015-08-01

    To investigate the effect of SH2-Caspase 8 fusion protein expressed by recombinant adenovirus AdE-SH2-Caspase8-HA-GFP (SC) on the apoptosis of K562/G01 cell line, which is a BCR/ABL positive chronic myeloid leukemia cell line and resistant to imatinib. The K562/G01 cell line was infected with AdE-SH2-Caspase 8-HA-GFP adenovirus (SC), then the cells were divided into 3 groups: AdE-SH2m-Caspase 8-HA-GFP (SmC) group, AdE-GFP (CMV) group and PBS group as control. The infection efficiency was observed under fluorescent microscopy and by flow cytometry. The expression of fusion protein SH2-Caspase 8-HA was measured by Western blot. The morphology of the cells detected by Wright's staining. The apoptosis of the cells were detected by flow cytometry and DNA ladder. The expression of Caspase 3 and PARP were detected by Western blot. The infection efficiency of SC on K562/G01 cells was high which was confirmed by fluorescent microscopy and FCM. SH2-Caspase 8-HA fusion protein were expressed correctly in K562/G01 cells. After treatment with SC the apoptosis of K562/G01 cells could be observed by microscopy. The result of FCM showed that early apoptosis of K562/G01 cells increased significantly as compared with control groups (P SH2-Caspase 8 fusion protein can induces the apoptosis of K562/G01 cells.

  11. A Biotin Switch-Based Proteomics Approach Identifies 14-3-3ζ as a Target of Sirt1 in the Metabolic Regulation of Caspase-2

    Science.gov (United States)

    Andersen, Joshua L.; Thompson, J. Will; Lindblom, Kelly R.; Johnson, Erika S.; Yang, Chih-Sheng; Lilley, Lauren R.; Freel, Christopher D.; Moseley, M. Arthur; Kornbluth, Sally

    2011-01-01

    While lysine acetylation in the nucleus is well characterized, comparatively little is known about its significance in cytoplasmic signaling. Here we show that inhibition of the Sirt1 deacetylase, which is primarily cytoplasmic in cancer cell lines, sensitizes these cells to caspase-2-dependent death. To identify relevant Sirt1 substrates, we developed a novel proteomics strategy, enabling the identification of a range of putative substrates, including 14-3-3ζ, a known direct regulator of caspase-2. We show here that inhibition of Sirtuin activity accelerates caspase activation and overrides caspase-2 suppression by nutrient abundance. Furthermore, 14-3-3ζ is acetylated prior to caspase activation, and supplementation of Xenopus egg extract with glucose-6-phosphate, which promotes caspase-2/14-3-3ζ binding, enhances 14-3-3ζ-directed Sirtuin activity. Conversely, inhibiting Sirtuin activity promotes 14-3-3ζ dissociation from caspase-2 in both egg extract and human cell lines. These data reveal a role for Sirt1 in modulating apoptotic sensitivity, in response to metabolic changes, by antagonizing 14-3-3ζ acetylation. PMID:21884983

  12. Targeting caspase-3 as dual therapeutic benefits by RNAi facilitating brain-targeted nanoparticles in a rat model of Parkinson's disease.

    Science.gov (United States)

    Liu, Yang; Guo, Yubo; An, Sai; Kuang, Yuyang; He, Xi; Ma, Haojun; Li, Jianfeng; Lu, Jing; Lv, Jing; Zhang, Ning; Jiang, Chen

    2013-01-01

    The activation of caspase-3 is an important hallmark in Parkinson's disease. It could induce neuron death by apoptosis and microglia activation by inflammation. As a result, inhibition the activation of caspase-3 would exert synergistic dual effect in brain in order to prevent the progress of Parkinson's disease. Silencing caspase-3 genes by RNA interference could inhibit the activation of caspase-3. We developed a brain-targeted gene delivery system based on non-viral gene vector, dendrigraft poly-L-lysines. A rabies virus glycoprotein peptide with 29 amino-acid linked to dendrigraft poly-L-lysines could render gene vectors the ability to get across the blood brain barrier by specific receptor mediated transcytosis. The resultant brain-targeted vector was complexed with caspase-3 short hairpin RNA coding plasmid DNA, yielding nanoparticles. In vivo imaging analysis indicated the targeted nanoparticles could accumulate in brain more efficiently than non-targeted ones. A multiple dosing regimen by weekly intravenous administration of the nanoparticles could reduce activated casapse-3 levels, significantly improve locomotor activity and rescue dopaminergic neuronal loss and in Parkinson's disease rats' brain. These results indicated the rabies virus glycoprotein peptide modified brain-targeted nanoparticles were promising gene delivery system for RNA interference to achieve anti-apoptotic and anti-inflammation synergistic therapeutic effects by down-regulation the expression and activation of caspase-3.

  13. Targeting caspase-3 as dual therapeutic benefits by RNAi facilitating brain-targeted nanoparticles in a rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available The activation of caspase-3 is an important hallmark in Parkinson's disease. It could induce neuron death by apoptosis and microglia activation by inflammation. As a result, inhibition the activation of caspase-3 would exert synergistic dual effect in brain in order to prevent the progress of Parkinson's disease. Silencing caspase-3 genes by RNA interference could inhibit the activation of caspase-3. We developed a brain-targeted gene delivery system based on non-viral gene vector, dendrigraft poly-L-lysines. A rabies virus glycoprotein peptide with 29 amino-acid linked to dendrigraft poly-L-lysines could render gene vectors the ability to get across the blood brain barrier by specific receptor mediated transcytosis. The resultant brain-targeted vector was complexed with caspase-3 short hairpin RNA coding plasmid DNA, yielding nanoparticles. In vivo imaging analysis indicated the targeted nanoparticles could accumulate in brain more efficiently than non-targeted ones. A multiple dosing regimen by weekly intravenous administration of the nanoparticles could reduce activated casapse-3 levels, significantly improve locomotor activity and rescue dopaminergic neuronal loss and in Parkinson's disease rats' brain. These results indicated the rabies virus glycoprotein peptide modified brain-targeted nanoparticles were promising gene delivery system for RNA interference to achieve anti-apoptotic and anti-inflammation synergistic therapeutic effects by down-regulation the expression and activation of caspase-3.

  14. Anti-apoptotic effect of caspase inhibitors on H₂O₂-treated HeLa cells through early suppression of its oxidative stress.

    Science.gov (United States)

    Park, Woo Hyun

    2014-05-01

    Oxidative stress-induced cytotoxicity in cervical cancer cells may be of toxicological interest. In the present study, the effects of exogenous H2O2 on cell growth and death in HeLa cervical cancer cells were investigated, and the anti-apoptotic effects of various caspase (pan-caspase, caspase-3, -8 or -9) inhibitors on H2O2-treated HeLa cells were also evaluated with regard to reactive oxygen species (ROS) and glutathione (GSH) levels. Based on MTT assays, H2O2 inhibited the growth of HeLa cells with an IC50 value of ~75 µM at 24 h. H2O2 increased the number of dead cells and Annexin V-FITC-positive cells in the HeLa cells, which was accompanied by the activation of caspase-3 and the loss of mitochondrial membrane potential (MMP; ΔΨm). However, relatively higher doses of H2O2 induced necrosis in HeLa cells. Caspase inhibitors significantly prevented H2O2-induced HeLa cell death. H2O2 increased ROS including O2•- at 24 h and increased the activity of catalase in HeLa cells. H2O2 also increased the ROS level at 1 h, and several caspase inhibitors attenuated the increased level at 1 h but not at 6, 12 and 24 h. H2O2 decreased the GSH level in HeLa cells at 1 h, and several caspase inhibitors attenuated the decreased level of GSH at this time. H2O2 induced GSH depletion at 24 h. In conclusion, H2O2 inhibited the growth of HeLa cells via apoptosis and/or necrosis, which was accompanied by intracellular increases in ROS levels and GSH depletion. Caspase inhibitors are suggested to suppress H2O2-induced oxidative stress to rescue HeLa cells at the early time point of 1 h.

  15. The role of caspase 3 and BclxL in the action of interleukin 7 (IL-7): a survival factor in activated human T cells

    DEFF Research Database (Denmark)

    Amos, C L; Woetmann, A; Nielsen, M

    1998-01-01

    cells. Both cytokines abrogated the dexamethasone-induced stimulation of Caspase 3 and prevented the cleavage of poly (ADP-ribose) polymerase (PARP), a substrate for the Caspase 3. IL-7 upregulated the expression of Bc1xL and counteracted the downregulation of this anti-apoptotic protein...... by the synthetic glucocorticoid, dexamethasone. Bcl-2 protein expression was uupregulated by IL-7 with or without dexamethasone, but Bc1-2 was expressed at a much lower level than BclxL in these cells. Levels of Bax did not markedly change on either cytokine stimulation or dexamethasone treatment. An unidentified...... 23-kDa band, which was recognized by the anti-Bc1-2 antibody, was induced by dexamthasone and suppressed by IL-7 and IL-2. This protein was subject to independent regulation as compared to the p26 Bc1-2 protein, suggesting that it may be a novel factor, possibly involved in the regulation...

  16. Regulatory mechanisms of apoptosis in regularly dividing cells

    Directory of Open Access Journals (Sweden)

    Ribal S Darwish

    2010-08-01

    Full Text Available Ribal S DarwishDepartment of Anesthesiology, Division of Critical Care Medicine, University of Maryland Medical Center, Baltimore, Maryland, USAAbstract: The balance between cell survival and death is essential for normal development and homeostasis of organisms. Apoptosis is a distinct type of cell death with ultrastructural features that are consistent with an active, inherently controlled process. Abnormalities and ­dysregulation of apoptosis contribute to the pathophysiology of multiple disease processes. Apoptosis is strictly regulated by several positive and negative feedback mechanisms that regulate cell death and determine the final outcome after cell exposure to apoptotic stimuli. Mitochondria and caspases are central components of the regulatory mechanisms of ­apoptosis. Recently, noncaspase pathways of apoptosis have been explored through the studies of ­apoptosis-inducing factor and endonuclease G. Multiple difficulties in the apoptosis research relate to apoptosis detection and imaging. This article reviews current understanding of the regulatory mechanisms of apoptosis.Keywords: caspases, apoptosis-inducing factor, apoptosis inhibitory proteins, cytochrome c, mitochondria 

  17. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wilkinson, Derek; Ramsdale, Mark

    2011-10-01

    A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response. Global proteolytic events that accompany PCD are discussed alongside a consideration of the conservation of the death-related degradome (both at the level of substrate choice and cleavage site). The importance of both gain-of-function changes in the degradome as well as loss-of-function changes are highlighted. Better understanding of both death-related proteases and their substrates may facilitate the design of future antifungal drugs or the manipulation of industrial yeasts for commercial exploitation.

  18. Memantine Can Reduce Ethanol-Induced Caspase-3 Activity and Apoptosis in H4 Cells by Decreasing Intracellular Calcium.

    Science.gov (United States)

    Wang, Xiaolong; Chen, Jiajun; Wang, Hongbo; Yu, Hao; Wang, Changliang; You, Jiabin; Wang, Pengfei; Feng, Chunmei; Xu, Guohui; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2017-08-01

    Caspase-3 activation and apoptosis are associated with various neurodegenerative disorders. Calcium activation is an important factor in promoting apoptosis. We, therefore, assessed the role of intracellular calcium in ethanol-induced activation of caspase-3 in H4 human neuroglioma cells and the protective effect of the NMDA receptor antagonist, memantine, on ethanol-induced apoptosis in H4 cells. H4 cells were treated with 100 mM EtOH (in culture medium) for 2 days. For interaction studies, cells were treated with memantine (4 μM), EDTA (1 mM), or BAPTA-AM (10 μM) before treatment with EtOH. Knockdown of the gene encoding the NR1 subunit of the NMDA receptor was performed using RNAi. Apoptosis was detected by Annexin V-FITC/PI staining and flow cytometry. Cell viability was detected using an MTS cell proliferation kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration. The levels of NR1, caspase-3, IP3R1, and SERCA1 proteins were detected by western blotting. NR1, IP3R1, and SERCA1 mRNA levels were detected by qPCR. We observed increased expression of NR1, IP3R1, SERCA1, and increased intracellular levels of calcium ions in H4 cells exposed to ethanol. In addition, the calcium chelators, EDTA and BAPTA, and RNAi disruption of the NMDA receptor reduced ethanol-induced caspase-3 activation in H4 cells. Memantine treatment reduced the ethanol-induced increase of intracellular calcium, caspase-3 activation, apoptosis, and the ethanol-induced decrease in cell viability. Our results indicate that ethanol-induced caspase-3 activation and apoptosis are likely to be dependent on cytosolic calcium levels and that they can be reduced by memantine treatment.

  19. Microbiota Composition, HSP70 and Caspase-3 Expression as Marker for Colorectal Cancer Patients in Aceh, Indonesia

    Directory of Open Access Journals (Sweden)

    Fauzi Yusuf

    2017-02-01

    Full Text Available Aim: to investigate the relationship between microbiota composition with HSP70 and Caspase-3 expressions in colon tissue as an initial study to develop the candidate for early detection of colorectal cancer for Indonesian patients. Methods: this is a cross-sectional study on 32 patients undergoing colonoscopy; 16 patients of colorectal cancer (CRC while the other 16 patients are not (colitis and internal hemorrhoid. The composition of microbiota in stool samples was examined using 16S rRNA Denaturing Gradient Gel Electrophoresis (DDGE while expression of HSP70 was examined by immunohistochemistry and Caspase-3 by using Haematoxylin-Eosin(HE staining to determine the morphological changes in colon tissue. Results: analysis of PCR-DDGE shows a different composition of microbiota between patients with CRC and non-CRC. All CRC patients showed disappearance of dominant band from Bifidobacterium groups. Histological observation based on Inter Class Correlation (ICC test from all slide showed a high scores (5.2-9.2 in CRC patients and low scores (1.7-2.4 in non-CRC patients. HSP70 expression was increased significantly in CRC patients with the highest percentage of 84%, while expression of caspase-3 decreased with the highest percentage of 21%. Statistical analysis showed that the incidence of colorectal cancer was associated with the expression of HSP 70 (p<0.001, and Caspase 3 (p<0.001. Conclusion: bifidobacterium is an important indicator for colorectal cancer patients that show disappearance of dominant band, while expression of HSP70 increased and the Caspase-3 expression decreased significantly.

  20. Bioluminescence determination of active caspase-3 in single apoptotic cells

    Czech Academy of Sciences Publication Activity Database

    Lišková, Marcela; Klepárník, Karel; Matalová, Eva; Hegrová, Jitka; Přikryl, Jan; Švandová, Eva; Foret, František

    2013-01-01

    Roč. 34, č. 12 (2013), s. 1772-1777 ISSN 0173-0835 R&D Projects: GA ČR GAP206/11/2377 Grant - others:GA ČR(CZ) GAP502/12/1285 Program:GA Institutional support: RVO:68081715 ; RVO:67985904 Keywords : apoptosis * bioluminescence * caspase-3 Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  1. Antiapoptotic effects of caspase inhibitors on H2O2-treated lung cancer cells concerning oxidative stress and GSH.

    Science.gov (United States)

    Park, Woo Hyun

    2018-04-01

    Exogenous hydrogen peroxide (H 2 O 2 ) induces oxidative stress and apoptosis in cancer cells. This study evaluated the antiapoptotic effects of pan-caspase and caspase-3, -8, or -9 inhibitors on H 2 O 2 -treated Calu-6 and A549 lung cancer cells in relation to reactive oxygen species (ROS) and glutathione (GSH). Treatment with 50-500 μM H 2 O 2 inhibited the growth of Calu-6 and A549 cells at 24 h and induced apoptosis in these cells. All the tested caspase inhibitors significantly prevented cell death in H 2 O 2 -treated lung cancer cells. H 2 O 2 increased intracellular ROS levels, including that of O 2 ·- , at 1 and 24 h. It also increased the activity of catalase but decreased the activity of SOD. In addition, H 2 O 2 triggered GSH deletion in Calu-6 and A549 cells at 24 h. It reduced GSH levels in Calu-6 cells at 1 h but increased them at 24 h. Caspase inhibitors decreased O 2 ·- levels in H 2 O 2 -treated Calu-6 cells at 1 h and these inhibitors decreased ROS levels, including that of O 2 ·- , in H 2 O 2 -treated A549 cells at 24 h. Caspase inhibitors partially attenuated GSH depletion in H 2 O 2 -treated A549 cells and increased GSH levels in these cells at 24 h. However, the inhibitors did not affect GSH deletion and levels in Calu-6 cells at 24 h. In conclusion, H 2 O 2 induced caspase-dependent apoptosis in Calu-6 and A549 cells, which was accompanied by increases in ROS and GSH depletion. The antiapoptotic effects of caspase inhibitors were somewhat related to the suppression of H 2 O 2 -induced oxidative stress and GSH depletion.

  2. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis☆

    Science.gov (United States)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2013-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K3) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ~12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. PMID:22575170

  3. Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways.

    Science.gov (United States)

    Li, Weishan; Jiang, Binghua; Cao, Xianglin; Xie, Yongjiang; Huang, Ting

    2017-01-05

    Fluoride is an environmental toxicant and induces dental fluorosis and oxidative stress. Lycopene (LYC) is an effective antioxidant that is reported to attenuate fluoride toxicity. To determine the effects of LYC on sodium fluoride (NaF) -induced teeth and ameloblasts toxicity, rats were treated with NaF (10 mg/kg) and/or LYC (10 mg/kg) by orally administration for 5 weeks; ameloblasts were treated with NaF (5 mM) and/or LYC (2 μM) for 6 h. We found that the concentrations of fluoride, malondialdehyde (MDA) and reactive oxygen species (ROS), gene expressions and activities of Caspase-9 and Caspase-3, and the gene expressions of Bax were significantly decreased, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX), the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated rats group; concentrations of MDA and ROS, gene expressions and activities of Caspase-9 and Caspase-3, and the gene expression of Bax, and ameloblasts apoptosis rate were significantly decreased, while the activities of SOD and GPX, the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated ameloblasts group. These results suggest that LYC significantly combated NaF-induced ameloblasts apoptosis and dental fluorosis by attenuation oxidative stress and down-regulation Caspase pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo.

    Science.gov (United States)

    Xie, Zhongcong; Culley, Deborah J; Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D; Frosch, Matthew P; Crosby, Gregory; Tanzi, Rudolph E

    2008-12-01

    An estimated 200 million patients worldwide have surgery each year. Anesthesia and surgery have been reported to facilitate emergence of Alzheimer's disease. The commonly used inhalation anesthetic isoflurane has previously been reported to induce apoptosis, and to increase levels and aggregation of Alzheimer's disease-associated amyloid beta-protein (Abeta) in cultured cells. However, the in vivo relevance has not been addressed. We therefore set out to determine effects of isoflurane on caspase activation and levels of beta-site amyloid precursor protein-cleaving enzyme (BACE) and Abeta in naive mice, using Western blot, immunohistochemistry, and reverse transcriptase polymerase chain reaction. Here we show for the first time that a clinically relevant isoflurane anesthesia (1.4% isoflurane for 2 hours) leads to caspase activation and modest increases in levels of BACE 6 hours after anesthesia in mouse brain. Isoflurane anesthesia induces caspase activation, and increases levels of BACE and Abeta up to 24 hours after anesthesia. Isoflurane may increase BACE levels by reducing BACE degradation. Moreover, the Abeta aggregation inhibitor, clioquinol, was able to attenuate isoflurane-induced caspase-3 activation in vivo. Given that transient insults to brain may lead to long-term brain damage, these findings suggest that isoflurane may promote Alzheimer's disease neuropathogenesis and, as such, have implications for use of isoflurane in humans, pending human study confirmation.

  5. Chikungunya virus–induced autophagy delays caspase-dependent cell death

    Science.gov (United States)

    Joubert, Pierre-Emmanuel; Werneke, Scott W.; de la Calle, Claire; Guivel-Benhassine, Florence; Giodini, Alessandra; Peduto, Lucie; Levine, Beth; Schwartz, Olivier; Lenschow, Deborah J.

    2012-01-01

    Autophagy is an important survival pathway and can participate in the host response to infection. Studying Chikungunya virus (CHIKV), the causative agent of a major epidemic in India, Southeast Asia, and southern Europe, we reveal a novel mechanism by which autophagy limits cell death and mortality after infection. We use biochemical studies and single cell multispectral assays to demonstrate that direct infection triggers both apoptosis and autophagy. CHIKV-induced autophagy is mediated by the independent induction of endoplasmic reticulum and oxidative stress pathways. These cellular responses delay apoptotic cell death by inducing the IRE1α–XBP-1 pathway in conjunction with ROS-mediated mTOR inhibition. Silencing of autophagy genes resulted in enhanced intrinsic and extrinsic apoptosis, favoring viral propagation in cultured cells. Providing in vivo evidence for the relevance of our findings, Atg16LHM mice, which display reduced levels of autophagy, exhibited increased lethality and showed a higher sensitivity to CHIKV-induced apoptosis. Based on kinetic studies and the observation that features of apoptosis and autophagy were mutually exclusive, we conclude that autophagy inhibits caspase-dependent cell death but is ultimately overwhelmed by viral replication. Our study suggests that inducers of autophagy may limit the pathogenesis of acute Chikungunya disease. PMID:22508836

  6. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    Science.gov (United States)

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  7. Targeted Deletion of Autophagy Genes Atg5 or Atg7 in the Chondrocytes Promotes Caspase-Dependent Cell Death and Leads to Mild Growth Retardation.

    Science.gov (United States)

    Vuppalapati, Karuna K; Bouderlique, Thibault; Newton, Phillip T; Kaminskyy, Vitaliy O; Wehtje, Henrik; Ohlsson, Claes; Zhivotovsky, Boris; Chagin, Andrei S

    2015-12-01

    Longitudinal bone growth takes place in epiphyseal growth plates located in the ends of long bones. The growth plate consists of chondrocytes traversing from the undifferentiated (resting zone) to the terminally differentiated (hypertrophic zone) stage. Autophagy is an intracellular catabolic process of lysosome-dependent recycling of intracellular organelles and protein complexes. Autophagy is activated during nutritionally depleted or hypoxic conditions in order to facilitate cell survival. Chondrocytes in the middle of the growth plate are hypoxic and nutritionally depleted owing to the avascular nature of the growth plate. Accordingly, autophagy may facilitate their survival. To explore the role of autophagy in chondrocyte survival and constitutional bone growth, we generated mice with cartilage-specific ablation of either Atg5 (Atg5cKO) or Atg7 (Atg7cKO) by crossing Atg5 or Atg7 floxed mice with cartilage-specific collagen type 2 promoter-driven Cre. Both Atg5cKO and Atg7cKO mice showed growth retardation associated with enhanced chondrocyte cell death and decreased cell proliferation. Similarly, inhibition of autophagy by Bafilomycin A1 (Baf) or 3-methyladenine (3MA) promoted cell death in cultured slices of human growth plate tissue. To delineate the underlying mechanisms we employed ex vivo cultures of mouse metatarsal bones and RCJ3.IC5.18 rat chondrogenic cell line. Baf or 3MA impaired metatarsal bone growth associated with processing of caspase-3 and massive cell death. Similarly, treatment of RCJ3.IC5.18 chondrogenic cells by Baf also showed massive cell death and caspase-3 cleavage. This was associated with activation of caspase-9 and cytochrome C release. Altogether, our data suggest that autophagy is important for chondrocyte survival, and inhibition of this process leads to stunted growth and caspase-dependent death of chondrocytes. © 2015 American Society for Bone and Mineral Research.

  8. Intervention with a caspase-1 inhibitor reduces obesity-associated hyperinsulinemia, non-alcoholic steatohepatitis and hepatic fibrosis in LDLR-/-.Leiden mice

    NARCIS (Netherlands)

    Morrison, M. C.; Mulder, P.; Salic, K.; Verheij, J.; Liang, W.; van Duyvenvoorde, W.; Menke, A.; Kooistra, T.; Kleemann, R.; Wielinga, P. Y.

    BACKGROUND/OBJECTIVES: Non-alcoholic steatohepatitis (NASH) is a serious liver condition, closely associated with obesity and insulin resistance. Recent studies have suggested an important role for inflammasome/caspase-1 in the development of NASH, but the potential therapeutic value of caspase-1

  9. Caspase-1 Specific Light-Up Probe with Aggregation-Induced Emission Characteristics for Inhibitor Screening of Coumarin-Originated Natural Products.

    Science.gov (United States)

    Lin, Hao; Yang, Haitao; Huang, Shuai; Wang, Fujia; Wang, Dong-Mei; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-04-18

    Caspase-1 is a key player in pyroptosis and inflammation. Caspase-1 inhibition is found to be beneficial to various diseases. Coumarin-originated natural products have an anti-inflammation function, but their direct inhibition effect to caspase-1 remains unexplored. To evaluate their interactions, the widely used commercial coumarin-based probe (Ac-YVAD-AMC) is not suitable, as the background signal from coumarin-originated natural products could interfere with the screening results. Therefore, fluorescent probes using a large Stokes shift could help solve this problem. In this work, we chose the fluorophore of tetraphenylethylene-thiophene (TPETH) with aggregation-induced emission characteristics and a large Stokes shift of about 200 nm to develop a molecular probe. Bioconjugation between TPETH and hydrophilic peptides (DDYVADC) through a thiol-ene reaction generated a light-up probe, C1-P3. The probe has little background signal in aqueous media and exerts a fluorescent turn-on effect in the presence of caspase-1. Moreover, when evaluating the inhibition potency of coumarin-originated natural products, the new probe could generate a true and objective result but not for the commercial probe (Ac-YVAD-AMC), which is evidenced by HPLC analysis. The quick light-up response and accurate screening results make C1-P3 very useful in fundamental study and inhibitior screening toward caspase-1.

  10. Natural indoles, indole-3-carbinol (I3C and 3,3'-diindolylmethane (DIM, attenuate staphylococcal enterotoxin B-mediated liver injury by downregulating miR-31 expression and promoting caspase-2-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Philip B Busbee

    Full Text Available Staphylococcal enterotoxin B (SEB is a potent superantigen capable of inducing inflammation characterized by robust immune cell activation and proinflammatory cytokine release. Exposure to SEB can result in food poisoning as well as fatal conditions such as toxic shock syndrome. In the current study, we investigated the effect of natural indoles including indole-3-carbinol (I3C and 3,3'-diindolylmethane (DIM on SEB-mediated liver injury. Injection of SEB into D-galactosamine-sensitized female C57BL/6 mice resulted in liver injury as indicated by an increase in enzyme aspartate transaminase (AST levels, induction of inflammatory cytokines, and massive infiltration of immune cells into the liver. Administration of I3C and DIM (40 mg/kg, by intraperitonal injection, attenuated SEB-induced acute liver injury, as evidenced by decrease in AST levels, inflammatory cytokines and cellular infiltration in the liver. I3C and DIM triggered apoptosis in SEB-activated T cells primarily through activation of the intrinsic mitochondrial pathway. In addition, inhibitor studies involving caspases revealed that I3C and DIM-mediated apoptosis in these activated cells was dependent on caspase-2 but independent of caspase-8, 9 and 3. In addition, I3C and DIM caused a decrease in Bcl-2 expression. Both compounds also down-regulated miR-31, which directly targets caspase-2 and influences apoptosis in SEB-activated cells. Our data demonstrate for the first time that indoles can effectively suppress acute hepatic inflammation caused by SEB and that this may be mediated by decreased expression of miR-31 and consequent caspase-2-dependent apoptosis in T cells.

  11. Cadmium-induced apoptosis through the mitochondrial pathway in rainbow trout hepatocytes: involvement of oxidative stress

    International Nuclear Information System (INIS)

    Risso-de Faverney, C.; Orsini, N.; Sousa, G. de; Rahmani, R.

    2004-01-01

    Cadmium (Cd) induces oxidative stress and apoptosis in trout hepatocytes. We therefore investigated the involvement of the mitochondrial pathway in the initiation of apoptosis and the possible role of oxidative stress in that process. This study demonstrates that hepatocyte exposure to Cd (2, 5 and 10 μM) triggers significant caspase-3, but also caspase-8 and -9 activation in a dose-dependent manner. Western-blot analysis of hepatocyte mitochondrial and cytosolic fractions revealed that cytochrome c (Cyt c) was released in the cytosol in a dose-dependent manner, whereas the pro-apoptotic protein Bax was redistributed to mitochondria after 24 and 48 h exposure. We also found that the expression of anti-apoptotic protein Bcl-xL, known to be regulated under mild oxidative stress to protect cells from apoptosis, did not change after 3 and 6 h exposure to Cd, then increased after 24 and 48 h exposure to 10 μM Cd. In the second part of this work, two antioxidant agents, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) (100 μM) and N-acetylcysteine (NAC, 100 μM) were used to determine the involvement of reactive oxygen species (ROS) in Cd-induced apoptosis. Simultaneously exposing trout hepatocytes to Cd and TEMPO or NAC significantly reduced caspase-3 activation after 48 h and had a suppressive effect on caspase-8 and -9 also, mostly after 24 h. Lastly, the presence of either one of these antioxidants in the treatment medium also attenuated Cd-induced Cyt c release in cytosol and the level of Bax in the mitochondria after 24 and 48 h, while high Bcl-xL expression was observed. Taken together, these data clearly evidenced the key role of mitochondria in the cascade of events leading to trout hepatocyte apoptosis in response to Cd and the relationship that exists between oxidative stress and cell death

  12. Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna A Dunai

    Full Text Available For a long time necrosis was thought to be an uncontrolled process but evidences recently have revealed that necrosis can also occur in a regulated manner. Necroptosis, a type of programmed necrosis is defined as a death receptor-initiated process under caspase-compromised conditions. The process requires the kinase activity of receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3 and mixed lineage kinase domain-like protein (MLKL, as a substrate of RIPK3. The further downstream events remain elusive. We applied known inhibitors to characterize the contributing enzymes in necroptosis and their effect on cell viability and different cellular functions were detected mainly by flow cytometry. Here we report that staurosporine, the classical inducer of intrinsic apoptotic pathway can induce necroptosis under caspase-compromised conditions in U937 cell line. This process could be hampered at least partially by the RIPK1 inhibitor necrotstin-1 and by the heat shock protein 90 kDa inhibitor geldanamycin. Moreover both the staurosporine-triggered and the classical death ligand-induced necroptotic pathway can be effectively arrested by a lysosomal enzyme inhibitor CA-074-OMe and the recently discovered MLKL inhibitor necrosulfonamide. We also confirmed that the enzymatic role of poly(ADP-ribosepolymerase (PARP is dispensable in necroptosis but it contributes to membrane disruption in secondary necrosis. In conclusion, we identified a novel way of necroptosis induction that can facilitate our understanding of the molecular mechanisms of necroptosis. Our results shed light on alternative application of staurosporine, as a possible anticancer therapeutic agent. Furthermore, we showed that the CA-074-OMe has a target in the signaling pathway leading to necroptosis. Finally, we could differentiate necroptotic and secondary necrotic processes based on participation of PARP enzyme.

  13. Expression of livin protein in lung cancer and its relation with the expression of pro-caspase3 protein

    Directory of Open Access Journals (Sweden)

    Hongru LI

    2008-10-01

    Full Text Available Background and objective Livin is a novel inhibitor of apoptosis protein (IAP, recent studies showed it overexpresses in a variety of carcinomas including lung cancer and contributes much to the cancerous development. The objective of this study is to explore the expression of livin in tissues of lung cancer and its relationshipwith histological types, chemotherapy, Lymph node metastasis and to study its correlation with the expression of pro-caspase3 as well. Methods Expressions of Livin and caspase3 were detected by Western blot assay in lung cancer tissues as well as in controls. Results Livin was expressed in 15 of 27 lung cancer, significantly more than those in lung para-cancerous (1/5 or benign disease lung tissues (2/12 (P 0.05. Conclusion Livin are differently expressed in different histological types of lung cancer; High levels of livin expression do not relate to chemotherapy, lymph node metastasis (P >0.05. The levels of livin tends to be positively associated with those of accordingly pro-caspase3, it is presumed that livin could bind pro-caspase3 and suppress its activation.

  14. Neurobiological mechanisms involved in sleep bruxism.

    Science.gov (United States)

    Lavigne, G J; Kato, T; Kolta, A; Sessle, B J

    2003-01-01

    Sleep bruxism (SB) is reported by 8% of the adult population and is mainly associated with rhythmic masticatory muscle activity (RMMA) characterized by repetitive jaw muscle contractions (3 bursts or more at a frequency of 1 Hz). The consequences of SB may include tooth destruction, jaw pain, headaches, or the limitation of mandibular movement, as well as tooth-grinding sounds that disrupt the sleep of bed partners. SB is probably an extreme manifestation of a masticatory muscle activity occurring during the sleep of most normal subjects, since RMMA is observed in 60% of normal sleepers in the absence of grinding sounds. The pathophysiology of SB is becoming clearer, and there is an abundance of evidence outlining the neurophysiology and neurochemistry of rhythmic jaw movements (RJM) in relation to chewing, swallowing, and breathing. The sleep literature provides much evidence describing the mechanisms involved in the reduction of muscle tone, from sleep onset to the atonia that characterizes rapid eye movement (REM) sleep. Several brainstem structures (e.g., reticular pontis oralis, pontis caudalis, parvocellularis) and neurochemicals (e.g., serotonin, dopamine, gamma aminobutyric acid [GABA], noradrenaline) are involved in both the genesis of RJM and the modulation of muscle tone during sleep. It remains unknown why a high percentage of normal subjects present RMMA during sleep and why this activity is three times more frequent and higher in amplitude in SB patients. It is also unclear why RMMA during sleep is characterized by co-activation of both jaw-opening and jaw-closing muscles instead of the alternating jaw-opening and jaw-closing muscle activity pattern typical of chewing. The final section of this review proposes that RMMA during sleep has a role in lubricating the upper alimentary tract and increasing airway patency. The review concludes with an outline of questions for future research.

  15. Effect of low dose radiation on cytochrome c and caspase-3 protein expressions in spermatogenic cells of mouse testis

    International Nuclear Information System (INIS)

    Wang Zhicheng; Zhao Hongguang; Piao Chunnan; Liu Guangwei; Liu Shuchun; Lv Zhe; Gong Shouliang

    2006-01-01

    Objective: To investigate the effect of low dose radiation on the expressions of cytochrome e (Cyt c) and caspase-3 proteins in spermatogenic cells of mouse testis. Methods: The relationships of dose- and time-effect of Cyt c and caspase-3 protein expressions with different dose of X-rays were observed in the spermatogenic cells of mouse testis with immunohistochemical technique (SABC). Results: After irradiation with 0, 0.025, 0.05, 0.075, 0.1 and 0.2 Gy, Cyt c and caspase-3 proteins expressed differently in all kinds of spermatogenic cells, and principally in spermatogonia and spermatocytes, and less in spermatids and spermatozoa. And the expressions increased with the increasing of irradiation dose. The expressions of both proteins after irradiation with 0.075 Gy increased with the lapse of time and reached to the peak at 12 h, and then decreased. Conclusion: Dose-and time-effect exists on the low-dose irradiation induced expressions of Cyt e and caspase-3 proteins in spermatogenic cells of mouse testis. (authors)

  16. [Effect of Electroacupuncture on Cerebro-cortex Caspase-3 Expression and Blood Lipid Levels in Hyperlipemia Rats with Cerebral Ischemia].

    Science.gov (United States)

    Wang, Zhuo-Yu; Ma, Jia-Jia; Guan, Han-Yu; Tian, Yao; Ren, Xiu-Jun; Ma, Hui-Fang

    2017-04-25

    To observe the effect of electroacupuncture (EA) stimulation of "Fenglong" (ST 40), "Sanyinjiao" (SP 6) plus manual acupuncture (MA) stimulation of "Shuigou" (GV 26) and "Baihui" (GV 20) on Caspase-3 protein expression in the cerebral cortex of rats with hyperlipemia and cerebral ischemia(HL-CI),so as to reveal its mechanisms underlying improvement of HL-CI. Forty-five rats were randomly divided into normal control,sham operation,model,EA group I(EA+MA was given for 14 days, i.e., 7 days before CI, and 7 days more after HL-CI)and EA group Ⅱ (EA+MA was given for only 7 days after HL-CI),with 9 rats being in each group. The HL-CI model was established by feeding the animals with high fat forage for 6 weeks and then making an occlusion of the unilateral middle cerebral artery by regional application of quantitative paper adsorbing 50% FeCl 3 solution (10 μL). Rats of the sham operation group were treated with the same procedures only without application of FeCl 3 solution. For rats of the EA group I,EA (1-3 mA, 2 Hz/100 Hz) was applied to bilateral acupoints SP 6 and ST 40 (for 20 min),and MA stimulation applied to GV 26 and GV 20. EA was conducted once daily for 7 days after 6 weeks' high fat fo-rage feeding, and EA+MA intervention was conducted once daily for 7 days after CI modeling. For rats in the EA group Ⅱ, EA+MA was applied to the same 4 acupoints once a day for 7 days only after CI modeling. The neurological impairment was assessed by Zea Longa's scoring. The blood sample was taken from the abdominal aorta for measuring the contents of serum cholesterol (CHO),triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). Pathological changes of the cerebral cortex were observed after H.E. staining, and the expression of cerebro-cortex Caspase-3 was analyzed by immunohistochemistry. Following modeling,the neurological score,CHO, TG and LDL-C contents, and the number of Caspase-3 positive cells as well

  17. Hexarelin Protects Rodent Pancreatic Β-Cells Function from Cytotoxic Effects of Streptozotocin Involving Mitochondrial Signalling Pathways In Vivo and In Vitro.

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    Full Text Available Mitochondrial functions are crucial for pancreatic β-cell survival and glucose-induced insulin secretion. Hexarelin (Hex is a synthetic small peptide ghrelin analogue, which has been shown to protect cardiomyocytes from the ischemia-reperfusion process. In this study, we used in vitro and in vivo models of streptozotocin (STZ-induced β-cell damage to study the protective effect of Hex and the associated mechanisms. We found that STZ produced a cytotoxic effect in a dose- and time-dependent manner in MIN6 cells (a mouse β-cell line. Hex (1.0 μM decreased the STZ-induced damage in β-cells. Rhodamine 123 assay and superoxide DHE production assay revealed that Hex ameliorated STZ-induced mitochondrial damage and excessive superoxide activity in β-cells. In addition, Hex significantly reduced STZ-induced expression of cleaved Caspases-3, Caspases-9 and the ratio of pro-apoptotic protein Bax to anti-apoptotic protein Bcl-2 in MIN6 cells. We further examined the in vivo effect of Hex in a rat model of type 1 diabetes induced by STZ injection. Hex ameliorated STZ-induced decrease in plasma insulin and protected the structure of islets from STZ-induced disruption. Hex also ameliorated STZ-induced expression of cleaved Caspase-9 and the Bax in β-cells. In conclusion, our data indicate that Hex is able to protects β-cell mass from STZ-caused cytotoxic effects involving mitochondrial pathways in vitro and in vivo. Hex may serve as a potential protective agent for the management of diabetes.

  18. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721

    Science.gov (United States)

    Lu, Zheng; Cao, Shengbo; Zhou, Hongbo; Hua, Ling; Zhang, Shishuo; Cao, Jiyue

    2015-01-01

    Arctigenin (ARG) has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC) was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose) polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment. PMID:25933104

  19. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721.

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    Full Text Available Arctigenin (ARG has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment.

  20. Apoptosis as a post-phagocytic winnowing mechanism in a coral-dinoflagellate mutualism.

    Science.gov (United States)

    Dunn, Simon R; Weis, Virginia M

    2009-01-01

    This study was aimed at detecting apoptosis as a post-phagocytic mechanism of symbiont selection during the onset of symbiosis in larvae of the scleractinian coral Fungia scutaria. Larvae were infected with one of three Symbiodinium types: freshly isolated homologous ITS-type C1f from adult F. scutaria, heterologous C31 from adult Montipora capitata, known to be unable to successfully colonize F. scutaria larvae, and type B1 from the symbiotic sea anemone Aiptasia spp. Apoptosis was detected by the activation of caspases, enzymes specific to apoptosis. Caspase activity was measured in situ by cleavage of a specific fluorophore and detection with confocal microscopy. At 6 h post infection, there was a significant increase in caspase activation in gastrodermal cells in C31-infected larvae, compared with larvae infected with C1f or B1 types. Compared with control larvae infected with C31, which had decreased infection rates present by 24 h post infection, when C31-infected larvae were incubated with a broad-scale caspase inhibitor, the per cent of larvae infected with C31 did not significantly decrease over time. This indicates that the reduction in infection success observed in untreated C31-infected larvae can be rescued with inhibition of caspases and apoptosis. This suggests the presence of a post-phagocytic recognition mechanism. Larvae infected with freshly isolated B1 retained infection success over time compared with C31-infected larvae, suggesting that there is host discrimination between heterologous algae. Initiation of this post-phagocytic response may occur more readily with a highly specific heterologous symbiont type such as C31, compared with a generalist heterologous type such as clade B1.

  1. Decreased expression of caspase3 in penis and prostate tissues of rat after the treatment with buceng (Pimpinella alpina Molk & Euricoma longifolia Jack

    Directory of Open Access Journals (Sweden)

    Taufiqurrachman Taufiqurrachman

    2013-02-01

    Full Text Available Background: Buceng {combination of pasak bumi (Eurycoma longifolia Jack and purwoceng (Pimpinella alpine Molk} has been proven to increase testosterone (Te level and decrease apoptosis. Unfortunately, there is no evidence whether these effects are mediated by the declining of caspase3. Objective of this study was to evaluate whether buceng could decrease the expression of caspase3 of penis and prostate cells in Sprague Dawley male rats.Methods: Twenty four Sprague Dawley male rats weighing 300 g (90 days old were randomly assigned into 4 groups of 6 male rats. Group A, rats were castrated and received buceng 50 mg. Group B, rats were not castrated, sacrifices as positive control. Group C, rats were castrated and given 2 mL aquadest as negative control. Group D, rats were castrated and got of 6.75 mg mesterolone, dissolved in 2 mL water. MANOVA statistical analysis was adopted to examine the difference expression of caspase3 in all groups. The comparison of caspase3 expression between two groups exhibiting difference values were evaluated by Post Hoc test.Results: MANOVA revealed statistically significant differences in the expression of caspase3 of penis and prostate tissues among the four groups. Post Hoct test also indicated that expression of caspase3 in group A (buceng (33.56; 35.83 was significantly lower compared to group C (negative control (54.33; 60.07 and group D (mesterolone (51.91;56.21, p = 0.000, and higher compared than group B or normal rats (29.40; 27.72, but statistically not significant (p = 0.826.Conclusion: The treatment of 50 mg buceng/day for 30 consecutive days could decrease caspase3 expression in penis and prostate cells. (Med J Indones. 2013;22:2-8Keywords: Apoptosis, buceng (Pimpinella alpine Molk – Eurycoma longifolia Jack, caspase

  2. Caspase 1 activation is protective against hepatocyte cell death by up-regulating beclin 1 protein and mitochondrial autophagy in the setting of redox stress.

    Science.gov (United States)

    Sun, Qian; Gao, Wentao; Loughran, Patricia; Shapiro, Rick; Fan, Jie; Billiar, Timothy R; Scott, Melanie J

    2013-05-31

    Caspase 1 activation can be induced by oxidative stress, which leads to the release of the proinflammatory cytokines IL1β and IL18 in myeloid cells and a potentially damaging inflammatory response. However, little is known about the role of caspase 1 in non-immune cells, such as hepatocytes, that express and activate the inflammasome but do not produce a significant amount of IL1β/IL18. Here we demonstrate that caspase 1 activation protects against cell death after redox stress induced by hypoxia/reoxygenation in hepatocytes. Mechanistically, we show that caspase 1 reduces mitochondrial respiration and reactive oxygen species by increasing mitochondrial autophagy and subsequent clearance of mitochondria in hepatocytes after hypoxia/reoxygenation. Caspase 1 increases autophagic flux through up-regulating autophagy initiator beclin 1 during redox stress and is an important cell survival factor in hepatocytes. We find that during hemorrhagic shock with resuscitation, an in vivo mouse model associated with severe hepatic redox stress, caspase 1 activation is also protective against liver injury and excessive oxidative stress through the up-regulation of beclin 1. Our findings suggest an alternative role for caspase 1 activation in promoting adaptive responses to oxidative stress and, more specifically, in limiting reactive oxygen species production and damage in cells and tissues where IL1β/IL18 are not highly expressed.

  3. Caspase 1 Activation Is Protective against Hepatocyte Cell Death by Up-regulating Beclin 1 Protein and Mitochondrial Autophagy in the Setting of Redox Stress*

    Science.gov (United States)

    Sun, Qian; Gao, Wentao; Loughran, Patricia; Shapiro, Rick; Fan, Jie; Billiar, Timothy R.; Scott, Melanie J.

    2013-01-01

    Caspase 1 activation can be induced by oxidative stress, which leads to the release of the proinflammatory cytokines IL1β and IL18 in myeloid cells and a potentially damaging inflammatory response. However, little is known about the role of caspase 1 in non-immune cells, such as hepatocytes, that express and activate the inflammasome but do not produce a significant amount of IL1β/IL18. Here we demonstrate that caspase 1 activation protects against cell death after redox stress induced by hypoxia/reoxygenation in hepatocytes. Mechanistically, we show that caspase 1 reduces mitochondrial respiration and reactive oxygen species by increasing mitochondrial autophagy and subsequent clearance of mitochondria in hepatocytes after hypoxia/reoxygenation. Caspase 1 increases autophagic flux through up-regulating autophagy initiator beclin 1 during redox stress and is an important cell survival factor in hepatocytes. We find that during hemorrhagic shock with resuscitation, an in vivo mouse model associated with severe hepatic redox stress, caspase 1 activation is also protective against liver injury and excessive oxidative stress through the up-regulation of beclin 1. Our findings suggest an alternative role for caspase 1 activation in promoting adaptive responses to oxidative stress and, more specifically, in limiting reactive oxygen species production and damage in cells and tissues where IL1β/IL18 are not highly expressed. PMID:23589298

  4. A study of the protective effect and mechanism of ketamine on acute lung injury induced by mechanical ventilation.

    Science.gov (United States)

    Wang, W-F; Liu, S; Xu, B

    2017-03-01

    To investigate the protective effects and mechanism of ketamine on acute lung injury induced by mechanical ventilation. 63 patients with acute lung injury caused by mechanical ventilation in our hospital between June 2014 and May 2015 were chosen and divided into three groups: group A, B, and C. Group A (20 cases) received conventional treatment. Group B (21 cases) was treated with propofol and group C (22 cases) with ketamine. The ventilator application time, the success rate of weaning, the mortality rate, inflammation index (IL-1, Caspase-1, and NF-κB), pulmonary function index and oxygen saturation were compared. The ventilator application time and the mortality rate of group B and group C were significantly (p 0.05). After the intervention, the levels of FEV1, FEV1/FVC, FVC and PEER in the three groups increased, but more remarkably in group B and group C (p mechanical ventilation. They shorten the application time of ventilator, improve the success rate of weaning and reduce the mortality rate which is probably related to the reduction of the degree of inflammatory reaction. Ketamine is more effective in reducing inflammatory factors including IL-1β, Caspase-1, and NF-κB than propofol.

  5. Caspase-7 participates in differentiation of cells forming dental hard tissues

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Lesot, H.; Švandová, Eva; Vanden Berghe, T.; Sharpe, P. T.; Healy, C.; Vandenabeele, P.; Tucker, A. S.

    2013-01-01

    Roč. 55, č. 5 (2013), s. 615-621 ISSN 0012-1592 R&D Projects: GA ČR GAP304/11/1418 Grant - others:GA ČR(CZ) GAP502/12/1285 Program:GA Institutional support: RVO:67985904 Keywords : ameloblast * apoptosis * caspase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.178, year: 2013

  6. MicroRNAs Targeting Caspase-3 and -7 in PANC-1 Cells

    Directory of Open Access Journals (Sweden)

    Jong Kook Park

    2018-04-01

    Full Text Available MicroRNAs (miRNAs, a critical part of the RNA silencing machinery, are known to play important regulatory roles in cancer. However, the consequence of miRNA deregulation in cancer is unknown for many miRNAs. Here, we define that miRNAs, miR-17-5p, miR-132-3p/-212-3p, and miR-337-3p are significantly up-regulated in the pancreatic ductal adenocarcinomas (PDAC compared to the normal and benign tissues. Furthermore, by using PANC-1 cells, we demonstrate that overexpressed miR-337-3p and miR-17-5p/miR-132-3p/-212-3p can regulate executioner caspases-3 and -7, respectively. In addition, over-expression of miRNAs, especially miR-337-3p, attenuates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL cytotoxicity in PANC-1 cells. Our findings unveil an important biological function for miRNAs up-regulated in PDAC in coordinately regulating caspases, potentially contributing to the malignant progression of PDAC.

  7. MicroRNAs Targeting Caspase-3 and -7 in PANC-1 Cells.

    Science.gov (United States)

    Park, Jong Kook; Doseff, Andrea I; Schmittgen, Thomas D

    2018-04-16

    MicroRNAs (miRNAs), a critical part of the RNA silencing machinery, are known to play important regulatory roles in cancer. However, the consequence of miRNA deregulation in cancer is unknown for many miRNAs. Here, we define that miRNAs, miR-17-5p, miR-132-3p/-212-3p, and miR-337-3p are significantly up-regulated in the pancreatic ductal adenocarcinomas (PDAC) compared to the normal and benign tissues. Furthermore, by using PANC-1 cells, we demonstrate that overexpressed miR-337-3p and miR-17-5p/miR-132-3p/-212-3p can regulate executioner caspases-3 and -7, respectively. In addition, over-expression of miRNAs, especially miR-337-3p, attenuates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity in PANC-1 cells. Our findings unveil an important biological function for miRNAs up-regulated in PDAC in coordinately regulating caspases, potentially contributing to the malignant progression of PDAC.

  8. Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination.

    Science.gov (United States)

    Svandova, E Budisova; Vesela, B; Lesot, H; Poliard, A; Matalova, E

    2017-04-01

    Elimination of the interdigital web is considered to be the classical model for assessing apoptosis. So far, most of the molecules described in the process have been connected to the intrinsic (mitochondrial) pathway. The extrinsic (receptor mediated) apoptotic pathway has been rather neglected, although it is important in development, immunomodulation and cancer therapy. This work aimed to investigate factors of the extrinsic apoptotic machinery during interdigital regression with a focus on three crucial initiators: Fas, Fas ligand and caspase-8. Immunofluorescent analysis of mouse forelimb histological sections revealed abundant expression of these molecules prior to digit separation. Subsequent PCR Array analyses indicated the expression of several markers engaged in the extrinsic pathway. Between embryonic days 11 and 13, statistically significant increases in the expression of Fas and caspase-8 were observed, along with other molecules involved in the extrinsic apoptotic pathway such as Dapk1, Traf3, Tnsf12, Tnfrsf1A and Ripk1. These results demonstrate for the first time the presence of extrinsic apoptotic components in mouse limb development and indicate novel candidates in the molecular network accompanying the regression of interdigital tissue during digitalisation.

  9. Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 Kda.

    Science.gov (United States)

    Zhang, Xiaoxue; Zhang, Rui; Yang, HuiOu; Xiang, Qian; Jiang, Qing; He, Qi; Zhang, Ting; Chen, Chen; Zhu, Huifen; Wang, Qiang; Ning, Qin; Li, Yiwu; Lei, Ping; Shen, Guanxin

    2016-07-25

    Cisplatin is a classical platinum-based chemotherapeutic drug used in the treatment of many cancer types, including hepatocellular carcinoma (HCC). The application of cisplatin is significantly limited by its toxicity, which may be affected by various biological factors. Persistence of Hepatitis B virus (HBV) infection leads to HCC development and may be associated with higher incidence of severe hepatitis during chemotherapy. However, whether HBV alters the susceptibility of hepatocytes to cisplatin remains poorly understood. Here, we demonstrate that HBV transfection enhanced cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 KDa (Grp78), a major stress-induced chaperone that localizes to the endoplasmic reticulum. Silencing Grp78 gene increased the susceptibility of HepG2 to cisplatin by activating caspase-3. Grp78 expression was down-regulated by HBV infection both in vitro and in liver tissues of patients. We compared the cisplatin sensitivity of hepatoma cells either expressing (HepG2.2.15 cells) or not expressing the entire Hepatitis B Virus genome (HepG2). HepG2.2.15 cells showed increased sensitivity to cisplatin and a higher apoptosis rate. Overexpression of Grp78 counteracted the increase of sensitivity of HepG2.215 cells to cisplatin. Furthermore, we found that HBV disrupted Grp78 synthesis in response to cisplatin stimulation, which may trigger severe and prolonged endoplasmic reticulum (ER) stress that can induce cellular apoptosis. Our findings provide new information into the effect of HBV in the modulation of Grp78 expression, and, consequently on cisplatin-induced hepatotoxicity during viral infection. Copyright © 2016. Published by Elsevier Ireland Ltd.

  10. Protective Effects of Chlorella-Derived Peptide Against UVC-Induced Cytotoxicity through Inhibition of Caspase-3 Activity and Reduction of the Expression of Phosphorylated FADD and Cleaved PARP-1 in Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Jong Yuh Cherng

    2012-08-01

    Full Text Available UVC irradiation induces oxidative stress and leads to cell death through an apoptotic pathway. This apoptosis is caused by activation of caspase-3 and formation of poly(ADP-ribose polymerase-1 (PARP-1. In this study, the underlying mechanisms of Chlorella derived peptide (CDP activity against UVC-induced cytotoxicity were investigated. Human skin fibroblasts were treated with CDP, vitamin C, or vitamin E after UVC irradiation for a total energy of 15 J/cm2. After the UVC exposure, cell proliferation and caspase-3 activity were measured at 12, 24, 48, and 72 h later. Expression of phosphorylated FADD and cleaved PARP-1 were measured 16 h later. DNA damage (expressed as pyrimidine (6-4 pyrimidone photoproducts DNA concentration and fragmentation assay were performed 24 h after the UVC exposure. Results showed that UVC irradiation induced cytotoxicity in all groups except those treated with CDP. The caspase-3 activity in CDP-treated cells was inhibited from 12 h onward. Expression of phosphorylated FADD and cleaved PARP-1 were also reduced in CDP-treated cells. Moreover, UVC-induced DNA damage and fragmentation were also prevented by the CDP treatment. This study shows that treatment of CDP provides protective effects against UVC-induced cytotoxicity through the inhibition of caspase-3 activity and the reduction of phosphorylated FADD and cleaved PARP-1 expression.

  11. Post-Traumatic Caspase-3 Expression in the Adjacent Areas of Growth Plate Injury Site: A Morphological Study

    Directory of Open Access Journals (Sweden)

    Karin Pichler

    2013-07-01

    Full Text Available The epiphyseal plate is a hyaline cartilage plate that sits between the diaphysis and the epiphysis. The objective of this study was to determine the impact of an injury in the growth plate chondrocytes through the study of histological morphology, immunohistochemistry, histomorphometry and Western Blot analyses of the caspase-3 and cleaved PARP-1, and levels of the inflammatory cytokines, Interleukin-6 (IL-6 and Tumor Necrosis Factor alpha (TNF-α, in order to acquire more information about post-injury reactions of physeal cell turnover. In our results, morphological analysis showed that in experimental bones, neo-formed bone trabeculae—resulting from bone formation repair—invaded the growth plate and reached the metaphyseal bone tissue (bone bridge, and this could result in some growth arrest. We demonstrated, by ELISA, increased expression levels of the inflammatory cytokines IL-6 and TNF-α. Immunohistochemistry, histomorphometry and Western Blot analyses of the caspase-3 and cleaved PARP-1 showed that the physeal apoptosis rate of the experimental bones was significantly higher than that of the control ones. In conclusion, we could assume that the inflammation process causes stress to chondrocytes that will die as a biological defense mechanism, and will also increase the survival of new chondrocytes for maintaining cell homeostasis. Nevertheless, the exact stimulus leading to the increased apoptosis rate, observed after injury, needs additional research to understand the possible contribution of chondrocyte apoptosis to growth disturbance.

  12. Expressão dos marcadores tumorais CD-34 e CASPASE-3 no carcinoma epidermóide de esôfago

    Directory of Open Access Journals (Sweden)

    Valério Alves Ferreira

    Full Text Available OBJETIVO: Analisar citofotometricamente a expressão do marcador de densidade microvascular CD-34 e de apoptose caspase-3 no carcinoma epidermóide de esôfago, e correlacionar os marcadores entre si. MÉTODOS: Análise imunoistoquímica de 29 peças cirúrgicas de carcinomas epidermóides de esôfago, baseada nos índices de marcagem dos anticorpos CD-34 e caspase-3, utilizando-se sistema de citofotometria computadorizada. Comparou-se a expressão quantitativa destes marcadores, a relação entre eles, a relação com a idade dos pacientes, tamanho das lesões e classificação TNM. RESULTADOS: O valor da mediana do índice de marcagem do CD-34 foi de 72,6% e o da caspase-3 de 96,5%. Não se obteve significância estatística na correlação destes marcadores com o tamanho tumoral ou com a idade dos pacientes. Houve discreta tendência à correlação positiva entre o CD-34 e a classificação TNM. O marcador caspase-3, apesar de apresentar maior índice de marcagem que o CD-34 nestes tumores, não revelou nenhuma correlação com as variáveis estudadas. A correlação entre o CD-34 e a caspase-3 apresentou tênue tendência positiva. CONCLUSÃO: Ambos os marcadores têm boa expressão no carcinoma epidermóide de esôfago, onde o CD-34 tem menor expressividade que a caspase-3 e os mesmos não apresentam correlação entre si.

  13. Caspase-3 cleavage of GGA3 stabilizes BACE: implications for Alzheimer's disease.

    Science.gov (United States)

    Vassar, Robert

    2007-06-07

    BACE initiates the production of beta-amyloid (Abeta), the likely cause of Alzheimer's disease (AD). In this issue of Neuron, Tesco et al. show that during apoptosis caspase-3 cleaves the adaptor protein GGA3, which is required for BACE lysosomal degradation, consequently stabilizing BACE and elevating Abeta generation.

  14. Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection

    International Nuclear Information System (INIS)

    Carthy, Christopher M.; Yanagawa, Bobby; Luo Honglin; Granville, David J.; Yang, Decheng; Cheung, Paul; Cheung, Caroline; Esfandiarei, Mitra; Rudin, Charles M.; Thompson, Craig B.; Hunt, David W.C.; McManus, Bruce M.

    2003-01-01

    Coxsackievirus B3, a cytopathic virus in the family Picornaviridae, induces degenerative changes in host cell morphology. Here we demonstrate cytochrome c release and caspases-2, -3, -6, -7, -8, and -9 processing. Enforced Bcl-2 and Bcl-xL expression markedly reduced release of cytochrome c, presentation of the mitochondrial epitope 7A6, and depressed caspase activation following infection. In comparison, cell death using TRAIL ligand caused caspase-8 processing prior to cytochrome c release and executioner caspases and cell death was only partially rescued by Bcl-2 and Bcl-xL overexpression. Disruption of the mitochondrial inner membrane potential following CVB3 infection was not inhibited by zVAD.fmk treatment. Bcl-2 or Bcl-xL overexpression or zVAD.fmk treatment delayed the loss of host cell viability and decreased progeny virus release following infection. Our data suggest that mitochondrial release of cytochrome c may be an important early event in caspase activation in CVB3 infection, and, as such, may contribute to the loss of host-cell viability and progeny virus release

  15. Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics.

    Directory of Open Access Journals (Sweden)

    Jyh-Ying Peng

    2011-10-01

    Full Text Available Morphological dynamics of mitochondria is associated with key cellular processes related to aging and neuronal degenerative diseases, but the lack of standard quantification of mitochondrial morphology impedes systematic investigation. This paper presents an automated system for the quantification and classification of mitochondrial morphology. We discovered six morphological subtypes of mitochondria for objective quantification of mitochondrial morphology. These six subtypes are small globules, swollen globules, straight tubules, twisted tubules, branched tubules and loops. The subtyping was derived by applying consensus clustering to a huge collection of more than 200 thousand mitochondrial images extracted from 1422 micrographs of Chinese hamster ovary (CHO cells treated with different drugs, and was validated by evidence of functional similarity reported in the literature. Quantitative statistics of subtype compositions in cells is useful for correlating drug response and mitochondrial dynamics. Combining the quantitative results with our biochemical studies about the effects of squamocin on CHO cells reveals new roles of Caspases in the regulatory mechanisms of mitochondrial dynamics. This system is not only of value to the mitochondrial field, but also applicable to the investigation of other subcellular organelle morphology.

  16. Novel Bioinformatics-Based Approach for Proteomic Biomarkers Prediction of Calpain-2 & Caspase-3 Protease Fragmentation: Application to βII-Spectrin Protein

    Science.gov (United States)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Kobeissy, Firas

    2017-01-01

    The crucial biological role of proteases has been visible with the development of degradomics discipline involved in the determination of the proteases/substrates resulting in breakdown-products (BDPs) that can be utilized as putative biomarkers associated with different biological-clinical significance. In the field of cancer biology, matrix metalloproteinases (MMPs) have shown to result in MMPs-generated protein BDPs that are indicative of malignant growth in cancer, while in the field of neural injury, calpain-2 and caspase-3 proteases generate BDPs fragments that are indicative of different neural cell death mechanisms in different injury scenarios. Advanced proteomic techniques have shown a remarkable progress in identifying these BDPs experimentally. In this work, we present a bioinformatics-based prediction method that identifies protease-associated BDPs with high precision and efficiency. The method utilizes state-of-the-art sequence matching and alignment algorithms. It starts by locating consensus sequence occurrences and their variants in any set of protein substrates, generating all fragments resulting from cleavage. The complexity exists in space O(mn) as well as in O(Nmn) time, where N, m, and n are the number of protein sequences, length of the consensus sequence, and length per protein sequence, respectively. Finally, the proposed methodology is validated against βII-spectrin protein, a brain injury validated biomarker.

  17. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells.

    Science.gov (United States)

    Lee, Hyun Sook; Cho, Han Jin; Yu, Rina; Lee, Ki Won; Chun, Hyang Sook; Park, Jung Han Yoon

    2014-02-17

    We previously noted that kaempferol, a flavonol present in vegetables and fruits, reduced cell cycle progression of HT-29 cells. To examine whether kaempferol induces apoptosis of HT-29 cells and to explore the underlying molecular mechanisms, cells were treated with various concentrations (0-60 μmol/L) of kaempferol and analyzed by Hoechst staining, Annexin V staining, JC-1 labeling of the mitochondria, immunoprecipitation, in vitro kinase assays, Western blot analyses, and caspase-8 assays. Kaempferol increased chromatin condensation, DNA fragmentation and the number of early apoptotic cells in HT-29 cells in a dose-dependent manner. In addition, kaempferol increased the levels of cleaved caspase-9, caspase-3 and caspase-7 as well as those of cleaved poly (ADP-ribose) polymerase. Moreover, it increased mitochondrial membrane permeability and cytosolic cytochrome c concentrations. Further, kaempferol decreased the levels of Bcl-xL proteins, but increased those of Bik. It also induced a reduction in Akt activation and Akt activity and an increase in mitochondrial Bad. Additionally, kaempferol increased the levels of membrane-bound FAS ligand, decreased those of uncleaved caspase-8 and intact Bid and increased caspase-8 activity. These results indicate that kaempferol induces the apoptosis of HT-29 cells via events associated with the activation of cell surface death receptors and the mitochondrial pathway.

  18. Chlamydia abortus Pmp18.1 Induces IL-1β Secretion by TLR4 Activation through the MyD88, NF-κB, and Caspase-1 Signaling Pathways.

    Science.gov (United States)

    Pan, Qing; Zhang, Qiang; Chu, Jun; Pais, Roshan; Liu, Shanshan; He, Cheng; Eko, Francis O

    2017-01-01

    The polymorphic membrane protein D (Pmp18D) is a 160-kDa outer membrane protein that is conserved and plays an important role in Chlamydia abortus pathogenesis. We have identified an N-terminal fragment of Pmp18D (designated Pmp18.1) as a possible subunit vaccine antigen. In this study, we evaluated the vaccine potential of Pmp18.1 by investigating its ability to induce innate immune responses in dendritic cells and the signaling pathway(s) involved in rPmp18.1-induced IL-1β secretion. We next investigated the immunomodulatory impact of VCG, in comparison with the more established Th1-promoting adjuvants, CpG and FL, on rPmp18.1-mediated innate immune activation. Finally, the effect of siRNA targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in DCs on IL-1β cytokine secretion was also investigated. Bone marrow-derived dendritic cells (BMDCs) were stimulated with rPmp18.1 in the presence or absence of VCG or CpG or FL and the magnitude of cytokines produced was assessed using a multiplex cytokine ELISA assay. Expression of costimulatory molecules and Toll-like receptors (TLRs) was analyzed by flow cytometry. Quantitation of intracellular levels of myeloid differentiation factor 88 (MyD88), nuclear factor kappa beta (NF-κB p50/p65), and Caspase-1 was evaluated by Western immunoblotting analysis while NF-κB p65 nuclear translocation was assessed by confocal microscopy. The results showed DC stimulation with rPmp18.1 provoked the secretion of proinflammatory cytokines and upregulated expression of TLRs and co-stimulatory molecules associated with DC maturation. These responses were significantly ( p ≤ 0.001) enhanced by VCG but not CpG or FL. In addition, rPmp18.1 activated the expression of MyD88, NF-κB p50, and Caspase-1 as well as the nuclear expression of NF-κB p65 in treated DCs. Furthermore, targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in BMDCs with siRNA significantly reduced their expression levels, resulting in decreased IL-1β cytokine

  19. Chlamydia abortus Pmp18.1 Induces IL-1β Secretion by TLR4 Activation through the MyD88, NF-κB, and Caspase-1 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Qing Pan

    2017-12-01

    Full Text Available The polymorphic membrane protein D (Pmp18D is a 160-kDa outer membrane protein that is conserved and plays an important role in Chlamydia abortus pathogenesis. We have identified an N-terminal fragment of Pmp18D (designated Pmp18.1 as a possible subunit vaccine antigen. In this study, we evaluated the vaccine potential of Pmp18.1 by investigating its ability to induce innate immune responses in dendritic cells and the signaling pathway(s involved in rPmp18.1-induced IL-1β secretion. We next investigated the immunomodulatory impact of VCG, in comparison with the more established Th1-promoting adjuvants, CpG and FL, on rPmp18.1-mediated innate immune activation. Finally, the effect of siRNA targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in DCs on IL-1β cytokine secretion was also investigated. Bone marrow-derived dendritic cells (BMDCs were stimulated with rPmp18.1 in the presence or absence of VCG or CpG or FL and the magnitude of cytokines produced was assessed using a multiplex cytokine ELISA assay. Expression of costimulatory molecules and Toll-like receptors (TLRs was analyzed by flow cytometry. Quantitation of intracellular levels of myeloid differentiation factor 88 (MyD88, nuclear factor kappa beta (NF-κB p50/p65, and Caspase-1 was evaluated by Western immunoblotting analysis while NF-κB p65 nuclear translocation was assessed by confocal microscopy. The results showed DC stimulation with rPmp18.1 provoked the secretion of proinflammatory cytokines and upregulated expression of TLRs and co-stimulatory molecules associated with DC maturation. These responses were significantly (p ≤ 0.001 enhanced by VCG but not CpG or FL. In addition, rPmp18.1 activated the expression of MyD88, NF-κB p50, and Caspase-1 as well as the nuclear expression of NF-κB p65 in treated DCs. Furthermore, targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in BMDCs with siRNA significantly reduced their expression levels, resulting in decreased IL-1

  20. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α

    Directory of Open Access Journals (Sweden)

    Dickinson Bryony A

    2009-06-01

    Full Text Available Abstract Background Long-term depression (LTD in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs and muscarinic acethycholine receptors (mAChRs. Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC, it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-α. Results Whilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms. Conclusion Our results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-α.

  1. Responses of heat shock protein 70 and caspase-3/7 to dietary selenomethionine in juvenile white sturgeon

    Directory of Open Access Journals (Sweden)

    Weifang Wang

    2016-03-01

    current study suggest that a mechanism involved with the activation of stress protein production and apoptosis protects white sturgeon from the lethal effect of Se.

  2. Effect of docosahexaenoic acid on hippocampal neurons in high-glucose condition: involvement of PI3K/AKT/nuclear factor-κB-mediated inflammatory pathways.

    Science.gov (United States)

    Yang, R-H; Lin, J; Hou, X-H; Cao, R; Yu, F; Liu, H-Q; Ji, A-L; Xu, X-N; Zhang, L; Wang, F

    2014-08-22

    Accumulating evidence suggested that hyperglycemia played a critical role in hippocampus dysfunction in patients with diabetes mellitus. However, the multifactorial pathogenesis of hyperglycemia-induced impairments of hippocampal neurons has not been fully elucidated. Docosahexaenoic acid (DHA) has been shown to enhance learning and memory and affect neural function in various experimental conditions. The present study investigated the effects of DHA on the lipid peroxidation, the level of inflammatory cytokines and neuron apoptosis in the hippocampal neurons in high-glucose condition. High-glucose administration increased the level of tumor necrosis factor α (TNF-α) and IL-6, induced oxidative stress and apoptosis of hippocampal neurons in vitro. DHA treatment reduced oxidative stress and TNF-α expression, protected the hippocampal neurons by increasing AKT phosphorylation and decreasing caspase-3 and caspase-9 expression. These results suggested that high-glucose exposure induced injury of hippocampal neurons in vitro, and the principle mechanisms involved in the neuroprotective effect of DHA were its antioxidant and anti-apoptotic potential. DHA may thus be of use in preventing or treating neuron-degeneration resulting from hyperglycemia. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    Directory of Open Access Journals (Sweden)

    Po-Sheng Yang

    2015-01-01

    Full Text Available Antrodia camphorata (A. camphorata is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO rats. A selective occlusion of the middle cerebral artery (MCA with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day alone or combined with aspirin (5 mg/kg/day. To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS, haem oxygenase-1 (HO-1, and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P<0.001, iNOS (P<0.001, and Bax (P<0.01 in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day. Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P<0.01. Moreover, treatment of A. camphorata significantly (P<0.05 reduced fenton reaction-induced hydroxyl radical (OH• formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals.

  4. Expressão citofotométrica quantitativa da CASPASE-3 e do CD-34 no carcinoma ductal infiltrante de mama

    Directory of Open Access Journals (Sweden)

    Fábio Santana dos Passos

    Full Text Available OBJETIVO: Descrever, correlacionar e comparar a expressão dos marcadores tumorais CD-34 (angiogênese e caspase-3 (apoptose em carcinoma ductal invasor de mama. MÉTODOS: Foram utilizados 22 casos de adenocarcinoma infiltrante de mama provenientes de blocos de parafina e, após preparo específico para imunoistoquímica, 15 apresentaram leitura satisfatória e foram avaliados pelo sistema de fotocitometria de imagem SAMBA 4000® e software IMMUNO®. Os parâmetros analisados foram o índice de marcagem e densidade óptica. RESULTADOS: Para o CD-34 não houve normalidade dos dados na análise do índice de marcagem, com obtenção de P=0,019, havendo normalidade para a análise da densidade óptica, com P=0,199. Para a caspase-3 houve normalidade de dados para o índice marcagem com P=0,306 e para a densidade óptica com P=0,114; não houve diferença estatística significativa entre eles em relação à média do índice de marcagem (P=0,872 e da densidade óptica (P=0,816, quando analisados os parâmetros que definem a expressão dos marcadores; existiu tendência à associação entre a densidade óptica e o índice de marcagem do marcador tumoral caspase-3, com P=0,025. Não foi observada tendência à associação quando comparados densidade óptica e índice de marcagem do marcador tumoral CD-34; índice de marcagem do marcador tumoral caspase-3 e índice de marcagem do marcador tumoral CD-34; e densidade óptica da caspase-3 com a do CD-34. CONCLUSÃO: Dos 22 casos incluídos foi possível verificar a expressão do marcador CD-34 em 18 lâminas e da caspase-3 em 22 lâminas; Para o CD-34 não houve normalidade dos dados na análise do índice de marcagem, havendo sim normalidade para a análise da densidade óptica. Para a caspase-3 houve normalidade de dados tanto para o índice de marcagem como para a densidade óptica. Existe tendência à associação entre a densidade óptica e o índice de marcagem da caspase-3. Não foi observada

  5. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    Science.gov (United States)

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  6. Non-apoptotic role for caspase-7 in hair follicles and the surrounding tissue

    Czech Academy of Sciences Publication Activity Database

    Veselá, Barbora; Švandová, Eva; Vanden Berghe, T.; Tucker, A. S.; Vandenabeele, P.; Matalová, Eva

    2015-01-01

    Roč. 46, 4-5 (2015), s. 443-455 ISSN 1567-2379 R&D Projects: GA ČR GB14-37368G Institutional support: RVO:67985904 Keywords : caspase-7 * development * hair follicles Subject RIV: EA - Cell Biology Impact factor: 2.221, year: 2015

  7. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer

    DEFF Research Database (Denmark)

    Gyrd-Hansen, Mads; Meier, Pascal

    2010-01-01

    . The development of such inhibitors has radically changed our knowledge of the signalling processes that are regulated by IAPs. Recent studies indicate that IAPs not only regulate caspases and apoptosis, but also modulate inflammatory signalling and immunity, mitogenic kinase signalling, proliferation and mitosis...

  8. Quantum-Mechanical Calculations on Molecular Substructures Involved in Nanosystems

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2014-09-01

    Full Text Available In this review article, four ideas are discussed: (a aromaticity of fullerenes patched with flowers of 6-and 8-membered rings, optimized at the HF and DFT levels of theory, in terms of HOMA and NICS criteria; (b polybenzene networks, from construction to energetic and vibrational spectra computations; (c quantum-mechanical calculations on the repeat units of various P-type crystal networks and (d construction and stability evaluation, at DFTB level of theory, of some exotic allotropes of diamond D5, involved in hyper-graphenes. The overall conclusion was that several of the yet hypothetical molecular nanostructures herein described are serious candidates to the status of real molecules.

  9. Pharmacological inhibition of caspase and calpain proteases: a novel strategy to enhance the homing responses of cord blood HSPCs during expansion.

    Directory of Open Access Journals (Sweden)

    V M Sangeetha

    Full Text Available BACKGROUND: Expansion of hematopoietic stem/progenitor cells (HSPCs is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. METHODOLOGY/PRINCIPAL FINDINGS: CB derived CD34(+ cells were expanded using a combination of growth factors with and without Caspase inhibitor -zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homing-related molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice. CONCLUSION/SIGNIFICANCE: Our present study reveals another novel aspect of the regulation of caspase and calpain proteases in the biology of HSPCs. The priming of the homing responses of the inhibitor-cultured HSPCs compared to the cytokine-graft suggests that the modulation of these proteases may help in overcoming the major homing defects prevalent in the expansion cultures thereby facilitating the manipulation of cells for transplant

  10. ASSESSING THE ROLE OF CASPASE ACTIVITY AND METACASPASE EXPRESSION ON VIRAL SUSCEPTIBILITY OF THE COCCOLITHOPHORE, EMILIANIA HUXLEYI (HAPTOPHYTA).

    Science.gov (United States)

    Bidle, Kay D; Kwityn, Clifford J

    2012-10-01

    As part of their strategy to infect the globally important coccolithophore, Emiliania huxleyi (Lohmann) W.W. Hay & H.P. Mohler, Coccolithoviruses trigger and regulate the host's programmed cell death (PCD) machinery during lytic infection. The induction and recruitment of host metacaspases, specialized, ancestral death proteases that facilitate viral lysis, suggests they may be important subcellular determinants to infection. We examined the "basal" levels and patterns of caspase activity and metacaspase expression in exponentially growing resistant and sensitive E. huxleyi strains and linked them with susceptibility to E. huxleyi virus 1 (EhV1). Resistant E. huxleyi strains were consistently characterized by low caspase specific activity and a relatively simple metacaspase expression profile. In contrast, sensitive E. huxleyi strains had markedly elevated caspase specific activity and consistently expressed more diverse metacaspase proteins. Using pooled data sets from triplicate experiments, we observed statistically significant linear correlations between infectivity, caspase activity, and metacaspase expression, with each strain forming distinct clusters, within a gradient in viral susceptibility. At the same time, we observed positive correlations between the expression of a subset of metacaspase proteins and lower susceptibility, suggestive of potential protective roles. Our findings implicate the importance of subtle differences in the basal physiological regulation of the PCD machinery to viral resistance or sensitivity and cell fate. © 2012 Phycological Society of America.

  11. Bithionol inhibits ovarian cancer cell growth In Vitro - studies on mechanism(s) of action

    International Nuclear Information System (INIS)

    Ayyagari, Vijayalakshmi N; Brard, Laurent

    2014-01-01

    Drug resistance is a cause of ovarian cancer recurrence and low overall survival rates. There is a need for more effective treatment approaches because the development of new drug is expensive and time consuming. Alternatively, the concept of ‘drug repurposing’ is promising. We focused on Bithionol (BT), a clinically approved anti-parasitic drug as an anti-ovarian cancer drug. BT has previously been shown to inhibit solid tumor growth in several preclinical cancer models. A better understanding of the anti-tumor effects and mechanism(s) of action of BT in ovarian cancer cells is essential for further exploring its therapeutic potential against ovarian cancer. The cytotoxic effects of BT against a panel of ovarian cancer cell lines were determined by Presto Blue cell viability assay. Markers of apoptosis such as caspases 3/7, cPARP induction, nuclear condensation and mitochondrial transmembrane depolarization were assessed using microscopic, FACS and immunoblotting methods. Mechanism(s) of action of BT such as cell cycle arrest, reactive oxygen species (ROS) generation, autotaxin (ATX) inhibition and effects on MAPK and NF-kB signalling were determined by FACS analysis, immunoblotting and colorimetric methods. BT caused dose dependent cytotoxicity against all ovarian cancer cell lines tested with IC 50 values ranging from 19 μM – 60 μM. Cisplatin-resistant variants of A2780 and IGROV-1 have shown almost similar IC 50 values compared to their sensitive counterparts. Apoptotic cell death was shown by expression of caspases 3/7, cPARP, loss of mitochondrial potential, nuclear condensation, and up-regulation of p38 and reduced expression of pAkt, pNF-κB, pIκBα, XIAP, bcl-2 and bcl-xl. BT treatment resulted in cell cycle arrest at G1/M phase and increased ROS generation. Treatment with ascorbic acid resulted in partial restoration of cell viability. In addition, dose and time dependent inhibition of ATX was observed. BT exhibits cytotoxic effects on various

  12. Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes.

    Science.gov (United States)

    Shemarova, Irina V

    2010-04-01

    In unicellular eukaryotes, apoptosis-like cell death occurs during development, aging and reproduction, and can be induced by environmental stresses and exposure to toxic agents. The essence of the apoptotic machinery in unicellular organisms is similar to that in mammals, but the apoptotic signal network is less complex and of more ancient origin. The review summarizes current data about key apoptotic proteins and mechanisms of the transduction of apoptotic signals by caspase-like proteases and mitochondrial apoptogenic proteins in unicellular eukaryotes. The roles of receptor-dependent and receptor-independent caspase cascades are reviewed. 2010 Elsevier Inc. All rights reserved.

  13. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Merril C.; Peters, Amelia A. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Kenny, Paraic A. [Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Roberts-Thomson, Sarah J. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Monteith, Gregory R., E-mail: gregm@uq.edu.au [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2013-05-10

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  14. Epstein-Barr Virus MicroRNA miR-BART20-5p Suppresses Lytic Induction by Inhibiting BAD-Mediated caspase-3-Dependent Apoptosis.

    Science.gov (United States)

    Kim, Hyoji; Choi, Hoyun; Lee, Suk Kyeong

    2016-02-01

    Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with a variety of tumor types. EBV can establish latency or undergo lytic replication in host cells. In general, EBV remains latent in tumors and expresses a limited repertoire of latent proteins to avoid host immune surveillance. When the lytic cycle is triggered by some as-yet-unknown form of stimulation, lytic gene expression and progeny virus production commence. Thus far, the exact mechanism of EBV latency maintenance and the in vivo triggering signal for lytic induction have yet to be elucidated. Previously, we have shown that the EBV microRNA miR-BART20-5p directly targets the immediate early genes BRLF1 and BZLF1 as well as Bcl-2-associated death promoter (BAD) in EBV-associated gastric carcinoma. In this study, we found that both mRNA and protein levels of BRLF1 and BZLF1 were suppressed in cells following BAD knockdown and increased after BAD overexpression. Progeny virus production was also downregulated by specific knockdown of BAD. Our results demonstrated that caspase-3-dependent apoptosis is a prerequisite for BAD-mediated EBV lytic cycle induction. Therefore, our data suggest that miR-BART20-5p plays an important role in latency maintenance and tumor persistence of EBV-associated gastric carcinoma by inhibiting BAD-mediated caspase-3-dependent apoptosis, which would trigger immediate early gene expression. EBV has an ability to remain latent in host cells, including EBV-associated tumor cells hiding from immune surveillance. However, the exact molecular mechanisms of EBV latency maintenance remain poorly understood. Here, we demonstrated that miR-BART20-5p inhibited the expression of EBV immediate early genes indirectly, by suppressing BAD-induced caspase-3-dependent apoptosis, in addition to directly, as we previously reported. Our study suggests that EBV-associated tumor cells might endure apoptotic stress to some extent and remain latent with the aid of miR-BART20-5p. Blocking the

  15. Combined fluorimetric caspase 3/7 assay and bradford protein determination for assessment of polycation-mediated cytotoxicity.

    Science.gov (United States)

    Larsen, Anna K; Hall, Arnaldur; Lundsgart, Henrik; Moghimi, S Moein

    2013-01-01

    Cationic polyplexes and lipoplexes are widely used as artificial systems for nucleic acid delivery into the cells, but they can also induce cell death. Mechanistic understanding of cell toxicity and biological side effects of these cationic entities is essential for optimization strategies and design of safe and efficient nucleic acid delivery systems. Numerous methods are presently available to detect and delineate cytotoxicity and cell death-mediated signals in cell cultures. Activation of caspases is part of the classical apoptosis program and increased caspase activity is therefore a well-established hallmark of programmed cell death. Additional methods to monitor cell death-related signals must, however, also be carried out to fully define the type of cell toxicity in play. These may include methods that detect plasma membrane damage, loss of mitochondrial membrane potential, phosphatidylserine exposure, and cell morphological changes (e.g., membrane blebbing, nuclear changes, cytoplasmic swelling, cell rounding). Here we describe a 96-well format protocol for detection of capsase-3/7 activity in cell lysates, based on a fluorescent caspase-3 assay, combined with a method to simultaneously determine relative protein contents in the individual wells.

  16. Lasiodin inhibits proliferation of human nasopharyngeal carcinoma cells by simultaneous modulation of the Apaf-1/caspase, AKT/MAPK and COX-2/NF-κB signaling pathways.

    Directory of Open Access Journals (Sweden)

    Lianzhu Lin

    Full Text Available Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid. The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.

  17. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-01-01

    Full Text Available Objectives. Elevated plasma homocysteine (Hcy could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27, a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS, and mitochondrial membrane potential (MMP of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO level, increase of endothelin-1 (ET-1, intracellular adhesion molecule-1 (ICAM-1, vascular cellular adhesion molecule-1 (VCAM-1, and monocyte chemoattractant protein-1 (MCP-1 levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  18. Increased soluble serum markers caspase-cleaved cytokeratin-18, histones, and ST2 indicate apoptotic turnover and chronic immune response in COPD.

    Science.gov (United States)

    Hacker, Stefan; Lambers, Christopher; Pollreisz, Andreas; Hoetzenecker, Konrad; Lichtenauer, Michael; Mangold, Andreas; Niederpold, Tina; Hacker, Andreas; Lang, György; Dworschak, Martin; Vukovich, Thomas; Gerner, Christopher; Klepetko, Walter; Ankersmit, Hendrik Jan

    2009-01-01

    Chronic obstructive pulmonary disease (COPD) is a worldwide burden and a major cause of death. The disease is accompanied by chronic inflammation and increased cellular turnover that is partly due to an overwhelming induction of apoptosis. In this study, we hypothesized that systemic markers of apoptosis are altered in patients with mild-to-severe COPD. A total number of 64 patients and controls were enrolled in the study. Lung function parameters of all groups (nonsmoker, healthy smoker, COPD GOLD I&II, COPD GOLD III&IV) were evaluated at the time of inclusion. Enzyme-linked immunosorbent assays were used to quantify protein levels in serum samples. Serum contents of apoptotic end-products caspase-cleaved cytokeratin-18 and histone-associated-DNA-fragments were increased in patients with COPD, whereas anti-inflammatory soluble ST2 showed a peak in patients with COPD I&II (P=0.031) compared to healthy smokers. Levels of pro-inflammatory caspase-1/ ICE correlated significantly with the number of pack years (R=0.337; P=0.007). Our results indicate a systemic release of apoptosis-specific proteins as markers for increased cellular turnover accompanied by progression of COPD. Furthermore, soluble ST2 seems to have a critical role in the anti-inflammatory regulatory mechanism at early stages of the disease.

  19. Curcumin I mediates neuroprotective effect through attenuation of quinoprotein formation, p-p38 MAPK expression, and caspase-3 activation in 6-hydroxydopamine treated SH-SY5Y cells.

    Science.gov (United States)

    Meesarapee, Benjawan; Thampithak, Anusorn; Jaisin, Yamaratee; Sanvarinda, Pimtip; Suksamrarn, Apichart; Tuchinda, Patoomratana; Morales, Noppawan Phumala; Sanvarinda, Yupin

    2014-04-01

    6-Hydroxydopamine (6-OHDA) selectively enters dopaminergic neurons and undergoes auto-oxidation resulting in the generation of reactive oxygen species and dopamine quinones, subsequently leading to apoptosis. This mechanism mimics the pathogenesis of Parkinson's disease and has been used to induce experimental Parkinsonism in both in vitro and in vivo systems. In this study, we investigated the effects of curcumin I (diferuloylmethane) purified from Curcuma longa on quinoprotein production, phosphorylation of p38 MAPK (p-p38), and caspase-3 activation in 6-OHDA-treated SH-SY5Y dopaminergic cells. Pretreatment of SH-SY5Y with curcumin I at concentrations of 1, 5, 10, and 20 μM, significantly decreased the formation of quinoprotein and reduced the levels of p-p38 and cleaved caspase-3 in a dose-dependent manner. Moreover, the levels of the dopaminergic neuron marker, phospho-tyrosine hydroxylase (p-TH), were also dose-dependently increased upon treatment with curcumin I. Our results clearly demonstrated that curcumin I protects neurons against oxidative damage, as shown by attenuation of p-p38 expression, caspase-3-activation, and toxic quinoprotein formation, together with the restoration of p-TH levels. This study provides evidence for the therapeutic potential of curcumin I in the chemoprevention of oxidative stress-related neurodegeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Molecular Mechanisms Behind the Chemopreventive Effects of Anthocyanidins

    Directory of Open Access Journals (Sweden)

    De-Xing Hou

    2004-01-01

    Full Text Available Anthocyanins are polyphenolic ring-based flavonoids, and are widespread in fruits and vegetables of red-blue color. Epidemiological investigations and animal experiments have indicated that anthocyanins may contribute to cancer chemoprevention. The studies on the mechanism have been done recently at molecular level. This review summarizes current molecular bases for anthocyanidins on several key steps involved in cancer chemoprevention: (i inhibition of anthocyanidins in cell transformation through targeting mitogen-activated protein kinase (MAPK pathway and activator protein 1 (AP-1 factor; (ii suppression of anthocyanidins in inflammation and carcinogenesis through targeting nuclear factor kappa B (NF-κB pathway and cyclooxygenase 2 (COX-2 gene; (iii apoptotic induction of cancer cells by anthocyanidins through reactive oxygen species (ROS / c-Jun NH2-terminal kinase (JNK-mediated caspase activation. These data provide a first molecular view of anthocyanidins contributing to cancer chemoprevention.

  1. Aluminosilikat Berpotensi Menekan Gangguan Reproduksi Mikotoksin Zearalenon Berdasarkan Pengamatan Jumlah Folikel dan Ekspresi Caspase-9 Ovarium

    Directory of Open Access Journals (Sweden)

    Muhammad Thohawi Elziyad Purnama

    2017-06-01

    Full Text Available Zearalenone is a resorcylic acid lactone produced by fungal Fusarium graminearum in contaminated edible grains and can cause reproduction disorder in animals by binding to estrogen receptors on target cells. The aim of this study was to assess the potential use of aluminosilicates as mycotoxin binders to eliminate the adverse effect of zearalenone by examining the number of follicles and caspase-9 expression in the ovary of mice. The study adopted a completely randomized simple design using 20 mices which were randomly divided into five group each of which consisted of four mices. Five treatment groups consisted of K+ (without zearalenone and aluminosilicates; K- (treated with zearalenone 0.1 mg/mice/day; P1 (treated with zearalenone 0.1 mg/mice/day and aluminosilicates 0.5 mg/mice/day; P2 (treated with zearalenone 0.1 mg/mice/day and aluminosilicates 1 mg/mice/day; and P3 were treated with zearalenone 0,1 mg/mice/day and aluminosilicates 2 mg/mice/day with gastric tube daily for 10 days. The data obtained from this study were analyzed by analysis of variance and proceeded with Duncan test. The result showed that the primary follicles, secondary follicles, tertiary follicles and de Graaf follicles increased significantly on P3 treatment group. Caspase-9 expressions decreased significantly in all of aluminosilicates groups as compared to positive control. The treatment of mice with zearalenone and aluminosilicates increases the number of follicles and decreased caspase-9 expression in the ovary of mice. ABSTRAK Zearalenon merupakan senyawa resorcylic acid lactone yang diproduksi oleh jamur Fusarium graminearum dan dapat mengakibatkan gangguan reproduksi pada ternak dengan membentuk ikatan pada reseptor estrogen. Penelitian ini bertujuan untuk menguji potensi aluminosilikat terhadap mencit yang telah dipapar zearalenon pada aspek jumlah folikel dan ekspresi caspase-9 organ ovarium. Penelitian ini menggunakan 20 ekor mencit yang dibagi menjadi lima

  2. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    Science.gov (United States)

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  3. Caspase-8 acts as a key upstream executor of mitochondria during justicidin A-induced apoptosis in human hepatoma cells.

    Science.gov (United States)

    Su, Chun-Li; Huang, Lynn L H; Huang, Li-Min; Lee, Jenq-Chang; Lin, Chun-Nan; Won, Shen-Jeu

    2006-05-29

    Justicia procumbens is a traditional Taiwanese herbal remedy used to treat fever, pain, and cancer. Justicidin A, isolated from Justicia procumbens, has been reported to suppress in vitro growth of several tumor cell lines as well as hepatoma cells. In this study, justicidin A activated caspase-8 to increase tBid, disrupted mitochondrial membrane potential (Delta psi(m)), and caused the release of cytochrome c and Smac/DIABLO in Hep 3B and Hep G2 cells. Justicidin A also reduced Bcl-x(L) and increased Bax and Bak in mitochondria. Caspase-8 inhibitor (Z-IETD) attenuated the justicidin A-induced disruption of Delta psi(m). Growth of Hep 3B implanted in NOD-SCID mice was suppressed significantly by oral justicidin A (20 mg/kg/day). These results indicate that justicidin A-induced apoptosis in these cells proceeds via caspase-8 and is followed by mitochondrial disruption.

  4. Enhanced caspase activity contributes to aortic wall remodeling and early aneurysm development in a murine model of Marfan syndrome.

    Science.gov (United States)

    Emrich, Fabian C; Okamura, Homare; Dalal, Alex R; Penov, Kiril; Merk, Denis R; Raaz, Uwe; Hennigs, Jan K; Chin, Jocelyn T; Miller, Miquell O; Pedroza, Albert J; Craig, Juliana K; Koyano, Tiffany K; Blankenberg, Francis G; Connolly, Andrew J; Mohr, Friedrich W; Alvira, Cristina M; Rabinovitch, Marlene; Fischbein, Michael P

    2015-01-01

    Rupture and dissection of aortic root aneurysms remain the leading causes of death in patients with the Marfan syndrome, a hereditary connective tissue disorder that affects 1 in 5000 individuals worldwide. In the present study, we use a Marfan mouse model (Fbn1(C1039G/+)) to investigate the biological importance of apoptosis during aneurysm development in Marfan syndrome. Using in vivo single-photon emission computed tomographic-imaging and ex vivo autoradiography for Tc99m-annexin, we discovered increased apoptosis in the Fbn1(C1039G/+) ascending aorta during early aneurysm development peaking at 4 weeks. Immunofluorescence colocalization studies identified smooth muscle cells (SMCs) as the apoptotic cell population. As biological proof of concept that early aortic wall apoptosis plays a role in aneurysm development in Marfan syndrome, Fbn1(C1039G/+) mice were treated daily from 2 to 6 weeks with either (1) a pan-caspase inhibitor, Q-VD-OPh (20 mg/kg), or (2) vehicle control intraperitoneally. Q-VD-OPh treatment led to a significant reduction in aneurysm size and decreased extracellular matrix degradation in the aortic wall compared with control mice. In vitro studies using Fbn1(C1039G/+) ascending SMCs showed that apoptotic SMCs have increased elastolytic potential compared with viable cells, mostly because of caspase activity. Moreover, in vitro (1) cell membrane isolation, (2) immunofluorescence staining, and (3) scanning electron microscopy studies illustrate that caspases are expressed on the exterior cell surface of apoptotic SMCs. Caspase inhibition attenuates aneurysm development in an Fbn1(C1039G/+) Marfan mouse model. Mechanistically, during apoptosis, caspases are expressed on the cell surface of SMCs and likely contribute to elastin degradation and aneurysm development in Marfan syndrome. © 2014 American Heart Association, Inc.

  5. Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy.

    Directory of Open Access Journals (Sweden)

    John C Means

    2015-05-01

    Full Text Available While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc in the optic lobes during the middle of the day or after light pulses at night. Likewise, reduced Dbt activity lengthens circadian period and causes expression of activated Dronc, and a loss-of-function mutation in Clk also leads to expression of activated Dronc in a light-dependent manner. Genetic epistasis experiments place Dbt downstream of Spag in the pathway, and Spag-dependent reductions of Dbt are shown to require the proteasome. Importantly, activated Dronc expression due to reduced Spag or Dbt activity occurs in cells that do not express the spag RNAi or dominant negative Dbt and requires PDF neuropeptide signaling from the same neurons that support behavioral rhythms. Furthermore, reduction of Dbt or Spag activity leads to Dronc-dependent Drosophila Tau cleavage and enhanced neurodegeneration produced by human Tau in a fly eye model for tauopathy. Aging flies with lowered Dbt or Spag function show markers of cell death as well as behavioral deficits and shortened lifespans, and even old wild type flies exhibit Dbt modification and activated caspase at particular times of day. These results suggest that Dbt suppresses expression of activated Dronc to prevent Tau cleavage, and that the circadian clock defects confer sensitivity to expression of activated Dronc in response to prolonged light. They establish a link between the circadian clock factors, light, cell death pathways and Tau toxicity, potentially via dysregulation of circadian neuronal remodeling in

  6. Inhibiting HIF-1α Decreases Expression of TNF-α and Caspase-3 in Specific Brain Regions Exposed Kainic Acid-Induced Status Epilepticus

    Directory of Open Access Journals (Sweden)

    Jixue Yang

    2016-01-01

    Full Text Available Background/Aims: A recent study demonstrates that pro-inflammatory cytokines (PICs, i.e., IL-1β, IL-6 and TNF-α in specific brain regions of rats play a role in regulating kainic acid (KA-induced status epilepticus (SE via a GABAergic mechanism. The purposes of this report were to examine contributions of hypoxia inducible factor subtype 1α (HIF-1α to expression of PICs in these specific brain regions in epileptic rats. Particularly, we investigated the parietal cortex, hippocampus and amygdala. In addition, we further examined expression of Caspase-3 indicating cell apoptosis in those brain regions of epileptic rats after infusing 2-methoxyestradiol (2-MET, inhibitor of HIF-1α and etanercept (TNF-α receptor antagonist. Methods: ELISA was used to determine the levels of HIF-1α and PICs and western blot analysis was used to examine Caspase-3 expression. Results: Our data show that HIF-1α was significantly increased in the parietal cortex, hippocampus and amygdala 1, 3 and 7 days after induction of SE (Pvs. control rats. Our results also show that inhibiting HIF-1α by central infusion of 2-MET significantly decreased the amplified TNF-α expression in these brain regions evoked by SE (Pvs. vehicle control, but did not modify IL-1β and IL-6. Our results demonstrate that 2-MET and etanercept attenuated an increase in Caspase-3 evoked by SE. Conclusion: Overall, we suggest that HIF-1α activated by SE is likely to contribute to epileptic activity via a TNF-α pathway, which has pharmacological implications to target specific HIF-1α and TNF-α pathways for neuronal dysfunction and vulnerability related to epilepsy.

  7. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation.

    Directory of Open Access Journals (Sweden)

    Ki Sung Kang

    Full Text Available BACKGROUND: The present study sought to further investigate the in vitro and in vivo anticancer effects of a representative omega-3 fatty acid, docosahexaenoic acid (DHA, with a focus on assessing the induction of oxidative stress and apoptosis as an important mechanism for its anticancer actions. METHODOLOGY/PRINCIPAL FINDINGS: In vitro studies showed that DHA strongly reduces the viability and DNA synthesis of MCF-7 human breast cancer cells in culture, and also promotes cell death via apoptosis. Mechanistically, accumulation of reactive oxygen species and activation of caspase 8 contribute critically to the induction of apoptotic cell death. Co-presence of antioxidants or selective inhibition or knockdown of caspase 8 each effectively abrogates the cytotoxic effect of DHA. Using athymic nude mice as an in vivo model, we found that feeding animals the 5% fish oil-supplemented diet for 6 weeks significantly reduces the growth of MCF-7 human breast cancer cells in vivo through inhibition of cancer cell proliferation as well as promotion of cell death. Using 3-nitrotyrosine as a parameter, we confirmed that the fish oil-supplemented diet significantly increases oxidative stress in tumor cells in vivo. Analysis of fatty acid content in plasma and tissues showed that feeding animals a 5% fish oil diet increases the levels of DHA and eicosapentaenoic acid in both normal and tumorous mammary tissues by 329% and 300%, respectively. CONCLUSIONS/SIGNIFICANCE: DHA can strongly induce apoptosis in human MCF-7 breast cancer cells both in vitro and in vivo. The induction of apoptosis in these cells is selectively mediated via caspase 8 activation. These observations call for further studies to assess the effectiveness of fish oil as a dietary supplement in the prevention and treatment of human breast cancer.

  8. Activation of Pro-apoptotic Caspases in Non-apoptotic Cells During Odontogenesis and Related Osteogenesis

    Czech Academy of Sciences Publication Activity Database

    Švandová, Eva; Veselá, Barbora; Tucker, A. S.; Matalová, Eva

    2018-01-01

    Roč. 9, č. 1 (2018), č. článku 174. ISSN 1664-042X Institutional support: RVO:67985904 Keywords : caspase * differentiation * apoptosis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 4.134, year: 2016

  9. Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia

    Directory of Open Access Journals (Sweden)

    Tsukasa Nakanishi

    2016-05-01

    Full Text Available We previously reported that the inflammasome inhibitor cucurbitacin D (CuD induces apoptosis in human leukemia cell lines. Here, we investigated the effects of CuD and a B-cell lymphoma extra-large (Bcl-xL inhibitor on autophagy in peripheral blood lymphocytes (PBL isolated from adult T-cell leukemia (ATL patients. CuD induced PBL cell death in patients but not in healthy donors. This effect was not significantly inhibited by treatment with rapamycin or 3-methyladenine (3-MA. The Bcl-xL inhibitor Z36 induced death in primary cells from ATL patients including that induced by CuD treatment, effects that were partly inhibited by 3-MA. Similarly, cell death induced by the steroid prednisolone was enhanced in the presence of Z36. A western blot analysis revealed that Z36 also promoted CuD-induced poly(ADP ribose polymerase cleavage. Interestingly, the effects of CuD and Z36 were attenuated in primary ATL patient cells obtained upon recurrence after umbilical cord blood transplantation, as compared to those obtained before chemotherapy. Furthermore, cells from this patient expressed a high level of caspase-1, and treatment with caspase-1 inhibitor-enhanced CuD-induced cell death. Taken together, these results suggest that rescue from resistance to steroid drugs can enhance chemotherapy, and that caspase-1 is a good marker for drug resistance in ATL patients.

  10. The neurotoxicant PCB-95 by increasing the neuronal transcriptional repressor REST down-regulates caspase-8 and increases Ripk1, Ripk3 and MLKL expression determining necroptotic neuronal death.

    Science.gov (United States)

    Guida, Natascia; Laudati, Giusy; Serani, Angelo; Mascolo, Luigi; Molinaro, Pasquale; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2017-10-15

    associated with reduced promoter activity of the RIPK1, RIPK3 and MLKL genes. Collectively, these results indicate that PCB-95 was associated with REST-induced necroptotic cell death by increasing RIPK1, RIPK3 and MLKL expression and reducing caspase-8 levels. In addition, since REST is involved in several neurological disorders, therapies that block REST-induced necroptosis could be a new strategy to revert the neurodetrimental effects associated to its overexpression. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Roles of p53 and caspases in induction of apoptosis in MCF- 7 breast cancer cells treated with a methanolic extract of Nigella sativa seeds.

    Science.gov (United States)

    Alhazmi, Mohammed I; Hasan, Tarique N; Shafi, Gowhar; Al-Assaf, Abdullah H; Alfawaz, Mohammed A; Alshatwi, Ali A

    2014-01-01

    Nigella Sativa (NS) is an herb from the Ranunculaceae family that exhibits numerous medicinal properties and has been used as important constituent of many complementary and alternative medicines (CAMs). The ability of NS to kill cancer cells such as PC3, HeLa and hepatoma cells is well established. However, our understanding of the mode of death caused by NS remains nebulous. The objective of this study was to gain further insight into the mode and mechanism of death caused by NS in breast cancer MCF-7 cells. Human breast cancer cells (MCF-7) were treated with a methanolic extract of NS, and a dose- and time-dependent study was performed. The IC50 was calculated using a Cell Titer Blue® viability assay assay, and evidence for DNA fragmentation was obtained by fluorescence microscopy TUNEL assay. Gene expression was also profiled for a number of apoptosis-related genes (Caspase-3, -8, -9 and p53 genes) through qPCR. The IC50 of MCF-7 cells was 62.8 μL/mL. When MCF-7 cells were exposed to 50 μL/mL and 100 μL/mL NS for 24 h, 48 h and 72 h, microscopic examination (TUNEL assay) revealed a dose- and time-dependent increase in apoptosis. Similarly, the expression of the Caspase-3, -8, -9 and p53 genes increased significantly according to the dose and time. NS induced apoptosis in MCF-7 cells through both the p53 and caspase pathways. NS could potentially represent an alternative source of medicine for breast cancer therapy.

  12. Loss of ABCB4 attenuates the caspase-dependent apoptosis regulating resistance to 5-Fu in colorectal cancer.

    Science.gov (United States)

    Hu, Hanqing; Wang, Meng; Guan, Xu; Yuan, Ziming; Liu, Zheng; Zou, Chaoxia; Wang, Guiyu; Gao, Xu; Wang, Xishan

    2018-02-28

    The adenosine triphosphate-binding cassette (ABC) is a large group of proteins involved in material transportation, cellular homeostasis, and closely associated with chemoresistance. ATP-binding cassette protein B4 (ABCB4) is a member of ABCs which has a similar structure to ABCB1, but fewer researches were performed. The present study is aimed to investigate the putative mechanism of ABCB4 in 5-fluorouracil (5-Fu) resistance. Then, we found that ABCB4 was significantly down-regulated in the 5-Fu resistant HCT8 cell lines by polymerase chain reaction (PCR) and Western blot. The knockdown of ABCB4 by small interfering RNA decreased the apoptosis by 5-Fu in resistant HCT8R cell lines without influencing the proliferation. Also, we found a lower expression of cleaved caspase and PARP by Western blot after the knockdown of ABCB4. However, the knockdown of ABCB4 did not influence the proliferation and apoptosis. Furthermore, the histological detection of ABCB4 mRNA level in human colorectal cancer tissues and even in the recurrent tissues after 5-Fu single-agent chemotherapy was employed to provide more concrete evidence that ABCB4 may be a tumor suppressor gene to regulate chemoresistance in colorectal cancer. Moreover, a 109-patient cohort revealed that ABCB4 predicted a poor recurrence-free survival and overall survival. In summary, ABCB4 was down-regulated in the 5-Fu resistant cells and knockdown of ABCB4 alleviated the cell apoptosis and predicts a shorter recurrence-free survival and overall survival. © 2018 The Author(s).

  13. Caspase 3 activation in the primary enamel knot of developing molar tooth

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Kovářů, František; Míšek, Ivan

    2006-01-01

    Roč. 55, 2 (2006), s. 183-188 ISSN 0862-8408 R&D Projects: GA ČR GA304/04/0101; GA AV ČR KJB500450503; GA MŠk OC B23.001 Institutional research plan: CEZ:AV0Z50450515 Keywords : apoptosis * caspase 3 * primary enamel knot Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.093, year: 2006

  14. Nocardia cyriacigeogica from Bovine Mastitis Induced In vitro Apoptosis of Bovine Mammary Epithelial Cells via Activation of Mitochondrial-Caspase Pathway

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-05-01

    Full Text Available Nocardia is one of the causing agents of bovine mastitis and increasing prevalence of nocardial mastitis in shape of serious outbreaks has been reported from many countries. However, the mechanisms by which this pathogen damages the bovine mammary epithelial cells (bMECs is not yet studied. Therefore, this study was designed with the aim to evaluate the apoptotic effects elicited by Nocardia and to investigate the pathway by which the Nocardia induce apoptosis in bMECs. Clinical Nocardia cyriacigeorgica strain from bovine mastitis was used to infect the bMECs for different time intervals, viz. 1, 3, 6, 12, and 18 h, and then the induced effects on bMECs were studied using adhesion and invasion assays, release of lactate dehydrogenase (LDH, apoptosis analysis by annexin V and propidium iodide (PI double staining, morphological, and ultrastructural observations under scanning electron microscope (SEM and transmission electron microscope (TEM, mitochondrial transmembrane potential (ΔΨm assay using flow cytometry, and the protein quantification of mitochondrial cytochrome c and caspase-9 and caspase-3 by western blotting. The results of this study showed that N. cyriacigeorgica possessed the abilities of adhesion and invasion to bMECs. N. cyriacigeorgica was found to collapse mitochondrial transmembrane potential, significantly (p < 0.05 release mitochondrial cytochrome c and ultimately induce cell apoptosis. Additionally, it promoted casepase-9 (p < 0.01 and casepase-3 (p < 0.05 levels, significantly (p < 0.01 increased the release of LDH and promoted DNA fragmentation which further confirmed the apoptosis. Furthermore, N. cyriacigeorgica induced apoptosis/necrosis manifested specific ultrastructure features under TEM, such as swollen endoplasmic reticulum, cristae degeneration, and swelling of mitochondria, vesicle formation on the cell surface, rupturing of cell membrane and nuclear membrane, clumping, fragmentation, and margination of

  15. Nocardia cyriacigeogica from Bovine Mastitis Induced In vitro Apoptosis of Bovine Mammary Epithelial Cells via Activation of Mitochondrial-Caspase Pathway.

    Science.gov (United States)

    Chen, Wei; Liu, Yongxia; Zhang, Limei; Gu, Xiaolong; Liu, Gang; Shahid, Muhammad; Gao, Jian; Ali, Tariq; Han, Bo

    2017-01-01

    Nocardia is one of the causing agents of bovine mastitis and increasing prevalence of nocardial mastitis in shape of serious outbreaks has been reported from many countries. However, the mechanisms by which this pathogen damages the bovine mammary epithelial cells (bMECs) is not yet studied. Therefore, this study was designed with the aim to evaluate the apoptotic effects elicited by Nocardia and to investigate the pathway by which the Nocardia induce apoptosis in bMECs. Clinical Nocardia cyriacigeorgica strain from bovine mastitis was used to infect the bMECs for different time intervals, viz . 1, 3, 6, 12, and 18 h, and then the induced effects on bMECs were studied using adhesion and invasion assays, release of lactate dehydrogenase (LDH), apoptosis analysis by annexin V and propidium iodide (PI) double staining, morphological, and ultrastructural observations under scanning electron microscope (SEM) and transmission electron microscope (TEM), mitochondrial transmembrane potential (ΔΨm) assay using flow cytometry, and the protein quantification of mitochondrial cytochrome c and caspase-9 and caspase-3 by western blotting. The results of this study showed that N. cyriacigeorgica possessed the abilities of adhesion and invasion to bMECs. N. cyriacigeorgica was found to collapse mitochondrial transmembrane potential, significantly ( p < 0.05) release mitochondrial cytochrome c and ultimately induce cell apoptosis. Additionally, it promoted casepase-9 ( p < 0.01) and casepase-3 ( p < 0.05) levels, significantly ( p < 0.01) increased the release of LDH and promoted DNA fragmentation which further confirmed the apoptosis. Furthermore, N. cyriacigeorgica induced apoptosis/necrosis manifested specific ultrastructure features under TEM, such as swollen endoplasmic reticulum, cristae degeneration, and swelling of mitochondria, vesicle formation on the cell surface, rupturing of cell membrane and nuclear membrane, clumping, fragmentation, and margination of chromatin

  16. Purification, crystallization and preliminary crystallographic characterization of the caspase-recruitment domain of human Nod1

    International Nuclear Information System (INIS)

    Srimathi, Thiagarajan; Robbins, Sheila L.; Dubas, Rachel L.; Seo, Jang-Hoon; Park, Young Chul

    2006-01-01

    The caspase-recruitment domain of the cytosolic pathogen receptor Nod1 was crystallized. X-ray diffraction data were collected to 1.9 Å resolution. The caspase-recruitment domain (CARD) is known to play an important role in apoptosis and inflammation as an essential protein–protein interaction domain. The CARD of the cytosolic pathogen receptor Nod1 was overexpressed in Escherichia coli and purified by affinity chromatography and gel filtration. The purified CARD was crystallized at 277 K using the microseeding method. X-ray diffraction data were collected to 1.9 Å resolution. The crystals belong to space group P3 1 or P3 2 , with unit-cell parameters a = b = 79.1, c = 80.9 Å. Preliminary analysis indicates that there is one dimeric CARD molecule in the asymmetric unit

  17. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression.

    Science.gov (United States)

    Verduijn, J; Milaneschi, Y; Schoevers, R A; van Hemert, A M; Beekman, A T F; Penninx, B W J H

    2015-09-29

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic-pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MDD progresses toward multiple episodes and/or chronicity. We hypothesized that four central pathophysiological mechanisms of MDD are not only involved in etiology, but also associated with clinical disease progression. Therefore, we expected to find increasingly more dysregulation across consecutive stages of MDD progression. The sample from the Netherlands Study of Depression and Anxiety (18-65 years) consisted of 230 controls and 2333 participants assigned to a clinical staging model categorizing MDD in eight stages (0, 1A, 1B, 2, 3A, 3B, 3C and 4), from familial risk at MDD (stage 0) to chronic MDD (stage 4). Analyses of covariance examined whether pathophysiological mechanism markers (interleukin (IL)-6, C-reactive protein (CRP), cortisol, brain-derived neurotrophic factor and vitamin D) showed a linear trend across controls, those at risk for MDD (stages 0, 1A and 1B), and those with full-threshold MDD (stages 2, 3A, 3B, 3C and 4). Subsequently, pathophysiological differences across separate stages within those at risk and with full-threshold MDD were examined. A linear increase of inflammatory markers (CRP P=0.026; IL-6 P=0.090), cortisol (P=0.025) and decrease of vitamin D (P<0.001) was found across the entire sample (for example, from controls to those at risk and those with full-threshold MDD). Significant trends of dysregulations across stages were present in analyses focusing on at-risk individuals (IL-6 P=0.050; cortisol P=0.008; vitamin D P<0.001); however, no linear trends were found in dysregulations for any of the mechanisms across more progressive stages of full-threshold MDD. Our results support that the examined pathophysiological mechanisms are

  18. The correlation between MIB-1, AgNOR, and caspase-3 apoptosis with chemoradiotherapy response in cervical cancer

    International Nuclear Information System (INIS)

    Iin Kurnia; Devita Tetriana; Budiningsih Siregar; Irwan Ramli; Andriono; Setiawan Soetopo; Tjahya Kurjana; Maringan DL Tobing; Bethy Suryawathi

    2013-01-01

    Chemoradiotherapy is one of treatments for the locally advanced cervical cancer given by concurrent radiotherapy combined with chemotherapy in the same time. Chemoradiotherapy response is influenced by biological factor i.e. cell kinetic that consists of cell proliferation and death. In this research, the correlation between AgNOR, MIB-1 cell proliferation biomarker and the expression of apoptotic caspase-3 with chemoradiotherapy response of cervical cancer has been studied. Twenty one microscopic tissue samples were taken from cervical cancer biopsies before radiotherapy. The tissue samples were stained with AgNOR, whereas MIB-1 and apoptosis caspase-3 in the tissue samples were detected by immunochemistry technique. After the completion of chemoradiotherapy treatment, the clinical response was observed by pelvic control method. The result of this research show that there is no correlation between AgNOR, MIB-1 value with apoptosis (p>0.05) before chemoradiotherapy. Cell proliferation observed by AgNOR and MIB-1 before chemoradiotherapy indicate no correlation with chemoradiotherapy response, however the apoptotic expression shows positive correlation with chemoradiotherapy response. The index of caspase-3 apoptosis obtained from this research can be used for considering the chemoradiotherapy schedule for the cervical cancer patient. (author)

  19. Cytotoxicity and Proapoptotic Effects of Allium atroviolaceum Flower Extract by Modulating Cell Cycle Arrest and Caspase-Dependent and p53-Independent Pathway in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Somayeh Khazaei

    2017-01-01

    Full Text Available Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.

  20. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation

    International Nuclear Information System (INIS)

    Ali, Shafaqat; Nguyen, Dang Quan; Falk, Werner; Martin, Michael Uwe

    2010-01-01

    IL-33 is a member of the IL-1 family of cytokines with dual function which either activates cells via the IL-33 receptor in a paracrine fashion or translocates to the nucleus to regulate gene transcription in an intracrine manner. We show that full length murine IL-33 is active as a cytokine and that it is not processed by caspase 1 to mature IL-33 but instead cleaved by caspase 3 at aa175 to yield two products which are both unable to bind to the IL-33 receptor. Full length IL-33 and its N-terminal caspase 3 breakdown product, however, translocate to the nucleus. Finally, bioactive IL-33 is not released by cells constitutively or after activation. This suggests that IL-33 is not a classical cytokine but exerts its function in the nucleus of intact cells and only activates others cells via its receptor as an alarm mediator after destruction of the producing cell.