WorldWideScience

Sample records for mechanical simulation study

  1. Simulating Mechanics to Study Emergence in Games

    NARCIS (Netherlands)

    Dormans, Joris

    2011-01-01

    This paper presents the latest version of the Machinations framework. This framework uses diagrams to represent the flow of tangible and abstract resources through a game. This flow represents the mechanics that make up a game’s interbal economy and has a large impact on the emergent gameplay of

  2. Quantum mechanical simulation methods for studying biological systems

    International Nuclear Information System (INIS)

    Bicout, D.; Field, M.

    1996-01-01

    Most known biological mechanisms can be explained using fundamental laws of physics and chemistry and a full understanding of biological processes requires a multidisciplinary approach in which all the tools of biology, chemistry and physics are employed. An area of research becoming increasingly important is the theoretical study of biological macromolecules where numerical experimentation plays a double role of establishing a link between theoretical models and predictions and allowing a quantitative comparison between experiments and models. This workshop brought researchers working on different aspects of the development and application of quantum mechanical simulation together, assessed the state-of-the-art in the field and highlighted directions for future research. Fourteen lectures (theoretical courses and specialized seminars) deal with following themes: 1) quantum mechanical calculations of large systems, 2) ab initio molecular dynamics where the calculation of the wavefunction and hence the energy and forces on the atoms for a system at a single nuclear configuration are combined with classical molecular dynamics algorithms in order to perform simulations which use a quantum mechanical potential energy surface, 3) quantum dynamical simulations, electron and proton transfer processes in proteins and in solutions and finally, 4) free seminars that helped to enlarge the scope of the workshop. (N.T.)

  3. Hydrodenitrogenation mechanism of aromatic amines. Kinetic study and simulation

    International Nuclear Information System (INIS)

    D'Araujo, P.A.P.

    1994-06-01

    The decomposition of model molecules reacting alone or in competition was studied in a fixed bed reactor at 623 K and 7 MPa over a sulfided NiMo/Al 2 O 3 catalyst. The inhibiting effect of H 2 S and some nitrogen molecules, namely quinoline type compounds plays a major role in the transformation of anilines intermediates. On the other hand H 2 S acts as a cocatalyst and promote carbon-nitrogen bond cleavage, specially at low H 2 S partial pressure. When the H 2 S partial pressure is greater than the nitrogen compound partial pressure an inhibiting effect of H 2 S occurs and its promoting effect on carbon-nitrogen bond cleavage is cancelled. Hydrogen has a positive but moderate effect in hydrogenation steps. The mechanism of carbon-nitrogen bond scission depends on the structure of the nitrogen molecule namely on the hybridization of the carbon atom bearing the nitrogen atom. If the carbon a with respect to the nitrogen is monosubstituted the mechanism is essentially a nucleophilic substitution. When the degree of substitution increases the elimination mechanism becomes more important and the two mechanisms are in competition. With a sulfided catalyst, H 2 S from the gas phase doesn't change the importance of each mechanism, it just increases the rate of the reaction. In the presence of an oxide catalyst the contribution of the two mechanisms change. This result shows the importance of the sulphur species from the surface. Using isotopic exchange we could demonstrate that the sites able to dissociate H 2 S and H 2 are the same, and that the dissociation is of heterolytic nature. The kinetic modeling of hydrotreatment reactions using the CHEMKIN/SURFACE CHEMKIN package seems to be a convenient method in order to understand the kinetic and mechanistic phenomena in hydrodenitrogenation. The preliminary simulations in the case of 2.6 diethylaniline showed that only one type of site is not sufficient in order to account for the experimental results. Further simulations

  4. Development of a Cardiovascular Simulator for Studying Pulse Diagnosis Mechanisms

    Directory of Open Access Journals (Sweden)

    Min Jang

    2017-01-01

    Full Text Available This research was undertaken to develop a cardiovascular simulator for use in the study of pulse diagnosis. The physical (i.e., pulse wave transmission and reflection and physiological (i.e., systolic and diastolic pressure, pulse pressure, and mean pressure characteristics of the radial pulse wave were reproduced by our simulator. The simulator consisted of an arterial component and a pulse-generating component. Computer simulation was used to simplify the arterial component while maintaining the elastic modulus and artery size. To improve the reflected wave characteristics, a palmar arch was incorporated within the simulator. The simulated radial pulse showed good agreement with clinical data.

  5. Magnetohydrodynamic Simulations for Studying Solar Flare Trigger Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Muhamad, J.; Kusano, K.; Inoue, S.; Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi, 464-8601 (Japan)

    2017-06-20

    In order to understand the flare trigger mechanism, we conduct three-dimensional magnetohydrodynamic simulations using a coronal magnetic field model derived from data observed by the Hinode satellite. Several types of magnetic bipoles are imposed into the photospheric boundary of the Nonlinear Force-free Field model of Active Region (AR) NOAA 10930 on 2006 December 13, to investigate what kind of magnetic disturbance may trigger the flare. As a result, we confirm that certain small bipole fields, which emerge into the highly sheared global magnetic field of an AR, can effectively trigger a flare. These bipole fields can be classified into two groups based on their orientation relative to the polarity inversion line: the so-called opposite polarity, and reversed shear structures, as suggested by Kusano et al. We also investigate the structure of the footpoints of reconnected field lines. By comparing the distribution of reconstructed field lines and observed flare ribbons, the trigger structure of the flare can be inferred. Our simulation suggests that the data-constrained simulation, taking into account both the large-scale magnetic structure and small-scale magnetic disturbance (such as emerging fluxes), is a good way to discover a flare-producing AR, which can be applied to space weather prediction.

  6. Static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation.

    Science.gov (United States)

    Liu, Jun; Zhang, Liqun; Cao, Dapeng; Wang, Wenchuan

    2009-12-28

    Polymer nanocomposites (PNCs) often exhibit excellent mechanical, thermal, electrical and optical properties, because they combine the performances of both polymers and inorganic or organic nanoparticles. Recently, computer modeling and simulation are playing an important role in exploring the reinforcement mechanism of the PNCs and even the design of functional PNCs. This report provides an overview of the progress made in past decades in the investigation of the static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation. Emphases are placed on exploring the mechanisms at the molecular level for the dispersion of nanoparticles in nanocomposites, the effects of nanoparticles on chain conformation and glass transition temperature (T(g)), as well as viscoelastic and mechanical properties. Finally, some future challenges and opportunities in computer modeling and simulation of PNCs are addressed.

  7. Mechanical properties of silicon in subsurface damage layer from nano-grinding studied by atomistic simulation

    Science.gov (United States)

    Zhang, Zhiwei; Chen, Pei; Qin, Fei; An, Tong; Yu, Huiping

    2018-05-01

    Ultra-thin silicon wafer is highly demanded by semi-conductor industry. During wafer thinning process, the grinding technology will inevitably induce damage to the surface and subsurface of silicon wafer. To understand the mechanism of subsurface damage (SSD) layer formation and mechanical properties of SSD layer, atomistic simulation is the effective tool to perform the study, since the SSD layer is in the scale of nanometer and hardly to be separated from underneath undamaged silicon. This paper is devoted to understand the formation of SSD layer, and the difference between mechanical properties of damaged silicon in SSD layer and ideal silicon. With the atomistic model, the nano-grinding process could be performed between a silicon workpiece and diamond tool under different grinding speed. To reach a thinnest SSD layer, nano-grinding speed will be optimized in the range of 50-400 m/s. Mechanical properties of six damaged silicon workpieces with different depths of cut will be studied. The SSD layer from each workpiece will be isolated, and a quasi-static tensile test is simulated to perform on the isolated SSD layer. The obtained stress-strain curve is an illustration of overall mechanical properties of SSD layer. By comparing the stress-strain curves of damaged silicon and ideal silicon, a degradation of Young's modulus, ultimate tensile strength (UTS), and strain at fracture is observed.

  8. Mechanical properties of silicon in subsurface damage layer from nano-grinding studied by atomistic simulation

    Directory of Open Access Journals (Sweden)

    Zhiwei Zhang

    2018-05-01

    Full Text Available Ultra-thin silicon wafer is highly demanded by semi-conductor industry. During wafer thinning process, the grinding technology will inevitably induce damage to the surface and subsurface of silicon wafer. To understand the mechanism of subsurface damage (SSD layer formation and mechanical properties of SSD layer, atomistic simulation is the effective tool to perform the study, since the SSD layer is in the scale of nanometer and hardly to be separated from underneath undamaged silicon. This paper is devoted to understand the formation of SSD layer, and the difference between mechanical properties of damaged silicon in SSD layer and ideal silicon. With the atomistic model, the nano-grinding process could be performed between a silicon workpiece and diamond tool under different grinding speed. To reach a thinnest SSD layer, nano-grinding speed will be optimized in the range of 50-400 m/s. Mechanical properties of six damaged silicon workpieces with different depths of cut will be studied. The SSD layer from each workpiece will be isolated, and a quasi-static tensile test is simulated to perform on the isolated SSD layer. The obtained stress-strain curve is an illustration of overall mechanical properties of SSD layer. By comparing the stress-strain curves of damaged silicon and ideal silicon, a degradation of Young’s modulus, ultimate tensile strength (UTS, and strain at fracture is observed.

  9. Study on the mechanism and efficiency of simulated annealing using an LP optimization benchmark problem - 113

    International Nuclear Information System (INIS)

    Qianqian, Li; Xiaofeng, Jiang; Shaohong, Zhang

    2010-01-01

    Simulated Annealing Algorithm (SAA) for solving combinatorial optimization problems is a popular method for loading pattern optimization. The main purpose of this paper is to understand the underlying search mechanism of SAA and to study its efficiency. In this study, a general SAA that employs random pair exchange of fuel assemblies to search for the optimum fuel Loading Pattern (LP) is applied to an exhaustively searched LP optimization benchmark problem. All the possible LPs of the benchmark problem have been enumerated and evaluated via the use of the very fast and accurate Hybrid Harmonics and Linear Perturbation (HHLP) method, such that the mechanism of SA for LP optimization can be explicitly analyzed and its search efficiency evaluated. The generic core geometry itself dictates that only a small number LPs can be generated by performing random single pair exchanges and that the LPs are necessarily mostly similar to the initial LP. This phase space effect turns out to be the basic mechanism in SAA that can explain its efficiency and good local search ability. A measure of search efficiency is introduced which shows that the stochastic nature of SAA greatly influences the variability of its search efficiency. It is also found that using fuel assembly k-infinity distribution as a technique to filter the LPs can significantly enhance the SAA search efficiency. (authors)

  10. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    Science.gov (United States)

    El Amri, A.; Hanafi, I.; Haddou, M. E. Y.; Khamlichi, A.

    2015-12-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations.

  11. Numerical simulation of damage evolution for ductile materials and mechanical properties study

    International Nuclear Information System (INIS)

    Amri, A El; Haddou, M E Y; Hanafi, I; Khamlichi, A

    2015-01-01

    This paper presents results of a numerical modelling of ductile fracture and failure of elements made of 5182H111 aluminium alloys subjected to dynamic traction. The analysis was performed using Johnson-Cook model based on ABAQUS software. The modelling difficulty related to prediction of ductile fracture mainly arises because there is a tremendous span of length scales from the structural problem to the micro-mechanics problem governing the material separation process. This study has been used the experimental results to calibrate a simple crack propagation criteria for shell elements of which one has often been used in practical analyses. The performance of the proposed model is in general good and it is believed that the presented results and experimental-numerical calibration procedure can be of use in practical finite-element simulations. (paper)

  12. Structural mechanics simulations

    International Nuclear Information System (INIS)

    Biffle, J.H.

    1992-01-01

    Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed

  13. Carbon dioxide coronary angiography: A mechanical feasibility study with a cardiovascular simulator

    Directory of Open Access Journals (Sweden)

    Ivan Corazza

    2018-01-01

    Full Text Available The aim of this study was to carry out a bench evaluation of the biomechanical feasibility of carbon dioxide (CO2 coronary arteriography. Many patients among the aging population of individuals requiring cardiac intervention have underlying renal insufficiency making them susceptible to contrast-induced nephropathy. To include those patients, it is imperative to find an alternative and safe technique to perform coronary imaging on cardiac ischemic patients. As CO2 angiography has no renal toxicity, it may be a possible solution offering good imaging with negligible collateral effects. Theoretically, by carefully controlling the gas injection process, new automatic injectors may avoid gas reflux into the aorta and possible cerebral damage. A feasibility study is mandatory. A mechanical mock of the coronary circulation was developed and employed. CO2 was injected into the coronary ostium with 2 catheters (2F and 6F and optical images of bubbles flowing inside the vessels at different injection pressures were recorded. The gas behavior was then carefully studied for quantitative and qualitative analysis. Video recordings showed that CO2 injection at a precise pressure in the interval between the arterial dicrotic notch and the minimum diastolic value does not result in gas reflow into the aorta. Gas reflow was easier to control with the smaller catheter, but the gas bubbles were smaller with different vascular filling. Our simulation demonstrates that carefully selected injection parameters allow CO2 coronary imaging without any risk of gas reflux into the aorta.

  14. Carbon dioxide coronary angiography: A mechanical feasibility study with a cardiovascular simulator

    Science.gov (United States)

    Corazza, Ivan; Taglieri, Nevio; Pirazzini, Edoardo; Rossi, Pier Luca; Lombi, Alessandro; Scalise, Filippo; Caridi, James G.; Zannoli, Romano

    2018-01-01

    The aim of this study was to carry out a bench evaluation of the biomechanical feasibility of carbon dioxide (CO2) coronary arteriography. Many patients among the aging population of individuals requiring cardiac intervention have underlying renal insufficiency making them susceptible to contrast-induced nephropathy. To include those patients, it is imperative to find an alternative and safe technique to perform coronary imaging on cardiac ischemic patients. As CO2 angiography has no renal toxicity, it may be a possible solution offering good imaging with negligible collateral effects. Theoretically, by carefully controlling the gas injection process, new automatic injectors may avoid gas reflux into the aorta and possible cerebral damage. A feasibility study is mandatory. A mechanical mock of the coronary circulation was developed and employed. CO2 was injected into the coronary ostium with 2 catheters (2F and 6F) and optical images of bubbles flowing inside the vessels at different injection pressures were recorded. The gas behavior was then carefully studied for quantitative and qualitative analysis. Video recordings showed that CO2 injection at a precise pressure in the interval between the arterial dicrotic notch and the minimum diastolic value does not result in gas reflow into the aorta. Gas reflow was easier to control with the smaller catheter, but the gas bubbles were smaller with different vascular filling. Our simulation demonstrates that carefully selected injection parameters allow CO2 coronary imaging without any risk of gas reflux into the aorta.

  15. Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies

    International Nuclear Information System (INIS)

    Bouchet, M I De Barros; Matta, C; Le-Mogne, Th; Martin, J Michel; Zhang, Q; III, W Goddard; Kano, M; Mabuchi, Y; Ye, J

    2007-01-01

    We report a unique tribological system that produces superlubricity under boundary lubrication conditions with extremely little wear. This system is a thin coating of hydrogen-free amorphous Diamond-Like-Carbon (denoted as ta-C) at 353 K in a ta-C/ta-C friction pair lubricated with pure glycerol. To understand the mechanism of friction vanishing we performed ToF-SIMS experiments using deuterated glycerol and 13 C glycerol. This was complemented by first-principles-based computer simulations using the ReaxFF reactive force field to create an atomistic model of ta-C. These simulations show that DLC with the experimental density of 3.24 g/cc leads to an atomistic structure consisting of a 3D percolating network of tetrahedral (sp 3 ) carbons accounting for 71.5% of the total, in excellent agreement with the 70% deduced from our Auger spectroscopy and XANES experiments. The simulations show that the remaining carbons (with sp 2 and sp 1 character) attach in short chains of length 1 to 7. In sliding simulations including glycerol molecules, the surface atoms react readily to form a very smooth carbon surface containing OH-terminated groups. This agrees with our SIMS experiments. The simulations find that the OH atoms are mostly bound to surface sp 1 atoms leading to very flexible elastic response to sliding. Both simulations and experiments suggest that the origin of the superlubricity arises from the formation of this OH-terminated surface

  16. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.

    2011-01-01

    Mechanical contact is studied under dynamic development by means of a combined numerical and experimental investigation. The experiments are designed to allow dynamical development of non-planar contact areas with significant expansion in all three directions as the load is increased. Different....... The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes......, is crucial for satisfactory modelling of the resistance welding process. The resistance heating at the contact interfaces depends on both contact area and pressure, and as the contact areas develop dynamically, the presented tests are relevant for assessing the validity and accuracy of the mechanical contact...

  17. Granular dynamics, contact mechanics and particle system simulations a DEM study

    CERN Document Server

    Thornton, Colin

    2015-01-01

    This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact wit...

  18. Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study.

    Science.gov (United States)

    Colli Franzone, P; Pavarino, L F; Scacchi, S

    2017-09-01

    In this work, we investigate the influence of cardiac tissue deformation on re-entrant wave dynamics. We have developed a 3D strongly coupled electro-mechanical Bidomain model posed on an ideal monoventricular geometry, including fiber direction anisotropy and stretch-activated currents (SACs). The cardiac mechanical deformation influences the bioelectrical activity with two main mechanical feedback: (a) the geometric feedback (GEF) due to the presence of the deformation gradient in the diffusion coefficients and in a convective term depending on the deformation rate and (b) the mechano-electric feedback (MEF) due to SACs. Here, we investigate the relative contribution of these two factors with respect to scroll wave stability. We extend the previous works [Keldermann et al., Am. J. Physiol. Heart Circ. Physiol. 299, H134-H143 (2010) and Hu et al., PLoS One 8(4), e60287 (2013)] that were based on the Monodomain model and a simple non-selective linear SAC, while here we consider the full Bidomain model and both selective and non-selective components of SACs. Our simulation results show that the stability of cardiac scroll waves is influenced by MEF, which in case of low reversal potential of non-selective SACs might be responsible for the onset of ventricular fibrillation; GEF increases the scroll wave meandering but does not determine the scroll wave stability.

  19. Atomic scale numerical simulation study of elementary mechanisms of plasticity in aluminium and copper

    International Nuclear Information System (INIS)

    Aslanides, Antoine

    1998-01-01

    This study deals with elementary mechanisms of plasticity, such as the dissociation of a perfect edge dislocation into Shockley partials, the annihilation of dislocation dipoles and the interaction between a dislocation and an interface (free surface and grain boundary). Dislocation core effects are expected to influence crucially these interactions. A deeper understanding of these situations is thus achieved by resorting to an atomistic numerical approach, the application of the elastic theory of dislocations being no longer justified. Two FCC metals are considered: aluminium and copper, with respectively a small and a large dissociation width. An empirical potential for aluminium was designed to study the perfect as well as the dissociated states of the dislocation. The results are compared to the ones obtained with the interaction model for copper, for both the edge and the screw characters. The obtained core radius value ensures the continuity between the atomic and the elastic treatments. The calculations concerning edge dislocation dipole configurations show that there exists a critical distance between the glide planes of the two constitutive dislocations under which a spontaneous recombination occurs. We then compute the variation of the excess energy associated to the gradual approach of an edge dislocation toward the free surface of a crystal. An estimation of the energy required for the introduction of a dislocation in a thin film is obtained. The study of the interaction between a dislocation and a tilt grain boundary shows that the dislocation is absorbed in the interface, the stress required for its extraction being rather large. Finally, by proceeding to the simulation of a tensile test, we demonstrate that the surface steps constitute favoured sites for the nucleation of the dislocations. (author) [fr

  20. Molecular Simulation and Biochemical Studies Support an Elevator-type Transport Mechanism in EIIC.

    Science.gov (United States)

    Lee, Jumin; Ren, Zhenning; Zhou, Ming; Im, Wonpil

    2017-06-06

    Enzyme IIC (EIIC) is a membrane-embedded sugar transport protein that is part of the phosphoenolpyruvate-dependent phosphotransferases. Crystal structures of two members of the glucose EIIC superfamily, bcChbC in the inward-facing conformation and bcMalT in the outward-facing conformation, were previously solved. Comparing the two structures led us to the hypothesis that sugar translocation could be achieved by an elevator-type transport mechanism in which a transport domain binds to the substrate and, through rigid body motions, transports it across the membrane. To test this hypothesis and to obtain more accurate descriptions of alternate conformations of the two proteins, we first performed collective variable-based steered molecular dynamics (CVSMD) simulations starting with the two crystal structures embedded in model lipid bilayers, and steered their transport domain toward their own alternative conformation. Our simulations show that large rigid-body motions of the transport domain (55° in rotation and 8 Å in translation) lead to access of the substrate binding site to the alternate side of the membrane. H-bonding interactions between the sugar and the protein are intact, although the side chains of the binding-site residues were not restrained in the simulation. Pairs of residues in bcMalT that are far apart in the crystal structure become close to each other in the simulated model. Some of these pairs can be cross-linked by a mercury ion when mutated to cysteines, providing further support for the CVSMD-generated model. In addition, bcMalT binds to maltose with similar affinities before and after the cross-linking, suggesting that the binding site is preserved after the conformational change. In combination, these results support an elevator-type transport mechanism in EIIC. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Molecular dynamics simulation study of thermodynamic and mechanical properties of the Cu-Pd random alloy

    International Nuclear Information System (INIS)

    Davoodi, J.; Ahmadi, M.; Rafii-Tabar, H.

    2010-01-01

    Molecular dynamics (MD) simulations have been performed to investigate the thermodynamic and mechanical properties of Cu-x% Pd (at%) random alloy, as well as those of the Cu 3 Pd and CuPd 3 ordered alloys, in the temperature range from 200 K up to the melting point. The quantum Sutton-Chen (Q-SC) many-body interatomic potentials have been used to describe the energetics of the Cu and Pd pure metals, and a standard mixing rule has been employed to obtain the potential parameters for the mixed (alloy) states. We have computed the variation of the melting temperature with the concentration of Pd. Furthermore, the variation of the cohesive energy, the order parameter, the thermal expansion coefficient, the density, the isobaric heat capacity, the bulk modulus, and the elastic stiffness constants were also calculated at different temperatures and concentrations for these materials. The computed variations of the thermodynamic and mechanical properties with temperature are fitted to a polynomial function. Our computed results show good agreement with other computational simulations, as well as with the experimental results where they have been available.

  2. Molecular dynamics simulation study of thermodynamic and mechanical properties of the Cu-Pd random alloy

    Energy Technology Data Exchange (ETDEWEB)

    Davoodi, J., E-mail: jdavoodi@znu.ac.ir [Departmant of Physics, University of Zanjan, P.O. Box 45371-38111, Zanjan (Iran, Islamic Republic of); Ahmadi, M. [Departmant of Physics, University of Zanjan, P.O. Box 45371-38111, Zanjan (Iran, Islamic Republic of); Rafii-Tabar, H. [Department of Medical Physics and Biomedical Engineering and Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2010-06-25

    Molecular dynamics (MD) simulations have been performed to investigate the thermodynamic and mechanical properties of Cu-x% Pd (at%) random alloy, as well as those of the Cu{sub 3}Pd and CuPd{sub 3} ordered alloys, in the temperature range from 200 K up to the melting point. The quantum Sutton-Chen (Q-SC) many-body interatomic potentials have been used to describe the energetics of the Cu and Pd pure metals, and a standard mixing rule has been employed to obtain the potential parameters for the mixed (alloy) states. We have computed the variation of the melting temperature with the concentration of Pd. Furthermore, the variation of the cohesive energy, the order parameter, the thermal expansion coefficient, the density, the isobaric heat capacity, the bulk modulus, and the elastic stiffness constants were also calculated at different temperatures and concentrations for these materials. The computed variations of the thermodynamic and mechanical properties with temperature are fitted to a polynomial function. Our computed results show good agreement with other computational simulations, as well as with the experimental results where they have been available.

  3. The non-separability of ''dielectric'' and ''mechanical'' friction in molecular systems: A simulation study

    International Nuclear Information System (INIS)

    Kumar, P. V.; Maroncelli, M.

    2000-01-01

    Simulations of the time-dependent friction controlling rotational, translational, and vibrational motions of dipolar diatomic solutes in acetonitrile and methanol have been used to examine the nature of ''dielectric'' friction. The way in which electrical interactions increase the friction beyond that present in nonpolar systems is found to be rather different than what is anticipated by most theories of dielectric friction. Long-range electrostatic forces do not simply add an independent contribution to the friction due to short-ranged or ''mechanical'' sources (modeled here in terms of Lennard-Jones forces). Rather, the electrical and Lennard-Jones contributions are found to be strongly anticorrelated and not separable in any useful way. For some purposes, the mechanism by which electrical interactions increase friction is better viewed as a static electrostriction effect: electrical forces cause a subtle increase in atomic density in the solute's first solvation shell, which increases the amplitude of the force fluctuations derived from the Lennard-Jones interactions, i.e., the mechanical friction. However, electrical interactions also modify the dynamics of the friction, typically adding a long-time tail, which significantly increases the integral friction. Both of these effects must be included in a correct description of friction in the presence of polar interactions. (c) 2000 American Institute of Physics

  4. Mechanism of ultra low friction of multilayer graphene studied by coarse-grained molecular simulation.

    Science.gov (United States)

    Washizu, Hitoshi; Kajita, Seiji; Tohyama, Mamoru; Ohmori, Toshihide; Nishino, Noriaki; Teranishi, Hiroshi; Suzuki, Atsushi

    2012-01-01

    Coarse-grained Metropolis Monte Carlo Brownian Dynamics simulations are used to clarify the ultralow friction mechanism of a transfer film of multilayered graphene sheets. Each circular graphene sheet consists of 400 to 1,000,000 atoms confined between the upper and lower sliders and are allowed to move in 3 translational and 1 rotational directions due to thermal motion at 300 K. The sheet-sheet interaction energy is calculated by the sum of the pair potential of the sp2 carbons. The sliding simulations are done by moving the upper slider at a constant velocity. In the monolayer case, the friction force shows a stick-slip like curve and the average of the force is high. In the multilayer case, the friction force does not show any oscillation and the average of the force is very low. This is because the entire transfer film has an internal degree of freedom in the multilayer case and the lowest sheet of the layer is able to follow the equipotential surface of the lower slider.

  5. Simulation study of self-sustainment mechanism in reversed-field pinch configuration

    International Nuclear Information System (INIS)

    Kusano, Kanya; Sato, Tetsuya.

    1989-09-01

    3D magnetohydrodynamic (MHD) simulations are carried out in order to reveal the fundamental mechanism of the self-sustainment process in the reversed-field pinch plasma. It is confirmed that the RFP configuration is sustained in a cyclic process, where the MHD relaxation phase and the resistive diffusion phase appear cyclically and alternatively. In the MHD relaxation process, the RFP plasma approaches a Taylor's minimum energy state, but it departs from there in the diffusion process. In other words, since MHD relaxation processes periodically release excess magnetic energy accumulated in the resistive diffusion phase, RFP plasma can stay in the neighborhood of the minimum energy state. The mechanism of this cyclic process is disclosed. Namely, when at least two ideal kink (m = 1) modes becomes unstable, MHD relaxation can take place. This is because the MHD relaxation progresses through nonlinear reconnection of the m = 0 mode, which is driven by nonlinear coupling between the unstable kink modes. Therefore, self-sustainment processes can be achieved by the nonlinear effects of essentially the m = 0 and 1 modes. The quantitative dependence of the relaxation-diffusion cycle on the aspect ratio of the device is considered along with its dependence on the magnetic Reynolds, number. These results are consistent with recent experiments and indicate that a coherent oscillation, which is often observed in experiments, is necessary for self-sustainment. The influence of self-sustainment processes on particle confinement is briefly discussed. (author)

  6. A parametric study of surface roughness and bonding mechanisms of aluminum alloys with epoxies: a molecular dynamics simulation

    Science.gov (United States)

    Timilsina, Rajendra; Termaath, Stephanie

    The marine environment is highly aggressive towards most materials. However, aluminium-magnesium alloys (Al-Mg, specifically, 5xxx series) have exceptionally long service life in such aggressive marine environments. For instance, an Al-Mg alloy, AA5083, is extensively used in naval structures because of its good mechanical strength, formability, seawater corrosion resistance and weldability. However, bonding mechanisms of these alloys with epoxies in a rough surface environment are not fully understood yet. It requires a rigorous investigation at molecular or atomic levels. We performed a molecular dynamics simulation to study an adherend surface preparation and surface bonding mechanisms of Al-Mg alloy (AA5083) with different epoxies by developing several computer models. Various distributions of surface roughness are introduced in the models and performed molecular dynamics simulations. Formation of a beta phase (Al3Mg2) , microstructures, bonding energies at the interface, bonding strengths and durability are investigated. Office of Naval Research.

  7. Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2006-01-01

    We have simulated plastic deformation of a model Mg-Cu metallic glass in order to study shear banding. In uniaxial tension, we find a necking instability occurs rather than shear banding. We can force the latter to occur by deforming in plane strain, forbidding the change of length in one...... of the transverse directions. Furthermore, in most of the simulations a notch is used to initiate shear bands, which lie at a 45 degrees angle to the tensile loading direction. The shear bands are characterized by the Falk and Langer local measure of plastic deformation D-min(2), averaged here over volumes...... observe a slight decrease in density, up to 1%, within the shear band, which is consistent with notions of increased free volume or disorder within a plastically deforming amorphous material....

  8. Validity and Reliability of Orthodontic Loops between Mechanical Testing and Computer Simulation: An Finite Element Method Study

    Directory of Open Access Journals (Sweden)

    Gaurav Sepolia

    2014-01-01

    Full Text Available The magnitude and direction of orthodontic force is one of the essential concerns of orthodontic tooth movements. Excessive force may cause root resorption and mobility of the tooth, whereas low force level may results in prolonged treatment. The addition of loops allows the clinician to more accurately achieve the desired results. Aims and objectives: The purpose of the study was to evaluate the validity and reliability of orthodontic loops between mechanical testing and computer simulation. Materials and methods: Different types of loops were taken and divided into four groups: The Teardrop loop, Opus loop, L loop and T loop. These were artificially activated for multiple lengths and studied using the FEM. Results: The Teardrop loop showed the highest force level, and there is no significant difference between mechanical testing and computer simulation.

  9. A simulation tool to study high-frequency chest compression energy transfer mechanisms and waveforms for pulmonary disease applications.

    Science.gov (United States)

    O'Clock, George D; Lee, Yong Wan; Lee, Jongwon; Warwick, Warren J

    2010-07-01

    High-frequency chest compression (HFCC) can be used as a therapeutic intervention to assist in the transport and clearance of mucus and enhance water secretion for cystic fibrosis patients. An HFCC pump-vest and half chest-lung simulation, with 23 lung generations, has been developed using inertance, compliance, viscous friction relationships, and Newton's second law. The simulation has proven to be useful in studying the effects of parameter variations and nonlinear effects on HFCC system performance and pulmonary system response. The simulation also reveals HFCC waveform structure and intensity changes in various segments of the pulmonary system. The HFCC system simulation results agree with measurements, indicating that the HFCC energy transport mechanism involves a mechanically induced pulsation or vibration waveform with average velocities in the lung that are dependent upon small air displacements over large areas associated with the vest-chest interface. In combination with information from lung physiology, autopsies and a variety of other lung modeling efforts, the results of the simulation can reveal a number of therapeutic implications.

  10. External chest compressions using a mechanical feedback device : cross-over simulation study.

    Science.gov (United States)

    Skorning, M; Derwall, M; Brokmann, J C; Rörtgen, D; Bergrath, S; Pflipsen, J; Beuerlein, S; Rossaint, R; Beckers, S K

    2011-08-01

    External chest compressions (ECC) are essential components of resuscitation and are usually performed without any adjuncts in professional healthcare. Even for healthcare professionals during in-hospital and out-of-hospital resuscitation poor performance in ECC has been reported in recent years. Although several stand-alone devices have been developed none has been implemented as a standard in patient care. The aim of this study was to examine if the use of a mechanical device providing visual feedback and audible assistance during ECC improves performance of healthcare professionals following minimal and simplified instructions. In a prospective, randomized cross-over study 81 healthcare professionals performed ECC for 3 min (in the assumed setting of a secured airway) twice on a manikin (Skillreporter ResusciAnne®, with PC-Skillreporting System Version 1.3.0, Laerdal, Stavanger, Norway) in a mock cardiac arrest scenario. Group 1 (n=40) performed ECC with the device first followed by classic ECC and group 2 (n=41) in the opposite order. Minimal instructions were standardized and provided by video instruction (1 min 38 s). Endpoints were achievement of a mean compression rate between 90 and 110/min and a mean compression depth of 40-50 mm. In addition participants had to answer questionnaires about demographic data, professional experience and recent recommendations for ECC as well as their impression of the device concerning the ease of use and their personal level of confidence. Data were analyzed for group-related and inter-group differences using SAS (Version 9.1.3, SAS Institute, Cary, NC). A total of 81 healthcare professionals regularly involved in resuscitation attempts in pre-hospital or in-hospital settings took part in the study with no differences between the groups: females 35.8% (n=52), emergency medical technicians 32.1% (n=26), anesthesia nurses 32.1% (n=26), physicians (anesthesiology) 45% (n=29). In group 1 33 out of 40 (82.5%; 99.7±4

  11. Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone

    Science.gov (United States)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.; Aryayi, M.

    2015-09-01

    Molecular dynamics simulations are used to study the mechanical behavior of single-walled carbon nanotube reinforced composites. Polyethylene and polyketone are selected as the polymer matrices. The effects of nanotube atomic structure and diameter on the mechanical properties of polymer matrix nanocomposites are investigated. It is shown that although adding nanotube to the polymer matrix raises the longitudinal elastic modulus significantly, the transverse tensile and shear moduli do not experience important change. As the previous finite element models could not be used for polymer matrices with the atom types other than carbon, molecular dynamics simulations are used to propose a finite element model which can be used for any polymer matrices. It is shown that this model can predict Young’s modulus with an acceptable accuracy.

  12. Computer Simulation Study of the Stability Mechanism of Thermophile, MJ0305

    Science.gov (United States)

    Song, Hyundeok; Beck, Thomas

    2011-04-01

    Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered in a 2600m-deep Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is MJ's chloride channel protein. The structure of MJ0305 was built by homology modeling. We compared the stability of MJ0305 with mesophilic Ecoli at 300K, 330K, and 360K by computer simulation to test the effects of temperature. Our results show that high temperatures significantly affect the number of salt bridges and hydrogen bonds. High temperatures decreased the average number of hydrogen bonds for Ecoli and MJ0305. Increased salt bridges at 330K make MJ0305 more stable. Network analysis of MJ0305 showed an increase in the number of hubs at high temperatures. In contrast, the number of hubs of Ecoli was decreased at high temperatures. Calculated network entropy is proportional to the number of hubs. Increased network entropy of MJ0305 at 330K implies increased robustness.

  13. A study of the free vibration of suspension rod based on four-stage arm mechanism by using computer simulation

    Directory of Open Access Journals (Sweden)

    Melnychuk S.V.

    2016-08-01

    Full Text Available We analyze the current state of the prospects and problems of using computer technology to determine the operating parameters of movement of the vehicle. Scientific works related to the study of the properties of the vehicle smooth ride are studied. The following example shows that the modern researches of smooth ride do not pay enough attention to issues associated with the processes that occur in the suspension rod of a vehicle. Scientific works related to the choice of the optimal and simple CAD system for conducting computer simulation tests are overviewed. We developed an animating model of experimental car in SOLIDWORKS environment with the staff suspension rod and the suspension rod based on four-stage arm mechanism, which allows a wide range of tests of components of the vehicle. Methodology and hardware-software complex for testing a car are developed. A test of a vehicle of category N1 is conducted. A computer simulation of the motion of the smooth ride of the car with suspension rod based on four-stage arm mechanism is conducted. The comparative analysis of suspension rod performance based on four-stage arm mechanism is conducted.

  14. A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field

    International Nuclear Information System (INIS)

    Nayebi, Payman; Zaminpayma, Esmaeil

    2016-01-01

    In this paper, we performed molecular dynamic simulations by Reax force field to study the mechanical properties of graphene–polythiophene nanocomposite. By computing elastic constant, breaking stress, breaking strain and Young's modulus from the stress–strain curve for the nanocomposites, we investigated effects of tension orientation, graphene loading to the polymer, temperature of nanocomposite and defect of graphene on these mechanical characters. It is found that mechanical characters of tension along the zigzag orientation are higher than other directions. Also, by increasing the weight concentration of graphene in composite, the Young's modulus and breaking strain increase. Our results showed that the Young's modulus decreased with increasing temperature. Finally by applying defect on graphene structure, we found that one atom missing defect has lower Young's modulus. Also, by increasing the defects concentration, elastic modulus decreases gradually. - Highlights: • We studied mechanical properties of graphene–polythiophene nanocomposite. • Mechanical characters of tension along the zigzag are higher than other directions. • By increasing the weight concentration of graphene in composite, the Young's modulus increases. • Young's modulus decreased with increasing temperature. • By increasing the defects concentration, elastic modulus decreases gradually.

  15. Mechanical Study of Standard Six Beat Front Crawl Swimming by Using Swimming Human Simulation Model

    Science.gov (United States)

    Nakashima, Motomu

    There are many dynamical problems in front crawl swimming which have not been fully investigated by analytical approaches. Therefore, in this paper, standard six beat front crawl swimming is analyzed by the swimming human simulation model SWUM, which has been developed by the authors. First, the outline of the simulation model, the joint motion for one stroke cycle, and the specifications of calculation are described respectively. Next, contribution of each fluid force component and of each body part to the thrust, effect of the flutter kick, estimation of the active drag, roll motion, and the propulsive efficiency are discussed respectively. The following results were theoretically obtained: The thrust is produced at the upper limb by the normal drag force component. The flutter kick plays a role in raising the lower half of the body. The active drag coefficient in the simulation becomes 0.082. Buoyancy determines the primal wave of the roll motion fluctuation. The propulsive efficiency in the simulation becomes 0.2.

  16. DDOS ATTACK DETECTION SIMULATION AND HANDLING MECHANISM

    Directory of Open Access Journals (Sweden)

    Ahmad Sanmorino

    2013-11-01

    Full Text Available In this study we discuss how to handle DDoS attack that coming from the attacker by using detection method and handling mechanism. Detection perform by comparing number of packets and number of flow. Whereas handling mechanism perform by limiting or drop the packets that detected as a DDoS attack. The study begins with simulation on real network, which aims to get the real traffic data. Then, dump traffic data obtained from the simulation used for detection method on our prototype system called DASHM (DDoS Attack Simulation and Handling Mechanism. From the result of experiment that has been conducted, the proposed method successfully detect DDoS attack and handle the incoming packet sent by attacker.

  17. Mechanisms underlying the volume regulation of interstitial fluid by capillaries: a simulation study

    Directory of Open Access Journals (Sweden)

    Yukiko Himeno

    2016-03-01

    Conclusion: Mathematical analyses revealed that the system of the capillary is stable near the equilibrium point at steady state and normal physiological capillary pressure. The time course of the tissue-volume change was determined by two kinetic mechanisms: rapid fluid exchange and slow protein fluxes.

  18. Action simulation: time course and representational mechanisms

    Science.gov (United States)

    Springer, Anne; Parkinson, Jim; Prinz, Wolfgang

    2013-01-01

    The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control. PMID:23847563

  19. Mechanical tolerances study through simulations and experimental characterization for a 1000X micro-concentrator CPV module

    Science.gov (United States)

    Ritou, Arnaud; Voarino, Philippe; Goubault, Baptiste; David, Nadine; Bernardis, Sarah; Raccurt, Olivier; Baudrit, Mathieu

    2017-09-01

    Existing CPV technology markets are not compliant with a standard configuration. Concentrations vary from several suns to more than 1000 suns and the optical technology used could be very different. Nowadays, the market trends are moving toward more and more compact optical systems in order to exploit the Light Emitting Diode (LED) like approach. The aim is to increase the optical efficiency by using an ultra-short focal distance and to improve thermal management. Moreover the efficiency to weight ratio is increasing and the solar cell size becomes sub-millimetric. With these conditions, more stringent mechanical tolerances are essential to ensure an optimum optical alignment between cells and optics. A new process of micro-concentrator manufacturing is developed in this work. This process enables manufacturing and auto-alignment of Primary Optical Elements (POE) with Secondary Optical Elements (SOE) and solar cells with respect to certain mechanical tolerances. A 1000X micro-concentrator is manufactured with 0.6 x 0.6 mm² triple-junction cells and molded silicone optics. Mechanical alignment defects are studied by ray-tracing simulations and a prototype is characterized with respect to its mechanical behavior. An efficiency of 33.4% is measured with a Cell-to-Module ratio of 77.8%.

  20. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.

    Science.gov (United States)

    Liacouras, Peter C; Wayne, Jennifer S

    2007-12-01

    Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular

  1. Experimental Study and Computational Simulations of Key Pebble Bed Thermo-mechanics Issues for Design and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua; Ougouag, Abderrafi

    2014-07-08

    An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escape from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.

  2. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    Canamon, I.; Javier Elorza, F.; Ababou, R.

    2007-01-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB R , for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  3. Magnetization reversal mechanism and coercivity enhancement in three-dimensional granular Nd-Fe-B magnets studied by micromagnetic simulations

    Science.gov (United States)

    Lee, Jae-Hyeok; Choe, Jinhyeok; Hwang, Shinwon; Kim, Sang-Koog

    2017-08-01

    We studied the mechanism of magnetization reversals and coercivity enhancements in three-dimensional (3D) granular Nd-Fe-B permanent magnets using finite-element micromagnetic simulations. The magnetization reversals in the hard magnets consisting of hard-phase grains separated by relatively soft-phase grain boundaries were analyzed with reference to the simulation results for the magnetic field-dependent distributions of the local magnetizations. The saturation magnetization of the grain-boundary phase plays a crucial role in the transition between nucleation- and domain-wall-propagation-controlled reversal processes. The smaller the saturation magnetization of the grain-boundary phase is, the more preferable is the nucleation-controlled process, which results in a larger coercivity. The exchange stiffness of the grain-boundary phase determines the preferred paths of domain-wall propagations, whether inward into grains or along the grain boundaries for relatively small and large exchange stiffness, respectively. However, the exchange stiffness of the grain-boundary phase alone does not significantly contribute to coercivity enhancement in cases where the size of hard-phase grains is much greater than the exchange length. This work paves the way for the design of high-performance hard magnets of large coercivity and maximum-energy-product values.

  4. Numerical study by large-eddy simulation on effects and mechanism of air-cooling enhancing technologies

    International Nuclear Information System (INIS)

    Tamura, Akinori; Kawamura, Toshinori; Ishida, Naoyuki; Kitou, Kazuaki

    2014-01-01

    Learning from the lessons of the Fukushima Daiichi nuclear incident in which a long-term station black-out occurred, we have been developing an air-cooling system for boiling water reactors that can operate without electricity for a virtually indefinite time. Improvement in the heat transfer performance of air-cooling is key to the development of the air-cooling system. We developed air-cooling enhancing technologies for the air-cooling system by using heat transfer fins, turbulence-enhancing ribs and a micro-fabrication surface. In our previous study, the performance of these air-cooling enhancing technologies was evaluated by heat transfer tests using a single pipe of the air-cooling heat exchanger. To achieve further improvement of the heat transfer performance, it is important to understand the mechanism of the air-cooling enhancing technologies. In this study, we used the numerical analysis which is based on the filtered incompressible Navier-Stokes equation and the filtered energy equation with the large-eddy simulation in order to investigate the effects and the mechanism of the developed air-cooling enhancing technologies. We found that the analysis results agreed well with the experimental results and the empirical formula results. The heat transfer enhancement mechanism of the heat transfer fin is due to an increase in the heat transfer area. Due to a decrease in the flow velocity at the base of the fins, the increase in the Nusselt number was approximately 15% smaller than the estimated value from the area increase. In the heat transfer enhancement by the turbulence-enhancing ribs, the unsteady behavior of the large-scale vortex generated by the flow separation plays an important role. The enhancement ratio of the Nusselt number by the micro-fabrication surface can be explained by the apparent thermal conductivity. The Nusselt number was increased 4-8% by the micro-fabrication surface. The effect of the micro-fabrication surface is increased by applying

  5. The atomic-scale nucleation mechanism of NiTi metallic glasses upon isothermal annealing studied via molecular dynamics simulations.

    Science.gov (United States)

    Li, Yang; Li, JiaHao; Liu, BaiXin

    2015-10-28

    Nucleation is one of the most essential transformation paths in phase transition and exerts a significant influence on the crystallization process. Molecular dynamics simulations were performed to investigate the atomic-scale nucleation mechanisms of NiTi metallic glasses upon devitrification at various temperatures (700 K, 750 K, 800 K, and 850 K). Our simulations reveal that at 700 K and 750 K, nucleation is polynuclear with high nucleation density, while at 800 K it is mononuclear. The underlying nucleation mechanisms have been clarified, manifesting that nucleation can be induced either by the initial ordered clusters (IOCs) or by the other precursors of nuclei evolved directly from the supercooled liquid. IOCs and other precursors stem from the thermal fluctuations of bond orientational order in supercooled liquids during the quenching process and during the annealing process, respectively. The simulation results not only elucidate the underlying nucleation mechanisms varied with temperature, but also unveil the origin of nucleation. These discoveries offer new insights into the devitrification mechanism of metallic glasses.

  6. QSAR, docking, dynamic simulation and quantum mechanics studies to explore the recognition properties of cholinesterase binding sites.

    Science.gov (United States)

    Correa-Basurto, J; Bello, M; Rosales-Hernández, M C; Hernández-Rodríguez, M; Nicolás-Vázquez, I; Rojo-Domínguez, A; Trujillo-Ferrara, J G; Miranda, René; Flores-Sandoval, C A

    2014-02-25

    A set of 84 known N-aryl-monosubstituted derivatives (42 amides: series 1 and 2, and 42 imides: series 3 an 4, from maleic and succinic anhydrides, respectively) that display inhibitory activity toward both acetylcholinesterase and butyrylcholinesterase (ChEs) was considered for Quantitative structure-activity relationship (QSAR) studies. These QSAR studies employed docking data from both ChEs that were previously submitted to molecular dynamics (MD) simulations. Donepezil and galanthamine stereoisomers were included to analyze their quantum mechanics properties and for validating the docking procedure. Quantum parameters such as frontier orbital energies, dipole moment, molecular volume, atomic charges, bond length and reactivity parameters were measured, as well as partition coefficients, molar refractivity and polarizability were also analyzed. In order to evaluate the obtained equations, four compounds: 1a (4-oxo-4-(phenylamino)butanoic acid), 2a ((2Z)-4-oxo-4-(phenylamino)but-2-enoic acid), 3a (2-phenylcyclopentane-1,3-dione) and 4a (2-phenylcyclopent-4-ene-1,3-dione) were employed as independent data set, using only equations with r(m(test))²>0.5. It was observed that residual values gave low value in almost all series, excepting in series 1 for compounds 3a and 4a, and in series 4 for compounds 1a, 2a and 3a, giving a low value for 4a. Consequently, equations seems to be specific according to the structure of the evaluated compound, that means, series 1 fits better for compound 1a, series 3 or 4 fits better for compounds 3a or 4a. Same behavior was observed in the butyrylcholinesterase (BChE). Therefore, obtained equations in this QSAR study could be employed to calculate the inhibition constant (Ki) value for compounds having a similar structure as N-aryl derivatives described here. The QSAR study showed that bond lengths, molecular electrostatic potential and frontier orbital energies are important in both ChE targets. Docking studies revealed that

  7. COMPUTER SIMULATION IN MECHANICS TEACHING AND LEARNING: A CASE STUDY ON STUDENTS’ UNDERSTANDING OF FORCE AND MOTION

    Directory of Open Access Journals (Sweden)

    Dyah Permata Sari

    2015-12-01

    Full Text Available The objective of this research was to develop a force and motion simulation based on the open-source Easy Java Simulation. The process of computer simulation development was done following the ADDIE model. Based on the Analysis and Design phases, the Development phase used the open-source Easy Java Simulation (EJS to develop a computer simulation with physics content that was relevant to the subtopic. Computing and communication technology continue to make an increasing impact on all aspects of education. EJS is a powerful didactic resource that gives us the ability to focus our students’ attention on the principles of physics. Using EJS, a computer simulation was created through which the motion of a particle under the action of a specific force can be studied. The implementation phase is implemented the computer simulation in the teaching and learning process. To describe the improvements in the students’ understanding of the force and motion concepts, we used a t-test to evaluate each of the four phases. These results indicated that the use of the computer simulation could improve students’ force and motion conceptual competence regarding Newton's second law of motion.

  8. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  9. Results from an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q.S. Liu; Y. Oda; W. Wang; C.Y. Zhang

    2006-01-01

    As part of the ongoing international code comparison project DECOVALEX, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near underground waste emplacement drifts. The simulations were conducted for two generic repository types with open or back-filled repository drifts under higher and lower post-closure temperature, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses are currently being resolved. Good agreement in the basic thermal-mechanical responses was achieved for both repository types, even with some teams using relatively simplified thermal-elastic heat-conduction models that neglect complex near-field thermal-hydrological processes. The good agreement between the complex and simplified (and well-known) process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level. The research teams have now moved on to the second phase of the project, the analysis of THM-induced permanent (irreversible) changes and the impact of those changes on the fluid flow field near an emplacement drift

  10. Results From an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-01-01

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level

  11. Simulation of mechanical shock environments

    International Nuclear Information System (INIS)

    Lalanne, Christian.

    1975-07-01

    Shocks can produce a severe mechanical environment which must be taken into account when designing and developing new equipments. After some mathematical (Laplace and Fourier transforms) and mechanical recalls (response of a one degree freedom system to a sinusoidal excitation), different analysis methods are compared, these methods being the most used now to compare relative severities of tests and establish specifications. A few chapter deal with the different properties of simple, easy to produce, shock shapes. Then some now-in-use programmators or shock-machines specifications are shown. A final chapter concerns acceleration transducers [fr

  12. Numerical Simulation of Hydro-mechanical Deep Drawing — A Study on the Effect of Process Parameters on Drawability and Thickness Variation

    Science.gov (United States)

    Singh, Swadesh Kumar; Kumar, D. Ravi

    2005-08-01

    Hydro-mechanical deep drawing is a process for producing cup shaped parts with the assistance of a pressurized fluid. In the present work, numerical simulation of the conventional and counter pressure deep drawing processes has been done with the help of a finite element method based software. Simulation results were analyzed to study the improvement in drawability by using hydro-mechanical processes. The thickness variations in the drawn cups were analyzed and also the effect of counter pressure and oil gap on the thickness distribution was studied. Numerical simulations were also used for the die design, which combines both drawing and ironing processes in a single operation. This modification in the die provides high drawability, facilitates smooth material flow, gives more uniform thickness distribution and corrects the shape distortion.

  13. Thermal and Mechanical Non-Equilibrium Effects on Turbulent Flows: Fundamental Studies of Energy Exchanges Through Direct Numerical Simulations, Molecular Simulations and Experiments

    Science.gov (United States)

    2016-02-26

    photochemical TNE generation, and chemistry of non- equilibrium phenomena. We have investigated a new concept to generate turbulence using photo-initiated...AFRL-AFOSR-VA-TR-2016-0104 Thermal and mechanical non- equilibrium effects on turbulent flows:fundamental studies of energy exchanges through direct...Performance 3. DATES COVERED (From - To) 15-09-2012 to 14-11-2015 4. TITLE AND SUBTITLE Thermal and mechanical non- equilibrium effects on turbulent

  14. The Use of Model Matching Video Analysis and Computational Simulation to Study the Ankle Sprain Injury Mechanism

    Directory of Open Access Journals (Sweden)

    Daniel Tik-Pui Fong

    2012-10-01

    Full Text Available Lateral ankle sprains continue to be the most common injury sustained by athletes and create an annual healthcare burden of over $4 billion in the U.S. alone. Foot inversion is suspected in these cases, but the mechanism of injury remains unclear. While kinematics and kinetics data are crucial in understanding the injury mechanisms, ligament behaviour measures – such as ligament strains – are viewed as the potential causal factors of ankle sprains. This review article demonstrates a novel methodology that integrates model matching video analyses with computational simulations in order to investigate injury-producing events for a better understanding of such injury mechanisms. In particular, ankle joint kinematics from actual injury incidents were deduced by model matching video analyses and then input into a generic computational model based on rigid bone surfaces and deformable ligaments of the ankle so as to investigate the ligament strains that accompany these sprain injuries. These techniques may have the potential for guiding ankle sprain prevention strategies and targeted rehabilitation therapies.

  15. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    Science.gov (United States)

    Barbault, Florent; Maurel, François

    2015-10-01

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  16. Poor chest compression quality with mechanical compressions in simulated cardiopulmonary resuscitation: a randomized, cross-over manikin study.

    Science.gov (United States)

    Blomberg, Hans; Gedeborg, Rolf; Berglund, Lars; Karlsten, Rolf; Johansson, Jakob

    2011-10-01

    Mechanical chest compression devices are being implemented as an aid in cardiopulmonary resuscitation (CPR), despite lack of evidence of improved outcome. This manikin study evaluates the CPR-performance of ambulance crews, who had a mechanical chest compression device implemented in their routine clinical practice 8 months previously. The objectives were to evaluate time to first defibrillation, no-flow time, and estimate the quality of compressions. The performance of 21 ambulance crews (ambulance nurse and emergency medical technician) with the authorization to perform advanced life support was studied in an experimental, randomized cross-over study in a manikin setup. Each crew performed two identical CPR scenarios, with and without the aid of the mechanical compression device LUCAS. A computerized manikin was used for data sampling. There were no substantial differences in time to first defibrillation or no-flow time until first defibrillation. However, the fraction of adequate compressions in relation to total compressions was remarkably low in LUCAS-CPR (58%) compared to manual CPR (88%) (95% confidence interval for the difference: 13-50%). Only 12 out of the 21 ambulance crews (57%) applied the mandatory stabilization strap on the LUCAS device. The use of a mechanical compression aid was not associated with substantial differences in time to first defibrillation or no-flow time in the early phase of CPR. However, constant but poor chest compressions due to failure in recognizing and correcting a malposition of the device may counteract a potential benefit of mechanical chest compressions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  18. Study of Propagation Mechanisms in Dynamical Railway Environment to Reduce Computation Time of 3D Ray Tracing Simulator

    Directory of Open Access Journals (Sweden)

    Siham Hairoud

    2013-01-01

    Full Text Available In order to better assess the behaviours of the propagation channel in a confined environment such as a railway tunnel for subway application, we present an optimization method for a deterministic channel simulator based on 3D ray tracing associated to the geometrical optics laws and the uniform theory of diffraction. This tool requires a detailed description of the environment. Thus, the complexity of this model is directly bound to the complexity of the environment and specifically to the number of facets that compose it. In this paper, we propose an algorithm to identify facets that have no significant impact on the wave propagation. This allows us to simplify the description of the geometry of the modelled environment by removing them and by this way, to reduce the complexity of our model and therefore its computation time. A comparative study between full and simplified environment is led and shows the impact of this proposed method on the characteristic parameters of the propagation channel. Thus computation time obtained from the simplified environment is 6 times lower than the one of the full model without significant degradation of simulation accuracy.

  19. Effects of Geomechanical Mechanism on the Gas Production Behavior: A Simulation Study of Class-3 Type Four-Way-Closure Ridge Hydrate Deposit Offshore Southwestern Taiwan

    Science.gov (United States)

    Wu, Cheng-Yueh; Chiu, Yung-Cheng; Huang, Yi-Jyun; Hsieh, Bieng-Zih

    2017-04-01

    The future energy police of Taiwan will heavily rely on the clean energy, including renewable energy and low-carbon energy, to meet the target of mitigating CO2 emission. In addition to developing the renewable energies like solar and wind resources, Taiwan will increase the natural gas consumption to obtain enough electrical power with low-carbon emission. The vast resources of gas hydrates recognized in southwestern offshore Taiwan makes a great opportunity for Taiwan to have own energy resources in the future. Therefore, Taiwan put significant efforts on the evaluation of gas hydrate reserves recently. Production behavior of natural gas dissociated from gas hydrate deposits is an important issue to the hydrate reserves evaluation. The depressurization method is a useful engineering recovery method for gas production from a class-3 type hydrate deposit. The dissociation efficiency will be affected by the pressure drawdown disturbance. However, when the pore pressure of hydrate deposits is depressurized for gas production, the rock matrix will surfer more stresses and the formation deformation might be occurred. The purpose of this study was to investigate the effects of geomechanical mechanism on the gas production from a class-3 hydrate deposit using depressurization method. The case of a class-3 type hydrate deposit of Four-Way-Closure Ridge was studied. In this study a reservoir simulator, STARS, was used. STARS is a multiphase flow, heat transfer, geo-chemical and geo-mechanical mechanisms coupling simulator which is capable to simulate the dissociation/reformation of gas hydrate and the deformation of hydrate reservoirs and overburdens. The simulating ability of STARTS simulator was validated by duplicating the hydrate comparison projects of National Energy Technology Lab. The study target, Four-Way-Closure (FWC) Ridge hydrate deposit, was discovered by the bottom simulating reflectors (BSRs). The geological parameters were collected from the geological and

  20. Study into the mechanisms of hydrogen contamination of niobium as a material for superconducting radiofrequency cavities. Molecular dynamics studies for simulation of the hydrogen diffusion processes

    International Nuclear Information System (INIS)

    Roux, B.

    1993-01-01

    Superconducting radiofrequency cavities were chosen for most of the future particle accelerators. In the case of pure niobium cavities, several laboratories have observed degradation of superconducting properties related to the conditions of the cooling down process. This effect seems to stem from hydrogen contamination which occurs during surface treatments. With the aim to study the influence of different surface treatments on the hydrogen contamination depth concentration profiling of the near surface region (the first 200 nm) was first carried out by the classical ERDA technique with 30 nm depth resolution. In order to better localize hydrogen, the initial particle selecting device (Teflon foil) was replaced by an electromagnetic (ExB) filter improving then the depth resolution by a factor three. This study reveals an hydrogen segregation at the niobium surface. Such a result is in contradiction with the relative high experimental value of the hydrogen diffusion coefficient given by the literature. To understand the trapping mechanism of hydrogen, a simulation by molecular dynamics of this impurity diffusion process was performed. This approach requires the knowledge of the interatomic potential. The potential parameters were fitted with static and dynamic tests. Nb-Nb interaction is based on many body potential. Nb-H is represented by two body potential. The Arrhenius diagram of the diffusion coefficient achieved by dynamic for a single crystal provides too small activation energy in comparison with experimental results. However, in presence of defects, a simulation proves a large increase of these values. It is only around 1000 K that the diffusion of hydrogen is not altered by defects. This conclusion confirms the experimental results concerning a good characteristic of superconducting cavities after thermal treatments. (orig.)

  1. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    Science.gov (United States)

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  2. Short structured feedback training is equivalent to a mechanical feedback device in two-rescuer BLS: a randomised simulation study.

    Science.gov (United States)

    Pavo, Noemi; Goliasch, Georg; Nierscher, Franz Josef; Stumpf, Dominik; Haugk, Moritz; Breckwoldt, Jan; Ruetzler, Kurt; Greif, Robert; Fischer, Henrik

    2016-05-13

    Resuscitation guidelines encourage the use of cardiopulmonary resuscitation (CPR) feedback devices implying better outcomes after sudden cardiac arrest. Whether effective continuous feedback could also be given verbally by a second rescuer ("human feedback") has not been investigated yet. We, therefore, compared the effect of human feedback to a CPR feedback device. In an open, prospective, randomised, controlled trial, we compared CPR performance of three groups of medical students in a two-rescuer scenario. Group "sCPR" was taught standard BLS without continuous feedback, serving as control. Group "mfCPR" was taught BLS with mechanical audio-visual feedback (HeartStart MRx with Q-CPR-Technology™). Group "hfCPR" was taught standard BLS with human feedback. Afterwards, 326 medical students performed two-rescuer BLS on a manikin for 8 min. CPR quality parameters, such as "effective compression ratio" (ECR: compressions with correct hand position, depth and complete decompression multiplied by flow-time fraction), and other compression, ventilation and time-related parameters were assessed for all groups. ECR was comparable between the hfCPR and the mfCPR group (0.33 vs. 0.35, p = 0.435). The hfCPR group needed less time until starting chest compressions (2 vs. 8 s, p feedback or by using a mechanical audio-visual feedback device was similar. Further studies should investigate whether extended human feedback training could further increase CPR quality at comparable costs for training.

  3. Molecular models of zinc phthalocyanines: semi-empirical molecular orbital computations and physicochemical properties studied by molecular mechanics simulations

    International Nuclear Information System (INIS)

    Gantchev, Tsvetan G.; van Lier, Johan E.; Hunting, Darel J.

    2005-01-01

    To build 3D-molecular models of Zinc-phthalocyanines (ZnPc) and to study their diverse chemical and photosensitization properties, we performed quantum mechanical molecular orbital (MO) semi-empirical (AM1) computations of the ground, excited singlet and triplet states as well as free radical (ionic) species. RHF and UHF (open shell) geometry optimizations led to near-perfect symmetrical ZnPc. Predicted ionization potentials (IP), electron affinities (EA) and lowest electronic transitions of ZnPc are in good agreement with the published experimental and theoretical data. The computation-derived D 4h /D 2h -symmetry 3D-structures of ground and excited states and free radicals of ZnPc, together with the frontier orbital energies and Mulliken electron population analysis enabled us to build robust molecular models. These models were used to predict important chemical-reactivity entities such as global electronegativity (χ), hardness (η) and local softness based on Fukui-functions analysis. Examples of molecular mechanics (MM) applications of the 3D-molecular models are presented as approaches to evaluate solvation free energy (ΔG 0 ) solv and to estimate ground- and excited- state oxidation/reduction potentials as well as intermolecular interactions and stability of ground and excited state dimers (exciplexes) and radical ion-pairs

  4. Development plates for stable internal fixation: Study of mechanical resistance in simulated fractures of the mandibular condyle.

    Science.gov (United States)

    Celegatti Filho, Tóride Sebastião; Rodrigues, Danillo Costa; Lauria, Andrezza; Moreira, Roger William Fernandes; Consani, Simonides

    2015-01-01

    To develop Y-shaped plates with different thicknesses to be used in simulated fractures of the mandibular condyle. Ten plates were developed in Y shape, containing eight holes, and 30 synthetic polyurethane mandible replicas were developed for the study. The load test was performed on an Instron Model 4411 universal testing machine, applying load in the mediolateral and anterior-posterior positions on the head of the condyle. Two-way ANOVA with Tukey testing with a 5% significance level was used. It was observed that when the load was applied in the medial-lateral plate of greater thickness (1.5 mm), it gave the highest strength, while in the anteroposterior direction, the plate with the highest resistance was of the lesser thickness (0.6 mm). A plate with a thickness of 1.5 mm was the one with the highest average value for all displacements. In the anteroposterior direction, the highest values of resistance were seen in the displacement of 15 mm. After comparing the values of the biomechanical testing found in the scientific literature, it is suggested that the use of Y plates are suitable for use in subcondylar fractures within the limitations of the study. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Theoretical studies on the selective mechanisms of GSK3β and CDK2 by molecular dynamics simulations and free energy calculations.

    Science.gov (United States)

    Zhao, Sufang; Zhu, Jingyu; Xu, Lei; Jin, Jian

    2017-06-01

    Glycogen synthase kinase 3 (GSK3) is a serine/threonine protein kinase which is widely involved in cell signaling and controls a broad number of cellular functions. GSK3 contains α and β isoforms, and GSK3β has received more attention and becomes an attractive drug target for the treatment of several diseases. The binding pocket of cyclin-dependent kinase 2 (CDK2) shares high sequence identity to that of GSK3β, and therefore, the design of highly selective inhibitors toward GSK3β remains a big challenge. In this study, a computational strategy, which combines molecular docking, molecular dynamics simulations, free energy calculations, and umbrella sampling simulations, was employed to explore the binding mechanisms of two selective inhibitors to GSK3β and CDK2. The simulation results highlighted the key residues critical for GSK3β selectivity. It was observed that although GSK3β and CDK2 share the conserved ATP-binding pockets, some different residues have significant contributions to protein selectivity. This study provides valuable information for understanding the GSK3β-selective binding mechanisms and the rational design of selective GSK3β inhibitors. © 2016 John Wiley & Sons A/S.

  6. Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull-push mechanism

    Science.gov (United States)

    Jiang, Qi; Yang, Meng

    2013-11-01

    A three-axis fiber Bragg grating accelerometer, which has uniform sensitivities to three axes, has been developed for seismic application. This paper presents the design, simulation and calibration of the three-axis accelerometer. A series of experiments were performed to measure harmonic vibration and shock vibration. The precise acceleration was measured by a PZT accelerometer which provided high sensitivity. The fully described dynamic sensitivity of three-axis accelerometers represented by a 3-by-3 matrix is given. The results indicate that the accelerometer has a sensitivity of 0.068 V g-1 in a measured full scale of ±2.5 m s-2. The cross-axis sensitivity was measured as -75.5 dB, -75.5 dB and -78.2 dB, respectively.

  7. Simulation and experimental study of a three-axis fiber Bragg grating accelerometer based on the pull–push mechanism

    International Nuclear Information System (INIS)

    Jiang, Qi; Yang, Meng

    2013-01-01

    A three-axis fiber Bragg grating accelerometer, which has uniform sensitivities to three axes, has been developed for seismic application. This paper presents the design, simulation and calibration of the three-axis accelerometer. A series of experiments were performed to measure harmonic vibration and shock vibration. The precise acceleration was measured by a PZT accelerometer which provided high sensitivity. The fully described dynamic sensitivity of three-axis accelerometers represented by a 3-by-3 matrix is given. The results indicate that the accelerometer has a sensitivity of 0.068 V g −1 in a measured full scale of ±2.5 m s −2 . The cross-axis sensitivity was measured as −75.5 dB, −75.5 dB and −78.2 dB, respectively. (paper)

  8. Molecular Dynamics Simulation Study on the Binding and Stabilization Mechanism of Antiprion Compounds to the "Hot Spot" Region of PrPC.

    Science.gov (United States)

    Zhou, Shuangyan; Liu, Xuewei; An, Xiaoli; Yao, Xiaojun; Liu, Huanxiang

    2017-11-15

    Structural transitions in the prion protein from the cellular form, PrP C , into the pathological isoform, PrP Sc , are regarded as the main cause of the transmissible spongiform encephalopathies, also known as prion diseases. Hence, discovering and designing effective antiprion drugs that can inhibit PrP C to PrP Sc conversion is regarded as a promising way to cure prion disease. Among several strategies to inhibit PrP C to PrP Sc conversion, stabilizing the native PrP C via specific binding is believed to be one of the valuable approaches and many antiprion compounds have been reported based on this strategy. However, the detailed mechanism to stabilize the native PrP C is still unknown. As such, to unravel the stabilizing mechanism of these compounds to PrP C is valuable for the further design and discovery of antiprion compounds. In this study, by molecular dynamics simulation method, we investigated the stabilizing mechanism of several antiprion compounds on PrP C that were previously reported to have specific binding to the "hot spot" region of PrP C . Our simulation results reveal that the stabilization mechanism of specific binding compounds can be summarized as (I) to stabilize both the flexible C-terminal of α2 and the hydrophobic core, such as BMD42-29 and GN8; (II) to stabilize the hydrophobic core, such as J1 and GJP49; (III) to stabilize the overall structure of PrP C by high binding affinity, as NPR-056. In addition, as indicated by the H-bond analysis and decomposition analysis of binding free energy, the residues N159 and Q160 play an important role in the specific binding of the studied compounds and all these compounds interact with PrP C in a similar way with the key interacting residues L130 in the β1 strand, P158, N159, Q160, etc. in the α1-β2 loop, and H187, T190, T191, etc. in the α2 C-terminus although the compounds have large structural difference. As a whole, our obtained results can provide some insights into the specific binding

  9. Simulation based engineering in solid mechanics

    CERN Document Server

    Rao, J S

    2017-01-01

    This book begins with a brief historical perspective of the advent of rotating machinery in 20th century Solid Mechanics and the development of the discipline of the Strength of Materials. High Performance Computing (HPC) and Simulation Based Engineering Science (SBES) have gradually replaced the conventional approach in Design bringing science directly into engineering without approximations. A recap of the required mathematical principles is given. The science of deformation, strain and stress at a point under the application of external traction loads is next presented. Only one-dimensional structures classified as Bars (axial loads), Rods (twisting loads) and Beams (bending loads) are considered in this book. The principal stresses and strains and von Mises stress and strain that used in design of structures are next presented. Lagrangian solution was used to derive the governing differential equations consistent with assumed deformation field and solution for deformations, strains and stresses were obtai...

  10. Quantum Mechanics/Molecular Mechanics Simulations Identify the Ring-Opening Mechanism of Creatininase.

    Science.gov (United States)

    Jitonnom, Jitrayut; Mujika, Jon I; van der Kamp, Marc W; Mulholland, Adrian J

    2017-12-05

    Creatininase catalyzes the conversion of creatinine (a biosensor for kidney function) to creatine via a two-step mechanism: water addition followed by ring opening. Water addition is common to other known cyclic amidohydrolases, but the precise mechanism for ring opening is still under debate. The proton donor in this step is either His178 or a water molecule bound to one of the metal ions, and the roles of His178 and Glu122 are unclear. Here, the two possible reaction pathways have been fully examined by means of combined quantum mechanics/molecular mechanics simulations at the SCC-DFTB/CHARMM22 level of theory. The results indicate that His178 is the main catalytic residue for the whole reaction and explain its role as proton shuttle during the ring-opening step. In the first step, His178 provides electrostatic stabilization to the gem-diolate tetrahedral intermediate. In the second step, His178 abstracts the hydroxyl proton of the intermediate and delivers it to the cyclic amide nitrogen, leading to ring opening. The latter is the rate-limiting step with a free energy barrier of 18.5 kcal/mol, in agreement with the experiment. We find that Glu122 must be protonated during the enzyme reaction, so that it can form a stable hydrogen bond with its neighboring water molecule. Simulations of the E122Q mutant showed that this replacement disrupts the H-bond network formed by three conserved residues (Glu34, Ser78, and Glu122) and water, increasing the energy barrier. Our computational studies provide a comprehensive explanation for previous structural and kinetic observations, including why the H178A mutation causes a complete loss of activity but the E122Q mutation does not.

  11. The mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase studied by molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Mykuliak V. V.

    2014-03-01

    Full Text Available Aim. To study the mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase (MtTyrRS. Methods. Complexes of MtTyrRS with tyrosine, ATP and tyrosyl adenylate were constructed by superposition of the MtTyrRS structure and crystallographic structures of bacterial TyrRS. All complexes of MtTyrRS with substrates were investigated by molecular dynamics (MD simulations in solution. Results. It was shown the formation of network of hydrogen bonds between substrates and the MtTyrRS active center, which were stable in the course of MD simulations. ATP binds in the active site both by hydrogen bonds and via electrostatic interactions with Lys231 and Lys234 of catalytic KFGKS motif. Conclusions. The L-tyrosine binding site in the enzyme active site is negatively charged, whereas the ATP binding site contains positive Lys231 and Lys234 residues of catalytic KFGKS motif. The occupancy of H-bonds between substrates and the enzyme evidences a significant conformational mobility of the active site.

  12. A multiscale quantum mechanics/electromagnetics method for device simulations.

    Science.gov (United States)

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  13. Comparative study on deformation and mechanical behavior of corroded pipe: Part I–Numerical simulation and experimental investigation under impact load

    Directory of Open Access Journals (Sweden)

    Dong-Man Ryu

    2017-09-01

    Full Text Available Experiments and a numerical simulation were conducted to investigate the deformation and impact behavior of a corroded pipe, as corrosion, fatigue, and collision phenomena frequently occur in subsea pipelines. This study focuses on the deformation of the corrosion region and the variation of the geometry of the pipe under impact loading. The experiments for the impact behavior of the corroded pipe were performed using an impact test apparatus to validate the results of the simulation. In addition, during the simulation, material tests were performed, and the results were applied to the simulation. The ABAQUS explicit finite element analysis program was used to perform numerical simulations for the parametric study, as well as experiment scenarios, to investigate the effects of defects under impact loading. In addition, the modified ASME B31.8 code formula was proposed to define the damage range for the dented pipe.

  14. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study.

    Science.gov (United States)

    Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-04-14

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.

  15. Application of Modern Simulation Technology in Mechanical Outstanding Engineer Training

    Directory of Open Access Journals (Sweden)

    Gongfa Li

    2014-03-01

    Full Text Available This text has described the relationship between outstanding engineer training and modern simulation technology, have recommended the characteristics of mechanical outstanding engineer in detail. Aiming at the importance of the teaching practice link to course of theory of mechanics, mechanical design and mechanical signal analysis, have expounded the function of modern simulation technology in the mechanical outstanding engineer training, especially on teaching practice in the theory of mechanics, mechanical design and mechanical signal analysis. It has the advantages of economizing the teaching cost, overcoming the hardware constrains, model prediction, promoting student's innovation and manipulative ability, so can popularize and develop in a more cost-effective manner in the university.

  16. Finite element simulations of two rock mechanics tests

    International Nuclear Information System (INIS)

    Dahlke, H.J.; Lott, S.A.

    1986-04-01

    Rock mechanics tests are performed to determine in situ stress conditions and material properties of an underground rock mass. To design stable underground facilities for the permanent storage of high-level nuclear waste, determination of these properties and conditions is a necessary first step. However, before a test and its associated equipment can be designed, the engineer needs to know the range of expected values to be measured by the instruments. Sensitivity studies by means of finite element simulations are employed in this preliminary design phase to evaluate the pertinent parameters and their effects on the proposed measurements. The simulations, of two typical rock mechanics tests, the plate bearing test and the flat-jack test, by means of the finite element analysis, are described. The plate bearing test is used to determine the rock mass deformation modulus. The flat-jack test is used to determine the in situ stress conditions of the host rock. For the plate bearing test, two finite element models are used to simulate the classic problem of a load on an elastic half space and the actual problem of a plate bearing test in an underground tunnel of circular cross section. For the flat-jack simulation, a single finite element model is used to simulate both horizontal and vertical slots. Results will be compared to closed-form solutions available in the literature

  17. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-09-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.

  18. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    International Nuclear Information System (INIS)

    Swygenhoven, H. van; Caro, A.

    1997-01-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young's modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs

  19. Quantum Mechanical Balance Equation Approach to Semiconductor Device Simulation

    National Research Council Canada - National Science Library

    Cui, Long

    1997-01-01

    This research project was focused on the development of a quantum mechanical balance equation based device simulator that can model advanced, compound, submicron devices, under all transport conditions...

  20. Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2017-12-01

    Full Text Available Almost 98% of methane hydrate is stored in the seawater environment, the study of microscopic mechanism for methane hydrate dissociation on the sea floor is of great significance to the development of hydrate production, involving a three-phase coexistence system of seawater (3.5% NaCl + hydrate + methane gas. The molecular dynamics method is used to simulate the hydrate dissociation process. The dissociation of hydrate system depends on diffusion of methane molecules from partially open cages and a layer by layer breakdown of the closed cages. The presence of liquid or gas phases adjacent to the hydrate has an effect on the rate of hydrate dissociation. At the beginning of dissociation process, hydrate layers that are in contact with liquid phase dissociated faster than layers adjacent to the gas phase. As the dissociation continues, the thickness of water film near the hydrate-liquid interface became larger than the hydrate-gas interface giving more resistance to the hydrate dissociation. Dissociation rate of hydrate layers adjacent to gas phase gradually exceeds the dissociation rate of layers adjacent to the liquid phase. The difficulty of methane diffusion in the hydrate-liquid side also brings about change in dissociation rate.

  1. The folding mechanism and key metastable state identification of the PrP127-147 monomer studied by molecular dynamics simulations and Markov state model analysis.

    Science.gov (United States)

    Zhou, Shuangyan; Wang, Qianqian; Wang, Yuwei; Yao, Xiaojun; Han, Wei; Liu, Huanxiang

    2017-05-10

    The structural transition of prion proteins from a native α-helix (PrP C ) to a misfolded β-sheet-rich conformation (PrP Sc ) is believed to be the main cause of a number of prion diseases in humans and animals. Understanding the molecular basis of misfolding and aggregation of prion proteins will be valuable for unveiling the etiology of prion diseases. However, due to the limitation of conventional experimental techniques and the heterogeneous property of oligomers, little is known about the molecular architecture of misfolded PrP Sc and the mechanism of structural transition from PrP C to PrP Sc . The prion fragment 127-147 (PrP127-147) has been reported to be a critical region for PrP Sc formation in Gerstmann-Straussler-Scheinker (GSS) syndrome and thus has been used as a model for the study of prion aggregation. In the present study, we employ molecular dynamics (MD) simulation techniques to study the conformational change of this fragment that could be relevant to the PrP C -PrP Sc transition. Employing extensive replica exchange molecular dynamics (REMD) and conventional MD simulations, we sample a huge number of conformations of PrP127-147. Using the Markov state model (MSM), we identify the metastable conformational states of this fragment and the kinetic network of transitions between the states. The resulting MSM reveals that disordered random-coiled conformations are the dominant structures. A key metastable folded state with typical extended β-sheet structures is identified with Pro137 being located in a turn region, consistent with a previous experimental report. Conformational analysis reveals that intrapeptide hydrophobic interaction and two key residue interactions, including Arg136-His140 and Pro137-His140, contribute a lot to the formation of ordered extended β-sheet states. However, network pathway analysis from the most populated disordered state indicates that the formation of extended β-sheet states is quite slow (at the millisecond

  2. Simulated airplane headache: a proxy towards identification of underlying mechanisms.

    Science.gov (United States)

    Bui, Sebastian Bao Dinh; Petersen, Torben; Poulsen, Jeppe Nørgaard; Gazerani, Parisa

    2017-12-01

    Airplane Headache (AH) occurs during flights and often appears as an intense, short lasting headache during take-off or landing. Reports are limited on pathological mechanisms underlying the occurrence of this headache. Proper diagnosis and treatments would benefit from identification of potential pathways involved in AH pathogenesis. This study aimed at providing a simulated airplane headache condition as a proxy towards identification of its underlying mechanisms. Fourteen participants including 7 volunteers suffering from AH and 7 healthy matched controls were recruited after meeting the diagnostic and safety criteria based on an approved study protocol. Simulation of AH was achieved by entering a pressure chamber with similar characteristics of an airplane flight. Selected potential biomarkers including salivary prostaglandin E 2 (PGE 2 ), cortisol, facial thermo-images, blood pressure, pulse, and saturation pulse oxygen (SPO) were defined and values were collected before, during and after flight simulation in the pressure chamber. Salivary samples were analyzed with ELISA techniques, while data analysis and statistical tests were handled with SPSS version 22.0. All participants in the AH-group experienced a headache attack similar to AH experience during flight. The non-AH-group did not experience any headaches. Our data showed that the values for PGE 2 , cortisol and SPO were significantly different in the AH-group in comparison with the non-AH-group during the flight simulation in the pressure chamber. The pressure chamber proved useful not only to provoke AH-like attack but also to study potential biomarkers for AH in this study. PGE 2 , and cortisol levels together with SPO presented dysregulation during the simulated AH-attack in affected individuals compared with healthy controls. Based on these findings we propose to use pressure chamber as a model to induce AH, and thus assess new potential biomarkers for AH in future studies.

  3. Interactive Simulations to Support Quantum Mechanics Instruction for Chemistry Students

    Science.gov (United States)

    Kohnle, Antje; Benfield, Cory; Hahner, Georg; Paetkau, Mark

    2017-01-01

    The QuVis Quantum Mechanics Visualization Project provides freely available research-based interactive simulations with accompanying activities for the teaching and learning of quantum mechanics across a wide range of topics and levels. This article gives an overview of some of the simulations and describes their use in an introductory physical…

  4. Handsheet formation and mechanical testing via fiber-level simulations

    Science.gov (United States)

    Leonard H. Switzer; Daniel J. Klingenberg; C. Tim Scott

    2004-01-01

    A fiber model and simulation method are employed to investigate the mechanical response of planar fiber networks subjected to elongational deformation. The simulated responses agree qualitatively with numerous experimental observations. suggesting that such simulation methods may be useful for probing the relationships between fiber properties and interactions and the...

  5. Mechanical System Simulations for Seismic Signature Modeling

    National Research Council Canada - National Science Library

    Lacombe, J

    2001-01-01

    .... Results for an M1A1 and T72 are discussed. By analyzing the simulated seismic signature data in conjunction with the spectral features associated with the vibrations of specific vehicle sprung and un-sprung components we are able to make...

  6. Simulation of leakage through mechanical sealing device

    Science.gov (United States)

    Tikhomorov, V. P.; Gorlenko, O. A.; Izmerov, M. A.

    2018-03-01

    The procedure of mathematical modeling of leakage through the mechanical seal taking into account waviness and roughness is considered. The percolation process is represented as the sum of leakages through a gap between wavy surfaces and percolation through gaps formed by fractal roughness, i.e. the total leakage is determined by the slot model and filtration leakage. Dependences of leaks on the contact pressure of corrugated and rough surfaces of the mechanical seal elements are presented.

  7. Interactive simulations as teaching tools for engineering mechanics courses

    Science.gov (United States)

    Carbonell, Victoria; Romero, Carlos; Martínez, Elvira; Flórez, Mercedes

    2013-07-01

    This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills.

  8. Interactive simulations as teaching tools for engineering mechanics courses

    International Nuclear Information System (INIS)

    Carbonell, Victoria; Martínez, Elvira; Flórez, Mercedes; Romero, Carlos

    2013-01-01

    This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills. (paper)

  9. Crack growth and fracture toughness of amorphous Li-Si anodes: Mechanisms and role of charging/discharging studied by atomistic simulations

    Science.gov (United States)

    Khosrownejad, S. M.; Curtin, W. A.

    2017-10-01

    Fracture is the main cause of degradation and capacity fading in lithiated silicon during cycling. Experiments on the fracture of lithiated silicon show conflicting results, and so mechanistic models can help interpret experiments and guide component design. Here, large-scale K-controlled atomistic simulations of crack propagation (R-curve KI vs. Δa) are performed at LixSi compositions x = 0.5 , 1.0 , 1.5 for as-quenched/relaxed samples and at x = 0.5 , 1.0 for samples created by discharging from higher Li compositions. In all cases, the fracture mechanism is void nucleation, growth, and coalescence. In as-quenched materials, with increasing Li content the plastic flow stress and elastic moduli decrease but void nucleation and growth happen at smaller stress, so that the initial fracture toughness KIc ≈ 1.0 MPa√{ m} decreases slightly but the initial fracture energy JIc ≈ 10.5J/m2 is similar. After 10 nm of crack growth, the fracture toughnesses increase and become similar at KIc ≈ 1.9 MPa√{ m} across all compositions. Plane-strain equi-biaxial expansion simulations of uncracked samples provide complementary information on void nucleation and growth. The simulations are interpreted within the framework of Gurson model for ductile fracture, which predicts JIc = ασy D where α ≃ 1 and D is the void spacing, and good agreement is found. In spite of flowing plastically, the fracture toughness of LixSi is low because voids nucleate within nano-sized distances ahead of the crack (D ≈ 1nm). Scaling simulation results to experimental conditions, reasonable agreement with experimentally-estimated fracture toughnesses is obtained. The discharging process facilitates void nucleation but decreases the flow stress (as shown previously), leading to enhanced fracture toughness at all levels of crack growth. Therefore, the fracture behavior of lithiated silicon at a given composition is not a material property but instead depends on the history of charging

  10. Modelling and Simulation of Volume Controlled Mechanical Ventilation System

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Volume controlled mechanical ventilation system is a typical time-delay system, which is applied to ventilate patients who cannot breathe adequately on their own. To illustrate the influences of key parameters of the ventilator on the dynamics of the ventilated respiratory system, this paper firstly derived a new mathematical model of the ventilation system; secondly, simulation and experimental results are compared to verify the mathematical model; lastly, the influences of key parameters of ventilator on the dynamics of the ventilated respiratory system are carried out. This study can be helpful in the VCV ventilation treatment and respiratory diagnostics.

  11. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    Science.gov (United States)

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  12. Provably unbounded memory advantage in stochastic simulation using quantum mechanics

    Science.gov (United States)

    Garner, Andrew J. P.; Liu, Qing; Thompson, Jayne; Vedral, Vlatko; Gu, mile

    2017-10-01

    Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off between the precision to which these quantities are approximated, and the memory required to store them. The statistical accuracy of the simulation is thus generally limited by the internal memory available to the simulator. Here, using tools from computational mechanics, we show that quantum processors with a fixed finite memory can simulate stochastic processes of real variables to arbitrarily high precision. This demonstrates a provable, unbounded memory advantage that a quantum simulator can exhibit over its best possible classical counterpart.

  13. Provably unbounded memory advantage in stochastic simulation using quantum mechanics

    International Nuclear Information System (INIS)

    Garner, Andrew J P; Thompson, Jayne; Vedral, Vlatko; Gu, Mile; Liu, Qing

    2017-01-01

    Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off between the precision to which these quantities are approximated, and the memory required to store them. The statistical accuracy of the simulation is thus generally limited by the internal memory available to the simulator. Here, using tools from computational mechanics, we show that quantum processors with a fixed finite memory can simulate stochastic processes of real variables to arbitrarily high precision. This demonstrates a provable, unbounded memory advantage that a quantum simulator can exhibit over its best possible classical counterpart. (paper)

  14. Electro-Thermal-Mechanical Simulation Capability Final Report

    International Nuclear Information System (INIS)

    White, D

    2008-01-01

    This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There are numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R and D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems

  15. Numerical simulation of mechanical behavior of composite materials

    CERN Document Server

    Oller, Sergio

    2014-01-01

    An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization), and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debounding, local buckling of fibers and its coupling with the over...

  16. Mechanical design of NASA Ames Research Center vertical motion simulator

    Science.gov (United States)

    Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.

    1976-01-01

    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.

  17. Atomistic simulations of Mg-Cu metallic glasses: Mechanical properties

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    The atomistic mechanisms of plastic deformation in amorphous metals are far from being understood. We have derived potential parameters for molecular dynamics simulations of Mg-Cu amorphous alloys using the Effective Medium Theory. We have simulated the formation of alloys by cooling from the melt...

  18. Simulation and Modeling Application in Agricultural Mechanization

    Directory of Open Access Journals (Sweden)

    R. M. Hudzari

    2012-01-01

    Full Text Available This experiment was conducted to determine the equations relating the Hue digital values of the fruits surface of the oil palm with maturity stage of the fruit in plantation. The FFB images were zoomed and captured using Nikon digital camera, and the calculation of Hue was determined using the highest frequency of the value for R, G, and B color components from histogram analysis software. New procedure in monitoring the image pixel value for oil palm fruit color surface in real-time growth maturity was developed. The estimation of day harvesting prediction was calculated based on developed model of relationships for Hue values with mesocarp oil content. The simulation model is regressed and predicts the day of harvesting or a number of days before harvest of FFB. The result from experimenting on mesocarp oil content can be used for real-time oil content determination of MPOB color meter. The graph to determine the day of harvesting the FFB was presented in this research. The oil was found to start developing in mesocarp fruit at 65 days before fruit at ripe maturity stage of 75% oil to dry mesocarp.

  19. Incorporating damage mechanics into explosion simulation models

    International Nuclear Information System (INIS)

    Sammis, C.G.

    1993-01-01

    The source region of an underground explosion is commonly modeled as a nested series of shells. In the innermost open-quotes hydrodynamic regimeclose quotes pressures and temperatures are sufficiently high that the rock deforms as a fluid and may be described using a PVT equation of state. Just beyond the hydrodynamic regime, is the open-quotes non-linear regimeclose quotes in which the rock has shear strength but the deformation is nonlinear. This regime extends out to the open-quotes elastic radiusclose quotes beyond which the deformation is linear. In this paper, we develop a model for the non-linear regime in crystalline source rock where the nonlinearity is mostly due to fractures. We divide the non-linear regime into a open-quotes damage regimeclose quotes in which the stresses are sufficiently high to nucleate new fractures from preexisting ones and a open-quotes crack-slidingclose quotes regime where motion on preexisting cracks produces amplitude dependent attenuation and other non-linear effects, but no new cracks are nucleated. The boundary between these two regimes is called the open-quotes damage radius.close quotes The micromechanical damage mechanics recently developed by Ashby and Sammis (1990) is used to write an analytic expression for the damage radius in terms of the initial fracture spectrum of the source rock, and to develop an algorithm which may be used to incorporate damage mechanics into computer source models for the damage regime. Effects of water saturation and loading rate are also discussed

  20. Computer simulations of the mechanical properties of metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob; Vegge, Tejs

    1999-01-01

    Atomic-scale computer simulations can be used to gain a better understanding of the mechanical properties of materials. In this paper we demonstrate how this can be done in the case of nanocrystalline copper, and give a brief overview of how simulations may be extended to larger length scales....... Nanocrystline metals are metals with grain sizes in the nanometre range, they have a number of technologically interesting properties such as much increased hardness and yield strength. Our simulations show that the deformation mechanisms are different in these materials than in coarse-grained materials...

  1. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    International Nuclear Information System (INIS)

    Kim, Sang Woo

    2016-01-01

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions

  2. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Dept. of Mechanical Engineering, Institute of Machine Convergence Technology, Hankyong National University, Anseong (Korea, Republic of)

    2016-10-15

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions.

  3. Nanometric mechanical cutting of metallic glass investigated using atomistic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Da, E-mail: nanowu@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li District, Taoyuan City 32023, Taiwan (China); Fang, Te-Hua, E-mail: fang.tehua@msa.hinet.net [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Su, Jih-Kai, E-mail: yummy_2468@yahoo.com.tw [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China)

    2017-02-28

    Highlights: • A nanoscale chip with a shear plane of 135° is extruded by the tool. • Tangential force and normal force increase with increasing tool nose radius. • Resistance factor increases with increasing cutting depth and temperature. - Abstract: The effects of cutting depth, tool nose radius, and temperature on the cutting mechanism and mechanics of amorphous NiAl workpieces are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories and flow field, shear strain, cutting force, resistance factor, cutting ratio, and pile-up characteristics. The simulation results show that a nanoscale chip with a shear plane of 135° is extruded by the tool from a workpiece surface during the cutting process. The workpiece atoms underneath the tool flow upward due to the adhesion force and elastic recovery. The required tangential force and normal force increase with increasing cutting depth and tool nose radius; both forces also increase with decreasing temperature. The resistance factor increases with increasing cutting depth and temperature, and decreases with increasing tool nose radius.

  4. Molecular dynamics simulation on the interaction mechanism ...

    Indian Academy of Sciences (India)

    aSchool of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224003, China. bSchool of ... experimental phenomena, while quantitative studies on the inhibition ..... Inc., San Diego, California. 23. Peroos S ...

  5. Conducting Simulation Studies in Psychometrics

    Science.gov (United States)

    Feinberg, Richard A.; Rubright, Jonathan D.

    2016-01-01

    Simulation studies are fundamental to psychometric discourse and play a crucial role in operational and academic research. Yet, resources for psychometricians interested in conducting simulations are scarce. This Instructional Topics in Educational Measurement Series (ITEMS) module is meant to address this deficiency by providing a comprehensive…

  6. Simulation in International Studies

    Science.gov (United States)

    Boyer, Mark A.

    2011-01-01

    Social scientists have long worked to replicate real-world phenomena in their research and teaching environments. Unlike our biophysical science colleagues, we are faced with an area of study that is not governed by the laws of physics and other more predictable relationships. As a result, social scientists, and international studies scholars more…

  7. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of

  8. Medium carbon steel deep drawing: A study on the evolution of mechanical properties, texture and simulations, from cold rolling to the end product

    Energy Technology Data Exchange (ETDEWEB)

    Plaut, Ronald L. [University of Sao Paulo, Sao Paulo (Brazil)], E-mail: rlplaut@usp.br; Padilha, Angelo F. [University of Sao Paulo, Sao Paulo (Brazil); Lima, N.B. [IPEN-CNEN/SP, Sao Paulo (Brazil); Herrera, Clara [Max-Planck-Institut fuer Eisenforschung (Germany); Filho, Antenor Ferreira [Industrial Director, Brasmetal Waelzholz S/A, Diadema (Brazil); Yoshimura, Leandro H. [CCS Consulting, Sao Paulo (Brazil)

    2009-01-15

    Medium carbon steels are mostly used for simple applications; nevertheless new applications have been developed for which good sheet formability is required. This class of steels has an inherent low formability. A medium carbon hot rolled SAE 1050 steel has been selected for this study. It has been cold rolled with reductions in the 7-80% range. Samples have been used to assess the cold work hardening curve. For samples with a 50 and 80% thickness reduction, an annealing heat treatment has been performed to obtain recrystallization. The material has been characterized in the 'as received', cold rolled and annealed conditions, using several methods: optical microscopy, X-ray diffraction (texture), Vickers hardness and tensile testing. The 50% cold rolled and recrystallized material has been further studied in terms of sheet metal formability and texture evolution during the actual stamping of a steel toecap that has been used to validate the finite element simulations.

  9. Systematic Quantum Mechanical Region Determination in QM/MM Simulation.

    Science.gov (United States)

    Karelina, Maria; Kulik, Heather J

    2017-02-14

    Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations are widely used in enzyme simulation. Over ten convergence studies of QM/MM methods have revealed over the past several years that key energetic and structural properties approach asymptotic limits with only very large (ca. 500-1000 atom) QM regions. This slow convergence has been observed to be due in part to significant charge transfer between the core active site and the surrounding protein environment, which cannot be addressed by improvement of MM force fields or the embedding method employed within QM/MM. Given this slow convergence, it becomes essential to identify strategies for the most atom-economical determination of optimal QM regions and to gain insight into the crucial interactions captured only in large QM regions. Here, we extend and develop two methods for quantitative determination of QM regions. First, in the charge shift analysis (CSA) method, we probe the reorganization of electron density when core active site residues are removed completely, as determined by large-QM region QM/MM calculations. Second, we introduce the highly parallelizable Fukui shift analysis (FSA), which identifies how core/substrate frontier states are altered by the presence of an additional QM residue in smaller initial QM regions. We demonstrate that the FSA and CSA approaches are complementary and consistent on three test case enzymes: catechol O-methyltransferase, cytochrome P450cam, and hen eggwhite lysozyme. We also introduce validation strategies and test the sensitivities of the two methods to geometric structure, basis set size, and electronic structure methodology. Both methods represent promising approaches for the systematic, unbiased determination of quantum mechanical effects in enzymes and large systems that necessitate multiscale modeling.

  10. Application of simulation techniques in the probabilistic fracture mechanics

    International Nuclear Information System (INIS)

    De Ruyter van Steveninck, J.L.

    1995-03-01

    The Monte Carlo simulation is applied on a model of the fracture mechanics in order to assess the applicability of this simulation technique in the probabilistic fracture mechanics. By means of the fracture mechanics model the brittle fracture of a steel container or pipe with defects can be predicted. By means of the Monte Carlo simulation also the uncertainty regarding failures can be determined. Based on the variations in the toughness of the fracture and the defect dimensions the distribution of the chance of failure is determined. Also attention is paid to the impact of dependency between uncertain variables. Furthermore, the influence of the applied distributions of the uncertain variables and non-destructive survey on the chance of failure is analyzed. The Monte Carlo simulation results agree quite well with the results of other methods from the probabilistic fracture mechanics. If an analytic expression can be found for the chance of failure, it is possible to determine the variation of the chance of failure, next to an estimation of the chance of failure. It also appears that the dependency between the uncertain variables has a large impact on the chance of failure. It is also concluded from the simulation that the chance of failure strongly depends on the crack depth, and therefore of the distribution of the crack depth. 15 figs., 7 tabs., 12 refs

  11. Multiscale simulation of mechanical properties of TiNb alloy

    Science.gov (United States)

    Nikonov, A. Yu.

    2017-12-01

    The article presents a numerical simulation of the mechanical properties of a Ti-Nb β-alloy on three different scales. The ab-initio approach is used to estimate the concentrations of the Ti alloy with required elastic properties. On the basis of molecular dynamics simulation, we calculate the adhesive force between individual particles of the alloy. The calculated dependence is implemented within the movable cellular automata method to determine the mechanical properties of Ti-Nb depending on the interparticle free space.

  12. Development of a mechanical maintenance training simulator in OpenSimulator for F-16 aircraft engines

    OpenAIRE

    Pinheiro, André; Fernandes, Paulo; Maia, Ana; Cruz, Gonçalo; Pedrosa, Daniela; Fonseca, Benjamim; Paredes, Hugo; Martins, Paulo; Morgado, Leonel; Rafael, Jorge

    2014-01-01

    Mechanical maintenance of F-16 engines is carried out as a team effort involving 3–4 skilled engine technicians, but the details of its procedures and requisites change constantly, to improve safety, optimize resources, and respond to knowledge learned from field outcomes. This provides a challenge for development of training simulators, since simulated actions risk becoming obsolete rapidly and require costly reimplementation. This paper presents the development of a 3D mechanical maintenanc...

  13. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    Science.gov (United States)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with

  14. Examining the mechanical equilibrium of microscopic stresses in molecular simulations

    OpenAIRE

    Torres Sánchez, Alejandro; Vanegas, Juan Manuel; Arroyo Balaguer, Marino

    2015-01-01

    The microscopic stress field provides a unique connection between atomistic simulations and mechanics at the nanoscale. However, its definition remains ambiguous. Rather than a mere theoretical preoccupation, we show that this fact acutely manifests itself in local stress calculations of defective graphene, lipid bilayers, and fibrous proteins. We find that popular definitions of the microscopic stress violate the continuum statements of mechanical equilibrium, and we propose an unambiguous a...

  15. Simulation of thermo-mechanical effect in bulk-silicon FinFETs

    OpenAIRE

    Burenkov, Alex; Lorenz, Jürgen

    2016-01-01

    The thermo-mechanical effect in bulk-silicon FinFETs of the 14 nm CMOS technology node is studied by means of numerical simulation. The electrical performance of such devices is significantly enhanced by the intentional introduction of mechanical stress during the device processing. The thermo-mechanical effect modifies the mechanical stress distribution in active regions of the transistors when they are heated. This can lead to a modification of the electrical performance. Numerical simulati...

  16. Genetic algorithms coupled with quantum mechanics for refinement of force fields for RNA simulation: a case study of glycosidic torsions in the canonical ribonucleosides.

    Science.gov (United States)

    Kato, Rodrigo B; Silva, Frederico T; Pappa, Gisele L; Belchior, Jadson C

    2015-01-28

    We report the use of genetic algorithms (GA) as a method to refine force field parameters in order to determine RNA energy. Quantum-mechanical (QM) calculations are carried out for the isolated canonical ribonucleosides (adenosine, guanosine, cytidine and uridine) that are taken as reference data. In this particular study, the dihedral and electrostatic energies are reparametrized in order to test the proposed approach, i.e., GA coupled with QM calculations. Overall, RMSE comparison with recent published results for ribonucleosides energies shows an improvement, on average, of 50%. Finally, the new reparametrized potential energy function is used to determine the spatial structure of RNA (PDB code ) that was not taken into account in the parametrization process. This structure was improved about 82% comparable with previously published results.

  17. A Multiscale Simulation Method and Its Application to Determine the Mechanical Behavior of Heterogeneous Geomaterials

    Directory of Open Access Journals (Sweden)

    Shengwei Li

    2017-01-01

    Full Text Available To study the micro/mesomechanical behaviors of heterogeneous geomaterials, a multiscale simulation method that combines molecular simulation at the microscale, a mesoscale analysis of polished slices, and finite element numerical simulation is proposed. By processing the mesostructure images obtained from analyzing the polished slices of heterogeneous geomaterials and mapping them onto finite element meshes, a numerical model that more accurately reflects the mesostructures of heterogeneous geomaterials was established by combining the results with the microscale mechanical properties of geomaterials obtained from the molecular simulation. This model was then used to analyze the mechanical behaviors of heterogeneous materials. Because kernstone is a typical heterogeneous material that comprises many types of mineral crystals, it was used for the micro/mesoscale mechanical behavior analysis in this paper using the proposed method. The results suggest that the proposed method can be used to accurately and effectively study the mechanical behaviors of heterogeneous geomaterials at the micro/mesoscales.

  18. Deformation mechanisms in nanotwinned copper by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Su, Lihong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Zhan, Lihua [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)

    2017-02-27

    Nanotwinned materials exhibit simultaneous ultrahigh strength and high ductility which is attributed to the interactions between dislocations and twin boundaries but the specific deformation mechanisms are rarely seen in experiments at the atomic level. Here we use large scale molecular dynamics simulations to explore this intricate interplay during the plastic deformation of nanotwinned Cu. We demonstrate that the dominant deformation mechanism transits dynamically from slip transfer to twin boundary migration to slip-twin interactions as the twin boundary orientation changes from horizontal to slant, and then to a vertical direction. Building on the fundamental physics of dislocation processes from computer simulations and combining the available experimental investigations, we unravel the underlying deformation mechanisms for nanotwinned Cu, incorporating all three distinct dislocation processes. Our results give insights into systematically engineering the nanoscale twins to fabricate nanotwinned metals or alloys that have high strength and considerable ductility.

  19. Differential evolution and simulated annealing algorithms for mechanical systems design

    Directory of Open Access Journals (Sweden)

    H. Saruhan

    2014-09-01

    Full Text Available In this study, nature inspired algorithms – the Differential Evolution (DE and the Simulated Annealing (SA – are utilized to seek a global optimum solution for ball bearings link system assembly weight with constraints and mixed design variables. The Genetic Algorithm (GA and the Evolution Strategy (ES will be a reference for the examination and validation of the DE and the SA. The main purpose is to minimize the weight of an assembly system composed of a shaft and two ball bearings. Ball bearings link system is used extensively in many machinery applications. Among mechanical systems, designers pay great attention to the ball bearings link system because of its significant industrial importance. The problem is complex and a time consuming process due to mixed design variables and inequality constraints imposed on the objective function. The results showed that the DE and the SA performed and obtained convergence reliability on the global optimum solution. So the contribution of the DE and the SA application to the mechanical system design can be very useful in many real-world mechanical system design problems. Beside, the comparison confirms the effectiveness and the superiority of the DE over the others algorithms – the SA, the GA, and the ES – in terms of solution quality. The ball bearings link system assembly weight of 634,099 gr was obtained using the DE while 671,616 gr, 728213.8 gr, and 729445.5 gr were obtained using the SA, the ES, and the GA respectively.

  20. Mechanism study of pulsus paradoxus using mechanical models.

    Directory of Open Access Journals (Sweden)

    Chang-yang Xing

    Full Text Available Pulsus paradoxus is an exaggeration of the normal inspiratory decrease in systolic blood pressure. Despite a century of attempts to explain this sign consensus is still lacking. To solve the controversy and reveal the exact mechanism, we reexamined the characteristic anatomic arrangement of the circulation system in the chest and designed these mechanical models based on related hydromechanic principles. Model 1 was designed to observe the primary influence of respiratory intrathoracic pressure change (RIPC on systemic and pulmonary venous return systems (SVR and PVR respectively. Model 2, as an equivalent mechanical model of septal swing, was to study the secondary influence of RIPC on the motion of the interventriclar septum (IVS, which might be the direct cause for pulsus paradoxus. Model 1 demonstrated that the simulated RIPC had different influence on the simulated SVR and PVR. It increased the volume of the simulated right ventricle (SRV when the internal pressure was kept constant (8.16 cmH2O, while it had the opposite effect on PVR. Model 2 revealed the three major factors determining the respiratory displacement of IVS in normal and different pathophysiological conditions: the magnitude of RIPC, the pressure difference between the two ventricles and the intrapericardial pressure. Our models demonstrate that the different anatomical arrangement of the two venous return systems leads to a different effect of RIPC on right and left ventricles, and thus a pressure gradient across IVS that tends to shift IVS left- and rightwards. When the leftward displacement of IVS reaches a considerable amplitude in some pathologic condition such as cardiac tamponade, the pulsus paradoxus occurs.

  1. A combined molecular dynamics simulation and quantum mechanics study on mercaptopurine interaction with the cucurbit [6,7] urils: Analysis of electronic structure.

    Science.gov (United States)

    Zaboli, Maryam; Raissi, Heidar

    2018-01-05

    In the current study, the probability of complex formation between mercaptopurine drug with cucurbit[6]urils and cucurbit[7]urils has been investigated. The calculations for geometry optimization of complexes have been carried out by means of DFT (B3LYP), DFT-D (B3LYP-D) and M06-2X methods. The Atoms In Molecules (AIM), Natural Bond Orbital (NBO), NMR, the density of states (DOSs) and frontier molecular orbital (MO) analyses have been done on the inclusion complexes. In addition, the UV-Vis spectra of the first eight states have been obtained by CAM-B3LYP/TD-DFT calculation. The obtained results of the complexation process reveal that CB[7]-DRG complexes are more favorable than that of CB[6]-DRG interactions. Furthermore, our theoretical results show that configurations III and I are the most stable configurations related to the CB[6]/DRG and CB[7]/DRG interactions, respectively. The positive ∇ 2 ρ (r) and HC values at the bond critical points indicate that exist the weak H-bonds between CB[6] and CB[7] with H atoms of the drug molecule. The obtained negative binding energy values of CB[7]-DRG interaction in solution phase show the stability of these complexes in the aqueous medium. Also, all of the observed parameters of molecular dynamics simulation such as the number of contacts, hydrogen bonding, center-of-mass distance and van der Waals energy values confirm the encapsulation of mercaptopurine molecule inside the cucurbit[7]urils cavity at about 3.2ns. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A combined molecular dynamics simulation and quantum mechanics study on mercaptopurine interaction with the cucurbit [6,7] urils: Analysis of electronic structure

    Science.gov (United States)

    Zaboli, Maryam; Raissi, Heidar

    2018-01-01

    In the current study, the probability of complex formation between mercaptopurine drug with cucurbit[6]urils and cucurbit[7]urils has been investigated. The calculations for geometry optimization of complexes have been carried out by means of DFT (B3LYP), DFT-D (B3LYP-D) and M06-2X methods. The Atoms In Molecules (AIM), Natural Bond Orbital (NBO), NMR, the density of states (DOSs) and frontier molecular orbital (MO) analyses have been done on the inclusion complexes. In addition, the UV-Vis spectra of the first eight states have been obtained by CAM-B3LYP/TD-DFT calculation. The obtained results of the complexation process reveal that CB[7]-DRG complexes are more favorable than that of CB[6]-DRG interactions. Furthermore, our theoretical results show that configurations III and I are the most stable configurations related to the CB[6]/DRG and CB[7]/DRG interactions, respectively. The positive ∇2ρ(r) and HC values at the bond critical points indicate that exist the weak H-bonds between CB[6] and CB[7] with H atoms of the drug molecule. The obtained negative binding energy values of CB[7]-DRG interaction in solution phase show the stability of these complexes in the aqueous medium. Also, all of the observed parameters of molecular dynamics simulation such as the number of contacts, hydrogen bonding, center-of-mass distance and van der Waals energy values confirm the encapsulation of mercaptopurine molecule inside the cucurbit[7]urils cavity at about 3.2 ns.

  3. Separating grain boundary migration mechanisms in molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ulomek, Felix; Mohles, Volker

    2016-01-01

    In molecular dynamics (MD) simulations of grain boundary (GB) migration it is quite common to find a temperature dependence of GB mobility that deviates strongly from an Arrhenius-type dependence. This usually indicates that more than one mechanism is actually active. With the goal to separate different GB migration mechanisms we investigate a Σ7 <111> 38.2° GB by MD using an EAM potential for aluminium. To drive the GB with a well-known and adjustable force, the energy conserving orientational driving force (ECO DF) is used that had been introduced recently. The magnitude of the DF and the temperature are varied. This yielded a high and a low temperature range for the GB velocity, with a transition temperature that depends on the magnitude of the DF. A method is introduced which allows both a visual and a statistical characterization of GB motion on a per atom basis. These analyses reveal that two mechanisms are active in this GB, a shuffling mechanism and its initiation. These mechanisms operate in a sequential, coupled manner. Based on this, a simple model is introduced that describes all simulated GB velocities (and hence the mobility) very well, including the transition between the dominating mechanisms.

  4. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering.

    Science.gov (United States)

    Wei, Xin; Li, Dao-bing; Xu, Feng; Wang, Yan; Zhu, Yu-chun; Li, Hong; Wang, Kun-jie

    2011-02-01

    Bioreactors are pivotal tools for generating mechanical stimulation in functional tissue engineering study. This study aimed to create a bioreactor that can simulate urinary bladder mechanical properties, and to investigate the effects of a mechanically stimulated culture on urothelial cells and bladder smooth muscle cells. We designed a bioreactor to simulate the mechanical properties of bladder. A pressure-record system was used to evaluate the mechanical properties of the bioreactor by measuring the pressure in culture chambers. To test the biocompatibility of the bioreactor, viabilities of urothelial cells and smooth muscle cells cultured in the bioreactor under static and mechanically changed conditions were measured after 7-day culture. To evaluate the effect of mechanical stimulations on the vital cells, urethral cells and smooth muscle cells were cultured in the simulated mechanical conditions. After that, the viability and the distribution pattern of the cells were observed and compared with cells cultured in non-mechanical stimulated condition. The bioreactor system successfully generated waveforms similar to the intended programmed model while maintaining a cell-seeded elastic membrane between the chambers. There were no differences between viabilities of urothelial cells ((91.90 ± 1.22)% vs. (93.14 ± 1.78)%, P > 0.05) and bladder smooth muscle cells ((93.41 ± 1.49)% vs. (92.61 ± 1.34)%, P > 0.05). The viability of cells and tissue structure observation after cultured in simulated condition showed that mechanical stimulation was the only factor affected cells in the bioreactor and improved the arrangement of cells on silastic membrane. This bioreactor can effectively simulate the physiological and mechanical properties of the bladder. Mechanical stimulation is the only factor that affected the viability of cells cultured in the bioreactor. The bioreactor can change the growth behavior of urothelial cells and bladder smooth muscle cells, resulting in

  5. Mechanical properties of lunar regolith and lunar soil simulant

    Science.gov (United States)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  6. Modelling and Simulation Based on Matlab/Simulink: A Press Mechanism

    International Nuclear Information System (INIS)

    Halicioglu, R; Dulger, L C; Bozdana, A T

    2014-01-01

    In this study, design and kinematic analysis of a crank-slider mechanism for a crank press is studied. The crank-slider mechanism is the commonly applied one as direct and indirect drive alternatives in practice. Since inexpensiveness, flexibility and controllability are getting more and more important in many industrial applications especially in automotive industry, a crank press with servo actuator (servo crank press) is taken as an application. Design and kinematic analysis of representative mechanism is presented with geometrical analysis for the inverse kinematic of the mechanism by using desired motion concept of slider. The mechanism is modelled in MATLAB/Simulink platform. The simulation results are presented herein

  7. Modelling and Simulation Based on Matlab/Simulink: A Press Mechanism

    Science.gov (United States)

    Halicioglu, R.; Dulger, L. C.; Bozdana, A. T.

    2014-03-01

    In this study, design and kinematic analysis of a crank-slider mechanism for a crank press is studied. The crank-slider mechanism is the commonly applied one as direct and indirect drive alternatives in practice. Since inexpensiveness, flexibility and controllability are getting more and more important in many industrial applications especially in automotive industry, a crank press with servo actuator (servo crank press) is taken as an application. Design and kinematic analysis of representative mechanism is presented with geometrical analysis for the inverse kinematic of the mechanism by using desired motion concept of slider. The mechanism is modelled in MATLAB/Simulink platform. The simulation results are presented herein.

  8. Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan

    Science.gov (United States)

    Kikuchi, Hideaki; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; Iyetomi, Hiroshi; Ogata, Shuji; Kouno, Takahisa; Shimojo, Fuyuki; Tsuruta, Kanji; Saini, Subhash; hide

    2002-01-01

    A multidisciplinary, collaborative simulation has been performed on a Grid of geographically distributed PC clusters. The multiscale simulation approach seamlessly combines i) atomistic simulation backed on the molecular dynamics (MD) method and ii) quantum mechanical (QM) calculation based on the density functional theory (DFT), so that accurate but less scalable computations are performed only where they are needed. The multiscale MD/QM simulation code has been Grid-enabled using i) a modular, additive hybridization scheme, ii) multiple QM clustering, and iii) computation/communication overlapping. The Gridified MD/QM simulation code has been used to study environmental effects of water molecules on fracture in silicon. A preliminary run of the code has achieved a parallel efficiency of 94% on 25 PCs distributed over 3 PC clusters in the US and Japan, and a larger test involving 154 processors on 5 distributed PC clusters is in progress.

  9. Simulative calculation of bromo-polystyrene mechanical properties

    CERN Document Server

    Wang Chao; Tang Yong Jian

    2002-01-01

    The non-crystal model of polystyrene and bromo-polystyrene was established with the help of simulative software in the computer. DREIDING was chosen as force field and its parameters is modified according to the published data. Based on the calculation results and other published data the mechanism properties of polystyrene and bromo-polystyrene, such as bulk module, Yong's module and Poisson's ratios, were discussed

  10. Mechanical property estimation with ABI and FEM simulation

    International Nuclear Information System (INIS)

    Sharma, Kamal; Singh, P.K.; Das, Gautam; Bhasin, Vivek; Vaze, K.K.; Ghosh, A.K.

    2007-01-01

    A combined mechanical property evaluation methodology with ABI (Automated Ball Indentation) simulation and Artificial Neural Network (ANN) analysis is evolved to evaluate the mechanical properties for material. The experimental load deflection data is converted into meaningful mechanical properties for this material. An ANN database is generated with the help of contact type finite element analysis by numerically simulating the ABI process for various magnitudes of yield strength (σ yp ) (200 MPa - 500 MPa) with a range of strain hardening exponent (n) (0.1 - 0.5) and strength coefficient (K) (500 MPa - 1500 MPa). For the present problem, a ball indenter of 1.57 mm diameter having Young's modulus approximately 100 times more than the test piece is used to minimize the error due to indenter deformation. Test piece dimension is kept large enough in comparison to the indenter configuration in the simulation to minimize the deflection at the outer edge of the test piece. Further this database after the neural network training; is used to analyze measured material properties of different test pieces. The ANN predictions are reconfirmed with contact type finite element analysis for an arbitrary selected test sample. The methodology evolved in this work can be extended to predict material properties for any irradiated nuclear material in the service. (author)

  11. Pitfall in quantum mechanical/molecular mechanical molecular dynamics simulation of small solutes in solution.

    Science.gov (United States)

    Hu, Hao; Liu, Haiyan

    2013-05-30

    Developments in computing hardware and algorithms have made direct molecular dynamics simulation with the combined quantum mechanical/molecular mechanical methods affordable for small solute molecules in solution, in which much improved accuracy can be obtained via the quantum mechanical treatment of the solute molecule and even sometimes water molecules in the first solvation shell. However, unlike the conventional molecular mechanical simulations of large molecules, e.g., proteins, in solutions, special care must be taken in the technical details of the simulation, including the thermostat of the solute/solvent system, so that the conformational space of the solute molecules can be properly sampled. We show here that the common setup for classical molecular mechanical molecular dynamics simulations, such as the Berendsen or single Nose-Hoover thermostat, and/or rigid water models could lead to pathological sampling of the solutes' conformation. In the extreme example of a methanol molecule in aqueous solution, improper and sluggish setups could generate two peaks in the distribution of the O-H bond length. We discuss the factors responsible for this somewhat unexpected result and evoke a simple and ancient technical fix-up to resolve this problem.

  12. A pseudobond parametrization for improved electrostatics in quantum mechanical/molecular mechanical simulations of enzymes.

    Science.gov (United States)

    Parks, Jerry M; Hu, Hao; Cohen, Aron J; Yang, Weitao

    2008-10-21

    The pseudobond method is used in quantum mechanical/molecular mechanical (QM/MM) simulations in which a covalent bond connects the quantum mechanical and classical subsystems. In this method, the molecular mechanical boundary atom is replaced by a special quantum mechanical atom with one free valence that forms a bond with the rest of the quantum mechanical subsystem. This boundary atom is modified through the use of a parametrized effective core potential and basis set. The pseudobond is designed to reproduce the properties of the covalent bond that it has replaced, while invoking as small a perturbation as possible on the system. Following the work of Zhang [J. Chem. Phys. 122, 024114 (2005)], we have developed new pseudobond parameters for use in the simulation of enzymatic systems. Our parameters yield improved electrostatics and deprotonation energies, while at the same time maintaining accurate geometries. We provide parameters for C(ps)(sp(3))-C(sp(3)), C(ps)(sp(3))-C(sp(2),carbonyl), and C(ps)(sp(3))-N(sp(3)) pseudobonds, which allow the interface between the quantum mechanical and molecular mechanical subsystems to be constructed at either the C(alpha)-C(beta) bond of a given amino acid residue or along the peptide backbone. In addition, we demonstrate the efficiency of our parametrization method by generating residue-specific pseudobond parameters for a single amino acid. Such an approach may enable higher accuracy than general purpose parameters for specific QM/MM applications.

  13. Design of thermoelectric modules for both mechanical reliability and performance using FE simulation

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Bjørk, Rasmus; Pryds, Nini

    for these two objectives. The current study deals with FE simulation of the TE modules to optimize their geometrical dimension in terms of mechanical reliability and performance. First, FE simulation of a TE module consisting of bismuth telluride alloys is carried out and the induced thermal stresses, output......, the geometrical dimensions of the TE elements for both mechanical reliability and performance are optimized to obtain a compromise design. The present work provides a basis for optimizing the TE modules in terms of their life time and performance.......Thermo-mechanical modeling of the TE modules provides an efficient tool for assessing the mechanical strength of the modules against the induced thermal stresses and subsequently optimizing them in terms of the mechanical reliability. However, the design of TE modules in terms of mechanical...

  14. New Insight in Understanding the mechanical responses of polymer glasses using molecular dynamic simulation

    Science.gov (United States)

    Zheng, Yexin; Wang, Shi-Qing; Tsige, Mesfin

    The Kremer-Grest bead-spring model has been the standard model in molecular dynamics simulation of polymer glasses. However, due to current computational limitations in accessing relevant time scales in polymer glasses in a reasonable amount of CPU time, simulation of mechanical response of polymer glasses in molecular dynamic simulations requires a much higher quenching rate and deformation rate than used in experiments. Despite several orders of magnitude difference in time scale between simulation and experiment, previous studies have shown that simulations can produce meaningful results that can be directly compared with experimental results. In this work we show that by tuning the quenching rate and deformation rate relative to the segmental relaxation times, a reasonable mechanical response shows up in the glassy state. Specifically, we show a younger glass prepared with a faster quenching rate shows glassy responses only when the imposed deformation rate is proportionally higher. the National Science Foundation (DMR-1444859 and DMR-1609977).

  15. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques

    International Nuclear Information System (INIS)

    Fang, H. Z.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Alfonso, D.; Alman, D. E.; Shin, Y. K.; Zou, C. Y.; Duin, A. C. T. van; Lei, Y. K.; Wang, G. F.

    2014-01-01

    This paper is concerned with the prediction of oxygen diffusivities in fcc nickel from first-principles calculations and large-scale atomic simulations. Considering only the interstitial octahedral to tetrahedral to octahedral minimum energy pathway for oxygen diffusion in fcc lattice, greatly underestimates the migration barrier and overestimates the diffusivities by several orders of magnitude. The results indicate that vacancies in the Ni-lattice significantly impact the migration barrier of oxygen in nickel. Incorporation of the effect of vacancies results in predicted diffusivities consistent with available experimental data. First-principles calculations show that at high temperatures the vacancy concentration is comparable to the oxygen solubility, and there is a strong binding energy and a redistribution of charge density between the oxygen atom and vacancy. Consequently, there is a strong attraction between the oxygen and vacancy in the Ni lattice, which impacts diffusion

  16. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.

    Science.gov (United States)

    Longhi, S

    2018-01-15

    Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.

  17. Development and mechanical properties of structural materials from lunar simulants

    Science.gov (United States)

    Desai, Chandra S.; Girdner, K.; Saadatmanesh, H.; Allen, T.

    1991-01-01

    Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. Here, it is vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility and deformation characteristics be defined toward establishment of the ranges of engineering applications of the materials developed. The objective is to describe the research results in two areas for the above goal: (1) liquefaction of lunar simulant (at about 100 C) with different additives (fibers, powders, etc.); and (2) development and use of a new triaxial test device in which lunar simulants are first compressed under cycles of loading, and then tested with different vacuums and initial confining or in situ stress.

  18. Control and Virtual Reality Simulation of Tendon Driven Mechanisms

    International Nuclear Information System (INIS)

    Londi, Fabio; Pennestri, Ettore; Valentini, Pier Paolo; Vita, Leonardo

    2004-01-01

    In this paper the authors present a control strategy for tendon driven mechanisms. The aim of the control system is to find the correct torques which the motors have to exert to make the end effector describe a specific trajectory. In robotic assemblies this problem is often solved with closed loop algorithm, but here a simpler method, based on a open loop strategy, is developed. The difficulties in the actuation are in keeping the belt tight during all working conditions. So an innovative solution of this problem is presented here. This methodology can be easily applied in real time monitoring or very fast operations. For this reason several virtual reality simulations, developed using codes written in Virtual Reality Markup Language, are also presented. This approach is very efficient because it requires a very low cpu computation time, small size files, and the manipulator can be easily put into different simulated scenarios

  19. 3D numerical simulation and analysis of railgun gouging mechanism

    Directory of Open Access Journals (Sweden)

    Jin-guo Wu

    2016-04-01

    Full Text Available A gouging phenomenon with a hypervelocity sliding electrical contact in railgun not only shortens the rail lifetime but also affects the interior ballistic performance. In this paper, a 3-D numerical model was introduced to simulate and analyze the generation mechanism and evolution of the rail gouging phenomenon. The results show that a rail surface bulge is an important factor to induce gouging. High density and high pressure material flow on the contact surface, obliquely extruded into the rail when accelerating the armature to a high velocity, can produce gouging. Both controlling the bulge size to a certain range and selecting suitable materials for rail surface coating will suppress the formation of gouging. The numerical simulation had a good agreement with experiments, which validated the computing model and methodology are reliable.

  20. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  1. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  2. A unified mobility model for quantum mechanical simulation of MOSFETs

    International Nuclear Information System (INIS)

    Park, Ji Sun; Lee, Ji Young; Lee, Sang Kyung; Shin, Hyung Soon; Jin, Seong Hoon; Park, Young June; Min, Hong Shik

    2004-01-01

    A unified electron and hole mobility model for inversion and accumulation layers with quantum effect is presented for the first time. By accounting for the screened Coulomb scattering based on the well-known bulk mobility model and allowing the surface roughness scattering term to be a function of net charge, the new model is applicable to the bulk, inversion, and accumulation layers with only one set of fitting parameters. The new model is implemented in the 2-D quantum mechanical device simulator and gives excellent agreement with the experimentally measured effective mobility data over a wide range of effective transverse field, substrate doping, substrate bias, and temperature.

  3. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  4. Mechanical Properties of Boehmite Evaluated by Atomic Force Microscopy Experiments and Molecular Dynamic Finite Element Simulations

    International Nuclear Information System (INIS)

    Fankhanel, J.; Daum, B.; Kempe, A.; Rolfes, R.; Silbernagl, D.; Khorasani, M.Gh.Z.; Sturm, H.; Sturm, H.

    2016-01-01

    Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM) experiments and Molecular Dynamic Finite Element Method (MDFEM) simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work. The studies are substantiated with accompanying X-ray diffraction and Raman experiments.

  5. Numerical simulation of volume-controlled mechanical ventilated respiratory system with 2 different lungs.

    Science.gov (United States)

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas

    2017-09-01

    Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Studies in mathematics and mechanics

    CERN Document Server

    von Mises, Richard

    2013-01-01

    Studies in Mathematics and Mechanics is a collection of studies presented to Professor Richard von Mises as a token of reverence and appreciation on the occasion of his seventieth birthday which occurred on April 19, 1953. von Mises' thought has been a stimulus in many seemingly unconnected fields of mathematics, science, and philosophy, to which he has contributed decisive results and new formulations of fundamental concepts. The book contains 42 chapters organized into five parts. Part I contains papers on algebra, number theory and geometry. These include a study of Poincaré's representatio

  7. COMPUTER SIMULATION THE MECHANICAL MOVEMENT BODY BY MEANS OF MATHCAD

    Directory of Open Access Journals (Sweden)

    Leonid Flehantov

    2017-03-01

    Full Text Available Here considered the technique of using computer mathematics system MathCAD for computer implementation of mathematical model of the mechanical motion of the physical body thrown at an angle to the horizon, and its use for educational computer simulation experiment in teaching the fundamentals of mathematical modeling. The advantages of MathCAD as environment of implementation mathematical models in the second stage of higher education are noted. It describes the creation the computer simulation model that allows you to comprehensively analyze the process of mechanical movement of the body, changing the input parameters of the model: the acceleration of gravity, the initial and final position of the body, the initial velocity and angle, the geometric dimensions of the body and goals. The technique aimed at the effective assimilation of basic knowledge and skills of students on the basics of mathematical modeling, it provides an opportunity to better master the basic theoretical principles of mathematical modeling and related disciplines, promotes logical thinking development of students, their motivation to learn discipline, improves cognitive interest, forms skills research activities than creating conditions for the effective formation of professional competence of future specialists.

  8. Development and mechanical properties of construction materials from lunar simulant

    Science.gov (United States)

    Desai, Chandra S.

    1992-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward the establishment of outposts on the Moon and Mars. Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and tensile, flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal 'liquefaction' of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.), and (2) development and use of a new triaxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or in situ stress. Details of the development of intermediate ceramic composites (ICC) and testing for their flexural and compression characteristics were described in various reports and papers. The subject of behavior of compacted simulant under vacuum was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum be utilized for further investigation.

  9. A Simulational approach to teaching statistical mechanics and kinetic theory

    International Nuclear Information System (INIS)

    Karabulut, H.

    2005-01-01

    A computer simulation demonstrating how Maxwell-Boltzmann distribution is reached in gases from a nonequilibrium distribution is presented. The algorithm can be generalized to the cases of gas particles (atoms or molecules) with internal degrees of freedom such as electronic excitations and vibrational-rotational energy levels. Another generalization of the algorithm is the case of mixture of two different gases. By choosing the collision cross sections properly one can create quasi equilibrium distributions. For example by choosing same atom cross sections large and different atom cross sections very small one can create mixture of two gases with different temperatures where two gases slowly interact and come to equilibrium in a long time. Similarly, for the case one kind of atom with internal degrees of freedom one can create situations that internal degrees of freedom come to the equilibrium much later than translational degrees of freedom. In all these cases the equilibrium distribution that the algorithm gives is the same as expected from the statistical mechanics. The algorithm can also be extended to cover the case of chemical equilibrium where species A and B react to form AB molecules. The laws of chemical equilibrium can be observed from this simulation. The chemical equilibrium simulation can also help to teach the elusive concept of chemical potential

  10. Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics

    International Nuclear Information System (INIS)

    Yu Xiao-Xiang; Wang Chong-Yu

    2013-01-01

    An effective multiscale simulation which concurrently couples the quantum-mechanical and molecular-mechanical calculations based on the position continuity of atoms is presented. By an iterative procedure, the structure of the dislocation core in face-centered cubic metal is obtained by first-principles calculation and the long-range stress is released by molecular dynamics relaxation. Compared to earlier multiscale methods, the present work couples the long-range strain to the local displacements of the dislocation core in a simpler way with the same accuracy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Tank waste concentration mechanism study

    International Nuclear Information System (INIS)

    Pan, L.C.; Johnson, L.J.

    1994-09-01

    This study determines whether the existing 242-A Evaporator should continue to be used to concentrate the Hanford Site radioactive liquid tank wastes or be replaced by an alternative waste concentration process. Using the same philosophy, the study also determines what the waste concentration mechanism should be for the future TWRS program. Excess water from liquid DST waste should be removed to reduce the volume of waste feed for pretreatment, immobilization, and to free up storage capacity in existing tanks to support interim stabilization of SSTS, terminal cleanout of excess facilities, and other site remediation activities

  12. Quantum Mechanical Simulations of Complex Nanostructures for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang [Colorado School of Mines, Golden, CO (United States)

    2017-05-31

    A quantitative understanding of the electronic excitations in nanostructures, especially complex nanostructures, is crucial for making new-generation photovoltaic (PV) cells based on nanotechnology, which have high efficiency and low cost. Yet current quantum mechanical simulation methods are either computationally too expensive or not accurate and reliable enough, hindering the rational design of the nanoscale PV cells. The PI seeks to develop new methodologies to overcome the challenges in this very difficult and long-lasting problem, pushing the field forward so that electronic excitations can be accurately predicted for systems involving thousands of atoms. The primary objective of this project is to develop new approaches for electronic excitation calculations that are more accurate than traditional density functional theory (DFT) and are applicable to systems larger than what current beyond-DFT methods can treat. In this proposal, the PI will first address the excited-state problem within the DFT framework to obtain quasiparticle energies from both Kohn-Sham (KS) eigenvalues and orbitals; and the electron-hole binding energy will be computed based on screened Coulomb interaction of corresponding DFT orbitals. The accuracy of these approaches will be examined against many-body methods of GW/BSE and quantum Monte Carlo (QMC). The PI will also work on improving the accuracy and efficiency of the GW/BSE and QMC methods in electronic excitation computations by using better KS orbitals obtained from orbital-dependent DFT as inputs. Then an extended QMC database of ground- and excited-state properties will be developed, and this will be spot checked and supplemented with data from GW/BSE calculations. The investigation will subsequently focus on the development of an improved exchange-correlation (XC) density functional beyond the current generalized gradient approximation (GGA) level of parameterization, with parameters fitted to the QMC database. This will allow

  13. A high-compression electron gun for C6+ production: concept, simulations and mechanical design

    Science.gov (United States)

    Mertzig, Robert; Breitenfeldt, M.; Mathot, S.; Pitters, J.; Shornikov, A.; Wenander, F.

    2017-07-01

    In this paper we report on simulations and the mechanical design of a high-compression electron gun for an Electron Beam Ion Source (EBIS) dedicated for production of high intensity and high repetition rate pulses of bare carbon ions for injection into linac-based hadron therapy facilities. The gun is presently under construction at CERN to be retrofitted into the TwinEBIS test bench for experimental studies. We describe the design constraints, show results of numeric simulations and report on the mechanical design featuring several novel ideas. The reported design makes use of combined-function units with reduced number of mechanical joints that were carefully controlled and tuned during the manufacturing phase. The simulations addressed a wide range of topics including the influence of thermal effects, focusing optics, symmetry-breaking misalignments and injection into a full 5 T field.

  14. Simulated effect on the compressive and shear mechanical properties of bionic integrated honeycomb plates.

    Science.gov (United States)

    He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun

    2015-05-01

    Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Thermal and thermo-mechanical simulation of laser assisted machining

    International Nuclear Information System (INIS)

    Germain, G.; Dal Santo, P.; Lebrun, J. L.; Bellett, D.; Robert, P.

    2007-01-01

    Laser Assisted Machining (LAM) improves the machinability of materials by locally heating the workpiece just prior to cutting. The heat input is provided by a high power laser focused several millimeters in front of the cutting tool. Experimental investigations have confirmed that the cutting force can be decreased, by as much as 40%, for various materials (tool steel, titanium alloys and nickel alloys). The laser heat input is essentially superficial and results in non-uniform temperature profiles within the depth of the workpiece. The temperature field in the cutting zone is therefore influenced by many parameters. In order to understand the effect of the laser on chip formation and on the temperature fields in the different deformation zones, thermo-mechanical simulation were undertaken. A thermo-mechanical model for chip formation with and without the laser was also undertaken for different cutting parameters. Experimental tests for the orthogonal cutting of 42CrMo4 steel were used to validate the simulation via the prediction of the cutting force with and without the laser. The thermo-mechanical model then allowed us to highlight the differences in the temperature fields in the cutting zone with and without the laser. In particular, it was shown that for LAM the auto-heating of the material in the primary shear zone is less important and that the friction between the tool and chip also generates less heat. The temperature fields allow us to explain the reduction in the cutting force and the resulting residual stress fields in the workpiece

  16. Ferrocene-catalyzed heterogeneous Fenton-like degradation mechanisms and pathways of antibiotics under simulated sunlight: A case study of sulfamethoxazole.

    Science.gov (United States)

    Li, Yingjie; Zhang, Biaojun; Liu, Xiangliang; Zhao, Qun; Zhang, Heming; Zhang, Yuechao; Ning, Ping; Tian, Senlin

    2018-07-05

    Readily-available and efficient catalyst is essential for activating oxidants to produce reactive species for deeply remediating water bodies contaminated by antibiotics. In this study, Ferrocene (Fc) was introduced to establish a heterogeneous photo-Fenton system for the degradation of sulfonamide antibiotics, taking sulfamethoxazole as a representative. Results showed that the removal of sulfamethoxazole was effective in Fc-catalyzed photo-Fenton system. Electron spin resonance and radical scavenging experiments verified that there was a photoindued electron transfer process from Fc to H 2 O 2 and dissolved oxygen resulting in the formation of OH that was primarily responsible for the degradation of sulfamethoxazole. The reactions of OH with substructure model compounds of sulfamethoxazole unveiled that aniline moiety was the preferable reaction site of sulfamethoxazole, which was verified by the formation of hydroxylated product and the dimer of sulfamethoxazole in Fc-catalyzed photo-Fenton system. This heterogeneous photo-Fenton system displayed an effective degradation efficiency even in a complex water matrices, and Fc represented a long-term stability by using the catalyst for multiple cycles. These results demonstrate that Fc-catalyzed photo-Fenton oxidation may be an efficient approach for remediation of wastewater containing antibiotics. Copyright © 2018. Published by Elsevier B.V.

  17. Study on modeling of operator's learning mechanism

    International Nuclear Information System (INIS)

    Yoshimura, Seichi; Hasegawa, Naoko

    1998-01-01

    One effective method to analyze the causes of human errors is to model the behavior of human and to simulate it. The Central Research Institute of Electric Power Industry (CRIEPI) has developed an operator team behavior simulation system called SYBORG (Simulation System for the Behavior of an Operating Group) to analyze the human errors and to establish the countermeasures for them. As an operator behavior model which composes SYBORG has no learning mechanism and the knowledge of a plant is fixed, it cannot take suitable actions when unknown situations occur nor learn anything from the experience. However, considering actual operators, learning is an essential human factor to enhance their abilities to diagnose plant anomalies. In this paper, Q learning with 1/f fluctuation was proposed as a learning mechanism of an operator and simulation using the mechanism was conducted. The results showed the effectiveness of the learning mechanism. (author)

  18. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-02-01

    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  19. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    Science.gov (United States)

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  20. Simulating and visualizing deflections of a remote handling mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Hannu, E-mail: hannu.saarinen@vtt.fi [VTT, Technical Research Centre of Finland, Tekniikankatu 1, 33720 Tampere (Finland); Hämäläinen, Vesa; Karjalainen, Jaakko; Määttä, Timo; Siuko, Mikko [VTT, Technical Research Centre of Finland, Tekniikankatu 1, 33720 Tampere (Finland); Esqué, Salvador [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Hamilton, David [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► An infinitesimal transformation represents elastic deflections. ► Equivalent spring factor is used to combine several deformations. ► Initial VR model accuracy improved from 80 to 5 mm. ► The deflection model is capable of adapting to changes in load at the end-effector. ► The algorithms and approach described are generic and can be adopted for other mechanisms. -- Abstract: Continuing ITER divertor second cassette (SC) remote handling (RH) test campaign has been carried out at divertor test platform (DTP2) in Finland. One of the goals has been to develop and implement efficient algorithms and software tools for simulating and visualizing for the operator the non-instrumented deflections of the RH mechanisms under loading conditions. Based on assumptions of the classical beam theory, the presented solution suggests utilization of an infinitesimal transformation to represent elastic deflections in a mechanical structure. Both structural analysis and measurements of the real structure are utilised during the process. The solution suggests one possible implementation strategy of a software component called structural simulator (SS), which is a software component of the remote handling control system (RHCS) architectural model specified by ITER organisation. Utilisation of the proposed SS necessitates modification of the initial virtual reality (VR) model of RH equipment to a format, which can visually represent the structural deflections. In practise this means adding virtual joints into the model. This will improve the accuracy of the VR visualization and will ensure that the virtual representation of the RH equipment closely aligns with the actual RH equipment. Cassette multifunctional mover (CMM) and second cassette end effector (SCEE) carrying SC were selected to be the initial target system for developing the approach. Demonstrations proved that the approach used can give high levels of accuracy even in complex structures such as the CMM

  1. Simulating and visualizing deflections of a remote handling mechanism

    International Nuclear Information System (INIS)

    Saarinen, Hannu; Hämäläinen, Vesa; Karjalainen, Jaakko; Määttä, Timo; Siuko, Mikko; Esqué, Salvador; Hamilton, David

    2013-01-01

    Highlights: ► An infinitesimal transformation represents elastic deflections. ► Equivalent spring factor is used to combine several deformations. ► Initial VR model accuracy improved from 80 to 5 mm. ► The deflection model is capable of adapting to changes in load at the end-effector. ► The algorithms and approach described are generic and can be adopted for other mechanisms. -- Abstract: Continuing ITER divertor second cassette (SC) remote handling (RH) test campaign has been carried out at divertor test platform (DTP2) in Finland. One of the goals has been to develop and implement efficient algorithms and software tools for simulating and visualizing for the operator the non-instrumented deflections of the RH mechanisms under loading conditions. Based on assumptions of the classical beam theory, the presented solution suggests utilization of an infinitesimal transformation to represent elastic deflections in a mechanical structure. Both structural analysis and measurements of the real structure are utilised during the process. The solution suggests one possible implementation strategy of a software component called structural simulator (SS), which is a software component of the remote handling control system (RHCS) architectural model specified by ITER organisation. Utilisation of the proposed SS necessitates modification of the initial virtual reality (VR) model of RH equipment to a format, which can visually represent the structural deflections. In practise this means adding virtual joints into the model. This will improve the accuracy of the VR visualization and will ensure that the virtual representation of the RH equipment closely aligns with the actual RH equipment. Cassette multifunctional mover (CMM) and second cassette end effector (SCEE) carrying SC were selected to be the initial target system for developing the approach. Demonstrations proved that the approach used can give high levels of accuracy even in complex structures such as the CMM

  2. Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite

    Science.gov (United States)

    Yu, Song; Yan-ming, Zhu; Wu, Li

    2017-02-01

    The microscopic mechanism of interactions between CH4 and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, 13C NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH4 is conducted. A saturated state is reached after absorbing 17 CH4s per coal vitrinite molecule. CH4 is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top graphene. However, the energy of the most preferential location is much lower than that of graphite/graphene. CH4 is more easily absorbed on the surface of vitrinite. Adsorbability varies considerably at different adsorption locations and sites on the surface of vitrinite. Crystal parameter of vitrinite is a = b = c = 15.8 Å and majority of its micropores are blow 15.8 Å, indicating that the vitrinite have the optimum adsorption aperture. It can explain its higher observed adsorption capacities for CH4 compared with graphite/graphene.

  3. Development and mechanical properties of structural materials from lunar simulant

    Science.gov (United States)

    Desai, Chandra S.

    1991-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.

  4. Numerical Simulation for Mechanism of Airway Narrowing in Asthma

    Science.gov (United States)

    Bando, Kiyoshi; Yamashita, Daisuke; Ohba, Kenkichi

    A calculation model is proposed to examine the generation mechanism of the numerous lobes on the inner-wall of the airway in asthmatic patients and to clarify luminal occlusion of the airway inducing breathing difficulties. The basement membrane in the airway wall is modeled as a two-dimensional thin-walled shell having inertia force due to the mass, and the smooth muscle contraction effect is replaced by uniform transmural pressure applied to the basement membrane. A dynamic explicit finite element method is used as a numerical simulation method. To examine the validity of the present model, simulation of an asthma attack is performed. The number of lobes generated in the basement membrane increases when transmural pressure is applied in a shorter time period. When the remodeling of the basement membrane occurs characterized by thickening and hardening, it is demonstrated that the number of lobes decreases and the narrowing of the airway lumen becomes severe. Comparison of the results calculated by the present model with those measured for animal experiments of asthma will be possible.

  5. Quantum mechanical force fields for condensed phase molecular simulations

    Science.gov (United States)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  6. Understanding the mechanisms of amorphous creep through molecular simulation.

    Science.gov (United States)

    Cao, Penghui; Short, Michael P; Yip, Sidney

    2017-12-26

    Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

  7. Numerical simulation of lubrication mechanisms at mesoscopic scale

    DEFF Research Database (Denmark)

    Hubert, C.; Bay, Niels; Christiansen, Peter

    2011-01-01

    The mechanisms of liquid lubrication in metal forming are studied at a mesoscopic scale, adopting a 2D sequential fluid-solid weak coupling approach earlier developed in the first author's laboratory. This approach involves two computation steps. The first one is a fully coupled fluid-structure F...... of pyramidal indentations. The tests are performed with variable reduction and drawing speed under controlled front and back tension forces. Visual observations through a transparent die of the fluid entrapment and escape from the cavities using a CCD camera show the mechanisms of Micro......PlastoHydroDynamic Lubrication (MPHDL) as well as cavity shrinkage due to lubricant compression and escape and strip deformation....

  8. Restrained Proton Indicator in Combined Quantum-Mechanics/Molecular-Mechanics Dynamics Simulations of Proton Transfer through a Carbon Nanotube.

    Science.gov (United States)

    Duster, Adam W; Lin, Hai

    2017-09-14

    Recently, a collective variable "proton indicator" was purposed for tracking an excess proton solvated in bulk water in molecular dynamics simulations. In this work, we demonstrate the feasibility of utilizing the position of this proton indicator as a reaction coordinate to model an excess proton migrating through a hydrophobic carbon nanotube in combined quantum-mechanics/molecular-mechanics simulations. Our results indicate that applying a harmonic restraint to the proton indicator in the bulk solvent near the nanotube pore entrance leads to the recruitment of water molecules into the pore. This is consistent with an earlier study that employed a multistate empirical valence bond potential and a different representation (center of excess charge) of the proton. We attribute this water recruitment to the delocalized nature of the solvated proton, which prefers to be in high-dielectric bulk solvent. While water recruitment into the pore is considered an artifact in the present simulations (because of the artificially imposed restraint on the proton), if the proton were naturally restrained, it could assist in building water wires prior to proton transfer through the pore. The potential of mean force for a proton translocation through the water-filled pore was computed by umbrella sampling, where the bias potentials were applied to the proton indicator. The free energy curve and barrier heights agree reasonably with those in the literature. The results suggest that the proton indicator can be used as a reaction coordinate in simulations of proton transport in confined environments.

  9. Postamputation pain: studies on mechanisms.

    Science.gov (United States)

    Nikolajsen, Lone

    2012-10-01

    Amputation is followed by both painful and non-painful phantom phenomena in a large number of amputees. Non-painful phantom sensations rarely pose any clinical problem, but 60-80% of all amputees also experience painful sensations (i.e. phantom pain) located to the missing limb. The severity of phantom pain usually decreases with time, but severe pain persists in 5-10% of patients. Pain in the residual limb (i.e. stump pain) is another consequence of amputation. Both stump and phantom pain can be very difficult to treat. Treatment guidelines used for other neuropathic pain conditions are probably the best approximation, especially for the treatment of stump pain. The aim of the present doctoral thesis was to explore some of the mechanisms underlying pain after amputation. Ten studies were carried out (I-X). My PhD thesis from 1998 dealt with pain before the amputation and showed that preamputation pain increases the risk of phantom pain after amputation (I). A perioperative epidural blockade, however, did not reduce the incidence of pain or abnormal sensory phenomena after amputation (II, III). The importance of sensitization before amputation for the subsequent development of pain is supported by study IV, in which pressure pain thresholds obtained at the limb before amputation were inversely related to stump and phantom pain after 1 week. Afferent input from the periphery is likely to contribute to postamputation pain as sodium channels were upregulated in human neuromas (VI), although neuroma removal did not always alleviate phantom pain (V). Sensitization of neurons in the spinal cord also seems to be involved in pain after amputation as phantom pain was reduced by ketamine, an NMDA-receptor antagonist. Another NMDA-receptor antagonist, memantine, and gabapentin, a drug working by binding to the δ2α-subunit of voltage-gated calcium channels, had no effect on phantom pain (VII-IX). Supraspinal factors are also important for pain after amputation as

  10. Study of swelling by simulation

    International Nuclear Information System (INIS)

    Gilbon, D.; Le Naour, L.; Didout, G.

    1983-06-01

    Fuel cans and hexagonal tubes containing the pins must withstand high irradiation doses (220 or even 275 dpa) with a low swelling. Qualification of a new alloy for claddings requires several years of irradiation on a reactor. For a fast first selection simulation by 1MeV electron or heavy ions enhance radiation damages. Principles of these techniques are recalled and some examples mainly with steel 316 are given. Results are compared with results obtained in reactor to determine simulation limits. The method is not valid in the case of a structural instability of the irradiated material in a reactor [fr

  11. Hardware-in-loop simulation of electric vehicles automated mechanical transmission system

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Wu, Y.; Wang, L. [Chinese Academy of Sciences, Beijing (China). Inst. of Electrical Engineering

    2009-03-11

    Automated mechanical transmission (AMT) can be used to enhance the performance of hybrid electric vehicles. In this study, hardware-in-loop (HIL) simulations were used to develop an AMT control system. HIL was used to simulate the running and fault status of the system as well as to optimize its performance. HIL was combined with a commercial simulation tool and an automatic code generation technology in a real time environment tool to develop the AMT control system. A hybrid vehicle system dynamics model was generated and then simulated in various real time operating vehicle environments. Virtual instrument technology was used to develop real time monitoring, parameter matching calibration, data acquisition and offline analyses for the optimization of the control system. Results of the analyses demonstrated that the AMT control system can be used to optimize the performance of hybrid electric vehicles. 5 refs., 9 figs.

  12. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys.

    Science.gov (United States)

    Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi

    2015-06-01

    This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study.

  13. Numerical Simulation of a Mechanically Stacked GaAs/Ge Solar Cell

    Directory of Open Access Journals (Sweden)

    S. Enayat Taghavi Moghaddam

    2017-06-01

    Full Text Available In this paper, GaAs and Ge solar cells have been studied and simulated separately and the inner characteristics of each have been calculated including the energy band structure, the internal field, carrier density distribution in the equilibrium condition (dark condition and the voltage-current curve in the sun exposure with the output power of each one. Finally, the output power of these two mechanically stacked cells is achieved. Drift-diffusion model have been used for simulation that solved with numerically method and Gummel algorithm. In this simulation, the final cells exposed to sun light in a standard AM 1.5 G conditions and temperatures are 300° K. The efficiency of the proposed structure is 9.47%. The analytical results are compared with results of numerical simulations and the accuracy of the method used is shown.

  14. Analysis of pellet cladding mechanical interaction using computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A., E-mail: jose.berretta@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), São Paulo, SP (Brazil). Laboratório de Análise, Avaliação e Gerenciamento de Riscos

    2017-07-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  15. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation.

    Science.gov (United States)

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-06-07

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended "beads-on-a-string" conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA-nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt.

  16. Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram; Zhang, Chao; Sprague, Michael A.; Pesaran, Ahmad

    2016-06-01

    Models capture the force response for single-cell and cell-string levels to within 15%-20% accuracy and predict the location for the origin of failure based on the deformation data from the experiments. At the module level, there is some discrepancy due to poor mechanical characterization of the packaging material between the cells. The thermal response (location and value of maximum temperature) agrees qualitatively with experimental data. In general, the X-plane results agree with model predictions to within 20% (pending faulty thermocouples, etc.); the Z-plane results show a bigger variability both between the models and test-results, as well as among multiple repeats of the tests. The models are able to capture the timing and sequence in voltage drop observed in the multi-cell experiments; the shapes of the current and temperature profiles need more work to better characterize propagation. The cells within packaging experience about 60% less force under identical impact test conditions, so the packaging on the test articles is robust. However, under slow-crush simulations, the maximum deformation of the cell strings with packaging is about twice that of cell strings without packaging.

  17. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations.

    Science.gov (United States)

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-07

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r(-1) term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions.

  18. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction

    Directory of Open Access Journals (Sweden)

    Hao Ma

    2018-01-01

    Full Text Available Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  19. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction.

    Science.gov (United States)

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yi, Yong; Yang, Fan

    2018-01-30

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  20. Operations planning simulation: Model study

    Science.gov (United States)

    1974-01-01

    The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.

  1. Rock mechanics studies for SMES

    International Nuclear Information System (INIS)

    Haimson, B.C.

    1981-01-01

    Superconducting magnetic energy storage (SMES) systems capable of storing thousands of MWh develop tremendous magnetically induced forces when charged. To prevent rutpure of the magnets these forces must be confined. Bedrock offers a practical and relatively inexpensive magnet containment structure. This paper examines the need for rock mechanics research in connection with the construction and use of SMES rock caverns; the unique problems related to housing superconducting magnets in bedrock; site investigations of granite, quartzite and dolomite deposits in Wisconsin; and cavern design requirements to assure cavern stability and limited deformation under the expected mechanical leads. Recommendations are made for siting SMES caverns

  2. Mechanical simulations of sandia II tests OECD ISP 48 benchmark

    International Nuclear Information System (INIS)

    Ghavamian, Sh.; Courtois, A.; Valfort, J.-L.; Heinfling, G.

    2005-01-01

    This paper illustrates the work carried out by EDF within the framework of ISP48 post-test analysis of NUPEC/NRCN 1:4-scale model of a prestressed pressure containment vessel of a nuclear power plant. EDF as a participant of the International Standard Problem n degree 8 has performed several simulations to determine the ultimate response of the scale model. To determine the most influent parameter in such an analysis several studies were carried out. The mesh was built using a parametric tool to measure the influence of discretization on results. Different material laws of concrete were also used. The purpose of this paper is to illustrate the ultimate behaviour of SANDIA II model obtained by Code-Asterwith comparison to tests records, and also to share the lessons learned from the parametric computations and precautions that must be taken. (authors)

  3. Computer Simulation Studies of Trishomocubane Heptapeptide of ...

    African Journals Online (AJOL)

    As part of an extension on the cage peptide chemistry, the present work involves an assessment of the conformational profile of trishomocubane heptapeptide of the type Ac-Ala3-Tris-Ala3-NHMe using molecular dynamics (MD) simulations. All MD protocols were explored within the framework of a molecular mechanics ...

  4. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  5. Dual-energy mammography: simulation studies

    International Nuclear Information System (INIS)

    Bliznakova, K; Kolitsi, Z; Pallikarakis, N

    2006-01-01

    This paper presents a mammography simulator and demonstrates its applicability in feasibility studies in dual-energy (DE) subtraction mammography. This mammography simulator is an evolution of a previously presented x-ray imaging simulation system, which has been extended with new functionalities that are specific for DE simulations. The new features include incident exposure and dose calculations, the implementation of a DE subtraction algorithm as well as amendments to the detector and source modelling. The system was then verified by simulating experiments and comparing their results against published data. The simulator was used to carry out a feasibility study of the applicability of DE techniques in mammography, and more precisely to examine whether this modality could result in better visualization and detection of microcalcifications. Investigations were carried out using a 3D breast software phantom of average thickness, monoenergetic and polyenergetic beam spectra and various detector configurations. Dual-shot techniques were simulated. Results showed the advantage of using monoenergetic in comparison with polyenergetic beams. Optimization studies with monochromatic sources were carried out to obtain the optimal low and high incident energies, based on the assessment of the figure of merit of the simulated microcalcifications in the subtracted images. The results of the simulation study with the optimal energies demonstrated that the use of the DE technique can improve visualization and increase detectability, allowing identification of microcalcifications of sizes as small as 200 μm. The quantitative results are also verified by means of a visual inspection of the synthetic images

  6. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer.

    Science.gov (United States)

    Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José

    2016-11-03

    The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.

  7. Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of Mammalian Quaking STAR protein.

    Science.gov (United States)

    Sharma, Monika; Anirudh, C R

    2017-10-03

    STAR proteins are evolutionary conserved mRNA-binding proteins that post-transcriptionally regulate gene expression at all stages of RNA metabolism. These proteins possess conserved STAR domain that recognizes identical RNA regulatory elements as YUAAY. Recently reported crystal structures show that STAR domain is composed of N-terminal QUA1, K-homology domain (KH) and C-terminal QUA2, and mRNA binding is mediated by KH-QUA2 domain. Here, we present simulation studies done to investigate binding of mRNA to STAR protein, mammalian Quaking protein (QKI). We carried out conventional MD simulations of STAR domain in presence and absence of mRNA, and studied the impact of mRNA on the stability, dynamics and underlying allosteric mechanism of STAR domain. Our unbiased simulations results show that presence of mRNA stabilizes the overall STAR domain by reducing the structural deviations, correlating the 'within-domain' motions, and maintaining the native contacts information. Absence of mRNA not only influenced the essential modes of motion of STAR domain, but also affected the connectivity of networks within STAR domain. We further explored the dissociation of mRNA from STAR domain using umbrella sampling simulations, and the results suggest that mRNA binding to STAR domain occurs in multi-step: first conformational selection of mRNA backbone conformations, followed by induced fit mechanism as nucleobases interact with STAR domain.

  8. Simulation on Mechanical Properties of Tungsten Carbide Thin Films Using Monte Carlo Model

    Directory of Open Access Journals (Sweden)

    Liliam C. Agudelo-Morimitsu

    2012-12-01

    Full Text Available The aim of this paper is to study the mechanical behavior of a system composed by substrate-coating using simulation methods. The contact stresses and the elastic deformation were analyzed by applying a normal load to the surface of the system consisting of a tungsten carbide (WC thin film, which is used as a wear resistant material and a stainless steel substrate. The analysis is based on Monte Carlo simulations using the Metropolis algorithm. The phenomenon was simulated from a fcc facecentered crystalline structure, for both, the coating and the substrate, assuming that the uniaxial strain is taken in the z-axis. Results were obtained for different values of normal applied load to the surface of the coating, obtaining the Strain-stress curves. From this curve, the Young´s modulus was obtained with a value of 600 Gpa, similar to the reports.

  9. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    Science.gov (United States)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  10. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    International Nuclear Information System (INIS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz

  11. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical-Molecular Mechanical Simulations of Proton Transfer in DNA.

    Science.gov (United States)

    Das, Susanta; Nam, Kwangho; Major, Dan Thomas

    2018-03-13

    In recent years, a number of quantum mechanical-molecular mechanical (QM/MM) enzyme studies have investigated the dependence of reaction energetics on the size of the QM region using energy and free energy calculations. In this study, we revisit the question of QM region size dependence in QM/MM simulations within the context of energy and free energy calculations using a proton transfer in a DNA base pair as a test case. In the simulations, the QM region was treated with a dispersion-corrected AM1/d-PhoT Hamiltonian, which was developed to accurately describe phosphoryl and proton transfer reactions, in conjunction with an electrostatic embedding scheme using the particle-mesh Ewald summation method. With this rigorous QM/MM potential, we performed rather extensive QM/MM sampling, and found that the free energy reaction profiles converge rapidly with respect to the QM region size within ca. ±1 kcal/mol. This finding suggests that the strategy of QM/MM simulations with reasonably sized and selected QM regions, which has been employed for over four decades, is a valid approach for modeling complex biomolecular systems. We point to possible causes for the sensitivity of the energy and free energy calculations to the size of the QM region, and potential implications.

  12. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall.

    Science.gov (United States)

    Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B

    2011-11-01

    The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Properties of Syntactic Foam for Simulation of Mechanical Insults.

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Neal Benson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haulenbeek, Kimberly K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spletzer, Matthew A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ortiz, Lyndsy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Syntactic foam encapsulation protects sensitive components. The energy mitigated by the foam is calculated with numerical simulations. The properties of a syntactic foam consisting of a mixture of an epoxy-rubber adduct and glass microballoons are obtained from published literature and test results. The conditions and outcomes of the tests are discussed. The method for converting published properties and test results to input for finite element models is described. Simulations of the test conditions are performed to validate the inputs.

  14. A Nanoscale Simulation Study of Elastic Properties of Gaspeite

    Directory of Open Access Journals (Sweden)

    Benazzouz Brahim-Khalil

    2015-02-01

    Full Text Available The study of structural and mechanical properties of carbonate rock is an interesting subject in engineering and its different applications. In this paper, the crystal structure of gaspeite (NiCO3 is investigated by carrying out molecular dynamics simulations based on energy minimization technique using an interatomic interaction potential.

  15. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    Science.gov (United States)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  16. Quantum mechanical simulations of polymers for molecular electronics and photonics

    International Nuclear Information System (INIS)

    Dupuis, M.; Villar, H.O.; Clementi, E.

    1987-01-01

    Ab initio quantum mechanical studies can play an important role in obtaining a detailed understanding of the electronic structure of existing materials, and in predicting the properties of new ones. In this article the authors give a general outline of their research activity in two areas dealing with new materials, specifically, conducting polymers and polymers with non-linear optical properties. The authors present the strategy followed for the study of these molecular systems, and an overview of their findings concerning the structure of the prototypical conducting polymer, i.e. pure and doped polyacetylene (PA). They focused attention on vibrational spectra and infrared and Raman intensities. The results of self-consistent-field (SCF) calculations on charged soliton-like molecules are consistent with experimental observation. In particular, they show that the theoretically established accidental mutual exclusion of infrared and Raman bands invalidates the requirement formulated on the basis of the interpretation of experimental data, that defects in PA must have local C/sub 2h/ symmetry. These conclusions are derived from extensive calculations for which supercomputer performance was imperative and carried out on the parallel supercomputer assembled at IBM-Kingston as a loosely coupled array of processors (LCAP). The authors briefly describe this computer system which has proven to be ideally suited to the methods of ab initio quantum chemistry

  17. Study of mechanically activated coal combustion

    Directory of Open Access Journals (Sweden)

    Burdukov Anatolij P.

    2009-01-01

    Full Text Available Combustion and air gasification of mechanically activated micro-ground coals in the flux have been studied. Influence of mechanically activated methods at coals grinding on their chemical activeness at combustion and gasification has been determined. Intense mechanical activation of coals increases their chemical activeness that enables development of new highly boosted processing methods for coals with various levels of metamorphism.

  18. An overview of studies in structural mechanics

    International Nuclear Information System (INIS)

    Guilbaud, D.; Blay, N.; Broc, D.; Chaudat, T.; Feau, C.; Sollogoub, P.; Wang, F.; Baj, F.; Bung, H.; Combescure, D.; Lepareux, M.; Phalippou, C.; Bentejac, F.; Hourdequin, N.; Laporte, T.; Millard, A.; Nicolas, L.; Chapuliot, S.; Fissolo, A.; Gourdin, C.; Kayser, Y.; Marie, S.; Reytier, M.; Yuritzinn, T.; Magnaud, J.P.; Braillard, O.; Collard, B.; Gobillot, G.; Mori, V.; Vallory, J.; Pascal-Ribot, S.; Pluyette, E.; Berton, M.N.; Cabrillat, M.T.; Lejeail, Y.

    2006-01-01

    The present report gives an overview of the ongoing research programmes in structural mechanics at CEA/DEN. On the whole, these contributions are well representative of the research work performed, more oriented by engineering concerns than driven by pure academic goals. Fundamentally, the developed knowledge results in new methods and improved engineering and computational tools that can be used for CEA needs and transferred to industrial clients and partners. Basic research is carried out with the help of university laboratories, what allows CEA teams to identify the underlying problems and to address them in an adequate manner. Confrontation with other viewpoints and backgrounds takes place in international cooperative actions conducted with academic or industrial research centres, often giving rise to benchmarks. Due to the wide range of problems submitted to CEA/DEN, the R and D topics are numerous and the effort devoted to each of them is limited and sometimes not continuous. Basic research is of course more limited and needs thorough preparation in order to ensure that the key questions, which lock the progress, are really addressed.. Before to end, it is worth mentioning two original research actions which have begun: -) identification of medium state and representation of its variability by a probabilistic approach: this original approach couples inverse method an probability to obtain non directly measurable value from global effect on structures (for example deduce damage from the displacement of a loaded beam) and should be applied to non destructive identification of present state of nuclear reactor enclosures, -) a program of numerical simulations of fluid-elastic instability of a tube bundle submitted to cross flow has been initiated with an Arbitrary Lagrangian Eulerian -ALE- finite element method to obtain a better knowledge and understanding of the phenomenon. From these simulations, the evolutions of pressure and velocity fields close to fluid

  19. Crop micrometeorology : a simulation study

    NARCIS (Netherlands)

    Goudriaan, J.

    1977-01-01

    This monograph presents the results of a detailed study in micrometeorology; one of the sciences that play an important role in production ecology. The purpose is to explain the microweather as a function of the properties of plant and soil, and of the weather conditions prevalent at some

  20. Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations.

    Science.gov (United States)

    Li, Pengfei; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2018-02-28

    The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.

  1. Development and mechanical properties of construction materials from lunar simulants

    Science.gov (United States)

    Desai, Chandra S.

    1990-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. Currently, this research involves two aspects: (1) liquefaction of lunar simulants with various additives in a furnace so as to produce a construction material like an intermediate ceramic; and (2) cyclic loading of simulant with different initial vacuums and densities with respect to the theoretical maximum densities (TMD). In both cases, bending, triaxial compression, extension, and hydrostatic tests will be performed to define the stress-strain strength response of the resulting materials. In the case of the intermediate ceramic, bending and available multiaxial test devices will be used, while for the compacted case, tests will be performed directly in the new device. The tests will be performed by simulating in situ confining conditions. A preliminary review of high-purity metal is also conducted.

  2. Simulation training for residents focused on mechanical ventilation

    DEFF Research Database (Denmark)

    Spadaro, Savino; Karbing, Dan Stieper; Fogagnolo, Alberto

    2018-01-01

    : This prospective randomized single-blind trial involved 50 residents. All participants attended the same didactic lecture on respiratory pathophysiology and were subsequently randomized into two groups: the mannequin group (n = 25) and the computer screenbased simulator group (n = 25). One week later, each...... rating score [3.0 (2.54.0) vs. 2.0 (2.03.0), P = 0.005] or percentage of key score (82% vs. 71%, P = 0.001). CONCLUSIONS: Mannequin-based simulation has the potential to improve skills in managing MV.This is an open-access article distributed under the terms of the Creative Commons Attribution...

  3. Effect of thermal and mechanical parameter’s damage numerical simulation cycling effects on defects in hot metal forming processes

    Science.gov (United States)

    El Amri, Abdelouahid; el yakhloufi Haddou, Mounir; Khamlichi, Abdellatif

    2017-10-01

    Damage mechanisms in hot metal forming processes are accelerated by mechanical stresses arising during Thermal and mechanical properties variations, because it consists of the materials with different thermal and mechanical loadings and swelling coefficients. In this work, 3D finite element models (FEM) are developed to simulate the effect of Temperature and the stresses on the model development, using a general purpose FE software ABAQUS. Explicit dynamic analysis with coupled Temperature displacement procedure is used for a model. The purpose of this research was to study the thermomechanical damage mechanics in hot forming processes. The important process variables and the main characteristics of various hot forming processes will also be discussed.

  4. Micro-mechanical Simulations of Soils using Massively Parallel Supercomputers

    Directory of Open Access Journals (Sweden)

    David W. Washington

    2004-06-01

    Full Text Available In this research a computer program, Trubal version 1.51, based on the Discrete Element Method was converted to run on a Connection Machine (CM-5,a massively parallel supercomputer with 512 nodes, to expedite the computational times of simulating Geotechnical boundary value problems. The dynamic memory algorithm in Trubal program did not perform efficiently in CM-2 machine with the Single Instruction Multiple Data (SIMD architecture. This was due to the communication overhead involving global array reductions, global array broadcast and random data movement. Therefore, a dynamic memory algorithm in Trubal program was converted to a static memory arrangement and Trubal program was successfully converted to run on CM-5 machines. The converted program was called "TRUBAL for Parallel Machines (TPM." Simulating two physical triaxial experiments and comparing simulation results with Trubal simulations validated the TPM program. With a 512 nodes CM-5 machine TPM produced a nine-fold speedup demonstrating the inherent parallelism within algorithms based on the Discrete Element Method.

  5. Subglacial sediment mechanics investigated by computer simulation of granular material

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Tulaczyk, Slawek

    The mechanical properties of subglacial sediments are known to directly influence the stability of ice streams and fast-moving glaciers, but existing models of granular sediment deformation are poorly constrained. In addition, upscaling to generalized mathematical models is difficult due to the m......The mechanical properties of subglacial sediments are known to directly influence the stability of ice streams and fast-moving glaciers, but existing models of granular sediment deformation are poorly constrained. In addition, upscaling to generalized mathematical models is difficult due....... The numerical method is applied to better understand the mechanical properties of the subglacial sediment and its interaction with meltwater. The computational approach allows full experimental control and offers insights into the internal kinematics, stress distribution, and mechanical stability. During...

  6. Surface effects in solid mechanics models, simulations and applications

    CERN Document Server

    Altenbach, Holm

    2013-01-01

    This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.

  7. Simulating the Effectiveness of an Alternative Salary Auction Mechanism

    National Research Council Canada - National Science Library

    Tan, Pei Yin

    2006-01-01

    ... the incentive of bidders to submit a truthful valuation of the jobs. An alternative auction mechanism that combined elements of both auction theory and matching was proposed to overcome these complications...

  8. Development of mechanical analysis module for simulation of SFR fuel rod behavior using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Andong; Jeong, Hyedong; Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Hyochan; Yang, Yongsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Korean SFR developer decided to adapt metal fuel, current study focused on the metal fuel instead of oxide fuel. The SFR metal fuel has been developed by Korea Atomic Energy Research Institute (KAERI) and many efforts focused on designing and manufacturing the metal fuel. Since a nuclear fuel is the first barrier to protect radioactive isotope release, the fuel's integrity must be secured during steady-state operation and accident condition within an acceptable range. Whereas the design and evaluation methodologies, code systems and test procedures of a light water reactor fuel are sufficiently established, those of the SFR fuel needs more technical advances. In the view of regulatory point, there are still many challenging issues which are required to secure the safety of fuel and reactors. For this reason, the Korea Institute of Nuclear Safety (KINS) has launched the new project to develop the regulatory technology for SFR system including a fuel area. The ALFUS code was developed by CRIEPI and employs mechanistic model for fission gas release and swelling of fuel slug. In the code system, a finite element method was introduced to analyze the fuel and cladding's mechanical behaviors. The FEAST code is more advanced code system for SFR which adopted mechanistic FGR and swelling model but still use analytical model to simulate fuel and cladding mechanical behavior. Based on the survey of the previous studies, fuel and cladding mechanical model should be improved. Analysis of mechanical behavior for fuel rod is crucial to evaluate overall rod's integrity. In addition, it is because contact between fuel slug and cladding or an over-pressure of rod internal pressure can cause rod failure during steady-state and other operation condition. The most of reference codes have simplified mechanical analysis model, so called 'analytical mode', because the detailed mechanical analysis requires large amount of calculation time and computing power. Even

  9. Development of mechanical analysis module for simulation of SFR fuel rod behavior using finite element method

    International Nuclear Information System (INIS)

    Shin, Andong; Jeong, Hyedong; Suh, Namduk; Kim, Hyochan; Yang, Yongsik

    2014-01-01

    Korean SFR developer decided to adapt metal fuel, current study focused on the metal fuel instead of oxide fuel. The SFR metal fuel has been developed by Korea Atomic Energy Research Institute (KAERI) and many efforts focused on designing and manufacturing the metal fuel. Since a nuclear fuel is the first barrier to protect radioactive isotope release, the fuel's integrity must be secured during steady-state operation and accident condition within an acceptable range. Whereas the design and evaluation methodologies, code systems and test procedures of a light water reactor fuel are sufficiently established, those of the SFR fuel needs more technical advances. In the view of regulatory point, there are still many challenging issues which are required to secure the safety of fuel and reactors. For this reason, the Korea Institute of Nuclear Safety (KINS) has launched the new project to develop the regulatory technology for SFR system including a fuel area. The ALFUS code was developed by CRIEPI and employs mechanistic model for fission gas release and swelling of fuel slug. In the code system, a finite element method was introduced to analyze the fuel and cladding's mechanical behaviors. The FEAST code is more advanced code system for SFR which adopted mechanistic FGR and swelling model but still use analytical model to simulate fuel and cladding mechanical behavior. Based on the survey of the previous studies, fuel and cladding mechanical model should be improved. Analysis of mechanical behavior for fuel rod is crucial to evaluate overall rod's integrity. In addition, it is because contact between fuel slug and cladding or an over-pressure of rod internal pressure can cause rod failure during steady-state and other operation condition. The most of reference codes have simplified mechanical analysis model, so called 'analytical mode', because the detailed mechanical analysis requires large amount of calculation time and computing power. Even

  10. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  11. The Framework for Simulation of Bioinspired Security Mechanisms against Network Infrastructure Attacks

    Directory of Open Access Journals (Sweden)

    Andrey Shorov

    2014-01-01

    Full Text Available The paper outlines a bioinspired approach named “network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed prosedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine nessesary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described.

  12. The framework for simulation of bioinspired security mechanisms against network infrastructure attacks.

    Science.gov (United States)

    Shorov, Andrey; Kotenko, Igor

    2014-01-01

    The paper outlines a bioinspired approach named "network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed procedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine necessary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described.

  13. Self-Radiolysis of Tritiated Water: Experimental Study and Simulation

    International Nuclear Information System (INIS)

    Heinze, Sylver; Stolz, Thibaut; Ducret, Didier; Colson, Jean-Claude

    2005-01-01

    Radioactive decay of tritium contained in tritiated water leads to the production of gaseous helium and, through self-radiolysis, to the formation of molecular hydrogen and oxygen. For safety management of tritiated water storage, it is essential to be able to predict pressure increase resulting from this phenomenon. The present study aims to identify the mechanisms that take place in self-radiolysis of chemically pure liquid tritiated water. The evolution of the concentration of hydrogen and oxygen in the gas phase of closed vessels containing tritiated water has been followed experimentally. Simulation of pure water radiolysis has been carried out using data from the literature. In order to fit experimental results, simulation should take into account gas phase recombination reaction between hydrogen and oxygen. A simplified system has been extracted from the complete chemical system used to simulate radiolysis. This system allows identifying the basic mechanisms that are responsible for tritiated water self-radiolysis

  14. Synthesis, Analysis And Simulation Of a Four-Bar Mechanism Using ...

    African Journals Online (AJOL)

    Kinematic synthesis of the four-bar mechanism using the complex number method is presented. The results of the synthesis process are analyzed to determine motion characteristics of the mechanism. These motion characteristics are then used for simulation of the mechanism. Matlab programs are written for solving the ...

  15. Fast Simulation of Mechanical Heterogeneity in the Electrically Asynchronous Heart Using the MultiPatch Module.

    Directory of Open Access Journals (Sweden)

    John Walmsley

    2015-07-01

    Full Text Available Cardiac electrical asynchrony occurs as a result of cardiac pacing or conduction disorders such as left bundle-branch block (LBBB. Electrically asynchronous activation causes myocardial contraction heterogeneity that can be detrimental for cardiac function. Computational models provide a tool for understanding pathological consequences of dyssynchronous contraction. Simulations of mechanical dyssynchrony within the heart are typically performed using the finite element method, whose computational intensity may present an obstacle to clinical deployment of patient-specific models. We present an alternative based on the CircAdapt lumped-parameter model of the heart and circulatory system, called the MultiPatch module. Cardiac walls are subdivided into an arbitrary number of patches of homogeneous tissue. Tissue properties and activation time can differ between patches. All patches within a wall share a common wall tension and curvature. Consequently, spatial location within the wall is not required to calculate deformation in a patch. We test the hypothesis that activation time is more important than tissue location for determining mechanical deformation in asynchronous hearts. We perform simulations representing an experimental study of myocardial deformation induced by ventricular pacing, and a patient with LBBB and heart failure using endocardial recordings of electrical activation, wall volumes, and end-diastolic volumes. Direct comparison between simulated and experimental strain patterns shows both qualitative and quantitative agreement between model fibre strain and experimental circumferential strain in terms of shortening and rebound stretch during ejection. Local myofibre strain in the patient simulation shows qualitative agreement with circumferential strain patterns observed in the patient using tagged MRI. We conclude that the MultiPatch module produces realistic regional deformation patterns in the asynchronous heart and that

  16. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Samuel Hertig

    2016-06-01

    Full Text Available Molecular dynamics (MD simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.

  17. Tensile mechanical properties of Ni-based superalloy of nanophases using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lei; Hu, Wangyu [College of Materials Science and Engineering, Hunan University, Changsha (China); Department of Applied Physics, Hunan University, Changsha (China); Xiao, Shifang; Deng, Huiqiu [Department of Applied Physics, Hunan University, Changsha (China)

    2016-04-15

    The mechanical properties of Ni/Ni{sub 3}Al monocrystal of nanophases with varying temperatures, strain rates, and phase sizes have been studied using molecular dynamics simulation. The simulation results show that the primary deformation mechanisms in Ni/Ni{sub 3}Al monocrystal of nanophases were slip bands and antiphase boundaries at room temperature. The studies on the effects of temperature showed that the yield strain, yield strength, and elastic module decreased as temperature increased. However, the influences of strain rate and phase size on the mechanical properties of Ni/Ni{sub 3}Al monocrystal of nanophases showed that the high strain rate led to the increase of yield stress, and the phase sizes had no significant influence on the maximum yield stress. In addition, the behavior of crack propagation in the model of Ni/Ni{sub 3}Al interface was investigated under cyclic loading, and it was found that the interface of Ni/Ni{sub 3}Al was resistance to the fatigue crack propagation. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Long term study of mechanical

    Directory of Open Access Journals (Sweden)

    Ahmed M. Diab

    2016-06-01

    Full Text Available In this study, properties of limestone cement concrete containing different replacement levels of limestone powder were examined. It includes 0%, 5%, 10%, 15%, 20% and 25% of limestone powder as a partial replacement of cement. Silica fume was added incorporated with limestone powder in some mixes to enhance the concrete properties. Compressive strength, splitting tensile strength and modulus of elasticity were determined. Also, durability of limestone cement concrete with different C3A contents was examined. The weight loss, length change and cube compressive strength loss were measured for concrete attacked by 5% sodium sulfate using an accelerated test up to 525 days age. The corrosion resistance was measured through accelerated corrosion test using first crack time, cracking width and steel reinforcement weight loss. Consequently, for short and long term, the use of limestone up to 10% had not a significant reduction in concrete properties. It is not recommended to use blended limestone cement in case of sulfate attack. The use of limestone cement containing up to 25% limestone has insignificant effect on corrosion resistance before cracking.

  19. Mechanism and simulation of droplet coalescence in molten steel

    Science.gov (United States)

    Ni, Bing; Zhang, Tao; Ni, Hai-qi; Luo, Zhi-guo

    2017-11-01

    Droplet coalescence in liquid steel was carefully investigated through observations of the distribution pattern of inclusions in solidified steel samples. The process of droplet coalescence was slow, and the critical Weber number ( We) was used to evaluate the coalescence or separation of droplets. The relationship between the collision parameter and the critical We indicated whether slow coalescence or bouncing of droplets occurred. The critical We was 5.5, which means that the droplets gradually coalesce when We ≤ 5.5, whereas they bounce when We > 5.5. For the carbonate wire feeding into liquid steel, a mathematical model implementing a combined computational fluid dynamics (CFD)-discrete element method (DEM) approach was developed to simulate the movement and coalescence of variably sized droplets in a bottom-argon-blowing ladle. In the CFD model, the flow field was solved on the premise that the fluid was a continuous medium. Meanwhile, the droplets were dispersed in the DEM model, and the coalescence criterion of the particles was added to simulate the collision- coalescence process of the particles. The numerical simulation results and observations of inclusion coalescence in steel samples are consistent.

  20. Models, simulation, and experimental issues in structural mechanics

    CERN Document Server

    Maceri, Franco; Vairo, Giuseppe

    2017-01-01

    The reader aware in Structural Mechanics will find in this book a source of fruitful knowledge and effective tools useful for imagining, creating, and promoting novel and challenging developments. It addresses a wide range of topics, such as mechanics and geotechnics, vibration and damping, damage and friction, experimental methods, and advanced structural materials. It also discusses analytical, experimental and numerical findings, focusing on theoretical and practical issues, and leading to innovations in the field. Collecting some of the latest results from the Lagrange Laboratory, a European scientific research group, mainly consisting of Italian and French engineers, mechanicians and mathematicians, the book presents the most recent example of the long-term scientific cooperation between well-established French and Italian Mechanics, Mathematics and Engineering Schools. .

  1. Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics

    CERN Document Server

    Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI

    2006-01-01

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  2. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    Science.gov (United States)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  3. Finite element simulation of the mechanism of laser ultrasound induced pain weapon

    Science.gov (United States)

    Zhou, Bo; Zhan, Ren Jun; Shan, Ning

    2018-03-01

    The Laser-Ultrasonic technique uses laser energy to generate ultrasound waves in various solids. In normal conditions, this technique is used to inspect large structures without destruction, but in military use, we hope get this destruction. Nociceptors in Human skin can feel cold, heat, mechanical and other stimuli, when the stimulus exceeds a certain threshold will produce pain. Based on this principle, a laser induced pain weapon may be made. The generated ultrasound wave form is affected by features of laser pulse. The results obtained from the finite element model of laser generated ultrasound are presented in terms of temperature and displacement. At first step, the transient temperature field can be precisely calculated by using the finite element method. Then, laser generated surface acoustic wave forms are calculated by coupling the temperature distribution. Displacement is used to represent the mechanical action of skin caused by laser ultrasound. Results from numerical simulation are compared with other references; the accuracy of the method is proved accordingly. The results of simulation in the given conditions demonstrate that the stresses generated by pulse laser in human skin model were about -8 and +4 MPa. According to the results of simulation, the max and min stress are both emerged in the range of 0 600 um, that is exactly the location of myelinated Aδ and unmyelinated C nociceptor. The value of stress is can be adjusted by chose suitable parameters of laser. The study provides a possibility for developing a new non-lethal weapon to control riots or crowd.

  4. Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations

    International Nuclear Information System (INIS)

    Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; Uchic, M.D.; Tang, M.; Woodward, C.

    2008-01-01

    Recent experimental studies have revealed that micrometer-scale face-centered cubic (fcc) crystals show strong strengthening effects, even at high initial dislocation densities. We use large-scale three-dimensional discrete dislocation simulations (DDS) to explicitly model the deformation behavior of fcc Ni microcrystals in the size range of 0.5-20 μm. This study shows that two size-sensitive athermal hardening processes, beyond forest hardening, are sufficient to develop the dimensional scaling of the flow stress, stochastic stress variation, flow intermittency and high initial strain-hardening rates, similar to experimental observations for various materials. One mechanism, source-truncation hardening, is especially potent in micrometer-scale volumes. A second mechanism, termed exhaustion hardening, results from a breakdown of the mean-field conditions for forest hardening in small volumes, thus biasing the statistics of ordinary dislocation processes

  5. Measurements and Simulations on the Mechanisms of Efficiency Losses in HIT Solar Cells

    Directory of Open Access Journals (Sweden)

    Silvio Pierro

    2015-01-01

    Full Text Available We study the electrical and the optical behavior of HIT solar cell by means of measurements and optoelectrical simulations by TCAD simulations. We compare the HIT solar cell with a conventional crystalline silicon solar cell to identify the strengths and weaknesses of the HIT technology. Results highlight different mechanisms of electrical and optical efficiency losses caused by the presence of the amorphous silicon layer. The higher resistivity of the a-Si layers implies a smaller distance between the metal lines that causes a higher shadowing. The worst optical coupling between the amorphous silicon and the antireflective coating implies a slight increase of reflectivity around the 600 nm wavelength.

  6. Development and application of a chemistry mechanism for mesoscale simulations of the troposphere and lower stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, E.; Hendricks, J.; Petry, H. [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1997-12-31

    A new chemical mechanism is applied for mesoscale simulations of the impact of aircraft exhausts on the atmospheric composition. The temporal and spatial variation of the tropopause height is associated with a change of the trace gas composition in these heights. Box and three dimensional mesoscale model studies show that the conversion of aircraft exhausts depends strongly on the cruise heights as well as on the location of release in relation to the tropopause. The impact of aircraft emissions on ozone is strongly dependent on the individual meteorological situation. A rising of the tropopause height within a few days results in a strong increase of ozone caused by aircraft emissions. (author) 12 refs.

  7. New jump mechanisms for dumbbell and induced migration of point defects by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Doan, N.V.; Pontikis, V.; Tenenbaum, A.

    1978-01-01

    The induced migration of the (100) - dumbbell is studied using the molecular dynamics simulation. Two new types of jumps are discovered for the dumbbell: first the jump takes place through an intermediate crowdion configuration (110), then the crowdion is converted into the dumbbell configuration with some other orientation. The threshold energy is found for different knocked-on directions. The dependence of the interstitial jump frequency on the incident electron energy is determined for copper. The induced interstitial migration shows a maximum value, but for an electron energy around 15 Kev. The effect of new jump mechanisms on the effective recombination volume is discussed

  8. Development and application of a chemistry mechanism for mesoscale simulations of the troposphere and lower stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, E; Hendricks, J; Petry, H [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1998-12-31

    A new chemical mechanism is applied for mesoscale simulations of the impact of aircraft exhausts on the atmospheric composition. The temporal and spatial variation of the tropopause height is associated with a change of the trace gas composition in these heights. Box and three dimensional mesoscale model studies show that the conversion of aircraft exhausts depends strongly on the cruise heights as well as on the location of release in relation to the tropopause. The impact of aircraft emissions on ozone is strongly dependent on the individual meteorological situation. A rising of the tropopause height within a few days results in a strong increase of ozone caused by aircraft emissions. (author) 12 refs.

  9. Preliminary simulation study of doppler reflectometry

    International Nuclear Information System (INIS)

    Ishii, Yuta; Hojo, Hitoshi; Yoshikawa, Masashi; Ichimura, Makoto; Haraguchi, Yusuke; Imai, Tsuyoshi; Mase, Atsushi

    2010-01-01

    A preliminary simulation study of Doppler reflectometry is performed. The simulations solve Maxwell's equations by a finite difference time domain (FDTD) code method in two dimensions. A moving corrugated metal target is used as a plasma cutoff layer to study the basic features of Doppler reflectometry. We examined the effects of the full width at half maximum (FWHM) of the electromagnetic waves and the corrugation depth of the metal target. Furthermore, the effect of a nonuniform plasma is studied using this FDTD analysis. The Doppler shift and velocity are compared with those obtained from FDTD analysis of a uniform plasma. (author)

  10. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.

    Science.gov (United States)

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  11. Molecular dynamics simulations indicate that deoxyhemoglobin, oxyhemoglobin, carboxyhemoglobin, and glycated hemoglobin under compression and shear exhibit an anisotropic mechanical behavior.

    Science.gov (United States)

    Yesudasan, Sumith; Wang, Xianqiao; Averett, Rodney D

    2018-05-01

    We developed a new mechanical model for determining the compression and shear mechanical behavior of four different hemoglobin structures. Previous studies on hemoglobin structures have focused primarily on overall mechanical behavior; however, this study investigates the mechanical behavior of hemoglobin, a major constituent of red blood cells, using steered molecular dynamics (SMD) simulations to obtain anisotropic mechanical behavior under compression and shear loading conditions. Four different configurations of hemoglobin molecules were considered: deoxyhemoglobin (deoxyHb), oxyhemoglobin (HbO 2 ), carboxyhemoglobin (HbCO), and glycated hemoglobin (HbA 1C ). The SMD simulations were performed on the hemoglobin variants to estimate their unidirectional stiffness and shear stiffness. Although hemoglobin is structurally denoted as a globular protein due to its spherical shape and secondary structure, our simulation results show a significant variation in the mechanical strength in different directions (anisotropy) and also a strength variation among the four different hemoglobin configurations studied. The glycated hemoglobin molecule possesses an overall higher compressive mechanical stiffness and shear stiffness when compared to deoxyhemoglobin, oxyhemoglobin, and carboxyhemoglobin molecules. Further results from the models indicate that the hemoglobin structures studied possess a soft outer shell and a stiff core based on stiffness.

  12. Mechanisms of gas generation from simulated SY tank farm wastes: FY 1995 progress report

    International Nuclear Information System (INIS)

    Barefield, E.K.; Boatright, D.; Deshpande, A.; Doctorovich, F.; Liotta, C.L.; Neumann, H.M.; Seymore, S.

    1996-07-01

    The objective of this work is to develop a better understanding of the mechanism of formation of flammable gases in the thermal decomposition of metal complexants such as HEDTA and sodium glycolate in simulated SY tank farm waste mixtures. This report summarizes the results of work done at the Georgia Institute of Technology in fiscal year 1995. Topics discussed are (1) long-term studies of the decomposition of HEDTA in simulated waste mixtures under an argon atmosphere at 90 and 120 degrees C, including time profiles for disappearance of HEDTA and appearance of products and the quantitative analysis of the kinetic behavior; (2) considerations of hydroxylamine as an intermediate in the production of nitrogen containing gases by HEDTA decomposition; (3) some thoughts on the revision of the global mechanism for thermal decomposition of HEDTA under argon; (4) preliminary long-term studies of the decomposition of HEDTA in simulated waste under an oxygen atmosphere at 120 degrees C; (5) estimation of the amount of NH 3 in the gas phase above HEDTA reaction mixtures; and (6) further, examination of the interaction of aluminum with nitrite ion using 27 Al NMR spectroscopy. Section 2 of this report describes the work conducted over the last three years at GIT. Section 3 contains a discussion of the kinetic behavior of HEDTA under argon; Section 4 discusses the role of hydroxylamine. Thermal decomposition of HEDTA to ED3A is the subject of Section 5, and decomposition of HEDTA in simulated waste mixtures under oxygen is covered in Section 6. In Section 7 we estimate ammonia in the gas phase; the role of aluminum is discussed in Section 8

  13. Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid).

    Science.gov (United States)

    Beltrán, F R; Lorenzo, V; Acosta, J; de la Orden, M U; Martínez Urreaga, J

    2018-06-15

    The aim of this work is to study the effects of different simulated mechanical recycling processes on the structure and properties of PLA. A commercial grade of PLA was melt compounded and compression molded, then subjected to two different recycling processes. The first recycling process consisted of an accelerated ageing and a second melt processing step, while the other recycling process included an accelerated ageing, a demanding washing process and a second melt processing step. The intrinsic viscosity measurements indicate that both recycling processes produce a degradation in PLA, which is more pronounced in the sample subjected to the washing process. DSC results suggest an increase in the mobility of the polymer chains in the recycled materials; however the degree of crystallinity of PLA seems unchanged. The optical, mechanical and gas barrier properties of PLA do not seem to be largely affected by the degradation suffered during the different recycling processes. These results suggest that, despite the degradation of PLA, the impact of the different simulated mechanical recycling processes on the final properties is limited. Thus, the potential use of recycled PLA in packaging applications is not jeopardized. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    International Nuclear Information System (INIS)

    Butcher, B.M.; Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C.

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs

  15. Simulating Flaring Events via an Intelligent Cellular Automata Mechanism

    Science.gov (United States)

    Dimitropoulou, M.; Vlahos, L.; Isliker, H.; Georgoulis, M.

    2010-07-01

    We simulate flaring events through a Cellular Automaton (CA) model, in which, for the first time, we use observed vector magnetograms as initial conditions. After non-linear force free extrapolation of the magnetic field from the vector magnetograms, we identify magnetic discontinuities, using two alternative criteria: (1) the average magnetic field gradient, or (2) the normalized magnetic field curl (i.e. the current). Magnetic discontinuities are identified at the grid-sites where the magnetic field gradient or curl exceeds a specified threshold. We then relax the magnetic discontinuities according to the rules of Lu and Hamilton (1991) or Lu et al. (1993), i.e. we redistribute the magnetic field locally so that the discontinuities disappear. In order to simulate the flaring events, we consider several alternative scenarios with regard to: (1) The threshold above which magnetic discontinuities are identified (applying low, high, and height-dependent threshold values); (2) The driving process that occasionally causes new discontinuities (at randomly chosen grid sites, magnetic field increments are added that are perpendicular (or may-be also parallel) to the existing magnetic field). We address the question whether the coronal active region magnetic fields can indeed be considered to be in the state of self-organized criticality (SOC).

  16. Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1977-01-01

    Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions

  17. Mechanical characterization of diesel soot nanoparticles: in situ compression in a transmission electron microscope and simulations

    Science.gov (United States)

    Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup

    2018-02-01

    Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.

  18. Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics

    International Nuclear Information System (INIS)

    Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.

    1992-09-01

    Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs

  19. Functional mechanism of C-terminal tail in the enzymatic role of porcine testicular carbonyl reductase: a combined experiment and molecular dynamics simulation study of the C-terminal tail in the enzymatic role of PTCR.

    Directory of Open Access Journals (Sweden)

    Minky Son

    Full Text Available Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C-terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV. Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily.

  20. Digital Simulation Games for Social Studies Classrooms

    Science.gov (United States)

    Devlin-Scherer, Roberta; Sardone, Nancy B.

    2010-01-01

    Data from ten teacher candidates studying teaching methods were analyzed to determine perceptions toward digital simulation games in the area of social studies. This research can be used as a conceptual model of how current teacher candidates react to new methods of instruction and determine how education programs might change existing curricula…

  1. Comprehensive Validation of Skeletal Mechanism for Turbulent Premixed Methane–Air Flame Simulations

    KAUST Repository

    Luca, Stefano

    2017-08-01

    A new skeletal mechanism, consisting of 16 species and 72 reactions, has been developed for lean methane–air premixed combustion from the GRI-Mech 3.0. The skeletal mechanism is validated for elevated unburnt temperatures (800 K) and pressures up to 4 atm, thereby addressing realistic gas turbine conditions. The skeletal mechanism is obtained by applying the directed relation graph method and performing sensitivity analysis on the detailed mechanism. The mechanism has been validated for flame speed and flame structure in a wide range of conditions and configurations. A good agreement between the skeletal mechanism and GRI-3.0 was obtained. The configurations considered include one-dimension laminar premixed flames, laminar non-premixed counterflow burners, and two- and three-dimensional unsteady configurations with variations of temperature, pressure, and composition. The skeletal mechanism allows for the inclusion of accurate finite rate chemistry in large-scale direct numerical simulations of lean turbulent premixed flames. In a large-scale direct numerical simulation, the use of the skeletal mechanism reduces the memory requirements by more than a factor of 3 and accelerates the simulation by a factor of 7 compared with the detailed mechanism. The skeletal mechanism is suitable for unsteady three-dimensional simulations of methane turbulent premixed, non-premixed, and globally lean partially premixed flames and is available as supplementary material.

  2. Dynamic simulation of road vehicle door window regulator mechanism of cross arm type

    Science.gov (United States)

    Miklos, I. Zs; Miklos, C.; Alic, C.

    2017-01-01

    The paper presents issues related to the dynamic simulation of a motor-drive operating mechanism of cross arm type, for the manipulation of road vehicle door windows, using Autodesk Inventor Professional software. The dynamic simulation of the mechanism involves a 3D modelling, kinematic coupling, drive motion parameters and external loads, as well as the graphically view of the kinematic and kinetostatic results for the various elements and kinematic couplings of the mechanism, under real operating conditions. Also, based on the results, the analysis of the mechanism components has been carried out using the finite element method.

  3. Dynamic Simulation and Analysis of Human Walking Mechanism

    Science.gov (United States)

    Azahari, Athirah; Siswanto, W. A.; Ngali, M. Z.; Salleh, S. Md.; Yusup, Eliza M.

    2017-01-01

    Behaviour such as gait or posture may affect a person with the physiological condition during daily activities. The characteristic of human gait cycle phase is one of the important parameter which used to described the human movement whether it is in normal gait or abnormal gait. This research investigates four types of crouch walking (upright, interpolated, crouched and severe) by simulation approach. The assessment are conducting by looking the parameters of hamstring muscle joint, knee joint and ankle joint. The analysis results show that based on gait analysis approach, the crouch walking have a weak pattern of walking and postures. Short hamstring and knee joint is the most influence factor contributing to the crouch walking due to excessive hip flexion that typically accompanies knee flexion.

  4. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-03-23

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste [HLW]) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  5. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    International Nuclear Information System (INIS)

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-01-01

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste (HLW)) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  6. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Thomas [California Inst. of Technology (CalTech), Pasadena, CA (United States); Efendiev, Yalchin [Stanford Univ., CA (United States); Tchelepi, Hamdi [Texas A & M Univ., College Station, TX (United States); Durlofsky, Louis [Stanford Univ., CA (United States)

    2016-05-24

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.

  7. Study of plasticity in metals by numerical simulations

    International Nuclear Information System (INIS)

    Clouet, E.

    2013-01-01

    We present a study of the plastic behaviour in metals based on the modelling of dislocation properties. Different simulation tools have been used and developed to study plasticity in structural materials, in particular metals used in the nuclear industry. In iron or zirconium alloys, plasticity is controlled at low temperature by the glide of screw dislocations. Atomistic simulations can be used to model dislocation core properties and thus to obtain a better knowledge of the mechanisms controlling dislocation glide. Such atomistic simulations need nevertheless some special care because of the long range elastic field induced by the dislocations. We have therefore developed a modelling approach relying both on atomistic simulations, using either empirical interatomic potentials or ab initio calculations, and on elasticity theory. Such an approach has been used to obtain dislocation intrinsic core properties. These simulations allowed us to describe, in iron, the variations of these core properties with the dislocation character. In zirconium, we could identity the origin of the high lattice friction and obtain a better understanding of the competition between the different glide systems. At high temperature, dislocations do not only glide but can also cross-slip or climb. This leads to a motion of the dislocations out of their glide plane which needs to be considered when modelling the plastic flow. We performed a study of dislocation climb at different scales, leading to the implementation of a dislocation climb model in dislocation dynamics simulations. (author) [fr

  8. NEMD study for supercavitation mechanism with underwater object

    Energy Technology Data Exchange (ETDEWEB)

    Gong Bozhi [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang Bingjian [Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027 (China)], E-mail: zbj@mail.ha.zj.cn; Zhang Hui [Department of Chemistry, Ohio State University, Columbus, OH 43210 (United States)

    2008-11-24

    An open system model was introduced for Non-Equilibrium Molecular Dynamics (NEMD) simulation for studying flow phenomenon surrounding different underwater object. Cavitation number {sigma} criterion was proved to be applicable in predicting local cavitation mechanism. An interesting phenomenon was found that low {sigma} areas and actual cavities were spatially separated in molecular scale, and stable supercavitation would require a large enough low {sigma} area to sustain. Effects of cavitator shape and flow velocity were compared with macro scale flow under similar {sigma}, providing a new computational method to study the molecular scale mechanism of this phenomenon.

  9. NEMD study for supercavitation mechanism with underwater object

    International Nuclear Information System (INIS)

    Gong Bozhi; Zhang Bingjian; Zhang Hui

    2008-01-01

    An open system model was introduced for Non-Equilibrium Molecular Dynamics (NEMD) simulation for studying flow phenomenon surrounding different underwater object. Cavitation number σ criterion was proved to be applicable in predicting local cavitation mechanism. An interesting phenomenon was found that low σ areas and actual cavities were spatially separated in molecular scale, and stable supercavitation would require a large enough low σ area to sustain. Effects of cavitator shape and flow velocity were compared with macro scale flow under similar σ, providing a new computational method to study the molecular scale mechanism of this phenomenon

  10. A graphical simulation software for instruction in cardiovascular mechanics physiology

    Directory of Open Access Journals (Sweden)

    Wenger Roland H

    2011-01-01

    Full Text Available Abstract Background Computer supported, interactive e-learning systems are widely used in the teaching of physiology. However, the currently available complimentary software tools in the field of the physiology of cardiovascular mechanics have not yet been adapted to the latest systems software. Therefore, a simple-to-use replacement for undergraduate and graduate students' education was needed, including an up-to-date graphical software that is validated and field-tested. Methods Software compatible to Windows, based on modified versions of existing mathematical algorithms, has been newly developed. Testing was performed during a full term of physiological lecturing to medical and biology students. Results The newly developed CLabUZH software models a reduced human cardiovascular loop containing all basic compartments: an isolated heart including an artificial electrical stimulator, main vessels and the peripheral resistive components. Students can alter several physiological parameters interactively. The resulting output variables are printed in x-y diagrams and in addition shown in an animated, graphical model. CLabUZH offers insight into the relations of volume, pressure and time dependency in the circulation and their correlation to the electrocardiogram (ECG. Established mechanisms such as the Frank-Starling Law or the Windkessel Effect are considered in this model. The CLabUZH software is self-contained with no extra installation required and runs on most of today's personal computer systems. Conclusions CLabUZH is a user-friendly interactive computer programme that has proved to be useful in teaching the basic physiological principles of heart mechanics.

  11. Estudio del comportamiento mecánico de un sistema recubierto mediante simulación computacional del ensayo de rayado//Mechanical Behavior study of a coated system by computer simulation of the scratch test

    Directory of Open Access Journals (Sweden)

    Eduardo A. Pérez Ruiz

    2015-05-01

    Full Text Available Una forma de evaluar un sistema recubierto es a través del ensayo de rayado. Los resultados obtenidos dependen de variables como: propiedades y geometría del indentador, tasa de carga, tasa de desplazamiento, propiedades de los materiales del sistema a evaluar como dureza, módulo elástico, microestructura, rugosidad superficial, espesor, entre otras. El presente trabajo analizó, a través de simulación computacional del ensayo de rayado, el efecto que tiene la geometría del indentador (cónica y esférica, la carga de rayado (20 N y 50 N, el espesor del recubrimiento (2,1 µm y 4,6 µm y el coeficiente de fricción (0,3 y 0,5 en el comportamiento de los esfuerzos y la deformación plástica en la superficie de un sistema recubierto. Los resultados sugieren que el coeficiente de fricción como variable de ensayo tiene una alta importancia en el comportamiento mecánico del sistema recubierto.Palabras claves: ensayo de rayado, simulación computacional, sistema recubierto.______________________________________________________________________________AbstractOne way to evaluate a coated system is through the scratch test. The results obtained depend of the variables including mechanical properties and geometry of indenter, loading, displacement, material properties in the system as hardness, elastic modulus, microstructure, roughness surface, thickness, among others, which are indicated in ASTM C1624 / 05. This paper analyzes through scratch test simulation, the effect of the indenter geometry (conical and spherical, the loading (20 N and 50 N, the thickness coating (2,1 µm and 4,6 µm and the friction coefficient values (0,3 and 0,5 in the stresses and plastic deformation behavior at the surface of a coated system. The results suggest that the coefficient of friction has a high importance in the mechanical performance of the coated system.Key words: scratch test, computacional simulation, coated system.

  12. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    Science.gov (United States)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  13. MHD simulation study of compact toroid injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Kishimoto, Yasuaki

    2000-01-01

    To understand the fuelling process in a fusion device by a compact toroid (CT) plasmoid injection method, we have carried out MHD numerical simulations where a spheromak-like CT (SCT) is injected into a magnetized target plasma region. So far, we revealed that the penetration depth of the SCT plasma becomes shorter than that estimated from the conducting sphere (CS) model, because in the simulation the Lorentz force of the target magnetic field sequentially decelerates the injected SCT while in the CS model only the magnetic pressure force acts as the deceleration mechanism. In this study, we represent the new theoretical model where the injected SCT is decelerated by both the magnetic pressure force and the magnetic tension force (we call it the non-slipping sphere (NS) model) and investigate in detail the deceleration mechanism of the SCT by comparison with simulation results. As a result, it is found that the decrease of the SCT kinetic energy in the simulation coincides with that in the NS model more than in the CS model. It means that not only the magnetic pressure force but also the magnetic tension force acts as the deceleration mechanism of the SCT. Furthermore, it is revealed that magnetic reconnection between the SCT magnetic field and the target magnetic field plays a role to relax the SCT deceleration. (author)

  14. Simulating the mammalian blastocyst--molecular and mechanical interactions pattern the embryo.

    Directory of Open Access Journals (Sweden)

    Pawel Krupinski

    2011-05-01

    Full Text Available Mammalian embryogenesis is a dynamic process involving gene expression and mechanical forces between proliferating cells. The exact nature of these interactions, which determine the lineage patterning of the trophectoderm and endoderm tissues occurring in a highly regulated manner at precise periods during the embryonic development, is an area of debate. We have developed a computational modeling framework for studying this process, by which the combined effects of mechanical and genetic interactions are analyzed within the context of proliferating cells. At a purely mechanical level, we demonstrate that the perpendicular alignment of the animal-vegetal (a-v and embryonic-abembryonic (eb-ab axes is a result of minimizing the total elastic conformational energy of the entire collection of cells, which are constrained by the zona pellucida. The coupling of gene expression with the mechanics of cell movement is important for formation of both the trophectoderm and the endoderm. In studying the formation of the trophectoderm, we contrast and compare quantitatively two hypotheses: (1 The position determines gene expression, and (2 the gene expression determines the position. Our model, which couples gene expression with mechanics, suggests that differential adhesion between different cell types is a critical determinant in the robust endoderm formation. In addition to differential adhesion, two different testable hypotheses emerge when considering endoderm formation: (1 A directional force acts on certain cells and moves them into forming the endoderm layer, which separates the blastocoel and the cells of the inner cell mass (ICM. In this case the blastocoel simply acts as a static boundary. (2 The blastocoel dynamically applies pressure upon the cells in contact with it, such that cell segregation in the presence of differential adhesion leads to the endoderm formation. To our knowledge, this is the first attempt to combine cell-based spatial

  15. Simulator Studies of the Deep Stall

    Science.gov (United States)

    White, Maurice D.; Cooper, George E.

    1965-01-01

    Simulator studies of the deep-stall problem encountered with modern airplanes are discussed. The results indicate that the basic deep-stall tendencies produced by aerodynamic characteristics are augmented by operational considerations. Because of control difficulties to be anticipated in the deep stall, it is desirable that adequate safeguards be provided against inadvertent penetrations.

  16. Preliminary simulation studies of accelerator cavity loading

    International Nuclear Information System (INIS)

    Faehl, R.J.

    1980-06-01

    Two-dimensional simulations of loading effects in a 350 MHz accelerator cavity have been performed. Electron currents of 1-10 kA have been accelerated in 5 MV/m fields. Higher order cavity modes induced by the beam may lead to emittance growth. Operation in an autoaccelerator mode has been studied

  17. QuVis interactive simulations: tools to support quantum mechanics instruction

    Science.gov (United States)

    Kohnle, Antje

    2015-04-01

    Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.

  18. Driving Simulator Development and Performance Study

    OpenAIRE

    Juto, Erik

    2010-01-01

    The driving simulator is a vital tool for much of the research performed at theSwedish National Road and Transport Institute (VTI). Currently VTI posses three driving simulators, two high fidelity simulators developed and constructed by VTI, and a medium fidelity simulator from the German company Dr.-Ing. Reiner Foerst GmbH. The two high fidelity simulators run the same simulation software, developed at VTI. The medium fidelity simulator runs a proprietary simulation software. At VTI there is...

  19. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    Directory of Open Access Journals (Sweden)

    Lucas eBrely

    2015-07-01

    Full Text Available In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  20. Theoretical study of coupling mechanisms between oxygen diffusion, chemical reaction, mechanical stresses in a solid-gas reactive system

    International Nuclear Information System (INIS)

    Creton, N.; Optasanu, V.; Montesin, T.; Garruchet, S.

    2008-01-01

    This paper offers a study of oxygen dissolution into a solid, and its consequences on the mechanical behaviour of the material. In fact, mechanical strains strongly influence the oxidation processes and may be, in some materials, responsible for cracking. To realize this study, mechanical considerations are introduced into the classical diffusion laws. Simulations were made for the particular case of uranium dioxide, which undergoes the chemical fragmentation. According to our simulations, the hypothesis of a compression stress field into the oxidised UO 2 compound near the internal interface is consistent with some oxidation mechanisms of oxidation experimentally observed. More generally, this work will be extended to the simulation to an oxide layer growth on a metallic substrate. (authors)

  1. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    Science.gov (United States)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  2. Some experimental considerations regarding ion beam simulation of neutron irradiation for mechanical property measurements

    International Nuclear Information System (INIS)

    Styris, D.L.; Jones, R.H.; Harling, O.K.; Kulcinski, G.L.; Marshall, R.P.

    1975-01-01

    A preliminary assessment of the requirements for mechanical property data related to CTR materials is given. The status of ion simulation for mechanical property measurements is described. A damage analysis and calculations for light ions are presented along with sample size, heating and cooling, and surface considerations

  3. Simulation of the mechanical behavior of a spent fuel shipping cask in a rail accident environment

    International Nuclear Information System (INIS)

    Fields, S.R.

    1977-02-01

    A preliminary mathematical model has been developed to simulate the dynamic mechanical response of a large spent fuel shipping cask to the impact experienced in a hypothetical rail accident. The report was written to record the status of the development of the mechanical response model and to supplement an earlier report on spent fuel shipping cask accident evaluation

  4. Study, simulation and design of a 3D clinostat

    Science.gov (United States)

    Pavone, Valentina; Guarnieri, Vincenzo; Lobascio, Cesare; Soma, Aurelio; Bosso, Nicola; Lamantea, Matteo Maria

    High cost and limited number of physically executable experiments in space have introduced the need for ground simulation systems that enable preparing experiments to be carried out on board, identifying phenomena associated with the altered gravity conditions, and taking advantage of these conditions, as in Biotechnology. Among systems developed to simulate microgravity, especially for life sciences experiments, different types of clinostats were realized. This work deals with mechanical design of a three-dimensional clinostat and simulation of the dynamic behavior of the system by varying the operating parameters. The design and simulation phase was preceded by a careful analysis of the state of art and by the review of the most recent results, in particular from the major investigators of Life Sciences in Space. The mechanical design is quite innovative by adoption of a structure entirely in aluminum, which allows robustness while reducing the overall weight. The transmission system of motion has been optimized by means of brushless DC micro motors, light and compact, which helped to reduce weight, dimensions, power consumption and increase the reliability and durability of the system. The study of the dynamic behavior using SIMPACK, a multibody simulation software, led to results in line with those found in the most important and recent scientific publications. This model was also appropriately configured to represent any desired operating condition, and for eventual system scalability. It would be interesting to generate simulated hypogravity - e.g.: 0.38-g (Mars) or 0.17-g (Moon). This would allow to investigate how terrestrial life forms can grow in other planetary habitats, or to determine the gravity threshold response of different organisms. At the moment, such a system can only be achieved by centrifuges in real microgravity. We are confident that simulation and associated tests with our 3D clinostat can help adjusting the parameters allowing variable g

  5. Numerical Simulation of Airfoil Aerodynamic Penalties and Mechanisms in Heavy Rain

    Directory of Open Access Journals (Sweden)

    Zhenlong Wu

    2013-01-01

    Full Text Available Numerical simulations that are conducted on a transport-type airfoil, NACA 64-210, at a Reynolds number of 2.6×106 and LWC of 25 g/m3 explore the aerodynamic penalties and mechanisms that affect airfoil performance in heavy rain conditions. Our simulation results agree well with the experimental data and show significant aerodynamic penalties for the airfoil in heavy rain. The maximum percentage decrease in CL is reached by 13.2% and the maximum percentage increase in CD by 47.6%. Performance degradation in heavy rain at low angles of attack is emulated by an originally creative boundary-layer-tripped technique near the leading edge. Numerical flow visualization technique is used to show premature boundary-layer separation at high angles of attack and the particulate trajectories at various angles of attack. A mathematic model is established to qualitatively study the water film effect on the airfoil geometric changes. All above efforts indicate that two primary mechanisms are accountable for the airfoil aerodynamic penalties. One is to cause premature boundary-layer transition at low AOA and separation at high AOA. The other occurs at times scales consistent with the water film layer, which is thought to alter the airfoil geometry and increase the mass effectively.

  6. [The virtual reality simulation research of China Mechanical Virtual Human based on the Creator/Vega].

    Science.gov (United States)

    Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng

    2010-10-01

    The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.

  7. Mechanical properties of nano and bulk Fe pillars using molecular dynamics and dislocation dynamics simulation

    Directory of Open Access Journals (Sweden)

    S. K. Deb Nath

    2017-10-01

    Full Text Available Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young’s modulus and yield strength. Then the comparative study of Young’s modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young’s modulus and yield strength of a Fe nanopillar are higher than those of tension Young’s modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009.

  8. Reduction of very large reaction mechanisms using methods based on simulation error minimization

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Tibor; Turanyi, Tamas [Institute of Chemistry, Eoetvoes University (ELTE), P.O. Box 32, H-1518 Budapest (Hungary)

    2009-02-15

    A new species reduction method called the Simulation Error Minimization Connectivity Method (SEM-CM) was developed. According to the SEM-CM algorithm, a mechanism building procedure is started from the important species. Strongly connected sets of species, identified on the basis of the normalized Jacobian, are added and several consistent mechanisms are produced. The combustion model is simulated with each of these mechanisms and the mechanism causing the smallest error (i.e. deviation from the model that uses the full mechanism), considering the important species only, is selected. Then, in several steps other strongly connected sets of species are added, the size of the mechanism is gradually increased and the procedure is terminated when the error becomes smaller than the required threshold. A new method for the elimination of redundant reactions is also presented, which is called the Principal Component Analysis of Matrix F with Simulation Error Minimization (SEM-PCAF). According to this method, several reduced mechanisms are produced by using various PCAF thresholds. The reduced mechanism having the least CPU time requirement among the ones having almost the smallest error is selected. Application of SEM-CM and SEM-PCAF together provides a very efficient way to eliminate redundant species and reactions from large mechanisms. The suggested approach was tested on a mechanism containing 6874 irreversible reactions of 345 species that describes methane partial oxidation to high conversion. The aim is to accurately reproduce the concentration-time profiles of 12 major species with less than 5% error at the conditions of an industrial application. The reduced mechanism consists of 246 reactions of 47 species and its simulation is 116 times faster than using the full mechanism. The SEM-CM was found to be more effective than the classic Connectivity Method, and also than the DRG, two-stage DRG, DRGASA, basic DRGEP and extended DRGEP methods. (author)

  9. Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Zhang, Liangchi; Liu, Youwen

    2015-01-01

    Highlights: • Molecular dynamic model of nanoscale high speed grinding of silicon workpiece has been established. • The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation during high speed grinding process are thoroughly investigated. • Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle. • The hydrostatic stress and von Mises stress by the established analytical model are studied subsurface damage mechanism during nanoscale grinding. - Abstract: Three-dimensional molecular dynamics (MD) simulations are performed to investigate the nanoscale grinding process of single crystal silicon using diamond tool. The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation are studied. We also establish an analytical model to calculate several important stress fields including hydrostatic stress and von Mises stress for studying subsurface damage mechanism, and obtain the dislocation density on the grinding subsurface. The results show that a higher grinding velocity in machining brittle material silicon causes a larger chip and a higher temperature, and reduces subsurface damage. However, when grinding velocity is above 180 m s −1 , subsurface damage thickness slightly increases because a higher grinding speed leads to the increase in grinding force and temperature, which accelerate dislocation nucleation and motion. Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle, that provides valuable reference for machining nanometer devices. The von Mises stress and the hydrostatic stress play an important role in the grinding process, and explain the subsurface damage though dislocation mechanism under high

  10. Inspiration, simulation and design for smart robot manipulators from the sucker actuation mechanism of cephalopods.

    Science.gov (United States)

    Grasso, Frank W; Setlur, Pradeep

    2007-12-01

    Octopus arms house 200-300 independently controlled suckers that can alternately afford an octopus fine manipulation of small objects and produce high adhesion forces on virtually any non-porous surface. Octopuses use their suckers to grasp, rotate and reposition soft objects (e.g., octopus eggs) without damaging them and to provide strong, reversible adhesion forces to anchor the octopus to hard substrates (e.g., rock) during wave surge. The biological 'design' of the sucker system is understood to be divided anatomically into three functional groups: the infundibulum that produces a surface seal that conforms to arbitrary surface geometry; the acetabulum that generates negative pressures for adhesion; and the extrinsic muscles that allow adhered surfaces to be rotated relative to the arm. The effector underlying these abilities is the muscular hydrostat. Guided by sensory input, the thousands of muscle fibers within the muscular hydrostats of the sucker act in coordination to provide stiffness or force when and where needed. The mechanical malleability of octopus suckers, the interdigitated arrangement of their muscle fibers and the flexible interconnections of its parts make direct studies of their control challenging. We developed a dynamic simulator (ABSAMS) that models the general functioning of muscular hydrostat systems built from assemblies of biologically constrained muscular hydrostat models. We report here on simulation studies of octopus-inspired and artificial suckers implemented in this system. These simulations reproduce aspects of octopus sucker performance and squid tentacle extension. Simulations run with these models using parameters from man-made actuators and materials can serve as tools for designing soft robotic implementations of man-made artificial suckers and soft manipulators.

  11. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  12. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  13. Study on dynamic lifting characteristics of control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao

    2012-01-01

    Based on the equations of the electric circuit and the magnetic circuit and analysis of the dynamic lifting process for the control rod drive mechanism (CRDM), coupled magnetic-electric-mechanical equations both for the static status and the dynamic status are derived. The analytical method is utilized to obtain the current and the time when the lift starts. The numerical simulation method of dynamic analysis recommended by ASME Code is utilized to simulate the dynamic lifting process of CRDM, and the dynamic features of the system with different design gaps are studied. Conclusions are drawn as: (1) the lifting-start time increases with the design gap, and the time for the lifting process is longer with larger gaps; (2) the lifting velocity increases with time; (3) the lifting acceleration increases with time, and with smaller gaps, the impact acceleration is larger. (author)

  14. An efficient atomistic quantum mechanical simulation on InAs band-to-band tunneling field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, Xiang-Wei; Li, Shu-Shen [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lin-Wang, E-mail: lwwang@lbl.gov [Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-24

    We have presented a fully atomistic quantum mechanical simulation method on band-to-band tunneling (BTBT) field-effect transistors (FETs). Our simulation approach is based on the linear combination of bulk band method with empirical pseudopotentials, which is an atomist method beyond the effective-mass approximation or k.p perturbation method, and can be used to simulate real-size devices (∼10{sup 5} atoms) efficiently (∼5 h on a few computational cores). Using this approach, we studied the InAs dual-gate BTBT FETs. The I-V characteristics from our approach agree very well with the tight-binding non-equilibrium Green's function results, yet our method costs much less computationally. In addition, we have studied ways to increase the tunneling current and analyzed the effects of different mechanisms for that purpose.

  15. An efficient atomistic quantum mechanical simulation on InAs band-to-band tunneling field-effect transistors

    International Nuclear Information System (INIS)

    Wang, Zhi; Jiang, Xiang-Wei; Li, Shu-Shen; Wang, Lin-Wang

    2014-01-01

    We have presented a fully atomistic quantum mechanical simulation method on band-to-band tunneling (BTBT) field-effect transistors (FETs). Our simulation approach is based on the linear combination of bulk band method with empirical pseudopotentials, which is an atomist method beyond the effective-mass approximation or k.p perturbation method, and can be used to simulate real-size devices (∼10 5 atoms) efficiently (∼5 h on a few computational cores). Using this approach, we studied the InAs dual-gate BTBT FETs. The I-V characteristics from our approach agree very well with the tight-binding non-equilibrium Green's function results, yet our method costs much less computationally. In addition, we have studied ways to increase the tunneling current and analyzed the effects of different mechanisms for that purpose

  16. Simulation of drive of mechanisms, working in specific conditions

    Science.gov (United States)

    Ivanovskaya, A. V.; Rybak, A. T.

    2018-05-01

    This paper presents a method for determining the dynamic loads on the lifting actuator device other than the conventional methods, for example, ship windlass. For such devices, the operation of their drives is typical under special conditions: different environments, the influence of hydrometeorological factors, a high level of vibration, variability of loading, etc. Hoisting devices working in such conditions are not considered in the standard; however, relevant studies concern permissible parameters of the drive devices of this kind. As an example, the article studied the work deck lifting devices - windlass. To construct a model, the windlass is represented by a rod of the variable cross-section. As a result, a mathematical model of the longitudinal oscillations of such rod is obtained. Analytic dependencies have also been obtained to determine the natural frequencies of the lowest forms of oscillations, which are necessary and are the basis for evaluating the parameters of operation of this type of the device.

  17. Numerical Simulation of Energy Conversion Mechanism in Electric Explosion

    Science.gov (United States)

    Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team

    2017-06-01

    Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.

  18. Numerical simulation of mechanical compaction of deepwater shallow sediments

    Science.gov (United States)

    Sun, Jin; Wu, Shiguo; Deng, Jingen; Lin, Hai; Zhang, Hanyu; Wang, Jiliang; Gao, Jinwei

    2018-02-01

    To study the compaction law and overpressure evolution in deepwater shallow sediments, a large-strain compaction model that considers material nonlinearity and moving boundary is formulated. The model considers the dependence of permeability and material properties on void ratio. The modified Cam-Clay model is selected as the constitutive relations of the sediments, and the deactivation/reactivation method is used to capture the moving top surface during the deposition process. A one-dimensional model is used to study the compaction law of the shallow sediments. Results show that the settlement of the shallow sediments is large under their own weight during compaction. The void ratio decreases strictly with burial depth and decreases more quickly near the seafloor than in the deeper layers. The generation of abnormal pressure in the shallow flow sands is closely related to the compaction law of shallow sediments. The two main factors that affect the generation of overpressure in the sands are deposition rate and permeability of overlying clay sediments. Overpressure increases with an increase in deposition rate and a decrease in the permeability of the overlying clay sediment. Moreover, an upper limit for the overpressure exists. A two-dimensional model is used to study the differential compaction of the shallow sediments. The pore pressure will still increase due to the inflow of the pore fluid from the neighboring clay sediment even though the deposition process is interrupted.

  19. Mechanical design and simulation of an automatized sample exchanger

    International Nuclear Information System (INIS)

    Lopez, Yon; Gora, Jimmy; Bedregal, Patricia; Hernandez, Yuri; Baltuano, Oscar; Gago, Javier

    2013-01-01

    The design of a turntable type sample exchanger for irradiation and with a capacity for up to 20 capsules was performed. Its function is the automatic sending of samples contained in polyethylene capsules, for irradiation in the grid position of the reactor core, using a pneumatic system and further analysis by neutron activation. This study shows the structural design analysis and calculations in selecting motors and actuators. This development will improve efficiency in the analysis, reducing the contribution of the workers and also the radiation exposure time. (authors).

  20. Characterization of the mechanical properties of polyphenylene polymer using molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, R.; Ajori, S. [Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht (Iran, Islamic Republic of); Rouhi, S., E-mail: s_rouhi@iaul.ac.ir [Young Researchers and Elite Club, Langroud Branch, Islamic Azad University, Langroud, Guilan (Iran, Islamic Republic of)

    2016-01-15

    Synthesizing polyphenylene polymer, a two-dimensional hydrocarbon known as porous graphene, has led to the initiation of a new age in nanoscience. In this investigation, molecular dynamics (MD) simulations are carried out to study the mechanical properties of porous graphene such as Young's modulus, Poisson's ratio, bulk modulus and ultimate strength and strain. The fracture initiation and propagation pattern of porous graphene are also considered in this study. The results show that Young's and bulk moduli of porous graphene are lower than those of graphene, graphene and graphyne. Unlikely, it is also observed that its Poisson's ratio is considerably more than that of graphene, graphene and graphyne. Furthermore, it is found out that Young's and bulk moduli as well as fracture strain and ultimate stress are extremely size-dependent and also the porous graphene can be considered as an isotropic material.

  1. Characterization of the mechanical properties of polyphenylene polymer using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ansari, R.; Ajori, S.; Rouhi, S.

    2016-01-01

    Synthesizing polyphenylene polymer, a two-dimensional hydrocarbon known as porous graphene, has led to the initiation of a new age in nanoscience. In this investigation, molecular dynamics (MD) simulations are carried out to study the mechanical properties of porous graphene such as Young's modulus, Poisson's ratio, bulk modulus and ultimate strength and strain. The fracture initiation and propagation pattern of porous graphene are also considered in this study. The results show that Young's and bulk moduli of porous graphene are lower than those of graphene, graphene and graphyne. Unlikely, it is also observed that its Poisson's ratio is considerably more than that of graphene, graphene and graphyne. Furthermore, it is found out that Young's and bulk moduli as well as fracture strain and ultimate stress are extremely size-dependent and also the porous graphene can be considered as an isotropic material.

  2. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    Science.gov (United States)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  3. Structure and dynamics of hydrated Fe(II) and Fe(III) ions. Quantum mechanical and molecular mechanical simulations

    International Nuclear Information System (INIS)

    Remsungnen, T.

    2002-11-01

    Classical molecular dynamics (MD) and combined em ab initio quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations have been performed to investigate structural, dynamical and energetical properties of Fe(II), and Fe(III) transition metal ions in aqueous solution. In the QM/MM-MD simulations the ion and its first hydration sphere were treated at the Hartree-Fock ab initio quantum mechanical level, while ab initio generated pair plus three-body potentials were employed for the remaining system. For the classical MD simulation the pair plus three-body potential were employed for all ion-water interactions. The coordination number of the first hydration shell is 100 % of 6 in both cases. The number of waters in the second hydration shell obtained from classical simulations are 13.4 and 15.1 for Fe(II) and Fe(III), respectively, while QM/MM-MD gives the values of 12.4 and 13.4 for Fe(II) and Fe(III). The energies of hydration obtained from MD and QM/MM-MD for Fe(II) are 520 and 500 kcal/mol, and for Fe(III) 1160 and 1100 kcal/mol respectively. The mean residence times of water in the second shell obtained from QM/MM-MD are 24 and 48 ps for Fe(II) and Fe(III), respectively. In contrast to the data obtained from classical MD simulation, the QM/MM-MD values are all in good agreement with the experimental data available. These investigations and results clearly indicate that many-body effects are essential for the proper description of all properties of the aqueous solution of both Fe(II) and Fe(III) ions. (author)

  4. Quantum Mechanical Studies of DNA and LNA

    DEFF Research Database (Denmark)

    Koch, Troels; Shim, Irene; Lindow, Morten

    2014-01-01

    Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the e......Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies...

  5. A mechanical mechanism for translocation of ring-shaped helicases on DNA and its demonstration in a macroscopic simulation system

    Science.gov (United States)

    Chou, Y. C.

    2018-04-01

    The asymmetry in the two-layered ring structure of helicases and the random thermal fluctuations of the helicase and DNA molecules are considered as the bases for the generation of the force required for translocation of the ring-shaped helicase on DNA. The helicase comprises a channel at its center with two unequal ends, through which strands of DNA can pass. The random collisions between the portion of the DNA strand in the central channel and the wall of the channel generate an impulsive force toward the small end. This impulsive force is the starting point for the helicase to translocate along the DNA with the small end in front. Such a physical mechanism may serve as a complementary for the chemomechanical mechanism of the translocation of helicase on DNA. When the helicase arrives at the junction of ssDNA and dsDNA (a fork), the collision between the helicase and the closest base pair may produce a sufficient impulsive force to break the weak hydrogen bond of the base pair. Thus, the helicase may advance and repeat the process of unwinding the dsDNA strand. This mechanism was tested in a macroscopic simulation system where the helicase was simulated using a truncated-cone structure and DNA was simulated with bead chains. Many features of translocation and unwinding such as translocation on ssDNA and dsDNA, unwinding of dsDNA, rewinding, strand switching, and Holliday junction resolution were reproduced.

  6. Atomistic mechanism of microRNA translation upregulation via molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Wei Ye

    Full Text Available MicroRNAs are endogenous 23-25 nt RNAs that play important gene-regulatory roles in animals and plants. Recently, miR369-3 was found to upregulate translation of TNFα mRNA in quiescent (G0 mammalian cell lines. Knock down and immunofluorescence experiments suggest that microRNA-protein complexes (with FXR1 and AGO2 are necessary for the translation upregulation. However the molecular mechanism of microRNA translation activation is poorly understood. In this study we constructed the microRNA-mRNA-AGO2-FXR1 quadruple complex by bioinformatics and molecular modeling, followed with all atom molecular dynamics simulations in explicit solvent to investigate the interaction mechanisms for the complex. A combined analysis of experimental and computational data suggests that AGO2-FXR1 complex relocalize microRNA:mRNA duplex to polysomes in G0. The two strands of dsRNA are then separated upon binding of AGO2 and FXR1. Finally, polysomes may improve the translation efficiency of mRNA. The mutation research confirms the stability of microRNA-mRNA-FXR1 and illustrates importance of key residue of Ile304. This possible mechanism can shed more light on the microRNA-dependent upregulation of translation.

  7. Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms

    Directory of Open Access Journals (Sweden)

    G. McFarquhar

    2009-07-01

    Full Text Available The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9–10 October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors' concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process

  8. Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms

    Science.gov (United States)

    Sednev, I.; Menon, S.; McFarquhar, G.

    2009-07-01

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9-10 October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors' concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation

  9. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint

    Directory of Open Access Journals (Sweden)

    Su Ding

    2015-05-01

    Full Text Available The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area.

  10. Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

    Science.gov (United States)

    Knoch, Fabian; Schäfer, Ken; Diezemann, Gregor; Speck, Thomas

    2018-01-01

    We present a dynamic coarse-graining technique that allows one to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSMs), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling, we additionally perform steered molecular dynamics simulations and find excellent agreement between the results of the fully atomistic and the dynamically coarse-grained simulations. Our technique allows the determination of the rates of mechanical unfolding in a dynamical range from approximately 10-8/ns to 1/ns thus reaching experimentally accessible time regimes without abandoning atomistic resolution.

  11. Optimization of metabolite detection by quantum mechanics simulations in magnetic resonance spectroscopy.

    Science.gov (United States)

    Gambarota, Giulio

    2017-07-15

    Magnetic resonance spectroscopy (MRS) is a well established modality for investigating tissue metabolism in vivo. In recent years, many efforts by the scientific community have been directed towards the improvement of metabolite detection and quantitation. Quantum mechanics simulations allow for investigations of the MR signal behaviour of metabolites; thus, they provide an essential tool in the optimization of metabolite detection. In this review, we will examine quantum mechanics simulations based on the density matrix formalism. The density matrix was introduced by von Neumann in 1927 to take into account statistical effects within the theory of quantum mechanics. We will discuss the main steps of the density matrix simulation of an arbitrary spin system and show some examples for the strongly coupled two spin system. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Plasmonic resonances of nanoparticles from large-scale quantum mechanical simulations

    Science.gov (United States)

    Zhang, Xu; Xiang, Hongping; Zhang, Mingliang; Lu, Gang

    2017-09-01

    Plasmonic resonance of metallic nanoparticles results from coherent motion of its conduction electrons, driven by incident light. For the nanoparticles less than 10 nm in diameter, localized surface plasmonic resonances become sensitive to the quantum nature of the conduction electrons. Unfortunately, quantum mechanical simulations based on time-dependent Kohn-Sham density functional theory are computationally too expensive to tackle metal particles larger than 2 nm. Herein, we introduce the recently developed time-dependent orbital-free density functional theory (TD-OFDFT) approach which enables large-scale quantum mechanical simulations of plasmonic responses of metallic nanostructures. Using TD-OFDFT, we have performed quantum mechanical simulations to understand size-dependent plasmonic response of Na nanoparticles and plasmonic responses in Na nanoparticle dimers and trimers. An outlook of future development of the TD-OFDFT method is also presented.

  13. Coarse-grained simulation of molecular mechanisms of recovery in thermally activated shape-memory polymers

    Science.gov (United States)

    Abberton, Brendan C.; Liu, Wing Kam; Keten, Sinan

    2013-12-01

    Thermally actuated shape-memory polymers (SMPs) are capable of being programmed into a temporary shape and then recovering their permanent reference shape upon exposure to heat, which facilitates a phase transition that allows dramatic increase in molecular mobility. Experimental, analytical, and computational studies have established empirical relations of the thermomechanical behavior of SMPs that have been instrumental in device design. However, the underlying mechanisms of the recovery behavior and dependence on polymer microstructure remain to be fully understood for copolymer systems. This presents an opportunity for bottom-up studies through molecular modeling; however, the limited time-scales of atomistic simulations prohibit the study of key performance metrics pertaining to recovery. In order to elucidate the effects of phase fraction, recovery temperature, and deformation temperature on shape recovery, here we investigate the shape-memory behavior in a copolymer model with coarse-grained potentials using a two-phase molecular model that reproduces physical crosslinking. Our simulation protocol allows observation of upwards of 90% strain recovery in some cases, at time-scales that are on the order of the timescale of the relevant relaxation mechanism (stress relaxation in the unentangled soft-phase). Partial disintegration of the glassy phase during mechanical deformation is found to contribute to irrecoverable strain. Temperature dependence of the recovery indicates nearly full elastic recovery above the trigger temperature, which is near the glass-transition temperature of the rubbery switching matrix. We find that the trigger temperature is also directly correlated with the deformation temperature, indicating that deformation temperature influences the recovery temperatures required to obtain a given amount of shape recovery, until the plateau regions overlap above the transition region. Increasing the fraction of glassy phase results in higher strain

  14. Mobile-ip Aeronautical Network Simulation Study

    Science.gov (United States)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  15. Computational simulation of weld microstructure and distortion by considering process mechanics

    Science.gov (United States)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  16. Quantum Mechanical Study of Nanoscale MOSFET

    Science.gov (United States)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    The steady state characteristics of MOSFETS that are of practical Interest are the drive current, off-current, dope of drain current versus drain voltage, and threshold voltage. In this section, we show that quantum mechanical simulations yield significantly different results from drift-diffusion based methods. These differences arise because of the following quantum mechanical features: (I) polysilicon gate depletion in a manner opposite to the classical case (II) dependence of the resonant levels in the channel on the gate voltage, (III) tunneling of charge across the gate oxide and from source to drain, (IV) quasi-ballistic flow of electrons. Conclusions dI/dV versus V does not increase in a manner commensurate with the increase in number of subbands. - The increase in dI/dV with bias is much smaller then the increase in the number of subbands - a consequence of bragg reflection. Our calculations show an increase in transmission with length of contact, as seen in experiments. It is desirable for molecular electronics applications to have a small contact area, yet large coupling. In this case, the circumferential dependence of the nanotube wave function dictates: - Transmission in armchair tubes saturates around unity - Transmission in zigzag tubes saturates at two.

  17. Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Keun Hyung; Jeon, Jun Young; Han, Jae Jun; Nam, Hyun Suk; Lee, Dae Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)

    2016-08-15

    In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness(J{sub IC}) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.

  18. DWPF Simulant CPC Studies For SB8

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J. D.

    2013-09-25

    Prior to processing a Sludge Batch (SB) in the Defense Waste Processing Facility (DWPF), flowsheet studies using simulants are performed. Typically, the flowsheet studies are conducted based on projected composition(s). The results from the flowsheet testing are used to 1) guide decisions during sludge batch preparation, 2) serve as a preliminary evaluation of potential processing issues, and 3) provide a basis to support the Shielded Cells qualification runs performed at the Savannah River National Laboratory (SRNL). SB8 was initially projected to be a combination of the Tank 40 heel (Sludge Batch 7b), Tank 13, Tank 12, and the Tank 51 heel. In order to accelerate preparation of SB8, the decision was made to delay the oxalate-rich material from Tank 12 to a future sludge batch. SB8 simulant studies without Tank 12 were reported in a separate report.1 The data presented in this report will be useful when processing future sludge batches containing Tank 12. The wash endpoint target for SB8 was set at a significantly higher sodium concentration to allow acceptable glass compositions at the targeted waste loading. Four non-coupled tests were conducted using simulant representing Tank 40 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry (146% acid) SRAT testing up to 31% of the DWPF hydrogen limit. SME hydrogen generation reached 48% of of the DWPF limit for the high acid run. Two non-coupled tests were conducted using simulant representing Tank 51 at 110-146% of the Koopman Minimum Acid requirement. Hydrogen was generated during high acid stoichiometry SRAT testing up to 16% of the DWPF limit. SME hydrogen generation reached 49% of the DWPF limit for hydrogen in the SME for the high acid run. Simulant processing was successful using previously established antifoam addition strategy. Foaming during formic acid addition was not observed in any of the runs. Nitrite was destroyed in all runs and no N2O was detected

  19. Computational simulation for creep fracture properties taking microscopic mechanism into account

    International Nuclear Information System (INIS)

    Tabuchi, Masaaki

    2003-01-01

    Relationship between creep crack growth rate and microscopic fracture mechanism i.e., wedge-type intergranular, transgranular and cavity-type intergranular crack growth, has been investigated. The growth rate of wedge-type and transgranular creep crack could be characterized by creep ductility. Creep damages formed ahead of the cavity-type crack tip accelerated the crack growth rate. Based on the experimental results, FEM code that simulates creep crack growth has been developed by taking the fracture mechanism into account. The effect of creep ductility and void formation ahead of the crack tip on creep crack growth behavior could be simulated. (author)

  20. Development of a Procedure to Apply Detailed Chemical Kinetic Mechanisms to CFD Simulations as Post Processing

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Jensen, Anker

    2003-01-01

    mechanism. It involves post-processing of data extracted from computational fluid dynamics simulations. Application of this approach successfully describes combustion chemistry in a standard swirl burner, the so-called Harwell furnace. Nevertheless, it needs validation against more complex combustion models......It is desired to make detailed chemical kinetic mechanisms applicable to the complex geometries of practical combustion devices simulated with computational fluid dynamics tools. This work presents a novel general approach to combining computational fluid dynamics and a detailed chemical kinetic...

  1. A simulation study on garment manufacturing process

    Science.gov (United States)

    Liong, Choong-Yeun; Rahim, Nur Azreen Abdul

    2015-02-01

    Garment industry is an important industry and continues to evolve in order to meet the consumers' high demands. Therefore, elements of innovation and improvement are important. In this work, research studies were conducted at a local company in order to model the sewing process of clothes manufacturing by using simulation modeling. Clothes manufacturing at the company involves 14 main processes, which are connecting the pattern, center sewing and side neating, pockets sewing, backside-sewing, attaching the front and back, sleeves preparation, attaching the sleeves and over lock, collar preparation, collar sewing, bottomedge sewing, buttonholing sewing, removing excess thread, marking button, and button cross sewing. Those fourteen processes are operated by six tailors only. The last four sets of processes are done by a single tailor. Data collection was conducted by on site observation and the probability distribution of processing time for each of the processes is determined by using @Risk's Bestfit. Then a simulation model is developed using Arena Software based on the data collected. Animated simulation model is developed in order to facilitate understanding and verifying that the model represents the actual system. With such model, what if analysis and different scenarios of operations can be experimented with virtually. The animation and improvement models will be presented in further work.

  2. Mechanism change in a simulation of peer review: from junk support to elitism.

    Science.gov (United States)

    Paolucci, Mario; Grimaldo, Francisco

    2014-01-01

    Peer review works as the hinge of the scientific process, mediating between research and the awareness/acceptance of its results. While it might seem obvious that science would regulate itself scientifically, the consensus on peer review is eroding; a deeper understanding of its workings and potential alternatives is sorely needed. Employing a theoretical approach supported by agent-based simulation, we examined computational models of peer review, performing what we propose to call redesign , that is, the replication of simulations using different mechanisms . Here, we show that we are able to obtain the high sensitivity to rational cheating that is present in literature. In addition, we also show how this result appears to be fragile against small variations in mechanisms. Therefore, we argue that exploration of the parameter space is not enough if we want to support theoretical statements with simulation, and that exploration at the level of mechanisms is needed. These findings also support prudence in the application of simulation results based on single mechanisms, and endorse the use of complex agent platforms that encourage experimentation of diverse mechanisms.

  3. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  4. Study of silver-110M transfer mechanisms in freshwater. Conceiving and utilization of an experimental model of ecosystem and of a mathematical model to simulate the radionuclide through a trophic chain

    International Nuclear Information System (INIS)

    Garnier-Laplace, J.

    1990-10-01

    Uptake and retention of 110m Ag are quantified from laboratory studies carried out on an experimental freshwater ecosystem composed by two abiotic units, water and sediment, and by four trophic levels: primary producer (Scenedesmus obliquus), first order consumers (Daphnia magna, Gammarus pulex, Chrionomus sp.), second order consumer (Cyprinus carpio) and third order one (Salmo trutta). The chosen analytical process consists in expressing each transfer by a mathematical equation which formulation is based on a theoric analysis. Experiments allow to calibrate parameters of these equations for each unit of the food chain. All experimental data concerning 110m Ag uptake emphasize the radioprotection implications of this radioelement, because of the high values of the estimated radioecological parameters. On the basis of the results obtained, a determinist mathematical model has been conceived to simulate the radionuclide distribution in the food chain as a function of a chronic or acute contamination mode. Its application gives the development with time of the mean 110m Ag concentration values for each trophic level. The first approaches based on the analysis of the results of field studies, carried out on ecosystems affected by chronic pollution (Rhone river) or acute one (as a consequence of the Chernobyl accident), give to the model an important explicative and global predictive quality. The age of the fish, their dietary habits which vary according to the annual cycle of the prey species and with theirposition in the food chain, appear such as essential parameters. The trophic pathway is clearly predominant whatever the contamination mode and, explains, for acute exposure, why accumulation of 110m Ag can be prolonged for a long time after the surrounding environment contamination [fr

  5. Learnings from investigations on SG divider plates: Coupling field characterizations with numerical mechanical simulation

    International Nuclear Information System (INIS)

    Rossillon, F.; Depradeux, L.; Miloudi, S.; Deforge, D.; Lemaire, E.; Massoud, J.P.

    2014-01-01

    Nickel based alloys stress corrosion cracking (SCC) has been a major concern for the nuclear power plant utilities since the 1970s. Since 2002, SCC indications have been found on steam generator (SG) divider plates made of alloy 600 on French PWRs (pressurized water reactors) 900 MWe units. Although integrity is not questioned, many studies have been conducted to deepen understanding of the phenomenon. Among numerous studies to investigate the SCC damage phenomena, advanced mechanical analysis has been performed to improve the knowledge of the in-service loadings of the SG 900 MWe partition stub and divider plate. Manufacturing steps are taken into account, such as welding and the first hydro-test, to have a more precise description of the mechanical states in the vicinity of the welds where SCC is likely to occur. Recently, EDF hot laboratories made destructive examinations of a decommissioned SG. To fulfil the analyses computations have been carried out on the dedicated configuration. A 3D FE model, including the simulation of the welding and hydro-test, has been set up. Comparisons with experimental investigations on the divider plate of decommissioned SG have shown a good agreement between experimental and numerical results. These results emphasize the redistribution of weld residual stresses after the first hydro-test, and the effect of hydro-testing on the plastic deformation of the stub only in some specific cases of 900 MWe SG

  6. Learnings from investigations on SG divider plates: Coupling field characterizations with numerical mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rossillon, F., E-mail: frederique.rossillon@edf.fr [EDF SEPTEN, 12-14 Avenue Dutrievoz, Villeurbanne (France); Depradeux, L. [EC2-MS, 66 Bd Niels Bohr, Villeurbanne (France); Miloudi, S. [EDF CEIDRE, CNPE de Chinon, Avoine (France); Deforge, D. [EDF CEIDRE, 2 Rue Ampère, Saint Denis (France); Lemaire, E. [EDF UNIE, Cap Ampère, Saint Denis (France); Massoud, J.P. [EDF SEPTEN, 12-14 Avenue Dutrievoz, Villeurbanne (France)

    2014-04-01

    Nickel based alloys stress corrosion cracking (SCC) has been a major concern for the nuclear power plant utilities since the 1970s. Since 2002, SCC indications have been found on steam generator (SG) divider plates made of alloy 600 on French PWRs (pressurized water reactors) 900 MWe units. Although integrity is not questioned, many studies have been conducted to deepen understanding of the phenomenon. Among numerous studies to investigate the SCC damage phenomena, advanced mechanical analysis has been performed to improve the knowledge of the in-service loadings of the SG 900 MWe partition stub and divider plate. Manufacturing steps are taken into account, such as welding and the first hydro-test, to have a more precise description of the mechanical states in the vicinity of the welds where SCC is likely to occur. Recently, EDF hot laboratories made destructive examinations of a decommissioned SG. To fulfil the analyses computations have been carried out on the dedicated configuration. A 3D FE model, including the simulation of the welding and hydro-test, has been set up. Comparisons with experimental investigations on the divider plate of decommissioned SG have shown a good agreement between experimental and numerical results. These results emphasize the redistribution of weld residual stresses after the first hydro-test, and the effect of hydro-testing on the plastic deformation of the stub only in some specific cases of 900 MWe SG.

  7. An agent-based simulation of power generation company behavior in electricity markets under different market-clearing mechanisms

    International Nuclear Information System (INIS)

    Aliabadi, Danial Esmaeili; Kaya, Murat; Şahin, Güvenç

    2017-01-01

    Deregulated electricity markets are expected to provide affordable electricity for consumers through promoting competition. Yet, the results do not always fulfill the expectations. The regulator's market-clearing mechanism is a strategic choice that may affect the level of competition in the market. We conceive of the market-clearing mechanism as composed of two components: pricing rules and rationing policies. We investigate the strategic behavior of power generation companies under different market-clearing mechanisms using an agent-based simulation model which integrates a game-theoretical understanding of the auction mechanism in the electricity market and generation companies' learning mechanism. Results of our simulation experiments are presented using various case studies representing different market settings. The market in simulations is observed to converge to a Nash equilibrium of the stage game or to a similar state under most parameter combinations. Compared to pay-as-bid pricing, bid prices are closer to marginal costs on average under uniform pricing while GenCos' total profit is also higher. The random rationing policy of the ISO turns out to be more successful in achieving lower bid prices and lower GenCo profits. In minimizing GenCos' total profit, a combination of pay-as-bid pricing rule and random rationing policy is observed to be the most promising. - Highlights: • An agent-based simulation of generation company behavior in electricity markets is developed. • Learning dynamics of companies is modeled with an extended Q-learning algorithm. • Different market clearing mechanisms of the regulator are compared. • Convergence to Nash equilibria is analyzed under different cases. • The level of competition in the market is studied.

  8. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    International Nuclear Information System (INIS)

    2014-01-01

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  9. Component simulation in problems of calculated model formation of automatic machine mechanisms

    OpenAIRE

    Telegin Igor; Kozlov Alexander; Zhirkov Alexander

    2017-01-01

    The paper deals with the problems of the component simulation method application in the problems of the automation of the mechanical system model formation with the further possibility of their CAD-realization. The purpose of the investigations mentioned consists in the automation of the CAD-model formation of high-speed mechanisms in automatic machines and in the analysis of dynamic processes occurred in their units taking into account their elasto-inertial properties, power dissipation, gap...

  10. Understanding Creep Mechanisms in Graphite with Experiments, Multiscale Simulations, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Murty, Korukonda [North Carolina State Univ., Raleigh, NC (United States); Burchell, Timothy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-06-02

    Disordering mechanisms in graphite have a long history with conflicting viewpoints. Using Raman and x-ray photon spectroscopy, electron microscopy, x-ray diffraction experiments and atomistic modeling and simulations, the current project has developed a fundamental understanding of early-to-late state radiation damage mechanisms in nuclear reactor grade graphite (NBG-18 and PCEA). We show that the topological defects in graphite play an important role under neutron and ion irradiation.

  11. Mechanical Properties of a Unidirectional Basalt-Fiber-Reinforced Plastic Under a Loading Simulating Operation Conditions

    Science.gov (United States)

    Lobanov, D. S.; Slovikov, S. V.

    2017-01-01

    The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.

  12. Comparisons of the Pentax-AWS, Glidescope, and Macintosh Laryngoscopes for Intubation Performance during Mechanical Chest Compressions in Left Lateral Tilt: A Randomized Simulation Study of Maternal Cardiopulmonary Resuscitation

    Directory of Open Access Journals (Sweden)

    Sanghyun Lee

    2015-01-01

    Full Text Available Purpose. Rapid advanced airway management is important in maternal cardiopulmonary resuscitation (CPR. This study aimed to compare intubation performances among Pentax-AWS (AWS, Glidescope (GVL, and Macintosh laryngoscope (MCL during mechanical chest compression in 15° and 30° left lateral tilt. Methods. In 19 emergency physicians, a prospective randomized crossover study was conducted to examine the three laryngoscopes. Primary outcomes were the intubation time and the success rate for intubation. Results. The median intubation time using AWS was shorter than that of GVL and MCL in both tilt degrees. The time to visualize the glottic view in GVL and AWS was significantly lower than that of MCL (all P<0.05, whereas there was no significant difference between the two video laryngoscopes (in 15° tilt, P=1; in 30° tilt, P=0.71. The progression of tracheal tube using AWS was faster than that of MCL and GVL in both degrees (all P<0.001. Intubations using AWS and GVL showed higher success rate than that of Macintosh laryngoscopes. Conclusions. The AWS could be an appropriate laryngoscope for airway management of pregnant women in tilt CPR considering intubation time and success rate.

  13. [Ex Vivo Testing of Mechanical Properties of Canine Metacarpal/Metatarsal Bones after Simulated Implant Removal].

    Science.gov (United States)

    Srnec, R; Fedorová, P; Pěnčík, J; Vojtová, L; Sedlinská, M; Nečas, A

    2016-01-01

    PURPOSE OF THE STUDY In a long-term perspective, it is better to remove implants after fracture healing. However, subsequent full or excessive loading of an extremity may result in refracture, and the bone with holes after screw removal may present a site with predilection for this. The aim of the study was to find ways of how to decrease risk factors for refracture in such a case. This involved support to the mechanical properties of a bone during its remodelling until defects following implant removal are repaired, using a material tolerated by bone tissue and easy to apply. It also included an assessment of the mechanical properties of a bone after filling the holes in it with a newly developed biodegradable polymer-composite gel ("bone paste"). The composite also has a prospect of being used to repair bony defects produced by pathological processes. MATERIAL AND METHODS Experiments were carried out on intact weight-bearing small bones in dogs. A total of 27 specimens of metacarpal/metatarsal bones were used for ex vivo testing. They were divided into three groups: K1 (n = 9) control undamaged bones; K2 (n = 9) control bones with iatrogenic damage simulating holes left after cortical screw removal; EXP (n = 9) experimental specimens in which simulated holes in bone were filled with the biodegradable self-hardening composite. The bone specimens were subjected to three-point bending in the caudocranial direction by a force acting parallel to the direction of drilling in their middiaphyses. The value of maximum load achieved (N) and the corresponding value of a vertical displacement (mm) were recorded in each specimen, then compared and statistically evaluated. RESULTS On application of a maximum load (N), all bone specimens broke in the mid-part of their diaphyses. In group K1 the average maximum force of 595.6 ± 79.5 N was needed to break the bone; in group K2 it was 347.6 ± 58.6 N; and in group EXP it was 458.3 ± 102.7 N. The groups with damaged bones, K2 and

  14. One-dimensional plasma simulation studies

    International Nuclear Information System (INIS)

    Friberg, Ari; Virtamo, Jorma

    1976-01-01

    Some basic plasma phenomena are studied by a one-dimensional electrostatic simulation code. A brief description of the code and its application to a test problem is given. The experiments carried out include Landau damping of an excited wave, particle retardation by smoothed field and beam-plasma instability. In each case, the set-up of the experiment is described and the results are compared with theoretical predictions. In the theoretical discussions, the oscillatory behaviour found in the Landau damping experiment is explained, an explicit formula for the particle retardation rate is derived and a rudimentary picture of the beam-plasma instability in terms of quasilinear theory is given. (author)

  15. Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design.

    Science.gov (United States)

    Rim, Nae-Gyune; Roberts, Erin G; Ebrahimi, Davoud; Dinjaski, Nina; Jacobsen, Matthew M; Martín-Moldes, Zaira; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y

    2017-08-14

    Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.

  16. A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation

    Science.gov (United States)

    Zhang, Ran; Wang, Xu; Liu, Zhenwei

    2018-03-01

    A novel regenerative shock absorber has been designed and fabricated. The novelty of the presented work is the application of the double speed regenerative shock absorber that utilizes the rack and pinion mechanism to increase the magnet speed with respect to the coils for higher power output. The simulation models with parameters identified from finite element analysis and the experiments are developed. The proposed regenerative shock absorber is compared with the regenerative shock absorber without the rack and pinion mechanism, when they are integrated into the same quarter vehicle suspension system. The sinusoidal wave road profile displacement excitation and the random road profile displacement excitation with peak amplitude of 0.035 m are applied as the inputs in the frequency range of 0-25 Hz. It is found that with the sinusoidal and random road profile displacement input, the proposed innovative design can increase the output power by 4 times comparing to the baseline design. The proposed double speed regenerative shock absorber also presents to be more sensitive to the road profile irregularity than the single speed regenerative shock absorber as suggested by Monte Carlo simulation. Lastly the coil mass and amplification factor are studied for sensitivity analysis and performance optimization, which provides a general design method of the regenerative shock absorbers. It shows that for the system power output, the proposed design becomes more sensitive to either the coil mass or amplification factor depending on the amount of the coil mass. With the specifically selected combination of the coil mass and amplification factor, the optimized energy harvesting performance can be achieved.

  17. Load-adaptive bone remodeling simulations reveal osteoporotic microstructural and mechanical changes in whole human vertebrae.

    Science.gov (United States)

    Badilatti, Sandro D; Christen, Patrik; Parkinson, Ian; Müller, Ralph

    2016-12-08

    Osteoporosis is a major medical burden and its impact is expected to increase in our aging society. It is associated with low bone density and microstructural deterioration. Treatments are available, but the critical factor is to define individuals at risk from osteoporotic fractures. Computational simulations investigating not only changes in net bone tissue volume, but also changes in its microstructure where osteoporotic deterioration occur might help to better predict the risk of fractures. In this study, bone remodeling simulations with a mechanical feedback loop were used to predict microstructural changes due to osteoporosis and their impact on bone fragility from 50 to 80 years of age. Starting from homeostatic bone remodeling of a group of seven, mixed sex whole vertebrae, five mechanostat models mimicking different biological alterations associated with osteoporosis were developed, leading to imbalanced bone formation and resorption with a total net loss of bone tissue. A model with reduced bone formation rate and cell sensitivity led to the best match of morphometric indices compared to literature data and was chosen to predict postmenopausal osteoporotic bone loss in the whole group. Thirty years of osteoporotic bone loss were predicted with changes in morphometric indices in agreement with experimental measurements, and only showing major deviations in trabecular number and trabecular separation. In particular, although being optimized to match to the morphometric indices alone, the predicted bone loss revealed realistic changes on the organ level and on biomechanical competence. While the osteoporotic bone was able to maintain the mechanical stability to a great extent, higher fragility towards error loads was found for the osteoporotic bones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.

    Science.gov (United States)

    Hu, Zhongwei; Chulhai, Dhabih V; Jensen, Lasse

    2016-12-13

    Surface-enhanced hyper-Raman scattering (SEHRS) is the two-photon analogue of surface-enhanced Raman scattering (SERS), which has proven to be a powerful tool to study molecular structures and surface enhancements. However, few theoretical approaches to SEHRS exist and most neglect the atomistic descriptions of the metal surface and molecular resonance effects. In this work, we present two atomistic electrodynamics-quantum mechanical models to simulate SEHRS. The first is the discrete interaction model/quantum mechanical (DIM/QM) model, which combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule. The second model is a dressed-tensors method that describes the molecule as a point-dipole and point-quadrupole object interacting with the enhanced local field and field-gradients (FG) from the nanoparticle. In both of these models, the resonance effects are treated efficiently by means of damped quadratic response theory. Using these methods, we simulate SEHRS spectra for benzene and pyridine. Our results show that the FG effects in SEHRS play an important role in determining both the surface selection rules and the enhancements. We find that FG effects are more important in SEHRS than in SERS. We also show that the spectral features of small molecules can be accurately described by accounting for the interactions between the molecule and the local field and FG of the nanoparticle. However, at short distances between the metal and molecule, we find significant differences in the SEHRS enhancements predicted using the DIM/QM and the dressed-tensors methods.

  19. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Nazockdast, Ehssan, E-mail: ehssan@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Center for Computational Biology, Simons Foundation, New York, NY 10010 (United States); Rahimian, Abtin, E-mail: arahimian@acm.org [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Zorin, Denis, E-mail: dzorin@cs.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Shelley, Michael, E-mail: shelley@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States); Center for Computational Biology, Simons Foundation, New York, NY 10010 (United States)

    2017-01-15

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid–structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler–Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber–fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a

  20. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    International Nuclear Information System (INIS)

    Nazockdast, Ehssan; Rahimian, Abtin; Zorin, Denis; Shelley, Michael

    2017-01-01

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid–structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler–Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber–fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a

  1. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  2. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones

    Science.gov (United States)

    Li, X. D.; Gao, J. H.

    2005-08-01

    In this paper an axisymmetric computational aeroacoustic procedure is developed to investigate the generation mechanism of axisymmetric supersonic jet screech tones. The axisymmetric Navier-Stokes equations and the two equations standard k-ɛ turbulence model modified by Turpin and Troyes ["Validation of a two-equation turbulence model for axisymmetric reacting and non-reaction flows," AIAA Paper No. 2000-3463 (2000)] are solved in the generalized curvilinear coordinate system. A generalized wall function is applied in the nozzle exit wall region. The dispersion-relation-preserving scheme is applied for space discretization. The 2N storage low-dissipation and low-dispersion Runge-Kutta scheme is employed for time integration. Much attention is paid to far-field boundary conditions and turbulence model. The underexpanded axisymmetric supersonic jet screech tones are simulated over the Mach number from 1.05 to 1.2. Numerical results are presented and compared with the experimental data by other researchers. The simulated wavelengths of A0, A1, A2, and B modes and part of simulated amplitudes agree very well with the measurement data by Ponton and Seiner ["The effects of nozzle exit lip thickness on plume resonance," J. Sound Vib. 154, 531 (1992)]. In particular, the phenomena of modes jumping have been captured correctly although the numerical procedure has to be improved to predict the amplitudes of supersonic jet screech tones more accurately. Furthermore, the phenomena of shock motions are analyzed. The predicted splitting and combination of shock cells are similar with the experimental observations of Panda ["Shock oscillation in underexpanded screeching jets," J. Fluid. Mech. 363, 173 (1998)]. Finally, the receptivity process is numerically studied and analyzed. It is shown that the receptivity zone is associated with the initial thin shear layer, and the incoming and reflected sound waves.

  3. A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics

    Science.gov (United States)

    Nazockdast, Ehssan; Rahimian, Abtin; Zorin, Denis; Shelley, Michael

    2017-01-01

    We present a novel platform for the large-scale simulation of three-dimensional fibrous structures immersed in a Stokesian fluid and evolving under confinement or in free-space in three dimensions. One of the main motivations for this work is to study the dynamics of fiber assemblies within biological cells. For this, we also incorporate the key biophysical elements that determine the dynamics of these assemblies, which include the polymerization and depolymerization kinetics of fibers, their interactions with molecular motors and other objects, their flexibility, and hydrodynamic coupling. This work, to our knowledge, is the first technique to include many-body hydrodynamic interactions (HIs), and the resulting fluid flows, in cellular assemblies of flexible fibers. We use non-local slender body theory to compute the fluid-structure interactions of the fibers and a second-kind boundary integral formulation for other rigid bodies and the confining boundary. A kernel-independent implementation of the fast multipole method is utilized for efficient evaluation of HIs. The deformation of the fibers is described by nonlinear Euler-Bernoulli beam theory and their polymerization is modeled by the reparametrization of the dynamic equations in the appropriate non-Lagrangian frame. We use a pseudo-spectral representation of fiber positions and implicit time-stepping to resolve large fiber deformations, and to allow time-steps not excessively constrained by temporal stiffness or fiber-fiber interactions. The entire computational scheme is parallelized, which enables simulating assemblies of thousands of fibers. We use our method to investigate two important questions in the mechanics of cell division: (i) the effect of confinement on the hydrodynamic mobility of microtubule asters; and (ii) the dynamics of the positioning of mitotic spindle in complex cell geometries. Finally to demonstrate the general applicability of the method, we simulate the sedimentation of a cloud of

  4. The study, design and simulation of a free piston Stirling engine linear alternatorThe study, design and simulation of a free piston Stirling engine linear alternator

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros

    2014-12-01

    Full Text Available This paper presents a study, design and simulation of a Free Piston Stirling Engine Linear Alternator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally, a detailed thermal, mechanical and electrical model for a Stirling engine linear alternator have been made in SIMULINK simulation program. The linear alternator simulation model uses a controllable DC voltage which simulates the linear alternator combined with a rectifier, a variable load and a DC-DC converter, which compensates for the variable nature of Stirling engine operation, and ensures a constant voltage output regardless of the load.

  5. Improved simulation method of automotive spot weld failure with an account of the mechanical properties of spot welds

    Science.gov (United States)

    Wu, H.; Meng, X. M.; Fang, R.; Huang, Y. F.; Zhan, S.

    2017-12-01

    In this paper, the microstructure and mechanical properties of spot weld were studied, the hardness of nugget and heat affected zone (HAZ) were also tested by metallographic microscope and microhardness tester. The strength of the spot weld with the different parts' area has been characterized. According to the experiments result, CAE model of spot weld with HAZ structure was established, and simulation results of different lap-shear CAE models were analyzed. The results show that the spot weld model which contained the HAZ has good performance and more suitable for engineering application in spot weld simulation.

  6. Two-dimensional FSI simulation of closing dynamics of a tilting disc mechanical heart valve.

    Science.gov (United States)

    Govindarajan, V; Udaykumar, H S; Herbertson, L H; Deutsch, S; Manning, K B; Chandran, K B

    2010-03-01

    The fluid dynamics during valve closure resulting in high shear flows and large residence times of particles has been implicated in platelet activation and thrombus formation in mechanical heart valves. Our previous studies with bi-leaflet valves have shown that large shear stresses induced in the gap between the leaflet edge and the valve housing results in relatively high platelet activation levels whereas flow between the leaflets results in shed vortices not conducive to platelet damage. In this study we compare the result of closing dynamics of a tilting disc valve with that of a bi-leaflet valve. The two-dimensional fluid-structure interaction analysis of a tilting disc valve closure mechanics is performed with a fixed grid Cartesian mesh flow solver with local mesh refinement, and a Lagrangian particle dynamic analysis for computation of potential for platelet activation. Throughout the simulation the flow remains in the laminar regime and the flow through the gap width is marked by the development of a shear layer which separates from the leaflet downstream of the valve. Zones of re-circulation are observed in the gap between the leaflet edge and the valve housing on the major orifice region of the tilting disc valve and are seen to be migrating towards the minor orifice region. Jet flow is observed at the minor orifice region and a vortex is formed which sheds in the direction of fluid motion as observed in experiments using PIV measurements. The activation parameter computed for the tilting disc valve, at the time of closure was found to be 2.7 times greater than that of the bi-leaflet mechanical valve and was found to be in the vicinity of the minor orifice region mainly due to the migration of vortical structures from the major to the minor orifice region during the leaflet rebound of the closing phase.

  7. Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading

    Science.gov (United States)

    Kozinov, S.; Kuna, M.

    2018-07-01

    The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.

  8. Softening mechanisms of the AISI 410 martensitic stainless steel under hot torsion simulation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago Santana de; Silva, Eden Santos; Rodrigues, Samuel Filgueiras; Nascimento, Carmem Celia Francisco; Leal, Valdemar Silva; Reis, Gedeon Silva, E-mail: samuel.filgueiras@ifma.edu.br [Instituto Federal do Maranhao (PPGEM/IFMA), Sao Luis, MA (Brazil)

    2017-03-15

    This study investigated the softening mechanisms of the AISI 410 martensitic stainless steel during torsion simulation under isothermal continuous in the temperature range of 900 to 1150 °C and strain rates of 0.1 to 5.0s{sup -1}. In the first part of the curves, before the peak, the results show that the critical (ε-c) and peak (ε-p) strains are elevated for higher strain rate and lower temperatures contributing for higher strain hardening rate (h). Moreover, this indicated that dynamic recrystallization (DRX) and dynamic recovery (DRV) are not effective in this region. After the peak, the reductions in stresses are associated to the different DRX/DRV competitions. For lower temperatures and higher strain rates there is a delay in the DRX while the DRV is acting predominantly (with low Avrami exponent (n) and high t{sub 0.5}). The steady state was reached after large strains showing DRX grains, formation of retained austenite and the presence of chromium carbide (Cr{sub 23}C{sub 6}) and ferrite δ at the martensitic grain boundaries. These contribute for impairing the toughness and ductility on the material. The constitutive equations at the peak strain indicated changes in the deformation mechanism, with variable strain rate sensitivity (m), which affected the final microstructure. (author)

  9. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  10. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    Science.gov (United States)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  11. Simulation study of burning control with internal transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Gonta [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka (Japan); Yagi, Masatoshi; Itoh, S.I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2000-02-01

    Dynamics of burning plasma with internal transport barrier is studied by use of a one dimensional transport simulation code. Two possible mechanisms are modeled for internal transport barrier collapse. One is the collapse, which occurs above the critical pressure gradient, the impact of which is modeled by the enhancement of thermal conductivity. The other is the collapse, which occurs due to the sawtooth trigger. The extended Kadomtsev type reconnection model with multiple resonant surfaces is introduced. Both models are examined for the analysis of long time sustainment of burning. A test of profile control to mitigate the collapse is investigated. The additional circulating power to suppress thermal quench (collapse) is evaluated. (author)

  12. Cloud droplet activation mechanisms of amino acid aerosol particles: insight from molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Xin Li

    2013-07-01

    Full Text Available Atmospheric amino acids constitute a large fraction of water-soluble organic nitrogen compounds in aerosol particles, and have been confirmed as effective cloud condensation nuclei (CCN materials in laboratory experiments. We present a molecular dynamics (MD study of six amino acids with different structures and chemical properties that are relevant to the remote marine atmospheric aerosol–cloud system, with the aim of investigating the detailed mechanism of their induced changes in surface activity and surface tension, which are important properties for cloud drop activation. Distributions and orientations of the amino acid molecules are studied; these l-amino acids are serine (SER, glycine (GLY, alanine (ALA, valine (VAL, methionine (MET and phenylalanine (PHE and are categorised as hydrophilic and amphiphilic according to their affinities to water. The results suggest that the presence of surface-concentrated amphiphilic amino acid molecules give rise to enhanced Lennard–Jones repulsion, which in turn results in decreased surface tension of a planar interface and an increased surface tension of the spherical interface of droplets with diameters below 10 nm. The observed surface tension perturbation for the different amino acids under study not only serves as benchmark for future studies of more complex systems, but also shows that amphiphilic amino acids are surface active. The MD simulations used in this study reproduce experimental results of surface tension measurements for planar interfaces and the method is therefore applicable for spherical interfaces of nano-size for which experimental measurements are not possible to conduct.

  13. DWPF simulant CPC studies for SB8

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Zamecnik, J. R.

    2013-06-25

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  14. DWPF simulant CPC studies for SB8

    International Nuclear Information System (INIS)

    Koopman, D. C.; Zamecnik, J. R.

    2013-01-01

    The Savannah River National Laboratory (SRNL) accepted a technical task request (TTR) from Waste Solidification Engineering to perform simulant tests to support the qualification of Sludge Batch 8 (SB8) and to develop the flowsheet for SB8 in the Defense Waste Processing Facility (DWPF). These efforts pertained to the DWPF Chemical Process Cell (CPC). Separate studies were conducted for frit development and glass properties (including REDOX). The SRNL CPC effort had two primary phases divided by the decision to drop Tank 12 from the SB8 constituents. This report focuses on the second phase with SB8 compositions that do not contain the Tank 12 piece. A separate report will document the initial phase of SB8 testing that included Tank 12. The second phase of SB8 studies consisted of two sets of CPC studies. The first study involved CPC testing of an SB8 simulant for Tank 51 to support the CPC demonstration of the washed Tank 51 qualification sample in the SRNL Shielded Cells facility. SB8-Tank 51 was a high iron-low aluminum waste with fairly high mercury and moderate noble metal concentrations. Tank 51 was ultimately washed to about 1.5 M sodium which is the highest wash endpoint since SB3-Tank 51. This study included three simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle and Slurry Mix Evaporator (SME) cycle with the sludge-only flowsheet at nominal DWPF processing conditions and three different acid stoichiometries. These runs produced a set of recommendations that were used to guide the successful SRNL qualification SRAT/SME demonstration with actual Tank 51 washed waste. The second study involved five SRAT/SME runs with SB8-Tank 40 simulant. Four of the runs were designed to define the acid requirements for sludge-only processing in DWPF with respect to nitrite destruction and hydrogen generation. The fifth run was an intermediate acid stoichiometry demonstration of the coupled flowsheet for SB8. These runs produced a set of processing

  15. Wind Climate in Kongsfjorden, Svalbard, and Attribution of Leading Wind Driving Mechanisms through Turbulence-Resolving Simulations

    Directory of Open Access Journals (Sweden)

    Igor Esau

    2012-01-01

    Full Text Available This paper presents analysis of wind climate of the Kongsfjorden-Kongsvegen valley, Svalbard. The Kongsfjorden-Kongsvegen valley is relatively densely covered with meteorological observations, which facilitate joint statistical analysis of the turbulent surface layer structure and the structure of the higher atmospheric layers. Wind direction diagrams reveal strong wind channeled in the surface layer up to 300 m to 500 m. The probability analysis links strong wind channeling and cold temperature anomalies in the surface layer. To explain these links, previous studies suggested the katabatic wind flow mechanism as the leading driver responsible for the observed wind climatology. In this paper, idealized turbulence-resolving simulations are used to distinct between different wind driving mechanisms. The simulations were performed with the real surface topography at resolution of about 60 m. These simulations resolve the obstacle-induced turbulence and the turbulence in the non-stratified boundary layer core. The simulations suggest the leading roles of the thermal land-sea breeze circulation and the mechanical wind channeling in the modulation of the valley winds. The characteristic signatures of the developed down-slope gravity-accelerated flow, that is, the katabatic wind, were found to be of lesser significance under typical meteorological conditions in the valley.

  16. Mechanical behavior of fast reactor fuel pin cladding subjected to simulated overpower transients

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.

    1978-06-01

    Cladding mechanical property data for analysis and prediction of fuel pin transient behavior were obtained under experimental conditions in which the temperature ramps of reactor transients were simulated. All cladding specimens were 20% CW Type 316 stainless steel and were cut from EBR-II irradiated fuel pins. It was determined that irradiation degraded the cladding ductility and failure strength. Specimens that had been adjacent to the fuel exhibited the poorest properties. Correlations were developed to describe the effect of neutron fluence on the mechanical behavior of the cladding. Metallographic examinations were conducted to characterize the failure mode and to establish the nature of internal and external surface corrosion. Various mechanisms for the fuel adjacency effect were examined and results for helium concentration profiles were presented. Results from the simulated transient tests were compared with TREAT test results

  17. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  18. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  19. Studies of combustion kinetics and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, D. [Catholic Univ. of America, Washington, DC (United States)

    1993-12-01

    The objective of the current research is to gain new quantitative knowledge of the kinetics and mechanisms of polyatomic free radicals which are important in hydrocarbon combustion processes. The special facility designed and built for these (which includes a heatable tubular reactor coupled to a photoionization mass spectrometer) is continually being improved. Where possible, these experimental studies are coupled with theoretical ones, sometimes conducted in collaboration with others, to obtain an improved understanding of the factors determining reactivity. The decomposition of acetyl radicals, isopropyl radicals, and n-propyl radicals have been studied as well as the oxidation of methylpropargyl radicals.

  20. Molecular Simulation Study of Montmorillonite in Contact with Variably Wet Supercritical Carbon Dioxide

    KAUST Repository

    Kadoura, Ahmad Salim; Nair, Arun Kumar Narayanan; Sun, Shuyu

    2017-01-01

    We perform grand canonical Monte Carlo simulations to study the detailed molecular mechanism of intercalation behavior of CO2 in Na-, Ca-, and Mg- montmorillonite exposed to variably hydrated supercritical CO2 at 323.15 K and 90 bar, The simulations

  1. Skylab fluid mechanics simulations: Oscillation, rotation, collision and coalescence of water droplets under low-gravity environment

    Science.gov (United States)

    Vaughan, O. H., Jr.; Hung, R. J.

    1975-01-01

    Skylab 4 crew members performed a series of demonstrations showing the oscillations, rotations, as well as collision coalescence of water droplets which simulate various physical models of fluids under low gravity environment. The results from Skylab demonstrations provide information and illustrate the potential of an orbiting space-oriented research laboratory for the study of more sophisticated fluid mechanic experiments. Experiments and results are discussed.

  2. A macroscopic model to simulate the mechanically induced martensitic transformation in metastable austenitic stainless steels

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.

    2012-01-01

    Mechanically induced martensitic transformation and the associated transformation plasticity phenomena in austenitic stainless steels are studied. The mechanisms responsible for the transformation are investigated and put into perspective based on experimental evidence. The stress and strain

  3. Molecular dynamics simulations for the examination of mechanical properties of hydroxyapatite/ poly α-n-butyl cyanoacrylate under additive manufacturing.

    Science.gov (United States)

    Wang, Yanen; Wei, Qinghua; Pan, Feilong; Yang, Mingming; Wei, Shengmin

    2014-01-01

    Molecular dynamics (MD) simulations emerged to be a helpful tool in the field of material science. In rapid prototyping artificial bone scaffolds process, the binder spraying volume and mechanism are very important for bone scaffolds mechanical properties. In this study, we applied MD simulations to investigating the binding energy of α-n-butyl cyanoacrylate (NBCA) on Hydroxyapatite (HA) crystallographic planes (001, 100 and 110), and to calculating and analyzing the mechanical properties and radial distribution function of the HA(110)/NBCA mixed system. The simulation results suggested that HA (110) has the highest binding energy with NBCA owing to the high planar atom density, and the mechanical properties of HA(110)/NBCA mixed system is stronger than pure HA system. Therefore, the multi-grade strength bone scaffold could be fabricated through spraying various volume NBCA binders during 3D printing process. By calculating the radial distribution function of HA(110)/NBCA, the essence of the interface interaction were successfully elucidated. The forming situation parameters can be referred to calculation results. There exists a strong interaction between HA crystallographic plane (110) and NBCA, it is mainly derived from the hydrogen bonds between O atoms which connect with C atoms of NBCA and H atoms in HA crystal. Furthermore, a strong adsorption effect can be demonstrated between HA and NBCA.

  4. Study on a mechanical snubber with an adjustment mechanism for resisting force

    International Nuclear Information System (INIS)

    Ohmata, Kenichiro; Miyanaga, Hiroyuki.

    1991-01-01

    The mechanical snubber is an earthquakeproof device for a piping system under particular circumstances such as high temperature and radioactivity. It restrains the piping system by a strong resisting force during an earthquake. This strong force can cause elastic failure of grooves on a brake disk, where steel balls are placed. In this report, an improved mechanical snubber having an adjustment mechanism for resisting force is proposed in order to obtain a mechanical snubber which has almost the same restraint effect and less resisting force in comparison with a conventional mechanical snubber. The resisting force characteristics and the restraint effect of the improved mechanical snubber applied to a simple beam are discussed both numerically and experimentally. The digital simulations are carried out using the Continuous System Simulation Language (CSSL). (author)

  5. Molecular-dynamics simulations of crosslinking and confinement effects on structure, segmental mobility and mechanics of filled elastomers

    Science.gov (United States)

    Davris, Theodoros; Lyulin, Alexey V.

    2016-05-01

    The significant drop of the storage modulus under uniaxial deformation (Payne effect) restrains the performance of the elastomer-based composites and the development of possible new applications. In this paper molecular-dynamics (MD) computer simulations using LAMMPS MD package have been performed to study the mechanical properties of a coarse-grained model of this family of nanocomposite materials. Our goal is to provide simulational insights into the viscoelastic properties of filled elastomers, and try to connect the macroscopic mechanics with composite microstructure, the strength of the polymer-filler interactions and the polymer mobility at different scales. To this end we simulate random copolymer films capped between two infinite solid (filler aggregate) walls. We systematically vary the strength of the polymer-substrate adhesion interactions, degree of polymer confinement (film thickness), polymer crosslinking density, and study their influence on the equilibrium and non-equilibrium structure, segmental dynamics, and the mechanical properties of the simulated systems. The glass-transition temperature increases once the mesh size became smaller than the chain radius of gyration; otherwise it remained invariant to mesh-size variations. This increase in the glass-transition temperature was accompanied by a monotonic slowing-down of segmental dynamics on all studied length scales. This observation is attributed to the correspondingly decreased width of the bulk density layer that was obtained in films whose thickness was larger than the end-to-end distance of the bulk polymer chains. To test this hypothesis additional simulations were performed in which the crystalline walls were replaced with amorphous or rough walls.

  6. The thermal and mechanical deformation study of up-stream pumping mechanical seal

    International Nuclear Information System (INIS)

    Chen, H L; Xu, C; Zuo, M Z; Wu, Q B

    2015-01-01

    Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation

  7. The thermal and mechanical deformation study of up-stream pumping mechanical seal

    Science.gov (United States)

    Chen, H. L.; Xu, C.; Zuo, M. Z.; Wu, Q. B.

    2015-01-01

    Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation.

  8. Heat load material studies: Simulated tokamak disruptions

    International Nuclear Information System (INIS)

    Gahl, J.M.; McDonald, J.M.; Zakharov, A.; Tserevitinov, S.; Barabash, V.; Guseva, M.

    1991-01-01

    It is clear that an improved understanding of the effects of tokamak disruptions on plasma facing component materials is needed for the ITER program. very large energy fluxes are predicted to be deposited in ITER and could be very damaging to the machine. During 1991, Sandia National Laboratories and the University of New Mexico conducted cooperative tokamak disruption simulation experiments at several Soviet facilities. These facilities were located at the Efremov Institute in Leningrad, the Kurchatov Atomic Energy Institute (Troisk and Moscow) and the Institute for Physical Chemistry of the Soviet Adademy of Sciences in Moscow. Erosion of graphite from plasma stream impact is seen to be much less than that observed with laser or electron beams with similar energy fluxes. This, along with other data obtained, seem to suggest that the ''vapor shielding'' effect is a very important phenomenon in the study of graphite erosion during tokamak disruption

  9. Molecular dynamic simulation study of molten cesium

    Directory of Open Access Journals (Sweden)

    Yeganegi Saeid

    2017-01-01

    Full Text Available Molecular dynamics simulations were performed to study thermodynamics and structural properties of expanded caesium fluid. Internal pressure, radial distribution functions (RDFs, coordination numbers and diffusion coefficients have been calculated at temperature range 700–1600 K and pressure range 100–800 bar. We used the internal pressure to predict the metal–non-metal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first peak of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various temperatures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature.

  10. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    International Nuclear Information System (INIS)

    Navaratnam, S.; Ramesh, K.; Ramesh, S.; Sanusi, A.; Basirun, W.J.; Arof, A.K.

    2015-01-01

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH 3 COO) and lithium triflate (LiCF 3 SO 3 ) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF 3 SO 3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH 3 COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF 3 SO 3 dissociated more readily than LiCH 3 COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF 3 SO 3 -30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH 3 COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  11. Co-simulation of Six DOF Wire Driven Parallel Mechanism Based on ADAMS and Matlab

    Directory of Open Access Journals (Sweden)

    Tang Aofei

    2015-01-01

    Full Text Available The dynamic model of the 6 DOF Wire Driven Parallel Mechanism (WDPM system is introduced. Based on MATLAB system, the simulation of the inverse dynamic model is achieved. According to the simulation result, the mechanical model for the WDPM system is reasonable. Using ADAMS system, the dynamic model of the virtual prototype is verified by the simulation analysis. The combined control model based on ADAMS/Simulink is derived. The WDPM control system is designed with MATLAB/Simulink. The torque control method is selected for the outer ring and the PD control method for the inner ring. Combined with the ADAMS control model and control law design, the interactive simulation analysis of the WDPM system is completed. According to the simulation results of the spatial circle tracking and line tracking at the end of the moving platform, the tracking error can be reduced by the designed control algorithm. The minimum tracking error is 0.2 mm to 0.3 mm. Therefore, the theoretical foundation for designing hardware systems of the WDPM control system is established.

  12. Fluctuating Finite Element Analysis (FFEA): A continuum mechanics software tool for mesoscale simulation of biomolecules.

    Science.gov (United States)

    Solernou, Albert; Hanson, Benjamin S; Richardson, Robin A; Welch, Robert; Read, Daniel J; Harlen, Oliver G; Harris, Sarah A

    2018-03-01

    Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.

  13. Mechanical properties of jennite: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Juhyuk, E-mail: juhyuk.moon@stonybrook.edu [Civil Engineering Program, Department of Mechanical Engineering, Stony Brook University, NY 11794 (United States); Yoon, Seyoon [School of Engineering, Kings College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The objective of this study is to determine the mechanical properties of jennite. To date, several hypotheses have been proposed to predict the structural properties of jennite. For the first time as reported herein, the isothermal bulk modulus of jennite was measured experimentally. Synchrotron-based high-pressure x-ray diffraction experiments were performed to observe the variation of lattice parameters under pressure. First-principles calculations were applied to compare with the experimental results and predict additional structural properties. Accurately measured isothermal bulk modulus herein (K{sub 0} = 64(2) GPa) and the statistical assessment on experimental and theoretical results suggest reliable mechanical properties of shear and Young's modulus, Poisson's ratio, and elastic tensor coefficients. Determination of these fundamental structural properties is the first step toward greater understanding of calcium–silicate–hydrate, as well as provides a sound foundation for forthcoming atomic level simulations.

  14. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    Science.gov (United States)

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  15. Study on Tensile Properties of Nanoreinforced Epoxy Polymer: Macroscopic Experiments and Nanoscale FEM Simulation Prediction

    Directory of Open Access Journals (Sweden)

    Zhenqing Wang

    2013-01-01

    Full Text Available The effect of nanosilica contents on mechanical properties of the epoxy matrix with some nanoparticle aggregations was studied in macroscopic experiments and nanoscale simulation, particularly with regard to the effective modulus and ultimate stress. Three analytical models were used to obtain the effective elastic modulus of nanoparticle-reinforced composites. Based on Monte-Carlo method, the special program for the automatic generation of 2D random distribution particles without overlapping was developed for nanocomposite modeling. Weight fractions of nanoparticles were converted to volume fractions, in order to coordinate the content unit in the simulation. In numerical analysis, the weak interface strengthening and toughening mechanism was adopted. Virtual crack closure technique (VCCT and extended finite element method (XFEM were used to simulate phenomena of nanoparticle debonding and matrix crack growth. Experimental and simulation results show a good agreement with each other. By way of simulation, the weak interface toughening and strengthening mechanism of nanocomposites is confirmed.

  16. Quantum Mechanical Study of Atoms and Molecules

    Science.gov (United States)

    Sahni, R. C.

    1961-01-01

    This paper, following a brief introduction, is divided into five parts. Part I outlines the theory of the molecular orbital method for the ground, ionized and excited states of molecules. Part II gives a brief summary of the interaction integrals and their tabulation. Part III outlines an automatic program designed for the computation of various states of molecules. Part IV gives examples of the study of ground, ionized and excited states of CO, BH and N2 where the program of automatic computation and molecular integrals have been utilized. Part V enlists some special problems of Molecular Quantum Mechanics are being tackled at New York University.

  17. Recent studies on mechanisms in photoimmunology

    International Nuclear Information System (INIS)

    Krutmann, J.; Elmets, C.A.

    1988-01-01

    A review is given of the published material relevant to photoimmunology since 1984 with special emphasis on mechanistic studies. Topics covered include photoimmunology and contact hypersensitivity, UVB radiation and antigen presentation, mechanisms of suppressor cell induction by UVB, photosensitizer effects on contact hypersensitivity, expression of tumour antigens on UVB-induced tumours in mice, photoimmunology and organ transplantation, photoimmunology and the pathogenesis of lupus erythematosus, the effects of UV radiation on natural Riller cells and T lymphocytes, photoimmunological effects on mast cell function and finally technological advances in photoimmunology. (U.K.)

  18. Recent studies on mechanisms in photoimmunology

    Energy Technology Data Exchange (ETDEWEB)

    Krutmann, J; Elmets, C A

    1988-12-01

    A review is given of the published material relevant to photoimmunology since 1984 with special emphasis on mechanistic studies. Topics covered include photoimmunology and contact hypersensitivity, UVB radiation and antigen presentation, mechanisms of suppressor cell induction by UVB, photosensitizer effects on contact hypersensitivity, expression of tumour antigens on UVB-induced tumours in mice, photoimmunology and organ transplantation, photoimmunology and the pathogenesis of lupus erythematosus, the effects of UV radiation on natural Riller cells and T lymphocytes, photoimmunological effects on mast cell function and finally technological advances in photoimmunology. (U.K.).

  19. Tribology and total hip joint replacement: current concepts in mechanical simulation.

    Science.gov (United States)

    Affatato, S; Spinelli, M; Zavalloni, M; Mazzega-Fabbro, C; Viceconti, M

    2008-12-01

    Interest in the rheology and effects of interacting surfaces is as ancient as man. This subject can be represented by a recently coined word: tribology. This term is derived from the Greek word "tribos" and means the "science of rubbing". Friction, lubrication, and wear mechanism in the common English language means the precise field of interest of tribology. Wear of total hip prosthesis is a significant clinical problem that involves, nowadays, a too high a number of patients. In order to acquire further knowledge on the tribological phenomena that involve hip prosthesis wear tests are conducted on employed materials to extend lifetime of orthopaedic implants. The most basic type of test device is the material wear machine, however, a more advanced one may more accurately reproduce some of the in vivo conditions. Typically, these apparatus are called simulators, and, while there is no absolute definition of a joint simulator, its description as a mechanical rig used to test a joint replacement, under conditions approximating those occurring in the human body, is acceptable. Simulator tests, moreover, can be used to conduct accelerated protocols that replicate/simulate particularly extreme conditions, thus establishing the limits of performance for the material. Simulators vary in their level of sophistication and the international literature reveals many interpretations of the design of machines used for joint replacement testing. This paper aims to review the current state of the art of the hip joint simulators worldwide. This is specified through a schematic overview by describing, in particular, constructive solutions adopted to reproduce in vivo conditions. An exhaustive commentary on the evolution and actually existing simulation standards is proposed by the authors. The need of a shared protocol among research laboratories all over the world could lead to a consensus conference.

  20. Study of anisotropic mechanical properties for aeronautical PMMA

    Directory of Open Access Journals (Sweden)

    Wei Shang

    Full Text Available For the properties of polymer are relative to its structure, the main purpose of the present work is to investigate the mechanical properties of the aeronautical PMMA which has been treated by the directional tensile technology. Isodyne images reveal the stress state in directional PMMA. And then, an anisotropic mechanical model is established. Furthermore, all mechanical parameters are measured by the digital image correlation method. Finally, based on the anisotropic mechanical model and mechanical parameters, the FEM numerical simulation and experimental methods are applied to analyze the fracture mechanical properties along different directions.

  1. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery.

    Science.gov (United States)

    Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A

    2013-11-01

    A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Phototactic orientation mechanism in the ciliate Fabrea salina, as inferred from numerical simulations.

    Science.gov (United States)

    Marangoni, R; Preosti, G; Colombetti, G

    2000-02-01

    The marine ciliate Fabrea salina shows a clear positive phototaxis, but the mechanism by which a single cell is able to detect the direction of light and orient its swimming accordingly is still unknown. A simple model of phototaxis is that of a biased random walk, where the bias due to light can affect one or more of the parameters that characterize a random walk, i.e., the mean speed, the frequency distribution of the angles of directional changes and the frequency of directional changes. Since experimental evidence has shown no effect of light on the mean speed of Fabrea salina, we have excluded models depending on this parameter. We have, therefore, investigated the phototactic orientation of Fabrea salina by computer simulation of two simple models, the first where light affects the frequency distribution of the angles of directional changes (model M1) and the second where the light bias modifies the frequency of directional changes (model M2). Simulated M1 cells directly orient their swimming towards the direction of light, regardless of their current swimming orientation; simulated M2 cells, on the contrary, are unable to actively orient their motion, but remain locked along the light direction once they find it by chance. The simulations show that these two orientation models lead to different macroscopic behaviours of the simulated cell populations. By comparing the results of the simulations with the experimental ones, we have found that the phototactic behaviour of real cells is more similar to that of the M2 model.

  3. Mechanical properties of simulated Mars materials: gypsum-rich sandstones and lapilli tuff

    Science.gov (United States)

    Morrow, Carolyn; Lockner, David; Okubo, Chris

    2013-01-01

    Observations by the Mars Exploration Rover (MER) Opportunity, and other recent studies on diagenesis in the extensive equatorial layered deposits on Mars, suggest that the likely lithologies of these deposits are gypsum-rich sandstones and tuffaceous sediments (for example, Murchie and others, 2009; Squyres and others, 2012; Zimbelman and Scheidt, 2012). Of particular interest is how the diagenesis history of these sediments (degree of cementation and composition) influences the strength and brittle behavior of the material. For instance, fractures are more common in lower porosity materials under strain, whereas deformation bands, characterized by distributed strain throughout a broader discontinuity in a material, are common in higher porosity sedimentary materials. Such discontinuities can either enhance or restrict fluid flow; hence, failure mode plays an important role in determining the mechanics of fluid migration through sediments (Antonellini and Aydin, 1994; 1995; Taylor and Pollard, 2000; Ogilvie and Glover, 2001). As part of a larger study to characterize processes of fault-controlled fluid flow in volcaniclastic and gypsum-rich sediments on Mars, we have completed a series of laboratory experiments to focus on how gypsum clast content and degree of authigenic cementation affects the strength behavior of simulated Mars rocks. Both axial deformation and hydrostatic pressure tests were done at room temperature under dry conditions.

  4. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  5. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    Science.gov (United States)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  6. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  7. Deep Space Storm Shelter Simulation Study

    Science.gov (United States)

    Dugan, Kathryn; Phojanamongkolkij, Nipa; Cerro, Jeffrey; Simon, Matthew

    2015-01-01

    Missions outside of Earth's magnetic field are impeded by the presence of radiation from galactic cosmic rays and solar particle events. To overcome this issue, NASA's Advanced Exploration Systems Radiation Works Storm Shelter (RadWorks) has been studying different radiation protective habitats to shield against the onset of solar particle event radiation. These habitats have the capability of protecting occupants by utilizing available materials such as food, water, brine, human waste, trash, and non-consumables to build short-term shelters. Protection comes from building a barrier with the materials that dampens the impact of the radiation on astronauts. The goal of this study is to develop a discrete event simulation, modeling a solar particle event and the building of a protective shelter. The main hallway location within a larger habitat similar to the International Space Station (ISS) is analyzed. The outputs from this model are: 1) the total area covered on the shelter by the different materials, 2) the amount of radiation the crew members receive, and 3) the amount of time for setting up the habitat during specific points in a mission given an event occurs.

  8. Molecular Dynamics Simulation for the Mechanical Properties of CNT/Polymer Nanocomposites

    International Nuclear Information System (INIS)

    Yang, Seung Hwa; Cho, Maeg Hyo

    2007-01-01

    In order to obtain mechanical properties of CNT/Polymer nano-composites, molecular dynamics simulation is performed. Overall system was modeled as a flexible unit cell in which carbon nanotubes are embedded into a polyethylene matrix for N σ T ensemble simulation. COMPASS force field was chosen to describe inter and intra molecular potential and bulk effect was achieved via periodic boundary conditions. In CNT-polymer interface, only Lennard-Jones non-bond potential was considered. Using Parrinello-Rahman fluctuation method, mechanical properties of orthotropic nano-composites under various temperatures were successfully obtained. Also, we investigated thermal behavior of the short CNT reinforced nanocomposites system with predicting glass transition temperature

  9. Mechanical properties of pillared-graphene nanostructures using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Chih-Hao; Fang, Te-Hua; Sun, Wei-Li

    2014-01-01

    The deformation behaviour and mechanical properties of three-dimensional (3D) pillared graphene are investigated using molecular dynamics simulations. The Tersoff–Brenner many-body potential model is employed to evaluate the interactions between 3D pillared-graphene carbon atoms and nanotube carbons. The Lennard-Jones potential model is used to compute the interactions between a conical indenter and 3D pillared-graphene carbon atoms. The effects of the size and geometric structure of 3D pillared-graphene are evaluated in terms of the indentation force and contact stiffness. The simulation results for an armchair nanotube of 3D pillared graphene show that the contact stiffness increases with increasing chiral vector of the 3D-pillared graphene. However, the adhesive force sharply decreases with increasing chiral vector of the 3D-pillared graphene. A zigzag nanotube of 3D-pillared graphene exhibits better mechanical properties compared with those of the armchair nanotube. (paper)

  10. Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

    Science.gov (United States)

    Kumar, Pankaj; Singh, Akhilendra

    2017-10-01

    In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

  11. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junhua, E-mail: junhua.zhao@uni-weimar.de [Jiangsu Province Key Laboratory of Advanced Manufacturing Equipment and Technology of Food, Jiangnan University, 214122 Wuxi (China); Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); Jiang, Jin-Wu, E-mail: jwjiang5918@hotmail.com [Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); Rabczuk, Timon, E-mail: timon.rabczuk@uni-weimar.de [Institute of Structural Mechanics, Bauhaus-University Weimar, 99423 Weimar (Germany); School of Civil, Environmental and Architectural Engineering, Korea University, 136-701 Seoul (Korea, Republic of)

    2013-12-02

    The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS{sub 2}) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS{sub 2}. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.

  12. Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Fan, J. L.; Gong, H. R., E-mail: gonghr@csu.edu.cn [Central South University, State Key Laboratory of Powder Metallurgy (China)

    2017-03-15

    Molecular dynamic simulation is used to systematically find out the effects of the size and shape of nanoparticles on phase transition and mechanical properties of W nanomaterials. It is revealed that the body-centered cubic (BCC) to face-centered cubic (FCC) phase transition could only happen in cubic nanoparticles of W, instead of the shapes of sphere, octahedron, and rhombic dodecahedron, and that the critical number to trigger the phase transition is 5374 atoms. Simulation also shows that the FCC nanocrystalline W should be prevented due to its much lower tensile strength than its BCC counterpart and that the octahedral and rhombic dodecahedral nanoparticles of W, rather than the cubic nanoparticles, should be preferred in terms of phase transition and mechanical properties. The derived results are discussed extensively through comparing with available observations in the literature to provide a deep understanding of W nanomaterials.

  13. Atomistic simulations of diffusion mechanisms in off-stoichiometric Al-rich Ni3Al

    International Nuclear Information System (INIS)

    Duan, Jinsong

    2007-01-01

    This paper presents dynamics simulation results of diffusion in off-stoichiometric Al-rich Ni 3 Al (Ni 73 Al 27 ) at temperature ranging from 1300 to 1550 K. The interatomic forces are described by the Finnis-Sinclair type N-body potentials. Particular attention is devoted to the effect of the extra 2% of Al atoms sitting on the Ni sublattice as antisite point defects (Al Ni ) on diffusion. Simulation results show that Ni atoms mainly diffuse through the Ni sublattice at the temperatures investigated. Al atoms diffuse via both the intrasublattice and antistructure bridge (ASB) mechanisms. The contribution to Al diffusion from the ASB mechanism decreases at the lower temperature (T Ni ) enhances both Al and Ni diffusion in Ni 73 Al 27 . The Ni-Al coupled diffusion effect is observed and understood at the atomic level for the first time

  14. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-01-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface. - Highlights: • Dislocation mechanism of void growth at TB of nanotwinned nickel is investigated. • Deformation of the nanotwinned nickel is dominated by leading and trailing partials. • Growth of void at TB is caused by successive emission and escape of these partials.

  15. ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization

    Science.gov (United States)

    Kleinhenz, Julie; Wilkinson, Allen

    2012-01-01

    Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.

  16. Re-entry simulation chamber for thermo-mechanical characterisation of space materials

    Science.gov (United States)

    Liedtke, Volker

    2003-09-01

    During re-entry, materials and components are subject to very high thermal and mechanical loads. Any failure may cause loss of mission. Therefore, materials and components have to be tested under most rigid conditions to verify the suitability of the material and to verify the design of the components. The Re-Entry Simulation Chamber (RESiC) at ARC Seibersdorf research (ARCS) allows simulating the high thermal loads as well as complex mechanical load profiles that may occur during a re-entry; additionally, the influence of chemical reactions of materials with gaseous components of the atmosphere can be studied. The high vacuum chamber (better than 1×10-6 mbar) has a diameter of 650 mm and allows a sample height of 500 mm, or 1000 mm with extension flange. The gas dosing system is designed to emulate the increasing atmospheric pressure during the re-entry trajectory of a vehicle. Heating is performed by a 30 kW induction generator that allows a sufficiently rapid heating of larger components; electrically conductive materials such as metals or carbon fibre reinforced ceramics are directly heated, while for electrical insulators, susceptor plates or tubes will be employed. The uniaxial servo-hydraulic testing machine has a maximum load of 70 kN, either static or with a frequency of up to 70 Hz, with any given load profile (sinus, rectangular, triangular, ...). Strain measurements will be done by non-contacting laser speckle system for maximum flexibility and minimum instrumentation time effort (currently under application testing), or by strain gauges. All relevant process parameters are controlled and recorded by microcomputer. The highly sophisticated control software allows a convenient and reliable multi-channel data acquisition, e.g. temperatures at various positions of the test piece, pressure, loads, strains, and any other test data according to customer specifications; the data format is suitable for any further data processing. During the set-up and

  17. Superheating of Ag nanowires studied by molecular dynamics simulations

    International Nuclear Information System (INIS)

    Duan Wenshi; Ling Guangkong; Hong Lin; Li Hong; Liang Minghe

    2008-01-01

    The melting process of Ag nanowires was studied by molecular dynamics (MD) simulations at the atomic level. It is indicated that the Ag nanowires with Ni coating can be superheated depending on their radius and size. Also, in this paper the mechanism of superheating was analyzed and ascribed to the epitaxial Ag/Ni interface suppressing the nucleation and growth of melt. For the analysis, a thermodynamic model was constructed to describe the superheating mechanism of the Ni-coated Ag nanowires by considering the Ag/Ni interface free energy. We showed that the nucleation and growth of the Ag melt phase are both suppressed by the low energy Ag/Ni interfaces in Ni-coated Ag wires and the suppression of melt growth is crucial and plays a major role in the process of melting. The thermodynamic analysis gave a quantitative relation of superheating with the Ag wire radius and the contact angle of melting. The superheating decreased with Ag wire radius and also depended on the Ag/Ni interfacial condition. The results of the thermodynamic model were consistent with those of the MD simulations

  18. Simulation study of the high intensity S-Band photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiongwei; Nakajima, Kazuhisa [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-10-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 {pi} mm mrad can be outputted at the exit of photoinjector. (author)

  19. Simulation study of the high intensity S-Band photoinjector

    International Nuclear Information System (INIS)

    Zhu, Xiongwei; Nakajima, Kazuhisa

    2001-01-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 π mm mrad can be outputted at the exit of photoinjector. (author)

  20. Thermo-mechanical simulation of liquid-supported stretch blow molding

    International Nuclear Information System (INIS)

    Zimmer, J.; Stommel, M.

    2015-01-01

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way, a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera

  1. Corrosion and mechanical performance of AZ91 exposed to simulated inflammatory conditions.

    Science.gov (United States)

    Brooks, Emily K; Der, Stephanie; Ehrensberger, Mark T

    2016-03-01

    Magnesium (Mg) and its alloys, including Mg-9%Al-1%Zn (AZ91), are biodegradable metals with potential use as temporary orthopedic implants. Invasive orthopedic procedures can provoke an inflammatory response that produces hydrogen peroxide (H2O2) and an acidic environment near the implant. This study assessed the influence of inflammation on both the corrosion and mechanical properties of AZ91. The AZ91 samples in the inflammatory protocol were immersed for three days in a complex biologically relevant electrolyte (AMEM culture media) that contained serum proteins (FBS), 150 mM of H2O2, and was titrated to a pH of 5. The control protocol immersed AZ91 samples in the same biologically relevant electrolyte (AMEM & FBS) but without H2O2 and the acid titration. After 3 days all samples were switched into fresh AMEM & FBS for an additional 3-day immersion. During the initial immersion, inflammatory protocol samples showed increased corrosion rate determined by mass loss testing, increased Mg and Al ion released to solution, and a completely corroded surface morphology as compared to the control protocol. Although corrosion in both protocols slowed once the test electrolyte solution was replaced at 3 days, the samples originally exposed to the simulated inflammatory conditions continued to display enhanced corrosion rates as compared to the control protocol. These lingering effects may indicate the initial inflammatory corrosion processes modified components of the surface oxide and corrosion film or initiated aggressive localized processes that subsequently left the interface more vulnerable to continued enhanced corrosion. The electrochemical properties of the interfaces were also evaluated by EIS, which found that the corrosion characteristics of the AZ91 samples were potentially influenced by the role of intermediate adsorption layer processes. The increased corrosion observed for the inflammatory protocol did not affect the flexural mechanical properties of the AZ91

  2. Mechanical Simulation of the Extension and Flexion of the Elbow Joint in Rehabilitation

    Directory of Open Access Journals (Sweden)

    Iman Vahdat

    2013-01-01

    Full Text Available Objective: The goal of the present study was to improve the extension and flexion of the elbow joint for rehabilitation purposes, in terms of energy dissipation and of injuries caused by stress imposed on connective tissue by exercise equipments during force transfer , by investigation of viscoelastic property variations during change in speed of motion. Materials & Methods: A sample of five men without any previous neuromuscular impairment of the elbow joint was chosen by the BMI factor. The passive continuous motion test (CPM was performed by the CYBEX isokinetic system in the extension and flexion movements of the elbow joint of the left hand, at 4 different speeds (15, 45, 75 and120 Deg/s during 5 consecutive cycles at the range of motion of about 0 to 130 degrees. The experimental data was exported to the MATLAB software for analysis. In order to determine viscoelastic property effects and biomechanical parameters, we used a passive viscoelastic mechanical model constructed by 3 elements for simulation, and also we used the curve fitting method to derive the elastic and viscose coefficients for the model.,. Results: Results of experiments showed that by increasing the speed of motion, the value of work done, hysteresis and elastic coefficient increased and the value of viscose coefficient decreased. Also, it appeared that by increasing the speed of motion, the effect of viscose resistance on the passive torque curves increased. In addition, there was significant correlation between the action of the mechanical model and the action of the concerned limbs, during the movement. Conclusion: It was concluded that in order to improve motion and to reduce imposed risks and injuries to joints and limbs, rehabilitation exercises better be performed at lower speeds and with rehabilitation equipments supported by viscoelastic resistant force.

  3. Implementation of Simulation Based-Concept Attainment Method to Increase Interest Learning of Engineering Mechanics Topic

    Science.gov (United States)

    Sultan, A. Z.; Hamzah, N.; Rusdi, M.

    2018-01-01

    The implementation of concept attainment method based on simulation was used to increase student’s interest in the subjects Engineering of Mechanics in second semester of academic year 2016/2017 in Manufacturing Engineering Program, Department of Mechanical PNUP. The result of the implementation of this learning method shows that there is an increase in the students’ learning interest towards the lecture material which is summarized in the form of interactive simulation CDs and teaching materials in the form of printed books and electronic books. From the implementation of achievement method of this simulation based concept, it is noted that the increase of student participation in the presentation and discussion as well as the deposit of individual assignment of significant student. With the implementation of this method of learning the average student participation reached 89%, which before the application of this learning method only reaches an average of 76%. And also with previous learning method, for exam achievement of A-grade under 5% and D-grade above 8%. After the implementation of the new learning method (simulation based-concept attainment method) the achievement of Agrade has reached more than 30% and D-grade below 1%.

  4. [Mechanical studies of lumbar interbody fusion implants].

    Science.gov (United States)

    Bader, R J; Steinhauser, E; Rechl, H; Mittelmeier, W; Bertagnoli, R; Gradinger, R

    2002-05-01

    In addition to autogenous or allogeneic bone grafts, fusion cages composed of metal or plastic are being used increasingly as spacers for interbody fusion of spinal segments. The goal of this study was the mechanical testing of carbon fiber reinforced plastic (CFRP) fusion cages used for anterior lumbar interbody fusion. With a special testing device according to American Society for Testing and Materials (ASTM) standards, the mechanical properties of the implants were determined under four different loading conditions. The implants (UNION cages, Medtronic Sofamor Danek) provide sufficient axial compression, shear, and torsional strength of the implant body. Ultimate axial compression load of the fins is less than the physiological compression loads at the lumbar spine. Therefore by means of an appropriate surgical technique parallel grooves have to be reamed into the endplates of the vertebral bodies according to the fin geometry. Thereby axial compression forces affect the implants body and the fins are protected from damaging loading. Using a supplementary anterior or posterior instrumentation, in vivo failure of the fins as a result of physiological shear and torsional spinal loads is unlikely. Due to specific complications related to autogenous or allogeneic bone grafts, fusion cages made of metal or carbon fiber reinforced plastic are an important alternative implant in interbody fusion.

  5. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    Science.gov (United States)

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length Autodesk Simulation Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  6. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  7. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  8. Conducting Simulation Studies in the R Programming Environment.

    Science.gov (United States)

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  9. Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions.

    Science.gov (United States)

    Acevedo, Orlando; Jorgensen, William L

    2010-01-19

    Application of combined quantum and molecular mechanical (QM/MM) methods focuses on predicting activation barriers and the structures of stationary points for organic and enzymatic reactions. Characterization of the factors that stabilize transition structures in solution and in enzyme active sites provides a basis for design and optimization of catalysts. Continued technological advances allowed for expansion from prototypical cases to mechanistic studies featuring detailed enzyme and condensed-phase environments with full integration of the QM calculations and configurational sampling. This required improved algorithms featuring fast QM methods, advances in computing changes in free energies including free-energy perturbation (FEP) calculations, and enhanced configurational sampling. In particular, the present Account highlights development of the PDDG/PM3 semi-empirical QM method, computation of multi-dimensional potentials of mean force (PMF), incorporation of on-the-fly QM in Monte Carlo (MC) simulations, and a polynomial quadrature method for efficient modeling of proton-transfer reactions. The utility of this QM/MM/MC/FEP methodology is illustrated for a variety of organic reactions including substitution, decarboxylation, elimination, and pericyclic reactions. A comparison to experimental kinetic results on medium effects has verified the accuracy of the QM/MM approach in the full range of solvents from hydrocarbons to water to ionic liquids. Corresponding results from ab initio and density functional theory (DFT) methods with continuum-based treatments of solvation reveal deficiencies, particularly for protic solvents. Also summarized in this Account are three specific QM/MM applications to biomolecular systems: (1) a recent study that clarified the mechanism for the reaction of 2-pyrone derivatives catalyzed by macrophomate synthase as a tandem Michael-aldol sequence rather than a Diels-Alder reaction, (2) elucidation of the mechanism of action of fatty

  10. Dynamics of ligand exchange mechanism at Cu(II) in water: An ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region

    International Nuclear Information System (INIS)

    Moin, Syed Tarique; Hofer, Thomas S.; Weiss, Alexander K. H.; Rode, Bernd M.

    2013-01-01

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment

  11. Dynamics of ligand exchange mechanism at Cu(II) in water: an ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S; Weiss, Alexander K H; Rode, Bernd M

    2013-07-07

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment.

  12. 3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction

    International Nuclear Information System (INIS)

    Seo, Sang Kyu; Lee, Sung Uk; Lee, Eun Ho; Yang, Dong Yol; Kim, Hyo Chan; Yang, Dong Yol

    2016-01-01

    In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results

  13. Reconstruction of 3D Micro Pore Structure of Coal and Simulation of Its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Guang-zhe Deng

    2017-01-01

    Full Text Available This article takes the low permeability coal seam in the coalfield of South Judger Basin in Xinjiang, as a research object. The pore structure characteristics of coal rock mass in low permeability coal seam were analyzed quantitatively using scanning electron microscopy (SEM through the methods of statistics and digital image analysis. Based on the pore structure parameters and the distribution function of the coal rock mass, a three-dimensional porous cylinder model with different porosity was reconstructed by FLAC3D. The numerical simulation study of reconstructed pore model shows that (1 the porosity and the compressive strength have obvious nonlinear relation and satisfy the negative exponential relation; (2 the porosity significantly affects the stress distribution; with the increase of micro porosity, the stress distribution becomes nonuniform; (3 the compressive failures of different models are mainly shear failures, and the shape of fracture section is related to porosity; (4 the variation of seepage coefficient of the pore reconstruction model is consistent with the development of micro cracks. The micro mechanism of the deformation and failure of coal and the interaction of multiphase flow with porosity are revealed, which provides a theoretical reference for the clean development of the low permeability coal seam.

  14. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model.

    Science.gov (United States)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-05

    Thrombin-binding aptamer (TBA) with the sequence 5'GGTTGGTGTGGTTGG3' could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  15. Innovative Silicon Microgrippers for Biomedical Applications: Design, Mechanical Simulation and Evaluation of Protein Fouling

    Directory of Open Access Journals (Sweden)

    Cristina Potrich

    2018-03-01

    Full Text Available The demand of miniaturized, accurate and robust micro-tools for minimally invasive surgery or in general for micro-manipulation, has grown tremendously in recent years. To meet this need, a new-concept comb-driven microgripper was designed and fabricated. Two microgripper prototypes differing for both the number of links and the number of conjugate surface flexure hinges are presented. Their design takes advantage of an innovative concept based on the pseudo-rigid body model, while the study of microgripper mechanical potentialities in different configurations is supported by finite elements’ simulations. These microgrippers, realized by the deep reactive-ion etching technology, are intended as micro-tools for tissue or cell manipulation and for minimally invasive surgery; therefore, their biocompatibility in terms of protein fouling was assessed. Serum albumin dissolved in phosphate buffer was selected to mimic the physiological environment and its adsorption on microgrippers was measured. The presented microgrippers demonstrated having great potential as biomedical tools, showing a modest propensity to adsorb proteins, independently from the protein concentration and time of incubation.

  16. Learning with a strategic management simulation game: A case study

    OpenAIRE

    Loon, Mark; Evans, Jason; Kerridge, Clive

    2015-01-01

    The use of simulation games as a pedagogic method is well established though its effective use is context-driven. This study adds to the increasing growing body of empirical evidence of the effectiveness of simulation games but more importantly emphasises why by explaining the instructional design implemented reflecting best practices. This multi-method study finds evidence that student learning was enhanced through the use of simulation games, reflected in the two key themes; simulation game...

  17. Simulation studies of GST phase change alloys

    Science.gov (United States)

    Martyna, Glenn

    2008-03-01

    In order to help drive post-Moore's Law technology development, switching processes involving novel materials, in particular, GeSbTe (GST) alloys are being investigated for use in memory and eFuse applications. An anneal/quench thermal process crystallizes/amorphosizes a GST alloy which then has a low/high resistance and thereby forms a readable/writeable bit; for example, a ``one'' might be the low resistance, conducting crystalline state and a ``zero'' might be the high resistance, glassy state. There are many open questions about the precise nature of the structural transitions and the coupling to electronic structure changes. Computational and experimental studies of the effect of pressure on the GST materials were initiated in order to probe the physics behind the thermal switching process. A new pathway to reversible phase change involving pressure-induced structural metal insulator transitions was discovered. In a binary GS system, a room-temperature, direct, pressure-induced transformation from the high resistance amorphous phase to the low resistance crystalline phase was observed experimentally while the reverse process under tensile load was demonstrated via ab initio MD simulations performed on IBM's Blue Gene/L enabled by massively parallel software. Pressure induced transformations of the ternary material GST-225 (Ge2Sb2Te5) were, also, examined In the talk, the behavior of the two systems will be compared and insight into the nature of the phase change given.

  18. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.; Tang, X.Z.; Strauss, H.R.; Sugiyama, L.E.

    1999-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of δf particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future. copyright 1999 American Institute of Physics

  19. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future

  20. Computer Simulation Studies of Trishomocubane Heptapeptide of ...

    African Journals Online (AJOL)

    NICO

    Trishomocubane, molecular dynamics, Amber, CLASICO, β-turn, α-helical. 1. Introduction .... MD simulations of Ac-Ala3-Tris-Ala3-NHMe explicitly in MEOH. 3. Results and .... worthwhile to group all conformations into clusters according to.

  1. White book Escrime. Climatic simulation studies

    International Nuclear Information System (INIS)

    Terray, L.; Braconnot, P.

    2007-01-01

    The ESCRIME project aims to manage the analysis realized on the climatic simulations on the framework of the fourth report of the GIEC (group of intergovernmental experts on the climate evolution), in particularly the simulations based on french models. This white book is constituted by 8 chapters: the global scenario, the climatic sensibility, the variation modes, the regionalization and the extremes, the hydrological cycle, the polar regions and the cryo-sphere, the carbon cycle, detection and attributions. (A.L.B.)

  2. Large-eddy simulations of mechanical and thermal processes within boundary layer of the Graciosa Island

    Science.gov (United States)

    Sever, G.; Collis, S. M.; Ghate, V. P.

    2017-12-01

    Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.

  3. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  4. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model

    International Nuclear Information System (INIS)

    Sun, Zhi-xue; Zhang, Xu; Xu, Yi; Yao, Jun; Wang, Hao-xuan; Lv, Shuhuan; Sun, Zhi-lei; Huang, Yong; Cai, Ming-yu; Huang, Xiaoxue

    2017-01-01

    The Enhanced Geothermal System (EGS) creates an artificial geothermal reservoir by hydraulic fracturing which allows heat transmission through the fractures by the circulating fluids as they extract heat from Hot Dry Rock (HDR). The technique involves complex thermal–hydraulic–mechanical (THM) coupling process. A numerical approach is presented in this paper to simulate and analyze the heat extraction process in EGS. The reservoir is regarded as fractured porous media consisting of rock matrix blocks and discrete fracture networks. Based on thermal non-equilibrium theory, the mathematical model of THM coupling process in fractured rock mass is used. The proposed model is validated by comparing it with several analytical solutions. An EGS case from Cooper Basin, Australia is simulated with 2D stochastically generated fracture model to study the characteristics of fluid flow, heat transfer and mechanical response in geothermal reservoir. The main parameters controlling the outlet temperature of EGS are also studied by sensitivity analysis. The results shows the significance of taking into account the THM coupling effects when investigating the efficiency and performance of EGS. - Highlights: • EGS reservoir comprising discrete fracture networks and matrix rock is modeled. • A THM coupling model is proposed for simulating the heat extraction in EGS. • The numerical model is validated by comparing with several analytical solutions. • A case study is presented for understanding the main characteristics of EGS. • The THM coupling effects are shown to be significant factors to EGS's running performance.

  5. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    Science.gov (United States)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  6. The Simulation of Precipitation Evolutions and Mechanical Properties in Friction Stir Welding with Post-Weld Heat Treatments

    Science.gov (United States)

    Zhang, Z.; Wan, Z. Y.; Lindgren, L.-E.; Tan, Z. J.; Zhou, X.

    2017-12-01

    A finite element model of friction stir welding capable of re-meshing is used to simulate the temperature variations. Re-meshing of the finite element model is used to maintain a fine mesh resolving the gradients of the solution. The Kampmann-Wagner numerical model for precipitation is then used to study the relation between friction stir welds with post-weld heat treatment (PWHT) and the changes in mechanical properties. Results indicate that the PWHT holding time and PWHT holding temperature need to be optimally designed to obtain FSW with better mechanical properties. Higher precipitate number with lower precipitate sizes gives higher strength in the stirring zone after PWHT. The coarsening of precipitates in HAZ are the main reason to hinder the improvement of mechanical property when PWHT is used.

  7. Impact of Carbon Quota Allocation Mechanism on Emissions Trading: An Agent-Based Simulation

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2016-08-01

    Full Text Available This paper establishes an agent-based simulation system of the carbon emissions trading in accordance with the complex feature of the trading process. This system analyzes the impact of the carbon quota allocation mechanism on emissions trading for three different aspects including the amount of emissions reduction, the economic effect on the emitters, and the emissions reduction cost. Based on the data of the carbon emissions of different industries in China, several simulations were made. The results indicate that the emissions trading policy can effectively reduce carbon emissions in a perfectly competitive market. Moreover, by comparing separate quota allocation mechanisms, we obtain the result that the scheme with a small extent quota decrease in a comprehensive allocation mechanism can minimize the unit carbon emission cost. Implementing this scheme can also achieve minimal effects of carbon emissions limitation on the economy on the basis that the environment is not destroyed. However, excessive quota decrease cannot promote the emitters to reduce emission. Taking into account that several developing countries have the dual task of limiting carbon emissions and developing the economy, it is necessary to adopt a comprehensive allocation mechanism of the carbon quota and increase the initial proportion of free allocation.

  8. On the potential of computational methods and numerical simulation in ice mechanics

    International Nuclear Information System (INIS)

    Bergan, Paal G; Cammaert, Gus; Skeie, Geir; Tharigopula, Venkatapathi

    2010-01-01

    This paper deals with the challenge of developing better methods and tools for analysing interaction between sea ice and structures and, in particular, to be able to calculate ice loads on these structures. Ice loads have traditionally been estimated using empirical data and 'engineering judgment'. However, it is believed that computational mechanics and advanced computer simulations of ice-structure interaction can play an important role in developing safer and more efficient structures, especially for irregular structural configurations. The paper explains the complexity of ice as a material in computational mechanics terms. Some key words here are large displacements and deformations, multi-body contact mechanics, instabilities, multi-phase materials, inelasticity, time dependency and creep, thermal effects, fracture and crushing, and multi-scale effects. The paper points towards the use of advanced methods like ALE formulations, mesh-less methods, particle methods, XFEM, and multi-domain formulations in order to deal with these challenges. Some examples involving numerical simulation of interaction and loads between level sea ice and offshore structures are presented. It is concluded that computational mechanics may prove to become a very useful tool for analysing structures in ice; however, much research is still needed to achieve satisfactory reliability and versatility of these methods.

  9. Microstructure distribution and mechanical properties prediction of boron alloy during hot forming using FE simulation

    International Nuclear Information System (INIS)

    Cui Junjia; Lei Chengxi; Xing Zhongwen; Li Chunfeng

    2012-01-01

    Highlights: ► We model microstructural evolution during hot forming using a metallo-thermo-mechanical model. ► The effect of water-cooled on temperature distribution of blank and tools was investigated. ► The effect of process parameters on microstructure and mechanical properties were investigated. ► FE results were compared to experimental results and the errors of mechanical properties were in a reasonable scope. - Abstract: As a theoretical tool predicting microstructural evolution of boron alloy, the finite element (FE) method has received considerable attention in recent years. In this work, we focus on the boron alloy under non-isothermal hot forming conditions and establish a fully coupled metallo-thermo-mechanical model taking account of cooling and oxide. Based on the proposed model, we investigate the phase transformation and predict the hardness during the hot forming process via FE simulation. In addition, according to the hardness, the tensile strength during non-isothermal forming is predicted. Supporting the feasibility of the proposed model is the experiments where BR1500HS alloy is hot-worked at various conditions that derive a promising agreement of microstructures, hardness, and tensile strength to the simulation data.

  10. Molecular simulation studies on thermophysical properties with application to working fluids

    CERN Document Server

    Raabe, Gabriele

    2017-01-01

    This book discusses the fundamentals of molecular simulation, starting with the basics of statistical mechanics and providing introductions to Monte Carlo and molecular dynamics simulation techniques. It also offers an overview of force-field models for molecular simulations and their parameterization, with a discussion of specific aspects. The book then summarizes the available know-how for analyzing molecular simulation outputs to derive information on thermophysical and structural properties. Both the force-field modeling and the analysis of simulation outputs are illustrated by various examples. Simulation studies on recently introduced HFO compounds as working fluids for different technical applications demonstrate the value of molecular simulations in providing predictions for poorly understood compounds and gaining a molecular-level understanding of their properties. This book will prove a valuable resource to researchers and students alike.

  11. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics

    International Nuclear Information System (INIS)

    Zhang Jun; Li, Victor C.

    2004-01-01

    Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K IC ) and the crack bridging law, so-called stress-crack width (σ-δ) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K IC and (σ-δ) relationship, are known

  12. Component simulation in problems of calculated model formation of automatic machine mechanisms

    Directory of Open Access Journals (Sweden)

    Telegin Igor

    2017-01-01

    Full Text Available The paper deals with the problems of the component simulation method application in the problems of the automation of the mechanical system model formation with the further possibility of their CAD-realization. The purpose of the investigations mentioned consists in the automation of the CAD-model formation of high-speed mechanisms in automatic machines and in the analysis of dynamic processes occurred in their units taking into account their elasto-inertial properties, power dissipation, gaps in kinematic pairs, friction forces, design and technological loads. As an example in the paper there are considered a formalization of stages in the computer model formation of the cutting mechanism in cold stamping automatic machine AV1818 and methods of for the computation of their parameters on the basis of its solid-state model.

  13. Revealing microstructural and mechanical characteristics of cold-drawn pearlitic steel wires undergoing simulated galvanization treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fang Feng, E-mail: fangfeng@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Hu Xianjun [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Jiangsu Sha-Steel Group, Zhangjiagang City, Jiangsu Province 215625 (China); Chen Shaohui [Jiangsu Sha-Steel Group, Zhangjiagang City, Jiangsu Province 215625 (China); Xie Zonghan [School of Engineering, Edith Cowen University, Joondalup, WA 6027 (Australia); Jiang Jianqing [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Annealing time on microstructure and mechanical properties of cold-drawn steel wires were studied. Black-Right-Pointing-Pointer Exothermic peak in cold-drawn wire was resulting from the spheroidization of lamellar cementite. Black-Right-Pointing-Pointer Spheroidization of lamellar cementite is the main effect for torsion property of wires after annealing. - Abstract: Spheroidization of lamellar cementite often occurs in cold-drawn pearlitic steel wires during galvanizing treatment, leading to the degradation of mechanical properties. Therefore, it is important to understand effects of galvanization process on microstructure and mechanical properties of cold-drawn wires. In this paper, cold-drawn steel wires were fabricated by cold drawing pearlitic steel rods from 13 mm to 6.9 mm in diameter. Thermal annealing at 450 Degree-Sign C was used to simulate galvanizing treatment of steel wires. Tensile strength, elongation and torsion laps of steel rods and wires with, and without, annealing treatment were determined. Microstructure was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, differential scanning calorimetry (DSC) was used to probe the spheroidization temperature of cementite. Experimental results showed that tensile strength of wires increased from 1780 MPa to 1940 MPa for annealing <5 min, and then decreased. Tensile strength became constant for annealing >10 min. Elongation of wires decreased for annealing <2.5 min, and then recovered slightly. It approached a constant value for annealing >5 min. Tensile strength and elongation of wires were both influenced by the strain age hardening and static recovery processes. Notably, torsion laps of wires hardly changed when annealing time was less than 2.5 min, and then decreased rapidly. Its value became constant when the hold time is greater than 10 min. Lamellar cementite began to spheroidize at annealing >2.5 min

  14. Multiscale Simulation of Thermo-mechanical Processes in Irradiated Fission-reactor Materials

    International Nuclear Information System (INIS)

    Phillpot, Simon R.

    2012-01-01

    The work funded from this project has been published in six papers, with two more in draft form, with submission planned for the near future. The papers are: (1) Kinetically-Evolving Irradiation-Induced Point-Defect Clusters in UO 2 by Molecular-Dynamics Simulation; (2) Kinetically driven point-defect clustering in irradiated MgO by molecular-dynamics simulation; (3) Grain-Boundary Source/Sink Behavior for Point Defect: An Atomistic Simulation Study; (4) Energetics of intrinsic point defects in uranium dioxide from electronic structure calculations; (5) Thermodynamics of fission products in UO 2±x ; and (6) Atomistic study of grain boundary sink strength under prolonged electron irradiation. The other two pieces of work that are currently being written-up for publication are: (1) Effect of Pores and He Bubbles on the Thermal Transport Properties of UO2 by Molecular Dynamics Simulation; and (2) Segregation of Ruthenium to Edge Dislocations in Uranium Dioxide.

  15. Modeling and Dynamic Simulation of the Adjust and Control System Mechanism for Reactor CAREM-25

    International Nuclear Information System (INIS)

    Larreteguy, A.E; Mazufri, C.M

    2000-01-01

    The adjust and control system mechanism, MSAC, is an advanced, and in some senses unique, hydromechanical device.The efforts in modeling this mechanism are aimed to: Get a deep understanding of the physical phenomena involved,Identify the set of parameters relevant to the dynamics of the system,Allow the numerical simulation of the system,Predict the behavior of the mechanism in conditions other than that obtainable within the range of operation of the experimental setup (CEM), and Help in defining the design of the CAPEM (loop for testing the mechanism under high pressure/high temperature conditions).Thanks to the close interaction between the mechanics, the experimenters, and the modelists that compose the MSAC task force, it has been possible to suggest improvements, not only in the design of the mechanism, but also in the design and the operation of the pulse generator (GDP) and the rest of the CEM.This effort has led to a design mature enough so as to be tested in a high-pressure loop

  16. Studying pressure denaturation of a protein by molecular dynamics simulations.

    Science.gov (United States)

    Sarupria, Sapna; Ghosh, Tuhin; García, Angel E; Garde, Shekhar

    2010-05-15

    Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties

  17. On Using Model Populations to Determine Mechanical Properties of Skeletal Muscle. Application to Concentric Contraction Simulation.

    Science.gov (United States)

    Sierra, M; Miana-Mena, F J; Calvo, B; Muñoz, M J; Rodríguez, J F; Grasa, J

    2015-10-01

    In the field of computational biomechanics, the experimental evaluation of the material properties is crucial for the development of computational models that closely reproduce real organ systems. When simulations of muscle tissue are concerned, stress/strain relations for both passive and active behavior are required. These experimental relations usually exhibit certain variability. In this study, a set of material parameters involved in a 3D skeletal muscle model are determined by using a system biology approach in which the parameters are randomly varied leading to a population of models. Using a set of experimental results from an animal model, a subset of the entire population of models was selected. This reduced population predicted the mechanical response within the window of experimental observations. Hence, a range of model parameters, instead of a single set of them, was determined. Rat Tibialis Anterior muscle was selected for this study. Muscles ([Formula: see text]) were activated through the sciatic nerve and during contraction the tissue pulled a weight fixed to the distal tendon (concentric contraction). Three different weights 1, 2 and 3 N were used and the time course of muscle stretch was analyzed obtaining values of (mean [Formula: see text] standard deviation): [Formula: see text], [Formula: see text] and [Formula: see text] respectively. A paired two-sided sign rank test showed significant differences between the muscle response for the three weights ([Formula: see text]). This study shows that the Monte Carlo method could be used for determine muscle characteristic parameters considering the variability of the experimental population.

  18. Fluctuating Finite Element Analysis (FFEA: A continuum mechanics software tool for mesoscale simulation of biomolecules.

    Directory of Open Access Journals (Sweden)

    Albert Solernou

    2018-03-01

    Full Text Available Fluctuating Finite Element Analysis (FFEA is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm, where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB or Protein Data Bank (PDB data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.

  19. Analysis of nanowire transistor based nitrogen dioxide gas sensor – A simulation study

    Directory of Open Access Journals (Sweden)

    Gaurav Saxena

    2015-06-01

    Full Text Available Sensors sensitivity, selectivity and stability has always been a prime design concern for gas sensors designers. Modeling and simulation of gas sensors aids the designers in improving their performance. In this paper, different routes for the modeling and simulation of a semiconducting gas sensor is presented. Subsequently, by employing one of the route, the response of Zinc Oxide nanowire transistor towards nitrogen dioxide ambient is simulated. In addition to the sensing mechanism, simulation study of gas species desorption by applying a recovery voltage is also presented.

  20. Study of the Mechanical Behavior of a Hyperelastic Membrane

    Directory of Open Access Journals (Sweden)

    Bourbaba Houaria

    2014-04-01

    Full Text Available The benefits in emloying plastics material in microfluidic devices manufactures are extremely attractive that include reduced cost and simplified manufacturing procedures, particularly when compared to silicon. An additional benefit is the wide range of available plastic materials which allow the manufacturer to choose materials' properties suitable for their specific application. The Polydimethylsiloxane is commonly used in a wide range of microfluidic applications due to its flexibility and low cost. In addition the properties of the Polymethyl methacrylate such as the low cost, high transparency, and good chemical properties are needed in microfluidics applications. In this paper, we have used Finit Elements method to simulate the mechanical behavior of Polydimethylsiloxane and Polymethylmethacrylate using hyper elastic and linear elastic model. Sevral parameters have been studied; such as, thickness and number of mesh in order to optimize the dimension of the membrane. Also, we have studied the impact of the mesh form on the membrane’s displacement.

  1. Understanding Demographic and Behavioral Mechanisms that Guide Responses of Neotropical Migratory Birds to Urbanization: a Simulation Approach

    Directory of Open Access Journals (Sweden)

    Daniel P. Shustack

    2008-12-01

    Full Text Available Although studies often report that densities of many forest birds are negatively related to urbanization, the mechanisms guiding this pattern are poorly understood. Our objective was to use a population simulation to examine the relative influence of six demographic and behavioral processes on patterns of avian abundance in urbanizing landscapes. We constructed an individual-based population simulation model representing the annual cycle of a Neotropical migratory songbird. Each simulation was performed under two landscape scenarios. The first scenario had similar proportions of high- and low-quality habitat across the urban to rural gradient. Under the first scenario, avian density was negatively related to urbanization only when rural habitats were perceived to be of higher quality than they actually were. The second landscape scenario had declining proportions of high-quality habitat as urbanization increased. Under the second scenario, each mechanism generated a negative relationship between density and urbanization. The strongest effect on density resulted when birds preferentially selected habitats in landscapes from which they fledged or were constrained from dispersing. The next strongest patterns occurred when birds directly evaluated habitat quality and accurately selected the highest-quality available territories. When birds selected habitats based on the presence of conspecifics, the density-urbanization relationship was only one-third the strength of other habitat selection mechanisms and only occurred under certain levels of population survival. Although differences in adult or nest survival in the face of random habitat selection still elicited reduced densities in urban landscapes, the relationships between urbanization and density were weaker than those produced by the conspecific attraction mechanism. Results from our study identify key predictions and areas for future research, including assessing habitat quality in urban and

  2. Modeling and Proposed Molecular Mechanism of Hydroxyurea Through Docking and Molecular Dynamic Simulation to Curtail the Action of Ribonucleotide Reductase.

    Science.gov (United States)

    Iman, Maryam; Khansefid, Zeynab; Davood, Asghar

    2016-01-01

    Ribonucleotide Reductase (RNR) is an important anticancer chemotherapy target. It has main key role in DNA synthesis and cell growth. Therefore several RNR inhibitors, such as hydroxyurea, have entered the clinical trials. Based on our proposed mechanism, radical site of RNR protein reacts with hydroxyurea in which hydroxyurea is converted into its oxidized form compound III, and whereby the tyrosyl radical is converted into a normal tyrosine residue. In this study, docking and molecular dynamics simulations were used for proposed molecular mechanism of hydroxyurea in RNR inhibition as anticancer agent. The binding affinity of hydroxyurea and compound III to RNR was studied by docking method. The docking study was performed for the crystal structure of human RNR with the radical scavenger Hydroxyurea and its oxidized form to inhibit the human RNR. hydroxyurea and compound III bind at the active site with Tyr-176, which are essential for free radical formation. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2. To confirm the binding mode of inhibitors, the molecular dynamics (MD) simulations were performed using GROMACS 4.5.5, based upon the docked conformation of inhibitors. Both of the studied compounds stayed in the active site. The results of MD simulations confirmed the binding mode of ligands, accuracy of docking and the reliability of active conformations which were obtained by AutoDock. MD studies confirm our proposed mechanism in which compound III reacts with the active site residues specially Tyr-176, and inhibits the radical generation and subsequently inhibits the RNR enzyme.

  3. A prospective study to determine the need for physical simulation following virtual simulation

    International Nuclear Information System (INIS)

    Valicenti, R.K.; Waterman, F.M.; Corn, B.W.; Sweet, J.; Curran, W.J.

    1996-01-01

    Purpose: Virtual simulation is CT based planning utilizing computed digitally reconstructed radiographs (DRRs) in a manner similar to conventional fluoroscopic simulation. However, conventional or physical simulation is still widely used to assure precise implementation of the devised plan. To evaluate the need for performing physical simulation, we prospectively studied patients undergoing virtual simulation who either had or did not have a subsequent physical simulation. Materials and Methods: From July, 1995 to February, 1996, 48 patients underwent conformal 4-field radiation therapy for prostate cancer using a commercial grade spiral CT simulator. All patients were immobilized in a foam body cast and positioned by using a fiducial laser marking system. Following prostate and seminal vesicle definition on a slice-by-slice basis, virtual simulation was performed. The isocenter defined by this process was marked on both the patient and the immobilization device before leaving the CT simulator room. The isocenter position of the devised plan was evaluated by three verification methods: physical simulation, first day treatment port filming, and port filming immediately following physical simulation. Simulator radiographs and port films were compared against DRRs for x, y, and z deviations of the isocenter. These deviations were used as a measure of the implementation precision achieved by each verification method. Results: Thirty-seven patients underwent physical simulation and first day port filming. Eleven had first day treatment verification films only and never had a physical simulation. A total of 79 simulator radiographs and 126 first day treatment port films were reviewed. The tabulation of all deviations is as follows: There was significantly more setup error (≥ 5 mm) observed when the devised treatment was implemented in the treatment room as opposed to the physical simulator. The physical simulator did not lead to a significant reduction in setup error

  4. Atom Tunneling in the Hydroxylation Process of Taurine/α-Ketoglutarate Dioxygenase Identified by Quantum Mechanics/Molecular Mechanics Simulations.

    Science.gov (United States)

    Álvarez-Barcia, Sonia; Kästner, Johannes

    2017-06-01

    Taurine/α-ketoglutarate dioxygenase is one of the most studied α-ketoglutarate-dependent dioxygenases (αKGDs), involved in several biotechnological applications. We investigated the key step in the catalytic cycle of the αKGDs, the hydrogen transfer process, by a quantum mechanics/molecular mechanics approach (B3LYP/CHARMM22). Analysis of the charge and spin densities during the reaction demonstrates that a concerted mechanism takes place, where the H atom transfer happens simultaneously with the electron transfer from taurine to the Fe═O cofactor. We found the quantum tunneling of the hydrogen atom to increase the rate constant by a factor of 40 at 5 °C. As a consequence, a quite high kinetic isotope effect close to 60 is obtained, which is consistent with the experimental value.

  5. Simulation studies on high-gradient experiments

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1992-12-01

    Computer simulation of the characteristics of the dark current emitted from a 0.6 m long S-band accelerating structure has been made. The energy spectra and the dependence of the dark current on the structure length were simulated. By adjusting the secondary electron emission (SEE) coefficients, the simulated energy spectra qualitatively reproduced the observed ones. It was shown that the dark current increases exponentially with the structure length. The measured value of the multiplication factor of the dark current per unit cell can be explained if the SEE coefficient is set to 1.2. The critical gradient for dark current capture E cri has been calculated for two structures of 180 cells. They are E cri [MV/m] = 13.1 f and 8.75 f for a/λ = 0.089 and 0.16, respectively, where f is the frequency in GHz, a the iris diameter and λ the wave length

  6. Conducting Simulation Studies in the R Programming Environment

    Directory of Open Access Journals (Sweden)

    Kevin A. Hallgren

    2013-10-01

    Full Text Available Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtainingaccurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted toresearchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulationstudies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a the use of simulations to answer a novel question about statistical analysis, (b the use of simulations to estimate statistical power, and (c the use of simulations to obtain confidence intervals of parameter estimates throughbootstrapping. Results and fully annotated syntax from these examples are provided.

  7. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.

    Science.gov (United States)

    Rosnik, Andreana M; Curutchet, Carles

    2015-12-08

    Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra (Pieper et al. J. Phys. Chem. B 2011, 115 (14), 4042-4052). Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis.

  8. Realization of a Desktop Flight Simulation System for Motion-Cueing Studies

    Directory of Open Access Journals (Sweden)

    Berkay Volkaner

    2016-05-01

    Full Text Available Parallel robotic mechanisms are generally used in flight simulators with a motion-cueing algorithm to create an unlimited motion feeling of a simulated medium in a bounded workspace of the simulator. A major problem in flight simulators is that the simulation has an unbounded space and the manipulator has a limited one. Using a washout filter in the motion-cueing algorithm overcomes this. In this study, a low-cost six degrees of freedom (DoF desktop parallel manipulator is used to test a classical motion-cueing algorithm; the algorithm's functionality is confirmed with a Simulink real-time environment. Translational accelerations and angular velocities of the simulated medium obtained from FlightGear flight simulation software are processed through a generated washout filter algorithm and the simulated medium's motion information is transmitted to the desktop parallel robotic mechanism as a set point for each leg. The major issues of this paper are designing a desktop simulation system, controlling the parallel manipulator, communicating between the flight simulation and the platform, designing a motion-cueing algorithm and determining the parameters of the washout filters.

  9. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Li, Xinpei; Yang, Mingming; Chai, Weihong; Wang, Kai; zhang, Yingfeng

    2016-04-01

    In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and essence of binders on the HA crystallographic planes for 3DP fabrication bone scaffolds. The cohesive energy densities of binders and the binding energies, PCFs g(r), mechanical properties of binder/HA interaction models were analyzed through the MD simulation. Additionally, we prepared the HA bone scaffold specimens with different glues by 3DP additive manufacturing, and tested their mechanical properties by the electronic universal testing machine. The simulation results revealed that the relationship of the binding energies between binders and HA surface is consistent with the cohesive energy densities of binders, which is PAM/HA>PVA/HA>PVP/HA. The PCFs g(r) indicated that their interfacial interactions mainly attribute to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA. The results of mechanical experiments verified the relationship of Young׳s modulus for three interaction models in simulation, which is PVA/HA>PAM/HA>PVP/HA. But the trend of compressive strength is PAM/HA>PVA/HA>PVP/HA, this is consistent with the binding energies of simulation. Therefore, the Young׳s modulus of bone scaffolds are limited by the Young׳s modulus of binders, and the compressive strength is mainly decided by the viscosity of binder. Finally, the major reasons for differences in mechanical properties between simulation and experiment were found, the space among HA pellets and the incomplete infiltration of glue were the main reasons influencing the mechanical properties of 3DP fabrication HA bone scaffolds. These results provide useful information in choosing binder for 3DP fabrication

  10. A study on the thermal expansion characteristics of simulated spent fuel and simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.

    2001-10-01

    Thermal expansions of simulated spent PWR fuel and simulated DUPIC fuel were studied using a dilatometer in the temperature range from 298 to 1900 K. The densities of simulated spent PWR fuel and simulated DUPIC fuel used in the measurement were 10.28 g/cm3 (95.35 % of TD) and 10.26 g/cm3 (95.14 % of TD), respectively. Their linear thermal expansions of simulated fuels are higher than that of UO2, and the difference between these fuels and UO2 increases progressively as temperature increases. However, the difference between simulated spent PWR fuel and simulated DUPIC fuel can hardly be observed. For the temperature range from 298 to 1900 K, the values of the average linear thermal expansion coefficients for simulated spent PWR fuel and simulated DUPIC fuel are 1.391 10-5 and 1.393 10-5 K-1, respectively. As temperature increases to 1900 K, the relative densities of simulated spent PWR fuel and simulated DUPIC fuel decrease to 93.81 and 93.76 % of initial densities at 298 K, respectively

  11. Mechanics of Sister Chromatids studied with a Polymer Model

    Directory of Open Access Journals (Sweden)

    Yang eZhang

    2013-10-01

    Full Text Available Sister chromatid cohesion denotes the phenomenon that sister chromatids are initially attached to each other in mitosis to guarantee the error-free distribution into the daughter cells. Cohesion is mediated by binding proteins and only resolved after mitotic chromosome condensation is completed. However, the amount of attachement points required to maintain sister chromatid cohesion while still allowing proper chromosome condensation is not known yet. Additionally the impact of cohesion on the mechanical properties of chromosomes also poses an interesting problem. In this work we study the conformational and mechanical properties of sister chromatids by means of computer simulations. We model both protein-mediated cohesion between sister chromatids and chromosome condensation with a dynamic binding mechanisms. We show in a phase diagram that only specific link concentrations lead to connected and fully condensed chromatids that do not intermingle with each other nor separate due to entropic forces. Furthermore we show that dynamic bonding between chromatids decrease the Young's modulus compared to non-bonded chromatids.

  12. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations.

    Science.gov (United States)

    May, Jody C; McLean, John A

    2003-06-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.

  13. A molecular dynamics simulation study of chloroform

    Science.gov (United States)

    Tironi, Ilario G.; van Gunsteren, Wilfred F.

    Three different chloroform models have been investigated using molecular dynamics computer simulation. The thermodynamic, structural and dynamic properties of the various models were investigated in detail. In particular, the potential energies, diffusion coefficients and rotational correlation times obtained for each model are compared with experiment. It is found that the theory of rotational Brownian motion fails in describing the rotational diffusion of chloroform. The force field of Dietz and Heinzinger was found to give good overall agreement with experiment. An extended investigation of this chloroform model has been performed. Values are reported for the isothermal compressibility, the thermal expansion coefficient and the constant volume heat capacity. The values agree well with experiment. The static and frequency dependent dielectric permittivity were computed from a 1·2 ns simulation conducted under reaction field boundary conditions. Considering the fact that the model is rigid with fixed partial charges, the static dielectric constant and Debye relaxation time compare well with experiment. From the same simulation the shear viscosity was computed using the off-diagonal elements of the pressure tensor, both via an Einstein type relation and via a Green-Kubo equation. The calculated viscosities show good agreement with experimental values. The excess Helmholtz energy is calculated using the thermodynamic integration technique and simulations of 50 and 80 ps. The value obtained for the excess Helmholtz energy matches the theoretical value within a few per cent.

  14. Assessing phylogenetic accuracy : a simulation study

    NARCIS (Netherlands)

    Heijerman, T.

    1995-01-01

    A simulation model of phylogeny, called GENESIS, was developed to evaluate and to estimate the qualities of various numerical taxonomic procedures. The model produces sets of imaginary species with known character state distributions and with known phylogenies. The model can be made to

  15. Quantum mechanical studies of complex ferroelectric perovskites

    Science.gov (United States)

    Ramer, Nicholas John

    In many electronic device applications, there is a need to interconvert electrical energy and other types of energy. Ferroelectric materials, which possess a voltage-dependent polarization, can enable this energy conversion process. Because of the broad interest in ferroelectric materials for these devices, there is a critical research effort, both experimental and theoretical, to understand these materials and aid in the development of materials with improved properties. This thesis presents detailed quantum mechanical investigations of the behavior of a complex ferroelectric perovskite under applied stress. In particular, we have chosen to study the solid solution PbZr1-xTix O3 (PZT). Since the study of ferroelectricity involves understanding both its structural and electronic signatures in materials, it has necessitated the development of a novel theoretical technique which improves the accuracy of the pseudopotentials used in our density functional theory calculations as well as a new method for constructing three-dimensional atomistic responses to small amounts of external stress. To examine the material's behavior under larger amounts of stress, we have studied the behavior of a composition of PZT lying near a structural phase boundary. On either side of the phase boundary, the material is characterized by a different polarization direction and may easily be switched between phases by applying external stress. In addition to stress-induced phase transitions, most ferroelectric materials also have composition dependent phase boundaries. Since different compositions of PZT would require increased computational effort, we have formulated an improved virtual crystal approach that makes tractable the study of the entire composition range. Using this method, we have been able to show for the first time via first-principles calculations, a composition dependent phase transition in a ferroelectric material. This thesis has accomplished three important goals: new

  16. Designs for mechanical circulatory support device studies.

    Science.gov (United States)

    Neaton, James D; Normand, Sharon-Lise; Gelijns, Annetine; Starling, Randall C; Mann, Douglas L; Konstam, Marvin A

    2007-02-01

    There is increased interest in mechanical circulatory support devices (MCSDs), such as implantable left ventricular assist devices (LVADs), as "destination" therapy for patients with advanced heart failure. Because patient availability to evaluate these devices is limited and randomized trials have been slow in enrolling patients, a workshop was convened to consider designs for MCSD development including alternatives to randomized trials. A workshop was jointly planned by the Heart Failure Society of America and the US Food and Drug Administration and was convened in March 2006. One of the panels was asked to review different designs for evaluating new MCSDs. Randomized trials have many advantages over studies with no controls or with nonrandomized concurrent or historical controls. These advantages include the elimination of bias in the assignment of treatments and the balancing, on average, of known and unknown baseline covariates that influence response. These advantages of randomization are particularly important for studies in which the treatments may not differ from one another by a large amount (eg, a head-to-head study of an approved LVAD with a new LVAD). However, researchers have found it difficult to recruit patients to randomized studies because the number of clinical sites that can carry out the studies is not large. Also, there is a reluctance to randomize patients when the control device is considered technologically inferior. Thus ways of improving the design of randomized trials were discussed, and the advantages and disadvantages of alternative designs were considered. The panel concluded that designs should include a randomized component. Randomized designs might be improved by allowing the control device to be chosen before randomization, by first conducting smaller vanguard studies, and by allowing crossovers in trials with optimal medical management controls. With use of data from completed trials, other databases, and registries, alternative

  17. Numerical Simulation and Experimental Investigation of the Viscoelastic Heating Mechanism in Ultrasonic Plasticizing of Amorphous Polymers for Micro Injection Molding

    Directory of Open Access Journals (Sweden)

    Bingyan Jiang

    2016-05-01

    Full Text Available Ultrasonic plasticizing of polymers for micro-injection molding has been proposed and studied for its unique potential in materials and energy-saving. In our previous work, we have demonstrated the characteristics of the interfacial friction heating mechanism in ultrasonic plasticizing of polymer granulates. In this paper, the other important heating mechanism in ultrasonic plasticizing, i.e., viscoelastic heating for amorphous polymer, was studied by both theoretical modeling and experimentation. The influence mechanism of several parameters, such as the initial temperature of the polymer, the ultrasonic frequency, and the ultrasonic amplitude, was investigated. The results from both numerical simulation and experimentation indicate that the heat generation rate of viscoelastic heating can be significantly influenced by the initial temperature of polymer. The glass transition temperature was found to be a significant shifting point in viscoelastic heating. The heat generation rate is relatively low at the beginning and can have a steep increase after reaching glass transition temperature. In comparison with the ultrasonic frequency, the ultrasonic amplitude has much greater influence on the heat generation rate. In light of the quantitative difference in the viscoelastic heating rate, the limitation of the numerical simulation was discussed in the aspect of the assumptions and the applied mathematical models.

  18. Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review

    International Nuclear Information System (INIS)

    Page, A J; Ding, F; Irle, S; Morokuma, K

    2015-01-01

    The discovery of carbon nanotubes (CNTs) and graphene over the last two decades has heralded a new era in physics, chemistry and nanotechnology. During this time, intense efforts have been made towards understanding the atomic-scale mechanisms by which these remarkable nanostructures grow. Molecular simulations have made significant contributions in this regard; indeed, they are responsible for many of the key discoveries and advancements towards this goal. Here we review molecular simulations of CNT and graphene growth, and in doing so we highlight the many invaluable insights gained from molecular simulations into these complex nanoscale self-assembly processes. This review highlights an often-overlooked aspect of CNT and graphene formation—that the two processes, although seldom discussed in the same terms, are in fact remarkably similar. Both can be viewed as a 0D → 1D → 2D transformation, which converts carbon atoms (0D) to polyyne chains (1D) to a complete sp 2 -carbon network (2D). The difference in the final structure (CNT or graphene) is determined only by the curvature of the catalyst and the strength of the carbon–metal interaction. We conclude our review by summarizing the present shortcomings of CNT/graphene growth simulations, and future challenges to this important area. (review article)

  19. Studies Regarding Design and Optimization of Mechanisms Using Modern Techniques of CAD and CAE

    Directory of Open Access Journals (Sweden)

    Marius Tufoi

    2010-01-01

    Full Text Available The paper presents applications of modern techniques of CAD (Computer Aided Design and CAE (Computer Aided Engineering to design and optimize the mechanisms used in mechanical engineering. The use exemplification of these techniques was achieved by designing and optimizing parts of a drawing installation for horizontal continuous casting of metals. By applying these design methods and using finite element method at simulations on designed mechanisms results a number of advantages over traditional methods of drawing and design: speed in drawing, design and optimization of parts and mechanisms, kinematic analysis option, kinetostatic and dynamic through simulation, without requiring physical realization of the part or mechanism, the determination by finite element method of tension, elongations, travel and safety factor and the possibility of optimization for these sizes to ensure the mechanical strength of each piece separately. Achieving these studies was possible using SolidWorks 2009 software suite.

  20. Sub-discretized surface model with application to contact mechanics in multi-body simulation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S; Williams, J

    2008-02-28

    The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

  1. Towards mechanism-based simulation of impact damage using exascale computing

    Science.gov (United States)

    Shterenlikht, Anton; Margetts, Lee; McDonald, Samuel; Bourne, Neil K.

    2017-01-01

    Over the past 60 years, the finite element method has been very successful in modelling deformation in engineering structures. However the method requires the definition of constitutive models that represent the response of the material to applied loads. There are two issues. Firstly, the models are often difficult to define. Secondly, there is often no physical connection between the models and the mechanisms that accommodate deformation. In this paper, we present a potentially disruptive two-level strategy which couples the finite element method at the macroscale with cellular automata at the mesoscale. The cellular automata are used to simulate mechanisms, such as crack propagation. The stress-strain relationship emerges as a continuum mechanics scale interpretation of changes at the micro- and meso-scales. Iterative two-way updating between the cellular automata and finite elements drives the simulation forward as the material undergoes progressive damage at high strain rates. The strategy is particularly attractive on large-scale computing platforms as both methods scale well on tens of thousands of CPUs.

  2. Numeric simulations of en-masse space closure with sliding mechanics.

    Science.gov (United States)

    Kojima, Yukio; Fukui, Hisao

    2010-12-01

    En-masse sliding mechanics have been typically used for space closure. Because of friction created at the bracket-wire interface, the force system during tooth movement has not been clarified. Long-term tooth movements in en-masse sliding mechanics were simulated with the finite element method. Tipping of the anterior teeth occurred immediately after application of retraction forces. The force system then changed so that the teeth moved almost bodily, and friction occurred at the bracket-wire interface. Net force transferred to the anterior teeth was approximately one fourth of the applied force. The amount of the mesial force acting on the posterior teeth was the same as that acting on the anterior teeth. Irrespective of the amount of friction, the ratio of movement distances between the posterior and anterior teeth was almost the same. By increasing the applied force or decreasing the frictional coefficient, the teeth moved rapidly, but the tipping angle of the anterior teeth increased because of the elastic deflection of the archwire. Finite element simulation clarified the tooth movement and the force system in en-masse sliding mechanics. Long-term tooth movement could not be predicted from the initial force system. The friction was not detrimental to the anchorage. Increasing the applied force or decreasing the friction for rapid tooth movement might result in tipping of the teeth. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. Study of Flapping Flight Using Discrete Vortex Method Based Simulations

    Science.gov (United States)

    Devranjan, S.; Jalikop, Shreyas V.; Sreenivas, K. R.

    2013-12-01

    In recent times, research in the area of flapping flight has attracted renewed interest with an endeavor to use this mechanism in Micro Air vehicles (MAVs). For a sustained and high-endurance flight, having larger payload carrying capacity we need to identify a simple and efficient flapping-kinematics. In this paper, we have used flow visualizations and Discrete Vortex Method (DVM) based simulations for the study of flapping flight. Our results highlight that simple flapping kinematics with down-stroke period (tD) shorter than the upstroke period (tU) would produce a sustained lift. We have identified optimal asymmetry ratio (Ar = tD/tU), for which flapping-wings will produce maximum lift and find that introducing optimal wing flexibility will further enhances the lift.

  4. Mechanical properties of granular materials: A variational approach to grain-scale simulations

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, R.; Silin, D.B.; Patzek, T.W.

    2009-01-15

    The mechanical properties of cohesionless granular materials are evaluated from grain-scale simulations. A three-dimensional pack of spherical grains is loaded by incremental displacements of its boundaries. The deformation is described as a sequence of equilibrium configurations. Each configuration is characterized by a minimum of the total potential energy. This minimum is computed using a modification of the conjugate gradient algorithm. Our simulations capture the nonlinear, path-dependent behavior of granular materials observed in experiments. Micromechanical analysis provides valuable insight into phenomena such as hysteresis, strain hardening and stress-induced anisotropy. Estimates of the effective bulk modulus, obtained with no adjustment of material parameters, are in agreement with published experimental data. The model is applied to evaluate the effects of hydrate dissociation in marine sediments. Weakening of the sediment is quantified as a reduction in the effective elastic moduli.

  5. Fatigue mechanisms in an austenitic steel under cyclic loading: Experiments and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Soppa, E.A., E-mail: ewa.soppa@mpa.uni-stuttgart.de; Kohler, C., E-mail: christopher.kohler@mpa.uni-stuttgart.de; Roos, E., E-mail: eberhard.roos@mpa.uni-stuttgart.de

    2014-03-01

    Experimental investigations on the austenitic stainless steel X6CrNiNb18-10 (AISI – 347) and concomitant atomistic simulations of a FeNi nanocrystalline model system have been performed in order to understand the basic mechanisms of fatigue damage under cyclic loading. Using electron backscatter diffraction (EBSD) the influence of deformation induced martensitic transformation and NbC size distribution on the fatigue crack formation has been demonstrated. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∼1 µm sized) differently oriented grains. The atomistic simulations show the role of regions of a high density of stacking faults for the martensitic transformation.

  6. Multi-agent simulation of the von Thunen model formation mechanism

    Science.gov (United States)

    Tao, Haiyan; Li, Xia; Chen, Xiaoxiang; Deng, Chengbin

    2008-10-01

    This research tries to explain the internal driving forces of circular structure formation in urban geography via the simulation of interaction between individual behavior and market. On the premise of single city center, unchanged scale merit and complete competition, enterprise migration theory as well, an R-D algorithm, that has agents searched the best behavior rules in some given locations, is introduced with agent-based modeling technique. The experiment conducts a simulation on Swarm platform, whose result reflects and replays the formation process of Von Thünen circular structure. Introducing and considering some heterogeneous factors, such as traffic roads, the research verifies several landuse models and discusses the self-adjustment function of price mechanism.

  7. Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.

    Science.gov (United States)

    Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori

    2016-10-11

    The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an S N 1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.

  8. Partnering to Establish and Study Simulation in International Nursing Education.

    Science.gov (United States)

    Garner, Shelby L; Killingsworth, Erin; Raj, Leena

    The purpose of this article was to describe an international partnership to establish and study simulation in India. A pilot study was performed to determine interrater reliability among faculty new to simulation when evaluating nursing student competency performance. Interrater reliability was below the ideal agreement level. Findings in this study underscore the need to obtain baseline interrater reliability data before integrating competency evaluation into a simulation program.

  9. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    Science.gov (United States)

    Bayse, Craig A; Merz, Kenneth M

    2014-08-05

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  10. The melting mechanism in binary Pd0.25Ni0.75 nanoparticles: molecular dynamics simulations

    Science.gov (United States)

    Domekeli, U.; Sengul, S.; Celtek, M.; Canan, C.

    2018-02-01

    The melting mechanism for Pd0.25Ni0.75 alloy nanoparticles (NPs) was investigated using molecular dynamics (MD) simulations with quantum Sutton-Chen many-body potentials. NPs of six different sizes ranging from 682 to 22,242 atoms were studied to observe the effect of size on the melting point. The melting temperatures of the NPs were estimated by following the changes in both the thermodynamic and structural quantities such as the total energy, heat capacity and Lindemann index. We also used a thermodynamics model to better estimate the melting point and to check the accuracy of MD simulations. We observed that the melting points of the NPs decreased as their sizes decreased. Although the MD simulations for the bulk system yielded higher melting temperatures because of the lack of a seed for the liquid phase, the melting temperatures determined for both the bulk material and the NPs are in good agreement with those predicted from the thermodynamics model. The melting mechanism proceeds in two steps: firstly, a liquid-like shell is formed in the outer regions of the NP with increasing temperature. The thickness of the liquid-like shell increases with increasing temperature until the shell reaches a critical thickness. Then, the entire Pd-Ni NP including core-related solid-like regions melts at once.

  11. Electrophysiological potentials reveal cortical mechanisms for mental imagery, mental simulation, and grounded (embodied cognition

    Directory of Open Access Journals (Sweden)

    Haline E. Schendan

    2012-09-01

    Full Text Available Grounded cognition theory proposes that cognition, including meaning, is grounded in sensorimotor processing. The mechanism for grounding cognition is mental simulation, which is a type of mental imagery that re-enacts modal processing. To reveal top-down, cortical mechanisms for mental simulation of shape, event-related potentials were recorded to face and object pictures preceded by mental imagery of a picture. Mental imagery of the identical face or object (congruous condition facilitated not only categorical perception (VPP/N170 but also later visual knowledge (N3[00] complex and linguistic knowledge (N400 for faces more than objects, and strategic semantic analysis (late positive complex between 200 and 700 ms. The later effects resembled semantic congruity effects with pictures. Mental imagery also facilitated category decisions, as a P3(00 peaked earlier for congruous than incongruous (other category pictures, resembling the case when identical pictures repeat immediately. Thus mental imagery mimics semantic congruity and immediate repetition priming processes with pictures. Perception control results showed the opposite for faces and were in the same direction for objects: Perceptual repetition adapts (and so impairs processing of perceived faces from categorical perception onwards, but primes processing of objects during categorical perception, visual knowledge processes, and strategic semantic analysis. For both imagery and perception, differences between faces and objects support domain-specificity and indicate that cognition is grounded in modal processing. Altogether, this direct neural evidence reveals that top-down processes of mental imagery sustain an imagistic representation that mimics perception well enough to prime subsequent perception and cognition. This also suggests that automatic mental simulation of the visual shape of faces and objects operates between 200 and 400 ms, and strategic mental simulation operates between

  12. Mechanical properties of irradiated nanowires – A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Emilio [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800002 (Chile); Tramontina, Diego [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina); Instituto de Bioingeniería, Universidad de Mendoza, 5500 Mendoza (Argentina); Gutiérrez, Gonzalo, E-mail: gonzalo@fisica.ciencias.uchile.cl [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Bringa, Eduardo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina)

    2015-12-15

    In this work we study, by means of molecular dynamics simulation, the change in the mechanical properties of a gold nanowire with pre-existing radiation damage. The gold nanowire is used as a simple model for a nanofoam, made of connected nanowires. Radiation damage by keV ions leads to the formation of a stacking fault tetrahedron (SFT), and this defect leads to a reduced plastic threshold, as expected, when the nanowire is subjected to tension. We quantify dislocation and twin density during the deformation, and find that the early activation of the SFT as a dislocation source leads to reduced dislocation densities compared to the case without radiation damage. In addition, we observed a total destruction of the SFT, as opposed to a recent simulation study where it was postulated that SFTs might act as self-generating dislocation sources. The flow stress at large deformation is also found to be slightly larger for the irradiated case, in agreement with recent experiments. - Highlights: • Stacking Fault Tetrahedra (SFT) formation proceeds by cascades, containing typically a vacancy cluster and interstitials. • Applied tension leads to the destruction of the SFT, in contrast to a recently reported case of a SFT which soften the NW. • After the initial dislocation activity, strength is controlled by a few surviving dislocations.

  13. The electro-thermal-mechanical performance of an OLED : a multi-physics model study

    NARCIS (Netherlands)

    Gielen, A.W.J.; Barink, M.; Brand, J. van de; Mol, A.M.B. van

    2009-01-01

    In order to study the electrical-thermo-mechanical interaction in OLEDs, finite element based simulation models were developed. Two dimensional models were used to study detailed design effects, such as the location of the bus bars, while a three dimensional model was used to study the effect of

  14. Study on Government Management Mechanism of Energy ...

    African Journals Online (AJOL)

    of energy conservation and emission reduction, and propose legal guarantees, management innovation, technology innovation, service system construction and upgrading of industrial structure are the critical factors to energy conservation and emission reduction management mechanism's performance. Then discuss the ...

  15. Probabilistic fracture mechanics applied for lbb case study: international benchmark

    International Nuclear Information System (INIS)

    Radu, V.

    2015-01-01

    An application of probabilistic fracture mechanics to evaluate the structural integrity for a case study chosen from experimental Mock-ups of FP7 STYLE project is described. The reliability model for probabilistic structural integrity, focused on the assessment of TWC in the pipe weld under complex loading (bending moment and residual stress) has been setup. The basic model is the model of fracture for through-wall cracked pipe under elastic-plastic conditions. The corresponding structural reliability approach is developed with the probabilities of failure associated with maximum load for crack initiation, net-section collapse but also the evaluation the instability loads. The probabilities of failure for a through-wall crack in a pipe subject to pure bending are evaluated by using crude Monte Carlo simulations. The results from the international benchmark are presented for the mentioned case in the context of ageing and lifetime management of pressure boundary/pressure circuit component. (authors)

  16. Durability Improvements Through Degradation Mechanism Studies

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spernjak, Dusan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baker, Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Roger W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Langlois, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Papadia, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kusoglu, Ahmet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shi, Shouwnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); More, K. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grot, Steve [Ion Power, New Castle, DE (United States)

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  17. Analysis experiment in the mechanical non-oxidization decladding of the simulated spent fuel

    International Nuclear Information System (INIS)

    Jung, Jae Hoo; Yoon, Ji Sup; Hong, Dong Hee; Kim, Young Hwan; Lee, Jong Youl; Park, Gee Yung; Kim, Do Woo

    2000-11-01

    A decladding process, the first process of the fuel recycling, is accomplished by two different methods, chemical(wet type) method and mechanical(dry type) method. The chemical method is widely used in the existing commercial reprocessing plants because of its high efficiency, however, this process generates a lot of liquid radioactive wastes. To deal with this problem, the mechanical decladding process using the pressing mechanism is considered in this research. The pressing type decladding process is to extract the fuel pellet by inserting the pin into the fuel clad and by pressing out the fuel pellet. The pressing type decladding device equipped with two manually driven handles had been developed in the first step, and the performance of this device had been tested by using the simulated fuel rods filled with the plaster instead of spent fuel pellet. The experimental result showed that the best fuel extraction and recovery rate can be obtaind with the pellet size of 30 mm. In the second step, the manually driven handle had been replaced with the motor drive machanism. Also, the design of the device had been modified in consideration of the remote operation, in consideration of the hot cell operation. Several problems had been revealed such as the dust generation, difficulty in quantification of fuel mass, contamination of a spring module, difficulty in remote disassembly of the servo motor, and inaccurate positioning of the rotary plate. Considering these problems, the design has been again modified, at this year, by installing a dust collection device, a brushing mechanism, a countermeter, a pellet recognization sensor; by modifying the positioning mechanism of the rotary plate; and by modularizing the press pin mechanism. Also, in this modification, the 3 dimensional graphic design method has been adopted. with this modifications, the improved mechanical decladding device has been developed and its performance is investigated through a series of experiments

  18. Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator

    Science.gov (United States)

    Wei, Qiang; Yang, Guimin; Liu, Gang; Jiang, Haifu; Zhang, Tingting

    2018-05-01

    The effect on aircraft materials in the near space environment is a key part of air-and-space integration research. Ozone and aerodynamic fluids are important organizational factors in the near space environment and both have significant influences on the performance of aircraft materials. In the present paper a simulated ozone environment was used to test polyimide material that was rotated at the approximate velocity of 150-250 m/s to form an aerodynamic fluid field. The goal was to evaluate the performance evolution of materials under a comprehensive environment of ozone molecular corrosion and aerodynamic fluids. The research results show that corrosion and sputtering by ozone molecules results in Kapton films exhibiting a rugged "carpet-like" morphology exhibits an increase in surface roughness. The morphology after ozone exposure led to higher surface roughness and an increase in surface optical diffuse reflection, which is expressed by the lower optical transmittance and the gradual transition from light orange to brown. The mass loss test, XPS, and FTIR analysis show that the molecular chains on the surface of the Kapton film are destroyed resulting in Csbnd C bond breaking to form small volatile molecules such as CO2 or CO, which are responsible for a linear increase in mass loss per unit area. The Csbnd N and Csbnd O structures exhibit weakening tendency under ozone exposure. The present paper explores the evaluation method for Kapton's adaptability under the ozone exposure test in the near space environment, and elucidates the corrosion mechanism and damage mode of the polyimide material under the combined action of ozone corrosion and the aerodynamic fluid. This work provides a methodology for studying materials in the near-space environment.

  19. Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-11-01

    Full Text Available Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO as a flocculant to remove methylene blue (MB from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.

  20. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  1. Assessing phylogenetic accuracy : a simulation study

    OpenAIRE

    Heijerman, T.

    1995-01-01

    A simulation model of phylogeny, called GENESIS, was developed to evaluate and to estimate the qualities of various numerical taxonomic procedures. The model produces sets of imaginary species with known character state distributions and with known phylogenies. The model can be made to produce these species and their phylogenies under different evolutionary conditions.

    Within GENESIS, there are two mathematical models that describe the diversification of the number of taxa. T...

  2. NUMERICAL SIMULATION OF THREE-DIMENSIONAL ASYMMETRIC RECONNECTION AND APPLICATION TO A PHYSICAL MECHANISM OF PENUMBRAL MICROJETS

    International Nuclear Information System (INIS)

    Nakamura, Naoki; Shibata, Kazunari; Isobe, Hiroaki

    2012-01-01

    Three-dimensional (3D) component reconnection, where reconnecting field lines are not perfectly anti-parallel, is studied with a 3D magnetohydrodynamic simulation. In particular, we consider the asymmetry of the field strength of the reconnecting field lines. As the asymmetry increases, the generated reconnection jet tends to be parallel to stronger field lines. This is because weaker field lines have higher gas pressure in the initial equilibrium, and hence the gas pressure gradient along the reconnected field lines is generated, which accelerates the field-aligned plasma flow. This mechanism may explain penumbral microjets and other types of jets that are parallel to magnetic field lines.

  3. Reinforcing the membrane-mediated mechanism of action of the anti-tuberculosis candidate drug thioridazine with molecular simulations

    DEFF Research Database (Denmark)

    Kopec, Wojciech; Khandelia, Himanshu

    2014-01-01

    Thioridazine is a well-known dopamine-antagonist drug with a wide range of pharmacological properties ranging from neuroleptic to antimicrobial and even anticancer activity. Thioridazine is a critical component of a promising multi-drug therapy against M. tuberculosis. Amongst the various propose......-membrane interactions, and reinforce the wider, emerging view of action of many small, bioactive compounds....... mechanisms of action, the cell membrane-mediated one is peculiarly tempting due to the distinctive feature of phenothiazine drug family to accumulate in selected body tissues. In this study, we employ long-scale molecular dynamics simulations to investigate the interactions of three different concentrations...

  4. Contribution to improving reliability assessments of mechanical structural components requiring a high degree of safety using weighted Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kutter, R

    1981-12-04

    Physical theories to inquire lifetime and reliability of mechanical structures or components under multiscale random stress do not exist. Today those dates were examinated e.g. in development of aircrafts and motorcars by fatigue-testing of original components and sections during long terms. Knowing the distributions of stress and material-parameters the same testing is to be realized simulationary on highspeed computers. This study gives methods to reduce the necessary computation time to attending ones even to proof reliability up to R=1-10/sup -9/. These methods were of Monte-Carlo-Simulation with weighted parameters and respect to life-history.

  5. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ruestes, C.J., E-mail: cjruestes@hotmail.com [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); CONICET, Mendoza 5500 (Argentina); Stukowski, A. [Technische Universität Darmstadt, Darmstadt 64287 (Germany); Tang, Y. [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 (China); Tramontina, D.R. [Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); Erhart, P. [Chalmers University of Technology, Department of Applied Physics, Gothenburg 41296 (Sweden); Remington, B.A. [Lawrence Livermore National Lab, Livermore, CA 94550 (United States); Urbassek, H.M. [Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern 67663 (Germany); Meyers, M.A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Bringa, E.M. [Facultad de Ciencias Exactas y Naturales, Univ. Nac. de Cuyo, Mendoza 5500 (Argentina); CONICET, Mendoza 5500 (Argentina)

    2014-09-08

    Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory.

  6. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution

    International Nuclear Information System (INIS)

    Ruestes, C.J.; Stukowski, A.; Tang, Y.; Tramontina, D.R.; Erhart, P.; Remington, B.A.; Urbassek, H.M.; Meyers, M.A.; Bringa, E.M.

    2014-01-01

    Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037–0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory

  7. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  8. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Ting [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Hsiao, Chun-I. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Tainan City 70101 Taiwan (China); Hsu, Wen-Dung, E-mail: wendung@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan City 70101 Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Tainan City 70101 Taiwan (China)

    2014-01-15

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  9. Atomistic simulation of solid solution hardening in Mg/Al alloys: Examination of composition scaling and thermo-mechanical relationships

    International Nuclear Information System (INIS)

    Yi, Peng; Cammarata, Robert C.; Falk, Michael L.

    2016-01-01

    Dislocation mobility in a solid solution was studied using atomistic simulations of an Mg/Al system. The critical resolved shear stress (CRSS) for the dislocations on the basal plane was calculated at temperatures from 0 K to 500 K with solute concentrations from 0 to 7 at%, and with four different strain rates. Solute hardening of the CRSS is decomposed into two contributions: one scales with c 2/3 , where c is the solute concentration, and the other scales with c 1 . The former was consistent with the Labusch model for local solute obstacles, and the latter was related to the athermal plateau stress due to the long range solute effect. A thermo-mechanical model was then used to analyze the temperature and strain rate dependences of the CRSS, and it yielded self-consistent and realistic results. The scaling laws were confirmed and the thermo-mechanical model was successfully parameterized using experimental measurements of the CRSS for Mg/Al alloys under quasi-static conditions. The predicted strain rate sensitivity from the experimental measurements of the CRSS is in reasonable agreement with separate mechanical tests. The concentration scaling and the thermo-mechanical relationships provide a potential tool to analytically relate the structural and thermodynamic parameters on the microscopic level with the macroscopic mechanical properties arising from dislocation mediated deformation.

  10. Hardware and software and machine-tool simulation with parallel structures mechanisms

    Directory of Open Access Journals (Sweden)

    Keba P.V.

    2016-12-01

    Full Text Available The usage spectrum of mechanisms with parallel structure is spreading all the time. The mechanisms of machine-tools and manipulators become more complicated and it is necessary to improve the program-controlled modules. Closed circuit mechanisms are mostly spread in robotic complexes, where manipulator performs complicated spatial movements by the given trajectory. The usage spectrum is very wide and the most popular are sorting, welding, assembling and others. However, the problem of designing the operating programs is still present even today. It is just because the developed post-processors are created for the equipment that we have for now. But new machine tool constructions appear every day and there is a necessity to control them. The problems associated with using of hardware and software of mechanisms with parallel structure in computer-aided simulation are considered. The program for inverse problem kinematics solving is designed. New method of designing the control programs is found. The kinematic analysis methods options and calculated data obtained by computer mathematics systems are shown with «Tools Glide» software taken as an example.

  11. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data

  12. Simulation studies of the LAMPF proton linac

    International Nuclear Information System (INIS)

    Garnett, R.W.; Gray, E.R.; Rybarcyk, L.J.; Wangler, T.P.

    1995-01-01

    The LAMPF accelerator consists of two 0.75-MeV injectors, one for H + and the other for H - , a separate low-energy beam transport (LEBT) line for each beam species, a 0.75 to 100-MeV drift-tube linac (DTL) operating at 201.25-MHz, a 100-MeV transition region (TR), and a 100 to 800-MeV side-coupled linac (SCL) operating at 805-MHz. Each LEBT line consists of a series of quadrupoles to transport and transversely match the beam. The LEBT also contains a prebuncher, a main buncher, and an electrostatic deflector. The deflector is used to limit the fraction of a macropulse which is seen by the beam diagnostics throughout the linac. The DTL consists of four rf tanks and uses singlet FODO transverse focusing. The focusing period is doubled in the last two tanks by placing a quadrupole only in every other drift-tube. Doublet FDO transverse focusing is used in the SCL. The TR consists of separate transport lines for the H + and H - beams. The pathlengths for the two beams differ, by introducing bends, so as to delay arrival of one beam relative to the other and thereby produce the desired macropulse time structure. Peak beam currents typically range from 12 to 18-mA for varying macropulse lengths which give an average beam current of 1-mA. The number of particles per bunch is of the order 10 8 . The work presented here is an extension of previous work. The authors have attempted to do a more complete simulation by including modeling of the LEBT. No measurements of the longitudinal structure of the beam, except phase-scans, are performed at LAMPF. The authors show that, based on simulation results, the primary causes of beam spill are inefficient longitudinal capture and the lack of longitudinal matching. Measurements to support these claims are not presently made at LAMPF. However, agreement between measurement and simulation for the transverse beam properties and transmissions serve to benchmark the simulations

  13. Lung assist devices influence cardio-energetic parameters: Numerical simulation study.

    Science.gov (United States)

    De Lazzari, C; Quatember, B; Recheis, W; Mayr, M; Demertzis, S; Allasia, G; De Rossi, A; Cavoretto, R; Venturino, E; Genuini, I

    2015-08-01

    We aim at an analysis of the effects mechanical ventilators (MVs) and thoracic artificial lungs (TALs) will have on the cardiovascular system, especially on important quantities, such as left and right ventricular external work (EW), pressure-volume area (PVA) and cardiac mechanical efficiency (CME). Our analyses are based on simulation studies which were carried out by using our CARDIOSIM(©) software simulator. At first, we carried out simulation studies of patients undergoing mechanical ventilation (MV) without a thoracic artificial lung (TAL). Subsequently, we conducted simulation studies of patients who had been provided with a TAL, but did not undergo MV. We aimed at describing the patient's physiological characteristics and their variations with time, such as EW, PVA, CME, cardiac output (CO) and mean pulmonary arterial/venous pressure (PAP/PVP). We were starting with a simulation run under well-defined initial conditions which was followed by simulation runs for a wide range of mean intrathoracic pressure settings. Our simulations of MV without TAL showed that for mean intrathoracic pressure settings from negative (-4 mmHg) to positive (+5 mmHg) values, the left and right ventricular EW and PVA, right ventricular CME and CO decreased, whereas left ventricular CME and the PAP increased. The simulation studies of patients with a TAL, comprised all the usual TAL arrangements, viz. configurations "in series" and in parallel with the natural lung and, moreover, hybrid configurations. The main objective of the simulation studies was, as before, the assessment of the hemodynamic response to the application of a TAL. We could for instance show that, in case of an "in series" configuration, a reduction (an increase) in left (right) ventricular EW and PVA values occurred, whereas the best performance in terms of CO can be achieved in the case of an in parallel configuration.

  14. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  15. Punishment mechanisms and their effect on cooperation: A simulation study

    NARCIS (Netherlands)

    Farjam, M.D.; Faillo, M.; Sprinkhuizen-Kuyper, I.G.; Haselager, W.F.G.

    2015-01-01

    In social dilemmas punishment costs resources, not just from the one who is punished but often also from the punisher and society. Reciprocity on the other side is known to lead to cooperation without the costs of punishment. The questions at hand are whether punishment brings advantages besides its

  16. Thermo-dynamical contours of electronic-vibrational spectra simulated using the statistical quantum-mechanical methods

    DEFF Research Database (Denmark)

    Pomogaev, Vladimir; Pomogaeva, Anna; Avramov, Pavel

    2011-01-01

    Three polycyclic organic molecules in various solvents focused on thermo-dynamical aspects were theoretically investigated using the recently developed statistical quantum mechanical/classical molecular dynamics method for simulating electronic-vibrational spectra. The absorption bands of estradiol...

  17. A macroscopic model to simulate the mechanically induced martensitic transformation in metastable austenitic stainless steels

    International Nuclear Information System (INIS)

    Perdahcıoğlu, E.S.; Geijselaers, H.J.M.

    2012-01-01

    Mechanically induced martensitic transformation and the associated transformation plasticity phenomena in austenitic stainless steels are studied. The mechanisms responsible for the transformation are investigated and put into perspective based on experimental evidence. The stress and strain partitioning into the austenite and martensite phases are formulated using a mean-field homogenization approach. At this intermediate length-scale the average stress in the austenite phase is computed and utilized to compute the mechanical driving force resolved in the material. The amount of transformation and the transformation plasticity is derived as a function of the driving force. The mechanical response of the material is obtained by combining the homogenization and the transformation models. The model is verified by mechanical tests under biaxial loading conditions during which different transformation rates are observed. As a final verification of the model, a bending test is used which manifests the stress-state dependency of the transformation.

  18. Magnetic force microscopy and simulation studies on Co 50 Fe 50 ...

    Indian Academy of Sciences (India)

    We studied the magnetization reversal mechanism of single-layered Co50Fe50 nanomagnets by measuring the magnetization reversal and using the micromagnetic simulations. The magnetization reversal strongly depends on the thickness of the nanomagnets. In the remanent state, the magnetic force microscopy studies ...

  19. [Application of fluid mechanics and simulation: urinary tract and ureteral catheters.

    Science.gov (United States)

    Gómez-Blanco, J C; Martínez-Reina, J; Cruz, D; Blas Pagador, J; Sánchez-Margallo, F M; Soria, F

    2016-10-01

    The mechanics of urine during its transport from the renal pelvis to the bladder is of great interest for urologists. The knowledge of the different physical variables and their interrelationship, both in physiologic movements and pathologies, will help a better diagnosis and treatment. The objective of this chapter is to show the physics principles and their most relevant basic relations in urine transport, and to bring them over the clinical world. For that, we explain the movement of urine during peristalsis, ureteral obstruction and in a ureter with a stent. This explanation is based in two tools used in bioengineering: the theoretical analysis through the Theory of concontinuous media and Ffluid mechanics and computational simulation that offers a practical solution for each scenario. Moreover, we review other contributions of bioengineering to the field of Urology, such as physical simulation or additive and subtractive manufacturing techniques. Finally, we list the current limitations for these tools and the technological development lines with more future projection. In this chapter we aim to help urologists to understand some important concepts of bioengineering, promoting multidisciplinary cooperation to offer complementary tools that help in diagnosis and treatment of diseases.

  20. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Andrea; Ferronato, Massimiliano, E-mail: massimiliano.ferronato@unipd.it; Janna, Carlo; Teatini, Pietro

    2016-06-01

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions. - Highlights: • A numerical model is developed for the simulation of fault and fracture mechanics. • The model is implemented in the framework of the Finite Element method and with the aid of Lagrange multipliers. • The proposed formulation introduces a new contribution due to the frictional work on the portion of activated fault. • The resulting algorithm is highly non-linear as the portion of activated fault is itself unknown. • The numerical solution is validated against analytical results and proves to be stable also in realistic applications.

  1. 3D FE simulation of PCMI (Pellet-Cladding Mechanical Interaction) considering frictionless contact

    International Nuclear Information System (INIS)

    Seo, Sang-Kyu; Lee, Sung-Uk; Lee, Eun-Ho; Yang, Dong-Yol; Kim, Hyo-Chan; Yang, Yong-Sik

    2014-01-01

    The goal of this code is coupling every aspect of physical phenomenon. Monodimensional FE model has been made for METEOR. It is good to evaluate the global behavior in high burn up levels. However, the multi-dimensional PCI analysis code is necessary to precisely analyze the stress distribution especially in case of the crack analysis. CAST3M 3D finite element code has been developed considering thermo-mechanical interaction in detail for TOUTATIS code. The advanced multidimensional code called ALCYONE has been developed considering chemical-physics and thermomechanical aspects. Although there are many codes that analyze pellet and cladding interaction, it is difficult to consider every physical aspect. In this paper, pellet to cladding mechanical interaction in 3D has been simulated with frictionless contact using the developed module, which is written in FORTRANN90. In this paper, 3D PCMI FE model is simulated with frictionless contact and elastic deformation. From the frictionless contact analysis, the interfacial pressure has been calculated and then this is used to obtain the solid heat coefficient which is a main factor to analyze the thermal distribution

  2. Out-of pile mechanical test: simulating reactivity initiated accident (RIA) of zircaloy-4 cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Kim, Jun Hwan; Choi, Byoung Kwon; Jeong, Young Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    The ejection or drop of a control rod in a reactivity initiated accident (RIA) causes a sudden increase in reactor power and in turn deposits a large amount of energy into the fuel. In a RIA, cladding tubes bear thermal expansion due to sudden reactivity and may fail from the resulting mechanical damage. Thus, RIA can be one of the safety margin reducers because the oxide on the tubes makes their thickness to support the load less as well as hydrides from the corrosion reduce the ductility of the tubes. In a RIA, the peak of reactor power from reactivity change is about 0.1m second and the temperature of the cladding tubes increases up to 1000 .deg. C in several seconds. Although it is hard to fully simulate the situation, several attempts to measure the change of mechanical properties under a RIA situation has done using a reduction coil, ring tension tests with high speed. This research was done to see the effect of oxide on the change of circumferential strength and ductility of Zircaloy-4 tubes in a RIA. The ring stretch tensile tests were performed with the strain rate of 1/sec and 0.01/s to simulate a transient of the cladding tube under a RIA. Since the test results of the ring tensile test are very sensitive to the lubricant, the tests were also carried out to select a suitable lubricant before the test of oxided specimens.

  3. Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method

    Science.gov (United States)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2011-01-01

    As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.

  4. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    International Nuclear Information System (INIS)

    Franceschini, Andrea; Ferronato, Massimiliano; Janna, Carlo; Teatini, Pietro

    2016-01-01

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions. - Highlights: • A numerical model is developed for the simulation of fault and fracture mechanics. • The model is implemented in the framework of the Finite Element method and with the aid of Lagrange multipliers. • The proposed formulation introduces a new contribution due to the frictional work on the portion of activated fault. • The resulting algorithm is highly non-linear as the portion of activated fault is itself unknown. • The numerical solution is validated against analytical results and proves to be stable also in realistic applications.

  5. Large eddy simulation of a mechanically ventilated compartment fire for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bao P. [Dalian Univ. of Technology (China). Faculty of Energy and Power Engineering; Wen, Jennifer X. [Warwick Univ. (United Kingdom). Warwick FIRE, School of Engineering

    2015-12-15

    This paper deals with the modelling of a mechanically ventilated compartment fire which is a commonplace in nuclear fire scenarios. An advanced Computational Fluid Dynamics (CFD) field model with a wall conjugate heat transfer treatment is proposed. It simultaneously solves the compartment fire flow and the wall heat conduction. The flow solver is based on the Large Eddy Simulation (LES) based fire simulation solver FireFOAM within the frame of open source CFD code OpenFOAM {sup registered}. An extended eddy dissipation model is used to calculate the chemical reaction rate. A soot model based on the concept of smoke point height is employed to model the soot formation and oxidation. A finite volume method is adopted to model the radiative heat transfer. The ventilation flow is modelled by a simplified Bernoulli equation neglecting the detailed information on the ventilation system. The proposed model is validated against a single room fire test with forced mechanical ventilations. The predictions are in reasonably good agreement with experimental data.

  6. Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries

    Science.gov (United States)

    Fan, Quan-Lin; Wei, Feng-Si; Feng, Xue-Shang

    2003-08-01

    The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet. The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc. The project supported by National Natural Science Foundation of China under Grant Nos. 40104006, 49925412, and 49990450