WorldWideScience

Sample records for mechanical compression tests

  1. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    International Nuclear Information System (INIS)

    Dueck, Ann; Boergesson, Lennart; Karnland, Ola

    2010-01-01

    Document available in extended abstract form only. Mechanical properties of buffer material are included in the model used for predicting the physical behaviour of saturated buffer in the final disposal of spent nuclear fuel. One simple test where the mechanical properties can be quantified is the unconfined compression test. In this type of test the relation between stress and strain are determined from axial compression of a cylindrical specimen. In the project LOT the unconfined compression test was used to study the mechanical properties on field exposed buffer material. The results from these test series showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. Changes in mechanical properties may be due to incipient chemical changes in the material. However, the present study focuses on other possible sources for brittle failure behaviour. In this study the objective was to experimentally investigate if deviating stress-strain behaviour measured after temperature exposure could be explained by Thermo-Hydro-Mechanical processes. The word cementation is used as a general term for the process involving a change in mechanical properties including brittleness at failure. A relatively large number of specimens were tested representing sodium dominated and calcium dominated bentonites. Cylindrical specimens were compacted from air dry powder to a height and diameter of 20 mm. The main part of the specimens was put in a saturation device prior to the tests in order to ensure full saturation. After the saturation each sample was placed in a mechanical press where a constant rate of strain was applied axially to the specimens having no radial confinement. During the test the deformation and the applied force were measured by means of force and strain transducers. After failure the water content and density were determined. Test series were carried out for investigating the influence of for example

  2. Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A. [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • Compression tests of highly neutron irradiated beryllium pebbles have been performed. • Irradiation hardening of beryllium pebbles decreases the steady-state strain-rates. • The steady-state strain-rates of irradiated beryllium pebbles exceed their swelling rates. - Abstract: Results: of mechanical compression tests of irradiated and non-irradiated beryllium pebbles with diameters of 1 and 2 mm are presented. The neutron irradiation was performed in the HFR in Petten, The Netherlands at 686–968 K up to 1890–2950 appm helium production. The irradiation at 686 and 753 K cause irradiation hardening due to the gas bubble formation in beryllium. The irradiation-induced hardening leads to decrease of steady-state strain-rates of irradiated beryllium pebbles compared to non-irradiated ones. In contrary, after irradiation at higher temperatures of 861 and 968 K, the steady-state strain-rates of the pebbles increase because annealing of irradiation defects and softening of the material take place. It was shown that the steady-state strain-rates of irradiated beryllium pebbles always exceed their swelling rates.

  3. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    International Nuclear Information System (INIS)

    Dueck, Ann

    2010-01-01

    Results from the project LOT showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. The objective of the present study was to investigate the impact of parameters such as temperature, density, water content and degree of saturation on the occurrence of brittleness at failure of bentonite specimens. To quantify the influence of the different parameters the unconfined compression test was used on specimens with a height and diameter of 20 mm. In this test the relation between stress and strain is determined from axial compression of a cylindrical specimen. Brittle failure is in this investigation mainly seen on specimens having a density of ρ ≥ 2,060 kg/m 3 or on specimens exposed to high temperature T ≥ 150 deg C in the laboratory. Brittle failure behaviour was also seen on unsaturated specimens with a degree of saturation less than Sr i = 0% before saturation, on specimens with a final degree of saturation of S r ≤ 97% and also on one specimen subjected to consolidation during preparation. Brittle failure and reduced strain were noticed in the heated field exposed material in the LOT project. Similar behaviour was also observed in the present short term laboratory tests. However, the specimens in the present study showing this behaviour had higher density, lower degree of saturation or were exposed to higher temperatures than the field exposed specimens

  4. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  5. Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Ann (Clay Technology AB, Lund (Sweden))

    2010-01-15

    Results from the project LOT showed that specimens exposed to warm conditions had a significantly reduced strain at failure compared to reference material. The objective of the present study was to investigate the impact of parameters such as temperature, density, water content and degree of saturation on the occurrence of brittleness at failure of bentonite specimens. To quantify the influence of the different parameters the unconfined compression test was used on specimens with a height and diameter of 20 mm. In this test the relation between stress and strain is determined from axial compression of a cylindrical specimen. Brittle failure is in this investigation mainly seen on specimens having a density of rho >= 2,060 kg/m3 or on specimens exposed to high temperature T >= 150 deg C in the laboratory. Brittle failure behaviour was also seen on unsaturated specimens with a degree of saturation less than Sr < 90%. Failure at reduced strain was seen in this investigation on specimens exposed to T = 150 deg C, on specimens having a water content of w{sub i} = 0% before saturation, on specimens with a final degree of saturation of S{sub r} <= 97% and also on one specimen subjected to consolidation during preparation. Brittle failure and reduced strain were noticed in the heated field exposed material in the LOT project. Similar behaviour was also observed in the present short term laboratory tests. However, the specimens in the present study showing this behaviour had higher density, lower degree of saturation or were exposed to higher temperatures than the field exposed specimens

  6. Compressible Fluid Suspension Performance Testing

    National Research Council Canada - National Science Library

    Hoogterp, Francis

    2003-01-01

    ... compressible fluid suspension system that was designed and installed on the vehicle by DTI. The purpose of the tests was to evaluate the possible performance benefits of the compressible fluid suspension system...

  7. Mechanical Testing of PMCs under Simulated Rapid Heat-Up Propulsion Environments. II; In-Plane Compressive Behavior

    Science.gov (United States)

    Stokes, Eric H.; Shin, E. Eugene; Sutter, James K.

    2003-01-01

    Carbon fiber thermoset polymer matrix composites (PMC) with high temperature polyimide based in-situ polymerized monomer reactant (PMR) resin has been used for some time in applications which can see temperatures up to 550 F. Currently, graphite fiber PMR based composites are used in several aircraft engine components including the outer bypass duct for the GE F-404, exit flaps for the P&W F-100-229, and the core cowl for the GE/Snecma CF6-80A3. Newer formulations, including PMR-II-50 are being investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines that can see temperatures which exceed 550 F. Extensive FEM thermal modeling indicates that these components are exposed to rapid heat-up rates (up to -200 F/sec) and to a maximum temperature of around 600 F. Even though the predicted maximum part temperatures were within the capability of PW-II-50, the rapid heat-up causes significant through-thickness thermal gradients in the composite part and even more unstable states when combined with moisture. Designing composite parts for such extreme service environments will require accurate measurement of intrinsic and transient mechanical properties and the hygrothermal performance of these materials under more realistic use conditions. The mechanical properties of polymers degrade when exposed to elevated temperatures even in the absence of gaseous oxygen. Accurate mechanical characterization of the material is necessary in order to reduce system weight while providing sufficient factors of safety. Historically, the testing of PMCs at elevated temperatures has been plagued by the antagonism between two factors. First, moisture has been shown to profoundly affect the mechanical response of these materials at temperatures above their glass transition temperature while concurrently lowering the material's Tg. Moisture phenomena is due to one or a combination of three effects, i

  8. Eccentric crank variable compression ratio mechanism

    Science.gov (United States)

    Lawrence, Keith Edward [Kobe, JP; Moser, William Elliott [Peoria, IL; Roozenboom, Stephan Donald [Washington, IL; Knox, Kevin Jay [Peoria, IL

    2008-05-13

    A variable compression ratio mechanism for an internal combustion engine that has an engine block and a crankshaft is disclosed. The variable compression ratio mechanism has a plurality of eccentric disks configured to support the crankshaft. Each of the plurality of eccentric disks has at least one cylindrical portion annularly surrounded by the engine block. The variable compression ratio mechanism also has at least one actuator configured to rotate the plurality of eccentric disks.

  9. Revisiting the Fundamentals and Capabilities of the Stack Compression Test

    DEFF Research Database (Denmark)

    Alves, L.M.; Nielsen, Chris Valentin; Martin, P.A.F.

    2011-01-01

    performance by comparing the flow curves obtained from its utilisation with those determined by means of compressive testing carried out on solid cylinder specimens of the same material. Results show that mechanical testing of materials by means of the stack compression test is capable of meeting...... the increasing demand of accurate and reliable flow curves for sheet metals....

  10. Development of a Low Strain-Rate Gun Propellant Bed Compression Test and its Use in Evaluating Mechanical Response

    Science.gov (United States)

    2016-09-01

    compression may be expected, as there will be minimal void spaces remaining into which fragmentation or plastic flow is possible. This behaviour is...Universal gas constant (8.314 J.K-1.mol-1) r Radial position ro Outer die radius ri Inner die radius SA Surface Area SR Secret Research T...is relatively simple to perform and is reported to provide good indications with respect to propellant bed behaviour during the first stages of

  11. Development and Testing of Compression Technologies Using Advanced Materials for Mechanical Counter-Pressure Planetary Exploration Suits

    Data.gov (United States)

    National Aeronautics and Space Administration — Mechanical counterpressure (MCP) space suits have the potential to greatly improve the mobility of astronauts as they conduct planetary exploration activities. MCP...

  12. Competing hydrostatic compression mechanisms in nickel cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, J. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Lucas, T.C. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Cairns, A.B.; Funnell, N.P. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Tucker, M.G. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diamond Light Source, Chilton, Oxfordshire OX11 0DE (United Kingdom); Kleppe, A.K. [Diamond Light Source, Chilton, Oxfordshire OX11 0DE (United Kingdom); Hriljac, J.A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Goodwin, A.L. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2015-12-15

    We use variable-pressure neutron and X-ray diffraction measurements to determine the uniaxial and bulk compressibilities of nickel(II) cyanide, Ni(CN){sub 2}. Whereas other layered molecular framework materials are known to exhibit negative area compressibility, we find that Ni(CN){sub 2} does not. We attribute this difference to the existence of low-energy in-plane tilt modes that provide a pressure-activated mechanism for layer contraction. The experimental bulk modulus we measure is about four times lower than that reported elsewhere on the basis of density functional theory methods [Phys. Rev. B 83 (2011) 024301].

  13. Mechanisms of anomalous compressibility of vitreous silica

    Science.gov (United States)

    Clark, Alisha N.; Lesher, Charles E.; Jacobsen, Steven D.; Sen, Sabyasachi

    2014-11-01

    The anomalous compressibility of vitreous silica has been known for nearly a century, but the mechanisms responsible for it remain poorly understood. Using GHz-ultrasonic interferometry, we measured longitudinal and transverse acoustic wave travel times at pressures up to 5 GPa in vitreous silica with fictive temperatures (Tf) ranging between 985 °C and 1500 °C. The maximum in ultrasonic wave travel times-corresponding to a minimum in acoustic velocities-shifts to higher pressure with increasing Tf for both acoustic waves, with complete reversibility below 5 GPa. These relationships reflect polyamorphism in the supercooled liquid, which results in a glassy state possessing different proportions of domains of high- and low-density amorphous phases (HDA and LDA, respectively). The relative proportion of HDA and LDA is set at Tf and remains fixed on compression below the permanent densification pressure. The bulk material exhibits compression behavior systematically dependent on synthesis conditions that arise from the presence of floppy modes in a mixture of HDA and LDA domains.

  14. Fabrication and in situ compression testing of Mg micropillars with a nontrivial cross section: Influence of micropillar geometry on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bočan, Jiří [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, CZ-12821 Praha 8 (Czech Republic); Tsurekawa, Sadahiro [Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Jäger, Aleš, E-mail: aljag@seznam.cz [Laboratory of Nanostructures and Nanomaterials, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, CZ-12821 Praha 8 (Czech Republic)

    2017-02-27

    Micropillars with a nontrivial cross-sectional shape but constant cross-sectional area were fabricated from a pure magnesium single crystal with (0001) orientation by a focused gallium ion beam using a modified annular milling method. The basic mechanical properties (compressive modulus, strength at different plastic strain levels and hardening exponent) of those structures were determined under compression by means of in situ nanoindentation in scanning electron microscope and correlated by the micropillar cross-sectional circumference. It was observed that the modulus and strength increased with increasing circumference. The values of the modulus for the complex cross sectional shapes are on average higher by 5%, and the yield strength, ranging between 274 MPa and 342 MPa, is on average higher by 20% relative to micropillars with a simple circular or polygonal cross section. Surprisingly, the hardening exponent remains nearly constant regardless of the micropillar cross section.

  15. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Science.gov (United States)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  16. Uniaxial compression test series on Bullfrog Tuff

    International Nuclear Information System (INIS)

    Price, R.H.; Jones, A.K.; Nimick, K.G.

    1982-04-01

    Nineteen uniaxial compressive experiments were performed on samples of the Bullfrog Member of the Crater Flat Tuff, obtained from drillhole USW-G1 at Yucca Mountain on the Nevada Test Site. The water saturated samples were deformed at a nominal strain rate of 10 -5 sec -1 , atmospheric pressure and room temperature. Resultant unconfined compressive strengths, axial strains to failure, Young's moduli and Poisson's ratios ranged from 4.63 to 153. MPa, .0028 to .0058, 2.03 to 28.9 GPa and .08 to .16, respectively

  17. Tests of compressed geometry NEC acceleration tubes

    International Nuclear Information System (INIS)

    Raatz, J.E.; Rathmell, R.D.; Stelson, P.H.; Ziegler, N.F.

    1985-01-01

    Tests have been performed in the 3 MV Pelletron test machine at NEC on a compressed geometry tube which increases the insulating length of the tube by eliminating the heated electrode assemblies (approx.2.5 cm thick) at the end of each tube section. Some insert electrodes are changed to provide some trapping of secondary ions. The geometry tested provided an 18% increase in live ceramic in the tube. The compressed geometry tube allowed a terminal voltage of 3.55 MV on the 3 MV column at normal gradients of 30.3 kv/tube gap. The tube was also conditioned to more than 4 MV and remained stable in voltage with few sparks and with low x-ray levels for days at about 4 MV. This same performance could be achieved with or without arc discharge cleaning. 4 refs., 4 figs

  18. Compressive Failure Mechanisms in Layered Materials

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten

    Two important failure modes in fiber reinforced composite materials in cluding layers and laminates occur under loading conditions dominated by compression in the layer direction. These two distinctly different failure modes are 1. buckling driven delamination 2. failure by strain localization...... or on cylindrical substrates modeling the delamination as an interface fracture mechanical problem. Here attention is directed towards double-curved substrates, which introduces a new non-dimensional combination of geometric parameters. It is shown for a wide range of parameters that by choosing the two....... This has some impact on the convergence rate for decreasing mesh size in the load vs. end shortening response for a rectangular block of material. Especially in the immediate post critical range the convergence rate may be slow. The capabilities of the model to deal with more complicated structural...

  19. Mechanical vapor compression Desalination plant at Trombay

    International Nuclear Information System (INIS)

    Adak, A.K.; Kishore, G.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Desalination plants based on Mechanical Vapour Compression (MVC) technology are inherently the most thermodynamically efficient. The thermodynamic efficiency of the MVC process is derived from the application of the heat pump principle. A single unit of two-effect MVC desalination pilot plant of capacity 50 m3/day has recently been commissioned at Trombay, Mumbai. The desalination unit is very compact and unique of its kind in the seawater desalination technologies and is being operated by using electricity only. Horizontal tube thin film spray desalination evaporators are used for efficient heat transfer. It is suitable for a site, where feed water is highly saline and condenser cooling water is absent and where a thermal heat source is not available. The unit produces high quality water, nearly demineralized (DM) quality directly from seawater. There is no need of polishing unit and product water can be utilized directly as make up of boiler feed and for other high quality process water requirements in the industries. This paper includes the design and highlights the technical features of this unit. (author)

  20. Mechanical behavior of silicon carbide nanoparticles under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiuxiang; Fei, Jing; Tang, Chao; Zhong, Jianxin; Meng, Lijun, E-mail: ljmeng@xtu.edu.cn [Xiangtan University, Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Faculty of School of Physics and Optoelectronics (China)

    2016-03-15

    The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.

  1. Mechanical compression attenuates normal human bronchial epithelial wound healing

    Directory of Open Access Journals (Sweden)

    Malavia Nikita

    2009-02-01

    Full Text Available Abstract Background Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1 unperturbed control cells, 2 single scrape wound only, 3 static compression (6 hours of 30 cmH2O, and 4 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results We found that mechanical compression and scrape injury increase TGF-β2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE2 media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE2, but not EGF. Conclusion Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE2 and a compromised cytoskeleton.

  2. Compression, Mechanical and Release Properties of Chloroquine ...

    African Journals Online (AJOL)

    Results: Tablet formulations containing trifoliate yam starch exhibited faster onset and higher amount of plastic deformation during compression than those containing corn starch. The crushing strength, disintegration and dissolution times of the tablets increased with binder concentration while friability values decreased.

  3. Quality between mechanical compression on reducible stretcher versus manual compression on standard stretcher in small elevator.

    Science.gov (United States)

    Kim, Tae Han; Hong, Ki Jeong; Sang Do, Shin; Kim, Chu Hyun; Song, Sung Wook; Song, Kyoung Jun; Ro, Young Sun; Ahn, Ki Ok; Jang, Dayea Beatrice

    2016-08-01

    Manual cardiopulmonary resuscitation (CPR) during vertical transport in small elevators using standard stretcher for out-of-hospital cardiac arrest can raise concerns with diminishing quality. Mechanical CPR on a reducible stretcher (RS-CPR) that can be shortened in the length was tested to compare the CPR quality with manual CPR on a standard stretcher (SS-CPR). A randomized crossover manikin simulation was designed. Three teams of emergency medical technicians were recruited to perform serial CPR simulations using two different protocols (RS-CPR and SS-CPR) according to a randomization; the first 6 minutes of manual CPR at the scene was identical for both scenarios and two different protocols during vertical transport in a small elevator followed on a basis of cross-over assignment. The LUCAS-2 Chest Compression System (Zolife AB, Lund, Sweden) was used for RS-CPR. CPR quality was measured using a resuscitation manikin (Resusci Anne QCPR, Laerdal Medical, Stavanger, Norway) in terms of no flow fraction, compression depth, and rate (median and IQR). A total of 42 simulations were analyzed. CPR quality did not differ significantly at the scene. No flow fraction (%) was significantly lower when the stretcher was moving in RS-CPR then SS-CPR (36.0 (33.8-38.7) vs 44.0 (36.8-54.4), P< .01). RS-CPR showed significantly better quality than SS-CPR; 93.2 (50.6-95.6) vs 14.8 (0-20.8) for adequate depth (P< 0.01), and 97.5 (96.6-98.2) vs 68.9(43.4-78.5) for adequate rate (P< .01). Mechanical CPR on a reducible stretcher during vertical transport showed significant improvement in CPR quality in terms of no-flow fraction, compression depth, and rate compared with manual CPR on a standard stretcher. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Powder compression mechanics of spray-dried lactose nanocomposites.

    Science.gov (United States)

    Hellrup, Joel; Nordström, Josefina; Mahlin, Denny

    2017-02-25

    The aim of this study was to investigate the structural impact of the nanofiller incorporation on the powder compression mechanics of spray-dried lactose. The lactose was co-spray-dried with three different nanofillers, that is, cellulose nanocrystals, sodium montmorillonite and fumed silica, which led to lower micron-sized nanocomposite particles with varying structure and morphology. The powder compression mechanics of the nanocomposites and physical mixtures of the neat spray-dried components were evaluated by a rational evaluation method with compression analysis as a tool, using the Kawakita equation and the Shapiro-Konopicky-Heckel equation. Particle rearrangement dominated the initial compression profiles due to the small particle size of the materials. The strong contribution of particle rearrangement in the materials with fumed silica continued throughout the whole compression profile, which prohibited an in-depth material characterization. However, the lactose/cellulose nanocrystals and the lactose/sodium montmorillonite nanocomposites demonstrated high yield pressure compared with the physical mixtures indicating increased particle hardness upon composite formation. This increase has likely to do with a reinforcement of the nanocomposite particles by skeleton formation of the nanoparticles. In summary, the rational evaluation of mechanical properties done by applying powder compression analysis proved to be a valuable tool for mechanical evaluation for this type of spray-dried composite materials, unless they demonstrate particle rearrangement throughout the whole compression profile. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Stress analysis of shear/compression test

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.; Ueno, S.

    1997-01-01

    Stress analysis has been made on the glass fiber reinforced plastics (GFRP) subjected to the combined shear and compression stresses by means of finite element method. The two types of experimental set up were analyzed, that is parallel and series method where the specimen were compressed by tilted jigs which enable to apply the combined stresses, to the specimen. Modified Tsai-Hill criterion was employed to judge the failure under the combined stresses that is the shear strength under the compressive stress. The different failure envelopes were obtained between the two set ups. In the parallel system the shear strength once increased with compressive stress then decreased. On the contrary in the series system the shear strength decreased monotonicly with compressive stress. The difference is caused by the different stress distribution due to the different constraint conditions. The basic parameters which control the failure under the combined stresses will be discussed

  6. A statistical–mechanical view on source coding: physical compression and data compression

    International Nuclear Information System (INIS)

    Merhav, Neri

    2011-01-01

    We draw a certain analogy between the classical information-theoretic problem of lossy data compression (source coding) of memoryless information sources and the statistical–mechanical behavior of a certain model of a chain of connected particles (e.g. a polymer) that is subjected to a contracting force. The free energy difference pertaining to such a contraction turns out to be proportional to the rate-distortion function in the analogous data compression model, and the contracting force is proportional to the derivative of this function. Beyond the fact that this analogy may be interesting in its own right, it may provide a physical perspective on the behavior of optimum schemes for lossy data compression (and perhaps also an information-theoretic perspective on certain physical system models). Moreover, it triggers the derivation of lossy compression performance for systems with memory, using analysis tools and insights from statistical mechanics

  7. Acceptance Test Report for 241-U compressed air system

    International Nuclear Information System (INIS)

    Freeman, R.D.

    1994-01-01

    This Acceptance Test Report (ATR) documents the results of acceptance testing of a newly upgraded compressed air system at 241-U Farm. The system was installed and the test successfully performed under work package 2W-92-01027

  8. Mechanical versus manual chest compressions for cardiac arrest.

    Science.gov (United States)

    Brooks, Steven C; Hassan, Nizar; Bigham, Blair L; Morrison, Laurie J

    2014-02-27

    This is the first update of the Cochrane review on mechanical chest compression devices published in 2011 (Brooks 2011). Mechanical chest compression devices have been proposed to improve the effectiveness of cardiopulmonary resuscitation (CPR). To assess the effectiveness of mechanical chest compressions versus standard manual chest compressions with respect to neurologically intact survival in patients who suffer cardiac arrest. We searched the Cochrane Central Register of Controlled Studies (CENTRAL; 2013, Issue 12), MEDLINE Ovid (1946 to 2013 January Week 1), EMBASE (1980 to 2013 January Week 2), Science Citation abstracts (1960 to 18 November 2009), Science Citation Index-Expanded (SCI-EXPANDED) (1970 to 11 January 2013) on Thomson Reuters Web of Science, biotechnology and bioengineering abstracts (1982 to 18 November 2009), conference proceedings Citation Index-Science (CPCI-S) (1990 to 11 January 2013) and clinicaltrials.gov (2 August 2013). We applied no language restrictions. Experts in the field of mechanical chest compression devices and manufacturers were contacted. We included randomised controlled trials (RCTs), cluster RCTs and quasi-randomised studies comparing mechanical chest compressions versus manual chest compressions during CPR for patients with atraumatic cardiac arrest. Two review authors abstracted data independently; disagreement between review authors was resolved by consensus and by a third review author if consensus could not be reached. The methodologies of selected studies were evaluated by a single author for risk of bias. The primary outcome was survival to hospital discharge with good neurological outcome. We planned to use RevMan 5 (Version 5.2. The Nordic Cochrane Centre) and the DerSimonian & Laird method (random-effects model) to provide a pooled estimate for risk ratio (RR) with 95% confidence intervals (95% CIs), if data allowed. Two new studies were included in this update. Six trials in total, including data from 1166

  9. The mechanical vapour compression process applied to seawater desalination

    International Nuclear Information System (INIS)

    Murat, F.; Tabourier, B.

    1984-01-01

    The authors present the mechanical vapour compression process applied to sea water desalination. As an example, the paper presents the largest unit so far constructed by SIDEM using this process : a 1,500 m3/day unit installed in the Nuclear Power Plant of Flamanville in France which supplies a high quality process water to that plant. The authors outline the advantages of this process and present also the serie of mechanical vapour compression unit that SIDEM has developed in a size range in between 25 m3/day and 2,500 m3/day

  10. Mechanical properties of Concrete with SAP. Part I: Development of compressive strength

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    The development of mechanical properties has been studied in a test program comprising 15 different concrete mixes with 3 different w/c ratios and different additions of superabsorbent polymers (SAP). The degree of hydration is followed for 15 corresponding paste mixes. This paper concerns...... compressive strength. It shows that results agree well with a model based on the following: 1. Concrete compressive strength is proportional to compressive strength of the paste phase 2. Paste strength depends on gel space ratio, as suggested by Powers 3. The influence of air voids created by SAP...... on compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c SAP additions, SAP increases the compressive strength at later ages (from 3 days after casting and onwards...

  11. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy

  12. Mechanical Testing of MLCCs

    Science.gov (United States)

    Teverovsky, Alexander A.

    2016-01-01

    Cracking of multilayer ceramic capacitors, MLCCs, remains a serious problem for space systems. This problem increases substantially for large size capacitors and in cases when manual soldering is involved or the system experiences mechanical shock or vibration. In any case, a fracture occurs when the sum of external and internal mechanical stresses exceeds the strength of the part. To reduce the probability of cracking, the level of stress should be reduced, e.g. by optimizing the assembly workmanship and rules for board design, and the strength of the parts increased by selecting the most mechanically robust capacitors. The latter might possibly be achieved by selecting MLCCs based on the in-situ measurements of mechanical characteristics using four types of tests: flexural strength, hardness, fracture toughness, and flex bend testing. Note that military specifications MIL-PRF-123 and MIL-PRF-55681 do not have requirements for mechanical testing of the parts. However, specifications for automotive industry components employ two types of mechanical tests: beam load (break strength) test per AEC-Q200-003 and board flex test per AEC-Q200-005. A recent military specification for thin dielectric capacitors, MIL-PRF-32535, has one mechanical test, board flex testing, that is similar to AEC-Q200-005. The purpose of this report was assessment of the efficiency of different mechanical tests for selection robust capacitors and comparison of mechanical characteristics of Base Metal Electrode (BME) and Precious Metal Electrode (PME) capacitors. The report has three parts related to the first three mechanical tests mentioned above.

  13. Effects of Acid treatment on the compression and mechanical ...

    African Journals Online (AJOL)

    This study investigated the effect of acid treatment on the compression and mechanical properties of the cellulosic fibrous residue obtained after a high proportion of starch has been removed from the peeled and rasped tuberous root of Xanthosoma sagittifolium (Family: Araceae). Powdered fibrous residues were subjected ...

  14. Micro-compression testing: A critical discussion of experimental constraints

    International Nuclear Information System (INIS)

    Kiener, D.; Motz, C.; Dehm, G.

    2009-01-01

    Micro-compression testing is a promising technique for determining mechanical properties at small length scales since it has several benefits over nanoindentation. However, as for all new techniques, experimental constraints influencing the results of such a micro-mechanical test must be considered. Here we investigate constraints imposed by the sample geometry, the pile-up of dislocations at the sample top and base, and the lateral stiffness of the testing setup. Using a focused ion beam milling setup, single crystal Cu specimens with different geometries and crystal orientations were fabricated. Tapered samples served to investigate the influence of strain gradients, while stiff sample top coatings and undeformable substrates depict the influence of dislocation pile-ups at these interfaces. The lateral system stiffness was reduced by placing specimens on top of needles. Samples were loaded using an in situ indenter in a scanning electron microscope in load controlled or displacement controlled mode. The observed differences in the mechanical response with respect to the experimental imposed constraints are discussed and lead to the conclusion that controlling the lateral system stiffness is the most important point

  15. Mammographic compression – A need for mechanical standardization

    Energy Technology Data Exchange (ETDEWEB)

    Branderhorst, Woutjan, E-mail: w.branderhorst@amc.nl [Academic Medical Center, Department of Biomedical Engineering & Physics, P.O. Box 22660, 1100 DD Amsterdam (Netherlands); Sigmascreening B.V., Meibergdreef 45, 1105 BA Amsterdam (Netherlands); Groot, Jerry E. de, E-mail: jerry.degroot@sigmascreening.com [Academic Medical Center, Department of Biomedical Engineering & Physics, P.O. Box 22660, 1100 DD Amsterdam (Netherlands); Highnam, Ralph, E-mail: ralph.highnam@volparasolutions.com [Volpara Solutions Limited, P.O. Box 24404, Manners St Central, Wellington 6142 (New Zealand); Chan, Ariane, E-mail: ariane.chan@volparasolutions.com [Volpara Solutions Limited, P.O. Box 24404, Manners St Central, Wellington 6142 (New Zealand); Böhm-Vélez, Marcela, E-mail: marcelabvelez@gmail.com [Weinstein Imaging Associates, 5850 Centre Avenue, Pittsburgh, PA 15206 (United States); Broeders, Mireille J.M., E-mail: mireille.broeders@radboudumc.nl [Radboud University Medical Center, Department for Health Evidence, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); LRCB Dutch Reference Center for Screening, P.O. Box 6873, 6503 GJ Nijmegen (Netherlands); Heeten, Gerard J. den, E-mail: g.denheeten@lrcb.nl [Academic Medical Center, Department of Radiology, P.O. Box 22660, 1100 DD Amsterdam (Netherlands); LRCB Dutch Reference Center for Screening, P.O. Box 6873, 6503 GJ Nijmegen (Netherlands); Grimbergen, Cornelis A., E-mail: c.a.grimbergen@amc.uva.nl [Academic Medical Center, Department of Biomedical Engineering & Physics, P.O. Box 22660, 1100 DD Amsterdam (Netherlands); Sigmascreening B.V., Meibergdreef 45, 1105 BA Amsterdam (Netherlands)

    2015-04-15

    Highlights: •We studied mechanical breast compression practice in two different clinical sites. •We visualized the distributions of not only the applied force but also the pressure. •The applied pressure was highly variable, both within and between the data sets. •The average applied pressure and the variation were higher for smaller breasts. •A proposal for improved individualization, by standardizing pressure, is discussed. -- Abstract: Background: A lack of consistent guidelines regarding mammographic compression has led to wide variation in its technical execution. Breast compression is accomplished by means of a compression paddle, resulting in a certain contact area between the paddle and the breast. This procedure is associated with varying levels of discomfort or pain. On current mammography systems, the only mechanical parameter available in estimating the degree of compression is the physical entity of force (daN). Recently, researchers have suggested that pressure (kPa), resulting from a specific force divided by contact area on a breast, might be a more appropriate parameter for standardization. Software has now become available which enables device-independent cross-comparisons of key mammographic metrics, such as applied compression pressure (force divided by contact area), breast density and radiation dose, between patient populations. Purpose: To compare the current compression practice in mammography between different imaging sites in the Netherlands and the United States from a mechanical point of view, and to investigate whether the compression protocols in these countries can be improved by standardization of pressure (kPa) as an objective mechanical parameter. Materials and methods: We retrospectively studied the available parameters of a set of 37,518 mammographic compressions (9188 women) from the Dutch national breast cancer screening programme (NL data set) and of another set of 7171 compressions (1851 women) from a breast imaging

  16. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    Science.gov (United States)

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  17. Failure mechanisms of aluminium foams under compressive loads

    Directory of Open Access Journals (Sweden)

    Sáenz, E.

    2000-08-01

    Full Text Available The purpose of this paper is the investigation of the major failure mechanisms of aluminium foams, which were obtained by powder metallurgy route, under compressive loads. The study was focused on two commonly aluminium alloys AlMg1Si or A 6061 and AlSi12. Due to the fact that the failure mechanisms strongly depend on the density and the macrostructural properties of the material, the mechanical properties always have to be correlated to the structural properties. Therefore, macrostructural investigations were used as a basis to establish the correlation between structural and mechanical properties. This was done with a commercially available image analysis system. The average cell size, the cell size distribution and the cell density (number of cells/area were obtained. In order to evaluate the influence of foaming direction on the cell morphology, some cross sections parallel to the foaming direction were prepared. For the characterization of the mechanical compression properties the compressive or upper yield strength (UYS, the densification strain (eD, the energy absorption (Ea and the efficiency (Eff were obtained. Furthermore, the failure behavior of the samples was in-situ observed with a digital video camera and continuously recorded during the test.

    El objetivo de este estudio es investigar los principales mecanismos de fallo de espumas de aluminio sometidas a cargas de compresión. Las espumas metálicas fueron obtenidas mediante el proceso pulvimetalúrgico, utilizándose como materia prima dos aleaciones comerciales AlMg1Si o A 6061 y AlSi12. Debido a que los mecanismos de fallo en este tipo de materiales depende fuertemente de la densidad y las características macroestructurales del material, en este estudio se busca correlacionar las propiedades mecánicas con estas características. La macroestructura se caracterizó mediante análisis de imagen. El tamaño de celda promedio, la distribución de tamaño y la densidad de

  18. Characterization of cell mechanical properties by computational modeling of parallel plate compression.

    Science.gov (United States)

    McGarry, J P

    2009-11-01

    A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.

  19. Alvar engine. An engine with variable compression ratio. Experiments and tests

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof

    1998-09-01

    This report is focused on tests with Variable Compression Ratio (VCR) engines, according to the Alvar engine principle. Variable compression ratio means an engine design where it is possible to change the nominal compression ratio. The purpose is to increase the fuel efficiency at part load by increasing the compression ratio. At maximum load, and maybe supercharging with for example turbocharger, it is not possible to keep a high compression ratio because of the knock phenomena. Knock is a shock wave caused by self-ignition of the fuel-air mix. If knock occurs, the engine will be exposed to a destructive load. Because of the reasons mentioned it would be an advantage if it would be possible to change the compression ratio continuously when the load changes. The Alvar engine provides a solution for variable compression ratio based on well-known engine components. This paper provides information about efficiency and emission characteristics from tests with two Alvar engines. Results from tests with a phase shift mechanism (for automatic compression ratio control) for the Alvar engine are also reviewed Examination paper. 5 refs, 23 figs, 2 tabs, 5 appendices

  20. A materials test system for static compression at elevated temperatures

    Science.gov (United States)

    Korellis, J. S.; Steinhaus, C. A.; Totten, J. J.

    1992-06-01

    This report documents modifications to our existing computer-controlled compression testing system to allow elevated temperature testing in an evacuated environment. We have adopted an 'inverse' design configuration where the evacuated test volume is located within the induction heating coil, eliminating the expense and minimizing the evacuation time of a much larger traditional vacuum chamber.

  1. Compression under a mechanical counter pressure space suit glove

    Science.gov (United States)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, pglove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  2. Mechanical properties of tannin-based rigid foams undergoing compression

    Energy Technology Data Exchange (ETDEWEB)

    Celzard, A., E-mail: Alain.Celzard@enstib.uhp-nancy.fr [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Zhao, W. [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, A. [ENSTIB-LERMAB, Nancy-University, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Fierro, V. [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France)

    2010-06-25

    The mechanical properties of a new class of extremely lightweight tannin-based materials, namely organic foams and their carbonaceous counterparts are detailed. Scaling laws are shown to describe correctly the observed behaviour. Information about the mechanical characteristics of the elementary forces acting within these solids is derived. It is suggested that organic materials present a rather bending-dominated behaviour and are partly plastic. On the contrary, carbon foams obtained by pyrolysis of the former present a fracture-dominated behaviour and are purely brittle. These conclusions are supported by the differences in the exponent describing the change of Young's modulus as a function of relative density, while that describing compressive strength is unchanged. Features of the densification strain also support such conclusions. Carbon foams of very low density may absorb high energy when compressed, making them valuable materials for crash protection.

  3. Nanoindentation and micro-compression testing of nanoporous gold

    Energy Technology Data Exchange (ETDEWEB)

    Epler, Eike; Volkert, Cynthia A. [Institut fuer Materialphysik, Georg-August-Universitaet Goettingen (Germany); Balk, T. John [Department of Chemical and Materials Engineering, University of Kentucky (United States)

    2009-07-01

    Recent studies on materials such as nanoporous Au have shown that the strength of open-cell foams can be increased at a fixed porosity by decreasing the foam length scale (ligament diameter and length). This effect is attributed to the difficulty of activating dislocations in sub-micron crystal volumes. If high strength nanoporous materials are to be used to advantage in technical applications, the details of the parameters determining their strength need to be understood. In this study, the mechanical response of nanoporous Au fabricated by electrochemical dissolution from a Au-Ag alloy, is investigated by indentation using a cube corner tip as well as by micro-compression testing of columns fabricated by focused ion beam machining. The tests reveal a significant time-dependence or creep behavior in the 30% relative density foam that is not observed in fully dense gold. The origins of this effect will be probed by varying the length scale of the foam. In addition, a large scatter in mechanical behavior, particularly in the elastic response, is observed from position to position and sample to sample, which is attributed to small variations in the open cell structure.

  4. Tuning and synthesis of semiconductor nanostructures by mechanical compression

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Li, Binsong

    2015-11-17

    A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.

  5. Mechanical behavior of iron aluminides: A comparison of nanoindentation, compression and bending of micropillars

    Energy Technology Data Exchange (ETDEWEB)

    Zamanzade, Mohammad, E-mail: m.zamanzade@matsci.uni-sb.de [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Velayarce, Jorge Rafael [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Abad, Oscar Torrents [INM-Leibniz Institute for New Materials and Saarland University, Saarbrücken (Germany); Motz, Christian [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Barnoush, Afrooz [Norwegian University of Science and Technology (NTNU), Trondheim (Norway)

    2016-01-15

    Various local testing methods, namely, nanoindentation, compression and bending tests of micropillars were used to better understand the influence of ternary Cr atoms on the extrinsic and intrinsic mechanical properties of Fe{sub 3}Al intermetallics with the D0{sub 3} super lattice. Using such local techniques enables us to quantify the influence of Cr on the enhancement of the Young´s modulus. Furthermore, the effect of Cr on the yield stress, strain hardening and appearance of slip traces was studied based on the stress–strain curves and secondary electron micrographs of the bended and compressed pillars.

  6. RF pulse compression in the NLC test accelerator at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1995-01-01

    At the Stanford Linear Accelerator Center (SLAC), we are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test---the Next Linear Collider Test Accelerator (NLCTA)---which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy. copyright 1995 American Institute of Physics

  7. Uniaxial compression tests on diesel contaminated frozen silty soil specimens

    International Nuclear Information System (INIS)

    Chenaf, D.; Stampli, N.; Bathurst, R.; Chapuis, R.P.

    1999-01-01

    Results of a uniaxial, unconfined compression test on artificial diesel-contaminated and uncontaminated frozen silty soils are discussed. The testing program involved 59 specimens. The results show that for the same fluid content, diesel contamination reduced the strength of the frozen specimens by increasing the unfrozen water content. For example, in specimens containing 50 per cent diesel oil of the fluid content by weight the maximum strength was reduced by 95 per cent compared to the strength of an uncontaminated specimen. Diesel contamination was also shown to contribute to the slippage between soil particles by acting as a lubricant, thus accelerating the loss of compressive strength.13 refs., 18 figs

  8. Mechanical response of collagen molecule under hydrostatic compression

    International Nuclear Information System (INIS)

    Saini, Karanvir; Kumar, Navin

    2015-01-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  9. Mechanical response of collagen molecule under hydrostatic compression.

    Science.gov (United States)

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights

  10. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  11. Reversed straining in axisymmetric compression test

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Wanheim, Tarras; Lindegren, Maria

    2005-01-01

    A large group of the cold forging processes is carried out in a thick – walled container with the deformation force transmitted through a punch moving axially in the container. The work piece, being entrapped between punch and container will expand and exert a radial pressure resulting in an expa...... to simulate these conditions a reversed axisymmetrical material tester is designed and constructed. Three different materials were tested, aluminum alloy AA6082, technically pure copper (99.5%) and cold forging steel Ma8, at different temperatures found during cold forging....

  12. Signal Compression in Automatic Ultrasonic testing of Rails

    Directory of Open Access Journals (Sweden)

    Tomasz Ciszewski

    2007-01-01

    Full Text Available Full recording of the most important information carried by the ultrasonic signals allows realizing statistical analysis of measurement data. Statistical analysis of the results gathered during automatic ultrasonic tests gives data which lead, together with use of features of measuring method, differential lossy coding and traditional method of lossless data compression (Huffman’s coding, dictionary coding, to a comprehensive, efficient data compression algorithm. The subject of the article is to present the algorithm and the benefits got by using it in comparison to alternative compression methods. Storage of large amount  of data allows to create an electronic catalogue of ultrasonic defects. If it is created, the future qualification system training in the new solutions of the automat for test in rails will be possible.

  13. Compression-rate-dependent nonlinear mechanics of normal and impaired porcine knee joints.

    Science.gov (United States)

    Rodriguez, Marcel Leonardo; Li, LePing

    2017-11-14

    The knee joint performs mechanical functions with various loading and unloading processes. Past studies have focused on the kinematics and elastic response of the joint with less understanding of the rate-dependent load response associated with viscoelastic and poromechanical behaviors. Forty-five fresh porcine knee joints were used in the present study to determine the loading-rate-dependent force-compression relationship, creep and relaxation of normal, dehydrated and meniscectomized joints. The mechanical tests of all normal intact joints showed similar strong compression-rate-dependent behavior: for a given compression-magnitude up to 1.2 mm, the reaction force varied 6 times over compression rates. While the static response was essentially linear, the nonlinear behavior was boosted with the increased compression rate to approach the asymptote or limit at approximately 2 mm/s. On the other hand, the joint stiffness varied approximately 3 times over different joints, when accounting for the maturity and breed of the animals. Both a loss of joint hydration and a total meniscectomy greatly compromised the load support in the joint, resulting in a reduction of load support as much as 60% from the corresponding intact joint. However, the former only weakened the transient load support, but the latter also greatly weakened the equilibrium load support. A total meniscectomy did not diminish the compression-rate-dependence of the joint though. These findings are consistent with the fluid-pressurization loading mechanism, which may have a significant implication in the joint mechanical function and cartilage mechanobiology.

  14. Refinement of the wedge bar technique for compression tests at intermediate strain rates

    Directory of Open Access Journals (Sweden)

    Stander M.

    2012-08-01

    Full Text Available A refined development of the wedge-bar technique [1] for compression tests at intermediate strain rates is presented. The concept uses a wedge mechanism to compress small cylindrical specimens at strain rates in the order of 10s−1 to strains of up to 0.3. Co-linear elastic impact principles are used to accelerate the actuation mechanism from rest to test speed in under 300μs while maintaining near uniform strain rates for up to 30 ms, i.e. the transient phase of the test is less than 1% of the total test duration. In particular, a new load frame, load cell and sliding anvil designs are presented and shown to significantly reduce the noise generated during testing. Typical dynamic test results for a selection of metals and polymers are reported and compared with quasistatic and split Hopkinson pressure bar results.

  15. Contribution of facet joints, axial compression, and composition to human lumbar disc torsion mechanics.

    Science.gov (United States)

    Bezci, Semih E; Eleswarapu, Ananth; Klineberg, Eric O; O'Connell, Grace D

    2018-02-12

    Stresses applied to the spinal column are distributed between the intervertebral disc and facet joints. Structural and compositional changes alter stress distributions within the disc and between the disc and facet joints. These changes influence the mechanical properties of the disc joint, including its stiffness, range of motion, and energy absorption under quasi-static and dynamic loads. There have been few studies evaluating the role of facet joints in torsion. Furthermore, the relationship between biochemical composition and torsion mechanics is not well understood. Therefore, the first objective of this study was to investigate the role of facet joints in torsion mechanics of healthy and degenerated human lumbar discs under a wide range of compressive preloads. To achieve this, each disc was tested under four different compressive preloads (300-1200 N) with and without facet joints. The second objective was to develop a quantitative structure-function relationship between tissue composition and torsion mechanics. Facet joints have a significant contribution to disc torsional stiffness (∼60%) and viscoelasticity, regardless of the magnitude of axial compression. The findings from this study demonstrate that annulus fibrosus GAG content plays an important role in disc torsion mechanics. A decrease in GAG content with degeneration reduced torsion mechanics by more than an order of magnitude, while collagen content did not significantly influence disc torsion mechanics. The biochemical-mechanical and compression-torsion relationships reported in this study allow for better comparison between studies that use discs of varying levels of degeneration or testing protocols and provide important design criteria for biological repair strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Mechanical behaviour of Arabica coffee (Coffea arabica) beans under loading compression

    Science.gov (United States)

    Sigalingging, R.; Herak, D.; Kabutey, A.; Sigalingging, C.

    2018-02-01

    The uniformity of the product of the grinding process depends on various factors including the brittleness of the roasted coffee bean and it affects the extraction of soluble solids to obtain the coffee brew. Therefore, the reaching of a certain degree of brittleness is very important for the grinding to which coffee beans have to be subjected to before brewing. The aims of this study to show the mechanical behaviour of Arabica coffee beans from Tobasa (Indonesia) with roasted using different roasting time (40, 60 and 80 minutes at temperature 174 °C) under loading compression 225 kN. Universal compression testing machine was used with pressing vessel diameter 60 mm and compression speed 10 mm min-1 with different initial pressing height ranging from 20 to 60 mm. The results showed that significant correlation between roasting time and the brittleness.

  17. Poor chest compression quality with mechanical compressions in simulated cardiopulmonary resuscitation: a randomized, cross-over manikin study.

    Science.gov (United States)

    Blomberg, Hans; Gedeborg, Rolf; Berglund, Lars; Karlsten, Rolf; Johansson, Jakob

    2011-10-01

    Mechanical chest compression devices are being implemented as an aid in cardiopulmonary resuscitation (CPR), despite lack of evidence of improved outcome. This manikin study evaluates the CPR-performance of ambulance crews, who had a mechanical chest compression device implemented in their routine clinical practice 8 months previously. The objectives were to evaluate time to first defibrillation, no-flow time, and estimate the quality of compressions. The performance of 21 ambulance crews (ambulance nurse and emergency medical technician) with the authorization to perform advanced life support was studied in an experimental, randomized cross-over study in a manikin setup. Each crew performed two identical CPR scenarios, with and without the aid of the mechanical compression device LUCAS. A computerized manikin was used for data sampling. There were no substantial differences in time to first defibrillation or no-flow time until first defibrillation. However, the fraction of adequate compressions in relation to total compressions was remarkably low in LUCAS-CPR (58%) compared to manual CPR (88%) (95% confidence interval for the difference: 13-50%). Only 12 out of the 21 ambulance crews (57%) applied the mandatory stabilization strap on the LUCAS device. The use of a mechanical compression aid was not associated with substantial differences in time to first defibrillation or no-flow time in the early phase of CPR. However, constant but poor chest compressions due to failure in recognizing and correcting a malposition of the device may counteract a potential benefit of mechanical chest compressions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Testing compression strength of wood logs by drilling resistance

    Science.gov (United States)

    Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter

    2017-04-01

    Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.

  19. Insulation interlaminar shear strength testing with compression and irradiation

    International Nuclear Information System (INIS)

    McManamy, T.J.; Brasier, J.E.; Snook, P.

    1989-01-01

    The Compact Ignition Tokamak (CIT) project identified the need for research and development for the insulation to be used in the toroidal field coils. The requirements included tolerance to a combination of high compression and shear and a high radiation dose. Samples of laminate-type sheet material were obtained from commercial vendors. The materials included various combinations of epoxy, polyimide, E-glass, S-glass, and T-glass. The T-glass was in the form of a three-dimensional weave. The first tests were with 50 x 25 x 1 mm samples. These materials were loaded in compression and then to failure in shear. At 345-MPa compression, the interlaminar shear strength was generally in the range of 110 to 140 MPa for the different materials. A smaller sample configuration was developed for irradiation testing. The data before irradiation were similar to those for the larger samples but approximately 10% lower. Limited fatigue testing was also performed by cycling the shear load. No reduction in shear strength was found after 50,000 cycles at 90% of the failure stress. Because of space limitations, only three materials were chosen for irradiation: two polyimide systems and one epoxy system. All used boron-free glass. The small shear/compression samples and some flexure specimens were irradiated to 4 x 10 9 and 2 x 10 10 rad in the Advanced Technology Reactor at Idaho National Engineering Laboratory. A lead shield was used to ensure that the majority of the dose was from neutrons. The shear strength with compression before and after irradiation at the lower dose was determined. Flexure strength and the results from irradiation at the higher dose level will be available in the near future. 7 refs., 7 figs., 2 tabs

  20. New filterability and compressibility test cell design for nuclear products

    Energy Technology Data Exchange (ETDEWEB)

    Féraud, J.P. [CEA Marcoule, DTEC/SGCS/LGCI, BP 17171, 30207 Bagnols-sur-Cèze (France); Bourcier, D., E-mail: damien.bourcier@cea.fr [CEA Marcoule, DTEC/SGCS/LGCI, BP 17171, 30207 Bagnols-sur-Cèze (France); Ode, D. [CEA Marcoule, DTEC/SGCS/LGCI, BP 17171, 30207 Bagnols-sur-Cèze (France); Puel, F. [Université Lyon 1, Villeurbanne (France); CNRS, UMR5007, Laboratoire d‘Automatique et de Génie des Procédés (LAGEP), CPE-Lyon, 43 bd du 11 Novembre 1918, 69100 Villeurbanne (France)

    2013-12-15

    Highlights: • Test easily usable without tools in a glove box. • The test minimizes the slurry volume necessary for this type of study. • The test characterizes the flow resistance in a porous medium in formation. • The test is performed at four pressure levels to determine the compressibility. • The technical design ensures reproducible flow resistance measurements. -- Abstract: Filterability and compressibility tests are often carried out at laboratory scale to obtain data required to scale up solid/liquid separation processes. Current technologies, applied with a constant pressure drop, enable specific resistance and cake formation rate measurement in accordance with a modified Darcy's law. The new test cell design described in this paper is easily usable without tools in a glove box and minimizes the slurry volume necessary for this type of study. This is an advantage for investigating toxic and hazardous products such as radioactive materials. Uranium oxalate precipitate slurries were used to test and validate this new cell. In order to reduce the test cell volume, a statistical approach was applied on 8 results obtained with cylindrical test cells of 1.8 cm and 3 cm in diameter. Wall effects can therefore be ignored despite the small filtration cell diameter, allowing tests to be performed with only about one-tenth of the slurry volume of a standard commercial cell. The significant reduction in the size of this experimental device does not alter the consistency of filtration data which may be used in the design of industrial equipment.

  1. New filterability and compressibility test cell design for nuclear products

    International Nuclear Information System (INIS)

    Féraud, J.P.; Bourcier, D.; Ode, D.; Puel, F.

    2013-01-01

    Highlights: • Test easily usable without tools in a glove box. • The test minimizes the slurry volume necessary for this type of study. • The test characterizes the flow resistance in a porous medium in formation. • The test is performed at four pressure levels to determine the compressibility. • The technical design ensures reproducible flow resistance measurements. -- Abstract: Filterability and compressibility tests are often carried out at laboratory scale to obtain data required to scale up solid/liquid separation processes. Current technologies, applied with a constant pressure drop, enable specific resistance and cake formation rate measurement in accordance with a modified Darcy's law. The new test cell design described in this paper is easily usable without tools in a glove box and minimizes the slurry volume necessary for this type of study. This is an advantage for investigating toxic and hazardous products such as radioactive materials. Uranium oxalate precipitate slurries were used to test and validate this new cell. In order to reduce the test cell volume, a statistical approach was applied on 8 results obtained with cylindrical test cells of 1.8 cm and 3 cm in diameter. Wall effects can therefore be ignored despite the small filtration cell diameter, allowing tests to be performed with only about one-tenth of the slurry volume of a standard commercial cell. The significant reduction in the size of this experimental device does not alter the consistency of filtration data which may be used in the design of industrial equipment

  2. Statistical mechanics approach to 1-bit compressed sensing

    International Nuclear Information System (INIS)

    Xu, Yingying; Kabashima, Yoshiyuki

    2013-01-01

    Compressed sensing is a framework that makes it possible to recover an N-dimensional sparse vector x∈R N from its linear transformation y∈R M of lower dimensionality M 1 -norm-based signal recovery scheme for 1-bit compressed sensing using statistical mechanics methods. We show that the signal recovery performance predicted by the replica method under the replica symmetric ansatz, which turns out to be locally unstable for modes breaking the replica symmetry, is in good consistency with experimental results of an approximate recovery algorithm developed earlier. This suggests that the l 1 -based recovery problem typically has many local optima of a similar recovery accuracy, which can be achieved by the approximate algorithm. We also develop another approximate recovery algorithm inspired by the cavity method. Numerical experiments show that when the density of nonzero entries in the original signal is relatively large the new algorithm offers better performance than the abovementioned scheme and does so with a lower computational cost. (paper)

  3. Mesoscopic Numerical Computation of Compressive Strength and Damage Mechanism of Rubber Concrete

    Directory of Open Access Journals (Sweden)

    Z. H. Xie

    2015-01-01

    Full Text Available Evaluations of both macroscopic and mesoscopic strengths of materials have been the topic of a great deal of recent research. This paper presents the results of a study, based on the Walraven equation of the production of a mesoscopic random aggregate structure containing various rubber contents and aggregate sizes. On a mesoscopic scale, the damage mechanism in the rubber concrete and the effects of the rubber content and aggregate-mortar interface on the rubber concrete’s compressive resistance property were studied. The results indicate that the random aggregate structural model very closely approximates the experimental results in terms of the fracture distribution and damage characteristics under uniaxial compression. The aggregate-mortar interface mechanical properties have a substantial impact on the test sample’s strength and fracture distribution. As the rubber content increases, the compressive strength and elastic modulus of the test sample decrease proportionally. This paper presents graphics of the entire process from fracture propagation to structural failure of the test piece by means of the mesoscopic finite-element method, which provides a theoretical reference for studying the damage mechanism in rubber concrete and performing parametric calculations.

  4. Mechanical behaviour of selected bulk oilseeds under compression loading

    Science.gov (United States)

    Mizera, Č.; Herák, D.; Hrabě, P.; Aleš, Z.; Pavlů, J.

    2017-09-01

    Pressing of vegetable oils plays an important role in modern agriculture. This study was focused on the linear pressing of soybean seeds (Glycine max L.), Jatropha seeds (Jatropha curcas L.) and palm kernel (Elaeisguineensis). For pressing test the compressive device (ZDM, model 50, Germany) was used. The maximum pressing force of 100 kN with a compression speed of 1 mm s-1 was used to record the force-deformation characteristics. The pressing vessel with diameter 60 mm and initial height of seeds 80 mm were used. The specific energy per gram of oil of soybean, palm kernel and Jatropha was 158.92 ± 7.21, 128.78 ± 8.36 and 68.26 ± 5.94 J.goil-1, respectively. The oil content of soybean, palm kernel and Jatropha was 20.4 ± 1.23, 44.7 ± 2.27 and 34.2 ± 1.75 %, respectively. Water concentration, dynamic and kinematic viscosity of obtained oils was also determined.

  5. Passive and active response of bacteria under mechanical compression

    Science.gov (United States)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Byophysics Team; Institute of Medical Sciences Collaboration

    Bacteria display simple but fascinating cellular structures and geometries. Their shapes are the result of the interplay between osmotic pressure and cell wall construction. Typically, bacteria maintain a high difference of osmotic pressure (on the order of 1 atm) to the environment. This pressure difference (turgor pressure) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. The response of the cell envelope to mechanical perturbations such as geometrical confinements is important for the cells survival. Another key property of bacteria is the ability to regulate turgor pressure after abrupt changes of external osmotic conditions. This response relies on the activity of mechanosensitive (MS) channels: membrane proteins that release solutes in response to excessive stress in the cell envelope. We here present experimental data on the mechanical response of the cell envelope and on turgor regulation of bacteria subjected to compressive forces. We indent living cells with micron-sized beads attached to the cantilever of an atomic force microscope (AFM). This approach ensures global deformation of the cell. We show that such mechanical loading is sufficient to gate mechanosensitive channels in isosmotic conditions.

  6. Mechanical Behavior of Red Sandstone under Incremental Uniaxial Cyclical Compressive and Tensile Loading

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2017-01-01

    Full Text Available Uniaxial experiments were carried out on red sandstone specimens to investigate their short-term and creep mechanical behavior under incremental cyclic compressive and tensile loading. First, based on the results of short-term uniaxial incremental cyclic compressive and tensile loading experiments, deformation characteristics and energy dissipation were analyzed. The results show that the stress-strain curve of red sandstone has an obvious memory effect in the compressive and tensile loading stages. The strains at peak stresses and residual strains increase with the cycle number. Energy dissipation, defined as the area of the hysteresis loop in the stress-strain curves, increases nearly in a power function with the cycle number. Creep test of the red sandstone was also conducted. Results show that the creep curve under each compressive or tensile stress level can be divided into decay and steady stages, which cannot be described by the conventional Burgers model. Therefore, an improved Burgers creep model of rock material is constructed through viscoplastic mechanics, which agrees very well with the experimental results and can describe the creep behavior of red sandstone better than the Burgers creep model.

  7. Compressive strength test for cemented waste forms: validation process

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Candido, Francisco Donizete; Seles, Sandro Rogerio

    2007-01-01

    In the Cementation Laboratory (LABCIM), of the Development Centre of the Nuclear Technology (CNEN/CDTN-MG), hazardous/radioactive wastes are incorporated in cement, to transform them into monolithic products, preventing or minimizing the contaminant release to the environment. The compressive strength test is important to evaluate the cemented product quality, in which it is determined the compression load necessary to rupture the cemented waste form. In LABCIM a specific procedure was developed to determine the compressive strength of cement waste forms based on the Brazilian Standard NBR 7215. The accreditation of this procedure is essential to assure reproductive and accurate results in the evaluation of these products. To achieve this goal the Laboratory personal implemented technical and administrative improvements in accordance with the NBR ISO/IEC 17025 standard 'General requirements for the competence of testing and calibration laboratories'. As the developed procedure was not a standard one the norm ISO/IEC 17025 requests its validation. There are some methodologies to do that. In this paper it is described the current status of the accreditation project, especially the validation process of the referred procedure and its results. (author)

  8. Mechanical test for fuel assembly spacer grid

    International Nuclear Information System (INIS)

    Kang, Heung Seok; Jeong, Yeon Ho; Song, Kee Nam; Kim, Hyung Kyu; Yoon, Kyung Ho; Bang, Je Keun.

    1997-06-01

    In order to propose some tests for a new spacer grid, the grid mechanical tests performed by ABB-CE, KWU and Westinghouse have been investigated. It is known that a static compression test, a dynamic impact test, and a grid spring characteristic test were commonly carried out by the vendors when a prototype spacer grid was developed. The static compression test is to measure the stresses on the strips as well as to obtain the grid stiffness. The dynamic impact test is to get some basic data for accident analysis such as impact stiffness, impact strength, and coefficient of restitution. Since each fuel vendor has his theory on an accident analysis, every vendor employs his particular method for the dynamic impact test. The dynamic impact test can be divided into two in accordance with the number of impact face, and the duration of impact pulse. One is an one-sided impact test and the other is an through-gird impact test. The duration of the impact pulse for the former is considerably shorter than the latter. Therefore, the grid can endure much higher load under the one-sided impact condition than under the through-grid impact condition. The grid spring characteristic test is to obtain a force versus deflection curve. This curve is very important in designing the spacer grid to provide fuel rods with a sound supports in core. (author). 18 tabs., 26 figs

  9. Modeling the mechanical and compression properties of polyamide/elastane knitted fabrics used in compression sportswear

    NARCIS (Netherlands)

    Maqsood, Muhammad

    2016-01-01

    A compression sportswear fabric should have excellent stretch and recovery properties in order to improve the performance of the sportsman. The objective of this study was to investigate the effect of elastane linear density and loop length on the stretch, recovery, and compression properties of the

  10. High temperature compression tests performed on doped fuels

    Energy Technology Data Exchange (ETDEWEB)

    Duguay, C.; Mocellin, A.; Dehaudt, P. [Commissariat a l`Energie Atomique, CEA Grenoble (France); Fantozzi, G. [INSA Lyon - GEMPPM, Villeurbanne (France)

    1997-12-31

    The use of additives of corundum structure M{sub 2}O{sub 3} (M=Cr, Al) is an effective way of promoting grain growth of uranium dioxide. The high-temperature compressive deformation of large-grained UO{sub 2} doped with these oxides has been investigated and compared with that of pure UO{sub 2} with a standard microstructure. Such doped fuels are expected to exhibit enhanced plasticity. Their use would therefore reduce the pellet-cladding mechanical interaction and thus improve the performances of the nuclear fuel. (orig.) 5 refs.

  11. High temperature compression tests performed on doped fuels

    International Nuclear Information System (INIS)

    Duguay, C.; Mocellin, A.; Dehaudt, P.; Fantozzi, G.

    1997-01-01

    The use of additives of corundum structure M 2 O 3 (M=Cr, Al) is an effective way of promoting grain growth of uranium dioxide. The high-temperature compressive deformation of large-grained UO 2 doped with these oxides has been investigated and compared with that of pure UO 2 with a standard microstructure. Such doped fuels are expected to exhibit enhanced plasticity. Their use would therefore reduce the pellet-cladding mechanical interaction and thus improve the performances of the nuclear fuel. (orig.)

  12. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  13. Testing Nonassociative Quantum Mechanics.

    Science.gov (United States)

    Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut

    2015-11-27

    The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.

  14. Test techniques for fracture mechanics testing

    International Nuclear Information System (INIS)

    Schwalbe, K.H.

    1980-01-01

    Test methods for fracture mechanics tests are described. Two groups of techniques are distinguished: Those for measurement of stable crack growth and those for determination of the loading parameters. (orig.) [de

  15. Acoustic Emission Monitoring of Lightning-Damaged CFRP Laminates during Compression-after-Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Yang; Shin, Jae Ha [Department of Mechanical Engineering, Inha University, Incheon (Korea, Republic of)

    2012-06-15

    Carbon-fiber reinforced plastic(CFRP) laminates made of nano-particle-coated carbon fibers and damaged by a simulated lightning strike were tested under compression-after-impact(CAI) mode, during which the damage progress due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. Conductive nano-particles were coated directly on the fibers, from which CFRP coupons were made. The coupon were subjected to the strikes with a high voltage/current impulse of 10-40 kA within a few . The effects of nano-particle coating and the degree of damage induced by the simulated lightning strikes on AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. The assessment during the CAI tests of damaged CFRP showed that AE monitoring appeared to be useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.

  16. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    Science.gov (United States)

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparison of changes in tidal volume associated with expiratory rib cage compression and expiratory abdominal compression in patients on prolonged mechanical ventilation

    OpenAIRE

    Morino, Akira; Shida, Masahiro; Tanaka, Masashi; Sato, Kimihiro; Seko, Toshiaki; Ito, Shunsuke; Ogawa, Shunichi; Takahashi, Naoaki

    2015-01-01

    [Purpose] This study was designed to compare and clarify the relationship between expiratory rib cage compression and expiratory abdominal compression in patients on prolonged mechanical ventilation, with a focus on tidal volume. [Subjects and Methods] The subjects were 18 patients on prolonged mechanical ventilation, who had undergone tracheostomy. Each patient received expiratory rib cage compression and expiratory abdominal compression; the order of implementation was randomized. Subjects ...

  18. Comparison of changes in tidal volume associated with expiratory rib cage compression and expiratory abdominal compression in patients on prolonged mechanical ventilation.

    Science.gov (United States)

    Morino, Akira; Shida, Masahiro; Tanaka, Masashi; Sato, Kimihiro; Seko, Toshiaki; Ito, Shunsuke; Ogawa, Shunichi; Takahashi, Naoaki

    2015-07-01

    [Purpose] This study was designed to compare and clarify the relationship between expiratory rib cage compression and expiratory abdominal compression in patients on prolonged mechanical ventilation, with a focus on tidal volume. [Subjects and Methods] The subjects were 18 patients on prolonged mechanical ventilation, who had undergone tracheostomy. Each patient received expiratory rib cage compression and expiratory abdominal compression; the order of implementation was randomized. Subjects were positioned in a 30° lateral recumbent position, and a 2-kgf compression was applied. For expiratory rib cage compression, the rib cage was compressed unilaterally; for expiratory abdominal compression, the area directly above the navel was compressed. Tidal volume values were the actual measured values divided by body weight. [Results] Tidal volume values were as follows: at rest, 7.2 ± 1.7 mL/kg; during expiratory rib cage compression, 8.3 ± 2.1 mL/kg; during expiratory abdominal compression, 9.1 ± 2.2 mL/kg. There was a significant difference between the tidal volume during expiratory abdominal compression and that at rest. The tidal volume in expiratory rib cage compression was strongly correlated with that in expiratory abdominal compression. [Conclusion] These results indicate that expiratory abdominal compression may be an effective alternative to the manual breathing assist procedure.

  19. Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression.

    Science.gov (United States)

    Cortes, Daniel H; Elliott, Dawn M

    2012-07-01

    The annulus fibrosus (AF) of the disk is a highly nonlinear and anisotropic material that undergoes a complex combination of loads in multiple orientations. The tensile mechanical behavior of AF in the lamellar plane is dominated by collagen fibers and has been accurately modeled using exponential functions. On the other hand, AF mechanics perpendicular to the lamella, in the radial direction, depend on the properties of the ground matrix with little to no fiber contribution. The ground matrix is mainly composed of proteoglycans (PG), which are negatively charged macromolecules that maintain the tissue hydration via osmotic pressure. The mechanical response of the ground matrix can be divided in the contribution of osmotic pressure and an elastic solid part known as extra-fibrillar matrix (EFM). Mechanical properties of the ground matrix have been measured using tensile and confined compression tests. However, EFM mechanics have not been measured directly. The objective of this study was to measure AF nonlinear mechanics of the EFM in tension and compression. To accomplish this, a combination of osmotic swelling and confined compression in disk radial direction, perpendicular to the lamella, was used. For this type of analysis, it was necessary to define a stress-free reference configuration. Thus, a brief analysis on residual stress in the disk and a procedure to estimate the reference configuration are presented. The proposed method was able to predict similar swelling deformations when using different loading protocols and models for the EFM, demonstrating its robustness. The stress-stretch curve of the EFM was linear in the range 0.9 disk and can be applied to differentiate between functional degeneration effects such as PG loss and stiffening due to cross-linking.

  20. Overview of the testing activities on ITER sub-scale pre-compression rings

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044 Frascati, Rome (Italy); Capobianchi, Mario; Crescenzi, Fabio; Massimi, Alberto; Mugnaini, Giampiero; Pizzuto, Aldo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, 00044 Frascati, Rome (Italy); Knaster, Juan [ITER Organisation, Route de Vinon sur Verdon, 13115, St. Paul lez Durance (France); Rajainmaki, Hannu [FUSION FOR ENERGY, Josep Pla no. 2, Torres Diagonal Litoral Edificio B3, 08019 Barcelona (Spain)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer ENEA developed a high strength glass fiber-epoxy composite for ITER pre-compression rings. Black-Right-Pointing-Pointer High UTS values were obtained at RT on linear specimens (2200 MPa) and on scaled ring mock-ups (1550 MPa). Black-Right-Pointing-Pointer Creep tests showed very low creep strain and creep rates. Black-Right-Pointing-Pointer Long term tests showed no significant stress relaxation on the ring mock-ups. - Abstract: After a first R and D and testing activity to develop and characterize by tensile and creep tests a high strength glass fiber-epoxy composite as reference material for the manufacture of ITER pre-compression rings, ENEA designed and manufactured a dedicated testing facility and different sub-scale composite ring mock-ups in order to characterize their mechanical properties. The paper reports the results of the overall testing activities performed during the last years on a total number of eleven sub-scale pre-compression ring mock-ups manufactured by winding S2 glass fibers on a diameter of 1 m (1/5 of the full scale) both by vacuum pressure epoxy impregnation (VPI) and filament wet winding techniques (WW). The first three rings were manufactured by ENEA Frascati thanks to a particular VPI technique; one of them was used as base composite material to manufacture different sets of specimens for shear, compression and non destructive tests (NDT). Then, five other mock-ups were manufactured following ENEA VPI process and three using WW technique by two different industrial companies. The rings were tested in ENEA Frascati in a dedicated hydraulic testing machine consisting of 18 radial actuators working in position control with a total load capability of 1000 tons. The complete testing campaign consisted of six ultimate tensile strength (UTS) tests and four stress relaxation (SR) tests. The tests demonstrated that the composite (S2 glass-epoxy) is a valid and viable solution for the ITER pre-compression

  1. Determination of the mechanical properties of solid and cellular polymeric dosage forms by diametral compression.

    Science.gov (United States)

    Blaesi, Aron H; Saka, Nannaji

    2016-07-25

    At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. Copyright © 2016. Published by Elsevier B.V.

  2. Numerical Simulations of the Kolsky Compression Bar Test

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The Kolsky compression bar, or split Hopkinson pressure bar (SHPB), is an ex- perimental apparatus used to obtain the stress-strain response of material specimens at strain rates in the order of 10 2 to 10 4 1/s. Its operation and associated data re- duction are based on principles of one-dimensional wave propagation in rods. Second order effects such as indentation of the bars by the specimen and wave dispersion in the bars, however, can significantly affect aspects of the measured material response. Finite element models of the experimental apparatus were used here to demonstrate these two effects. A procedure proposed by Safa and Gary (2010) to account for bar indentation was also evaluated and shown to improve the estimation of the strain in the bars significantly. The use of pulse shapers was also shown to alleviate the effects of wave dispersion. Combining the two can lead to more reliable results in Kolsky compression bar testing.

  3. Dynamic compressive properties and failure mechanism of glass fiber reinforced silica hydrogel

    International Nuclear Information System (INIS)

    Yang Jie; Li Shukui; Yan Lili; Huo Dongmei; Wang Fuchi

    2010-01-01

    The dynamic compressive properties of glass fiber reinforced silica (GFRS) hydrogel were investigated using a spilt Hopkinson pressure bar. Failure mechanism of GFRS hydrogel was studied by scanning electron microscopy (SEM). Result showed that dynamic compressive stresses were much higher than the quasi-static compressive stresses at the same strain. The dynamic compressive strength was directly proportional to the strain rate with same sample dimensions. The dynamic compressive strength was directly proportional to the sample basal area at same strain rate. Dynamic compressive failure strain was small. At high strain rates, glass fibers broke down and separated from the matrix, pores shrank rapidly. Failure resulted from the increase of lateral tensile stress in hydrogel under dynamic compression.

  4. Compressive and Flexural Tests on Adobe Samples Reinforced with Wire Mesh

    Science.gov (United States)

    Jokhio, G. A.; Al-Tawil, Y. M. Y.; Syed Mohsin, S. M.; Gul, Y.; Ramli, N. I.

    2018-03-01

    Adobe is an economical, naturally available, and environment friendly construction material that offers excellent thermal and sound insulations as well as indoor air quality. It is important to understand and enhance the mechanical properties of this material, where a high degree of variation is reported in the literature owing to lack of research and standardization in this field. The present paper focuses first on the understanding of mechanical behaviour of adobe subjected to compressive stresses as well as flexure and then on enhancing the same with the help of steel wire mesh as reinforcement. A total of 22 samples were tested out of which, 12 cube samples were tested for compressive strength, whereas 10 beams samples were tested for modulus of rupture. Half of the samples in each category were control samples i.e. without wire mesh reinforcement, whereas the remaining half were reinforced with a single layer of wire mesh per sample. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. The flexural response of adobe has also shown improvement with the addition of wire mesh reinforcement.

  5. A measurement method for piezoelectric material properties under longitudinal compressive stress–-a compression test method for thin piezoelectric materials

    International Nuclear Information System (INIS)

    Kang, Lae-Hyong; Lee, Dae-Oen; Han, Jae-Hung

    2011-01-01

    We introduce a new compression test method for piezoelectric materials to investigate changes in piezoelectric properties under the compressive stress condition. Until now, compression tests of piezoelectric materials have been generally conducted using bulky piezoelectric ceramics and pressure block. The conventional method using the pressure block for thin piezoelectric patches, which are used in unimorph or bimorph actuators, is prone to unwanted bending and buckling. In addition, due to the constrained boundaries at both ends, the observed piezoelectric behavior contains boundary effects. In order to avoid these problems, the proposed method employs two guide plates with initial longitudinal tensile stress. By removing the tensile stress after bonding a piezoelectric material between the guide layers, longitudinal compressive stress is induced in the piezoelectric layer. Using the compression test specimens, two important properties, which govern the actuation performance of the piezoelectric material, the piezoelectric strain coefficients and the elastic modulus, are measured to evaluate the effects of applied electric fields and re-poling. The results show that the piezoelectric strain coefficient d 31 increases and the elastic modulus decreases when high voltage is applied to PZT5A, and the compression in the longitudinal direction decreases the piezoelectric strain coefficient d 31 but does not affect the elastic modulus. We also found that the re-poling of the piezoelectric material increases the elastic modulus, but the piezoelectric strain coefficient d 31 is not changed much (slightly increased) by re-poling

  6. Study of mechanical compression of spin-polarized 3He gas

    International Nuclear Information System (INIS)

    Becker, J.; Heil, W.; Krug, B.; Leduc, M.; Meyerhoff, M.; Nacher, P.J.; Otten, E.W.; Prokscha, T.; Schearer, L.D.; Surkau, R.

    1994-01-01

    We have piloted mechanical compression of spinpolarized 3He by a titanium piston compressor. Questions of materials and design are discussed, followed by a thorough investigation of relaxation sources in the course of compression. The latter are traced mainly to regions with large surface to volume ratio, through which fast passage is demanded, therefore. We conclude from this feasibility study that polarized 3He may be compressed this way up to many bars without serious polarization losses. ((orig.))

  7. Testing Mechanisms for Philanthropic Behaviour

    NARCIS (Netherlands)

    Bekkers, R.H.F.P.; Wiepking, P.

    2011-01-01

    This special issue of the International Journal of Nonprofit and Voluntary Sector Marketing presents a collection of nine papers testing mechanisms that drive philanthropic behaviour. By testing one or more specific mechanisms that were derived from the philanthropic literature, the authors of the

  8. Parameters affecting the tidal volume during expiratory abdominal compression in patients with prolonged tracheostomy mechanical ventilation.

    Science.gov (United States)

    Morino, Akira; Shida, Masahiro; Tanaka, Masashi; Sato, Kimihiro; Seko, Toshiaki; Ito, Shunsuke; Ogawa, Shunichi; Takahashi, Naoaki

    2015-07-01

    [Purpose] The aim of this study was to clarify physical parameters affecting the tidal volume during expiratory abdominal compression in patients with prolonged tracheostomy mechanical ventilation. [Methods] Eighteen patients with prolonged mechanical ventilation were included in this study. Expiratory abdominal compression was performed on patients lying in a supine position. The abdomen above the navel was vertically compressed in synchronization with expiration and released with inspiration. We measured the tidal volume during expiratory abdominal compression. [Results] The mean tidal volume during expiratory abdominal compression was higher than that at rest (430.6 ± 127.1 mL vs. 344.0 ± 94.3 mL). The tidal volume during expiratory abdominal compression was correlated with weight, days of ventilator support, dynamic compliance and abdominal expansion. Stepwise multiple regression analysis revealed that weight (β = 0.499), dynamic compliance (β = 0.387), and abdominal expansion (β = 0.365) were factors contributing to the tidal volume during expiratory abdominal compression. [Conclusion] Expiratory abdominal compression increased the tidal volume in patients with prolonged tracheostomy mechanical ventilation. The tidal volume during expiratory abdominal compression was influenced by each of the pulmonary conditions and the physical characteristics.

  9. A high-compression electron gun for C6+ production: concept, simulations and mechanical design

    Science.gov (United States)

    Mertzig, Robert; Breitenfeldt, M.; Mathot, S.; Pitters, J.; Shornikov, A.; Wenander, F.

    2017-07-01

    In this paper we report on simulations and the mechanical design of a high-compression electron gun for an Electron Beam Ion Source (EBIS) dedicated for production of high intensity and high repetition rate pulses of bare carbon ions for injection into linac-based hadron therapy facilities. The gun is presently under construction at CERN to be retrofitted into the TwinEBIS test bench for experimental studies. We describe the design constraints, show results of numeric simulations and report on the mechanical design featuring several novel ideas. The reported design makes use of combined-function units with reduced number of mechanical joints that were carefully controlled and tuned during the manufacturing phase. The simulations addressed a wide range of topics including the influence of thermal effects, focusing optics, symmetry-breaking misalignments and injection into a full 5 T field.

  10. Optimizing the Physical, Mechanical and Hygrothermal Performance of Compressed Earth Bricks

    Directory of Open Access Journals (Sweden)

    Esther Obonyo

    2011-03-01

    Full Text Available The paper is based on findings from research that assesses the potential for enhancing the performance of compressed earth bricks. A set of experiments was carried out to assess the potential for enhancing the bricks’ physical, mechanical and hygrothermal performance through the design of an optimal stabilization strategy. Three different types of bricks were fabricated: soil-cement, soil-cement-lime, and soil-cement-fiber. The different types of bricks did not exhibit significant differences in performances when assessed on the basis of porosity, density, water absorption, and compressive strength. However, upon exposure to elevated moisture and temperature conditions, the soil-cement-fiber bricks had the highest residual strength (87%. The soil-cement and soil-cement-lime bricks had residual strength values of 48.19 and 46.20% respectively. These results suggest that, like any other cement-based material, compressed earth brick properties are affected by hydration-triggered chemical and structural changes occurring in the matrix that would be difficult to isolate using tests that focus on “bulk” changes. The discussion in this paper presents findings from a research effort directed at quantifying the specific changes through an analysis of the microstructure.

  11. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    Science.gov (United States)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  12. Mechanical compression of a fibrous membrane surrounding bone causes bone resorption

    NARCIS (Netherlands)

    van der Vis, H. M.; Aspenberg, P.; Tigchelaar, W.; van Noorden, C. J.

    1999-01-01

    Early micromovement and migration of a prosthesis of a hip or knee predicts late clinical loosening of the prosthesis. Such migration is likely to be associated with mechanical compression of the fibrous membrane interpositioned between bone and prosthesis during movement. Compression of the fibrous

  13. Behaviour of Japanese Quail Eggs Under Mechanical Compression

    Czech Academy of Sciences Publication Activity Database

    Buchar, J.; Nedomová, Š.; Trnka, Jan; Strnková, J.

    2015-01-01

    Roč. 18, č. 5 (2015), s. 1110-1118 ISSN 1094-2912 Institutional support: RVO:61388998 Keywords : quail egg * compression * rupture force Subject RIV: GM - Food Processing Impact factor: 1.586, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/10942912.2013.862634#.VNI0aC7z_PM

  14. Hydraulic Apparatus for Mechanical Testing of Nuts

    Science.gov (United States)

    Hinkel, Todd J.; Dean, Richard J.; Hacker, Scott C.; Harrington, Douglas W.; Salazar, Frank

    2004-01-01

    The figure depicts an apparatus for mechanical testing of nuts. In the original application for which the apparatus was developed, the nuts are of a frangible type designed for use with pyrotechnic devices in spacecraft applications in which there are requirements for rapid, one-time separations of structures that are bolted together. The apparatus can also be used to test nonfrangible nuts engaged without pyrotechnic devices. This apparatus was developed to replace prior testing systems that were extremely heavy and immobile and characterized by long setup times (of the order of an hour for each nut to be tested). This apparatus is mobile, and the setup for each test can now be completed in about five minutes. The apparatus can load a nut under test with a static axial force of as much as 6.8 x 10(exp 5) lb (3.0 MN) and a static moment of as much as 8.5 x 10(exp 4) lb in. (9.6 x 10(exp 3) N(raised dot)m) for a predetermined amount of time. In the case of a test of a frangible nut, the pyrotechnic devices can be exploded to break the nut while the load is applied, in which case the breakage of the nut relieves the load. The apparatus can be operated remotely for safety during an explosive test. The load-generating portion of the apparatus is driven by low-pressure compressed air; the remainder of the apparatus is driven by 110-Vac electricity. From its source, the compressed air is fed to the apparatus through a regulator and a manually operated valve. The regulated compressed air is fed to a pneumatically driven hydraulic pump, which pressurizes oil in a hydraulic cylinder, thereby causing a load to be applied via a hydraulic nut (not to be confused with the nut under test). During operation, the hydraulic pressure is correlated with the applied axial load, which is verified by use of a load cell. Prior to operation, one end of a test stud (which could be an ordinary threaded rod or bolt) is installed in the hydraulic nut. The other end of the test stud passes

  15. Mechanics of the Compression Wood Response: II. On the Location, Action, and Distribution of Compression Wood Formation.

    Science.gov (United States)

    Archer, R R; Wilson, B F

    1973-04-01

    A new method for simulation of cross-sectional growth provided detailed information on the location of normal wood and compression wood increments in two tilted white pine (Pinus strobus L.) leaders. These data were combined with data on stiffness, slope, and curvature changes over a 16-week period to make the mechanical analysis. The location of compression wood changed from the under side to a flank side and then to the upper side of the leader as the geotropic stimulus decreased, owing to compression wood action. Its location shifted back to a flank side when the direction of movement of the leader reversed. A model for this action, based on elongation strains, was developed and predicted the observed curvature changes with elongation strains of 0.3 to 0.5%, or a maximal compressive stress of 60 to 300 kilograms per square centimeter. After tilting, new wood formation was distributed so as to maintain consistent strain levels along the leaders in bending under gravitational loads. The computed effective elastic moduli were about the same for the two leaders throughout the season.

  16. Automatic compression adjusting mechanism for internal combustion engines

    Science.gov (United States)

    Akkerman, J. W. (Inventor)

    1983-01-01

    Means for controlling the compression pressure in an internal combustion engine having one or more cylinders and subject to widely varying power output requirements are provided. Received between each crank pin and connecting rod is an eccentric sleeve selectively capable of rotation about the crank pin and/or inside the rod and for latching with the rod to vary the effective length of the connecting rod and thereby the clearance volume of the engine. The eccentric normally rotates inside the connecting rod during the exhaust and intake strokes but a latching pawl carried by the eccentric is movable radially outwardly to latch the rod and eccentric together during the compression and power strokes. A control valve responds to intake manifold pressure to time the supply of hydraulic fluid to move the latch-pawl outwardly, varying the effective rod length to maintain a substantially optimum firing chamber pressure at all intake manifold pressures.

  17. The hardness test: a real mechanical test

    International Nuclear Information System (INIS)

    Rezakhanlou, R.

    1993-02-01

    During the service life, the mechanical properties of the PWR components change. It is necessary to determine precisely this evolution, but it is not always possible to draw a sample with the adequate size for the characterization. For this latter case we intend to calculate the stress-strain curve of a material from a hardness test results, because it is appropriate for testing on site and do not need any particular sample shape. This paper is the first bibliographical part of a larger study on the relation between the values measured during a hardness test (applied load, indentation diameter) and the mechanical properties of a solid obtained by a traction test. We have treated the problem within the general setting of two solids in contact. Thus, we expose general elastic, elasto-plastic and plastic models describing the indentation of a solid by a rigid indenter

  18. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K.H., E-mail: kaylayano@u.boisestate.edu [Boise State University, 1910 University Drive, Boise, ID, 83725 (United States); Swenson, M.J. [Boise State University, 1910 University Drive, Boise, ID, 83725 (United States); Wu, Y. [Boise State University, 1910 University Drive, Boise, ID, 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID, 83401 (United States); Wharry, J.P. [Boise State University, 1910 University Drive, Boise, ID, 83725 (United States); Purdue University, 400 Central Drive, West Lafayette, IN 47907 (United States)

    2017-01-15

    The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe{sup 2+} ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.

  19. Accelerated testing of space mechanisms

    Science.gov (United States)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  20. Particular mechanism for continuously varying the compression ratio for an internal combustion engine

    Science.gov (United States)

    Raţiu, S.; Cătălinoiu, R.; Alexa, V.; Miklos, I.; Cioată, V.

    2018-01-01

    Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. The paper proposes the presentation of a particular mechanism allowing the position of the top dead centre to be changed, while the position of the bottom dead centre remains fixed. The kinematics of the mechanism is studied and its trajectories are graphically represented for different positions of operation.

  1. Operability Test Report for 241-T compressed air system and heat pump

    International Nuclear Information System (INIS)

    Freeman, R.D.

    1995-02-01

    This Operability Test Report (OTR) documents the results of functional testing performed on the operating parameters of the 241-T-701 Compressed Air System. The System was successfully installed and tested per work package 2W-92-01172

  2. Reconstructed and analyzed X-ray computed tomography data of investment-cast and additive-manufactured aluminum foam for visualizing ligament failure mechanisms and regions of contact during a compression test

    Directory of Open Access Journals (Sweden)

    Kristoffer E. Matheson

    2018-02-01

    Full Text Available Three stochastic open-cell aluminum foam samples were incrementally compressed and imaged using X-ray Computed Tomography (CT. One of the samples was created using conventional investment casting methods and the other two were replicas of the same foam that were made using laser powder bed fusion. The reconstructed CT data were then examined in Paraview to identify and highlight the types of failure of individual ligaments. The accompanying sets of Paraview state files and STL files highlight the different ligament failure modes incrementally during compression for each foam. Ligament failure was classified as either “Fracture” (red or “Collapse” (blue. Also, regions of neighboring ligaments that came into contact that were not originally touching were colored yellow. For further interpretation and discussion of the data, please refer to Matheson et al. (2017 [1].

  3. Green and early age compressive strength of extruded cement mortar monitored with compression tests and ultrasonic techniques

    International Nuclear Information System (INIS)

    Voigt, Thomas; Malonn, Tim; Shah, Surendra P.

    2006-01-01

    Knowledge about the early age compressive strength development of cementitious materials is an important factor for the progress and safety of many construction projects. This paper uses cylindrical mortar specimens produced with a ram extruder to investigate the transition of the mortar from plastic and deformable to hardened state. In addition, wave transmission and reflection measurements with P- and S-waves were conducted to obtain further information about the microstructural changes during the setting and hardening process. The experiments have shown that uniaxial compression tests conducted on extruded mortar cylinders are a useful tool to evaluate the green strength as well as the initiation and further development of the compressive strength of the tested material. The propagation of P-waves was found to be indicative of the internal structure of the tested mortars as influenced, for example, by the addition of fine clay particles. S-waves used in transmission and reflection mode proved to be sensitive to the inter-particle bonding caused by the cement hydration and expressed by an increase in compressive strength

  4. Short bursts of cyclic mechanical compression modulate tissue formation in a 3D hybrid scaffold.

    Science.gov (United States)

    Brunelli, M; Perrault, C M; Lacroix, D

    2017-07-01

    Among the cues affecting cells behaviour, mechanical stimuli are known to have a key role in tissue formation and mineralization of bone cells. While soft scaffolds are better at mimicking the extracellular environment, they cannot withstand the high loads required to be efficient substitutes for bone in vivo. We propose a 3D hybrid scaffold combining the load-bearing capabilities of polycaprolactone (PCL) and the ECM-like chemistry of collagen gel to support the dynamic mechanical differentiation of human embryonic mesodermal progenitor cells (hES-MPs). In this study, hES-MPs were cultured in vitro and a BOSE Bioreactor was employed to induce cells differentiation by mechanical stimulation. From day 6, samples were compressed by applying a 5% strain ramp followed by peak-to-peak 1% strain sinewaves at 1Hz for 15min. Three different conditions were tested: unloaded (U), loaded from day 6 to day 10 (L1) and loaded as L1 and from day 16 to day 20 (L2). Cell viability, DNA content and osteocalcin expression were tested. Samples were further stained with 1% osmium tetroxide in order to investigate tissue growth and mineral deposition by micro-computed tomography (µCT). Tissue growth involved volumes either inside or outside samples at day 21 for L1, suggesting cyclic stimulation is a trigger for delayed proliferative response of cells. Cyclic load also had a role in the mineralization process preventing mineral deposition when applied at the early stage of culture. Conversely, cyclic load during the late stage of culture on pre-compressed samples induced mineral formation. This study shows that short bursts of compression applied at different stages of culture have contrasting effects on the ability of hES-MPs to induce tissue formation and mineral deposition. The results pave the way for a new approach using mechanical stimulation in the development of engineered in vitro tissue as replacement for large bone fractures. Copyright © 2017 Elsevier Ltd. All rights

  5. Size effects in fcc crystals during the high rate compression test

    International Nuclear Information System (INIS)

    Yaghoobi, Mohammadreza; Voyiadjis, George Z.

    2016-01-01

    The present work studies the different mechanisms of size effects in fcc metallic samples of confined volumes during high rate compression tests using large scale atomistic simulation. Different mechanisms of size effects, including the dislocation starvation, source exhaustion, and dislocation source length effect are investigated for pillars with different sizes. The results show that the controlling mechanisms of size effects depend only on the pillar size and not on the value of applied strain. Dislocation starvation is the governing mechanism for very small pillars, i.e. pillars with diameters less than 30 nm. Increasing the pillar size, the dislocation exhaustion mechanism becomes active and there is no more source-limited activations. Next, the average dislocation source length is obtained and compared for pillars with different sizes. The results show that in the case of high rate deformations, the source length does not depend on the sample size, and the related size effects mechanisms are not active anymore. Also, in the case of high rate deformations, there are no size effects for pristine pillars with the diameters larger than 135 nm. In other words, increasing the strain rate decreases the pillar size at which there is no more size effects in the absence of strain gradient. The governing mechanisms of plastic deformation at high strain rate experiments are also different from those of the quasi-static tests. First, the diameter in which the dislocation nucleation at the free surface becomes the dominant mechanism changes from around 200 nm–30 nm. Next, in the case of the pillars with larger diameters, the plastic deformation is governed by the cross-slip instead of the operation of truncated dislocation sources, which is dominant at slower rates of deformation. In order to study the effects of pillar initial structure on the controlling mechanism of size effects, an initial loading and unloading procedure is conducted on some samples prior to the

  6. Physical and Mechanical Properties of Compressed Earth Brick (CEB Containing Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Ali Noorwirdawati

    2016-01-01

    Full Text Available The use of brick in construction is commonly used, especially in the construction of buildings and infrastructure. Various studies have been conducted to produce methods that can increase the strength of brick at the same time can reduce the cost of manufacturing bricks. In order to reduce cost of manufacturing, one of the solution applied was by using waste as part of bricks production materials. In this study, sugarcane bagasse (SuCaB ash was used as a part of compressed earth brick (CEB by replacing the quantity of cement for SuCaB ash. The study focused on the physical and mechanical properties of CEB containing SuCaB and the optimum percentage of SuCaB ash as partial cement replacement in CEB. There are 4 types of percentages used; 0%, 20%, 25% and 30% from cement content. All mixed use the same water content of 30% of cement content by weight and the ratio for cement: laterite soil used was 1: 6. A total of 72 specimen with size of 100mm × 50mm × 40mm was produced. The test conducted were Initial Rate Absorption Test (IRA, Density Test, Dimensions Test, Compression Test and Water Absorption Test. From the experimental results, the optimum SuCaB ash percentage as cement replacement in CEB was 20%. It recorded the highest compressive strength of 16.23 MPa at 28 days while for the Initial Rate Absorption test, it lies within the range specified. The density of CEB containing 20% of SuCaB shows slightly lower value where it decreased for about 0.4% from the control specimen. From this study, it can be concluded that waste materials such as sugarcane bagasse can be used as part of construction materials. However, further study needs to be conducted such as on the energy consumption, chemical properties and others to enhance the knowledge on this area before it can be applied into the brick production.

  7. Multiaxial pedicle screw designs: static and dynamic mechanical testing.

    Science.gov (United States)

    Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R

    2004-02-15

    Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.

  8. Mirror Fusion Test Facility data compression study. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    This report is organized as follows. Discussions are given of three of the most important data compression methods that have been developed and studied over the years: coding, transforms, and redundancy reduction. (A brief discussion of how to combine and synthesize these ideas, and others, into a system is given). Specific ideas for compressing MFTF diagnostics and control data are developed. Listings and instructions for using FORTRAN programs that were compiled on the Livermore MFTF computers during the course of the study are also given

  9. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    OpenAIRE

    Jiří Witzany; Radek Zigler

    2016-01-01

    The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cra...

  10. Temperature dependence of dynamic behavior of commercially pure titanium by the compression test

    International Nuclear Information System (INIS)

    Lee, Su Min; Seo, Song Won; Park, Kyoung Joon; Min, Oak Key

    2003-01-01

    The mechanical behavior of a Commercially Pure Titanium (CP-Ti) is investigated at high temperature Split Hopkinson Pressure Bar (SHPB) compression test with high strain-rate. Tests are performed over a temperature range from room temperature to 1000 .deg. C with interval of 200 deg. C and a strain-rate range of 1900∼2000/sec. The true flow stress-true strain relations depending on temperature are achieved in these tests. For construction of constitutive equation from the true flow stress-true strain relation, parameters for the Johnson-Cook constitutive equation is determined. And the modified Johnson-Cook equation is used for investigation of behavior of flow stress in vicinity of recrystallization temperature. The modified Johnson-Cook constitutive equation is more suitable in expressing the dynamic behavior of a CP-Ti at high temperature, i.e. about recrystallization temperature

  11. Elastic-plastic mechanical constitutive description for rock salt triaxial compression

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1981-06-01

    A model for the time-independent part of the mechanical deformation of rock salt from the Waste Isolation Pilot Plant Site in southeastern New Mexico is presented. A recently published creep model was first used to correct conventional triaxial compression data for time-dependent deformation. The experimental data was from tests at a loading rate of approximately 11.9 N/s, 23 0 C, and confining pressures from 0 to -20.7 MPa. The corrected time-independent curves were then used to determine material constants for the model. Generalization to a three-dimensional plasticity-failure theory using a general constitutive relation proposed by Rudnicki and Rice was also performed. 7 figures, 3 tables

  12. Behaviour of (Th, U)O2 microspheres under compression tests and pelletization

    International Nuclear Information System (INIS)

    Ferreira, R.A.N.

    1982-12-01

    The interrelation between the behaviour of isolated microspheres in compression tests and the microstructure of sintered pellets obtained with these microspheres, was investigated. Various batches of (Th, 5 w/o U)O 2 microspheres were produced applying the so-called gel process. The production parameters were diversified both as to the composition and to the heat treatments. The resulting products underwent compression tests in an universal tension and compression machine as single microspheres and, as bulk material, were compacted and sintered. The results of the compression tests revealed the existence of two distinct classes of fragmentation behaviour. Each of these classes causes a distinct behaviour during the pelletization, too, resulting in fuel pellets with quite different microstructures. It was evidenced that there is a relationship between these differences in the microstructure and the behaviour of the single microspheres in the compression test. (Author) [pt

  13. Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive

    Directory of Open Access Journals (Sweden)

    Wei Yangang

    2016-01-01

    Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.

  14. Dynamic compressive mechanical response of a soft polymer material

    NARCIS (Netherlands)

    Fan, J.T.; Weerheijm, J.; Sluys, L.J.

    2015-01-01

    The dynamic mechanical behaviour of a soft polymer material (Clear Flex 75) was studied using a split Hopkinson pressure bar (SHPB) apparatus. Mechanical properties have been determined at moderate to high strain rates. Real time deformation and fracture were recorded using a high-speed camera.

  15. Mechanical/structural performance test method of a spacer grid

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho

    2000-06-01

    The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. In order to develop the spacer grid with the high mechanical performance, the mechanical and structural properties of the spacer grids must be extensively examined while designing it. In this report, the mechanical/structural test methods, i.e. the characteristic test of a spacer grid spring or dimple, static buckling test of a partial or full size spacer grid and dynamic impact test of them are described. The characteristic test of a spacer grid spring or dimple is accomplished with universal tensile test machine, a specimen is fixed with test fixture and then applied compressive load. The characteristic test data is saved at loading and unloading event. The static buckling test of a partial or full size spacer grid is executed with the same universal tensile testing machine, a specimen is fixed between cross-heads and then applied the compressive load. The buckling strength is decided the maximum strength at load vs. displacement curve. The dynamic impact test of a partial or full size spacer grid is performed with pendulum type impact machine and free fall shock test machine, a specimen is fixed with test fixture and then applied the impact load by impact hammer. Specially, the pendulum type impact test machine is also possible under the operating temperature because a furnace is separately attached with test machine

  16. An Alternative to the Conventional Tri-Axial Compression Test

    DEFF Research Database (Denmark)

    Nielsen, Morten Storgaard; Bay, Niels; Eriksen, Morten

    2006-01-01

    A new test for measurement of the mechanical properties of granular powders is proposed, consisting of upsetting the powder inside a metal tube. The radial pressure is found by correlating measurements of radial bulging of the tube with numerical analysis of tube bulging. Estimates of the error o...... on the determination of the radial pressure are given along with an evaluation of the coefficient of friction for a specific case. New data for the yield surfaces for BSCCO are given and found to be in good agreement with previously published data....

  17. Tension pneumothorax secondary to automatic mechanical compression decompression device.

    Science.gov (United States)

    Hutchings, A C; Darcy, K J; Cumberbatch, G L A

    2009-02-01

    The details are presented of the first published case of a tension pneumothorax induced by an automatic compression-decompression (ACD) device during cardiac arrest. An elderly patient collapsed with back pain and, on arrival of the crew, was in pulseless electrical activity (PEA) arrest. He was promptly intubated and correct placement of the endotracheal tube was confirmed by noting equal air entry bilaterally and the ACD device applied. On the way to the hospital he was noted to have absent breath sounds on the left without any change in the position of the endotracheal tube. Needle decompression of the left chest caused a hiss of air but the patient remained in PEA. Intercostal drain insertion in the emergency department released a large quantity of air from his left chest but without any change in his condition. Post-mortem examination revealed a ruptured abdominal aortic aneurysm as the cause of death. Multiple left rib fractures and a left lung laceration secondary to the use of the ACD device were also noted, although the pathologist felt that the tension pneumothorax had not contributed to the patient's death. It is recommended that a simple or tension pneumothorax should be considered when there is unilateral absence of breath sounds in addition to endobronchial intubation if an ACD device is being used.

  18. A Test Data Compression Scheme Based on Irrational Numbers Stored Coding

    Directory of Open Access Journals (Sweden)

    Hai-feng Wu

    2014-01-01

    Full Text Available Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS, is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.

  19. A test data compression scheme based on irrational numbers stored coding.

    Science.gov (United States)

    Wu, Hai-feng; Cheng, Yu-sheng; Zhan, Wen-fa; Cheng, Yi-fei; Wu, Qiong; Zhu, Shi-juan

    2014-01-01

    Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.

  20. Comment on "Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua".

    Science.gov (United States)

    Felderhof, B U

    2013-08-01

    Recently, a critical test of the Navier-Stokes-Fourier equations for compressible fluid continua was proposed [H. Brenner, Phys. Rev. E 87, 013014 (2013)]. It was shown that the equations of bivelocity hydrodynamics imply that a compressible fluid in an isolated rotating circular cylinder attains a nonequilibrium steady state with a nonuniform temperature increasing radially with distance from the axis. We demonstrate that statistical mechanical arguments, involving Hamiltonian dynamics and ergodicity due to irregularity of the wall, lead instead to a thermal equilibrium state with uniform temperature. This is the situation to be expected in experiment.

  1. Comparison of osmotic swelling influences on meniscal fibrocartilage and articular cartilage tissue mechanics in compression and shear.

    Science.gov (United States)

    Nguyen, An M; Levenston, Marc E

    2012-01-01

    Although the contribution of the circumferential collagen bundles to the anisotropic tensile stiffness of meniscal tissue has been well described, the implications of interactions between tissue components for other mechanical properties have not been as widely examined. This study compared the effects of the proteoglycan-associated osmotic swelling stress on meniscal fibrocartilage and articular cartilage (AC) mechanics by manipulating the osmotic environment and tissue compressive offset. Cylindrical samples were obtained from the menisci and AC of bovine stifles, equilibrated in phosphate-buffered saline solutions ranging from 0.1× to 10×, and tested in oscillatory torsional shear and unconfined compression. Biochemical analysis indicated that treatments and testing did not substantially alter tissue composition. Mechanical testing revealed tissue-specific responses to both increasing compressive offset and decreasing bath salinity. Most notably, reduced salinity dramatically increased the shear modulus of both axially and circumferentially oriented meniscal tissue explants to a much greater extent than for cartilage samples. Combined with previous studies, these findings suggest that meniscal proteoglycans have a distinct structural role, stabilizing, and stiffening the matrix surrounding the primary circumferential collagen bundles. Copyright © 2011 Orthopaedic Research Society.

  2. Effects of graded mechanical compression of rabbit sciatic nerve on nerve blood flow and electrophysiological properties.

    Science.gov (United States)

    Yayama, Takafumi; Kobayashi, Shigeru; Nakanishi, Yoshitaka; Uchida, Kenzo; Kokubo, Yasuo; Miyazaki, Tsuyoshi; Takeno, Kenichi; Awara, Kosuke; Mwaka, Erisa S; Iwamoto, Yukihide; Baba, Hisatoshi

    2010-04-01

    Entrapment neuropathy is a frequent clinical problem that can be caused by, among other factors, mechanical compression; however, exactly how a compressive force affects the peripheral nerves remains poorly understood. In this study, using a rabbit model of sciatic nerve injury (n=12), we evaluated the time-course of changes in intraneural blood flow, compound nerve action potentials, and functioning of the blood-nerve barrier during graded mechanical compression. Nerve injury was applied using a compressor equipped with a custom-made pressure transducer. Cessation of intraneural blood flow was noted at a mean compressive force of 0.457+/-0.022 N (+/-SEM), and the compound action potential became zero at 0.486+/-0.031 N. Marked extravasation of Evans blue albumin was noted after 20 min of intraneural ischemia. The functional changes induced by compression are likely due to intraneural edema, which could subsequently result in impairment of nerve function. These changes may be critical factors in the development of symptoms associated with nerve compression. (c) 2009 Elsevier Ltd. All rights reserved.

  3. Simulated effect on the compressive and shear mechanical properties of bionic integrated honeycomb plates.

    Science.gov (United States)

    He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun

    2015-05-01

    Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Triaxial Compression Testing of Multicomponent Geomaterials from Quartz-Poor (Syenitic Systems

    Directory of Open Access Journals (Sweden)

    Krmíček Lukáš

    2017-12-01

    Full Text Available This paper focuses on mafic microgranular enclaves enclosed in quartz-poor igneous rocks and their effect on strength properties of the rock massif. The study examines host rock–enclave multicomponent geomaterials from enclave-bearing syenitic rocks from the Třebíč Massif exposed in the Královec quarry near Jaroměřice nad Rokytnou in the Czech Republic. A series of laboratory tests were performed to describe strength properties of individual constituents of the multicomponent geomaterials. We mainly focused on triaxial compression tests, however, rebound hardness, uniaxial compressive strength and indirect tensile strength were determined as well. The obtained results indicate that enclaves and even the contact zones between the enclaves and host rocks do not have any negative influence on the rock strength. In contrast, enclaves represent “stress concentrators” within such multicomponent systems. Strength properties of various multicomponent geomaterials are practically an unexplored topic in the field of rocks mechanics and future studies are needed to establish a robust database describing the behaviour of such geocomposites.

  5. External chest compressions using a mechanical feedback device : cross-over simulation study.

    Science.gov (United States)

    Skorning, M; Derwall, M; Brokmann, J C; Rörtgen, D; Bergrath, S; Pflipsen, J; Beuerlein, S; Rossaint, R; Beckers, S K

    2011-08-01

    External chest compressions (ECC) are essential components of resuscitation and are usually performed without any adjuncts in professional healthcare. Even for healthcare professionals during in-hospital and out-of-hospital resuscitation poor performance in ECC has been reported in recent years. Although several stand-alone devices have been developed none has been implemented as a standard in patient care. The aim of this study was to examine if the use of a mechanical device providing visual feedback and audible assistance during ECC improves performance of healthcare professionals following minimal and simplified instructions. In a prospective, randomized cross-over study 81 healthcare professionals performed ECC for 3 min (in the assumed setting of a secured airway) twice on a manikin (Skillreporter ResusciAnne®, with PC-Skillreporting System Version 1.3.0, Laerdal, Stavanger, Norway) in a mock cardiac arrest scenario. Group 1 (n=40) performed ECC with the device first followed by classic ECC and group 2 (n=41) in the opposite order. Minimal instructions were standardized and provided by video instruction (1 min 38 s). Endpoints were achievement of a mean compression rate between 90 and 110/min and a mean compression depth of 40-50 mm. In addition participants had to answer questionnaires about demographic data, professional experience and recent recommendations for ECC as well as their impression of the device concerning the ease of use and their personal level of confidence. Data were analyzed for group-related and inter-group differences using SAS (Version 9.1.3, SAS Institute, Cary, NC). A total of 81 healthcare professionals regularly involved in resuscitation attempts in pre-hospital or in-hospital settings took part in the study with no differences between the groups: females 35.8% (n=52), emergency medical technicians 32.1% (n=26), anesthesia nurses 32.1% (n=26), physicians (anesthesiology) 45% (n=29). In group 1 33 out of 40 (82.5%; 99.7±4

  6. Mechanical vapor compression refrigeration for low temperature industrial applications today

    International Nuclear Information System (INIS)

    Ferguson, J.E.

    1987-01-01

    If the super conductor industry settles out at a temperature of -100 0 F or above, mechanical refrigeration will be vying for the cooling business. Today there very definitely is a break point in the application of equipment at approximately -120 0 F or 189 0 K. Other technologies are generally utilized below this level. However, with market potential comes invention and breakthroughs in refrigeration can also occur. Today standard refrigeration systems are cost effective, reliable and produced in the millions for high temperature applications of +10 0 F to +40 0 F evaporator temperature. Lower temperatures require additional hardware, consume additional power and are produced today in limited quantities for special applications

  7. Mechanical behavior of New Mexico rock salt in triaxial compression up to 2000C

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Hannum, D.W.

    1978-01-01

    An extensive experimental program is being conducted to determine the mechanical behavior of New Mexico rock salt in support of the structural design of a Radioactive Waste Isolation Pilot Plant (WIPP). In this initial report, three groups of tests are discussed to identify the relative and site-specific importance of deviator stress, confining pressure (mean stress), temperature, time (loading rate), and stress path. The three groups of experiments consist of (1) hydrostatic loading, (2) conventional triaxial compression tests (sigma 1 > sigma 2 = sigma 3 = const.), and (3) variable stress path tests including experiments at approximately constant sigma 1 and at constant mean stress. All data were generated on 100 mm diameter specimens. The rock salt exhibited nonlinear response under all loading conditions, practically zero initial elastic limit and an apparent inseparability of permanent deformations into time-independent and time-dependent components. Pressure and temperature did not alter the elastic constants but affected the principal strain ratio, the ratio volumetric strain/shear strain, rock salt ductility, and the ultimate stress. In particular, low pressure and temperature permitted pronounced dilatancy and loss in load bearing ability. Under such conditions the volumetric strains reach sizable fractions of the shear strains. Pressure remained important even at high temperature because it influenced the rate of shearing. Load path and stress history may be significant under deviatoric loading conditions and for large variations in pressure

  8. Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Je Ha; Kwon, Oh Yang; Seo, Seong Wook [Inha University, Incheon (Korea, Republic of)

    2011-02-15

    Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10{approx}40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terns of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes

  9. Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes

    International Nuclear Information System (INIS)

    Shin, Je Ha; Kwon, Oh Yang; Seo, Seong Wook

    2011-01-01

    Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10∼40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terns of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes

  10. Compressed collagen constructs with optimized mechanical properties and cell interactions for tissue engineering applications

    DEFF Research Database (Denmark)

    Ajalloueian, Fatemeh; Nikogeorgos, Nikolaos; Ajalloueian, Ali

    2018-01-01

    In this study, we are introducing a simple, fast and reliable add-in to the technique of plastic compression (PC) to obtain collagen sheets with decreased fibrillar densities, representing improved cell-interactions and mechanical properties. Collagen hydrogels with different initial concentratio...

  11. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing

    Science.gov (United States)

    Yin, Peng-Fei; Yang, Sheng-Qi

    2018-05-01

    As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.

  12. Mechanical test of the model coil wound with large conductor

    International Nuclear Information System (INIS)

    Hiue, Hisaaki; Sugimoto, Makoto; Nakajima, Hideo; Yasukawa, Yukio; Yoshida, Kiyoshi; Hasegawa, Mitsuru; Ito, Ikuo; Konno, Masayuki.

    1992-09-01

    The high rigidity and strength of the winding pack are required to realize the large superconducting magnet for the fusion reactor. This paper describes mechanical tests concerning the rigidity of the winding pack. Samples were prepared to evaluate the adhesive strength between conductors and insulators. Epoxy and Bismaleimide-Triazine resin (BT resin) were used as the conductor insulator. The stainless steel (SS) 304 bars, whose surface was treated mechanically and chemically, was applied to the modeled conductor. The model coil was would with the model conductors covered with the insulator by grand insulator. A winding model combining 3 x 3 conductors was produced for measuring shearing rigidity. The sample was loaded with pure shearing force at the LN 2 temperature. The bar winding sample, by 8 x 6 conductors, was measured the bending rigidity. These three point bending tests were carried out at room temperature. The pancake winding sample was loaded with compressive forces to measure compressive rigidity of winding. (author)

  13. Deformation behavior of human dentin in liquid nitrogen: a diametral compression test.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-09-01

    Contribution of the collagen fibers into the plasticity of human dentin is considered. Mechanical testing of dentin at low temperature allows excluding the plastic response of its organic matrix. Therefore, deformation and fracture behavior of the dentin samples under diametral compression at room temperature and liquid nitrogen temperature are compared. At 77K dentin behaves like almost brittle material: it is deformed exclusively in the elastic regime and it fails due to growth of the sole crack. On the contrary, dentin demonstrates the ductile response at 300K. There are both elastic and plastic contributions in the deformation of dentin samples. Multiple cracking and crack tip blunting precede the failure of samples. Organic phase plays an important role in fracture of dentin: plasticity of the collagen fibers could inhibit the crack growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.

    Science.gov (United States)

    Espinoza Orías, Alejandro A; Malhotra, Neil R; Elliott, Dawn M

    2009-03-01

    Rat models with altered loading are used to study disc degeneration and mechano-transduction. Given the prominent role of mechanics in disc function and degeneration, it is critical to measure mechanical behavior to evaluate changes after model interventions. Axial compression mechanics of the rat disc are representative of the human disc when normalized by geometry, and differences between the lumbar and caudal disc have been quantified in axial compression. No study has quantified rat disc torsional mechanics. Compare the torsional mechanical behavior of rat lumbar and caudal discs, determine the contribution of combined axial load on torsional mechanics, and compare the torsional properties of rat discs to human lumbar discs. Cadaveric biomechanical study. Cyclic torsion without compressive load followed by cyclic torsion with a fixed compressive load was applied to rat lumbar and caudal disc levels. The apparent torsional modulus was higher in the lumbar region than in the caudal region: 0.081+/-0.026 (MPa/degrees, mean+/-SD) for lumbar axially loaded; 0.066+/-0.028 for caudal axially loaded; 0.091+/-0.033 for lumbar in pure torsion; and 0.056+/-0.035 for caudal in pure torsion. These values were similar to human disc properties reported in the literature ranging from 0.024 to 0.21 MPa/degrees. Use of the caudal disc as a model may be appropriate if the mechanical focus is within the linear region of the loading regime. These results provide support for use of this animal model in basic science studies with respect to torsional mechanics.

  15. Comparison of mechanical compressive properties of commercial and autologous fibrin glues for tissue engineering applications.

    Science.gov (United States)

    Cravens, Matthew G; Behn, Anthony W; Dragoo, Jason L

    2017-11-01

    Fibrin glues are widely used in orthopedic surgery as adhesives and hemostatic agents. We evaluated the compressive properties of selected fibrin glues in order to identify which are appropriate for tissue regeneration applications subject to compression. Uniaxial unconfined compression tests were performed on fibrin gels prepared from commercial and autologous products: (1) Evicel (Ethicon), (2) Tisseel (Baxter), (3) Angel (Arthrex), and (4) ProPlaz (Biorich). Cyclic loads were applied from 0 to 30% strain for 100cycles at 0.5Hz. Following cyclic testing, specimens were subjected to ramp displacement of 1% strain per second to 80% strain. Throughout cyclic loading, Evicel and Tisseel deformed (shortened) less than Angel at all but one time point, and deformed less than ProPlaz at cycles 10 and 20. The dynamic moduli, peak stress, and strain energy were significantly greater in Tisseel than all other groups. Evicel displayed significantly greater dynamic moduli, peak stress, and strain energy than Angel and ProPlaz. Following cyclic testing, Tisseel and Evicel were significantly less deformed than Angel. No specimens exhibited gross failure during ramp loading to 80% strain. Ramp loading trends mirrored those of cyclic loading. The tested commercial glues were significantly more resistant to compression than the autologous products. The compressive properties of Tisseel were approximately twice those of Evicel. All preparations displayed moduli multiple orders of magnitude less than that of native articular cartilage. We conclude that in knee surgeries requiring fibrin glue to undergo compression of daily activity, commercial products are preferable to autologous preparations from platelet-poor plasma, though both will deform significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparative assessment of intrinsic mechanical stimuli on knee cartilage and compressed agarose constructs.

    Science.gov (United States)

    Completo, A; Bandeiras, C; Fonseca, F

    2017-06-01

    A well-established cue for improving the properties of tissue-engineered cartilage is mechanical stimulation. However, the explicit ranges of mechanical stimuli that correspond to favorable metabolic outcomes are elusive. Usually, these outcomes have only been associated with the applied strain and frequency, an oversimplification that can hide the fundamental relationship between the intrinsic mechanical stimuli and the metabolic outcomes. This highlights two important key issues: the firstly is related to the evaluation of the intrinsic mechanical stimuli of native cartilage; the second, assuming that the intrinsic mechanical stimuli will be important, deals with the ability to replicate them on the tissue-engineered constructs. This study quantifies and compares the volume of cartilage and agarose subjected to a given magnitude range of each intrinsic mechanical stimulus, through a numerical simulation of a patient-specific knee model coupled with experimental data of contact during the stance phase of gait, and agarose constructs under direct-dynamic compression. The results suggest that direct compression loading needs to be parameterized with time-dependence during the initial culture period in order to better reproduce each one of the intrinsic mechanical stimuli developed in the patient-specific cartilage. A loading regime which combines time periods of low compressive strain (5%) and frequency (0.5Hz), in order to approach the maximal principal strain and fluid velocity stimulus of the patient-specific cartilage, with time periods of high compressive strain (20%) and frequency (3Hz), in order to approach the pore pressure values, may be advantageous relatively to a single loading regime throughout the full culture period. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Compression of pulsed electron beams for material tests

    Science.gov (United States)

    Metel, Alexander S.

    2018-03-01

    In order to strengthen the surface of machine parts and investigate behavior of their materials exposed to highly dense energy fluxes an electron gun has been developed, which produces the pulsed beams of electrons with the energy up to 300 keV and the current up to 250 A at the pulse width of 100-200 µs. Electrons are extracted into the accelerating gap from the hollow cathode glow discharge plasma through a flat or a spherical grid. The flat grid produces 16-cm-diameter beams with the density of transported per one pulse energy not exceeding 15 J·cm-2, which is not enough even for the surface hardening. The spherical grid enables compression of the beams and regulation of the energy density from 15 J·cm-2 up to 15 kJ·cm-2, thus allowing hardening, pulsed melting of the machine part surface with the further high-speed recrystallization as well as an explosive ablation of the surface layer.

  18. Operability Test Report for 241-U Compressed Air System and heat pump

    International Nuclear Information System (INIS)

    Rensink, G.E.

    1995-01-01

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The system was upgraded. The operability test showed that the system operates within its intended design parameters. System performance was monitored, recorded, and used to identify areas of concern. Exceptions to the OTP and additional items for safe system performance were minimal and have been resolved; the air system is ready for Operation's use

  19. Operability test procedure for 241-U compressed air system and heat pump

    International Nuclear Information System (INIS)

    Freeman, R.D.

    1994-01-01

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The supply piping to the 241-U Tank Farm is not included in the modification. Modifications to the 241-U-701 compressed air system include installation of a 15 HP Reciprocating Air Compressor, Ingersoll-Rand Model 10T3NLM-E15; an air dryer, Hankinson, Model DH-45; and miscellaneous system equipment and piping (valves, filters, etc.) to meet the design. A newly installed heat pump allows the compressor to operate within an enclosed relatively dust free atmosphere and keeps the compressor room within a standard acceptable temperature range, which makes possible efficient compressor operation, reduces maintenance, and maximizes compressor operating life. This document is an Operability Test Procedure (OTP) which will further verify (in addition to the Acceptance Test Procedure) that the 241-U-701 compressed air system and heat pump operate within their intended design parameters. The activities defined in this OTP will be performed to ensure the performance of the new compressed air system will be adequate, reliable and efficient. Completion of this OTP and sign off of the OTP Acceptance of Test Results is necessary for turnover of the compressed air system from Engineering to Operations

  20. Compression fatigue of Wind Turbine Blade composites materials and damage mechanisms

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Brøndsted, Povl

    According to the new IEC 61400-5-rev0 recommendation, which is under preparation it will be required to qualify wind turbine blade (WTB) composite materials in fatigue at R=0.1, R=-1, and R=10. As a minimum fatigue at R=-1 is required. This is a consequence of the ever-growing blades, where gravity...... driven edgewise bending introduces significant fully reversed cycling at the leading and trailing edges. Therefore, material manufacturer and WTB manufacturer demand test results of highest reliability and reproducibility. However, these equirements for compression-compression and tensioncompression...

  1. Triaxial extensometer for volumetric strain measurement in a hydro-compression loading test for foam materials

    International Nuclear Information System (INIS)

    Feng, Bo; Xu, Ming-long; Zhao, Tian-fei; Zhang, Zhi-jun; Lu, Tian-jian

    2010-01-01

    A new strain gauge-based triaxial extensometer (radial extensometers x, y and axial extensometer z) is presented to improve the volumetric strain measurement in a hydro-compression loading test for foam materials. By the triaxial extensometer, triaxial deformations of the foam specimen can be measured directly, from which the volumetric strain is determined. Sensitivities of the triaxial extensometer are predicted using a finite-element model, and verified through experimental calibrations. The axial extensometer is validated by conducting a uniaxial compression test in aluminium foam and comparing deformation measured by the axial extensometer to that by the advanced optical 3D deformation analysis system ARAMIS; the result from the axial extensometer agrees well with that from ARAMIS. A new modus of two-wire measurement and transmission in a hydrostatic environment is developed to avoid the punching and lead sealing techniques on the pressure vessel for the hydro-compression test. The effect of hydrostatic pressure on the triaxial extensometer is determined through an experimental test. An application in an aluminium foam hydrostatic compression test shows that the triaxial extensometer is effective for volumetric strain measurement in a hydro-compression loading test for foam materials

  2. Mechanical characterization of diesel soot nanoparticles: in situ compression in a transmission electron microscope and simulations

    Science.gov (United States)

    Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup

    2018-02-01

    Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.

  3. Investigation of the Deformation Mechanism of a near β Titanium Alloy through Isothermal Compression

    Directory of Open Access Journals (Sweden)

    Jie Wu

    2017-11-01

    Full Text Available This study investigated the hot deformation behavior of Ti-4Al-1Sn-2Zr-5Mo-8V-2.5Cr alloy through isothermal compression tests at temperatures from 780 to 930 °C with strain rates ranging from 0.001 to 1 s−1. The flow stress decreases with a decreased strain rate and an increased temperature. A constitutive equation was established for this alloy and the dependence of activation energy on temperature and strain rate is discussed. We further proposed a processing map using the dynamic materials model. On the processing map various domains of flow stability and flow instability can be identified. The deformation mechanisms associated with flow stability regions are mainly dynamic recrystallization (DRX and dynamic recovery (DRV. The flow instability is manifested in the form of the band of flow localizations. The optimum processing conditions are suggested such that the temperature range is from 780 to 880 °C and the strain rate ranges from 0.001 to 0.01 s−1.

  4. Effect of Fe-Content on the Mechanical Properties of Recycled Al Alloys during Hot Compression

    Directory of Open Access Journals (Sweden)

    Hongzhou Lu

    2017-07-01

    Full Text Available It is unavoidable that Fe impurities will be mixed into Al alloys during recycling of automotive aluminum parts, and the Fe content has a significant effect on the mechanical properties of the recycled Al alloys. In this work, hot compression tests of two Fe-containing Al alloys were carried out at elevated temperatures within a wide strain rate range from 0.01 s−1 to 10 s−1. The effect of Fe content on the peak stress of the stress vs. strain curves, strain rate sensitivity and activation energy for dynamic recrystallization are analyzed. Results show that the recycled Al alloy containing 0.5 wt % Fe exhibits higher peak stresses and larger activation energy than the recycled Al alloy containing 0.1 wt % Fe, which results from the fact that there are more dispersed AlMgFeSi and/or AlFeSi precipitates in the recycled Al alloy containing 0.5 wt % Fe as confirmed by SEM observation and energy spectrum analysis. It is also shown that the Fe content has little effect on the strain rate sensitivity of the recycled Al alloys.

  5. Mesoscopic analyses of porous concrete under static compression and drop weight impact tests

    DEFF Research Database (Denmark)

    Agar Ozbek, A.S.; Pedersen, R.R.; Weerheijm, J.

    2008-01-01

    was considered as a four-phase material incorporating aggregates, bulk cement paste, interfacial transition zones and meso-size air pores. The stress-displacement relations obtained from static compression tests, the stress values, and the corresponding damage levels provided by the drop weight impact tests were......The failure process in highly porous concrete was analyzed experimentally and numerically. A triaxial visco-plastic damage model and a mesoscale representation of the material composition were considered to reproduce static compression and drop weight impact tests. In the mesoscopic model, concrete...

  6. Reliability of using nondestructive tests to estimate compressive strength of building stones and bricks

    Directory of Open Access Journals (Sweden)

    Ali Abd Elhakam Aliabdo

    2012-09-01

    Full Text Available This study aims to investigate the relationships between Schmidt hardness rebound number (RN and ultrasonic pulse velocity (UPV versus compressive strength (fc of stones and bricks. Four types of rocks (marble, pink lime stone, white lime stone and basalt and two types of burned bricks and lime-sand bricks were studied. Linear and non-linear models were proposed. High correlations were found between RN and UPV versus compressive strength. Validation of proposed models was assessed using other specimens for each material. Linear models for each material showed good correlations than non-linear models. General model between RN and compressive strength of tested stones and bricks showed a high correlation with regression coefficient R2 value of 0.94. Estimation of compressive strength for the studied stones and bricks using their rebound number and ultrasonic pulse velocity in a combined method was generally more reliable than using rebound number or ultrasonic pulse velocity only.

  7. Compressive response and deformation mechanisms of vertically aligned helical carbon nanotube forests

    Science.gov (United States)

    Scheffer, V. C.; Thevamaran, R.; Coluci, V. R.

    2018-01-01

    We study the dynamic compressive response of vertically aligned helical carbon nanotube forests using a mesoscale model. To describe the compressive response, the model includes the helical geometry of the constituent coils, the entanglement between neighboring coils, and the sideway interactions among coils. Coarse-grained simulations show forest densification and stress localization, which are caused by different deformation mechanisms such as coil packing, buckling, and crushing. We find that these mechanisms depend on the initial overlap between coils and lead to a nonlinear stress-strain behavior that agrees with recent impact experiments. The nonlinear stress-strain behavior was shown to be composed of an initial linear increase of stress in strain followed by an exponential growth. These regimes are an outcome of the characteristics of both the individual coils and the entangled morphology of the forests.

  8. Microstructural evolution of uranium dioxide following compression creep tests: An EBSD and image analysis study

    Energy Technology Data Exchange (ETDEWEB)

    Iltis, X., E-mail: xaviere.iltis@cea.fr [CEA, DEN, DEC, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Gey, N. [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 1 (France); Cagna, C. [CEA, DEN, DEC, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Hazotte, A. [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 1 (France); Sornay, Ph. [CEA, DEN, DEC, Cadarache, 13108 Saint-Paul-Lez-Durance (France)

    2015-01-15

    Highlights: • Image analysis and EBSD are performed on creep tested UO{sub 2} pellets. • Development of intergranular voids, with increasing strain, is quantified. • EBSD evidences a sub-structuration process within the grains and quantifies it. • Creep mechanisms are discussed on the basis of these results. - Abstract: Sintered UO{sub 2} pellets with relatively large grains (∼25 μm) are tested at 1500 °C under a compressive stress of 50 MPa, at different deformation levels up to 12%. Electron Back Scattered Diffraction (EBSD) is used to follow the evolution, with deformation, of grains (size, shape, orientation) and sub-grains. Image analyses of SEM images are performed to characterize emergence of a population of micron size voids. For the considered microstructure and test conditions, the results show that the deformation process of UO{sub 2} globally corresponds to grain boundary sliding, partly accommodated by a dislocational creep within the grains, leading to a highly sub-structured state.

  9. Deformation mechanisms in Ti/TiN multilayer under compressive loading

    International Nuclear Information System (INIS)

    Yang, Wei; Ayoub, Georges; Salehinia, Iman; Mansoor, Bilal; Zbib, Hussein

    2017-01-01

    The promising mechanical, physical and chemical properties of nano-scale metal/ceramic multilayers (MCMs) are of high interest for extreme environment applications. Understanding the plastic deformation mechanisms and the variables affecting those properties is therefore essential. The interface characteristics and the plastic deformation mechanisms under compressive loading in a Ti/TiN multilayer with a semi-coherent interface are numerically investigated. The interface structure of the Ti/TiN interface and the interface misfit dislocation were characterized using molecular dynamic simulations combined with atomically informed Frank-Bilby method. Three possible atomic stacking interface structures are identified according to the crystallographic analysis of the interface. Upon relaxation, large interface areas are occupied with the energetically stable configuration. Furthermore, the higher energy stacking are transformed into misfit dislocations or dislocation nodes. The molecular dynamic compressive stress strain response of the Ti/TiN multilayers exhibited three distinctive peaks. The first peak was generated by the dislocation dissociation of perfect dislocation into pairs of partials dislocation around extended nodes region at the interface. Upon further compression the second peak, identified as the first yielding, resulted from the activation of pyramidal slip planes in the Ti layer. Finally, a third peak identified as the second yielding, occurred when dislocation nucleated/transmitted in/into the TiN layer.

  10. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  11. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression

    International Nuclear Information System (INIS)

    Wei, Q.; Jiao, T.; Ramesh, K.T.; Ma, E.; Kecskes, L.J.; Magness, L.; Dowding, R.; Kazykhanov, V.U.; Valiev, R.Z.

    2006-01-01

    We have systematically investigated the quasi-static and dynamic mechanical behavior (especially dynamic failure) of ultra-fine grained (UFG) tungsten (W) under uniaxial compression. The starting material is of commercial purity and large grain size. We utilized severe plastic deformation to achieve the ultrafine microstructure characterized by grains and subgrains with sizes of ∼500 nm, as identified by transmission electron microscopy. Results of quasi-static compression show that the UFG W behaves in an elastic-nearly perfect plastic manner (i.e., vanishing strain hardening), with its flow stress approaching 2 GPa, close to twice that of conventional coarse grain W. Post-mortem examinations of the quasi-statically loaded samples show no evidence of cracking, in sharp contrast to the behavior of conventional W (where axial cracking is usually observed). Under uniaxial dynamic compression (strain rate ∼10 3 s -1 ), the true stress-true strain curves of the UFG W exhibit significant flow softening, and the peak stress is ∼3 GPa. Furthermore, the strain rate sensitivity of the UFG W is reduced to half the value of the conventional W. Both in situ high-speed photography and post-mortem examinations reveal shear localization and as a consequence, cracking of the UFG W under dynamic uniaxial compression. These observations are consistent with recent observations on other body-centered cubic metals with nanocrystalline or ultrafine microstructures. The experimental results are discussed using existing models for adiabatic shear localization in metals

  12. Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale

    Science.gov (United States)

    Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak

    2016-09-01

    Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.

  13. Durability of Compressed Earth Bricks: Assessing Erosion Resistance Using the Modified Spray Testing

    Directory of Open Access Journals (Sweden)

    Malarvizhi Baskaran

    2010-11-01

    Full Text Available The discussion in this paper is part of research directed at establishing optimal stabilization strategy for compressed bricks. The deployment context for the use of the compressed bricks was Dar es Salaam (Tanzania where manually fabricated bricks are increasingly being used in low cost housing units. This discussion specifically focuses on strategies that can be used to counter deterioration due to wind-driven rain erosion. The impact of using cement, lime, fiber and a commercial stabilizing fluid was assessed. Factory-produced bricks were used for benchmarking. The durability of the bricks was assessed using the “modified” Bulletin 5 Spray Test. The different brick specimens were sprayed with water at 2.07 MPa and 4.14 MPa over one-hour time period while measuring the depth of erosion every 15 minutes. Factory-produced bricks hardly eroded at both 2.07 MPa and 4.14 MPa pressure levels. The maximum depth of erosion for Soil-Cement bricks ranged from a maximum of 0.5 mm at 2.07 MPa water pressure to 0.8 mm at 4.14 MPa. The maximum and minimum depths of erosion for Soil-Cement-Lime bricks were 25mm and 17 mm respectively. The inclusion of natural fiber in the bricks resulted in a sharp increase of the erosion depth to a maximum of 40 mm at 2.07 MPa and 55 mm at 4.14 Mpa. As the use of natural fibers and lime enhances some physio-mechanical properties, further research is necessary to determine ways of achieving this goal while maintaining acceptable levels of erosion resistance.

  14. Cure behavior, compression set and dynamic mechanical properties of EPDM/NBR blend vulcanizates

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.Y. [Pukyong National Univeristy, Pusan (Korea)

    2001-03-01

    The ethylene propylene diene terpolymer (EPDM) blends with acrylonitrile butadiene rubber (NBR) were prepared by mechanical mixing method. Mooney viscosity, cure behaviors, compression set and dynamic mechanical properties were subsequently examined. Dynamic characteristics of the entire blends determined from a Rheovibron generally showed two glass transitions (T{sub g}'s), -43 deg. C and -4 deg. C for NBR and EPDM, respectively. The tan {delta} peak monotonically shifted toward the higher temperature with increasing NBR content. It was also found that the optimum cure time was significantly decreased with loading of NBR. (author). 13 refs., 4 tabs., 9 figs.

  15. Structure and Mechanical Properties of Powdered Quasicrystalline Al94Fe3Cr3 Alloy Consolidated by Quasi-Hydrostatic Compression

    Directory of Open Access Journals (Sweden)

    Alexandra I. Yurkova

    2017-10-01

    Full Text Available Background. Quasicrystalline Al-based alloys belong to the class of the state-of-the-art metal materials for the application in light engineering constructions, primarily in aviation and the motor transport industry. These materials are commonly made in the form of powders, which is due to the high productivity of powder metallurgy methods. Therefore, the powder consolidation methods are of great importance in the production of products, which is associated with certain difficulties, and consequently, they should be chosen considering not only the quasicrystals’ propensity to brittle fracture but also the metastable nature of the quasicrystalline phases. Certain possibilities in this direction are provided by the quasi-hydrostatic compression method, which can provide a non-trivial combination of strength and ductility properties of materials. Objective. The aim of the paper is to investigate the effect of high pressure under quasi-hydrostatic compression on the formation of structure, phase composition and mechanical properties of the quasicrystalline Al94Fe3Cr3 alloy. Methods. 40 μm Al94Fe3Cr3 alloy quasicrystalline powder was fabricated by water-atomisation technique. Consolidation of quasicrystalline powder was performed by quasi-hydrostatic compression technique in high-pressure cells at room temperature at a pressure of 2.5, 4, and 6 hPa. Structure, phase composition and mechanical characteristics of Al94Fe3Cr3 alloy were performed by scanning electron microscopy (SEM, X-ray diffraction andmicromechanical tests. Results. Using the phase X-ray analysis and SEM, the content of the quasicrystalline icosahedral phase (i-phase in the Al94Fe3Cr3 alloy structure was completely preserved after its consolidation at different pressures (2.5, 4, and 6 hPa under quasi-hydrostatic compression at room temperature. Despite the high pressure applied in the consolidation process, the morphology of quasicrystalline phase particles located in the a

  16. Investigation of the influence of different surface regularization methods for cylindrical concrete specimens in axial compression tests

    Directory of Open Access Journals (Sweden)

    R. MEDEIROS

    Full Text Available ABSTRACT This study was conducted with the aim of evaluating the influence of different methods for end surface preparation of compressive strength test specimens. Four different methods were compared: a mechanical wear method through grinding using a diamond wheel established by NBR 5738; a mechanical wear method using a diamond saw which is established by NM 77; an unbonded system using neoprene pads in metal retainer rings established by C1231 and a bonded capping method with sulfur mortar established by NBR 5738 and by NM 77. To develop this research, 4 concrete mixes were determined with different strength levels, 2 of group 1 and 2 of group 2 strength levels established by NBR 8953. Group 1 consists of classes C20 to C50, 5 in 5MPa, also known as normal strength concrete. Group 2 is comprised of class C55, C60 to C100, 10 in 10 MPa, also known as high strength concrete. Compression tests were carried out at 7 and 28 days for the 4 surface preparation methods. The results of this study indicate that the method established by NBR 5738 is the most effective among the 4 strengths considered, once it presents lower dispersion of values obtained from the tests, measured by the coefficient of variation and, in almost all cases, it demonstrates the highest mean of rupture test. The method described by NBR 5738 achieved the expected strength level in all tests.

  17. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    Science.gov (United States)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  18. Comparison of interfacial properties of electrodeposited single carbon fiber/epoxy composites using tensile and compressive fragmentation tests and acoustic emission.

    Science.gov (United States)

    Park, Joung-Man; Kim, Jin-Won; Yoon, Dong-Jin

    2002-03-01

    Interfacial and microfailure properties of carbon fiber/epoxy composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE). A monomeric and two polymeric coupling agents were applied via the electrodeposition (ED) and the dipping applications. A monomeric and a polymeric coupling agent showed significant and comparable improvements in interfacial shear strength (IFSS) compared to the untreated case under both tensile and compressive tests. Typical microfailure modes including cone-shaped fiber break, matrix cracking, and partial interlayer failure were observed under tension, whereas the diagonal slipped failure at both ends of the fractured fiber exhibited under compression. Adsorption and shear displacement mechanisms at the interface were described in terms of electrical attraction and primary and secondary bonding forces. For both the untreated and the treated cases AE distributions were separated well in tension, whereas AE distributions were rather closely overlapped in compression. It might be because of the difference in molecular failure energies and failure mechanisms between tension and compression. The maximum AE voltage for the waveform of either carbon or large-diameter basalt fiber breakages in tension exhibited much larger than that in compression. AE could provide more likely the quantitative information on the interfacial adhesion and microfailure.

  19. Reducing test-data volume and test-power simultaneously in LFSR reseeding-based compression environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weizheng; Kuang Jishun; You Zhiqiang; Liu Peng, E-mail: jshkuang@163.com [College of Information Science and Engineering, Hunan University, Changsha 410082 (China)

    2011-07-15

    This paper presents a new test scheme based on scan block encoding in a linear feedback shift register (LFSR) reseeding-based compression environment. Meanwhile, our paper also introduces a novel algorithm of scan-block clustering. The main contribution of this paper is a flexible test-application framework that achieves significant reductions in switching activity during scan shift and the number of specified bits that need to be generated via LFSR reseeding. Thus, it can significantly reduce the test power and test data volume. Experimental results using Mintest test set on the larger ISCAS'89 benchmarks show that the proposed method reduces the switching activity significantly by 72%-94% and provides a best possible test compression of 74%-94% with little hardware overhead. (semiconductor integrated circuits)

  20. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    Science.gov (United States)

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different

  1. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review

    Directory of Open Access Journals (Sweden)

    Devon E. Anderson

    2017-12-01

    Full Text Available Articular cartilage functions to transmit and translate loads. In a classical structure–function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ, dynamic mechanical loading has been hypothesized to induce the structure–function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells

  2. The "hierarchical" Scratch Collapse Test for identifying multilevel ulnar nerve compression.

    Science.gov (United States)

    Davidge, Kristen M; Gontre, Gil; Tang, David; Boyd, Kirsty U; Yee, Andrew; Damiano, Marci S; Mackinnon, Susan E

    2015-09-01

    The Scratch Collapse Test (SCT) is used to assist in the clinical evaluation of patients with ulnar nerve compression. The purpose of this study is to introduce the hierarchical SCT as a physical examination tool for identifying multilevel nerve compression in patients with cubital tunnel syndrome. A prospective cohort study (2010-2011) was conducted of patients referred with primary cubital tunnel syndrome. Five ulnar nerve compression sites were evaluated with the SCT. Each site generating a positive SCT was sequentially "frozen out" with a topical anesthetic to allow determination of both primary and secondary ulnar nerve entrapment points. The order or "hierarchy" of compression sites was recorded. Twenty-five patients (mean age 49.6 ± 12.3 years; 64 % female) were eligible for inclusion. The primary entrapment point was identified as Osborne's band in 80 % and the cubital tunnel retinaculum in 20 % of patients. Secondary entrapment points were also identified in the following order in all patients: (1) volar antebrachial fascia, (2) Guyon's canal, and (3) arcade of Struthers. The SCT is useful in localizing the site of primary compression of the ulnar nerve in patients with cubital tunnel syndrome. It is also sensitive enough to detect secondary compression points when primary sites are sequentially frozen out with a topical anesthetic, termed the hierarchical SCT. The findings of the hierarchical SCT are in keeping with the double crush hypothesis described by Upton and McComas in 1973 and the hypothesis of multilevel nerve compression proposed by Mackinnon and Novak in 1994.

  3. Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua

    Science.gov (United States)

    Brenner, Howard

    2013-01-01

    A critical, albeit simple experimental and/or molecular-dynamic (MD) simulation test is proposed whose outcome would, in principle, establish the viability of the Navier-Stokes-Fourier (NSF) equations for compressible fluid continua. The latter equation set, despite its longevity as constituting the fundamental paradigm of continuum fluid mechanics, has recently been criticized on the basis of its failure to properly incorporate volume transport phenomena—as embodied in the proposed bivelocity paradigm [H. Brenner, Int. J. Eng. Sci.IJESAN0020-722510.1016/j.ijengsci.2012.01.006 54, 67 (2012)]—into its formulation. Were the experimental or simulation results found to accord, even only qualitatively, with bivelocity predictions, the temperature distribution in a gas-filled, thermodynamically and mechanically isolated circular cylinder undergoing steady rigid-body rotation in an inertial reference frame would not be uniform; rather, the temperature would be higher at the cylinder wall than along the axis of rotation. This radial temperature nonuniformity contrasts with the uniformity of the temperature predicted by the NSF paradigm for these same circumstances. Easily attainable rates of rotation in centrifuges and readily available tools for measuring the expected temperature differences render experimental execution of the proposed scheme straightforward in principle. As such, measurement—via experiment or MD simulation—of, say, the temperature difference ΔT between the gas at the wall and along the axis of rotation would provide quantitative tests of both the NSF and bivelocity hydrodynamic models, whose respective solutions for the stated set of circumstances are derived in this paper. Independently of the correctness of the bivelocity model, any temperature difference observed during the proposed experiment or simulation, irrespective of magnitude, would preclude the possibility of the NSF paradigm being correct for fluid continua, except for

  4. Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua.

    Science.gov (United States)

    Brenner, Howard

    2013-01-01

    A critical, albeit simple experimental and/or molecular-dynamic (MD) simulation test is proposed whose outcome would, in principle, establish the viability of the Navier-Stokes-Fourier (NSF) equations for compressible fluid continua. The latter equation set, despite its longevity as constituting the fundamental paradigm of continuum fluid mechanics, has recently been criticized on the basis of its failure to properly incorporate volume transport phenomena-as embodied in the proposed bivelocity paradigm [H. Brenner, Int. J. Eng. Sci. 54, 67 (2012)]-into its formulation. Were the experimental or simulation results found to accord, even only qualitatively, with bivelocity predictions, the temperature distribution in a gas-filled, thermodynamically and mechanically isolated circular cylinder undergoing steady rigid-body rotation in an inertial reference frame would not be uniform; rather, the temperature would be higher at the cylinder wall than along the axis of rotation. This radial temperature nonuniformity contrasts with the uniformity of the temperature predicted by the NSF paradigm for these same circumstances. Easily attainable rates of rotation in centrifuges and readily available tools for measuring the expected temperature differences render experimental execution of the proposed scheme straightforward in principle. As such, measurement-via experiment or MD simulation-of, say, the temperature difference ΔT between the gas at the wall and along the axis of rotation would provide quantitative tests of both the NSF and bivelocity hydrodynamic models, whose respective solutions for the stated set of circumstances are derived in this paper. Independently of the correctness of the bivelocity model, any temperature difference observed during the proposed experiment or simulation, irrespective of magnitude, would preclude the possibility of the NSF paradigm being correct for fluid continua, except for incompressible flows.

  5. Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers

    Science.gov (United States)

    Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.

    2018-01-01

    One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.

  6. Accuracy of Clinical Tests in Detecting Disk Herniation and Nerve Root Compression in Subjects With Lumbar Radicular Symptoms.

    Science.gov (United States)

    Ekedahl, Harald; Jönsson, Bo; Annertz, Mårten; Frobell, Richard B

    2018-04-01

    To investigate the accuracy of 3 commonly used neurodynamic tests (slump test, straight-leg raise [SLR] test, femoral neurodynamic test) and 2 clinical assessments to determine radiculopathy (radiculopathy I, 1 neurologic sign; radiculopathy II, 2 neurologic signs corresponding to 1 specific nerve root) in detecting magnetic resonance imaging (MRI) findings (extrusion, subarticular nerve root compression, and foraminal nerve root compression). Validity study. Secondary care. We included subjects (N=99; mean age, 58y; 54% women) referred for epidural steroid injection because of lumbar radicular symptoms who had positive clinical and MRI findings. Positive clinical findings included the slump test (n=67), SLR test (n=50), femoral neurodynamic test (n=7), radiculopathy I (n=70), and radiculopathy II (n=33). Positive MRI findings included extrusion (n=27), subarticular nerve compression (n=14), and foraminal nerve compression (n=25). Not applicable. Accuracy of clinical tests in detecting MRI findings was evaluated using sensitivity, specificity, and receiver operating characteristics analysis with area under the curve (AUC). The slump test had the highest sensitivity in detecting extrusion (.78) and subarticular nerve compression (1.00), but the respective specificity was low (.36 and .38). Radiculopathy I was most sensitive in detecting foraminal nerve compression (.80) but with low specificity (.34). Only 1 assessment had a concurrent high sensitivity and specificity (ie, radiculopathy II) in detecting subarticular nerve compression (.71 and .73, respectively). The AUC for all tests in detecting extrusion, subarticular nerve compression, and foraminal nerve compression showed ranges of .48 to .60, .63 to .82, and .33 to .57, respectively. In general, the investigated neurodynamic tests or assessments for radiculopathy lacked diagnostic accuracy. The slump test was the most sensitive test, while radiculopathy II was the most specific test. Most interestingly, no

  7. Shaking table testing of mechanical components

    International Nuclear Information System (INIS)

    Jurukovski, D.; Taskov, Lj.; Mamucevski, D.; Petrovski, D.

    1995-01-01

    Presented is the experience of the Institute of Earthquake Engineering and Engineering Seismology, Skopje, Republic of Macedonia in seismic qualification of mechanical components by shaking table testing. Technical data and characteristics for the three shaking tables available at the Institute are given. Also, for characteristic mechanical components tested at the Institute laboratories, basic data such as producer, testing investor, description of the component, testing regulation, testing equipment and final user of the results. (author)

  8. Processing of plane strain compression test results for investigation of AISI-304 stainless steel constitutive behavior

    International Nuclear Information System (INIS)

    Aksenov, Sergey A.; Puzino, Yuriy A.; Bober, Stanislav A.; Kliber, Jiri

    2015-01-01

    The paper is oriented toward the determination of constitutive equation constants by the inverse analysis of plane strain compression test results. The interpretation of such results is complicated by the inhomogeneity of strain rate distribution in the specimen caused by rigid ends, the lateral spreading of a specimen friction and the variation of temperature during the test. The results of plane strain compression tests of AISI-304 stainless steel are presented and significant deviations of temperature are observed at higher strain rates. Finite element simulation was performed to estimate the inhomogeneity of strain rate within the specimen and evaluate the effect of friction on the test results. Constitutive equations of the material were obtained by inverse analysis minimizing the deviations between the measured load values and the ones predicted by numerical simulation. Keywords: PSCT, AISI-304, Gleeble, constitutive equations, hot forming, FEM, inverse analysis.

  9. Mechanical properties of the human spinal cord under the compressive loading.

    Science.gov (United States)

    Karimi, Alireza; Shojaei, Ahmad; Tehrani, Pedram

    2017-12-01

    The spinal cord as the most complex and critical part of the human body is responsible for the transmission of both motor and sensory impulses between the body and the brain. Due to its pivotal role any types of physical injury in that disrupts its function following by shortfalls, including the minor motor and sensory malfunctions as well as complicate quadriplegia and lifelong ventilator dependency. In order to shed light on the injuries to the spinal cord, the application of the computational models to simulate the trauma impact loading to that are deemed required. Nonetheless, it has not been fulfilled since there is a paucity of knowledge about the mechanical properties of the spinal cord, especially the cervical one, under the compressive loading on the grounds of the difficulty in obtaining this tissue from the human body. This study was aimed at experimentally measuring the mechanical properties of the human cervical spinal cord of 24 isolated fresh samples under the unconfined compressive loading at a relatively low strain rate. The stress-strain data revealed the elastic modulus and maximum/failure stress of 40.12±6.90 and 62.26±5.02kPa, respectively. Owing to the nonlinear response of the spinal cord, the Yeoh, Ogden, and Mooney-Rivlin hyperelastic material models have also been employed. The results may have implications not only for understanding the linear elastic and nonlinear hyperelastic mechanical properties of the cervical spinal cord under the compressive loading, but also for providing a raw data for investigating the injury as a result of the trauma thru the numerical simulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production

    International Nuclear Information System (INIS)

    Fan, Senqing; Xiao, Zeyi; Li, Minghai; Li, Sizhong

    2016-01-01

    Graphical abstract: Pervaporation membrane bioreactor with permeate partial condensation and mechanical vapor compression is developed for an energy efficient ethanol production. - Highlights: • PVMBR-MVC for energy efficient ethanol production. • Process separation factor of 20–44 for ethanol achieved by fractional condensation. • Energy production of 20.25 MJ and hourly energy production of 56.25 kJ/h achieved. • Over 50% of energy saved in PVMBR-MVC compared with PVMBR-LTC. • Integrated heat pump with COP of 7–9 for the energy recovery of the permeate. - Abstract: Improved process separation factor and heat integration are two key issues to increase the energy efficiency of ethanol production in a pervaporation membrane bioreactor (PVMBR). A PVMBR with permeate fractional condensation and mechanical vapor compression was developed for energy efficient ethanol production. A condensation model based on the mass balance and thermodynamic equilibrium in the partial vacuum condenser was developed for predicting the purification performance of the permeate vapor. Three runs of ethanol fermentation-pervaporation experiment were carried out and ethanol concentration of higher than 50 wt% could be achieved in the final condensate, with the separation factor of the process for ethanol increased to 20. Ethanol production could be enhanced in the bioreactor and 17.1 MJ of the energy could be produced in per liter of fermentation broth, owing to 27.0 MJ/kg heating value of the recovered ethanol. Compared with the traditional pervaporation process with low temperature condensation for ethanol production, 50% of the energy would be saved in the process. The energy consumption would be further reduced, if the available energy of the permeate vapor was utilized by integrating the mechanical vapor compression heat pump.

  11. Pilot Field Test: Use of a Compression Garment During a Stand Test After Long-Duration Space Flight

    Science.gov (United States)

    Laurie, S. S.; Stenger, M. B.; Phillips, T. R.; Lee, S. M. C.; Cerisano, J.; Kofman, I.; Reschke, M.

    2016-01-01

    Orthostatic intolerance (OI) is a concern for astronauts returning from long-duration space flight. One countermeasure that has been used to protect against OI after short-duration bed rest and space flight is the use of lower body and abdominal compression garments. However, since the end of the Space Shuttle era we have not been able to test crewmembers during the first 24 hours after landing on Earth. NASA's Pilot Field Test provided us the opportunity to test cardiovascular responses of crewmembers wearing the Russian Kentavr compression garment during a stand test at multiple time points throughout the first 24 hours after landing. HYPOTHESIS We hypothesized that the Kentavr compression garment would prevent an increase in heart rate (HR) >15 bpm during a 3.5-min stand test. METHODS: The Pilot Field Test was conducted up to 3 times during the first 24 hours after crewmembers returned to Earth: (1) either in a tent adjacent to the Soyuz landing site in Kazakhstan (approx.1 hr) or after transportation to the Karaganda airport (approx. 4 hr); (2) during a refueling stop in Scotland (approx.12 hr); and (3) upon return to NASA Johnson Space Center (JSC) (approx.24 hr). We measured HR and arterial pressure (finger photoplethysmography) for 2 min while the crewmember was prone and throughout 3.5 min of quiet standing. Eleven crewmembers consented to participate; however, 2 felt too ill to start the test and 1 stopped 30 sec into the stand portion of the test. Of the remaining 8 crewmembers, 2 did not wear the Russian Kentavr compression garment. Because of inclement weather at the landing site, 5 crewmembers were flown by helicopter to the Karaganda airport before initial testing and received intravenous saline before completing the stand test. One of these crewmembers wore only the portion of the Russian Kentavr compression garment that covered the lower leg and thus lacked thigh and abdominal compression. All crewmembers continued wearing the Russian Kentavr

  12. Mechanical and Thermophysical Properties of Cement and/or Paper (Cellulose Stabilized Compressed Clay Bricks

    Directory of Open Access Journals (Sweden)

    Emmanuel OUEDRAOGO

    2015-05-01

    Full Text Available This article presents an experimental study of the characterization of clay blocks stabilized with cement and/or recycled papers as construction materials. When they are utilized as finish for building envelops, they must have appropriate mechanical strength and water stability. The measurements of the mechanical and thermophysical properties show differences between the properties of four investigated specimens. Mechanical properties such as compression and tensile tresses of clay-cement and clay-cement-paper mixtures are found to be quite similar but are two to three times greater respectively for clay-paper and purely clay blocks. The values of the thermophysical properties of blocks incorporating paper show improvement of their thermo insulation performances.

  13. 99Mo production using MoO3 pellets obtained by mechanical compression and heat treatment

    International Nuclear Information System (INIS)

    Rojas, Jorge; Mendoza, Pablo; Lopez, Alcides

    2014-01-01

    This paper shows the results of the MoO 3 pellets fabrication by mechanical compression and the heat treatment method (MCHT) in order to optimize the production of 99 Mo in the RACSO Nuclear Center. The effects of polyvinyl alcohol (PVA) as binder are assessed by heat treatment of pellets in air atmosphere, evaluating the elimination process with increasing temperature and solubility in 5N NaOH. The results show that the pellets fabrication technique is suitable because fulfills the required technical specifications, allows to irradiate 50 % more of 98 Mo mass and facilitate a safer radiological handling of the irradiated MoO 3 . (authors).

  14. The chemical composition and compression strengths of refractory ceramics, tested for 3 curing temperatures

    International Nuclear Information System (INIS)

    Wan Khairuddin bin Wan Ali

    1994-01-01

    An investigation was carried out to determine and compile the mechanical strength of a refractory ceramic made of ground fire bricks and refractory fire mortar. Three different compositions were studied for the compression strength and it was found that the composition with 50% fire bricks and 50% fire mortar gives the best mechanical strength. With this composition the maximum failure compression stress is 3.2 MPa. and the Young Modulus is 403.5 MPa. The investigation also shows that the curing temperatures and the composition percentages play an important role in determining the strength of the ceramic. The trend obtained from the investigation shows that there is the possibility that an optimum value of composition percentage exist

  15. Dual photon excitation microscopy and image threshold segmentation in live cell imaging during compression testing.

    Science.gov (United States)

    Moo, Eng Kuan; Abusara, Ziad; Abu Osman, Noor Azuan; Pingguan-Murphy, Belinda; Herzog, Walter

    2013-08-09

    Morphological studies of live connective tissue cells are imperative to helping understand cellular responses to mechanical stimuli. However, photobleaching is a constant problem to accurate and reliable live cell fluorescent imaging, and various image thresholding methods have been adopted to account for photobleaching effects. Previous studies showed that dual photon excitation (DPE) techniques are superior over conventional one photon excitation (OPE) confocal techniques in minimizing photobleaching. In this study, we investigated the effects of photobleaching resulting from OPE and DPE on morphology of in situ articular cartilage chondrocytes across repeat laser exposures. Additionally, we compared the effectiveness of three commonly-used image thresholding methods in accounting for photobleaching effects, with and without tissue loading through compression. In general, photobleaching leads to an apparent volume reduction for subsequent image scans. Performing seven consecutive scans of chondrocytes in unloaded cartilage, we found that the apparent cell volume loss caused by DPE microscopy is much smaller than that observed using OPE microscopy. Applying scan-specific image thresholds did not prevent the photobleaching-induced volume loss, and volume reductions were non-uniform over the seven repeat scans. During cartilage loading through compression, cell fluorescence increased and, depending on the thresholding method used, led to different volume changes. Therefore, different conclusions on cell volume changes may be drawn during tissue compression, depending on the image thresholding methods used. In conclusion, our findings confirm that photobleaching directly affects cell morphology measurements, and that DPE causes less photobleaching artifacts than OPE for uncompressed cells. When cells are compressed during tissue loading, a complicated interplay between photobleaching effects and compression-induced fluorescence increase may lead to interpretations in

  16. The Mechanical and Reaction Behavior of PTFE/Al/Fe2O3 under Impact and Quasi-Static Compression

    Directory of Open Access Journals (Sweden)

    Jun-yi Huang

    2017-01-01

    Full Text Available Quasi-static compression and drop-weight test were used to characterize the mechanical and reaction behavior of PTFE/Al/Fe2O3 composites. Two kinds of PTFE/Al/Fe2O3 composites were prepared with different mass of PTFE, and the reaction phenomenon and stress-strain curves were recorded; the residuals after reaction were analyzed by X-ray diffraction (XRD. The results showed that, under quasi-static compression condition, the strength of the materials is increased (from 37.1 Mpa to 77.2 Mpa with the increase of PTFE, and the reaction phenomenon occurred only in materials with high PTFE content. XRD analysis showed that the reaction between Al and Fe2O3 was not triggered with identical experimental conditions. In drop-weight tests, PTFE/Al/Fe2O3 specimens with low PTFE content were found to be more insensitive by high-speed photography, and a High Temperature Metal Slag Spray (HTMSS phenomenon was observed in both kinds of PTFE/Al/Fe2O3 composites, indicating the existence of thermite reaction, which was confirmed by XRD. In PTFE/Al/Fe2O3 system, the reaction between PTFE and Al precedes the reaction between Al and Fe2O3.

  17. Design and Testing of CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)

    2015-06-01

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.

  18. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing

    International Nuclear Information System (INIS)

    Uchic, Michael D.; Dimiduk, Dennis M.

    2005-01-01

    A methodology for performing uniaxial compression tests on samples having micron-size dimensions is presented. Sample fabrication is accomplished using focused ion beam milling to create cylindrical samples of uniform cross-section that remain attached to the bulk substrate at one end. Once fabricated, samples are tested in uniaxial compression using a nanoindentation device outfitted with a flat tip, and a stress-strain curve is obtained. The methodology can be used to examine the plastic response of samples of different sizes that are from the same bulk material. In this manner, dimensional size effects at the micron scale can be explored for single crystals, using a readily interpretable test that minimizes imposed stretch and bending gradients. The methodology was applied to a single-crystal Ni superalloy and a transition from bulk-like to size-affected behavior was observed for samples 5 μm in diameter and smaller

  19. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2016-04-01

    Full Text Available The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cracks accompanied by an increase in horizontal masonry strain. During the appearance of micro and hairline cracks (10−3 to 10−1 mm, the effect of non-pre-stressed wrapping composite is very small. The favorable effect of passive wrapping is only intensively manifested after the appearance of cracks (10−1 mm and bigger at higher loading levels. In the case of “optimum” reinforcement of a masonry column, the experimental research showed an increase in vertical displacements δy (up to 247%, horizontal displacements δx (up to 742% and ultimate load-bearing capacity (up to 136% compared to the values reached in unreinforced masonry columns. In the case of masonry structures in which no intensive “bed joint filler–masonry unit” interaction occurs, e.g., in regular coursed masonry with little differences in the mechanical characteristics of masonry units and the binder, the reinforcing effect of the fabric applies only partially.

  20. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    Science.gov (United States)

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression

    International Nuclear Information System (INIS)

    Trębacz, Hanna; Zdunek, Artur; Cybulska, Justyna; Pieczywek, Piotr

    2013-01-01

    The aim of the study was to investigate whether a fatigue induced weakening of cortical bone was revealed in microstructure and mechanical competence of demineralized bone matrix. Two types of cortical bone samples (plexiform and Haversian) were use. Bone slabs from the midshaft of bovine femora were subjected to cyclical bending. Fatigued and adjacent control samples were cut into cubes and demineralized in ethylenediaminetetraacetic acid. Demineralized samples were either subjected to microscopic quantitative image analysis, or compressed to failure (in longitudinal or transverse direction) with a simultaneous analysis of acoustic emission (AE). In fatigued samples porosity of organic matrix and average area of pores have risen, along with a change in the pores shape. The effect of fatigue depended on the type of the bone, being more pronounced in the plexiform than in Haversian tissue. Demineralized bone matrix was anisotropic under compressive loads in both types of cortical structure. The main result of fatigue pretreatment on mechanical parameters was a significant decrease of ultimate strain in the transverse direction in plexiform samples. The decrease of strain in this group was accompanied by a considerable increase of the fraction of large pores and a significant change in AE energy.

  2. The stability of clay using mount Sinabung ash with unconfined compression test (uct) value

    Science.gov (United States)

    Puji Hastuty, Ika; Roesyanto; Hutauruk, Ronny; Simanjuntak, Oberlyn

    2018-03-01

    The soil has a important role as a highway’s embankment material (sub grade). Soil conditions are very different in each location because the scientifically soil is a very complex and varied material and the located on the field is very loose or very soft, so it is not suitable for construction, then the soil should be stabilized. The additive material commonly used for soil stabilization includes cement, lime, fly ash, rice husk ash, and others. This experiment is using the addition of volcanic ash. The purpose of this study was to determine the Index Properties and Compressive Strength maximum value with Unconfined Compression Test due to the addition of volcanic ash as a stabilizing agent along with optimum levels of the addition. The result showed that the original soil sample has Water Content of 14.52%; the Specific Weight of 2.64%; Liquid limit of 48.64% and Plasticity Index of 29.82%. Then, the Compressive Strength value is 1.40 kg/cm2. According to USCS classification, the soil samples categorized as the (CL) type while based on AASHTO classification, the soil samples are including as the type of A-7-6. After the soil is stabilized with a variety of volcanic ash, can be concluded that the maximum value occurs at mixture variation of 11% Volcanic Ash with Unconfined Compressive Strength value of 2.32 kg/cm2.

  3. Test methods for the dynamic mechanical properties of polymeric materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.K.

    1980-06-01

    Various test geometries and procedures for the dynamic mechanical analysis of polymers employing a mechanical spectrometer have been evaluated. The methods and materials included in this work are forced torsional pendulum testing of Kevlar/epoxy laminates and rigid urethane foams, oscillatory parallel plate testing to determine the kinetics of the cure of VCE with Hylene MP, oscillatory compressive testing of B-3223 cellular silicone, and oscillatory tensile testing of Silastic E and single Kevlar filaments. Fundamental dynamic mechanical properties, including the storage and loss moduli and loss tangent of the materials tested, were determined as a function of temperature and sometimes of frequency.

  4. Development of small scale mechanical testing techniques on ion beam irradiated 304 SS

    International Nuclear Information System (INIS)

    Reichardt, A.; Abad, M.D.; Hosemann, P.; Lupinacci, A.; Kacher, J.; Minor, A.; Jiao, Z; Chou, P.

    2015-01-01

    Austenitic stainless steels are widely used for structural components in light water reactors, however uncertainty in their susceptibility to irradiation assisted stress corrosion cracking (IASCC) has made long term performance predictions difficult. In addition, the testing of reactor irradiated materials has proven challenging due to the long irradiation times required, limited sample availability, and unwanted activation. To address these problems, we apply recently developed techniques in nano-indentation and micro-compression testing to small volume samples of 10 dpa proton-beam irradiated 304 stainless steel. Cross sectional nano-indentation was performed on both proton beam irradiated and non-irradiated samples at temperatures ranging from 22 to 300 C. degrees to determine the effects of irradiation and operating temperature on hardening. Micro-compression tests using 2 μm x 2 μm x 5 μm focused-ion beam milled pillars were then performed in situ in an electron microscope to allow for a more accurate look at stress-strain behavior along with real-time observations of localized mechanical deformation. Large sudden slip events and significant increase in yield strength are observed in irradiated micro-compression samples at room temperature. Elevated temperature nano-indentation results reveal the possibility of thermally-activated changes in deformation mechanism for irradiated specimens. Since the deformation mechanism information provided by micro-compression testing can provide valuable information about IASCC susceptibility, future work will involve ex situ micro-compression tests at reactor operating temperature

  5. A novel method for estimating soil precompression stress from uniaxial confined compression tests

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per; Labouriau, Rodrigo

    2017-01-01

    . Stress-strain curves were obtained by performing uniaxial, confined compression tests on undisturbed soil cores for three soil types at three soil water potentials. The new method performed better than the Gompertz fitting method in estimating precompression stress. The values of precompression stress...... obtained from the new method were linearly related to the maximum stress experienced by the soil samples prior to the uniaxial, confined compression test at each soil condition with a slope close to 1. Precompression stress determined with the new method was not related to soil type or dry bulk density......The concept of precompression stress is used for estimating soil strength of relevance to fieldtraffic. It represents the maximum stress experienced by the soil. The most recently developed fitting method to estimate precompression stress (Gompertz) is based on the assumption of an S-shape stress...

  6. Mechanical behavior and microstructure during compression of semi-solid ZK60-RE magnesium alloy at high solid content

    International Nuclear Information System (INIS)

    Shan Weiwei; Luo Shoujing

    2007-01-01

    Mechanical behavior during compression of semi-solid ZK60-RE magnesium alloy at high solid content is researched in this paper. The alloy was prepared from ZK60 alloy and rare earth elements by casting, equal channel angular extruding, and liquidus forging. Semi-solid isothermal pre-treatment was carried out to make the grains globular before the compression. Here, several groups of true strain-true stress curves with different variables during compression are given to make comparisons of their mechanical behaviors. Liquid paths were the most essential to deformation, and its variation during compression depends on the strain rate. Here, thixotropic strength is defined as the true stress at the first peak in the true stress-true strain curve

  7. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    Science.gov (United States)

    Wang, Fuliang; Tang, Zikai; He, Hu

    2018-04-01

    The sintering of metal nanoparticles (NPs) has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD) model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r) changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420-425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  8. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw

    2017-05-18

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  9. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw; Saththasivam, Jayaprakash; Saha, Bidyut Baran; Chua, Kian Jon; Srinivasa Murthy, S.; Ng, Kim Choon

    2017-01-01

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  10. A Coupled Thermo-Hydro-Mechanical Model of Jointed Hard Rock for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhuang

    2014-01-01

    Full Text Available Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.

  11. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    Directory of Open Access Journals (Sweden)

    Fuliang Wang

    2018-04-01

    Full Text Available The sintering of metal nanoparticles (NPs has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420–425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  12. The compressibility mechanism of Li3Na3In2F12 garnet

    DEFF Research Database (Denmark)

    Grzechnik, Andrzej; Balic Zunic, Tonci; Makovicky, Emil

    2006-01-01

    The high pressure behaviour of Li3Na3In2F12 garnet (Ia¯3d, Z = 8) is studied up to 9.2 GPa at room temperature in diamond anvil cells using xray diffraction. Its equation of state to 9.2 GPa and the pressure dependences of the structural parameters to 4.07 GPa are determined from synchrotron angle......-dispersive powder and laboratory single-crystal data, respectively. No indication of any structural phase transition in this material has been found up to 9.2 GPa. The fitting of the Murnaghan equation of state yields B0 = 36.2(5) GPa, B0 = 5.38(18), and V0 = 2051.76(0.69) °A 3. The compressibility mechanism of Li3......Na3In2F12 is attributed to the substantial bending of the In-F-Li angles linking the InF6 octahedra and LiF4 tetrahedra. The most compressible polyhedral units are the NaF8 triangulated dodecahedra. These results are discussed in relation to previous high pressure photoluminescence measurements...

  13. Dural venous sinuses distortion and compression with supratentorial mass lesions: a mechanism for refractory intracranial hypertension?

    Science.gov (United States)

    Qureshi, Adnan I.; Qureshi, Mushtaq H.; Majidi, Shahram; Gilani, Waqas I.; Siddiq, Farhan

    2014-01-01

    Objective To determine the effect of supratentorial intraparenchymal mass lesions of various volumes on dural venous sinuses structure and transluminal pressures. Methods Three set of preparations were made using adult isolated head derived from fresh human cadaver. A supratentorial intraparenchymal balloon was introduced and inflated at various volumes and effect on dural venous sinuses was assessed by serial intravascular ultrasound, computed tomographic (CT), and magnetic resonance (MR) venograms. Contrast was injected through a catheter placed in sigmoid sinus for both CT and MR venograms. Serial trasluminal pressures were measured from middle part of superior sagittal sinus in another set of experiments. Results At intraparenchymal balloon inflation of 90 cm3, there was attenuation of contrast enhancement of superior sagittal sinus with compression visualized in posterior part of the sinus without any evidence of compression in the remaining sinus. At intraparenchymal balloon inflation of 180 and 210 cm3, there was compression and obliteration of superior sagittal sinus throughout the length of the sinus. In the coronal sections, at intraparenchymal balloon inflations of 90 and 120 cm3, compression and obliteration of the posterior part of superior sagittal sinus were visualized. In the axial images, basal veins were not visualized with intraparenchymal balloon inflation of 90 cm3 or greater although straight sinus was visualized at all levels of inflation. Trasluminal pressure in the middle part of superior sagittal sinus demonstrated a mild increase from 0 cm H2O to 0.4 cm H2O and 0.5 cm H2O with inflation of balloon to volume of 150 and 180 cm3, respectively. There was a rapid increase in transluminal pressure from 6.8 cm H2O to 25.6 cm H2O as the supratentorial mass lesion increased from 180 to 200 cm3. Conclusions Our experiments identified distortion and segmental and global obliteration of dural venous sinuses secondary to supratentorial mass lesion and

  14. Investigations on the visco-elastic behaviour of a human healthy heel pad: in vivo compression tests and numerical analysis

    DEFF Research Database (Denmark)

    Matteoli, Sara; Fontanella, Chiara G.; Carniel, Emanuele L.

    2013-01-01

    The aim of this study was to investigate the viscoelastic behaviour of the human heel pad by comparing the stress–relaxation curves obtained from a compression device used on an in vivo heel pad with those obtained from a threedimensional computer-based subject-specific heel pad model subjected...... numerical analyses were performed to interpret the mechanical response of heel tissues, with loading conditions and displacement rate in agreement with experimental tests. The heel tissues showed a non-linear, viscoelastic behaviour described by characteristic hysteretic curves, stress......–relaxation and viscous recovery phenomena. The reliability of the investigations was validated by the interpretation of the mechanical response of heel tissues under the application of three pistons with diameter of 15, 20 and 40 mm, at the same displacement rate of about 1.7 mm/s. The maximum and minimum relative...

  15. Dislocation structures and mechanical behaviour of Ge single crystals deformed by compression

    International Nuclear Information System (INIS)

    Nyilas, K.; Dupas, C.; Kruml, T.; Zsoldos, L.; Ungar, T.; Martin, J.L.

    2004-01-01

    Stress-strain curves of germanium interrupted by dip tests reveal that the internal stresses ascend parallel to the applied stress in a strain-rate dependent way. To understand this peculiar behaviour, the dislocation microstructure has been characterized. Transmission electron microscopy images show that regions of high dislocation activity along the primary slip system are separated by dislocation-free zones. X-ray microdiffraction reveals that the dislocation density is fluctuating on a 100 μm scale. X-ray reciprocal-space mapping, together with scanning microdiffraction, shows that misoriented mosaic blocks are forming owing to the boundary conditions in the compression test. These preliminary results reveal deformation heterogeneity both at macroscopic and mesoscopic scales

  16. Mechanics of occurrence of critical flow in compressible two-phase flow

    International Nuclear Information System (INIS)

    Katto, Yoshiro; Sudo, Yukio

    1976-01-01

    Fundamental framework of mechanics for the occurrence of critical flow is investigated, following the principle that the critical flow appears as a limit in a continuous change of state of flow along a nozzle (or a pipe) and should be derived only from simultaneous mechanical equations concerned with the flow. Mathematical procedures with which the critical flow: (i) the single phase flow of an arbitrary fluid, unrestricted by the equation of state of ideal gas, where the number of simultaneous equations is equal to the number of independent variables, and (ii) the one-component, separated two-phase flow under saturated condition, where the number of equations exceeds that of variables. In each case, interesting mechanism of leading to the occurrence of a limiting state of flow at a definite cross-section in a nozzle (incl. a pipe) is clarified, and a definite state of flow at the critical cross-section is also determined. Then, the analysis is extended to the critical flow which should appear in the completely isolated and the homogeneously dispersed, two-component, two-phase flow (composed of a compressible and an incompressible substance). It is found that the analyses of these special flow patterns provide several supplementary information to the mechanics of critical flow. (auth.)

  17. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  18. Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing

    Directory of Open Access Journals (Sweden)

    J. Obedt Figueroa-Cavazos

    2016-01-01

    Full Text Available This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material. Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated.

  19. Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls

    Science.gov (United States)

    Dettenrieder, Fabian; Bodony, Daniel

    2017-11-01

    Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.

  20. Comparison of Hemostasis Times With a Kaolin-Based Hemostatic Pad (QuikClot Radial) vs Mechanical Compression (TR Band) Following Transradial Access: A Pilot Prospective Study.

    Science.gov (United States)

    Roberts, Jonathan S; Niu, Jianli; Pastor-Cervantes, Juan A

    2017-10-01

    Hemostasis following transradial access (TRA) is usually achieved by mechanical compression. We investigated use of the QuikClot Radial hemostasis pad (Z-Medica) compared with the TR Band (Terumo Medical) to shorten hemostasis after TRA. Thirty patients undergoing TRA coronary angiography and/or percutaneous coronary intervention were randomized into three cohorts post TRA: 10 patients received mechanical compression with the TR Band, 10 patients received 30 min of compression with the QuikClot Radial pad, and 10 patients received 60 min of compression with the QuikClot Radial pad. Times to hemostasis and access-site complications were recorded. Radial artery patency was evaluated 1 hour after hemostasis by the reverse Barbeau's test. There were no differences in patient characteristics, mean dose of heparin (7117 ± 1054 IU), or mean activated clotting time value (210 ± 50 sec) at the end of procedure among the three groups. Successful hemostasis was achieved in 100% of patients with both the 30-min and 60-min compression groups using the QuikClot pad. Hemostasis failure occurred in 50% of patients when the TR Band was initially weaned at the protocol-driven time (40 min after sheath removal). Mean compression time for hemostasis with the TR Band was 149.4 min compared with 30.7 min and 60.9 min for the 30-min and 60-min QuikClot groups, respectively. No radial artery occlusion occurred in any subject at the end of the study. Use of the QuikClot Radial pad following TRA in this pilot trial significantly shortened hemostasis times when compared with the TR Band, with no increased complications noted.

  1. Nondestructive testing of the low-level radioactive waste drums for uni-axial compressive strength and free liquid content

    International Nuclear Information System (INIS)

    Yu Geping; Chang Mingyu; Wang Yeajeng; Chu, David S.L.; Ju Yihzen

    1992-01-01

    This paper summarizes the nondestructive test to determine the uni-axial compressive strength and free water content of solidified low level radioactive waste. The uni-axial compressive strength is determined by ultrasonic wave propagation speed, and the results are compared with those of compressive tests. Three methods of detecting the surface free water by ultrasonic testing are established, the ultrasonic wave speed, wave form and pulse height are used to determine the existence and amount of the surface free liquid. Possible difficulties are discussed. (author)

  2. Modelling and optimization of seawater desalination process using mechanical vapour compression

    Directory of Open Access Journals (Sweden)

    V.P. Kravchenko

    2016-09-01

    Full Text Available In the conditions of global climate changes shortage of fresh water becomes an urgent problem for an increasing number of the countries. One of the most perspective technologies of a desalting of sea water is the mechanical vapour compression (MVC providing low energy consumption due to the principle of a heat pump. Aim: The aim of this research is to identify the reserves of efficiency increasing of the desalination systems based on mechanical vapour compression by optimization of the scheme and parameters of installations with MVC. Materials and Methods: The new type of desalination installation is offered which main element is the heat exchanger of the latent heat. Sea water after preliminary heating in heat exchangers comes to the evaporator-condenser where receives the main amount of heat from the condensed steam. A part of sea water evaporates, and the strong solution of salt (brine goes out of the evaporator, and after cooling is dumped back in the sea. The formed steam is compressed by the compressor and comes to the condenser. An essential singularity of this scheme is that condensation happens at higher temperature, than evaporation. Thanks to this the heat, which is comes out at devaporation, is used for evaporation of sea water. Thereby, in this class of desalination installations the principle of a heat pump is implemented. Results: For achievement of a goal the following tasks were solved: the mathematical model of installations with MVC is modified and supplemented; the scheme of heat exchangers switching is modified; influence of design data of desalination installation on the cost of an inventory and the electric power is investigated. The detailed analysis of the main schemes of installation and mathematical model allowed defining ways of decrease in energy consumption and the possible merit value. Influence of two key parameters - a specific power of the compressor and a specific surface area of the evaporator-condenser - on a

  3. Comparison of the Mechanical Characteristics of a Universal Small Biplane Plating Technique Without Compression Screw and Single Anatomic Plate With Compression Screw.

    Science.gov (United States)

    Dayton, Paul; Ferguson, Joe; Hatch, Daniel; Santrock, Robert; Scanlan, Sean; Smith, Bret

    2016-01-01

    To better understand the mechanical characteristics of biplane locked plating in small bone fixation, the present study compared the stability under cyclic cantilever loading of a 2-plate locked biplane (BPP) construct without interfragmentary compression with that of a single-plate locked construct with an additional interfragmentary screw (SPS) using surrogate bone models simulating Lapidus arthrodesis. In static ultimate plantar bending, the BPP construct failed at significantly greater load than did the SPS construct (556.2 ± 37.1 N versus 241.6 ± 6.3 N, p = .007). For cyclic failure testing in plantar bending at a 180-N starting load, the BPP construct failed at a significantly greater number of cycles (158,322 ± 50,609 versus 13,718 ± 10,471 cycles) and failure load (242.5 ± 25.0 N versus 180.0 ± 0.0 N) than the SPS construct (p = .002). For cyclic failure testing in plantar bending at a 120-N starting load, the results were not significantly different between the BPP and SPS constructs for the number of cycles (207,646 ± 45,253 versus 159,334 ± 69,430) or failure load (205.0 ± 22.4 N versus 185.0 ± 33.5 N; p = .300). For cyclic testing with 90° offset loading (i.e., medial to lateral bending) at a 120-N starting load, all 5 BPP constructs (tension side) and 2 of the 5 SPS constructs reached 250,000 cycles without failure. Overall, the present study found the BPP construct to have superior or equivalent stability in multiplanar orientations of force application in both static and fatigue testing. Thus, the concept of biplane locked plating, using 2 low profile plates and unicortical screw insertion, shows promise in small bone fixation, because it provides consistent stability in multiplanar orientations, making it universally adaptable to many clinical situations. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Upgrade of the SLAC SLED II Pulse Compression System Based on Recent High Power Tests

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.

    2011-01-01

    In the Next Linear Collider (NLC) it is expected that the high power rf components be able to handle peak power levels in excess of 400 MW. We present recent results of high power tests designed to investigate the RF breakdown limits of the X-band pulse compression system used at SLAC. (SLED-II). Results of these tests show that both the TE 01 -TE 10 mode converter and the 4-port hybrid have a maximum useful power limit of 220-250 MW. Based on these tests, modifications of these components have been undertaken to improve their peak field handling capability. Results of these modifications will be presented. As part of an international effort to develop a new 0.5-1.5 TeV electron-positron linear collider for the 21st century, SLAC has been working towards a design, referred to as 'The Next Linear Collider' (NLC), which will operate at 11.424 GHz and utilize 50-75 MW klystrons as rf power sources. One of the major challenges in this design, or any other design, is how to generate and efficiently transport extremely high rf power from a source to an accelerator structure. SLAC has been investigating various methods of 'pulse compressing' a relatively wide rf pulse ((ge) 1 μs) from a klystron into a narrower, but more intense, pulse. Currently a SLED-II pulse compression scheme is being used at SLAC in the NLC Test Accelerator (NLCTA) and in the Accelerator Structures Test Area (ASTA) to provide high rf power for accelerator and component testing. In ASTA, a 1.05 μs pulse from a 50 MW klystron was successfully pulse compressed to 205 MW with a pulse width of 150 ns. Since operation in NLC will require generating and transporting rf power in excess of 400 MW it was decided to test the breakdown limits of the SLED-II rf components in ASTA with rf power up to the maximum available of 400 MW. This required the combining of power from two 50 MW klystrons and feeding the summed power into the SLED-II pulse compressor. Results from this experiment demonstrated that two of

  5. Influence of Fissure Number on the Mechanical Properties of Layer-Crack Rock Models under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yun-liang Tan

    2018-01-01

    Full Text Available Many case studies have revealed that rock bursts generally occur in the high stress concentration area where layer-crack structures often exist, especially for brittle coal or rock masses. Understanding the mechanical properties of layer-crack rock models is beneficial for rational design and stability analysis of rock engineering project and rock burst prevention. This study experimentally investigated the influence of fissure number on the mechanical properties of layer-crack rock models through uniaxial compression tests. The digital speckle correlation method (DSCM and acoustic emission (AE techniques were applied to record and analyze the information of deformation and failure processes. Test results show the following: the bearing capacity of layer-crack specimen decreases compared with intact specimen, but their failure modes are similar, which are the splitting failure accompanied with local shear failure; the nonuniform deformation phenomenon begins to appear at the elastic deformation stage for layer-crack specimens; the AE behavior of intact specimens consists of three stages, that is, active stage, quiet stage, and major active stage, but for layer-crack specimens, it is characteristic by three peaks without quiet stage. In addition, as the fissure number of layer-crack specimens increases, the bearing capacity of specimens decreases, the appearing time of nonuniform deformation phenomenon in the specimen surface decreases, the AE events are denser and denser in each peak stage, and the risk of dynamic instability of layer-crack structure increases. At last, the failure mechanism of layer-crack structure and the related mitigation advices were discussed based on the test results. In general, the novelty is that this paper focuses on the failure mechanism of layer-crack structure directly.

  6. Statistical Analysis of Compressive and Flexural Test Results on the Sustainable Adobe Reinforced with Steel Wire Mesh

    Science.gov (United States)

    Jokhio, Gul A.; Syed Mohsin, Sharifah M.; Gul, Yasmeen

    2018-04-01

    It has been established that Adobe provides, in addition to being sustainable and economic, a better indoor air quality without spending extensive amounts of energy as opposed to the modern synthetic materials. The material, however, suffers from weak structural behaviour when subjected to adverse loading conditions. A wide range of mechanical properties has been reported in literature owing to lack of research and standardization. The present paper presents the statistical analysis of the results that were obtained through compressive and flexural tests on Adobe samples. Adobe specimens with and without wire mesh reinforcement were tested and the results were reported. The statistical analysis of these results presents an interesting read. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. This increase is statistically significant. The flexural response of Adobe has also shown improvement with the addition of wire mesh reinforcement, however, the statistical significance of the same cannot be established.

  7. Analysis of potassium nitrate purification with recovery of solvent through single effect mechanical vapor compression

    Directory of Open Access Journals (Sweden)

    Kiprotich E. Kosgey

    2017-12-01

    Full Text Available Analysis of purification of potassium nitrate with incorporation of single effect mechanical vapor compressor for solvent recovery was done. Analysis focused on the effect of concentration and temperature of mother liquor on the energy efficiency of the process and the amount of recovered solvent. Performance coefficient of mechanical vapor compressor ranged between 1.5 and 7.5 depending primarily on the temperature of mother liquor. It was found that with increase in temperature of mother liquor through pre-heating, the power of the compressor, compression ratio and amount of heat supplied to the evaporator decrease. For a 40% concentrated feed solution and mother liquor temperature above 80 °C, performance coefficient is higher than 4. It is therefore concluded that preheating mother liquor and reduction of the effect of concentration of both mother liquor and concentrated waste stream through other methods reduces the power consumption of purification process. Keywords: Performance coefficient, Mother liquor, Concentrated solution, Recovered solvent, Boiling point elevation, Mechanical vapor compressor

  8. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling

    International Nuclear Information System (INIS)

    Razavi Hesabi, Z.; Hafizpour, H.R.; Simchi, A.

    2007-01-01

    The densification response of aluminum powder reinforced with 5 vol.% nanometric alumina particles (35 nm) during uniaxial compaction in a rigid die was studied. The composite powder was prepared by blending and mechanical milling procedures. To determine the effect of the reinforcement nanoparticles on the compressibility of aluminum powder, monolithic Al powder, i.e. without the addition of alumina, was also examined. It was shown that at the early stage of compaction when the rearrangement of particles is the dominant mechanism of the densification, disintegration of the nanoparticle clusters and agglomerates under the applied load contributes in the densification of the composite powder prepared by blending method. As the compaction pressure increases, however, the load partitioning effect of the nanoparticles decreases the densification rate of the powder mixture, resulting in a lower density compared to the monolithic aluminum. It was also shown that mechanical milling significantly impacts the compressibility of the unreinforced and reinforced aluminum powders. Morphological changes of the particles upon milling increase the contribution of particle rearrangement in densification whilst the plastic deformation mechanism is significantly retarded due to the work-hardening effect of the milling process. Meanwhile, the distribution of alumina nanoparticles is improved by mechanical milling, which in fact, affects the compressibility of the composite powder. This paper addresses the effect of mechanical milling and reinforcement nanoparticles on the compressibility of aluminum powder

  9. Comparison of continuous compression with regular ventilations versus 30:2 compressions-ventilations strategy during mechanical cardiopulmonary resuscitation in a porcine model of cardiac arrest.

    Science.gov (United States)

    Yang, Zhengfei; Liu, Qingyu; Zheng, Guanghui; Liu, Zhifeng; Jiang, Longyuan; Lin, Qing; Chen, Rui; Tang, Wanchun

    2017-09-01

    A compression-ventilation (C:V) ratio of 30:2 is recommended for adult cardiopulmonary resuscitation (CPR) by the current American Heart Association (AHA) guidelines. However, continuous chest compression (CCC) is an alternative strategy for CPR that minimizes interruption especially when an advanced airway exists. In this study, we investigated the effects of 30:2 mechanical CPR when compared with CCC in combination with regular ventilation in a porcine model. Sixteen male domestic pigs weighing 39±2 kg were utilized. Ventricular fibrillation was induced and untreated for 7 min. The animals were then randomly assigned to receive CCC combined with regular ventilation (CCC group) or 30:2 CPR (VC group). Mechanical chest compression was implemented with a miniaturized mechanical chest compressor. At the same time of beginning of precordial compression, the animals were mechanically ventilated at a rate of 10 breaths-per-minute in the CCC group or with a 30:2 C:V ratio in the VC group. Defibrillation was delivered by a single 150 J shock after 5 min of CPR. If failed to resuscitation, CPR was resumed for 2 min before the next shock. The protocol was stopped if successful resuscitation or at a total of 15 min. The resuscitated animals were observed for 72 h. Coronary perfusion pressure, end-tidal carbon dioxide and carotid blood flow in the VC group were similar to those achieved in the CCC group during CPR. No significant differences were observed in arterial blood gas parameters between two groups at baseline, VF 6 min, CPR 4 min and 30, 120 and 360 min post-resuscitation. Although extravascular lung water index of both groups significantly increased after resuscitation, no distinct difference was found between CCC and VC groups. All animals were successfully resuscitated and survived for 72 h with favorable neurologic outcomes in both groups. However, obviously more numbers of rib fracture were observed in CCC animals in comparison with VC animals. There was no

  10. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo

    2015-10-27

    C5 alcohols are considered alternative fuels because they emit less greenhouse gases and fewer harmful pollutants. In this study, the combustion characteristics of 2-methylbutanol (2-methyl-1-butanol) and isopentanol (3-methyl-1-butanol) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction path analyses were conducted at intermediate and high temperatures to identify the most influential reactions controlling ignition of C5 alcohols. The direct relation graph with expert knowledge methodology was used to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was tested at various homogeneous charge compression ignition (HCCI) engine combustion conditions. These simulations were used to investigate the heat release characteristics of the methyl-substituted C5 alcohols, and the results show relatively strong reactions at intermediate temperatures prior to hot ignition. C5 alcohol blending in PRF75 in HCCI combustion leads to a significant decrease of low-temperature heat release (LTHR) and a delay of the main combustion. The heat release features demonstrated by C5 alcohols can be used to improve the design and operation of advanced engine technologies.

  11. Evaluation of bundle duct interaction by out-of-pile compression test of FBR fuel pin bundles

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kosuke; Yamamoto, Yuji; Nagamine, Tsuyoshi; Maeda, Koji [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2001-06-01

    Bundle duct interaction (BDI) caused by expansion of fuel pin bundle is a main factor to limit the fuel lifetime. Therefore, it is important for the design of fast reactor fuel assembly to understand the fuel pin deformation behavior under BDI condition. In order to understand the fuel pin deformation behavior under BDI condition, out-of-pile compression tests were conducted for FBR fuel pin bundle by use of X-ray CT equipment. In these compression tests, two kinds of fuel pin bundles were conducted. One was the fuel pin bundle with the short wire-pitch and the other was the fuel pin bundle with the short wire-pitch and large diameter claddings. The general discussions were also performed based on the results of out-of-pile compression tests obtained by use of X-ray CT equipment in the previous work. Following results were obtained. 1) The occurrence of the pin-to-duct contact depends on the wire-pitch. In the fuel pin bundle with large wire-pitch, the pin-to-duct contact occurred at the early stage of BDI. The reason of this result is due to the low bowing rigidity of the fuel pins with long wire-pitch. 2) The value of the ovalation stiffness strongly depends on the geometry of cladding (diameter, thickness) and especially on wire-pitch. This result in this work revealed that the occurrence of the pin-to-duct contact depends on the value of the ovalation stiffness. 3) The occurrence of wire dispersion and dispersive displacement of pins depends on the wire-pitch strongly. In the fuel pin bundle with the long wire-pitch, the occurrence of the above-mentioned suppression mechanism to BDI is remarkable. 4) The suppression mechanism to BDI of the fuel pin bundle with the long wire-pitch is elastic oval deformation of cladding, wire dispersion and dispersive displacement of pins. On the other hand, the elastic and plastic oval deformation of cladding is the major suppression mechanism to BDI in the fuel pin bundle with the short wire-pitch. 5) The appearance of

  12. A compression and shear loading test of concrete filled steel bearing wall

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Sekimoto, Hisashi; Fukihara, Masaaki; Nakanishi, Kazuo; Hara, Kiyoshi.

    1991-01-01

    Concrete-filled steel bearing walls called SC structure which are the composite structure of concrete and steel plates have larger load-carrying capacity and higher ductility as compared with conventional RC structures, and their construction method enables the rationalization of construction procedures at sites and the shortening of construction period. Accordingly, the SC structures have become to be applied to the inner concrete structures of PWR nuclear power plants, and subsequently, it is planned to apply them to the auxiliary buildings of nuclear power plants. The purpose of this study is to establish a rational design method for the SC structures which can be applied to the auxiliary buildings of nuclear power plants. In this study, the buckling strength of surface plates and the ultimate strength of the SC structure were evaluated with the results of the compression and shear tests which have been carried out. The outline of the study and the tests, the results of the compression test and the shear test and their evaluation are reported. Stud bolts were effective for preventing the buckling of surface plates. The occurrence of buckling can be predicted analytically. (K.I.)

  13. Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2013-08-01

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at ORNL and is described fully in US Patent Application 20060070455, Expanded plug method for developing circumferential mechanical properties of tubular materials. This method is designed for testing fuel rod cladding ductility in a hot cell utilizing an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of specimen strain. It was also found that cladding strength could be determined from the test results. The basic approach of this test method is to apply an axial compressive load to a cylindrical plug of polyurethane (or other materials) fitted inside a short ring of the test material to achieve radial expansion of the specimen. The diameter increase of the specimen is used to calculate the circumferential strain accrued during the test. The other two basic measurements are total applied load and amount of plug compression (extension). A simple procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves. However, several deficiencies exist in this expanded-plug loading ring test, which will impact accuracy of test results and introduce potential shear failure of the specimen due to inherited large axial compressive stress from the expansion plug test. First of all, the highly non-uniform stress and strain distribution resulted in the gage section of the clad. To ensure reliable testing and test repeatability, the potential for highly non-uniform stress distribution or displacement/strain deformation has to be eliminated at the gage section of the specimen. Second, significant

  14. Design and Testing of CO2 Compression Using Supersonic Shockware Technology

    Energy Technology Data Exchange (ETDEWEB)

    Joe Williams; Michael Aarnio; Kirk Lupkes; Sabri Deniz

    2010-08-31

    Documentation of work performed by Ramgen and subcontractors in pursuit of design and construction of a 10 MW supersonic CO{sub 2} compressor and supporting facility. The compressor will demonstrate application of Ramgen's supersonic compression technology at an industrial scale using CO{sub 2} in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aero tools.

  15. Influence of Moisture Content and Compression Axis on Physico-mechanical Properties of Shorea robusta Seeds

    Science.gov (United States)

    Shashikumar, C.; Pradhan, R. C.; Mishra, S.

    2018-02-01

    Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.

  16. Influence of Moisture Content and Compression Axis on Physico-mechanical Properties of Shorea robusta Seeds

    Science.gov (United States)

    Shashikumar, C.; Pradhan, R. C.; Mishra, S.

    2018-06-01

    Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.

  17. Compressive fatigue tests on a unidirectional glass/polyester composite at cryogenic temperatures

    International Nuclear Information System (INIS)

    Stone, E.L.; El-Marazki, L.O.; Young, W.C.

    1979-01-01

    The fatigue testing of a unidirectional glass-reinforced polyester composite at cryogenic temperatures to simulate the cyclic compressive loads of the magnet support struts in a superconductive magnetic energy storage unit is reported. Right circular cylindrical specimens were tested at 77, 4.2 K and room temperature at different stress levels using a 1-Hz haversine waveform imposed upon a constant baseload in a load-controlled closed-loop electrohydraulic test machine. Two failure modes, uniform mushrooming near one end and a 45 deg fracture line through the middle of the specimen, are observed, with no systematic difference in fatigue life between the modes. Fatigue lives obtained at 77 and 4.2 K are found to be similar, with fatigue failure at 100,000 cycles occurring at stress levels of 70 and 75% of the ultimate compressive strengths of specimens at room temperature and 77 K, respectively. The room temperature fatigue lives of the glass/polyester specimens are found to be intermediate between those reported for glass/epoxy composites with different glass contents costing over twice as much

  18. Verification testing of the compression performance of the HEVC screen content coding extensions

    Science.gov (United States)

    Sullivan, Gary J.; Baroncini, Vittorio A.; Yu, Haoping; Joshi, Rajan L.; Liu, Shan; Xiu, Xiaoyu; Xu, Jizheng

    2017-09-01

    This paper reports on verification testing of the coding performance of the screen content coding (SCC) extensions of the High Efficiency Video Coding (HEVC) standard (Rec. ITU-T H.265 | ISO/IEC 23008-2 MPEG-H Part 2). The coding performance of HEVC screen content model (SCM) reference software is compared with that of the HEVC test model (HM) without the SCC extensions, as well as with the Advanced Video Coding (AVC) joint model (JM) reference software, for both lossy and mathematically lossless compression using All-Intra (AI), Random Access (RA), and Lowdelay B (LB) encoding structures and using similar encoding techniques. Video test sequences in 1920×1080 RGB 4:4:4, YCbCr 4:4:4, and YCbCr 4:2:0 colour sampling formats with 8 bits per sample are tested in two categories: "text and graphics with motion" (TGM) and "mixed" content. For lossless coding, the encodings are evaluated in terms of relative bit-rate savings. For lossy compression, subjective testing was conducted at 4 quality levels for each coding case, and the test results are presented through mean opinion score (MOS) curves. The relative coding performance is also evaluated in terms of Bjøntegaard-delta (BD) bit-rate savings for equal PSNR quality. The perceptual tests and objective metric measurements show a very substantial benefit in coding efficiency for the SCC extensions, and provided consistent results with a high degree of confidence. For TGM video, the estimated bit-rate savings ranged from 60-90% relative to the JM and 40-80% relative to the HM, depending on the AI/RA/LB configuration category and colour sampling format.

  19. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    Science.gov (United States)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction

  20. Mechanical behavior of New Mexico rock salt in triaxial compression up to 2000C

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Hannum, D.W.

    1979-07-01

    Three groups of tests are discussed to identify the relative and site-specific importance of deviator stress, confining pressure (mean stress), temperature, time (loading rate), and stress path. The three groups of experiments consist of (1) hydrostatic loading, (2) conventional triaxial compression tests (sigma 1 > sigma 2 = sigma 3 = const.), and (3) variable stress path tests including experiments at approximately constant sigma 1 and at constant mean stress. All data were generated on 100 mm-diameter specimens. The rock salt exhibited nonlinear response under all loading conditions, practically zero initial elastic limit and an apparent inseparability of permanent deformations into time-independent and time-dependent components. Pressure and temperature did not alter the elastic constants but affected the principal strain ratio, the ratio of volumetric to shear strain, rock salt ductility, and the ultimate stress. In particular, low pressure and temperature permitted pronounced dilatancy and loss in load bearing ability. Under such conditions the volumetric strains reached sizable fractions of the shear strains. Pressure remained important even at high temperature because it influenced the rate of shearing. Load path and stress history may be significant under deviatoric loading conditions and for large variations in pressure. 17 figures

  1. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    O Schätti

    2011-10-01

    Full Text Available ere is great interest in how bone marrow derived stem cells make fate decisions. Numerous studies have investigated the role of individual growth factors on mesenchymal stem cell differentiation, leading to protocols for cartilage, bone and adipose tissue. However, these protocols overlook the role of biomechanics on stem cell differentiation. There have been various studies that have applied mechanical stimulation to constructs containing mesenchymal stem cells, with varying degrees of success. One critical fate decision is that between cartilage and bone. Articular motion is a combination of compressive, tensile and shear deformations; therefore, one can presume that compression alone is unlikely to be a sufficient mechanical signal to generate a cartilage-like tissue in vitro. Within this study, we aimed to determine the role of shear on the fate of stem cell differentiation. Specifically, we investigated the potential enhancing effect of surface shear, superimposed on cyclic axial compression, on chondrogenic differentiation of human bone marrow-derived stem cells. Using a custom built loading device we applied compression, shear or a combination of both stimuli onto fibrin/polyurethane composites in which human mesenchymal stem cells were embedded, while no exogenous growth-factors were added to the culture medium. Both compression or shear alone was insufficient for the chondrogenic induction of human mesenchymal stem cells. However, the application of shear superimposed upon dynamic compression led to significant increases in chondrogenic gene expression. Histological analysis detected sulphated glycosaminoglycan and collagen II only in the compression and shear group. The results obtained may provide insight into post-operative care after cell therapy involving mesenchymal stromal cells.

  2. Elastic-plastic deformation of anhydrite and polyhalite as determined from quasi-static triaxial compression tests

    International Nuclear Information System (INIS)

    Pfiefle, T.W.; Senseny, P.E.

    1981-05-01

    Constant stress-rate triaxial compression experiments were performed on specimens of anhydrite and polyhalite at low confining pressure and at two temperatures. The loading rate was 5.75 x 10 -2 MPa s -1 ; the confining pressures were 1, 5, 10, and 20 MPa and the two temperatures were 25 0 C and 100 0 C. The specimens were loaded to failure in a soft testing machine so that failure occurred at peak stress. Results from these experiments were used to construct yield envelopes, failure envelopes and stress-strain curves, and to determine mechanical properties. Yield, determined by the onset of dilatancy, occurs at about sixty percent of peak stress. The effect of temperature on both the yield and failure envelopes is negligible. The polyhalite specimens were found to be about twice as strong as the anhydrite specimens. The stress-strain data were fitted to a constitutive law

  3. Experimental study on poro-mechanical behavior of saturated Meuse-Haute/Marne argillite subjected to triaxial compression

    International Nuclear Information System (INIS)

    Hu, Dawei; Zhang, Fan; Xie, Shouyi; Shao, Jianfu

    2012-01-01

    Document available in extended abstract form only. Due to its low permeability (10 -18 to 10 -20 m 2 ), the Meuse-Haute/Marne argillite is chosen as the candidate host rock for the geological disposal of high-level radioactive waste by 'Agence Nationale de gestion des Dechets Radioactifs' (ANDRA). During the excavation of the underground tunnel in argillite formation, the Excavation Damaged Zone (EDZ) is expected to develop due to the stress redistribution during excavation and subsequent rock convergence. The nucleation and propagation of microcracks in EDZ can consequently affect the poro-mechanical behavior of the host rock. Therefore, it is of crucial importance to study the poro-mechanical behavior of Meuse-Haute/Marne argillite under the influence of stress induced microcracks. For this purpose, this paper presents the original experimental results of drained and undrained triaxial compression tests as well as evolution of Biot's coefficient during hydrostatic and deviatoric loading of saturated Meuse-Haute/Marne argillite. The size of samples used in the present work is 20x20 mm in order to reduce the saturating time. The axis of the cylindrical sample is perpendicular to the bedding planes. The test system is placed in an insulated room and a temperature control system is used to maintain a constant temperature of 20 ±0.2 C. The saturation condition is an important factor for the determination of the mechanical and poro-elastic properties of saturated argillite. Thus, for each sample, after putting into the triaxial cell, the confining pressure is loaded to 2 MPa and we inject distilled water both at the injection and outlet faces in order to insure the pore pressure at the two faces hold at 1 MPa. This procedure will be keep to 72 hours. Then, the pore pressure at the injection face is increased to 1.5 MPa, and we record the pore pressure at the outlet face. Once the pore pressure at the outlet face reaches the same value at injection face, the sample is

  4. Standard test method for compressive (crushing) strength of fired whiteware materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers two test procedures (A and B) for the determination of the compressive strength of fired whiteware materials. 1.2 Procedure A is generally applicable to whiteware products of low- to moderately high-strength levels (up to 150 000 psi or 1030 MPa). 1.3 Procedure B is specifically devised for testing of high-strength ceramics (over 100 000 psi or 690 MPa). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  6. Investigation of Nonlinear Site Response and Seismic Compression from Case History Analysis and Laboratory Testing

    Science.gov (United States)

    Yee, Eric

    In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S

  7. Molecular dynamics simulations indicate that deoxyhemoglobin, oxyhemoglobin, carboxyhemoglobin, and glycated hemoglobin under compression and shear exhibit an anisotropic mechanical behavior.

    Science.gov (United States)

    Yesudasan, Sumith; Wang, Xianqiao; Averett, Rodney D

    2018-05-01

    We developed a new mechanical model for determining the compression and shear mechanical behavior of four different hemoglobin structures. Previous studies on hemoglobin structures have focused primarily on overall mechanical behavior; however, this study investigates the mechanical behavior of hemoglobin, a major constituent of red blood cells, using steered molecular dynamics (SMD) simulations to obtain anisotropic mechanical behavior under compression and shear loading conditions. Four different configurations of hemoglobin molecules were considered: deoxyhemoglobin (deoxyHb), oxyhemoglobin (HbO 2 ), carboxyhemoglobin (HbCO), and glycated hemoglobin (HbA 1C ). The SMD simulations were performed on the hemoglobin variants to estimate their unidirectional stiffness and shear stiffness. Although hemoglobin is structurally denoted as a globular protein due to its spherical shape and secondary structure, our simulation results show a significant variation in the mechanical strength in different directions (anisotropy) and also a strength variation among the four different hemoglobin configurations studied. The glycated hemoglobin molecule possesses an overall higher compressive mechanical stiffness and shear stiffness when compared to deoxyhemoglobin, oxyhemoglobin, and carboxyhemoglobin molecules. Further results from the models indicate that the hemoglobin structures studied possess a soft outer shell and a stiff core based on stiffness.

  8. Miniaturization of specimens for mechanical testing

    International Nuclear Information System (INIS)

    Harling, O.K.; Kohse, G.

    1987-01-01

    The development of mechanical property tests based on bending of a 3 mm diameter by (typically) 0.25 mm thick disk is described. Slow strain rate testing of such a disk is used to obtain tensile properties. Finite element computer modelling is used to extract yield stress values with accuracies of at least +- 10% of uniaxial tensile test values for a variety of materials. Analytical estimates of ductility from disk bend test values are possible for low-ductility materials. Work directed toward finite element calculations for ductility and ultimate tensile strength is also discussed. Preliminary data indicating the feasibility of high strain rate testing for estimation of ductile-to-brittle transition temperatures, and an example of the successful application of miniature bend testing in obtaining relative fatigue information are also presented. (author)

  9. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Directory of Open Access Journals (Sweden)

    Thomas M. Vlasic

    2016-08-01

    Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  10. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-08-15

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  11. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Science.gov (United States)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.

    2016-08-01

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  12. Mechanical Property Measurements and Fracture Propagation Analysis of Longmaxi Shale by Micro-CT Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Minyue Zhou

    2018-05-01

    Full Text Available The mechanical properties and fracture propagation of Longmaxi shale loading under uniaxial compression were measured using eight cylindrical shale specimens (4 mm in diameter and 8 mm in height, with the bedding plane oriented at 0° and 90° to the axial loading direction, respectively, by micro computed tomography (micro-CT. Based on the reconstructed three-dimensional (3-D CT images of cracks, different stages of the crack growth process in the 0° and 90° orientation specimen were revealed. The initial crack generally occurred at relatively smaller loading force in the 0° bedding direction specimen, mainly in the form of tensile splitting along weak bedding planes. Shear sliding fractures were dominant in the specimens oriented at 90°, with a small number of parallel cracks occurring on the bedding plane. The average thickness and volume of cracks in the 90° specimen is higher than those for the specimen oriented at 0°. The geometrical characterization of fractures segmented from CT scan binary images shows that a specific surface area correlates with tortuosity at the different load stages of each specimen. The 3-D box-counting dimension (BCD calculations can accurately reflect crack evolution law in the shale. The results indicate that the cracks have a more complex pattern and rough surface at an orientation of 90°, due to crossed secondary cracks and shear failure.

  13. Processing test of an upgraded mechanical design for PERMCAT reactor

    International Nuclear Information System (INIS)

    Borgognoni, Fabio; Demange, David; Doerr, Lothar; Tosti, Silvano; Welte, Stefan

    2010-01-01

    The PERMCAT membrane reactor is a coaxial combination of a Pd/Ag permeator membrane and a catalyst bed. This device has been proposed for processing fusion reactor plasma exhaust gas. A stream containing tritium (up to 1% of tritium in different chemical forms such as water, methane or molecular hydrogen) is decontaminated in the PERMCAT by counter-current isotopic swamping with protium. Different mechanical designs of the membrane reactor have been proposed to improve robustness and lifetime. The ENEA membrane reactor uses a permeator tube with a length of about 500 mm produced via cold-rolling and diffusion welding of Pd/Ag thin foils: two stainless steel pre-tensioned bellows have been applied to the Pd/Ag tube in order to avoid any significant compressive and bending stresses due to the permeator tube elongation consequent to the hydrogen uptake. An experimental test campaign has been performed using this reactor in order to assess the influence of different operating parameters and to evaluate the overall performance (decontamination factor). Tests have been carried out on two reactor prototypes: a defect-free membrane with complete (infinite) hydrogen selectivity and not perm-selective membrane. In this last case, the study has been aimed at verifying the behaviour of the PERMCAT devices under non-normal (accidental) conditions in the view of providing information for future safety analysis. The paper will present the specific mechanical design and the experimental results of tests based on isotopic exchange between H 2 O and D 2 .

  14. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    Science.gov (United States)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  15. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling

    Science.gov (United States)

    Wang, Heling; Ning, Xin; Li, Haibo; Luan, Haiwen; Xue, Yeguang; Yu, Xinge; Fan, Zhichao; Li, Luming; Rogers, John A.; Zhang, Yihui; Huang, Yonggang

    2018-03-01

    Micro-electromechanical systems (MEMS) that rely on structural vibrations have many important applications, ranging from oscillators and actuators, to energy harvesters and vehicles for measurement of mechanical properties. Conventional MEMS, however, mostly utilize two-dimensional (2D) vibrational modes, thereby imposing certain limitations that are not present in 3D designs (e.g., multi-directional energy harvesting). 3D vibrational micro-platforms assembled through the techniques of controlled compressive buckling are promising because of their complex 3D architectures and the ability to tune their vibrational behavior (e.g., natural frequencies and modes) by reversibly changing their dimensions by deforming their soft, elastomeric substrates. A clear understanding of such strain-dependent vibration behavior is essential for their practical applications. Here, we present a study on the linear and nonlinear vibration of such 3D mesostructures through analytical modeling, finite element analysis (FEA) and experiment. An analytical solution is obtained for the vibration mode and linear natural frequency of a buckled ribbon, indicating a mode change as the static deflection amplitude increases. The model also yields a scaling law for linear natural frequency that can be extended to general, complex 3D geometries, as validated by FEA and experiment. In the regime of nonlinear vibration, FEA suggests that an increase of amplitude of external loading represents an effective means to enhance the bandwidth. The results also uncover a reduced nonlinearity of vibration as the static deflection amplitude of the 3D structures increases. The developed analytical model can be used in the development of new 3D vibrational micro-platforms, for example, to enable simultaneous measurement of diverse mechanical properties (density, modulus, viscosity etc.) of thin films and biomaterials.

  16. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    International Nuclear Information System (INIS)

    Zhu, C.C.; Song, Y.T.; Peng, X.B.; Wei, Y.P.; Mao, X.; Li, W.X.; Qian, X.Y.

    2016-01-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads. - Graphical abstract: From the comparison between the experimental curves and the predicted curves calculated by adopting the corrected m, it is very clear that the new model is of great capability to explain the deformation behavior of the tungsten material under dynamic compression at high temperatures. (EC, PC and PCM refers to experimental curve, predicted curve and predicted curve with a corrected m. Different colors represent different scenarios.). - Highlights: • Test research on dynamic properties of tungsten at working temperature range and strain rate range of divertors. • Constitutive equation descrbing strain hardening, strain rate hardening and temperature softening. • A guidance to estimate dynamical response and damage evolution of tungsten divertor components under impact.

  17. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; Hosson, J.T.M. De

    Quantitative bending and compression tests on micropillars made of two different amorphous alloys, with tip diameters ranging from 93 to 645 rim, are performed in situ in a transmission electron microscope (TEM). Under microcompression each pillar shows an intermittent plastic flow accommodated by

  18. Biaxial mechanical tests in zircaloy-4

    International Nuclear Information System (INIS)

    Mintzer, S.R.; Bordoni, R.A.A.; Falcone, J.M.

    1980-01-01

    The texture of the zircaloy-4 tubes used as cladding in nuclear fuel elements determines anisotropy of the mechanical properties. As a consequence, the uniaxial tests to determine the mechanical behaviour of the tubes are incomplete. Furthermore, the cladding in use is subject to creep with a state of biaxial tensions. For this reason it is also important to determine the biaxial mechanical properties. The creep tests were performed by internal pressure for a state of axial to circumferential tensions of 0.5. Among the experimental procedures are described: preparation of the test specimens, pressurizing equipment, and the implementation of a device that permits a permanent register of the deformation. For the non-irradiated Atucha type zircaloy-4 sheaths, experimental curves of circumferential deformation versus time were obtained, in tests at constant pressure and for different values of temperature and pressure. An empirical function was determined to adjust the experimental values for the speed of the circumferential deformation in terms of the initial tension applied, temperature and deformation, and the change of the corresponding parameters in accordance to the range of the tensions. Also the activation energy for creep was determined. (M.E.L.) [es

  19. UKAEA mechanical test work in sodium

    International Nuclear Information System (INIS)

    Wood, D.S.

    1977-01-01

    The main aim of the UKAEA work is to perform mechanical tests in high quality sodium, and on the basis of relatively long term tests to establish whether factors need to be applied to the air data for the design and assessment of components which will have to operate in sodium for up to 30 years. Most of the tests will be performed in sodium containing 5-10 ppm O 2 and ∼ 1 ppm C with a flow rate over the specimen surface of 3m/sec. Some work is also planned to establish the effect of changes in oxygen level up to 30 ppm on the properties and carburization studies will also be performed. Thin work has been in progress on a limited scale for 2-3 years but is now increasing in magnitude to meet the programme requirements. The materials under test include Type 316 steel and 9% Cr steel with most emphasis being placed on the austenitic steel. From the very limited fatigue and stress rupture tests so far performed on Type 316 steel there is no evidence to suggest that high purity sodium may be detrimental. Longer term tests are necessary however to confirm this finding which is based on results from relatively short term tests. Tests are also necessary in less pure sodium

  20. Micro-Mechanical Analysis About Kink Band in Carbon Fiber/Epoxy Composites Under Longitudinal Compression

    Science.gov (United States)

    Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi

    2017-10-01

    Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.

  1. Experimental Study on the Compressive Strength of Big Mobility Concrete with Nondestructive Testing Method

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2012-01-01

    Full Text Available An experimental study of C20, C25, C30, C40, and C50 big mobility concrete cubes that came from laboratory and construction site was completed. Nondestructive testing (NDT was carried out using impact rebound hammer (IRH techniques to establish a correlation between the compressive strengths and the rebound number. The local curve for measuring strength of the regression method is set up and its superiority is proved. The rebound method presented is simple, quick, and reliable and covers wide ranges of concrete strengths. The rebound method can be easily applied to concrete specimens as well as existing concrete structures. The final results were compared with previous ones from the literature and also with actual results obtained from samples extracted from existing structures.

  2. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  3. Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone:hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering

    Science.gov (United States)

    Eshraghi, Shaun; Das, Suman

    2012-01-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30% HA by volume. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30 respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 MPa to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical finite element analysis (FEA) model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any loading of HA to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. Results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient and site-specific composite tissue engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129

  4. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.

    Science.gov (United States)

    Eshraghi, Shaun; Das, Suman

    2012-08-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite-element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30 vol.% HA. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30, respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical FEA model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any HA loading to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. The results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient- and site-specific composite tissue-engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All

  5. Development of in-situ rock shear test under low compressive to tensile normal stress

    International Nuclear Information System (INIS)

    Nozaki, Takashi; Shin, Koichi

    2003-01-01

    The purpose of this study is to develop an in-situ rock shear testing method to evaluate the shear strength under low normal stress condition including tensile stress, which is usually ignored in the assessment of safety factor of the foundations for nuclear power plants against sliding. The results are as follows. (1) A new in-situ rock shear testing method is devised, in which tensile normal stress can be applied on the shear plane of a specimen by directly pulling up a steel box bonded to the specimen. By applying the counter shear load to cancel the moment induced by the main shear load, it can obtain shear strength under low normal stress. (2) Some model tests on Oya tuff and diatomaceous mudstone have been performed using the developed test method. The shear strength changed smoothly from low values at tensile normal stresses to higher values at compressive normal stresses. The failure criterion has been found to be bi-linear on the shear stress vs normal stress plane. (author)

  6. Investigation of test methods for measuring compressive strength and modulus of two-dimensional carbon-carbon composites

    Science.gov (United States)

    Ohlhorst, Craig W.; Sawyer, James Wayne; Yamaki, Y. Robert

    1989-01-01

    An experimental evaluation has been conducted to ascertain the the usefulness of two techniques for measuring in-plane compressive failure strength and modulus in coated and uncoated carbon-carbon composites. The techniques involved testing specimens with potted ends as well as testing them in a novel clamping fixture; specimen shape, length, gage width, and thickness were the test parameters investigated for both coated and uncoated 0/90 deg and +/-45 deg laminates. It is found that specimen shape does not have a significant effect on the measured compressive properties. The potting of specimen ends results in slightly higher measured compressive strengths than those obtained with the new clamping fixture. Comparable modulus values are obtained by both techniques.

  7. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression.

    Science.gov (United States)

    Dolega, M E; Delarue, M; Ingremeau, F; Prost, J; Delon, A; Cappello, G

    2017-01-27

    The surrounding microenvironment limits tumour expansion, imposing a compressive stress on the tumour, but little is known how pressure propagates inside the tumour. Here we present non-destructive cell-like microsensors to locally quantify mechanical stress distribution in three-dimensional tissue. Our sensors are polyacrylamide microbeads of well-defined elasticity, size and surface coating to enable internalization within the cellular environment. By isotropically compressing multicellular spheroids (MCS), which are spherical aggregates of cells mimicking a tumour, we show that the pressure is transmitted in a non-trivial manner inside the MCS, with a pressure rise towards the core. This observed pressure profile is explained by the anisotropic arrangement of cells and our results suggest that such anisotropy alone is sufficient to explain the pressure rise inside MCS composed of a single cell type. Furthermore, such pressure distribution suggests a direct link between increased mechanical stress and previously observed lack of proliferation within the spheroids core.

  8. Temperature Effects on Tensile and Compressive Mechanical Behaviors of C-S-H Structure via Atomic Simulation

    Directory of Open Access Journals (Sweden)

    Hao Xin

    2017-01-01

    Full Text Available An atomic scale model of amorphous calcium silicate hydrate (C-S-H with Ca/Si ratio of 1.67 is constructed. Effects of temperature on mechanical properties of C-S-H structure under tensile and compressive loading in the layered direction are investigated via molecular dynamics simulations. Results from present simulations show that (1 the tensile strength and Young’s modulus of C-S-H structure significantly decrease with the increase of the temperature; (2 the water layer plays an important role in the mechanical properties of C-S-H structure; (3 the compressive strength is stronger than tensile strength, which corresponds with the characteristic of cement paste.

  9. Standard practice for verification of testing frame and specimen alignment under tensile and compressive axial force application

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.

  10. Standard practice for verification of testing frame and specimen alignment under tensile and compressive axial force application

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.

  11. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture.

    Science.gov (United States)

    Maeda, Eijiro; Nakagaki, Masashi; Ichikawa, Katsuhisa; Nagayama, Kazuaki; Matsumoto, Takeo

    2017-06-01

    Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick. For the ex vivo culture experiment in conjunction with cyclic compressive loading, we developed a custom-made, bioreactor system where both the load and the deformation applied to the specimen was recorded. Cyclic compression, with an amplitude of 0.3 N corresponding to 1 to 2% compressive strain, was applied to immature bone specimen during a 3-day culture period at an overall loading rate 3-4 cycles/min, in the presence of β-glycerol phosphate and dexamethasone in culture medium. The stress-strain relationship was obtained at the beginning and the end of the culture experiment. In addition, analyses for alkaline phosphate release, cell viability and tissue calcification were also performed. It was exhibited that elastic moduli of bone slices were significantly elevated at the end of the 3-day culture in the presence of cyclic compression, which was a similar phenomenon to significant elevation of the elastic moduli of bone tissue by the maturation from 0-day old to 3-day old. By contrast, no significant changes in the moduli were observed in the absence of cyclic compression or in deactivated, cell-free samples. The increases in the moduli were coincided with the increase in calcified area in the bone samples. It was confirmed that immature bone can respond to compressive loading in vitro and demonstrate the growth of bone matrix, similar to natural, in vivo maturation. The elevation of the elastic moduli was attributable to the increased calcified area and the realignment of collagen fibers parallel to

  12. Effects of cyclic compression on the mechanical properties and calcification process of immature chick bone tissue in culture

    Directory of Open Access Journals (Sweden)

    Eijiro Maeda

    2017-06-01

    Full Text Available Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick. For the ex vivo culture experiment in conjunction with cyclic compressive loading, we developed a custom-made, bioreactor system where both the load and the deformation applied to the specimen was recorded. Cyclic compression, with an amplitude of 0.3 N corresponding to 1 to 2% compressive strain, was applied to immature bone specimen during a 3-day culture period at an overall loading rate 3–4 cycles/min, in the presence of β-glycerol phosphate and dexamethasone in culture medium. The stress-strain relationship was obtained at the beginning and the end of the culture experiment. In addition, analyses for alkaline phosphate release, cell viability and tissue calcification were also performed. It was exhibited that elastic moduli of bone slices were significantly elevated at the end of the 3-day culture in the presence of cyclic compression, which was a similar phenomenon to significant elevation of the elastic moduli of bone tissue by the maturation from 0-day old to 3-day old. By contrast, no significant changes in the moduli were observed in the absence of cyclic compression or in deactivated, cell-free samples. The increases in the moduli were coincided with the increase in calcified area in the bone samples. It was confirmed that immature bone can respond to compressive loading in vitro and demonstrate the growth of bone matrix, similar to natural, in vivo maturation. The elevation of the elastic moduli was attributable to the increased calcified area and the realignment of collagen

  13. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage

    Science.gov (United States)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-12-01

    Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.

  14. Dynamic restoration mechanism and physically based constitutive model of 2050 Al–Li alloy during hot compression

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruihua; Liu, Qing [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Jinfeng, E-mail: lijinfeng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xiang, Sheng [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Chen, Yonglai; Zhang, Xuhu [Aerospace Research Institute of Materials and Processing Technology, Beijing 100076 (China)

    2015-11-25

    Dynamic restoration mechanism of 2050 Al–Li alloy and its constitutive model were investigated by means of hot compression simulation in the deformation temperature ranging from 340 to 500 °C and at strain rates of 0.001–10 s{sup −1}. The microstructures of the compressed samples were observed using optical microscopy and transmission electron microscopy. On the base of dislocation density theory and Avrami kinetics, a physically based constitutive model was established. The results show that dynamic recovery (DRV) and dynamic recrystallization (DRX) are co-responsible for the dynamic restoration during the hot compression process under all compression conditions. The dynamic precipitation (DPN) of T1 and σ phases was observed after the deformation at 340 °C. This is the first experimental evidence for the DPN of σ phase in Al–Cu–Li alloys. The particle stimulated nucleation of DRX (PSN-DRX) due to the large Al–Cu–Mn particle was also observed. The error analysis suggests that the established constitutive model can adequately describe the flow stress dependence on strain rate, temperature and strain during the hot deformation process. - Highlights: • The experimental evidence for the DPN of σ phase in Al–Cu–Li alloys was found. • The PSN-DRX due to the large Al–Cu–Mn particle was observed. • A novel method was proposed to calculated the stress multiplier α.

  15. Testing the foundations of quantum mechanics

    CERN Document Server

    Gisin, Nicolas; CERN. Geneva

    1999-01-01

    Quantum mechanics is certainly one of the most fascinating field of physics. In recent years, the new field of "quantum information processing" based on the most fundamental aspect of quantum mechanics, like linearity and entanglement, even increased and its peculiarities. In this series of 4 lectures we shall present some of the issues and experiments that test quantum theory. Entanglement leads, on the one hand side, to the measurement problem, to the EPR paradox and to quantum nonlocality ( distant systems). We will derive the Bell inequality, present experimental results that provide huge evidence in favor of quantum nonlocality and discuss some loopholes that are still open. On the other side, entanglement offers many new possibilities for information processing. Indeed, it provides means to carry out tasks that are either impossible classically (like quantum cryptography and quantum teleportation) or that would require significantly more steps to perform on a classical computer (like searching a databas...

  16. Effect of loading rate on the compressive mechanics of the immature baboon cervical spine.

    Science.gov (United States)

    Elias, Paul Z; Nuckley, David J; Ching, Randal P

    2006-02-01

    Thirty-four cervical spine segments were harvested from 12 juvenile male baboons and compressed to failure at displacement rates of 5, 50, 500, or 5000 mm/s. Compressive stiffness, failure load, and failure displacement were measured for comparison across loading rate groups. Stiffness showed a significant concomitant increase with loading rate, increasing by 62% between rates of 5 and 5000 mm/s. Failure load also demonstrated an increasing relationship with loading rate, while displacement at failure showed no rate dependence. These data may help in the development of improved pediatric automotive safety standards and more biofidelic physical and computational models.

  17. Laboratory rock mechanics testing manual. Public draft

    Energy Technology Data Exchange (ETDEWEB)

    Shuri, F S; Cooper, J D; Hamill, M L

    1981-10-01

    Standardized laboratory rock mechanics testing procedures have been prepared for use in the National Terminal Waste Storage Program. The procedures emphasize equipment performance specifications, documentation and reporting, and Quality Assurance acceptance criteria. Sufficient theoretical background is included to allow the user to perform the necessary data reduction. These procedures incorporate existing standards when possible, otherwise they represent the current state-of-the-art. Maximum flexibility in equipment design has been incorporated to allow use of this manual by existing groups and to encourage future improvements.

  18. Temperature buffer test. Hydro-mechanical and chemical/ mineralogical characterizations

    International Nuclear Information System (INIS)

    Aakesson, Mattias; Olsson, Siv; Dueck, Ann; Nilsson, Ulf; Karnland, Ola; Kiviranta, Leena; Kumpulainen, Sirpa; Linden, Johan

    2012-01-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aspo HRL. It was installed during the spring of 2003. Two steel heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by rings of compacted Wyoming bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the hydro-mechanical and chemical/mineralogical characterization program which was launched subsequent to the dismantling operation. The main goal has been to investigate if any significant differences could be observed between material from the field experiment and the reference material. The field samples were mainly taken from Ring 4 (located at the mid-section around the lower heater), in which the temperature in the innermost part reached 155 deg C. The following hydro-mechanical properties have been determined for the material (test technique within brackets): hydraulic conductivity (swelling pressure device), swelling pressure (swelling pressure device), unconfined compression strength (mechanical press), shear strength (triaxial cell) and retention properties (jar method). The following chemical/mineralogical properties (methods within brackets) were determined: anion analysis of water leachates (IC), chemical composition (ICP/AES+MS, EGA), cation exchange capacity (CEC, Cu-trien method) and exchangeable cations (exchange with NH4, ICPAES), mineralogical composition (XRD and FTIR), element distribution and microstructure (SEM and

  19. Constitutive behavior and microstructure evolution of the as-extruded AE21 magnesium alloy during hot compression testing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.-X. [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Fang, G., E-mail: fangg@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Leeflang, M.A.; Duszczyk, J.; Zhou, J. [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-02-15

    Highlights: • Constitutive equation of magnesium alloy AE21 for hot deformation is established. • Material processing history affects the activation energy for deformation. • Zener-Hollomon parameter is used to distinguish the shapes of flow stress curves. • Kink band plays an important role in causing a concave shape of the flow curve of AE21. - Abstract: Magnesium alloys containing rare earth elements possess improved corrosion resistance and mechanical properties and therefore have great potential for a wide range of applications including biomedical applications. Hot forming is meant not only for shaping but also for microstructure modification and performance enhancement. It is of great importance to define optimum forming conditions on the basis of a fundamental understanding of the response of magnesium alloys to deformation. The present study aimed at characterizing the hot deformation behavior of the as-extruded AE21 magnesium alloy by performing isothermal compression tests over a temperature range of 350-480 °C and a strain rate range of 0.001-10 s{sup -1}. Flow stress data obtained were intended for establishing a constitutive equation, which would be indispensable for the prediction of the response of the material to hot deformation, for example, by means of numerical simulation. The true stress-strain curves obtained from the experiments were analyzed, considering different mechanisms of microstructure evolution operating during compression testing at different stages. The Sellar and Tegart model was used to establish the constitutive equation of the alloy during the steady-state deformation. The differences in activation energy value between the present as-extruded magnesium alloy and other wrought magnesium alloys were found and attributed to materials processing history. The Zener-Hollomon parameter was used to correlate the deformation condition with the response of the material to deformation, reflected in the shape of the true stress

  20. Axial Compression Tests on Corroded Reinforced Concrete Columns Consolidated with Fibre Reinforced Polymers

    Directory of Open Access Journals (Sweden)

    Bin Ding

    2017-06-01

    Full Text Available Reinforced concrete structure featured by strong bearing capacity, high rigidity, good integrity, good fire resistance, and extensive applicability occupies a mainstream position in contemporary architecture. However, with the development of social economy, people need higher requirements on architectural structure; durability, especially, has been extensively researched. Because of the higher requirement on building material, ordinary reinforced concrete structure has not been able to satisfy the demand. As a result, some new materials and structures have emerged, for example, fibre reinforced polymers. Compared to steel reinforcement, fibre reinforced polymers have many advantages, such as high tensile strength, good durability, good shock absorption, low weight, and simple construction. The application of fibre reinforced polymers in architectural structure can effectively improve the durability of the concrete structure and lower the maintenance, reinforcement, and construction costs in severe environments. Based on the concepts of steel tube concrete, fibre reinforced composite material confined concrete, and fibre reinforced composite material tubed concrete, this study proposes a novel composite structure, i.e., fibre reinforced composite material and steel tube concrete composite structure. The structure was developed by pasting fibre around steel tube concrete and restraining core concrete using fibre reinforced composite material and steel tubes. The bearing capacity and ultimate deformation capacity of the structure was tested using column axial compression test.

  1. Energy storage, compression, and switching in a theta-pinch fusion test reactor

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1976-01-01

    A new 488 MJ superconducting magnetic energy storage and transfer system is being proposed for a Scyllac Fusion Test Reactor. The 1280 module system uses vacuum interrupters to switch 26 kA storage currents in 0.7 ms through a capacitive transfer circuit at 60 kV to the compression coils in the machine. Many of the components of the system have been built and tested and a prototype section of the machine is planned. Prototype coils with 381 kJ at 26 kA currents will be built by industry using advanced superconducting wire. The wire uses a Cu and Cu--Ni matrix around filaments of Nb--Ti to minimize eddy current losses. These wires are presently used in a 10 kA braided conductor for 300 kJ pre-prototype coils, and can withstand field changes of approximately 10 7 gauss/sec without inducing normal transitions. Three such 300 kJ coils are being constructed in industry for the LASL program

  2. Influence of crystal habit on the compression and densification mechanism of ibuprofen

    Science.gov (United States)

    Di Martino, Piera; Beccerica, Moira; Joiris, Etienne; Palmieri, Giovanni F.; Gayot, Anne; Martelli, Sante

    2002-08-01

    Ibuprofen was recrystallized from several solvents by two different methods: addition of a non-solvent to a drug solution and cooling of a drug solution. Four samples, characterized by different crystal habit, were selected: sample A, sample E and sample T, recrystallized respectively from acetone, ethanol and THF by addition of water as non-solvent and sample M recrystallized from methanol by temperature decrease. By SEM analysis, sample were characterized with the respect of their crystal habit, mean particle diameter and elongation ratio. Sample A appears stick-shaped, sample E acicular with lamellar characteristics, samples T and M polyhedral. DSC and X-ray diffraction studies permit to exclude a polymorphic modification of ibuprofen during crystallization. For all samples micromeritics properties, densification behaviour and compression ability was analysed. Sample M shows a higher densification tendency, evidenciated by its higher apparent and tapped particle density. The ability to densificate is also pointed out by D0' value of Heckel's plot, which indicate the rearrangement of original particles at the initial stage of compression. This fact is related to the crystal habit of sample M, which is characterized by strongly smoothed coins. The increase in powder bed porosity permits a particle-particle interaction of greater extent during the subsequent stage of compression, which allows higher tabletability and compressibility.

  3. Mechanical Properties of Steel-FRP Composite Bars under Tensile and Compressive Loading

    Directory of Open Access Journals (Sweden)

    Zeyang Sun

    2017-01-01

    Full Text Available The factory-produced steel-fiber reinforced polymer composite bar (SFCB is a new kind of reinforcement for concrete structures. The manufacturing technology of SFCB is presented based on a large number of handmade specimens. The calculated stress-strain curves of ordinary steel bar and SFCB under repeated tensile loading agree well with the corresponding experimental results. The energy-dissipation capacity and residual strain of both steel bar and SFCB were analyzed. Based on the good simulation results of ordinary steel bar and FRP bar under compressive loading, the compressive behavior of SFCB under monotonic loading was studied using the principle of equivalent flexural rigidity. There are three failure modes of SFCB under compressive loading: elastic buckling, postyield buckling, and no buckling (ultimate compressive strength is reached. The increase in the postyield stiffness of SFCB rsf can delay the postyield buckling of SFCB with a large length-to-diameter ratio, and an empirical equation for the relationship between the postbuckling stress and rsf is suggested, which can be used for the design of concrete structures reinforced by SFCB to consider the effect of reinforcement buckling.

  4. Recalculation of compression tests on damping materials in the frame of the research project QUEST; Nachrechnungen von Stauchversuchen an Daempfermaterialien im Forschungsvorhaben Quest

    Energy Technology Data Exchange (ETDEWEB)

    Schopphoff, E.; Vallentin, R. [Wissenschaftlich-Technische Ingenieurberatung GmbH (WTI), Juelich (Germany); Glutsch, S.; Hueggenberg, R. [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2011-07-01

    The mechanical design of packaging containers for radioactive material transport and storage using numerical techniques is a resilient and sufficient exact prediction of the mechanical loads due to drop accident scenarios. The correct simulation of energy dissipation of the involved shock absorbing components and materials is of main importance. The behavior of components and materials is dependent on deformation speed and environmental conditions, esp. temperature. Within the research project QUEST numerical methods based on compression test results from different damping materials are developed for the optimization of mechanical load simulation. Test results are described for polyurethane foam, wood and damping concrete. The finite element based simulation is aimed to develop and verify material models based on the experimental material reference curves.

  5. Processing test of an upgraded mechanical design for PERMCAT reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borgognoni, Fabio, E-mail: fabio.borgognoni@enea.i [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Demange, David; Doerr, Lothar [Forschungszentrum Karlsruhe GmbH, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany); Tosti, Silvano [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Welte, Stefan [Forschungszentrum Karlsruhe GmbH, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany)

    2010-12-15

    The PERMCAT membrane reactor is a coaxial combination of a Pd/Ag permeator membrane and a catalyst bed. This device has been proposed for processing fusion reactor plasma exhaust gas. A stream containing tritium (up to 1% of tritium in different chemical forms such as water, methane or molecular hydrogen) is decontaminated in the PERMCAT by counter-current isotopic swamping with protium. Different mechanical designs of the membrane reactor have been proposed to improve robustness and lifetime. The ENEA membrane reactor uses a permeator tube with a length of about 500 mm produced via cold-rolling and diffusion welding of Pd/Ag thin foils: two stainless steel pre-tensioned bellows have been applied to the Pd/Ag tube in order to avoid any significant compressive and bending stresses due to the permeator tube elongation consequent to the hydrogen uptake. An experimental test campaign has been performed using this reactor in order to assess the influence of different operating parameters and to evaluate the overall performance (decontamination factor). Tests have been carried out on two reactor prototypes: a defect-free membrane with complete (infinite) hydrogen selectivity and not perm-selective membrane. In this last case, the study has been aimed at verifying the behaviour of the PERMCAT devices under non-normal (accidental) conditions in the view of providing information for future safety analysis. The paper will present the specific mechanical design and the experimental results of tests based on isotopic exchange between H{sub 2}O and D{sub 2}.

  6. Compression test of cold-formedsteel perforated profile with steel sheathing

    Directory of Open Access Journals (Sweden)

    Shamanin Aleksandr Yur’evich

    2015-05-01

    Full Text Available The subject of this paper is the stability and strength of cold-formed and perforated steel sigma-section columns with steel sheathing of different thickness. Ceilings with and without steel sheathing of different thickness are tested to failure in compression on a laboratory machine, which was based on a manual hydraulic jack. Series of 4 experiments with full-scale walls (2.5 m height were carried out. Also, for examination of the role of boundary conditions, the sheet in a ceiling is either left free or connected to base with screws.In civil engineering there are many experiments and methodologies for calculating the strength and buckling of ceiling with the sheathing of various materials, such as oriented strand board and gypsum board. However, for producing superstructures of ships the materials with high plastic properties and strength characteristics are required. For example steel possesses such properties. It was the main reason for conducting a series of experiments and studying the behavior of cold-formed steel columns with steel sheathing. During the experiments the deformation of the cross-section of three equally spaced cross sections was determined, as well as the axial deformation of the central column in the ceiling with steel sheathing.The test results showed the influence of the thickness of sheathing and boundary condition of a sheet on the strength and buckling of ceiling. According to the results of the tests it is necessary to evaluate the impact of the sheathing made of different materials and if necessary to carry out further tests.

  7. The Impact of Nitinol Staples on the Compressive Forces, Contact Area, and Mechanical Properties in Comparison to a Claw Plate and Crossed Screws for the First Tarsometatarsal Arthrodesis.

    Science.gov (United States)

    Aiyer, Amiethab; Russell, Nicholas A; Pelletier, Matthew H; Myerson, Mark; Walsh, William R

    2016-06-01

    Background The optimal fixation method for the first tarsometatarsal arthrodesis remains controversial. This study aimed to develop a reproducible first tarsometatarsal testing model to evaluate the biomechanical performance of different reconstruction techniques. Methods Crossed screws or a claw plate were compared with a single or double shape memory alloy staple configuration in 20 Sawbones models. Constructs were mechanically tested in 4-point bending to 1, 2, and 3 mm of plantar displacement. The joint contact force and area were measured at time zero, and following 1 and 2 mm of bending. Peak load, stiffness, and plantar gapping were determined. Results Both staple configurations induced a significantly greater contact force and area across the arthrodesis than the crossed screw and claw plate constructs at all measurements. The staple constructs completely recovered their plantar gapping following each test. The claw plate generated the least contact force and area at the joint interface and had significantly greater plantar gapping than all other constructs. The crossed screw constructs were significantly stiffer and had significantly less plantar gapping than the other constructs, but this gapping was not recoverable. Conclusions Crossed screw fixation provides a rigid arthrodesis with limited compression and contact footprint across the joint. Shape memory alloy staples afford dynamic fixation with sustained compression across the arthrodesis. A rigid polyurethane foam model provides an anatomically relevant comparison for evaluating the interface between different fixation techniques. Clinical Relevance The dynamic nature of shape memory alloy staples offers the potential to permit early weight bearing and could be a useful adjunctive device to impart compression across an arthrodesis of the first tarsometatarsal joint. Therapeutic, Level V: Bench testing. © 2015 The Author(s).

  8. Improving the standard of the standard for glass ionomers: an alternative to the compressive fracture strength test for consideration?

    LENUS (Irish Health Repository)

    Dowling, Adam H

    2012-03-01

    Three strength tests (compressive, three point flexure and biaxial) were performed on three glass ionomer (GI) restoratives to assess the most appropriate methodology in terms of validity and reliability. The influence of mixing induced variability on the data sets generated were eliminated by using encapsulated GIs.

  9. Stress transmission through Ti-Ni alloy, titanium and stainless steel in impact compression test.

    Science.gov (United States)

    Yoneyama, T; Doi, H; Kobayashi, E; Hamanaka, H; Tanabe, Y; Bonfield, W

    2000-06-01

    Impact stress transmission of Ti-Ni alloy was evaluated for biomedical stress shielding. Transformation temperatures of the alloy were investigated by means of DSC. An impact compression test was carried out with use of split-Hopkinson pressure-bar technique with cylindrical specimens of Ti-Ni alloy, titanium and stainless steel. As a result, the transmitted pulse through Ti-Ni alloy was considerably depressed as compared with those through titanium and stainless steel. The initial stress reduction was large through Ti-Ni alloy and titanium, but the stress reduction through Ti-Ni alloy was more continuous than titanium. The maximum value in the stress difference between incident and transmitted pulses through Ti-Ni alloy or titanium was higher than that through stainless steel, while the stress reduction in the maximum stress through Ti-Ni alloy was statistically larger than that through titanium or stainless steel. Ti-Ni alloy transmitted less impact stress than titanium or stainless steel, which suggested that the loading stress to adjacent tissues could be decreased with use of Ti-Ni alloy as a component material in an implant system. Copyright 2000 Kluwer Academic Publishers

  10. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and 3 He ions, respectively. When the plasma was compressed, the d(d,n) 3 He fusion reaction rate increased a factor of five, and the 3 He(d,p) 4 He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling

  11. Comparison between optical coherence tomography technique and mechanical compression assay to evaluate ionizing radiation effects in frozen and lyophilized bone Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany Plumeri; Freitas, Anderson Zanardi de; Martinho Junior, Antonio Carlos; Dias, Djalma Batista; Soares, Fernando Augusto Neves; Pino, Eddy Segura; Veloso, Marcelo Noronha; Mathor, Monica B., E-mail: spsantin@usp.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Santos, Luiz Augusto Ubirajara, E-mail: augustosantos@terra.com.br [Universidade de Sao Paulo (IOT/HCFUSP), Sao Paulo, SP (Brazil). Fac. de Medicina. Instituto de Ortopedia e Traumatologia

    2013-07-01

    Currently tissue banks have utilized ionizing radiation to sterilize bone tissues to be used as allograft. This method is advantageous when compared with other techniques, because the tissue is sterilized in its final packaging avoiding later contaminations, another advantage is due to the fact occur only a minimal increase in temperature, in addition to provide a Sterility Assurance Level (SAL) of 10{sup -6}, as recommended by national and international standards. However, there are several studies investigating the modifications that this method of sterilization may cause to the bone matrix, for example, alterations in the resistance to compression force. The compressive mechanical tests are highly used to evaluate the decrease in the mechanical strength; however it is a destructive assay. In this study, we used Optical Coherence Tomography to evaluate these possible changes. This technique is advantageous, for do not destroy the sample and enable the performing of other assays with the same sample. In literature, it is possible to find several studies about mechanical changes occasioned by destructive tests. Therefore, this study aims to compare the results of both techniques. It was selected four donors to obtain eight samples of fibula, through a partnership with the Tissue Bank (Instituto de Traumatologia do Hospital das Clinicas da Universidade de Sao Paulo). From each donor were separated twelve samples for preservation by freezing and twelve samples for preservation by lyophilization. The samples were analyzed by Optical Coherence Tomography (OCT) after irradiation at different doses (15, 25 and 50 kGy), in addition to non-irradiated control. After the samples were analyzed by Optical Coherence Tomography the same were subjected to mechanical testing. The data were analyzed by software developed by Dr. Anderson Zanardi de Freitas to calculate the total attenuation coefficient of photons. Nevertheless, only the preservation method may induce to alterations

  12. Comparison between optical coherence tomography technique and mechanical compression assay to evaluate ionizing radiation effects in frozen and lyophilized bone Tissue

    International Nuclear Information System (INIS)

    Santin, Stefany Plumeri; Freitas, Anderson Zanardi de; Martinho Junior, Antonio Carlos; Dias, Djalma Batista; Soares, Fernando Augusto Neves; Pino, Eddy Segura; Veloso, Marcelo Noronha; Mathor, Monica B.; Santos, Luiz Augusto Ubirajara

    2013-01-01

    Currently tissue banks have utilized ionizing radiation to sterilize bone tissues to be used as allograft. This method is advantageous when compared with other techniques, because the tissue is sterilized in its final packaging avoiding later contaminations, another advantage is due to the fact occur only a minimal increase in temperature, in addition to provide a Sterility Assurance Level (SAL) of 10 -6 , as recommended by national and international standards. However, there are several studies investigating the modifications that this method of sterilization may cause to the bone matrix, for example, alterations in the resistance to compression force. The compressive mechanical tests are highly used to evaluate the decrease in the mechanical strength; however it is a destructive assay. In this study, we used Optical Coherence Tomography to evaluate these possible changes. This technique is advantageous, for do not destroy the sample and enable the performing of other assays with the same sample. In literature, it is possible to find several studies about mechanical changes occasioned by destructive tests. Therefore, this study aims to compare the results of both techniques. It was selected four donors to obtain eight samples of fibula, through a partnership with the Tissue Bank (Instituto de Traumatologia do Hospital das Clinicas da Universidade de Sao Paulo). From each donor were separated twelve samples for preservation by freezing and twelve samples for preservation by lyophilization. The samples were analyzed by Optical Coherence Tomography (OCT) after irradiation at different doses (15, 25 and 50 kGy), in addition to non-irradiated control. After the samples were analyzed by Optical Coherence Tomography the same were subjected to mechanical testing. The data were analyzed by software developed by Dr. Anderson Zanardi de Freitas to calculate the total attenuation coefficient of photons. Nevertheless, only the preservation method may induce to alterations in

  13. Mechanical Stresses Induced by Compression in Castings of the Load-carrying Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.

    2016-06-01

    Full Text Available The main aim of this study was to examine the compression-induced state of stress arising in castings of the guide grates during operation in pusher-type furnaces for heat treatment. The effect of grate compression is caused by its forced movement in the furnace. The introduction of flexible segments to the grate structure changes in a significant way the stress distribution, mainly by decreasing its value, and consequently considerably extends the lifetime of the grates. The stress distribution was examined in the grates with flexible segments arranged crosswise (normal to the direction of the grate compression and lengthwise (following the direction of force. A regression equation was derived to describe the relationship between the stress level in a row of ribs in the grate and the number of flexible segments of a lengthwise orientation placed in this row. It was found that, regardless of the distribution of the flexible segments in a row, the stress values were similar in all the ribs included in this row, and in a given row of the ribs/flexible segments a similar state of stress prevailed, irrespective of the position of this row in the whole structure of the grate and of the number of the ribs/flexible segments introduced therein. Parts of the grate responsible for the stress transfer were indicated and also parts which play the role of an element bonding the structure.

  14. Analytic examination of mechanism for compressive residual stress introduction with low plastic strain using peening

    International Nuclear Information System (INIS)

    Ishibashi, Ryo; Hato, Hisamitsu; Miyazaki, Katsumasa; Yoshikubo, Fujio

    2016-01-01

    Our goal for this study was to understand the cause of the differences in surface properties between surfaces processed using water jet peening (WJP) and shot peening (SP) and to examine the compressive residual stress introduction process with low plastic strain using SP. The dynamic behaviors of stress and strain in surfaces during these processes were analyzed through elasto-plastic calculations using a finite-element method program, and the calculated results were compared with measured results obtained through experiments. Media impacting a surface results in a difference in the hardness and microstructure of the processed surface. During SP, a shot deforms the surface locally with stress concentration in the early stages of the impact, while shock waves deform the surface evenly throughout the wave passage across the surface during WJP. A shot with a larger diameter creates a larger impact area on the surface during shot impact. Thus, SP with a large-diameter shot suppresses the stress concentration under the same kinetic energy condition. As the shot diameter increases, the equivalent plastic strain decreases. On the other hand, the shot is subject to size restriction since the calculated results indicate the compressive residual stress at the surface decreased and occasionally became almost zero as the shot diameter increased. Thus, compressive residual stress introduction with low plastic strain by using SP is considered achievable by using shots with a large diameter and choosing the appropriate peening conditions. (author)

  15. The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste.

    Science.gov (United States)

    Hossain, M S; Gabr, M A; Asce, F

    2009-09-01

    In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32 degrees and 27 degrees for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.

  16. Role of failure-mechanism identification in accelerated testing

    Science.gov (United States)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  17. Effects of Wavenumber and Chirality on the Axial Compressive Behavior of Wavy Carbon Nanotubes: A Molecular Mechanics Study

    Directory of Open Access Journals (Sweden)

    Masaki Kawachi

    2014-01-01

    Full Text Available The effects of wavenumber and chirality on the axial compressive behavior and properties of wavy carbon nanotubes (CNTs with multiple Stone-Wales defects are investigated using molecular mechanics simulations with the adaptive intermolecular reactive empirical bond-order potential. The wavy CNTs are assumed to be point-symmetric with respect to their axial centers. It is found that the wavy CNT models, respectively, exhibit a buckling point and long wavelength buckling mode regardless of the wavenumbers and chiralities examined. It is also found that the wavy CNTs have nearly the same buckling stresses as their pristine straight counterparts.

  18. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2015-01-01

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system

  19. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system.

  20. Testing program for determining the mechanical properties of concrete to temperatures of 6210C

    International Nuclear Information System (INIS)

    Oland, C.B.; Naus, D.J.; Robinson, G.C.

    1980-01-01

    Concrete temperatures in a Liquid Metal Fast Breeder Reactor (LMFBR) in excess of normal code limits can result from postulated large sodium spills in equipment cells. Elevated temperature concrete property data which may have application for providing a basis for the design and evaluation of such postulated accident conditions is limited. Data thus needed to be developed commensurate with LMFBR plant applications for critical physical and mechanical concrete properties under prototypic thermal accident conditions. A test program was conducted to define the variations in physical and mechanical properties of a limestone aggregate concrete and a lightweight insulating concrete exposed to elevated temperatures. Five test series were conducted: unconfined compression, shear, rebar bond, sustained loading (creep), and thermal properties. Testing procedures for determining the mechanical properties of concrete from ambient to 621 0 C (1150 0 F) are described. Ther thermal properties tests are discussed in a separate paper which is also being presented at this conference

  1. Compressed Sensing mm-Wave SAR for Non-Destructive Testing Applications Using Multiple Weighted Side Information

    Directory of Open Access Journals (Sweden)

    Mathias Becquaert

    2018-05-01

    Full Text Available This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1 between the components inside the side information and (2 between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.

  2. No Benefit in Neurologic Outcomes of Survivors of Out-of-Hospital Cardiac Arrest with Mechanical Compression Device.

    Science.gov (United States)

    Newberry, Ryan; Redman, Ted; Ross, Elliot; Ely, Rachel; Saidler, Clayton; Arana, Allyson; Wampler, David; Miramontes, David

    2018-01-01

    Out-of-hospital cardiac arrest (OHCA) is a major cause of death and morbidity in the United States. Quality cardiopulmonary resuscitation (CPR) has proven to be a key factor in improving survival. The aim of our study was to investigate the outcomes of OHCA when mechanical CPR (LUCAS 2 Chest Compression System™) was utilized compared to conventional CPR. Although controlled trials have not demonstrated a survival benefit to the routine use of mechanical CPR devices, there continues to be an interest for their use in OHCA. We conducted a retrospective observational study of OHCA comparing the outcomes of mechanical and manual chest compressions in a fire department based EMS system serving a population of 1.4 million residents. Mechanical CPR devices were geographically distributed on 11 of 33 paramedic ambulances. Data were collected over a 36-month period and outcomes were dichotomized based on utilization of mechanical CPR. The primary outcome measure was survival to hospital discharge with a cerebral performance category (CPC) score of 1 or 2. This series had 3,469 OHCA reports, of which 2,999 had outcome data and met the inclusion criteria. Of these 2,236 received only manual CPR and 763 utilized a mechanical CPR device during the resuscitation. Return of spontaneous circulation (ROSC) was attained in 44% (334/763) of the mechanical CPR resuscitations and in 46% (1,020/2,236) of the standard manual CPR resuscitations (p = 0.32). Survival to hospital discharge was observed in 7% (52/763) of the mechanical CPR resuscitations and 9% (191/2,236) of the manual CPR group (p = 0.13). Discharge with a CPC score of 1 or 2 was observed in 4% (29/763) of the mechanical CPR resuscitation group and 6% (129/2,236) of the manual CPR group (p = 0.036). In our study, use of the mechanical CPR device was associated with a poor neurologic outcome at hospital discharge. However, this difference was no longer evident after logistic regression adjusting for confounding variables

  3. The Avalanche Hypothesis and Compression of Morbidity: Testing Assumptions through Cohort-Sequential Analysis.

    Directory of Open Access Journals (Sweden)

    Jordan Silberman

    Full Text Available The compression of morbidity model posits a breakpoint in the adult lifespan that separates an initial period of relative health from a subsequent period of ever increasing morbidity. Researchers often assume that such a breakpoint exists; however, this assumption is hitherto untested.To test the assumption that a breakpoint exists--which we term a morbidity tipping point--separating a period of relative health from a subsequent deterioration in health status. An analogous tipping point for healthcare costs was also investigated.Four years of adults' (N = 55,550 morbidity and costs data were retrospectively analyzed. Data were collected in Pittsburgh, PA between 2006 and 2009; analyses were performed in Rochester, NY and Ann Arbor, MI in 2012 and 2013. Cohort-sequential and hockey stick regression models were used to characterize long-term trajectories and tipping points, respectively, for both morbidity and costs.Morbidity increased exponentially with age (P<.001. A morbidity tipping point was observed at age 45.5 (95% CI, 41.3-49.7. An exponential trajectory was also observed for costs (P<.001, with a costs tipping point occurring at age 39.5 (95% CI, 32.4-46.6. Following their respective tipping points, both morbidity and costs increased substantially (Ps<.001.Findings support the existence of a morbidity tipping point, confirming an important but untested assumption. This tipping point, however, may occur earlier in the lifespan than is widely assumed. An "avalanche of morbidity" occurred after the morbidity tipping point-an ever increasing rate of morbidity progression. For costs, an analogous tipping point and "avalanche" were observed. The time point at which costs began to increase substantially occurred approximately 6 years before health status began to deteriorate.

  4. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test

    Energy Technology Data Exchange (ETDEWEB)

    Meysami, Majid [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-4653, Tehran (Iran, Islamic Republic of); Mousavi, Seyed Ali Asghar Akbari, E-mail: akbarimusavi@ut.ac.ir [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, P.O. Box 11155-4653, Tehran (Iran, Islamic Republic of)

    2011-03-25

    Research highlights: {yields} At low Z parameter, the multi peak dynamic recrystallization behavior was observed. {yields} At high Z, the stress-strain curves were exhibited with a single peak stress. {yields} The hyperbolic sine law was found to provide the best fit for calculation of Q. {yields} The average value of n was obtained as 4.687. {yields} The peak stress and of the studied material was obtained. - Abstract: This article investigates the hot working behavior of medium carbon vanadium microalloyed steel by hot compression tests over the temperature range of 850-1100 deg. C and strain rate range of 0.001-0.5 s{sup -1} to strain of 0.8. In this study, the general constitutive equations were used to determine the hot working constants. The peak stress ({sigma}{sub P}) and strain ({epsilon}{sub P}) for initiation of dynamic recrystallization (DRX) at different temperatures and strain rates were calculated. The power law, exponential and hyperbolic sinusoidal types of Zener-Hollomon equations were used to determine the hot deformation activation energy (Q). The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. The magnitude of hot deformation activation energy (Q) was obtained as 319.910 kJ/mol. The classical single peak DRX was observed in most of temperatures and strain rates. However, for temperature of 1100 deg. C and strain rates of 0.001 s{sup -1}, 0.01 s{sup -1}, and also for temperature of 950 deg. C and strain rate of 0.001 s{sup -1} the multiple peak dynamic recrystallization (MDRX) was observed, which showed that the 'recrystallization' was an observed strain rate behavior.

  5. Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test

    International Nuclear Information System (INIS)

    Meysami, Majid; Mousavi, Seyed Ali Asghar Akbari

    2011-01-01

    Research highlights: → At low Z parameter, the multi peak dynamic recrystallization behavior was observed. → At high Z, the stress-strain curves were exhibited with a single peak stress. → The hyperbolic sine law was found to provide the best fit for calculation of Q. → The average value of n was obtained as 4.687. → The peak stress and of the studied material was obtained. - Abstract: This article investigates the hot working behavior of medium carbon vanadium microalloyed steel by hot compression tests over the temperature range of 850-1100 deg. C and strain rate range of 0.001-0.5 s -1 to strain of 0.8. In this study, the general constitutive equations were used to determine the hot working constants. The peak stress (σ P ) and strain (ε P ) for initiation of dynamic recrystallization (DRX) at different temperatures and strain rates were calculated. The power law, exponential and hyperbolic sinusoidal types of Zener-Hollomon equations were used to determine the hot deformation activation energy (Q). The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. The magnitude of hot deformation activation energy (Q) was obtained as 319.910 kJ/mol. The classical single peak DRX was observed in most of temperatures and strain rates. However, for temperature of 1100 deg. C and strain rates of 0.001 s -1 , 0.01 s -1 , and also for temperature of 950 deg. C and strain rate of 0.001 s -1 the multiple peak dynamic recrystallization (MDRX) was observed, which showed that the 'recrystallization' was an observed strain rate behavior.

  6. Chest compression with a higher level of pressure support ventilation: effects on secretion removal, hemodynamics, and respiratory mechanics in patients on mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Wagner da Silva Naue

    2014-01-01

    Full Text Available OBJECTIVE: To determine the efficacy of chest compression accompanied by a 10-cmH2O increase in baseline inspiratory pressure on pressure support ventilation, in comparison with that of aspiration alone, in removing secretions, normalizing hemodynamics, and improving respiratory mechanics in patients on mechanical ventilation. METHODS: This was a randomized crossover clinical trial involving patients on mechanical ventilation for more than 48 h in the ICU of the Porto Alegre Hospital de Clínicas, in the city of Porto Alegre, Brazil. Patients were randomized to receive aspiration alone (control group or compression accompanied by a 10-cmH2O increase in baseline inspiratory pressure on pressure support ventilation (intervention group. We measured hemodynamic parameters, respiratory mechanics parameters, and the amount of secretions collected. RESULTS: We included 34 patients. The mean age was 64.2 ± 14.6 years. In comparison with the control group, the intervention group showed a higher median amount of secretions collected (1.9 g vs. 2.3 g; p = 0.004, a greater increase in mean expiratory tidal volume (16 ± 69 mL vs. 56 ± 69 mL; p = 0.018, and a greater increase in mean dynamic compliance (0.1 ± 4.9 cmH2O vs. 2.8 ± 4.5 cmH2O; p = 0.005. CONCLUSIONS: In this sample, chest compression accompanied by an increase in pressure support significantly increased the amount of secretions removed, the expiratory tidal volume, and dynamic compliance. (ClinicalTrials.gov Identifier:NCT01155648 [http://www.clinicaltrials.gov/

  7. Numerical simulation of diametral compression tests for the evaluation of porous ceramic disks; Simulacion numerica de ensayos de compresion diametral para la evaluacion de discos ceramicos porosos

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M. L.; Tomba Martinez, A. G.; Camerucci, M. A.

    2012-11-01

    The mechanical behavior of porous cordierite materials was studied by diametral compression tests. The analytical solution allowing the indirect measuring of the tensile mechanical strength in this load configuration is formulated under certain assumption which may be not satisfied in practice. With the aim to analyze deviations of the ideal conditions, the test was simulated using computational techniques. Porous cordierite disks were prepared by firing (650 degree centigrade, 2h) and reaction-sintering (1330 degree centigrade, 4h) of green disks shaped by thermo gelling the aqueous suspensions of a cordierite precursor mixture (kaolin, talc and alumina) with native potato starch as a consolidator/binder of ceramic particles and a pore former by burn-out at high temperature. The mechanical tests were carried out in displacement control (0.2 mm/min) using a servo hydraulic testing machine. From the apparent stress-strain ratio, the following parameters were determined: mechanical strength, apparent Young modulus and yield stress. Fracture features of tested disks were also analyzed. The influence of the geometrical deviations more usually identified in practice (deviation of the circularity and no parallelism between the plane surfaces of the disk) on the stress distribution was studied by means of the simulation by finite element method, considering the Hertzs equation for contact problems as reference. (Author) 20 refs.

  8. Mechanical failure of anodized aluminum under three and four-point bending tests

    International Nuclear Information System (INIS)

    Bargui, M.; Bensalah, W.; Elleuch, K.; Ayedi, H.F.

    2013-01-01

    Highlights: • We study the flexural behavior of anodic oxide layers formed on aluminum. • Three and four-point bending tests were used as techniques. • Changing the beam configuration will change the flexural response. - Abstract: In this work, three and four-point bending tests were adopted as methods for characterizing anodized aluminum beams in a sulfuric acid bath. The failure behavior of sandwich beams having aluminum oxide face sheets and aluminum core were tested. In so doing, many configurations were adopted by anodizing aluminum beams on one and both sides to investigate faces in place of tension and compression. Bending tests showed different behaviors. When the oxide was only on the top side of the beam (working in compression) a slight sudden decrease of the load was observed. This fact was absent on beams with oxide layers working in tensile. The bending behavior of sandwich beams was similar to those with oxide on top sides but with much higher loads. The mechanical failure of the oxide was mainly caused by its failure when it is placed in compression beneath the loading rollers. Finally, a morphological study of the aluminum oxide layers after bending tests was conducted by optical microscopy

  9. Dynamic Brazilian Test for Mechanical Characterization of Ceramic Ballistic Protection

    Directory of Open Access Journals (Sweden)

    Martina Scapin

    2017-01-01

    Full Text Available The aim of this work is to identify the tensile strength of alumina (Corbit98, by performing Brazilian tests at different loading rate. In this kind of test, generally used for brittle material in static loading conditions, a cylindrical specimen is diametrically compressed and failure is generated in the middle of the component as a consequence of a positive tensile stress. In this work, this experimental technique was applied also in dynamic loading conditions by using a setup based on the Split Hopkinson Pressure Bar. Due to the properties of the investigated material, among which are high hardness, high compressive strength, and brittle behaviour, some precautions were needed to assure the validity of the tests. Digital Image Correlation techniques were applied for the analysis of high framerate videos.

  10. Tests and Analysis of the Compressive Performance of an Integrated Masonry Structure of a Brick-Stem-Insulating Layer

    Directory of Open Access Journals (Sweden)

    Suizi Jia

    2016-05-01

    Full Text Available This paper proposes, for low buildings, an integrated wall structure of a brick-stem-insulating layer, which plays a major part in both heat preservation and force bearing. The research team has tested the thermal performance of the structure, the results of which are satisfying. To further study the force-bearing performance, the paper carries out compressive tests of specimens of different structural design, with two types of bricks, i.e., clay and recycled concrete bricks; three types of stems, i.e., square-shaped wood, square-shaped steel pipe and circular steel pipe; and one type of insulating layer, i.e., fly ash masonry blocks. Afterward, the force bearing performance, damage that occurred, compressive deformation and ductility of all of the specimens are compared. On the sideline, the structure is applied in the construction of a pilot residence project, yielding favorable outcomes. The results indicate that in comparison with a brick wall with an insulating layer sandwiched in between, the integrated wall structure of bricks and fly ash blocks is a more preferable choice in terms of compressive performance and ductility. The integrated wall structure of brick-stem-fly ash blocks delivers much better performance to this end. Note that regarding the stem’s contribution to compressive strength, circular steel pipe is highest, followed by square-shaped steel pipe and then square-shaped wood. The compressive performance of the sandwiched blocks surpasses that of the two brick wall pieces combined by a large margin.

  11. Upgraded Features of Newly Constructed Fuel Assembly Mechanical Characterization Test Facility in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Lee, Young Ho; Kim, Soo Ho; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Fuel assembly mechanical characterization test facility (FAMeCT) in KAERI is newly constructed with upgraded functional features such as increased loading capacity, under-water vibration testing and severe earthquake simulation for extended fuel design guideline. The facility building is compactly designed in the scale of 3rd floor building and has regions for assembly-wise mechanical test equipment, dynamic load (seismic) simulating test system, small scale hydraulic loop and component wise test equipment. Figure 1 shows schematic regional layout of the facility building. Mechanical test platform and system is designed to increase loading capacity for axial compression test. Structural stability of the support system of new upper core plate simulator is validated through a limit case functional test. Fuel assembly mechanical characterization test facility in KAERI is newly constructed and upgraded with advanced functional features such as uprated loading capacity, under-water vibration testing and severe earthquake simulation for extended fuel design guideline. This paper briefly introduce the test facility construction and scope of the facility and is focused on the upgraded design features of the facility. Authors hope to facilitate the facility more in the future and collaborate with the industry.

  12. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    Science.gov (United States)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  13. Mechanical properties of GFRP tube confined recycled concrete under axial compression

    International Nuclear Information System (INIS)

    Wang, Xiaogang; Liang, Chaofeng; Zhou, Zechenglong; Dong, Lanqi; Ding, Kewei; Huang, Jialun

    2015-01-01

    This article outlines the recycled aggregate replacement rate and thick-diameter rate of GFRP tube confined in recycled concrete, which has an important impact on the material's compressive strength. Overall, under the same conditions of using recycled concrete, the bearing capacity of short concrete columns can be improved by using broader GFRP tubes. There is a four-fold increase in the bearing capacity of short concrete columns compared to the short column without the restriction of a GFRP tube. The bearing capacity of a short column crafted by recycled coarse aggregate is much lower (about 30%). than those made by common concrete column Additionally, the bearing capacity of short columns made by recycled fine aggregates is also lower than those made by common concrete (approximately 20%). Finally, we find that there is no significant difference between experimental and theoretical data. (paper)

  14. Temperature buffer test. Hydro-mechanical and chemical/ mineralogical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Olsson, Siv; Dueck, Ann; Nilsson, Ulf; Karnland, Ola [Clay Technology AB, Lund (Sweden); Kiviranta, Leena; Kumpulainen, Sirpa [BandTech Oy, Helsinki (Finland); Linden, Johan [Aabo Akademi, Aabo (Finland)

    2012-01-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aspo HRL. It was installed during the spring of 2003. Two steel heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by rings of compacted Wyoming bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the hydro-mechanical and chemical/mineralogical characterization program which was launched subsequent to the dismantling operation. The main goal has been to investigate if any significant differences could be observed between material from the field experiment and the reference material. The field samples were mainly taken from Ring 4 (located at the mid-section around the lower heater), in which the temperature in the innermost part reached 155 deg C. The following hydro-mechanical properties have been determined for the material (test technique within brackets): hydraulic conductivity (swelling pressure device), swelling pressure (swelling pressure device), unconfined compression strength (mechanical press), shear strength (triaxial cell) and retention properties (jar method). The following chemical/mineralogical properties (methods within brackets) were determined: anion analysis of water leachates (IC), chemical composition (ICP/AES+MS, EGA), cation exchange capacity (CEC, Cu-trien method) and exchangeable cations (exchange with NH4, ICPAES), mineralogical composition (XRD and FTIR), element distribution and microstructure (SEM and

  15. The use of non-destructive tests to estimate Self-compacting concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Djamila Boukhelkhal

    2018-01-01

    Full Text Available Until now, there are few studies on the effect of mineral admixtures on correlation between compressive strength and ultrasonic pulse velocity for concrete. The aim of this work is to study the effect of mineral admixture available in Algeria such as limestone powder, granulated slag and natural pozzolana on the correlation between compressive strength and corresponding ultrasonic pulse velocity for self-compacting concrete (SCC. Compressive strength and ultrasonic pulse velocity (UPV were determined for four different SCC (with and without mineral admixture at the 3, 7, 28 and 90 day curing period. The results of this study showed that it is possible to develop a good correlation relationship between the compressive strength and the corresponding ultrasonic pulse velocity for all SCC studied in this research and all the relationships had exponential form. However, constants were different for each mineral admixture type; where, the best correlation was found in the case of SCC with granulated slag (R2 = 0.85. Unlike the SCC with pozzolana, which have the lowest correlation coefficient (R2 = 0.69.

  16. Experiments on hydraulically-compensated Compressed Air Energy Storage (CAES) system using large-diameter vertical pipe two-phase flow test facility: test facility and test procedure

    International Nuclear Information System (INIS)

    Ohtsu, Iwao; Murata, Hideo; Kukita, Yutaka; Kumamaru, Hiroshige.

    1996-07-01

    JAERI, the University of Tokyo, the Central Research Institute of Electric Power Industry and Shimizu Corporation jointing performed and experimental study on two-phase flow in the hydraulically-compensated Compressed Air Energy Storage (CAES) system with a large-diameter vertical pipe two-phase flow test facility from 1993 to 1995. A hydraulically-compensated CAES system is a proposed, conceptual energy storage system where energy is stored in the form of compressed air in an underground cavern which is sealed by a deep (several hundred meters) water shaft. The shaft water head maintains a constant pressure in the cavern, of several mega Pascals, even during loading or unloading of the cavern with air. The dissolved air in the water, however, may create voids in the shaft when the water rises through the shaft during the loading, being forced by the air flow into the cavern. The voids may reduce the effective head of the shaft, and thus the seal may fail, if significant bubbling should occur in the shaft. This bubbling phenomenon (termed 'Champaign effect') and potential failure of the water seal ('blowout') are simulated in a scaled-height, scaled-diameter facility. Carbon dioxide is used to simulate high solubility of air in the full-height, full-pressure system. This report describes the expected and potential two-phase flow phenomena in a hydraulically-compensated CAES system, the test facility and the test procedure, a method to estimate quantities which are not directly measured by using measured quantities and hydrodynamic basic equations, and desirable additional instrumentation. (author)

  17. Multi-channel mechanical test machine for HANARO (I)

    International Nuclear Information System (INIS)

    Song, M. S.; Choi, Y.; Cho, M. S.; Kim, B. G.; Kang, Y. H.

    2004-01-01

    Design and fabrication of multi-channel mechanical test machine is useful and important for the study of in-pile test of nuclear materials in HANARO. The dimension and shape of the multi-channel mechanical test machine should be fixed to a test reactor and their objectives. KAERI successfully developed a non-instrumented multi-channel mechanical test machine for material irradiation tests in a domestic research reactor, HANARO. This results in strongly stimulating and accelerating irradiation tests of materials in domestic industry and research fields with HANARO. Although various types of in-pile creep capsule were made for well installation in each test reactor, there is no in-pile creep multi-channel mechanical test machine for HANARO. Hence, the objectives of this study are to fabricate and test a multi-channel mechanical test machine of HANARO

  18. Verification of the FBR fuel bundle-duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    Science.gov (United States)

    Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo

    2014-09-01

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  19. Verification of the FBR fuel bundle–duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ito, Masahiro; Nemoto, Junichi [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ichikawa, Shoichi [Japan Atomic Energy Agency, 2-1, Shiraki, Tsuruga-shi, Fukui 919-1279 (Japan); Katsuyama, Kozo [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan)

    2014-09-15

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle–duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  20. Relationship between electrical conductivity anisotropy and fabric anisotropy in granular materials during drained triaxial compressive tests: a numerical approach

    Science.gov (United States)

    Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing

    2017-07-01

    The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy

  1. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, H.; Brincker, Rune

    1989-01-01

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...

  2. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation.

    Science.gov (United States)

    Güden, Mustafa; Celik, Emrah; Hizal, Alpay; Altindiş, Mustafa; Cetiner, Sinan

    2008-05-01

    Sintered Ti6Al4V powder compacts potentially to be used in implant applications were prepared using commercially available spherical and angular powders (100-200 mum) within the porosity range of 34-54%. Cylindrical green powder compacts were cold compacted at various pressures and then sintered at 1200 degrees C for 2 h. The final percent porosity and mean pore sizes were determined as functions of the applied compaction pressure and powder type. The mechanical properties were investigated through compression testing. Results have shown that yield strength of the powder compacts of 40-42% porosity was comparable with that of human cortical bone. As compared with previously investigated Ti powder compacts, Ti6Al4V powder compacts showed higher strength at similar porosity range. Microscopic observations on the failed compact samples revealed that failure occurred primarily by the separation of interparticle bond regions in the planes 45 degrees to the loading axis. Copyright 2007 Wiley Periodicals, Inc.

  3. Parameters Determination of Yoshida Uemori Model Through Optimization Process of Cyclic Tension-Compression Test and V-Bending Springback

    Directory of Open Access Journals (Sweden)

    Serkan Toros

    Full Text Available Abstract In recent years, the studies on the enhancement of the prediction capability of the sheet metal forming simulations have increased remarkably. Among the used models in the finite element simulations, the yield criteria and hardening models have a great importance for the prediction of the formability and springback. The required model parameters are determined by using the several test results, i.e. tensile, compression, biaxial stretching tests (bulge test and cyclic tests (tension-compression. In this study, the Yoshida-Uemori (combined isotropic and kinematic hardening model is used to determine the performance of the springback prediction. The model parameters are determined by the optimization processes of the cyclic test by finite element simulations. However, in the study besides the cyclic tests, the model parameters are also evaluated by the optimization process of both cyclic and V-die bending simulations. The springback angle predictions with the model parameters obtained by the optimization of both cyclic and V-die bending simulations are found to mimic the experimental results in a better way than those obtained from only cyclic tests. However, the cyclic simulation results are found to be close enough to the experimental results.

  4. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin.

    Science.gov (United States)

    Leyva-Mendivil, Maria F; Page, Anton; Bressloff, Neil W; Limbert, Georges

    2015-09-01

    The study of skin biophysics has largely been driven by consumer goods, biomedical and cosmetic industries which aim to design products that efficiently interact with the skin and/or modify its biophysical properties for health or cosmetic benefits. The skin is a hierarchical biological structure featuring several layers with their own distinct geometry and mechanical properties. Up to now, no computational models of the skin have simultaneously accounted for these geometrical and material characteristics to study their complex biomechanical interactions under particular macroscopic deformation modes. The goal of this study was, therefore, to develop a robust methodology combining histological sections of human skin, image-processing and finite element techniques to address fundamental questions about skin mechanics and, more particularly, about how macroscopic strains are transmitted and modulated through the epidermis and dermis. The work hypothesis was that, as skin deforms under macroscopic loads, the stratum corneum does not experience significant strains but rather folds/unfolds during skin extension/compression. A sample of fresh human mid-back skin was processed for wax histology. Sections were stained and photographed by optical microscopy. The multiple images were stitched together to produce a larger region of interest and segmented to extract the geometry of the stratum corneum, viable epidermis and dermis. From the segmented structures a 2D finite element mesh of the skin composite model was created and geometrically non-linear plane-strain finite element analyses were conducted to study the sensitivity of the model to variations in mechanical properties. The hybrid experimental-computational methodology has offered valuable insights into the simulated mechanics of the skin, and that of the stratum corneum in particular, by providing qualitative and quantitative information on strain magnitude and distribution. Through a complex non-linear interplay

  5. A Fractual Mechanical Testing and Design Strategy for FRC Structures

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes

    1999-01-01

    A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications.......A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications....

  6. Influences of the Control on the Nonlinear Vibrations of a Variable Compression Ratio Mechanism

    Directory of Open Access Journals (Sweden)

    Mănescu Bogdan

    2018-01-01

    Full Text Available For the mechanism described in references the study of the nonlinear vibrations is performed considering a multibody approach for the elements of the mechanism and different laws of motion for the control element. A great attention is paid to the equilibrium of the motion. The influence of different parameters of control is highlighted in the paper. The results are numerically validated.

  7. High temperature mechanical tests performed on doped fuels

    International Nuclear Information System (INIS)

    Dugay, C.; Mocellin, A.; Dehaudt, P.; Sladkoff, M.

    1998-01-01

    The high-temperature compressive deformation of large-grained UO 2 doped with metallic oxides has been investigated and compared with that of pure UO 2 with a standard microstructure. All the specimens are made from a single batch of UO 2 powder. Tests with constant applied strain rate of 20μm.min -1 show that Cr 2 O 3 additions cause a decrease in the flow stress of about 15 MPa compared with the reference material. When reduced in hydrogen at 1500 deg. C the specimens present a peak stress close to the flow stress of the pure UO 2 . Measurements of creep rates are made at 1500 deg. C at applied stresses varying from 20 to 70 MPa. Cr 2 O 3 additions increase the creep-rate, up to several orders of magnitude-change from the pure material to a doped one. All the doped materials exhibit power-law creep with exponents in the range of 4.9 to 6.3. The activation energy varies from 466 to 451 kJ/mol depending on the dopant concentration. The creep of the undoped material is divided into three regimes of deformation depending on stress. At low stresses the strain rate shows a second power dependence on stress. At high stress levels a higher stress dependence is observed. The creep power-law breaks down and an exponential law holds true at higher stresses. The activation energies are found to be 410 and 560 kJ/mol in the low- and high-stress regions respectively. The former value is in good agreement with the grain boundary diffusion energy in stoichiometric polycrystalline uranium dioxide and the latter corresponds to that found for self-diffusion energy of uranium. Creep behaviours are discussed in terms of deformation mechanisms. (author)

  8. Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms.

    Science.gov (United States)

    Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L

    2017-07-01

    Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.

  9. Safety of mechanical chest compression devices AutoPulse and LUCAS in cardiac arrest: a randomized clinical trial for non-inferiority

    NARCIS (Netherlands)

    Koster, Rudolph W.; Beenen, Ludo F.; van der Boom, Esther B.; Spijkerboer, Anje M.; Tepaske, Robert; van der Wal, Allart C.; Beesems, Stefanie G.; Tijssen, Jan G.

    2017-01-01

    Aims Mechanical chest compression (CC) during cardiopulmonary resuscitation (CPR) with AutoPulse or LUCAS devices has not improved survival from cardiac arrest. Cohort studies suggest risk of excess damage. We studied safety of mechanical CC and determined possible excess damage compared with manual

  10. Determination of the mechanical characteristics of nanomaterials under tension and compression

    Science.gov (United States)

    Filippov, A. A.; Fomin, V. M.

    2018-04-01

    In this paper, new method for determining the mechanical characteristics of nanoparticles in a heterogeneous mixture is proposed. The heterogeneous mixture consists of a thermosetting epoxy resin and silicon dioxide powder of different dispersity. The mechanical characteristics of such a material at a constant concentration for nanopowder are experimentally determined. Using existing formulas for obtaining effective characteristics, the Lame coefficients for nanoparticles of various sizes are calculated. The dependence of the elastic characteristics on the particle size is obtained.

  11. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus

    2008-01-01

    An advanced digital optical system has been used to measure surface strains on sandwich face and core specimens tested in a project concerned with improved criteria for designing sandwich X-joints. The face sheet specimens were of glass reinforced polyester and were tested in tension. The core sp...

  12. The UKAEA mechanical test programs in air

    International Nuclear Information System (INIS)

    Wood, D.S.

    1977-01-01

    The design of CDFR will be based on the mechanical behaviour of materials in air, although at a later date account may need to be taken of sodium effects. The need for this Information is outlined in the introductory paper. The extent of the air programs and preliminary findings are described in this paper

  13. The UKAEA mechanical test programs in air

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D S [UKAEA, RNPDL, Risley (United Kingdom)

    1977-07-01

    The design of CDFR will be based on the mechanical behaviour of materials in air, although at a later date account may need to be taken of sodium effects. The need for this Information is outlined in the introductory paper. The extent of the air programs and preliminary findings are described in this paper.

  14. Resveratrol increases nucleus pulposus matrix synthesis through activating the PI3K/Akt signaling pathway under mechanical compression in a disc organ culture.

    Science.gov (United States)

    Han, Xiaorui; Leng, Xiaoming; Zhao, Man; Wu, Mei; Chen, Amei; Hong, Guoju; Sun, Ping

    2017-12-22

    Disc nucleus pulposus (NP) matrix homeostasis is important for normal disc function. Mechanical overloading seriously decreases matrix synthesis and increases matrix degradation. The present study aims to investigate the effects of resveratrol on disc NP matrix homeostasis under a relatively high-magnitude mechanical compression and the potential mechanism underlying this process. Porcine discs were perfusion-cultured and subjected to a relatively high-magnitude mechanical compression (1.3 MPa at a frequency of 1.0 Hz for 2 h once per day) for 7 days in a mechanically active bioreactor. The non-compressed discs were used as controls. Resveratrol was added along with culture medium to observe the effects of resveratrol on NP matrix synthesis under mechanical load respectively. NP matrix synthesis was evaluated by histology, biochemical content (glycosaminoglycan (GAG) and hydroxyproline (HYP)), and expression of matrix macromolecules (aggrecan and collagen II). Results showed that this high-magnitude mechanical compression significantly decreased NP matrix content, indicated by the decreased staining intensity of Alcian Blue and biochemical content (GAG and HYP), and the down-regulated expression of NP matrix macromolecules (aggrecan and collagen II). Further analysis indicated that resveratrol partly stimulated NP matrix synthesis and increased activity of the PI3K/Akt pathway in a dose-dependent manner under mechanical compression. Together, resveratrol is beneficial for disc NP matrix synthesis under mechanical overloading, and the activation of the PI3K/Akt pathway may participate in this regulatory process. Resveratrol may be promising to regenerate mechanical overloading-induced disc degeneration. © 2017 The Author(s).

  15. Compressive damage mechanism of GFRP composites under off-axis loading: Experimental and numerical investigations

    DEFF Research Database (Denmark)

    Zhou, H.W.; Li, H.Y.; Gui, L.L.

    2013-01-01

    the angle between the fiber direction and the loading vector goes from 0° to 45° (by 2.3–2.6 times), and then slightly increases (when the angle approaches 80–90°). At the low angles between the fiber and the loading vector, fiber buckling and kinking are the main mechanisms of fiber failure....... With increasing the angle between the fiber and applied loading, failure of glass fibers is mainly controlled by shear cracking. For the computational analysis of the damage mechanisms, 3D multifiber unit cell models of GFRP composites and X-FEM approach to the fracture modeling were used. The computational...

  16. Comparative endurance testing of the Biomet Matthews Nail and the Dynamic Compression Screw, in simulated condylar and supracondylar femoral fractures

    Directory of Open Access Journals (Sweden)

    Davies Benjamin M

    2008-01-01

    Full Text Available Abstract Background The dynamic compression screw is a plate and screws implant used to treat fractures of the distal femur. The Biomet Matthews Nail is a new retrograde intramedullary nail designed as an alternative surgical option to treat these fractures. The objective of this study was to assess the comparative endurance of both devices. Method The dynamic compression screw (DCS and Biomet Matthews Nail (BMN were implanted into composite femurs, which were subsequently cyclically loaded using a materials testing machine. Simulated fractures were applied to each femur prior to the application of load. Either a Y type fracture or a transverse osteotomy was prepared on each composite femur using a jig to enable consistent positioning of cuts. Results The Biomet Matthews Nail demonstrated a greater endurance limit load over the dynamic compression screw in both fracture configurations. Conclusion The distal locking screws pass through the Biomet Matthews Nail in a unique "cruciate" orientation. This allows for greater purchase in the bone of the femoral condyle and potentially improves the stability of the fracture fixation. As these fractures are usually in weak osteoporotic bone, the Biomet Matthews Nail represents a favourable surgical option in these patients.

  17. Present status of mechanical testing technology at the Research Hot Laboratory

    International Nuclear Information System (INIS)

    Kizaki, M.; Tobita, T.; Koya, T.; Kikuchi, T.

    1993-01-01

    Mechanical tests of irradiated metallic materials at the Research Hot Laboratory(RHL) have been carried out for 30 years to support material research in JAERI and to evaluate the irradiation integrity of pressure vessel steel in commercial power plant. Two tensile testing machines and one Charpy impact testing machine are available for the examinations. One of the tensile testing machines has 1000 kgf load capacity under the vacuum of ∼ 10 -7 torr at the temperature of 1300degC max.. The other one has 10 tonf load capacity, and is utilized for the multi-purpose tests such as tensile and compressive tests in air atmosphere at the temperature between -160 and 900degC. Examinations cover tensile test, bending test, J ic fracture toughness test, low cycle fatigue test and so on. Charpy impact testing machine with notched-bar specimen is instrumented with 30 kgf-m capacity in the temperature range of -140 - 240 degC. To support these mechanical tests in RHL, special jigs, devices and instruments have been developed. (author)

  18. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets

    Czech Academy of Sciences Publication Activity Database

    Valentová, H.; Prokeš, J.; Nedbal, J.; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1109-1112 ISSN 0366-6352 R&D Projects: GA TA ČR TE01020022 Institutional support: RVO:61389013 Keywords : conducting polymer * hardness * mechanical properties Subject RIV: CG - Electrochemistry Impact factor: 1.193, year: 2013

  19. Emittance Growth during Bunch Compression in the CTF-II

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, Tor O

    1999-02-26

    Measurements of the beam emittance during bunch compression in the CLIC Test Facility (CTF-II) are described. The measurements were made with different beam charges and different energy correlations versus the bunch compressor settings which were varied from no compression through the point of full compression and to over-compression. Significant increases in the beam emittance were observed with the maximum emittance occurring near the point of full (maximal) compression. Finally, evaluation of possible emittance dilution mechanisms indicate that coherent synchrotron radiation was the most likely cause.

  20. Characterization of Rock Mechanical Properties Using Lab Tests and Numerical Interpretation Model of Well Logs

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2016-01-01

    Full Text Available The tight gas reservoir in the fifth member of the Xujiahe formation contains heterogeneous interlayers of sandstone and shale that are low in both porosity and permeability. Elastic characteristics of sandstone and shale are analyzed in this study based on petrophysics tests. The tests indicate that sandstone and mudstone samples have different stress-strain relationships. The rock tends to exhibit elastic-plastic deformation. The compressive strength correlates with confinement pressure and elastic modulus. The results based on thin-bed log interpretation match dynamic Young’s modulus and Poisson’s ratio predicted by theory. The compressive strength is calculated from density, elastic impedance, and clay contents. The tensile strength is calibrated using compressive strength. Shear strength is calculated with an empirical formula. Finally, log interpretation of rock mechanical properties is performed on the fifth member of the Xujiahe formation. Natural fractures in downhole cores and rock microscopic failure in the samples in the cross section demonstrate that tensile fractures were primarily observed in sandstone, and shear fractures can be observed in both mudstone and sandstone. Based on different elasticity and plasticity of different rocks, as well as the characteristics of natural fractures, a fracture propagation model was built.

  1. Soft computing methods for estimating the uniaxial compressive strength of intact rock from index tests

    Czech Academy of Sciences Publication Activity Database

    Mishra, A. Deepak; Srigyan, M.; Basu, A.; Rokade, P. J.

    2015-01-01

    Roč. 80, December 2015 (2015), s. 418-424 ISSN 1365-1609 Institutional support: RVO:68145535 Keywords : uniaxial compressive strength * rock indices * fuzzy inference system * artificial neural network * adaptive neuro-fuzzy inference system Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 2.010, year: 2015 http://ac.els-cdn.com/S1365160915300708/1-s2.0-S1365160915300708-main.pdf?_tid=318a7cec-8929-11e5-a3b8-00000aacb35f&acdnat=1447324752_2a9d947b573773f88da353a16f850eac

  2. New tests of completeness of quantum mechanics

    International Nuclear Information System (INIS)

    Kupczynski, M.

    1984-12-01

    It is observed that in the theory with supplementary parameters TSP each pure quantum ensemble is mixed with respect to these parameters. New statistical purity tests of quantum ensembles are proposed. Additional arguments are given that the violation of the Bell inequalities does not necessarily mean the violation of the Einsteinian separability. (author)

  3. Neutron interferometric tests of quantum mechanics

    International Nuclear Information System (INIS)

    Rauch, H.

    1986-01-01

    Since the invention of perfect crystal neutron interferometry this technique has become an important tool in the realization of many textbook experiments in quantum mechanics. Widely separated coherent beams of thermal neutrons are produced and superposed by dynamical Bragg diffraction from a properly shaped perfect crystal. The observed interference patterns show the characteristic coherence properties of matter waves which are influenced by the individual particle and by the properties of the experimental device. The verification of the 4π-periodicity of spinor wavefunctions and the realization of the spin-superposition experiment on a macroscopic scale has become feasible by this technique. A new kind of a quantum beat effect with an energy sensitivity of 2.7 x 20 19 eV has been observed in a double coil resonance experiment. The influence of gravity and of the Earth's rotation on the wavefunction become visible at a level of an elementary particle with non-zero mass. All the results are in agreement with the formulation of quantum mechanics but, nevertheless, they stimulate discussion about its interpretation. The particle-wave dualism becomes obvious on a macroscopic scale and with a beam of massive particles. (author)

  4. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.

    Science.gov (United States)

    Jain, R; Podworny, N; Hearn, T; Anderson, G I; Schemitsch, E H

    1997-10-01

    Comparison of the effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture. Randomized, prospective. Orthopaedic research laboratory. Ten large (greater than twenty-five kilogram) adult dogs. A short, midshaft spiral tibial fracture was created, followed by lag screw fixation and neutralization with an eight-hole, 3.5-millimeter, low-contact dynamic compression plate (LCDCP) made of either 316L stainless steel (n = five) or commercially pure titanium (n = five). After surgery, animals were kept with unrestricted weight-bearing in individual stalls for ten weeks. Cortical bone blood flow was assessed by laser Doppler flowmetry using a standard metalshafted probe (Periflux Pf303, Perimed, Jarfalla, Sweden) applied through holes in the custom-made LCDCPs at five sites. Bone blood flow was determined at four times: (a) prefracture, (b) postfracture, (c) postplating, and (d) ten weeks postplating. After the dogs were killed, the implant was removed and both the treated tibia and contralateral tibia were tested for bending stiffness and load to failure. Fracture creation decreased cortical perfusion in both groups at the fracture site (p = 0.02). The application of neither stainless steel nor titanium LCDCPs further decreased cortical bone blood flow after fracture creation. However, at ten weeks postplating, cortical perfusion significantly increased compared with acute postplating levels in the stainless steel (p = 0.003) and titanium (p = 0.001) groups. Cortical bone blood flow ten weeks postplating was not significantly different between the titanium group and the stainless steel group. Biomechanical tests performed on the tibiae with the plates removed did not reveal any differences in bending stiffness nor load required to cause failure between the two groups. Both titanium and stainless steel LCDCPs were equally effective in allowing revascularization, and

  5. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  6. Research into material behaviour of the polymeric samples obtained after 3D-printing and subjected to compression test

    Science.gov (United States)

    Petrov, Mikhail A.; Kosatchyov, Nikolay V.; Petrov, Pavel A.

    2016-10-01

    The paper represents the results of the study concerning the investigation of the influence of the filling grade (material density) on the force characteristic during the uniaxial compression test of the cylindrical polymer probes produced by additive technology based on FDM. The authors have shown that increasing of the filling grate follows to the increase of the deformation forces. However, the dependency is not a linear function and characterized by soft-elastic model of material behaviour, which is typical for polymers partly crystallized structure.

  7. Mechanical system diagnostics using vibration testing techniques

    Science.gov (United States)

    Mcleod, Catherine D.; Raju, P. K.; Crocker, M. J.

    1990-01-01

    The 'Cepstrum' technique of vibration-path identification allows the recovery of the transfer function of a system with little knowledge as to its excitation force, by means of a mathematical manipulation of the system output in conjunction with subtraction of part of the output and suitable signal processing. An experimental program has been conducted to evaluate the usefulness of this technique in the cases of simple, cantilever-beam and free-free plate structures as well as in that of a complex mechanical system. On the basis of the transfer functions thus recovered, it was possible to evaluate the shifts in the resonance frequencies of a structure due to the presence of defects.

  8. Mechanisms of flow through compressible porous beds in sedimentation, centrifugation, deliquoring, and ceramic processing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-25

    The major topics covered in the investigation include: centrifugation; cake filtration; sedimentation and thickening; capillary suction operations; ceramics, slip casting; optimization studies; and wastewater. The research program was aimed at the specific areas of solid/liquid separation including sedimentation, thickening, cake filtration, centrifugation, expression, washing, deep-bed filtration, screening, and membrane separation. Unification of the theoretical approaches to the various solid/liquid separation operations was the principle objective of the research. Exploring new aspects of basic separation mechanisms, verification of theory with experiment, development of laboratory procedures for obtaining data for design, optimizing operational methods, and transferring the results to industry were part of the program.

  9. Mechanical properties of alumina-PEEK unidirectional composite - Compression, shear, and tension

    Science.gov (United States)

    Kriz, R. D.; Mccolskey, J. D.

    1990-01-01

    An Al2O3 (alumina)-fiber composite with high strain to failure was fabricated with a thermal plastic PEEK (poly-ether-ether-ketone). The Al2O3-PEEK composite shows a marked improvement over thermally setting composite in that it absorbs 150 percent more elastic-strain energy at 76 K than at room temperature. This increase in fracture toughness at low temperatures can provide improved fatigue performance for thermal isolation straps at low temperature. Other mechanical property results suggest improvements for applications where graphite-epoxy materials are presently being used at low temperatures and where light weight is not a critical issue.

  10. Kaner biodiesel production through hybrid reactor and its performance testing on a CI engine at different compression ratios

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2017-06-01

    Full Text Available The present study deals with development of a hybrid reactor for biodiesel production based on the combined hydrodynamic cavitation and mechanical stirring processes. Biodiesel were produced using Kaner Seed Oil (KSO. The experimental results show that hybrid reactor produces 95% biodiesel yield within 45 min for 0.75% of catalyst and 6:1 M ratio which is significantly higher as compared to mechanical stirring or hydrodynamic cavitation alone. Thus biodiesel production process in hybrid reactor is cheap (high yield, efficient (time saving and environmentally friendly (lower% of catalyst. Performance study on engine shows that an increase in compression ratios (from 16 to 18 improves the engine performance using biodiesel blends as compared to petroleum diesel.

  11. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    Science.gov (United States)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  12. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  13. Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints.

    Science.gov (United States)

    Shahin, Kifah; Doran, Pauline M

    2012-04-01

    The effect of dynamic mechanical shear and compression on the synthesis of human tissue-engineered cartilage was investigated using a mechanobioreactor capable of simulating the rolling action of articular joints in a mixed fluid environment. Human chondrocytes seeded into polyglycolic acid (PGA) mesh or PGA-alginate scaffolds were precultured in shaking T-flasks or recirculation perfusion bioreactors for 2.5 or 4 weeks prior to mechanical stimulation in the mechanobioreactor. Constructs were subjected to intermittent unconfined shear and compressive loading at a frequency of 0.05 Hz using a peak-to-peak compressive strain amplitude of 2.2% superimposed on a static axial compressive strain of 6.5%. The mechanical treatment was carried out for up to 2.5 weeks using a loading regime of 10 min duration each day with the direction of the shear forces reversed after 5 min and release of all loading at the end of the daily treatment period. Compared with shaking T-flasks and mechanobioreactor control cultures without loading, mechanical treatment improved the amount and quality of cartilage produced. On a per cell basis, synthesis of both major structural components of cartilage, glycosaminoglycan (GAG) and collagen type II, was enhanced substantially by up to 5.3- and 10-fold, respectively, depending on the scaffold type and seeding cell density. Levels of collagen type II as a percentage of total collagen were also increased after mechanical treatment by up to 3.4-fold in PGA constructs. Mechanical treatment had a less pronounced effect on the composition of constructs precultured in perfusion bioreactors compared with perfusion culture controls. This work demonstrates that the quality of tissue-engineered cartilage can be enhanced significantly by application of simultaneous dynamic mechanical shear and compression, with the greatest benefits evident for synthesis of collagen type II. Copyright © 2011 Wiley Periodicals, Inc.

  14. A simulation tool to study high-frequency chest compression energy transfer mechanisms and waveforms for pulmonary disease applications.

    Science.gov (United States)

    O'Clock, George D; Lee, Yong Wan; Lee, Jongwon; Warwick, Warren J

    2010-07-01

    High-frequency chest compression (HFCC) can be used as a therapeutic intervention to assist in the transport and clearance of mucus and enhance water secretion for cystic fibrosis patients. An HFCC pump-vest and half chest-lung simulation, with 23 lung generations, has been developed using inertance, compliance, viscous friction relationships, and Newton's second law. The simulation has proven to be useful in studying the effects of parameter variations and nonlinear effects on HFCC system performance and pulmonary system response. The simulation also reveals HFCC waveform structure and intensity changes in various segments of the pulmonary system. The HFCC system simulation results agree with measurements, indicating that the HFCC energy transport mechanism involves a mechanically induced pulsation or vibration waveform with average velocities in the lung that are dependent upon small air displacements over large areas associated with the vest-chest interface. In combination with information from lung physiology, autopsies and a variety of other lung modeling efforts, the results of the simulation can reveal a number of therapeutic implications.

  15. Standard Guide for Recording Mechanical Test Data of Fiber-Reinforced Composite Materials in Databases

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide provides a common format for mechanical test data for composite materials for two purposes: (1) to establish data reporting requirements for test methods and ( 2) to provide information for the design of material property databases. This guide should be used in combination with Guide E 1309 which provides similar information to identify the composite material tested. 1.2 These guidelines are specific to mechanical tests of high-modulus fiber-reinforced composite materials. Types of tests considered in this guide include tension, compression, shear, flexure, open/filled hole, bearing, fracture toughness, and fatigue. The ASTM standards for which this guide was developed are listed in . The guidelines may also be useful for additional tests or materials. 1.3 This guide is the second part of a modular approach for which the first part is Guide E 1309. Guide E 1309 serves to identify the material, and this guide serves to describe mechanical testing procedures and variables and to record results....

  16. Judgments of Risk Frequencies: Tests of Possible Cognitive Mechanisms

    Science.gov (United States)

    Hertwig, Ralph; Pachur, Thorsten; Kurzenhauser, Stephanie

    2005-01-01

    How do people judge which of 2 risks claims more lives per year? The authors specified 4 candidate mechanisms and tested them against people's judgments in 3 risk environments. Two mechanisms, availability by recall and regressed frequency, conformed best to people's choices. The same mechanisms also accounted well for the mapping accuracy of…

  17. Pulsed TV holography measurement and digital reconstruction of compression acoustic wave fields: application to nondestructive testing of thick metallic samples

    International Nuclear Information System (INIS)

    Trillo, C; Doval, A F; Deán-Ben, X L; López-Vázquez, J C; Fernández, J L; Hernández-Montes, S

    2011-01-01

    This paper describes a technique that numerically reconstructs the complex acoustic amplitude (i.e. the acoustic amplitude and phase) of a compression acoustic wave in the interior volume of a specimen from a set of full-field optical measurements of the instantaneous displacement of the surface. The volume of a thick specimen is probed in transmission mode by short bursts of narrowband compression acoustic waves generated at one of its faces. The temporal evolution of the displacement field induced by the bursts emerging at the opposite surface is measured by pulsed digital holographic interferometry (pulsed TV holography). A spatio-temporal 3D Fourier transform processing of the measured data yields the complex acoustic amplitude at the plane of the surface as a sequence of 2D complex-valued maps. Finally, a numerical implementation of the Rayleigh–Sommerfeld diffraction formula is employed to reconstruct the complex acoustic amplitude at other planes in the interior volume of the specimen. The whole procedure can be regarded as a combination of optical digital holography and acoustical holography methods. The technique was successfully tested on aluminium specimens with and without an internal artificial defect and sample results are presented. In particular, information about the shape and position of the defect was retrieved in the experiment performed on the flawed specimen, which indicates the potential applicability of the technique for the nondestructive testing of materials

  18. Experimental and numerical study of the failure process and energy mechanisms of rock-like materials containing cross un-persistent joints under uniaxial compression.

    Directory of Open Access Journals (Sweden)

    Rihong Cao

    Full Text Available Joints and fissures in natural rocks have a significant influence on the stability of the rock mass, and it is often necessary to evaluate strength failure and crack evolution behavior. In this paper, based on experimental tests and numerical simulation (PFC2D, the macro-mechanical behavior and energy mechanism of jointed rock-like specimens with cross non-persistent joints under uniaxial loading were investigated. The focus was to study the effect of joint dip angle α and intersection angle γ on the characteristic stress, the coalescence modes and the energy release of jointed rock-like specimens. For specimens with γ = 30° and 45°, the UCS (uniaxial compression strength, CIS (crack initiation stress and CDiS (critical dilatancy stress increase as α increases from 0° to 75°. When γ = 60° and 75°, the UCS, CIS and CDiS increase as α increases from 0° to 60° and decrease when α is over 60°. Both the inclination angle α and intersection angle γ have great influence on the failure pattern of pre-cracked specimens. With different α and γ, specimens exhibit 4 kinds of failure patterns. Both the experimental and numerical results show that the energy of a specimen has similar trends with characteristic stress as α increases.

  19. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions

    Science.gov (United States)

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  20. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions.

    Directory of Open Access Journals (Sweden)

    Xiaowei Feng

    Full Text Available Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three

  1. Defining the best parallelization strategy for a diphasic compressible fluid mechanics code

    International Nuclear Information System (INIS)

    Berthou, Jean-Yves; Fayolle, Eric; Faucher, Eric; Scliffet, Laurent

    2000-01-01

    Nuclear plants use steam generator safety valves in order to regulate possible large pressure variations of fluids. In case of an incident these valves may be fed with pressurized liquid water (for instance a pressure of 9 MPa at a temperature of 300degC). When a pressurized liquid is submitted to a strong pressure drop, it will start evaporating. This phenomena is called flashing. Z. Bilicki and co-authors proposed the homogeneous relaxation model (HRM) to compute critical flashing water flows. Its computation in the case of non stationary one-dimensional flashing flows has been carried out with the development of a dedicated time dependent Finite Volume scheme based on a simplified version of the Godunov approach. Electricite De France Research and Development division have developed a monodimensional implementation of the HRM model: ECOSS, a 11000 lines FORTRAN 90. Applied to a shock tube test case with a 20000 elements monodimensional mesh, the simulation of the physical phenomenon during 2.5 seconds requires at least 100 days of computation on a SUN Sparc-Ultra60. This execution time justifies the ECOSS parallelization. Furthermore, we plan a modeling on 2D meshes for the next few years. Knowing that multiplying the mesh dimension by a factor 10 multiplies the execution time by a factor 100, ECOSS would take years of computation with small 2D meshes (1000 x 1000) on a conventional workstation. This paper describes the parallelization analysis we have conducted and we presents the experimental results we have obtained applying different programming model (MPI, OpenMP, HPF) on various platforms (a Compaq Proliant 6000 4 processors, a Cray T3E-750 300 processors, a HP class V 16 processors, a SGI Origin2000 32 processors, a cluster of PCs and a COMPAQ SC 232 processors). These experimental results will be discussed according to the following criteria: efficiency, salability, maintainability, developing costs and portability. As a conclusion, we will present the

  2. Defining the best parallelization strategy for a diphasic compressible fluid mechanics code

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, Jean-Yves; Fayolle, Eric [Electricite de France, Research and Development division, Modeling and Information Technologies Department, CLAMART CEDEX (France); Faucher, Eric; Scliffet, Laurent [Electricite de France, Research and Development Division, Mechanics and Component Technology Branch Department, Moret sur Loing (France)

    2000-09-01

    Nuclear plants use steam generator safety valves in order to regulate possible large pressure variations of fluids. In case of an incident these valves may be fed with pressurized liquid water (for instance a pressure of 9 MPa at a temperature of 300degC). When a pressurized liquid is submitted to a strong pressure drop, it will start evaporating. This phenomena is called flashing. Z. Bilicki and co-authors proposed the homogeneous relaxation model (HRM) to compute critical flashing water flows. Its computation in the case of non stationary one-dimensional flashing flows has been carried out with the development of a dedicated time dependent Finite Volume scheme based on a simplified version of the Godunov approach. Electricite De France Research and Development division have developed a monodimensional implementation of the HRM model: ECOSS, a 11000 lines FORTRAN 90. Applied to a shock tube test case with a 20000 elements monodimensional mesh, the simulation of the physical phenomenon during 2.5 seconds requires at least 100 days of computation on a SUN Sparc-Ultra60. This execution time justifies the ECOSS parallelization. Furthermore, we plan a modeling on 2D meshes for the next few years. Knowing that multiplying the mesh dimension by a factor 10 multiplies the execution time by a factor 100, ECOSS would take years of computation with small 2D meshes (1000 x 1000) on a conventional workstation. This paper describes the parallelization analysis we have conducted and we presents the experimental results we have obtained applying different programming model (MPI, OpenMP, HPF) on various platforms (a Compaq Proliant 6000 4 processors, a Cray T3E-750 300 processors, a HP class V 16 processors, a SGI Origin2000 32 processors, a cluster of PCs and a COMPAQ SC 232 processors). These experimental results will be discussed according to the following criteria: efficiency, salability, maintainability, developing costs and portability. As a conclusion, we will present the

  3. Graded compression ultrasonography and computed tomography in acute colonic diverticulitis: Meta-analysis of test accuracy

    International Nuclear Information System (INIS)

    Lameris, Wytze; Randen, Adrienne van; Bipat, Shandra; Stoker, Jaap; Bossuyt, Patrick M.M.; Boermeester, Marja A.

    2008-01-01

    The purpose was to investigate the diagnostic accuracy of graded compression ultrasonography (US) and computed tomography (CT) in diagnosing acute colonic diverticulitis (ACD) in suspected patients. We performed a systematic review and meta-analysis of the accuracy of CT and US in diagnosing ACD. Study quality was assessed with the QUADAS tool. Summary estimates of sensitivity and specificity were calculated using a bivariate random effects model. Six US studies evaluated 630 patients, and eight CT studies evaluated 684 patients. Overall, their quality was moderate. We did not identify meaningful sources of heterogeneity in the study results. Summary sensitivity estimates were 92% (95% CI: 80%-97%) for US versus 94% (95%CI: 87%-97%) for CT (p = 0.65). Summary specificity estimates were 90% (95%CI: 82%-95%) for US versus 99% (95%CI: 90%-100%) for CT (p = 0.07). For the identification of alternative diseases sensitivity ranged between 33% and 78% for US and between 50% and 100% for CT. The currently best available evidence shows no statistically significant difference in accuracy of US and CT in diagnosing ACD. Therefore, both US and CT can be used as initial diagnostic tool until new evidence is brought forward. However, CT is more likely to identify alternative diseases. (orig.)

  4. Normalization of Impact Energy by Laminate Thickness for Compression After Impact Testing

    Science.gov (United States)

    Nettles, A. T.; Hromisin, S. M.

    2013-01-01

    The amount of impact energy used to damage a composite laminate is a critical parameter when assessing residual strength properties. The compression after impact (CAI) strength of impacted laminates is dependent upon how thick the laminate is and this has traditionally been accounted for by normalizing (dividing) the impact energy by the laminate's thickness. However, when comparing CAI strength values for a given lay-up sequence and fiber/resin system, dividing the impact energy by the specimen thickness has been noted by the author to give higher CAI strength values for thicker laminates. A study was thus undertaken to assess the comparability of CAI strength data by normalizing the impact energy by the specimen thickness raised to a power to account for the higher strength of thicker laminates. One set of data from the literature and two generated in this study were analyzed by dividing the impact energy by the specimen thickness to the 1, 1.5, 2, and 2.5 powers. Results show that as laminate thickness and damage severity decreased, the value which the laminate thickness needs to be raised to in order to yield more comparable CAI data increases.

  5. TESTING METHODS FOR MECHANICALLY IMPROVED SOILS: RELIABILITY AND VALIDITY

    Directory of Open Access Journals (Sweden)

    Ana Petkovšek

    2017-10-01

    Full Text Available A possibility of in-situ mechanical improvement for reducing the liquefaction potential of silty sands was investigated by using three different techniques: Vibratory Roller Compaction, Rapid Impact Compaction (RIC and Soil Mixing. Material properties at all test sites were investigated before and after improvement with the laboratory and the in situ tests (CPT, SDMT, DPSH B, static and dynamic load plate test, geohydraulic tests. Correlation between the results obtained by different test methods gave inconclusive answers.

  6. Factorial Study of Compressive Mechanical Properties and Primary In Vitro Osteoblast Response of PHBV/PLLA Scaffolds

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available For bone tissue regeneration, composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramics have been regarded as promising biomimetic systems. Polymer blends of poly(hydroxybutyrate-co-hydroxyvalerate (PHBV and poly(L-lactic acid (PLLA can be used as the polymer matrix to control the degradation rate. In order to render the scaffolds osteoconductive, nano-sized hydroxyapatite (nHA particles can be incorporated into the polymer matrix. In the first part of this study, a factorial design approach to investigate the influence of materials on the initial compressive mechanical properties of the scaffolds was studied. In the second part, the protein adsorption behavior and the attachment and morphology of osteoblast-like cells (Saos-2 of the scaffolds in vitro were also studied. It was observed that nHA incorporated PHBV/PLLA composite scaffolds adsorbed more bovine serum albumin (BSA protein than PHBV or PHBV/PLLA scaffolds. In vitro studies also revealed that the attachment of human osteoblastic cells (SaOS-2 was significantly higher in nHA incorporated PHBV/PLLA composite scaffolds. From the SEM micrographs of nHA incorporated PHBV/PLLA composite scaffolds seeded with SaOS-2 cells after a 7-day cell culture period, it was observed that the cells were well expanded and spread in all directions on the scaffolds.

  7. Design-theoretical study of cascade CO2 sub-critical mechanical compression/butane ejector cooling cycle

    KAUST Repository

    Petrenko, V.O.

    2011-11-01

    In this paper an innovative micro-trigeneration system composed of a cogeneration system and a cascade refrigeration cycle is proposed. The cogeneration system is a combined heat and power system for electricity generation and heat production. The cascade refrigeration cycle is the combination of a CO2 mechanical compression refrigerating machine (MCRM), powered by generated electricity, and an ejector cooling machine (ECM), driven by waste heat and using refrigerant R600. Effect of the cycle operating conditions on ejector and ejector cycle performances is studied. Optimal geometry of the ejector and performance characteristics of ECM are determined at wide range of the operating conditions. The paper also describes a theoretical analysis of the CO2 sub-critical cycle and shows the effect of the MCRM evaporating temperature on the cascade system performance. The obtained data provide necessary information to design a small-scale cascade system with cooling capacity of 10 kW for application in micro-trigeneration systems. © 2010 Elsevier Ltd and IIR. All rights reserved.

  8. Non-Uniform Compressive Strength of Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Nøkkentved, Alexandros; Lundsgaard-Larsen, Christian; Berggreen, Carl Christian

    2005-01-01

    debonds show a considerable strength reduction with increasing debond diameter, with failure mechanisms varying between fast debond propagation and wrinkling-introduced face compression failure for large and small debonds, respectively. Residual strength predictions are based on intact panel testing...

  9. Bandwidth Analysis of Functional Interconnects Used as Test Access Mechanism

    NARCIS (Netherlands)

    Van den Berg, A.; Ren, P.; Marinissen, E.J.; Gaydadjiev, G.; Goossens, K.

    2010-01-01

    Test data travels through a System on Chip (SOC) from the chip pins to the Core-Under-Test (CUT) and vice versa via a Test Access Mechanism (TAM). Conventionally, a TAM is implemented using dedicated communication infrastructure. However, also existing functional interconnect, such as a bus or

  10. Bandwidth analysis of functional interconnects used as test access mechanism

    NARCIS (Netherlands)

    Berg, van den Ardy; Ren, P.; Marinissen, Erik Jan; Gaydadjiev, G.N.; Goossens, K.G.W.

    2010-01-01

    Test data travels through a System on Chip (SOC) from the chip pins to the Core-Under-Test (CUT) and vice versa via a Test Access Mechanism (TAM). Conventionally, a TAM is implemented using dedicated communication infrastructure. However, also existing functional interconnect, such as a bus or

  11. Comparative study of fracture mechanical test methods for concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Olesen, John Forbes

    2004-01-01

    and the interpretation, i.e. the analysis needed to extract the stress-crack opening relationship, the fracture energy etc. Experiments are carried out with each test configuration using mature, high performance concrete. The results show that the UTT is a highly complicated test, which only under very well controlled...... circumstances will yield the true fracture mechanical properties. It is also shown that both the three point bending test and the WST are well-suited substitutes for the uniaxial tension test.......This paper describes and compares three different fracture mechanical test methods; the uniaxial tension test (UTT), the three point bending test (TPBT) and the wedge splitting test (WST). Potentials and problems with the test methods will be described with regard to the experiment...

  12. Development of postcompressional textural tests to evaluate the mechanical properties of medicated chewing gum tablets with high drug loadings.

    Science.gov (United States)

    Al Hagbani, Turki; Nazzal, Sami

    2018-02-01

    Medicated chewing gum tablets (CGTs) represent a unique platform for drug delivery. Loading directly compressible gums with high concentrations of powdered medication, however, results in compacts with hybrid properties between a chewable gum and a brittle tablet. The aim of the present study was to develop textural tests that can identify the point at which CGTs begin to behave like a solid tablet upon drug incorporation. Curcumin (CUR) CGTs made with Health in gum were prepared with increasing CUR load from 0 to 100% and were characterized for their mechanical properties by a single-bite (knife) and a two-bite tests. From each test several parameters were extracted and correlated with drug loading. In the single-bite test, the change in the resistance of the compacts to plastic deformation was found to give a definitive guide on whether they behave as gums or tablets. A more in depth analysis of the impact of CUR loading on the chewability of the CGTs was provided by the two-bite test where CUR loading was found to have a nonlinear impact on the mechanical properties of compacts. An upper limit of 10% was found to yield compacts with gum-like properties, which were abolished at higher CUR loads. The textural test procedure outlined in this study are expected to assist those involved in the formulation of medicated gums for pharmaceutical applications in making an informed decision on the impact of drug loading on gum behavior before proceeding with clinical testing. There is a growing interest in utilizing medicated chewing gums for drug delivery, especially those made using directly compressible gum bases, such as Health in gum. Directly compressing a gum base with high amounts of solid drug powder, however, poses a challenge as it may result in compressed compacts with hybrid properties between a chewing gum and a hard tablet. Currently, official Pharmacopeias do not specify a testing procedure for the estimation of the mechanical and textural properties of

  13. Evaluation of bundle duct interaction by out of pile compressive test of FBR bundles. FFTF type bundle

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kosuke; Yamamoto, Yuji; Nagamine, Tsuyoshi; Maeda, Koji [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-10-01

    Bundle duct interaction (BDI) caused by expansion of fuel pin bundle becomes one of the main limiting factors for fuel life times. Then, it is important for the design of fast reactor fuel assembly to understand the BDI behavior in detail. In order to understand the BDI behavior, out of pile compressive tests were conducted for FFTF type bundle by use of X-ray CT equipment. In these compressive tests, two type bundles with different accuracy of initial wire position were conducted. The objective of this test is to evaluate the influence of the initial error from standard position of wire at the same axial position. The locations of the pins and the duct flats are analyzed from CT image data. Quantitative evaluation was performed at the CT image data and discussed the bundle deformation status under BDI condition. Following results are obtained. 1) The accuracy of initial wire position is strongly depends on the pin-to-duct contact behavior. In the case of bundle with large error from standard position, pin-to-duct contact is delayed. 2) The BDI mitigation of the bundle with small error from standard wire position is following: The elastic ovality is the dominant deformation in mild BDI condition, then the wire dispersion and pin dispersion are occurred in severe BDI condition. 3) The BDI mitigation of the bundle with large error from standard wire position is following: The elastic ovality and local bowing of pins with large error from standard wire position are occurred in mild BDI condition, then pin dispersion is occurred around pins with large error from standard wire position, finally wire dispersion is occurred in severe BDI condition. 4) The existence of pins with large error from standard wire position is effective to delay the pin-to-duct contact, but the existence of these pins is possible to contact of pin- to- pin. (author)

  14. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    Science.gov (United States)

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  16. Coupling between chemical degradation and mechanical behaviour of leached concrete; Couplage degradation chimique - comportement en compression du beton

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, V H

    2005-10-15

    This work is in the context of the long term behavior of concrete employed in radioactive waste disposal. The objective is to study the coupled chemo-mechanical modelling of concrete. In the first part of this contribution, experimental investigations are described where the effects of the calcium leaching process of concrete on its mechanical properties are highlighted. An accelerated method has been chosen to perform this leaching process by using an ammonium nitrate solution. In the second part, we present a coupled phenomenological chemo-mechanical model that represents the degradation of concrete materials. On one hand, the chemical behavior is described by the simplified calcium leaching approach of cement paste and mortar. Then a homogenization approach using the asymptotic development is presented to take into account the influence of the presence of aggregates in concrete. And on the other hand, the mechanical part of the modelling is given. Here continuum damage mechanics is used to describe the mechanical degradation of concrete. The growth of inelastic strains observed during the mechanical tests is describes by means of a plastic like model. The model is established on the basis of the thermodynamics of irreversible processes framework. The coupled nonlinear problem at hand is addressed within the context of the finite element method. Finally, numerical simulations are compared with the experimental results for validation. (author)

  17. Investigation into Regeneration Mechanism of Hydroalcoholic Lavender (Lavandula officianalis Extract through the Evaluation of NT3 Gene Expression after Sciatic Nerve Compression in Rats

    Directory of Open Access Journals (Sweden)

    Fereshteh Naderi Allaf

    2017-05-01

    Full Text Available Abstract Background: Retrograde transport to the alpha motoneurons causes spinal degeneration. The neurotrophic factor (NT3 increases the number of myelinated axons in the dorsal root, leads to differentiation and survival of sensory neurons, parasympathetic motoneurons and prevents cell death. Lavender is a plant in the family Lamiaceae which is reported to have antioxidant, antispasmodic, diuretic, anti-asthmatic, refrigerant, and antipyretic effects. This study examined NT3 gene expression changes after sciatic nerve compression in rats, in the presence of Lavandula officinalis extract. Materials and Methods: Lavender Soxhlet hydroalcoholic extraction was prepared. 36 male Wistar rats were randomly divided into 3 groups including control, compression and treatment (compression group + hydroalcoholic extract of Lavender injections 75mg/kg groups. In controls the muscle was opened without damage to gain access to the sciatic nerve. In compression and treatment groups, the sciatic nerve (right leg was compressed. The extract was injected intraperitoneally in two occasions. A biopsy was taken from the spinal cord segments L4-L6 on day 28, total RNA was extracted and cDNA was synthesized and NT3 gene expression changes were analyzed by ANOVA test by using SPSS software. Results: The results showed that NT3 gene expression had a significant reduction in compression group compared to the control group (p<0.001 and it had a significant increase in treatment group compared with the compression group (p<0.001. Conclusion: A significant increase in gene expression shows that Lavandula officinalis hydroalcoholic extract improves nerve regeneration via NT3 gene expression.

  18. Testing and Modeling of Mechanical Characteristics of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    for both upper and lower electrode systems. This has laid a foundation for modeling the welding process and selecting the welding parameters considering the machine factors. The method is straightforward and easy to be applied in industry since the whole procedure is based on tests with no requirements......The dynamic mechanical response of resistance welding machine is very important to the weld quality in resistance welding especially in projection welding when collapse or deformation of work piece occurs. It is mainly governed by the mechanical parameters of machine. In this paper, a mathematical...... model for characterizing the dynamic mechanical responses of machine and a special test set-up called breaking test set-up are developed. Based on the model and the test results, the mechanical parameters of machine are determined, including the equivalent mass, damping coefficient, and stiffness...

  19. Radiological Image Compression

    Science.gov (United States)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  20. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    Science.gov (United States)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  1. The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model.

    Science.gov (United States)

    Ching, Congo T S; Chow, Daniel H K; Yao, Fiona Y D; Holmes, Andrew D

    2003-03-01

    To assess the changes in the mechanical properties of inter-vertebral discs in vivo following static and cyclic compressive loading of different frequencies. An in vivo biomechanical study using a rat-tail model of the inter-vertebral disc.Background. Mechanical loading has been suggested as playing a major role in the etiology of disc degeneration, but the relationship is still not fully understood. Sixty Sprague-Dawley rats were subject to daily compressive stress via pins inserted in the 6th and 7th caudal vertebrae over a two-week loading period. Animals were randomly divided into a sham group (pin insertion, no loading), a static loading group, or cyclic loading groups of 0.5, 1.5, or 2.5 Hz. Loading was applied for 1 h each day from the 3rd to 17th day following pin insertion, and the angular compliance, angular laxity, and inter-pin distance were measured in vivo at days 0, 3, 10 and 17. Changes in the inter-vertebral disc height depended on the frequency of loading, with the decrease in disc height in the static compression group significantly greater than that in all other groups, whereas the decrease in the 1.5 Hz cyclic compression group was significantly smaller than that in all other compression groups. Changes in disc properties depend on both the total load exposure and the frequency of loading. Cyclic loading in general produced less marked changes than static loading, but loading at particular frequencies may result in more severe changes. Previous studies have shown the in vivo changes in the mechanical properties of inter-vertebral discs to depend on the magnitude and duration of loading. In this study, a frequency dependent response to cyclic loading is also demonstrated.

  2. Design and implementation of a novel mechanical testing system for cellular solids.

    Science.gov (United States)

    Nazarian, Ara; Stauber, Martin; Müller, Ralph

    2005-05-01

    Cellular solids constitute an important class of engineering materials encompassing both man-made and natural constructs. Materials such as wood, cork, coral, and cancellous bone are examples of cellular solids. The structural analysis of cellular solid failure has been limited to 2D sections to illustrate global fracture patterns. Due to the inherent destructiveness of 2D methods, dynamic assessment of fracture progression has not been possible. Image-guided failure assessment (IGFA), a noninvasive technique to analyze 3D progressive bone failure, has been developed utilizing stepwise microcompression in combination with time-lapsed microcomputed tomographic imaging (microCT). This method allows for the assessment of fracture progression in the plastic region, where much of the structural deformation/energy absorption is encountered in a cellular solid. Therefore, the goal of this project was to design and fabricate a novel micromechanical testing system to validate the effectiveness of the stepwise IGFA technique compared to classical continuous mechanical testing, using a variety of engineered and natural cellular solids. In our analysis, we found stepwise compression to be a valid approach for IGFA with high precision and accuracy comparable to classical continuous testing. Therefore, this approach complements the conventional mechanical testing methods by providing visual insight into the failure propagation mechanisms of cellular solids. (c) 2005 Wiley Periodicals, Inc.

  3. Reservoir characterization and final pre-test analysis in support of the compressed-air-energy-storage Pittsfield aquifer field test in Pike County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1983-06-01

    The work reported is part of a field experimental program to demonstrate and evaluate compressed air energy storage in a porous media aquifer reservoir near Pittsfield, Illinois. The reservoir is described. Numerical modeling of the reservoir was performed concurrently with site development. The numerical models were applied to predict the thermohydraulic performance of the porous media reservoir. This reservoir characterization and pre-test analysis made use of evaluation of bubble development, water coning, thermal development, and near-wellbore desaturation. The work was undertaken to define the time required to develop an air storage bubble of adequate size, to assess the specification of instrumentation and above-ground equipment, and to develop and evaluate operational strategies for air cycling. A parametric analysis was performed for the field test reservoir. (LEW)

  4. Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baumgardner, Marc E. [Gonzaga University; Lakshminarayanan, Arunachalam [Colorado State University; Olsen, Daniel B. [Colorado State University; Marchese, Anthony J. [Colorado State University

    2017-10-18

    Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durability issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.

  5. Microbuckling compression failure of a radiation-induced wood/polymer composite

    International Nuclear Information System (INIS)

    Boey, F.Y.C.

    1990-01-01

    A wood/polymer composite was produced by impregnating Ramin wood with methyl methacrylate monomer and subsequently polymerizing it by gamma irradiation. To assess the improvement in compression strength of the wood caused by the polymer impregnation, a microbuckling compression failure mechanism was used to model the compression failure of the composite. Such a mechanism was found to predict a linear relationship between the compression strength and the percentage polymer impregnation (by weight). Uniaxial compression test results at 45(±5)% and 90(±5)% relative humidity levels, after being statistically analysed, showed that such a linear relationship was valid for up to 100% polymer impregnation. (author)

  6. Shaking table qualification tests of mechanical and electrical components

    International Nuclear Information System (INIS)

    Jurukovski, D.

    1993-01-01

    This presentation covers the experience of the Institute of Earthquake Engineering and Engineering Seismology, Skopje, Republic of Macedonia in seismic qualification of mechanical components by shaking table testing. The characteristics of the biaxial seismic and single component shaking tables used at the Institute are given. Some examples of the experience from performed test for reactor components are included

  7. Analysis of a proposed crucial test of quantum mechanics

    International Nuclear Information System (INIS)

    Collett, M.J.; Loudon, R.

    1987-01-01

    An experiment based on an extension of the Einstein-Podolsky-Rosen argument has been proposed by Popper as a crucial test of the Copenhagen interpretation of quantum mechanics. Here the authors show, by a slightly more complete version of Popper's analysis, although still at a relatively primitive level of sophistication, that the proposed experiment does not in fact provide such a test. (author)

  8. Mechanical Characterization and Corrosion Testing of X608 Al Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad; Choi, Jung-Pyung; Stephens, Elizabeth V.; Catalini, David; Lavender, Curt A.; Rohatgi, Aashish

    2016-02-07

    This paper describes the mechanical characterization and corrosion testing of X608 Al alloy that is being considered for A-pillar covers for heavy-duty truck applications. Recently, PNNL developed a thermo-mechanical process to stamp A-pillar covers at room temperature using this alloy, and the full-size prototype was successfully stamped by a tier-1 supplier. This study was conducted to obtain additional important information related to the newly developed forming process, and to further improve its mechanical properties. The solutionization temperature, pre-strain and paint-bake heat-treatment were found to influence the alloy’s fabricability and mechanical properties. Natural aging effect on the formability was investigated by limiting dome height (LDH) tests. Preliminary corrosion experiments showed that the employed thermo-mechanical treatments did not significantly affect the corrosion behavior of Al X608.

  9. Conventional compressive strength parallel to the grain and mechanical resistance of wood against pin penetration and microdrilling established by in-situ semidestructive devices

    Czech Academy of Sciences Publication Activity Database

    Kloiber, Michal; Drdácký, Miloš; Tippner, J.; Hrivnák, J.

    2015-01-01

    Roč. 48, č. 10 (2015), s. 3217-3229 ISSN 1359-5997 R&D Projects: GA MK(CZ) DF11P01OVV001; GA MŠk(CZ) LO1219 Keywords : compressive strength * density * in situ testing * non-destructive testing (NDT) * small size loading jack * wood Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.453, year: 2015 http://link.springer.com/article/10.1617/s11527-014-0392-6

  10. Pressurized Slot Testing to Determine Thermo-Mechanical Properties of Lithophysal Tuff at Yucca Mountain Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    George, James T.; Sobolik, Steven R.; Lee, Moo Y.; Park, Byoung; Costin, Laurence

    2018-05-01

    The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range of temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.

  11. Sierra/SolidMechanics 4.48 Verification Tests Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose; Le, San; Littlewood, David John; Merewether, Mark Thomas; Mosby, Matthew David; Pierson, Kendall H.; Porter, Vicki L.; Shelton, Timothy; Thomas, Jesse David; Tupek, Michael R.; Veilleux, Michael; Xavier, Patrick G.

    2018-03-01

    Presented in this document is a small portion of the tests that exist in the Sierra / SolidMechanics (Sierra / SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra / SM Example Problems Manual. Note, many other verification tests exist in the Sierra / SM test suite, but have not yet been included in this manual.

  12. Shear compression testing of glass-fibre steel specimens after 4K reactor irradiation: Present status and facility upgrade

    International Nuclear Information System (INIS)

    Gerstenberg, H.; Kraehling, E.; Katheder, H.

    1997-01-01

    The shear strengths of various fibre reinforced resins being promising candidate insulators for superconducting coils to be used tinder a strong radiation load, e.g. in future fusion reactors were investigated prior and subsequent to reactor in-core irradiation at liquid helium temperature. A large number of sandwich-like (steel-bonded insulation-steel) specimens representing a widespread variety of materials and preparation techniques was exposed to irradiation doses of up to 5 x 10 7 Gy in form of fast neutrons and γ-radiation. In a systematic study several experimental parameters including irradiation dose, postirradiation storage temperature and measuring temperature were varied before the determination of the ultimate shear strength. The results obtained from the different tested materials are compared. In addition an upgrade of the in-situ test rig installed at the Munich research reactor is presented, which allows combined shear/compression loading of low temperature irradiated specimens and provides a doubling of the testing rate

  13. Data compression/error correction digital test system. Appendix 2: Theory of operation

    Science.gov (United States)

    1972-01-01

    An overall block diagram of the DC/EC digital system test is shown. The system is divided into two major units: the transmitter and the receiver. In operation, the transmitter and receiver are connected only by a real or simulated transmission link. The system inputs consist of: (1) standard format TV video, (2) two channels of analog voice, and (3) one serial PCM bit stream.

  14. Vapor compression heat pump system field tests at the tech complex

    Science.gov (United States)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  15. Fractal and Morphological Characteristics of Single Marble Particle Crushing in Uniaxial Compression Tests

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    2015-01-01

    Full Text Available Crushing of rock particles is a phenomenon commonly encountered in geotechnical engineering practice. It is however difficult to study the crushing of rock particles using classical theory because the physical structure of the particles is complex and irregular. This paper aims at evaluating fractal and morphological characteristics of single rock particle. A large number of particle crushing tests are conducted on single rock particle. The force-displacement curves and the particle size distributions (PSD of crushed particles are analysed based on particle crushing tests. Particle shape plays an important role in both the micro- and macroscale responses of a granular assembly. The PSD of an assortment of rocks are analysed by fractal methods, and the fractal dimension is obtained. A theoretical formula for particle crushing strength is derived, utilising the fractal model, and a simple method is proposed for predicting the probability of particle survival based on the Weibull statistics. Based on a few physical assumptions, simple equations are derived for determining particle crushing energy. The results of applying these equations are tested against the actual experimental data and prove to be very consistent. Fractal theory is therefore applicable for analysis of particle crushing.

  16. Acoustic emission from zirconium alloys during mechanical and fracture testing

    International Nuclear Information System (INIS)

    Coleman, C.E.

    1986-10-01

    The application of acoustic emission during the mechanical and fracture testing of zirconium alloys is reviewed. Acoustic emission is successful in following delayed hydride cracking quantitatively. It is especially useful when great sensitivity is required. Application to fatigue, tensile deformation and stress corrosion cracking appears promising but requires more work to separate phenomena before it can be used quantitatively. This report is based on an invited review for the American Society of Non-Destructive Testing Handbook: Volume 5, Acoustic Emission Testing

  17. Polarization tests of one-particle-exchange mechanisms

    International Nuclear Information System (INIS)

    Goldstein, G.R.; Moravcsik, M.J.

    1984-01-01

    Since one-particle-exchange (OPE) mechanisms are predominant in all aspects of elementary-particle dynamics, a novel class of polarization tests is proposed for such mechanisms. They test whether a single particle of total angular momentum J is exchanged (''J constraints'') and whether the process can be factorized into two vertices (''factorization constraints''), but the tests are independent of more detailed dynamical features such as the exact nature of the coupling at the vertices. Except for a restricted type of processes containing some low spin values, the constraints reduce the number of reaction amplitudes and offer tests of OPE which are independent of the value of J. The tests have a particularly simple form in a ''magic'' formalism in which the quantization directions of the particles are in the reaction plane and are rotated from the helicity directions by a ''magic'' angle which can be easily specified for a given s and t. The tests consist of measuring whether a certain polarization quantity vanishes or not, thus providing sensitive ''null experiments'' for the exploration of particle dynamics. The results are illustrated on the popular reaction (1/2)+(1/2)→(1/2)+(1/2), which is embodied, for example, in elastic nucleon-nucleon scattering. The tests can be used either for one single-exchange mechanism or for a combination of such mechanisms (even if they involve different J exchanges), as long as they all have the same type of parity

  18. Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks

    Directory of Open Access Journals (Sweden)

    C. Galán-Marín

    2013-01-01

    Full Text Available The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, and energy dispersive X-ray fluorescence (EDXRF techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.

  19. STRAIN LOCALIZATION PECULIARITIES AND DISTRIBUTION OF ACOUSTIC EMISSION SOURCES IN ROCK SAMPLES TESTED BY UNIAXIAL COMPRESSION AND EXPOSED TO ELECTRIC PULSES

    Directory of Open Access Journals (Sweden)

    V. A. Mubassarova

    2014-01-01

    Full Text Available Results of uniaxial compression tests of rock samples in electromagnetic fields are presented. The experiments were performed in the Laboratory of Basic Physics of Strength, Institute of Continuous Media Mechanics, Ural Branch of RAS (ICMM. Deformation of samples was studied, and acoustic emission (AE signals were recorded. During the tests, loads varied by stages. Specimens of granite from the Kainda deposit in Kyrgyzstan (similar to samples tested at the Research Station of RAS, hereafter RS RAS were subject to electric pulses at specified levels of compression load. The electric pulses supply was galvanic; two graphite electrodes were fixed at opposite sides of each specimen. The multichannel Amsy-5 Vallen System was used to record AE signals in the six-channel mode, which provided for determination of spatial locations of AE sources. Strain of the specimens was studied with application of original methods of strain computation based on analyses of optical images of deformed specimen surfaces in LaVISION Strain Master System.Acoustic emission experiment data were interpreted on the basis of analyses of the AE activity in time, i.e. the number of AE events per second, and analyses of signals’ energy and AE sources’ locations, i.e. defects.The experiment was conducted at ICMM with the use of the set of equipment with advanced diagnostic capabilities (as compared to earlier experiments described in [Zakupin et al., 2006a, 2006b; Bogomolov et al., 2004]. It can provide new information on properties of acoustic emission and deformation responses of loaded rock specimens to external electric pulses.The research task also included verification of reproducibility of the effect (AE activity when fracturing rates responded to electrical pulses, which was revealed earlier in studies conducted at RS RAS. In terms of the principle of randomization, such verification is methodologically significant as new effects, i.e. physical laws, can be considered

  20. Prehospital randomised assessment of a mechanical compression device in out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised trial and economic evaluation.

    Science.gov (United States)

    Gates, Simon; Lall, Ranjit; Quinn, Tom; Deakin, Charles D; Cooke, Matthew W; Horton, Jessica; Lamb, Sarah E; Slowther, Anne-Marie; Woollard, Malcolm; Carson, Andy; Smyth, Mike; Wilson, Kate; Parcell, Garry; Rosser, Andrew; Whitfield, Richard; Williams, Amanda; Jones, Rebecca; Pocock, Helen; Brock, Nicola; Black, John Jm; Wright, John; Han, Kyee; Shaw, Gary; Blair, Laura; Marti, Joachim; Hulme, Claire; McCabe, Christopher; Nikolova, Silviya; Ferreira, Zenia; Perkins, Gavin D

    2017-03-01

    Mechanical chest compression devices may help to maintain high-quality cardiopulmonary resuscitation (CPR), but little evidence exists for their effectiveness. We evaluated whether or not the introduction of Lund University Cardiopulmonary Assistance System-2 (LUCAS-2; Jolife AB, Lund, Sweden) mechanical CPR into front-line emergency response vehicles would improve survival from out-of-hospital cardiac arrest (OHCA). Evaluation of the LUCAS-2 device as a routine ambulance service treatment for OHCA. Pragmatic, cluster randomised trial including adults with non-traumatic OHCA. Ambulance dispatch staff and those collecting the primary outcome were blind to treatment allocation. Blinding of the ambulance staff who delivered the interventions and reported initial response to treatment was not possible. We also conducted a health economic evaluation and a systematic review of all trials of out-of-hospital mechanical chest compression. Four UK ambulance services (West Midlands, North East England, Wales and South Central), comprising 91 urban and semiurban ambulance stations. Clusters were ambulance service vehicles, which were randomly assigned (approximately 1 : 2) to the LUCAS-2 device or manual CPR. Patients were included if they were in cardiac arrest in the out-of-hospital environment. Exclusions were patients with cardiac arrest as a result of trauma, with known or clinically apparent pregnancy, or aged CPR groups [193/2819, 6.8%; adjusted odds ratio (OR) 0.86, 95% confidence interval (CI) 0.64 to 1.15]. Survival with a CPC score of 1 or 2 may have been worse in the LUCAS-2 group (adjusted OR 0.72, 95% CI 0.52 to 0.99). No serious adverse events were noted. The systematic review found no evidence of a survival advantage if mechanical chest compression was used. The health economic analysis showed that LUCAS-2 was dominated by manual chest compression. There was substantial non-compliance in the LUCAS-2 arm. For 272 out of 1652 patients (16.5%), mechanical

  1. Qualification tests for PWR control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Yong; Jin, Choon Eon; Choi Suhn [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    It is necessary to perform the qualification test for the magnetic jack type CEDM to show the design compatibility because the CEDM is composed of many mechanical and electrical components complicatedly. ABB-CE performed various qualification tests during the development of the System80 CEDM to which Korea Standard Nuclear Plant (KSNP) CEDM referred. The qualification test for the CEDM is classified into the performance test and the dynamic test. The performance test is to verify operability of the CEDM, and the dynamic test is to find dynamic characteristics and to verify the structural integrity if the CEDM for the seismic accidents. Described in this report are the test requirements, the test facilities and the test methods for the performance and the dynamic qualification tests of the PWR magnetic jack type CEDM. The impacts of the design changes in the Korea Next Generation Reactor (KNGR) on the KSNP CEDM were analyzed to present the necessity for the tests. This report also proposes the facilities to perform the tests in KAERI including reasonable schedule for the tests. Attached to this report is the summary of qualification tests of System 80 CEDM performed by ABB-CE. 20 figs., 16 tabs., 21 refs. (Author) .new.

  2. Qualification tests for PWR control element drive mechanism

    International Nuclear Information System (INIS)

    Kim, In Yong; Jin, Choon Eon; Choi Suhn

    1996-01-01

    It is necessary to perform the qualification test for the magnetic jack type CEDM to show the design compatibility because the CEDM is composed of many mechanical and electrical components complicatedly. ABB-CE performed various qualification tests during the development of the System80 CEDM to which Korea Standard Nuclear Plant (KSNP) CEDM referred. The qualification test for the CEDM is classified into the performance test and the dynamic test. The performance test is to verify operability of the CEDM, and the dynamic test is to find dynamic characteristics and to verify the structural integrity if the CEDM for the seismic accidents. Described in this report are the test requirements, the test facilities and the test methods for the performance and the dynamic qualification tests of the PWR magnetic jack type CEDM. The impacts of the design changes in the Korea Next Generation Reactor (KNGR) on the KSNP CEDM were analyzed to present the necessity for the tests. This report also proposes the facilities to perform the tests in KAERI including reasonable schedule for the tests. Attached to this report is the summary of qualification tests of System 80 CEDM performed by ABB-CE. 20 figs., 16 tabs., 21 refs. (Author) .new

  3. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  4. Relationship between liver tissue stiffness and histopathological findings analyzed by shear wave elastography and compression testing in rats with non-alcoholic steatohepatitis.

    Science.gov (United States)

    Ogawa, Saori; Moriyasu, Fuminori; Yoshida, Keiko; Oshiro, Hisashi; Kojima, Mayumi; Sano, Takatomo; Furuichi, Yoshihiro; Kobayashi, Yoshiyuki; Nakamura, Ikuo; Sugimoto, Katsutoshi

    2016-07-01

    The aim of the present study was to investigate two methods of determining liver stiffness in rats with various degrees of non-alcoholic steatohepatitis induced by a methionine- and choline-deficient (MCD) diet by comparing each finding with reference to histopathological liver findings. Twenty male Wister rats were fed an MCD diet for up to 32 weeks, and four were fed a normal diet. Ultrasound-based shear wave elastography (SWE) and mechanical compression testing using an Instron Universal Testing machine were performed on each rat at designated time points. After each examination, liver histopathology was analyzed to evaluate the degrees of steatosis, inflammation, and fibrosis based on non-alcoholic fatty liver disease (NAFLD) activity score, and each finding was compared with reference to liver histopathologic findings. Median liver stiffness values measured using SWE showed a stepwise increase with increasing histological inflammation score (P = 0.002), hepatic fibrosis stage (P = 0.029), ballooning score (P = 0.012), and steatosis grade (P = 0.030). Median liver stiffness measured using an Instron machine showed a stepwise increase only with increasing histological fibrosis stage (P = 0.033). Degree of liver stiffness measured by SWE and the Instron machine differed. SWE reflected mainly inflammation, whereas Instron machine-derived values primarily reflected fibrosis. This is the main source of discrepancies between measurements made with these two modalities.

  5. Mechanical testing of adherence of stacked layers in tubular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Correia, L.A.; Schuring, E.W.; Van Delft, Y.C. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2007-09-15

    For the development of new molecular separation technologies strong robust tubular membrane systems are required. The fragile membranes, however, need a strong defect free support such as a porous asymmetric ceramic tube. Mechanical failure of these ceramic membrane systems during manufacturing and operation is mainly caused by delamination of the stacked layers. Therefore development is focused on improving the adherence. As no standard mechanical test for tubular samples is available yet, a new tensile test was developed to facilitate the current research. The most important components in the new equipment is a test tool with a curvature matching that of the test sample and a sample casing that align and guide the test tool during the tensile test. With this tensile test the manufacturing procedure for the ECN standard tubular {alpha}-alumina support was optimized. Firing the asymmetric support at 1300C resulted in the highest mechanical strength for the support system with cohesive fracture in the support tube. With the test developed the process condition could be identified where the material of the support tube is the weakest link in the support system.

  6. Compression stockings

    Science.gov (United States)

    Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...

  7. An attempt for a unified description of mechanical testing on Zircaloy-4 cladding subjected to simulated LOCA transient

    Directory of Open Access Journals (Sweden)

    Desquines Jean

    2016-01-01

    Full Text Available During a Loss Of Coolant Accident (LOCA, an important safety requirement is that the reflooding of the core by the emergency core cooling system should not lead to a complete rupture of the fuel rods. Several types of mechanical tests are usually performed in the industry to determine the degree of cladding embrittlement, such as ring compression tests or four-point bending of rodlets. Many other tests can be found in the open literature. However, there is presently no real intrinsic understanding of the failure conditions in these tests which would allow translation of the results from one kind of mechanical testing to another. The present study is an attempt to provide a unified description of the failure not directly depending on the tested geometry. This effort aims at providing a better understanding of the link between several existing safety criteria relying on very different mechanical testing. To achieve this objective, the failure mechanisms of pre-oxidized and pre-hydrided cladding samples are characterized by comparing the behavior of two different mechanical tests: Axial Tensile (AT test and “C”-shaped Ring Compression Test (CCT. The failure of samples in both cases can be described by usual linear elastic fracture mechanics theory. Using interrupted mechanical tests, metallographic examinations have evidenced that a set of parallel cracks are nucleated at the inner and outer surface of the samples just before failure, crossing both the oxide layer and the oxygen rich alpha layer. The stress intensity factors for multiple crack geometry are determined for both AT and CCT samples using finite element calculations. After each mechanical test performed on high temperature steam oxidized samples, metallography is then used to individually determine the crack depth and crack spacing. Using these two important parameters and considering the applied load at fracture, the stress intensity factor at failure is derived for each tested

  8. Fast Flux Test Facility sodium pump operating experience - mechanical

    International Nuclear Information System (INIS)

    Buonamici, R.

    1987-11-01

    The Heat Transport System (HTS) pumps were designed, fabricated, tested, and installed in the Fast Flux Test Facility (FFTF) Plant during the period from September 1970 through July 1977. Since completion of the installation and sodium fill in December 1978, the FFTF Plant pumps have undergone extensive testing and operation with HTS testing and reactor operation. Steady-state hydraulic and mechanical performances have been and are excellent. In all, FFTF primary and secondary pumps have operated in sodium for approximately 75,000 hours and 79,000 hours, respectively, to August 24, 1987

  9. Control rod drive mechanism stator loss of coolant test

    International Nuclear Information System (INIS)

    Besel, L.; Ibatuan, R.

    1977-04-01

    This report documents the stator loss of coolant test conducted at HEDL on the lead unit Control Rod Drive Mechanism (CRDM) in February, 1977. The purpose of the test was to demonstrate scram capability of the CRDM with an uncooled stator and to obtain a time versus temperature curve of an uncooled stator under power. Brief descriptions of the test, hardware used, and results obtained are presented in the report. The test demonstrated that the CRDM could be successfully scrammed with no anomalies in both the two-phase and three-phase stator winding hold conditions after the respective equilibrium stator temperatures had been obtained with no stator coolant

  10. Formulation of anisotropic Hill criteria for the description of an aluminium alloy behaviour during the channel die compression test

    International Nuclear Information System (INIS)

    Gavrus, A.; Francillette, H.

    2007-01-01

    During the last years the study of the plastic deformation modes and the anisotropic mechanical behaviour of aluminium alloys have been the subject of many investigations. This paper deals with a phenomenological identification of an anisotropic Hill constitutive equation of aluminium AU4G samples using a channel die compression device at room temperature. By considering the different possible orientations of the samples in the channel die device, three initial textures, named ND (normal direction Z), LD (longitudinal direction X) and TD (transverse direction Y), were defined with the corresponding stresses σND, σLD and σTD. To describe the anisotropy of the material, a quadratic Hill criteria is used. An Avrami type equation based on the mixture of the hardening and softening phenomena is used to describe variation of each stress component with the equivalent plastic strain. The identification of the parameters of the law is made using an identification software (OPTPAR) and a good correlation between the experimental stresses and computed ones is obtained. The variation of the Hill parameters with a proposed equivalent strain, describing the deformation history of the material, is analysed. Finally, using the expressions of F, G, H and N, the constitutive equation of the normal anisotropy in the plane XY is obtained

  11. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    Science.gov (United States)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  12. Testing of the BipiColombo Antenna Pointing Mechanism

    Science.gov (United States)

    Campo, Pablo; Barrio, Aingeru; Martin, Fernando

    2015-09-01

    BepiColombo is an ESA mission to Mercury, its planetary orbiter (MPO) has two antenna pointing mechanism, High gain antenna (HGA) pointing mechanism steers and points a large reflector which is integrated at system level by TAS-I Rome. Medium gain antenna (MGA) APM points a 1.5 m boom with a horn antenna. Both radiating elements are exposed to sun fluxes as high as 10 solar constants without protections.A previous paper [1] described the design and development process to solve the challenges of performing in harsh environment.. Current paper is focused on the testing process of the qualification units. Testing performance of antenna pointing mechanism in its specific environmental conditions has required special set-up and techniques. The process has provided valuable feedback on the design and the testing methods which have been included in the PFM design and tests.Some of the technologies and components were developed on dedicated items priort to EQM, but once integrated, test behaviour had relevant differences.Some of the major concerns for the APM testing are:- Create during the thermal vacuum testing the qualification temperature map with gradients along the APM. From of 200oC to 70oC.- Test in that conditions the radio frequency and pointing performances adding also high RF power to check the power handling and self-heating of the rotary joint.- Test in life up to 12000 equivalent APM revolutions, that is 14.3 million motor revolutions in different thermal conditions.- Measure low thermal distortion of the mechanical chain, being at the same time insulated from external environment and interfaces (55 arcsec pointing error)- Perform deployment of large items guaranteeing during the process low humidity, below 5% to protect dry lubrication- Verify stability with representative inertia of large boom or reflector 20 Kgm2.

  13. Finite element simulations of two rock mechanics tests

    International Nuclear Information System (INIS)

    Dahlke, H.J.; Lott, S.A.

    1986-04-01

    Rock mechanics tests are performed to determine in situ stress conditions and material properties of an underground rock mass. To design stable underground facilities for the permanent storage of high-level nuclear waste, determination of these properties and conditions is a necessary first step. However, before a test and its associated equipment can be designed, the engineer needs to know the range of expected values to be measured by the instruments. Sensitivity studies by means of finite element simulations are employed in this preliminary design phase to evaluate the pertinent parameters and their effects on the proposed measurements. The simulations, of two typical rock mechanics tests, the plate bearing test and the flat-jack test, by means of the finite element analysis, are described. The plate bearing test is used to determine the rock mass deformation modulus. The flat-jack test is used to determine the in situ stress conditions of the host rock. For the plate bearing test, two finite element models are used to simulate the classic problem of a load on an elastic half space and the actual problem of a plate bearing test in an underground tunnel of circular cross section. For the flat-jack simulation, a single finite element model is used to simulate both horizontal and vertical slots. Results will be compared to closed-form solutions available in the literature

  14. Effects of Time-Compressed Speech Training on Multiple Functional and Structural Neural Mechanisms Involving the Left Superior Temporal Gyrus.

    Science.gov (United States)

    Maruyama, Tsukasa; Takeuchi, Hikaru; Taki, Yasuyuki; Motoki, Kosuke; Jeong, Hyeonjeong; Kotozaki, Yuka; Nakagawa, Seishu; Nouchi, Rui; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Sakaki, Kohei; Sasaki, Yukako; Magistro, Daniele; Kawashima, Ryuta

    2018-01-01

    Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension.

  15. Testing of mechanical ventilators and infant incubators in healthcare institutions.

    Science.gov (United States)

    Badnjevic, Almir; Gurbeta, Lejla; Jimenez, Elvira Ruiz; Iadanza, Ernesto

    2017-01-01

    The medical device industry has grown rapidly and incessantly over the past century. The sophistication and complexity of the designed instrumentation is nowadays rising and, with it, has also increased the need to develop some better, more effective and efficient maintenance processes, as part of the safety and performance requirements. This paper presents the results of performance tests conducted on 50 mechanical ventilators and 50 infant incubators used in various public healthcare institutions. Testing was conducted in accordance to safety and performance requirements stated in relevant international standards, directives and legal metrology policies. Testing of output parameters for mechanical ventilators was performed in 4 measuring points while testing of output parameters for infant incubators was performed in 7 measuring points for each infant incubator. As performance criteria, relative error of output parameters for mechanical ventilators and absolute error of output parameters for infant incubators was calculated. The ranges of permissible error, for both groups of devices, are regulated by the Rules on Metrological and Technical Requirements published in the Official Gazette of Bosnia and Herzegovina No. 75/14, which are defined based on international recommendations, standards and guidelines. All ventilators and incubators were tested by etalons calibrated in an ISO 17025 accredited laboratory, which provides compliance to international standards for all measured parameters.The results show that 30% of the tested medical devices are not operating properly and should be serviced, recalibrated and/or removed from daily application.

  16. Targeted retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene prevents loss of mouse (twy/twy) anterior horn neurons in vivo sustaining mechanical compression.

    Science.gov (United States)

    Xu, Kan; Uchida, Kenzo; Nakajima, Hideaki; Kobayashi, Shigeru; Baba, Hisatoshi

    2006-08-01

    Immunohistochemical analysis after adenovirus (AdV)-mediated BDNF gene transfer in and around the area of mechanical compression in the cervical spinal cord of the hyperostotic mouse (twy/twy). To investigate the neuroprotective effect of targeted AdV-BDNF gene transfection in the twy mouse with spontaneous chronic compression of the spinal cord motoneurons. Several studies reported the neuroprotective effects of neurotrophins on injured spinal cord. However, no report has described the effect of targeted retrograde neurotrophic gene delivery on motoneuron survival in chronic compression lesions of the cervical spinal cord resembling lesions of myelopathy. LacZ marker gene using adenoviral vector (AdV-LacZ) was used to evaluate retrograde delivery from the sternomastoid muscle in adult twy mice (16-week-old) and (control). Four weeks after the AdV-LacZ or AdV-BDNF injection, the compressed cervical spinal cord was removed en bloc for immunohistologic investigation of b-galactosidase activity and immunoreactivity and immunoblot analyses of BDNF. The number of anterior horn neurons was counted using Nissl, ChAT and AChE staining. Spinal accessory motoneurons between C1 and C3 segments were successfully transfected by AdV-LacZ in both twy and ICR mice after targeted intramuscular injection. Immunoreactivity to BDNF was significantly stronger in AdV-BDNF-gene transfected twy mice than in AdV-LacZ-gene transfected mice. At the cord level showing the maximum compression in AdV-BDNF-transfected twy mice, the number of anterior horn neurons was sinificantly higher in the topographic neuronal cell counting of Nissl-, ChAT-, and AChE-stained samples than in AdV-LacZ-injected twy mice. Targeted AdV-BDNF-gene delivery significantly increased Nissl-stained anterior horn neurons and enhanced cholinergic enzyme activities in the twy. Our results suggest that targeted retrograde AdV-BDNF-gene in vivo delivery may enhance neuronal survival even under chronic mechanical compression.

  17. Project Physics Tests 3, The Triumph of Mechanics.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 3 are presented in this booklet. Included are 70 multiple-choice and 20 problem-and-essay questions. Concepts of mechanics are examined on energy, momentum, kinetic theory of gases, pulse analyses, "heat death," water waves, power, conservation laws, normal distribution, thermodynamic laws, and…

  18. The Performance test of Mechanical Sodium Pump with Water Environment

    International Nuclear Information System (INIS)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum; Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang

    2015-01-01

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  19. Study of the mechanical properties of stainless steel 316LN prepared by hot isostatic compression. Influence of preparation parameters

    International Nuclear Information System (INIS)

    Couturier, Raphael

    1999-01-01

    This research thesis has been performed within an R and D programme which aimed at optimising and certifying the HIP process (hot isostatic pressing) from a technological as well as metallurgical point of view. The objective has been to improve dimensional reproducibility of fabricated parts, and metallurgical properties of the dense material. Reference parts are those belonging to PWR primary circuit, and are made in cast austenitic-ferritic steel. Thus, the objective has been to show that these parts can be beneficially fabricated by powder metallurgy in austenitic grade. A mock part (a primary circuit pump wheel at the 1/2 scale) has first been fabricated by HIP, and a more complex shape generator has been designed. The author reports the determination of microstructure and mechanical characteristics of the austenitic 316LN steel produced by HIP and used to fabricate mock parts and demonstrator parts, the study of the relationship between dense material properties and fabrication parameters (temperature, pressure, consolidation time), and the analysis of the consequences of an elaboration by HIP on the 316LN steel with comparison with forged parts. After a presentation of the Powder Metallurgy elaboration technique, the author reports a bibliographical study on the precipitation at Prior Particle Boundaries (PPB), reports the study of microstructure and mechanical properties of the HIPed 316LN, and discusses the possibility of a decrease of precipitation at PPBs by adjusting powder degassing or a granulometric sorting. The last part reports the extension of the study of steel coherence to a temperature range which encompasses the primary circuit operation temperature (350 C). Resilience tests are performed as well as mechanical tests on notched axisymmetric samples. A finite element calculation of these samples allows the validation of the use of a Thomson-type model to describe the emergence of defects which are typical of a steel elaborated by powder

  20. Evaluation of the drawer test and the tibial compression test for differentiating between cranial and caudal stifle subluxation associated with cruciate ligament instability.

    Science.gov (United States)

    Might, Kelly R; Bachelez, Andréas; Martinez, Steven A; Gay, John M

    2013-05-01

    To determine the sensitivity and specificity of the drawer test (DT) alone and in combination with the tibial compression test (TCT) to detect stifle subluxation after transection of the cranial cruciate (CrCL), caudal cruciate (CdCL) or both cruciate ligaments (total cruciate ligament or TCL). Experimental study. Cadaveric, skeletally mature canine pelvic limb pairs (n = 8). Pelvic limbs disarticulated at the coxofemoral joint were randomly assigned to the following 1 of 4 groups: (1) limbs had complete transection of the CrCL; (2) limbs had complete transection of the CdCL; (3) limbs had complete transection of both ligaments; and (4) both ligaments were left intact. Participants performed the DT and the TCT and a diagnosis was given based on the DT and on the combination of these tests. DT had a poor sensitivity for correctly identifying CrCL (69%), CdCL (45%), and TCL (26%) rupture, but had a high sensitivity when identifying intact limbs (97%). Specificity for DT was greatest when identifying limbs with CdCL (97%) and TCL (92%) rupture, and the lowest when palpating limbs with CrCL rupture (75%). Combining DT and TCT did not increase sensitivity or specificity values, nor did an increased level of evaluator training. Independent of evaluator training, the DT alone or combined with the TCT poorly differentiates the cause of stifle instability associated with CrCL, CdCL, and TCL rupture. © Copyright 2012 by The American College of Veterinary Surgeons.

  1. Mechanisms Engineering Test Loop - Phase 1 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kultgen, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Hvasta, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lisowski, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Toter, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Borowski, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report documents the current status of the Mechanisms Engineering Test Loop (METL) as of the end of FY2016. Currently, METL is in Phase I of its design and construction. Once operational, the METL facility will test small to intermediate-scale components and systems in order to develop advanced liquid metal technologies. Testing different components in METL is essential for the future of advanced fast reactors as it will provide invaluable performance data and reduce the risk of failures during plant operation.

  2. Development of a Fast Breeder Reactor Fuel Bundle Deformation Analysis Code - BAMBOO: Development of a Pin Dispersion Model and Verification by the Out-of-Pile Compression Test

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2004-01-01

    To analyze the wire-wrapped fast breeder reactor fuel pin bundle deformation under bundle/duct interaction conditions, the Japan Nuclear Cycle Development Institute has developed the BAMBOO computer code. This code uses the three-dimensional beam element to calculate fuel pin bowing and cladding oval distortion as the primary deformation mechanisms in a fuel pin bundle. The pin dispersion, which is disarrangement of pins in a bundle and would occur during irradiation, was modeled in this code to evaluate its effect on bundle deformation. By applying the contact analysis method commonly used in the finite element method, this model considers the contact conditions at various axial positions as well as the nodal points and can analyze the irregular arrangement of fuel pins with the deviation of the wire configuration.The dispersion model was introduced in the BAMBOO code and verified by using the results of the out-of-pile compression test of the bundle, where the dispersion was caused by the deviation of the wire position. And the effect of the dispersion on the bundle deformation was evaluated based on the analysis results of the code

  3. Item response theory analysis of the mechanics baseline test

    Science.gov (United States)

    Cardamone, Caroline N.; Abbott, Jonathan E.; Rayyan, Saif; Seaton, Daniel T.; Pawl, Andrew; Pritchard, David E.

    2012-02-01

    Item response theory is useful in both the development and evaluation of assessments and in computing standardized measures of student performance. In item response theory, individual parameters (difficulty, discrimination) for each item or question are fit by item response models. These parameters provide a means for evaluating a test and offer a better measure of student skill than a raw test score, because each skill calculation considers not only the number of questions answered correctly, but the individual properties of all questions answered. Here, we present the results from an analysis of the Mechanics Baseline Test given at MIT during 2005-2010. Using the item parameters, we identify questions on the Mechanics Baseline Test that are not effective in discriminating between MIT students of different abilities. We show that a limited subset of the highest quality questions on the Mechanics Baseline Test returns accurate measures of student skill. We compare student skills as determined by item response theory to the more traditional measurement of the raw score and show that a comparable measure of learning gain can be computed.

  4. An Adaptive Test Sheet Generation Mechanism Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Huan-Yu Lin

    2012-01-01

    Full Text Available For test-sheet composition systems, it is important to adaptively compose test sheets with diverse conceptual scopes, discrimination and difficulty degrees to meet various assessment requirements during real learning situations. Computation time and item exposure rate also influence performance and item bank security. Therefore, this study proposes an Adaptive Test Sheet Generation (ATSG mechanism, where a Candidate Item Selection Strategy adaptively determines candidate test items and conceptual granularities according to desired conceptual scopes, and an Aggregate Objective Function applies Genetic Algorithm (GA to figure out the approximate solution of mixed integer programming problem for the test-sheet composition. Experimental results show that the ATSG mechanism can efficiently, precisely generate test sheets to meet the various assessment requirements than existing ones. Furthermore, according to experimental finding, Fractal Time Series approach can be applied to analyze the self-similarity characteristics of GA’s fitness scores for improving the quality of the test-sheet composition in the near future.

  5. Thermo-mechanical screening tests to qualify beryllium pebble beds with non-spherical pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Joerg, E-mail: joerg.reimann@partner.kit.edu [IKET, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fretz, Benjamin [KBHF GmbH, Eggenstein-Leopoldshafen (Germany); Pupeschi, Simone [IAM, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-10-15

    Highlights: • In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. • Spherical pebbles are considered as the candidate material, however, non-spherical particles are of economic interest. • Thermo-mechanical pebble bed data do merely exist for non-spherical beryllium grades. • Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT) were used to measure the stress–strain relations and the thermal conductivity. • A small experimental set-up had to be used and a detailed 3D modelling was of prime importance. • Compared to spherical pebble beds, non-spherical pebble beds are generally softer and mainly the thermal conductivity is lower. - Abstract: In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. Fairly spherical pebbles are considered as a candidate material, however, non-spherical particles are of economic interest because production costs are much lower. Yet, thermo-mechanical pebble bed data do merely exist for these beryllium grades, and the blanket relevant potential of these grades cannot be judged. Screening experiments were performed with three different grades of non-spherical beryllium pebbles, produced by different companies, accompanied by experiments with the reference beryllium pebble beds. Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT), were performed to measure both the stress–strain relation and the thermal conductivity, k, at different stress levels. Because of the limited amounts of the non-spherical materials, the experimental set-ups were small and a detailed 3D modelling was of prime importance in order to prove that the used design was appropriate. Compared to the pebble beds consisting of spherical pebbles, non-spherical pebble beds are generally softer (smaller stress for a given strain), and, mainly as a consequence of this, for a given strain value, the thermal conductivity is lower. This

  6. Performance Tests of a Mechanical Pump in Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Kim, Byeongyeon; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong Bum; Jeong, Ji-Young; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Water is often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Nevertheless, to ensure the performance, safety, and operability of major components before its installation in the SFR, a series of demonstration experiments of some components in sodium environment should be positively necessary. So, SFR NSSS System Design Division of Korea Atomic Energy Research Institute (KAERI) built various sodium experimental facilities, especially STELLA-1 in 2012. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separated effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS). The mechanical pump in-sodium performance test was successfully performed with good reproducibility of the experiment and data to compare hydraulic characteristic of a mechanical pump in-water was collected. In effect of temperature variation on the pump pressure head, reduction of pump pressure head at 250℃ by 0.57% of that of 300℃ maybe the result of an increase in sodium viscosity by 13.6% according to operating temperature decrease by 50℃. Also, we confirmed that the more flywheel weight, the longer halving time and the more initial flow rate when the pump seized, the shorter halving time. The results of the mechanical pump performance test data in sodium environment will be used to compare with that of the in water environment after the evaluation of measurement uncertainty for tests.

  7. Deformation micro-mechanism for compression of magnesium alloys at room temperature analyzed by electron backscatter diffraction

    International Nuclear Information System (INIS)

    Song, G.S.; Chen, Q.Q.; Zhang, S.H.; Xu, Y.

    2015-01-01

    Highlights: • In-situ tracking on the evolution of grains orientation of magnesium alloy was carried out by EBSD. • Distributions of twin bands were closely related to the activation of extension twin variants. • Activation of extension twin significantly changes the order of Schmid factor of slips. • Pyramidal slips become the dominant deformation mode at the late stage of compression. - Abstract: In-situ tracking on the evolution of grains orientation of rolled magnesium alloy sheets compressed uniaxially at room temperature was carried out by the method of electron backscatter diffraction (EBSD), and meanwhile, distributions of twin bands, activations of twin and slips were also analyzed. The results show that the distributions of twin bands were closely related to the activation of extension twin variants. The activation of extension twin significantly changes the order of Schmid factor of different slips, and accordingly affects the activation of slips during the subsequent deformation

  8. Mechanical properties of JT-60 tokamak machine in power tests

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki; Ohkubo, Minoru; Yamamoto, Masahiro; Ohta, Mitsuru

    1986-01-01

    JT-60 power tests were carried out from Dec. 10, 1984 to Feb. 20, 1985 to demonstrate, in advance of actual plasma operation, satisfactory performance of tokamak machine, power suppliers and control system in combination. The tests began with low power test of individual coil systems and progressed to full power tests. The coil current was raised step by step, monitoring the mechanical, thermal, electrical and vacuum data. Power tests were concluded with successful results. All of the coil systems were raised up to full power operation in combination and system performance was verified including the structural integrity of tokamak machine. Measured strain and deflection showed good agreements with those predicted in the design, which was an evidence that electromagnetic forces were supported as expected in the design. A few limitations to machine operation was made clear quantitatively. And it was found that existing detectors were insufficient to monitor machine integrity and two kinds of detector were proposed to be installed. (author)

  9. Mechanical Testing of Carbon Based Woven Thermal Protection Materials

    Science.gov (United States)

    Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj

    2013-01-01

    Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.

  10. Ultrasound-based testing of tendon mechanical properties

    DEFF Research Database (Denmark)

    Seynnes, O R; Bojsen-Møller, J.; Albracht, K

    2015-01-01

    In the past 20 years, the use of ultrasound-based methods has become a standard approach to measure tendon mechanical properties in vivo. Yet the multitude of methodological approaches adopted by various research groups probably contribute to the large variability of reported values. The technique......, or signal synchronization; and 2) in physiological considerations related to the viscoelastic behavior or length measurements of tendons. Hence, the purpose of the present review is to assess and discuss the physiological and technical aspects connected to in vivo testing of tendon mechanical properties...

  11. Comparative analysis of compressive strength tests at age of 28 and 90 days and density of products using chemical additives in cementing radioactive waste

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2013-01-01

    In this research it has been studied the effects of chemical additives (admixtures) in the cementation process of radioactive wastes, which are used to improve the properties of waste cementation process, both of the paste and of the solidified product. However there are a large variety of these materials that are frequently changed or taken out of the market, then it is essential to know the commercially available materials and their effects. The tests were carried out with a solution simulating the evaporator concentrate waste coming from PWR nuclear reactors. It was cemented using two formulations, A and B, incorporating higher or lower amount of waste, respectively. It was added chemical admixtures from two manufacturers (S and H), which were: accelerators, set retarders and superplasticizers. The experiments were organized by a factorial design 2 3 . The measured parameters were the viscosity, the setting time, the paste and product density and the compressive strength. In this study we performed comparative analyzes of the results of compressive strength at age of 28 and 90 days and between the densities of the samples at the same ages.The compressive strength test at age of 28 days is considered a parameter essential issues related to security handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented product, but presented lower values density products. (author)

  12. Development of a load cell for mechanical testing in hydrogen

    International Nuclear Information System (INIS)

    McCabe, L.P.

    1982-01-01

    Mechanical testing in hydrogen environments is performed on materials to determine hydrogen compatibility. Many tests are performed on small test samples in pressure vessels where monitoring of actual sample load is difficult. A method was developed to monitor small samples by placing inside the vessel a miniature load cell which is capable of measuring loads of less than 100 lbs. The load cell monitors load by means of a Wheatstone Bridge circuit composed of four strain gages. Two of the gages are mounted on a stainless steel stub which becomes part of the vessel load string; the others are wired outside the pressure vessel. Previously, load cells have been short-lived because of hydrogen diffusion into the epoxy-phenolic adhesive used to attach the strain gages to the stub. The use of a flame-sprayed ceramic, however, rather than an organic epoxy to mount the strain gages appears to produce a load cell resistant to the hydrogen test environment

  13. Experimental validation of a new heterogeneous mechanical test design

    Science.gov (United States)

    Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.

    2018-05-01

    Standard material parameters identification strategies generally use an extensive number of classical tests for collecting the required experimental data. However, a great effort has been made recently by the scientific and industrial communities to support this experimental database on heterogeneous tests. These tests can provide richer information on the material behavior allowing the identification of a more complete set of material parameters. This is a result of the recent development of full-field measurements techniques, like digital image correlation (DIC), that can capture the heterogeneous deformation fields on the specimen surface during the test. Recently, new specimen geometries were designed to enhance the richness of the strain field and capture supplementary strain states. The butterfly specimen is an example of these new geometries, designed through a numerical optimization procedure where an indicator capable of evaluating the heterogeneity and the richness of strain information. However, no experimental validation was yet performed. The aim of this work is to experimentally validate the heterogeneous butterfly mechanical test in the parameter identification framework. For this aim, DIC technique and a Finite Element Model Up-date inverse strategy are used together for the parameter identification of a DC04 steel, as well as the calculation of the indicator. The experimental tests are carried out in a universal testing machine with the ARAMIS measuring system to provide the strain states on the specimen surface. The identification strategy is accomplished with the data obtained from the experimental tests and the results are compared to a reference numerical solution.

  14. Interdisciplinary seminar on nondestructive testing and fracture mechanics. Lectures

    International Nuclear Information System (INIS)

    1998-01-01

    The proceedings volume contains 17 lectures presented at a DGZfP seminar held in Berlin/Germany, 2-3 November 1998. Fracture mechanics data are of interest with respect to determining maximum permissible limits for non-destructive materials evaluation, and as quantitative NDE test results indicating existing materials flaws in a system component, delivering information for assessement of remaining service life and safety risks. The topics of lectures are: Quality concepts for welded joints; NDE for service life assessment of engine components, shown for evaluation of engine pales and disks; NDE and crack detection at pressurized gas cylinders; fracture mechanics requirements for NDE in nuclear installations, discussion of practical examples (T. Seidenkranz); failure of off-shore constructions seen in the light of a novel fracture mechanics technical code. (orig./CB) [de

  15. Hydrogen embrittlement of titanium tested with fracture mechanics specimens

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Rahko, P.

    1990-11-01

    Titanium is one of the possible canister materials for spent nuclear fuel. The aim of this study is to determine whether the hydrogen embrittlement of titanium could be a possible deterioration mechanism of titanium canisters. This experimental study was preceded by a literature review and an experimental study on crack nucleation. Tests in this study were carried out with hydrogen charged fracture mechanics specimens. The studied hydrogen contents were as received, 100 ppm, 200 ppm, 500 ppm and 700 ppm and the types of the studied titanium were ASTM Grades 2 and 12. Test methods were slow tensile test (0.027 mm/h) and fatigue test (stress ratio 0.7 or 0.8 and frequency 5 Hz). According to the literature titanium may be embrittled by hydrogen at slow strain rates and cracking may occur under sustained load. In this study no evidence of hydrogen embrittlement was noticed in slow strain rate tension with bulk hydrogen contents up to 700 ppm. The fatigue tests of titanium Grades 2 and 12 containing 700 ppm hydrogen showed even slower crack growth compared to the as received condition. Very high hydrogen contents well in eccess of 700 ppm on the surface of titanium can, however, facilitate surface crack nucleation and crack growth, as shown in the previous study

  16. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.

    Science.gov (United States)

    Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A

    2014-12-01

    The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those

  17. Mechanical behaviour of Br0.5Sr0.5Co0.8Fe0.2O3-δ under uniaxial compression

    International Nuclear Information System (INIS)

    Araki, Wakako; Malzbender, Jürgen

    2013-01-01

    The present study reports on the mechanical behaviour of Br 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ under uniaxial compression at various temperatures. The stress–strain curve at room temperature shows a small but clear creep deformation, along with a hysteresis and a remnant strain, which could be related to a spin transition of cobalt. The hysteresis as well as Young’s modulus decrease with increasing temperature to 473 K, at which temperature the creep behaviour disappears. The material shows conventional high-temperature creep above 673 K

  18. A Review of Neuropathic Pain: From Diagnostic Tests to Mechanisms

    OpenAIRE

    Truini, Andrea

    2017-01-01

    Neuropathic pain develops when the somatosensory nervous system is affected by a lesion or disease. Diagnostic tests aimed at assessing somatosensory afferent pathway damage are therefore useful for diagnosing neuropathic pain. Neuropathic pain manifests with a range of different symptoms such as ongoing burning pain, squeezing or pressure pain, paroxysmal electric shock-like sensations, stabbing pain, or mechanical dynamic allodynia. The various types of neuropathic pain are associated with ...

  19. Ultrasonic NDE and mechanical testing of fiber placement composites

    Science.gov (United States)

    Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.

    2002-05-01

    A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.

  20. Human occupants in low-speed frontal sled tests: effects of pre-impact bracing on chest compression, reaction forces, and subject acceleration.

    Science.gov (United States)

    Kemper, Andrew R; Beeman, Stephanie M; Madigan, Michael L; Duma, Stefan M

    2014-01-01

    The purpose of this study was to investigate the effects of pre-impact bracing on the chest compression, reaction forces, and accelerations experienced by human occupants during low-speed frontal sled tests. A total of twenty low-speed frontal sled tests, ten low severity (∼2.5g, Δv=5 kph) and ten medium severity (∼5g, Δv=10 kph), were performed on five 50th-percentile male human volunteers. Each volunteer was exposed to two impulses at each severity, one relaxed and the other braced prior to the impulse. A 59-channel chestband, aligned at the nipple line, was used to quantify the chest contour and anterior-posterior sternum deflection. Three-axis accelerometer cubes were attached to the sternum, 7th cervical vertebra, and sacrum of each subject. In addition, three linear accelerometers and a three-axis angular rate sensor were mounted to a metal mouthpiece worn by each subject. Seatbelt tension load cells were attached to the retractor, shoulder, and lap portions of the standard three-point driver-side seatbelt. In addition, multi-axis load cells were mounted to each interface between the subject and the test buck to quantify reaction forces. For relaxed tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, all belt forces, and three resultant reaction forces (right foot, seatpan, and seatback). For braced tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, and two resultant reaction forces (right foot and seatpan). Bracing did not have a significant effect on the occupant accelerations during the low severity tests, but did result in a significant decrease in peak resultant sacrum linear acceleration during the medium severity tests. Bracing was also found to significantly reduce peak shoulder and retractor belt forces for both test severities, and peak lap belt force for the medium test severity. In contrast, bracing resulted in a significant

  1. [Pathogenic Mechanism and Diagnostic Testing for Drug Allergies].

    Science.gov (United States)

    Uno, Katsuji

    2018-01-01

     Three stages of the pathogenic mechanism of drug allergies can be considered: antigen formation, immune reaction and inflammation/disorder reaction. Drugs are thought to form 4 types of antigens: drug only, polymers, drug-carrier conjugates, and metabolite-carrier complexes. Antigens are recognized by B cell receptors and T cell receptors. Helper T cells (Th) are differentiated into four subsets, namely, Th1, Th2, Th17 and regulatory T cells (Treg). Th1 produces interleukin (IL)-2 and interferon (IFN)-γ, and activates macrophages and cytotoxic T cells (Tc). Macrophages induce type IV allergies, and Tc lead to serious type IV allergies. On the other hand, Th2 produces IL-4, IL-5, and IL-6, etc., and activates B cells. B cells produce IgE antibodies, and the IgE antibody affects mast cells and induces type I allergies. Activated eosinophil leads to the chronic state of type I allergy. Diagnostic testing for allergenic drugs is necessary for patients with drug allergies. Because in vivo diagnostic tests for allergenic drugs are associated with a risk and burden to the patient, in vitro allergy tests are recommended to identify allergenic drugs. In allergy tests performed in vitro, cytological tests are more effective than serological tests, and the leukocyte migration test (LMT) presently has the highest efficacy. An LMT-chamber is better than LMT-agarose in terms of usability and sensitivity, and it can detect about 80% of allergenic drugs.

  2. Standard Test Methods for Determining Mechanical Integrity of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover procedures for determining the ability of photovoltaic modules to withstand the mechanical loads, stresses and deflections used to simulate, on an accelerated basis, high wind conditions, heavy snow and ice accumulation, and non-planar installation effects. 1.1.1 A static load test to 2400 Pa is used to simulate wind loads on both module surfaces 1.1.2 A static load test to 5400 Pa is used to simulate heavy snow and ice accumulation on the module front surface. 1.1.3 A twist test is used to simulate the non-planar mounting of a photovoltaic module by subjecting it to a twist angle of 1.2°. 1.1.4 A cyclic load test of 10 000 cycles duration and peak loading to 1440 Pa is used to simulate dynamic wind or other flexural loading. Such loading might occur during shipment or after installation at a particular location. 1.2 These test methods define photovoltaic test specimens and mounting methods, and specify parameters that must be recorded and reported. 1.3 Any individual mech...

  3. Mechanical testing of PHWR components at different fabrication stages

    International Nuclear Information System (INIS)

    Saibaba, N.

    2007-01-01

    Zirconium alloys are extensively used for reactor structural and cladding components for PHWRs and BWRs due to their low neutron absorption cross-section, corrosion resistance to high temperature aqueous environments, adequate mechanical properties and resistance to radiation damage. The coolant tube fabrication route consists of a series of intermediate process steps. The working parameters of each process have a definite bearing on the final properties of these tubes. In order to ascertain the effect of these parameters, mechanical testing is carried out at intermediate stage of coolant tube fabrication. The mechanical properties of the products can be correlated with process parameters and reflect the quality of the product to a great extent. These properties at intermediate stages can serve as process controlling parameters. This paper discusses the correlation of mechanical properties of pressure tubes between the intermediate stage and final stage. The effect of process parameters like annealing temperature, honing, sand blasting pressure and eccentricity on the final mechanical properties was highlighted. (author)

  4. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mower, T.E.; Higgins, J.D. [Colorado School of Mines, Golden, CO (USA). Dept. of Geology and Geological Engineering; Yang, I.C. [Geological Survey, Denver, CO (USA). Water Resources Div.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions of Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.

  5. Tests for development of estimation technology of reactor core deformation. Report No.1: fundamental mechanical properties of wrapper tube (test report)

    International Nuclear Information System (INIS)

    Nishiura, Takeo; Shimazaki, Yuji; Horikiri, Morito

    1998-10-01

    Mechanical properties such as local contact compression stiffness, bending stiffness, deformation properties, material properties, and friction properties of a wrapper tube structure were clarified experimentally, which can be used as the basic data for development of estimation technology of reactor core deformation. Contents of the Tests data as follows: (1) Effects of load supporting boundary conditions, whether or not a contact-proof pad is attached, and length of duct, on cross section deformation of wrapper tube were made clear as the local contact compression stiffness characteristics. (2) Bending stiffness does not depend on the difference of load supporting boundary conditions. The property of cross section deformation under bending load was obtained. (3) The deformation modes and the strain distributions were obtained by the deformation tests of wrapper tube. (4) The stress-strain diagrams including plastic range under various strain variation rates were obtained by the material tests at room temperature. (5) The static and the dynamic friction coefficients by various contact angles and the contact loads between contact-proof pads of two wrapper tubes were obtained by friction property tests. (author)

  6. Mechanical tests for validation of seismic isolation elastomer constitutive models

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1992-01-01

    High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs

  7. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  8. Evaluation of femur of orchiectomized Guinea pigs by bone densitometry using dual-energy X-ray absorptiometry (DXA) and mechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Estanislau, Cristiane de Abreu; Rahal, Sheila Canavese; Araujo, Fabio Andre Pinheiro de, E-mail: crisestanislau@hotmail.co, E-mail: sheilacr@fmvz.unesp.b, E-mail: fabioandre@fmvz.unesp.b [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina, Veterinaria e Zootecnia. Dept. de Cirurgia e Anestesiologia Veterinaria; Sergio Swain Muller, E-mail: diretoria@fmb.unesp.b [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina, Veterinaria e Zootecnia. Dept. de Cirurgia e Ortopedia; Louzada, Mario Jefferson Quirino, E-mail: louzada@fmva.unesp.b [Universidade Estadual Paulista (UNESP), Aracatuba, SP (Brazil). Faculdade de Medicina Veterinaria; Estanislau, Caroline de Abreu, E-mail: caestanis@hotmail.co

    2010-03-15

    The aim of this study was to evaluate the effects of castration on bones in the male guinea pigs and to observe whether mechanical testing correlates with dual-energy X-ray absorptiometry (DXA). Twelve male guinea pigs (Cavia porcellus), aged 21-27 days, and with average initial weight of 279 grams were used. The animals were equally allocated to two groups: GI - orchiectomized animals and GII - intact control animals. They underwent euthanasia at seven months following surgery. DXA measurement was performed at the mid third of the right femoral diaphysis in the cortical region and at the left femoral neck in order to verify its correlation with results of mechanical testing. Three-point bending test of right femur and axial compression test of left femur were performed. Bone mineral density of GI was significantly lower only at femoral neck. No differences were observed in the maximum load values between GI and GII for both bending and axial compression tests. The bending test revealed lower bone stiffness in GI compared to GII, but in the axial compression test no differences between groups were observed. Only left femur showed positive correlation coefficient between maximum load and bone mineral density according to Pearson's correlation coefficient. The results suggest that hormonal deprivation in guinea pigs induces reduction of bone mineral density, especially in the femoral neck area and reduction of bone stiffness in the mid-femoral diaphysis. (author)

  9. Evaluation of femur of orchiectomized Guinea pigs by bone densitometry using dual-energy X-ray absorptiometry (DXA) and mechanical testing

    International Nuclear Information System (INIS)

    Estanislau, Cristiane de Abreu; Rahal, Sheila Canavese; Araujo, Fabio Andre Pinheiro de; Sergio Swain Muller; Louzada, Mario Jefferson Quirino; Estanislau, Caroline de Abreu

    2010-01-01

    The aim of this study was to evaluate the effects of castration on bones in the male guinea pigs and to observe whether mechanical testing correlates with dual-energy X-ray absorptiometry (DXA). Twelve male guinea pigs (Cavia porcellus), aged 21-27 days, and with average initial weight of 279 grams were used. The animals were equally allocated to two groups: GI - orchiectomized animals and GII - intact control animals. They underwent euthanasia at seven months following surgery. DXA measurement was performed at the mid third of the right femoral diaphysis in the cortical region and at the left femoral neck in order to verify its correlation with results of mechanical testing. Three-point bending test of right femur and axial compression test of left femur were performed. Bone mineral density of GI was significantly lower only at femoral neck. No differences were observed in the maximum load values between GI and GII for both bending and axial compression tests. The bending test revealed lower bone stiffness in GI compared to GII, but in the axial compression test no differences between groups were observed. Only left femur showed positive correlation coefficient between maximum load and bone mineral density according to Pearson's correlation coefficient. The results suggest that hormonal deprivation in guinea pigs induces reduction of bone mineral density, especially in the femoral neck area and reduction of bone stiffness in the mid-femoral diaphysis. (author)

  10. BDI behavior evaluation of an upgraded Monju core and a demonstration core. (1) Plans for the out of pile bundle compressive tests for large diameter pins

    International Nuclear Information System (INIS)

    Ichikawa, Shoichi; Haga, Hiroyuki; Katsuyama, Kozo; Uwaba, Tomoyuki; Maeda, Koji; Nishinoiri, Kenji

    2012-07-01

    The life of FBR (Fast Breeder Reactor) fuel assembly is restricted by BDI (Bundle-Duct Interaction). Therefore, it is very important to carry out the out pile bundle compressive tests which can imitate BDI, in order to evaluate BDI behavior. The target of the conventional BDI behavior was small diameter pins (φ6.5mm) for fuel pellets which were used with the assembly of Monju (the Monju prototype fast breeder reactor) etc. Furthermore by an upgraded Monju core and a demonstration core, adoption of large diameter pins for the holler annular pellets is planned. Therefore, it was necessary to carry out BDI evaluation of a large diameter pin. Then, the plans for out of pile bundle compressive test for large diameter pins were are reported. (author)

  11. Mechanical properties and drug release of venlafaxine HCl solid mini matrices prepared by hot-melt extrusion and hot or ambient compression.

    Science.gov (United States)

    Avgerinos, Theodoros; Kantiranis, Nikolaos; Panagopoulou, Athanasia; Malamataris, Stavros; Kachrimanis, Kyriakos; Nikolakakis, Ioannis

    2018-02-01

    Objective/significance: To elucidate the role of plasticizers in different mini matrices and correlate mechanical properties with drug release. Cylindrical pellets were prepared by hot-melt extrusion (HME) and mini tablets by hot (HC) and ambient compression (AC). Venlafaxine HCl was the model drug, Eudragit ® RSPO the matrix former and citric acid or Lutrol ® F127 the plasticizers. The matrices were characterized for morphology, crystallinity, and mechanical properties. The influence of plasticizer's type and content on the extrusion pressure (P e ) during HME and ejection during tableting was examined and the mechanical properties were correlated with drug release parameters. Resistance to extrusion and tablet ejection force were reduced by Lutrol ® F127 which also produced softer and weaker pellets with faster release, but harder and stronger HC tablets with slower release. HME pellets showed greater tensile strength (T) and 100 times slower release than tablets. P e correlated with T and resistance to deformation of the corresponding pellets (r 2  = 0.963 and 0.945). For both HME and HC matrices the decrease of drug release with T followed a single straight line (r 2  = 0.990) and for HME the diffusion coefficient (D e ) and retreat rate constant (k b ) decreased linearly with T (r 2  = 0.934 and 0.972). Lutrol ® F127 and citric acid are efficient plasticizers and Lutrol ® F127 is a thermal binder/lubricant in HC compression. The different bonding mechanisms of the matrices were reflected in the mechanical strength and drug release. Relationships established between T and drug release parameters for HME and HC matrices may be useful during formulation work.

  12. Degradation mechanisms and accelerated testing in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  13. Studies on sulfate attack: Mechanisms, test methods, and modeling

    Science.gov (United States)

    Santhanam, Manu

    The objective of this research study was to investigate various issues pertaining to the mechanism, testing methods, and modeling of sulfate attack in concrete. The study was divided into the following segments: (1) effect of gypsum formation on the expansion of mortars, (2) attack by the magnesium ion, (3) sulfate attack in the presence of chloride ions---differentiating seawater and groundwater attack, (4) use of admixtures to mitigate sulfate attack---entrained air, sodium citrate, silica fume, and metakaolin, (5) effects of temperature and concentration of the attack solution, (6) development of new test methods using concrete specimens, and (7) modeling of the sulfate attack phenomenon. Mortar specimens using portland cement (PC) and tricalcium silicate (C 3S), with or without mineral admixtures, were prepared and immersed in different sulfate solutions. In addition to this, portland cement concrete specimens were also prepared and subjected to complete and partial immersion in sulfate solutions. Physical measurements, chemical analyses and microstructural studies were performed periodically on the specimens. Gypsum formation was seen to cause expansion of the C3S mortar specimens. Statistical analyses of the data also indicated that the quantity of gypsum was the most significant factor controlling the expansion of mortar bars. The attack by magnesium ion was found to drive the reaction towards the formation of brucite. Decalcification of the C-S-H and its subsequent conversion to the non-cementitious M-S-H was identified as the mechanism of destruction in magnesium sulfate attack. Mineral admixtures were beneficial in combating sodium sulfate attack, while reducing the resistance to magnesium sulfate attack. Air entrainment did not change the measured physical properties, but reduced the visible distress of the mortars. Sodium citrate caused a substantial reduction in the rate of damage of the mortars due to its retarding effect. Temperature and

  14. Testing quantum mechanics using third-order correlations

    International Nuclear Information System (INIS)

    Kinsler, P.

    1996-01-01

    Semiclassical theories similar to stochastic electrodynamics are widely used in optics. The distinguishing feature of such theories is that the quantum uncertainty is represented by random statistical fluctuations. They can successfully predict some quantum-mechanical phenomena; for example, the squeezing of the quantum uncertainty in the parametric oscillator. However, since such theories are not equivalent to quantum mechanics, they will not always be useful. Complex number representations can be used to exactly model the quantum uncertainty, but care has to be taken that approximations do not reduce the description to a hidden variable one. This paper helps show the limitations of open-quote open-quote semiclassical theories,close-quote close-quote and helps show where a true quantum-mechanical treatment needs to be used. Third-order correlations are a test that provides a clear distinction between quantum and hidden variable theories in a way analogous to that provided by the open-quote open-quote all or nothing close-quote close-quote Greenberger-Horne-Zeilinger test of local hidden variable theories. copyright 1996 The American Physical Society

  15. Eight plane IPND [Integration Prototype Near Detector] mechanical testing

    International Nuclear Information System (INIS)

    Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.

    2008-01-01

    A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11-cell and the IPND

  16. Mechanical design and testing of a hot-gas turbine on a test facility

    International Nuclear Information System (INIS)

    Staude, R.

    1981-01-01

    Advanced calculation methods and specific solutions for any particular problem are basic requirements for the mechanical design of hot-gas components for gas turbines. The mechanical design contributes a great deal to the smooth running and operational reliability and thus to the quality of the machine. By reference to an expander, the present paper discusses the strength of hot components, such as the casing and the rotor, for both stationary and transient temperature distribution. Mechanical testing under hot-gas conditions fully confirmed the reliability of the rating and design of the hot-gas turbines supplied by M:A.N.-GHH STERKRADE. (orig.) [de

  17. Testing Plastic Deformations of Materials in the Introductory Undergraduate Mechanics Laboratory

    Science.gov (United States)

    Romo-Kroger, C. M.

    2012-01-01

    Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for…

  18. Evaluation of the robustness of the preprocessing technique improving reversible compressibility of CT images: Tested on various CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Chang Ho; Kim, Bohyoung; Gu, Bon Seung; Lee, Jong Min [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of); Kim, Kil Joong [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Department of Radiation Applied Life Science, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Lee, Kyoung Ho [Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea and Institute of Radiation Medicine, Seoul National University Medical Research Center, and Clinical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744 (Korea, Republic of); Kim, Tae Ki [Medical Information Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707 (Korea, Republic of)

    2013-10-15

    Purpose: To modify the preprocessing technique, which was previously proposed, improving compressibility of computed tomography (CT) images to cover the diversity of three dimensional configurations of different body parts and to evaluate the robustness of the technique in terms of segmentation correctness and increase in reversible compression ratio (CR) for various CT examinations.Methods: This study had institutional review board approval with waiver of informed patient consent. A preprocessing technique was previously proposed to improve the compressibility of CT images by replacing pixel values outside the body region with a constant value resulting in maximizing data redundancy. Since the technique was developed aiming at only chest CT images, the authors modified the segmentation method to cover the diversity of three dimensional configurations of different body parts. The modified version was evaluated as follows. In randomly selected 368 CT examinations (352 787 images), each image was preprocessed by using the modified preprocessing technique. Radiologists visually confirmed whether the segmented region covers the body region or not. The images with and without the preprocessing were reversibly compressed using Joint Photographic Experts Group (JPEG), JPEG2000 two-dimensional (2D), and JPEG2000 three-dimensional (3D) compressions. The percentage increase in CR per examination (CR{sub I}) was measured.Results: The rate of correct segmentation was 100.0% (95% CI: 99.9%, 100.0%) for all the examinations. The median of CR{sub I} were 26.1% (95% CI: 24.9%, 27.1%), 40.2% (38.5%, 41.1%), and 34.5% (32.7%, 36.2%) in JPEG, JPEG2000 2D, and JPEG2000 3D, respectively.Conclusions: In various CT examinations, the modified preprocessing technique can increase in the CR by 25% or more without concerning about degradation of diagnostic information.

  19. Polymyxin susceptibility testing, interpretative breakpoints and resistance mechanisms: An update.

    Science.gov (United States)

    Bakthavatchalam, Yamuna Devi; Pragasam, Agila Kumari; Biswas, Indranil; Veeraraghavan, Balaji

    2018-03-01

    Emerging multidrug-resistant (MDR) nosocomial pathogens are a great threat. Polymyxins, an old class of cationic polypeptide antibiotic, are considered as last-resort drugs in treating infections caused by MDR Gram-negative bacteria. Increased use of polymyxins in treating critically ill patients necessitates routine polymyxin susceptibility testing. However, susceptibility testing both of colistin and polymyxin B (PMB) is challenging. In this review, currently available susceptibility testing methods are briefly discussed. The multicomponent composition of colistin and PMB significantly influences susceptibility testing. In addition, poor diffusion in the agar medium, adsorption to microtitre plates and the synergistic effect of the surfactant polysorbate 80 with polymyxins have a great impact on the performance of susceptibility testing methods This review also describes recently identified chromosomal resistance mechanisms, including modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-l-arabinose (L-Ara4-N) and phosphoethanolamine (pEtN) resulting in alteration of the negative charge, as well as the plasmid-mediated colistin resistance determinants mcr-1, mcr-1.2, mcr-2 and mcr-3. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  20. Testing quantum mechanics at Da{phi}Ne

    Energy Technology Data Exchange (ETDEWEB)

    Di Domenica, A. [Rome Univ. 2 (Italy). Dipt. di Fisica

    1997-12-31

    After a brief introduction to EPR-paradox and Bell`s inequality, it is shown that a Bell-like inequality can be formulated for the neutral kaon system at a {Phi}-factory using the Pauli spin formalism, in our case called K-spin, and taking into account CP violation. Experimental methods to reveal tiny violations of this inequality by quantum mechanics are discussed. The statistical accuracy achievable at DA{Phi}NE, the Frascati {Phi}-factory, seems adequate to successfully perform such a test. (author) 13 refs.

  1. Testing quantum mechanics at DaφNe

    International Nuclear Information System (INIS)

    Di Domenica, A.

    1997-01-01

    After a brief introduction to EPR-paradox and Bell's inequality, it is shown that a Bell-like inequality can be formulated for the neutral kaon system at a Φ-factory using the Pauli spin formalism, in our case called K-spin, and taking into account CP violation. Experimental methods to reveal tiny violations of this inequality by quantum mechanics are discussed. The statistical accuracy achievable at DAΦNE, the Frascati Φ-factory, seems adequate to successfully perform such a test. (author)

  2. Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik

    2006-01-01

    properties. This implies that the linear elastic interpretation of the ultimate splitting force in term of the uniaxial tensile strength of the material is only valid for special situations, e.g. for very large cylinders. Furthermore, the numerical analysis suggests that the split cylinder test is not well...... models are presented, a simple semi-analytical model based on analytical solutions for the crack propagation in a rectangular prismatic body, and a finite element model including plasticity in bulk material as well as crack propagation in interface elements. A numerical study applying these models...... demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive...

  3. Online recruitment and testing of infants with Mechanical Turk.

    Science.gov (United States)

    Tran, Michelle; Cabral, Laura; Patel, Ronak; Cusack, Rhodri

    2017-04-01

    Testing infants in the laboratory is expensive in time and money; consequently, many studies are underpowered, reducing their reproducibility. We investigated whether the online platform, Amazon Mechanical Turk (MTurk), could be used as a resource to more easily recruit and measure the behavior of infant populations. Using a looking time paradigm, with users' webcams we recorded how long infants aged 5 to 8months attended while viewing children's television programs. We found that infants (N=57) were more reliably engaged by some movies than by others and that the most engaging movies could maintain attention for approximately 70% of a 10- to 13-min period. We then identified the cinematic features within the movies. Faces, singing-and-rhyming, and camera zooms were found to increase infant attention. Together, we established that MTurk can be used as a rapid tool for effectively recruiting and testing infants. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Neutron polarimetric test of Leggett's contextual model of quantum mechanics

    International Nuclear Information System (INIS)

    Schmitzer, C.; Bartosik, H.; Klepp, J.; Sponar, S.; Badurek, G.; Hasegawa, J.

    2009-01-01

    Full text: The Einstein-Podolsky-Rosen (EPR) argument attempted to dispute quantum theory. With the Bell inequality it was possible to set up an experimental test of the EPR argument. Here, we describe the rebuilding of the measurement station at the tangential beam exit of the TRIGA reactor of the Atominstitut in Vienna. A new polarimeter setup was constructed and adjusted to generate Bell states by entangling a neutron's energy and spin. After accomplishing visibilities of up to 98.7 %, it was possible to test a Leggett-type inequality, which challenges a 'contextual' hidden variable theory. Such a contextual model would have been capable of reproducing former Bell inequality violations. Measurement results of this Leggett inequality and a generalized Clauser-Horne-Shimony-Holt (CHSH) inequality show violations of this hidden variable model. Hence noncontextual and contextual hidden variable theories can be excluded simultaneously and quantum mechanical predictions are confirmed. (author)

  5. Comportamento de cilindros de carbono/epóxi submetidos a cargas compressivas axiais Mechanical behavior of carbon/epoxy cylinders under axial compressive loads

    Directory of Open Access Journals (Sweden)

    Adriano Gonçalves

    2001-06-01

    Full Text Available Para estruturas utilizadas no setor aeroespacial, os requisitos de baixo peso, alta resistência e rigidez, além de estabilidade dimensional, têm propiciado o aumento da utilização de materiais compósitos nas suas manufaturas. Em particular, cascas cilíndricas ou estruturas construídas pela junção de cilindros de paredes finas, confeccionadas em fibra de carbono e resina epóxi, são amplamente utilizadas neste tipo de aplicação. Neste trabalho, um programa experimental foi desenvolvido para determinar as tensões de falha, os módulos de elasticidade e o modo de falha de 47 cilindros com diâmetro interno de 40 mm e espessura nominal de 0,6 mm (com exceção de 2 corpos de prova, fabricados em carbono/epóxi, quando submetidos a cargas compressivas uniaxiais. Os espécimes testados possuíam diferentes razões entre comprimento e diâmetro (variando de 2,50 a 11,25 e seqüências de laminação variadas (orientações de camadas. Os resultados dos ensaios foram comparados aos obtidos em análises realizadas com programas de elementos finitos e os fatores que influenciaram o comportamento mecânico destes cilindros foram analisados.The requirements of low weight and dimensional stability, combined with high strength and stiffness, for aerospace structures has prompted an increasing use of fiber reinforced materials in manufacturing such structures. In particular, carbon/epoxy cylinders have been widely used in aerospace applications. In this work, an experimental program was developed to determine failure loads, modulus of elasticity and failure modes of 47 carbon/epoxy cylinders shells under compressive loads. The specimens tested had several different length/diameter (from 2.50 to 11.25 ratios and laminate lay-up. These results were compared to the analytical results from finite element code and the most important factors influencing the mechanical behavior of this type of structure were analyzed.

  6. THE ECCENTRIC KOZAI MECHANISM FOR A TEST PARTICLE

    International Nuclear Information System (INIS)

    Lithwick, Yoram; Naoz, Smadar

    2011-01-01

    We study the dynamical evolution of a test particle that orbits a star in the presence of an exterior massive planet, considering octupole-order secular interactions. In the standard Kozai mechanism (SKM), the planet's orbit is circular and so the particle conserves vertical angular momentum. As a result, the particle's orbit oscillates periodically, exchanging eccentricity for inclination. However, when the planet's orbit is eccentric, the particle's vertical angular momentum varies and its Kozai oscillations are modulated on longer timescales—we call this the eccentric Kozai mechanism (EKM). The EKM can lead to behavior that is dramatically different from the SKM. In particular, the particle's orbit can flip from prograde to retrograde and back again, and it can reach arbitrarily high eccentricities given enough time. We map out the conditions under which this dramatic behavior (flipping and extreme eccentricities) occurs and show that when the planet's eccentricity is sufficiently high, it occurs quite generically. For example, when the planet's eccentricity exceeds a few percent of the ratio of semimajor axes (outer to inner), around half of randomly oriented test particle orbits will flip and reach extreme eccentricities. The SKM has often been invoked for bringing pairs of astronomical bodies (star-star, planet-star, compact-object pairs) close together. Including the effect of the EKM will enhance the rate at which such matchmaking occurs.

  7. Development of Testing Methodologies for the Mechanical Properties of MEMS

    Science.gov (United States)

    Ekwaro-Osire, Stephen

    2003-01-01

    This effort is to investigate and design testing strategies to determine the mechanical properties of MicroElectroMechanical Systems (MEMS) as well as investigate the development of a MEMS Probabilistic Design Methodology (PDM). One item of potential interest is the design of a test for the Weibull size effect in pressure membranes. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. However, the primary area of investigation will most likely be analysis and modeling of material interfaces for strength as well as developing a strategy to handle stress singularities at sharp corners, filets, and material interfaces. This will be a continuation of the previous years work. The ultimate objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads.

  8. Versatile equipment for mechanical testing of active materials

    International Nuclear Information System (INIS)

    Bertsch, Johannes; Heimgartner, Peter

    2005-01-01

    At the Paul Scherrer Institute (PSI) 3 different project groups presently perform aging research on active materials. The research fields are fusion, high neutron flux targets and LWR relevant components. Up to now mechanical testing has been performed with small, low dose rate samples behind local shielding, not appropriate for highly activated material. To overcome this situation, a cell concept for active mechanical testing was elaborated and has been erected in PSI's Hotlab. It consists of 4 shielded cells. 3 connected cells are versatile and independently operable for highly beta/gamma active samples. One cell is an alpha/beta/gamma-box which will be realized in a second phase. This paper presents the versatility especially of the beta/gamma-cells: The different user groups perform experiments in these cells, whereas different machines can be placed into the cells. As consequence of the need of heavily shielded cell doors, a special strengthening and levelling of the floor has been required. In all cells the relevant media are installed. Besides the performance of the cells, the project progress as the difficulties and their solutions are described. (Author)

  9. Periodic oxide cracking on Fe2.25Cr1Mo produced by high-temperature fatigue tests with a compression hold

    International Nuclear Information System (INIS)

    Hecht, R.L.; Weertman, J.R.

    1993-01-01

    Long, straight cracks perpendicular to the stress axis are seen on the oxidized surface of specimens of Fe2.25Cr1Mo cycled with a compressive hold at high temperatures. The cracks in the oxide are periodically spaced. They resemble cracks observed in a brittle film on a ductile substrate after a tension test of the substrate. They also resemble the parallel multiple fractures that occur in a brittle matrix of a composite with ductile fibers undergoing tension. The authors apply both the model of a brittle film on a ductile substrate and of the brittle matrix composite to explain the observed intercrack spacing. Cracks in the oxide film lead to localized oxidation of the metal in the region around their intersection with the oxide-metal interface. These cracks are seen to penetrate the metal. Stress concentrations from deep grooves that form during compression hold fatigue, together with crack initiation from the oxide, lead to a shortened cycle life

  10. First test experiment to produce the slowed-down RI beam with the momentum-compression mode at RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Sumikama, T., E-mail: sumikama@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ahn, D.S.; Fukuda, N.; Inabe, N.; Kubo, T.; Shimizu, Y.; Suzuki, H.; Takeda, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoi, N. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Beaumel, D. [Institut de Physique Nucléaire d’Orsay (IPNO), CNRS/IN2P3, 91405 Orsay (France); Hasegawa, K. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ideguchi, E. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Imai, N. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Kobayashi, T. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Matsushita, M.; Michimasa, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Otsu, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimoura, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2016-06-01

    The {sup 82}Ge beam has been produced by the in-flight fission reaction of the {sup 238}U primary beam with 345 MeV/u at the RIKEN RI beam factory, and slowed down to about 15 MeV/u using the energy degraders. The momentum-compression mode was applied to the second stage of the BigRIPS separator to reduce the momentum spread. The energy was successfully reduced down to 13 ± 2.5 MeV/u as expected. The focus was not optimized at the end of the second stage, therefore the beam size was larger than the expectation. The transmission of the second stage was half of the simulated value mainly due to out of focus. The two-stage separation worked very well for the slowed-down beam with the momentum-compression mode.

  11. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    Science.gov (United States)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  12. Possibilities for modelling the effect of compression on mechanical and physical properties of various Dutch soil types

    NARCIS (Netherlands)

    Perdok, U.D.; Kroesbergen, B.; Hoogmoed, W.B.

    2002-01-01

    The state of compactness of the arable soil layer changes during the growing season as a result of tillage and traction. The aim of this study was to assess and predict some soil mechanical and physical properties governing machine performance and crop response. The following mechanical properties

  13. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  14. Statistical characteristics of mechanical heart valve cavitation in accelerated testing.

    Science.gov (United States)

    Wu, Changfu; Hwang, Ned H C; Lin, Yu-Kweng M

    2004-07-01

    Cavitation damage has been observed on mechanical heart valves (MHVs) undergoing accelerated testing. Cavitation itself can be modeled as a stochastic process, as it varies from beat to beat of the testing machine. This in-vitro study was undertaken to investigate the statistical characteristics of MHV cavitation. A 25-mm St. Jude Medical bileaflet MHV (SJM 25) was tested in an accelerated tester at various pulse rates, ranging from 300 to 1,000 bpm, with stepwise increments of 100 bpm. A miniature pressure transducer was placed near a leaflet tip on the inflow side of the valve, to monitor regional transient pressure fluctuations at instants of valve closure. The pressure trace associated with each beat was passed through a 70 kHz high-pass digital filter to extract the high-frequency oscillation (HFO) components resulting from the collapse of cavitation bubbles. Three intensity-related measures were calculated for each HFO burst: its time span; its local root-mean-square (LRMS) value; and the area enveloped by the absolute value of the HFO pressure trace and the time axis, referred to as cavitation impulse. These were treated as stochastic processes, of which the first-order probability density functions (PDFs) were estimated for each test rate. Both the LRMS value and cavitation impulse were log-normal distributed, and the time span was normal distributed. These distribution laws were consistent at different test rates. The present investigation was directed at understanding MHV cavitation as a stochastic process. The results provide a basis for establishing further the statistical relationship between cavitation intensity and time-evolving cavitation damage on MHV surfaces. These data are required to assess and compare the performance of MHVs of different designs.

  15. Impact of acid and alkaline pretreatments on the molecular network of wheat gluten and on the mechanical properties of compression-molded glassy wheat gluten bioplastics.

    Science.gov (United States)

    Jansens, Koen J A; Lagrain, Bert; Brijs, Kristof; Goderis, Bart; Smet, Mario; Delcour, Jan A

    2013-10-02

    Wheat gluten can be converted into rigid biobased materials by high-temperature compression molding at low moisture contents. During molding, a cross-linked protein network is formed. This study investigated the effect of mixing gluten with acid/alkali in 70% ethanol at ambient temperature for 16 h followed by ethanol removal, freeze-drying, and compression molding at 130 and 150 °C on network formation and on types of cross-links formed. Alkaline pretreatment (0-100 mmol/L sodium hydroxide or 25 mmol/L potassium hydroxide) strongly affected gluten cross-linking, whereas acid pretreatment (0-25 mmol/L sulfuric acid or 25 mmol/L hydrochloric acid) had limited effect on the gluten network. Molded alkaline-treated gluten showed enhanced cross-linking but also degradation when treated with high alkali concentrations, whereas acid treatment reduced gluten cross-linking. β-Elimination of cystine and lanthionine formation occurred more pronouncedly at higher alkali concentrations. In contrast, formation of disulfide and nondisulfide cross-links during molding was hindered in acid-pretreated gluten. Bioplastic strength was higher for alkali than for acid-pretreated samples, whereas the flexural modulus was only slightly affected by either alkaline or acid pretreatment. Apparently, the ratio of disulfide to nondisulfide cross-links did not affect the mechanical properties of rigid gluten materials.

  16. To Study Capping or Lamination Tendency of Tablets Through Evaluation of Powder Rheological Properties and Tablet Mechanical Properties of Directly Compressible Blends.

    Science.gov (United States)

    Dudhat, Siddhi M; Kettler, Charles N; Dave, Rutesh H

    2017-05-01

    Air entrapment efficiency of the powders is one of the main factors leading to occurrence of capping or lamination tendency of tablets manufactured from the directly compressible powder blends. The purpose of the current research was to study this underlying cause leading to occurrence of capping or lamination of tablets through evaluation of powder rheological properties. Powder blends were prepared by addition of 0% w/w to 100% w/w of individual active pharmaceutical ingredient (API) [two model API: acetaminophen (APAP) and ibuprofen (IBU)] with microcrystalline cellulose without and with 0.5% w/w Magnesium Stearate as lubricant. Powder rheological properties were analyzed using FT4 Powder Rheometer for dynamic, bulk, and shear properties. Tablet mechanical properties of the respective blends were studied by determining the ability of the material to form tablet of specific strength under applied compaction pressure through tabletability profile. The results showed that powder rheometer distinguished the powder blends based on their ability to relieve entrapped air along with the distinctive flow characteristics. Powder blend prepared with increasing addition of APAP displayed low powder permeability as compared to IBU blends with better powder permeability, compressibility and flow characteristics. Also, lubrication of the APAP blends did not ease their ability to relieve air. Tabletability profiles revealed the potential occurrence of capping or lamination in tablets prepared from the powder blends with high APAP content. This study can help scientist to understand tableting performance at the early-developmental stages and can avoid occurrence capping and lamination of tablets.

  17. Thermo-hydro-mechanical tests of buffer material

    Energy Technology Data Exchange (ETDEWEB)

    Pintado, X.; Hassan, Md. M.; Martikainen, J. [B and Tech Oy, Helsinki (Finland)

    2013-10-15

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m{sup 3} as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m{sup 3} as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m{sup 3} as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m{sup 3} and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m{sup 3} and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry

  18. Thermo-hydro-mechanical tests of buffer material

    International Nuclear Information System (INIS)

    Pintado, X.; Hassan, Md. M.; Martikainen, J.

    2013-10-01

    MX-80 bentonite is the reference clay material for the buffer component planned to be used in the deep geological repository for the disposal of spent nuclear fuel in Finland. The buffer presents complex thermo-hydro-mechanical behavior which is modeled with different constitutive models for heat flow, water flow and stress-strain evolution in the buffer. Thermo, hydro and mechanical models need parameters to evaluate the THM-behavior. These modeling parameters were determined by performing series of laboratory experiments as follows: Water retention curve tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1397 to 1718 kg/m 3 as the initial water content was around of 5-8 %. The water retention curve was determined by imposing different suctions to the samples and the suctions were then checked using capacitive hygrometer and chilled mirror psychrometer. Oedometer tests were performed on compacted bentonite samples, encompassing a range of initial dry density values from 1590 to 1750 kg/m 3 as the initial water content was around of 6 %. Samples were saturated with tap water, 35 or 70 g/L salt solutions. Infiltration tests were performed on compacted unsaturated bentonite samples, encompassing a range of initial dry density values from 1400 to 1720 kg/m 3 as the initial water content was approximately between 4-7 %. Samples were saturated with tap water, 0.87, 35 or 70 g/L salt solutions. Tortuosity tests were performed on bentonite samples, encompassing a range of dry density values from 1460 to 1750 kg/m 3 and the degree of saturation varied between 33-93 %. Thermal conductivity tests were performed on compacted bentonite samples, encompassing a range of dry density values from 1545 to 1715 kg/m 3 and the degree of saturation varied between 31-88 %. The measurement was performed using a thermal needle probe. The general trend of all analyzed parameters was as expected when dry density, water content, and

  19. Intelligent Test Mechanism Design of Worn Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available With the continuous development of national economy, big gear was widely applied in metallurgy and mine domains. So, big gear plays an important role in above domains. In practical production, big gear abrasion and breach take place often. It affects normal production and causes unnecessary economic loss. A kind of intelligent test method was put forward on worn big gear mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. The measure equations transformations were made on involute straight gear. Original polar coordinate equations were transformed into rectangular coordinate equations. Big gear abrasion measure principle was introduced. Detection principle diagram was given. Detection route realization method was introduced. OADM12 laser sensor was selected. Detection on big gear abrasion area was realized by detection mechanism. Tested data of unworn gear and worn gear were led in designed calculation program written by Visual Basic language. Big gear abrasion quantity can be obtained. It provides a feasible method for intelligent test and intelligent repair welding on worn big gear.

  20. Effect of the rate of chest compression familiarised in previous training on the depth of chest compression during metronome-guided cardiopulmonary resuscitation: a randomised crossover trial.

    Science.gov (United States)

    Bae, Jinkun; Chung, Tae Nyoung; Je, Sang Mo

    2016-02-12

    To assess how the quality of metronome-guided cardiopulmonary resuscitation (CPR) was affected by the chest compression rate familiarised by training before the performance and to determine a possible mechanism for any effect shown. Prospective crossover trial of a simulated, one-person, chest-compression-only CPR. Participants were recruited from a medical school and two paramedic schools of South Korea. 42 senior students of a medical school and two paramedic schools were enrolled but five dropped out due to physical restraints. Senior medical and paramedic students performed 1 min of metronome-guided CPR with chest compressions only at a speed of 120 compressions/min after training for chest compression with three different rates (100, 120 and 140 compressions/min). Friedman's test was used to compare average compression depths based on the different rates used during training. Average compression depths were significantly different according to the rate used in training (ptraining at a speed of 100 compressions/min and those at speeds of 120 and 140 compressions/min (both pCPR is affected by the relative difference between the rate of metronome guidance and the chest compression rate practised in previous training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Adiabatic compression and radiative compression of magnetic fields

    International Nuclear Information System (INIS)

    Woods, C.H.

    1980-01-01

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape

  2. Compressing Data Cube in Parallel OLAP Systems

    Directory of Open Access Journals (Sweden)

    Frank Dehne

    2007-03-01

    Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.

  3. Phototoxicity: Its Mechanism and Animal Alternative Test Methods

    Science.gov (United States)

    Park, Hyeonji; Lim, Kyung-Min

    2015-01-01

    The skin exposure to solar irradiation and photoreactive xenobiotics may produce abnormal skin reaction, phototoxicity. Phototoxicity is an acute light-induced response, which occurs when photoreacive chemicals are activated by solar lights and transformed into products cytotoxic against the skin cells. Multifarious symptoms of phototoxicity are identified, skin irritation, erythema, pruritis, and edema that are similar to those of the exaggerated sunburn. Diverse organic chemicals, especially drugs, are known to induce phototoxicity, which is probably from the common possession of UV-absorbing benzene or heterocyclic rings in their molecular structures. Both UVB (290~320 nm) and UVA (320~400 nm) are responsible for the manifestation of phototoxicity. Absorption of photons and absorbed energy (hv) by photoactive chemicals results in molecular changes or generates reactive oxygen species and depending on the way how endogenous molecules are affected by phototoxicants, mechanisms of phototoxcity is categorized into two modes of action: Direct when unstable species from excited state directly react with the endogenous molecules, and indirect when endogeneous molecules react with secondary photoproducts. In order to identify phototoxic potential of a chemical, various test methods have been introduced. Focus is given to animal alternative test methods, i.e., in vitro, and in chemico assays as well as in vivo. 3T3 neutral red uptake assay, erythrocyte photohemolysis test, and phototoxicity test using human 3-dimensional (3D) epidermis model are examples of in vitro assays. In chemico methods evaluate the generation of reactive oxygen species or DNA strand break activity employing plasmid for chemicals, or drugs with phototoxic potential. PMID:26191378

  4. Einstein's Materialism and Modern Tests of Quantum Mechanics

    Science.gov (United States)

    Vigier, J. P.

    After a presentation of Einstein's and Bohr's antagonistic point of view on the interpretation of Quantum Mechanics an illustration of their conflicting positions in the particular case of Young's double slit experiment is presented. It is then shown that in their most recent form (i. e. time dependent neutron interferometry) these experiments suggest (if one accepts absolute energymomentum conservation in all individual microprocesses) that Einstein was right in the Bohr-Einstein controversy.Translated AbstractEinsteins Materialismus und heutige Tests der QuantenmechanikNach einer Darstellung von Einsteins und Bohrs antagonistischen Standpunkten in der Interpretation der Quantenmechanik werden ihre widersprüchlichen Positionen im speziellen Fall des Youngschen Doppelspaltexperiments dargestellt. Es wird dann gezeigt, daß diese Experimente in ihrer neuesten Form (d. h. zeitabhängige Neutroneninterferometrie) Einstein in der Bohr-Einsteinkontroverse recht gaben (wenn man absolute Energie-Impulserhaltung bei allen individuellen Mikroprozessen annimmt).

  5. Red Blood Cell Mechanical Fragility Test for Clinical Research Applications.

    Science.gov (United States)

    Ziegler, Luke A; Olia, Salim E; Kameneva, Marina V

    2017-07-01

    Red blood cell (RBC) susceptibility to mechanically induced hemolysis, or RBC mechanical fragility (MF), is an important parameter in the characterization of erythrocyte membrane health. The rocker bead test (RBT) and associated calculated mechanical fragility index (MFI) is a simple method for the assessment of RBC MF. Requiring a minimum of 15.5 mL of blood and necessitating adjustment of hematocrit (Ht) to a "standard" value (40%), the current RBT is not suitable for use in most studies involving human subjects. To address these limitations, we propose a 6.5 mL reduced volume RBT and corresponding modified MFI (MMFI) that does not require prior Ht adjustment. This new method was assessed for i) correlation to the existing text, ii) to quantify the effect of Ht on MFI, and iii) validation by reexamining the protective effect of plasma proteins on RBC MF. The reduced volume RBT strongly correlated (r = 0.941) with the established large volume RBT at matched Hts, and an equation was developed to calculate MMFI: a numerical estimation (R 2  = 0.923) of MFI if performed with the reduced volume RBT at "standard" (40%) Ht. An inversely proportional relationship was found between plasma protein concentration and RBC MF using the MMFI-reduced volume method, supporting previous literature findings. The new reduced volume RBT and modified MFI will allow for the measurement of RBC MF in clinical and preclinical studies involving humans or small animals. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Reaction mechanisms and kinetics of processing glucose, xylose and glucose-xylose mixtures under hot compressed water conditions for predicting bio-crude composition

    DEFF Research Database (Denmark)

    Grigoras, Ionela; Toor, Saqib Sohail; Rosendahl, Lasse Aistrup

    Mechanisms for bio-crude formation during the conversion of glucose, xylose and glucose-xylose mixtures as biomass model compounds under hot compressed water conditions are investigated. Studies in literature have shown that the diverse products formed at the early stages of glucose or xylose...... conversion are 5-HMF, erythrose, glyceraldehyde, dihydroxyacetone, pyruvaldehyde, and saccharinic acids resulted through reactions such as dehydration, retro-aldol condensation and isomerization. However, these compounds are mostly water soluble compounds and lack the final steps towards formation of water...... insoluble components at longer reaction times. The effects of pressure, pH, catalyst and reaction time on the main products are examined thoroughly. The possible routes for the formation of oil compounds are developed....

  7. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

    Directory of Open Access Journals (Sweden)

    V. T. Minchenya

    2011-01-01

    Full Text Available The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

  8. Design optimization and fatigue testing of an electronically-driven mechanically-resonant cantilever spring mechanism

    International Nuclear Information System (INIS)

    Kheng, Lim Boon; Kean, Koay Loke; Gitano-Briggs, Horizon

    2010-01-01

    A light scanning device consisting of an electronically-driven mechanically-resonant cantilever spring-mirror system has been developed for innovative lighting applications. The repeated flexing of the cantilever spring during operation can lead to premature fatigue failure. A model was created to optimize the spring design. The optimized spring design can reduce stress by approximately one-third from the initial design. Fatigue testing showed that the optimized spring design can operate continuously for over 1 month without failure. Analysis of failures indicates surface cracks near the root of the spring are responsible for the failures.

  9. Mechanical test of E110 cladding material oxidized in hydrogen rich steam atmosphere

    International Nuclear Information System (INIS)

    Windberg, P.; Perez-Fero, E.

    2005-01-01

    The behavior of the fuel cladding under accidental conditions has been studied at the AEKI for more than a decade. Earlier, the effect of oxygen and hydrogen content on the mechanical properties was studied separately. The present experiments can help to understand what kind of processes took place in the cleaning tank at Paks NPP (2003). The purpose of our experiments was to investigate high temperature oxidation of E110 cladding in steam + hydrogen mixture. A high temperature tube furnace was used for oxidation of the samples. The oxidation was carried out at three different temperatures (900 0 C, 1000 0 C, 1100 0 C). The hydrogen content in the steam was varied between 19-36 vol%. The oxygen content of the sample was defined as oxidation ratio. Two sizes (length: 2 and 8 mm) of cladding rings and 100 mm long E110 cladding tubes were oxidized. After the oxidation we made compression and tensile tests for rings, and ballooning experiments for 100 mm long tube. The most important conclusions were the following. Oxidation in H-rich steam atmosphere need longer time to get the same oxidation ratio compared to the steam oxidation without hydrogen. The shorter oxidation time results in a more compact oxide layer. The longer oxidation time leads to a cracked oxide layer. (author)

  10. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo; Chung, Suk-Ho; Lu, Tianfeng; Sarathy, Mani

    2015-01-01

    ) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction

  11. A master equation for force distributions in soft particle packings - Irreversible mechanical responses to isotropic compression and decompression

    NARCIS (Netherlands)

    Saitoh, K.; Magnanimo, Vanessa; Luding, Stefan

    2016-01-01

    Mechanical responses of soft particle packings to quasi-static deformations are determined by the microscopic restructuring of force-chain networks, where complex non-affine displacements of constituent particles cause the irreversible macroscopic behavior. Recently, we have proposed a master

  12. Mechanisms of eyewitness suggestibility: tests of the explanatory role hypothesis.

    Science.gov (United States)

    Rindal, Eric J; Chrobak, Quin M; Zaragoza, Maria S; Weihing, Caitlin A

    2017-10-01

    In a recent paper, Chrobak and Zaragoza (Journal of Experimental Psychology: General, 142(3), 827-844, 2013) proposed the explanatory role hypothesis, which posits that the likelihood of developing false memories for post-event suggestions is a function of the explanatory function the suggestion serves. In support of this hypothesis, they provided evidence that participant-witnesses were especially likely to develop false memories for their forced fabrications when their fabrications helped to explain outcomes they had witnessed. In three experiments, we test the generality of the explanatory role hypothesis as a mechanism of eyewitness suggestibility by assessing whether this hypothesis can predict suggestibility errors in (a) situations where the post-event suggestions are provided by the experimenter (as opposed to fabricated by the participant), and (b) across a variety of memory measures and measures of recollective experience. In support of the explanatory role hypothesis, participants were more likely to subsequently freely report (E1) and recollect the suggestions as part of the witnessed event (E2, source test) when the post-event suggestion helped to provide a causal explanation for a witnessed outcome than when it did not serve this explanatory role. Participants were also less likely to recollect the suggestions as part of the witnessed event (on measures of subjective experience) when their explanatory strength had been reduced by the presence of an alternative explanation that could explain the same outcome (E3, source test + warning). Collectively, the results provide strong evidence that the search for explanatory coherence influences people's tendency to misremember witnessing events that were only suggested to them.

  13. Effect of copper, tin, phosphorous and arsenic on the surface cracking of a 18-8 stainless steel during hot compression tests

    International Nuclear Information System (INIS)

    Botella, J.; Fernandez, M.T.; Fernandez de Castillo, I.

    1998-01-01

    The effect of certain different concentrations of Cu, Sn, P and As on the surface cracking of 18-8 austenitic stainless steel hot compressed specimens has been studied, at 1,123 and 1,273 K, in an oxidizing atmosphere (air). A procedure for determining surface cracking has been established, and the cracking factor obtained in this ways is correlated with the chemical composition of the materials at both temperatures. The cracking factors obtained at 1,273 K have been compared with the reduction of area drops obtained by hot tension tests at the same temperature. (Author) 5 refs

  14. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing

    International Nuclear Information System (INIS)

    Jacques, P.J.; Furnemont, Q.; Lani, F.; Pardoen, T.; Delannay, F.

    2007-01-01

    The mechanical behaviour of transformation-induced plasticity (TRIP)-assisted multiphase steels is addressed based on three different microstructures generated from the same steel grade. The mechanisms responsible for the work-hardening capacity and the resulting balance between strength and resistance to plastic localization are investigated at different length scales. The macroscopic mechanical response is determined by simple shear, uniaxial tension, Marciniak and equibiaxial tension supplemented by earlier tensile tests on notched and cracked specimens. It is shown that the transformation rate reaches a maximum for stress states intermediate between uniaxial tension and equibiaxial tension. At an intermediate length scale, the true in situ flow properties of the individual ferrite-bainite and retained austenite phases are determined by combining neutron diffraction and digital image correlation. This combined analysis elucidates the partitioning of stress and strain between the different constitutive phases. Based on these results, supplemented by transmission electron microscopy and electron backscattered diffraction observations, a general overview of the hardening behaviour of TRIP-assisted multiphase steels is depicted

  15. Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.

    2008-01-01

    The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic press