WorldWideScience

Sample records for measured particulate concentrations

  1. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    Directory of Open Access Journals (Sweden)

    Fullová Daša

    2016-12-01

    Full Text Available The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  2. Results of measurements of particulate matter concentrations inside a pig fattening facility

    Directory of Open Access Journals (Sweden)

    Ulens, T.

    2016-01-01

    Full Text Available Description of the subject. This research note discusses the results of measurements of particulate matter concentrations inside a pig fattening facility. Objectives. The objectives of the present study were to investigate the correlations between the different size fractions of indoor particulate matter (PM inside a pig fattening facility and to investigate the evolution of particle size distribution (PSD through a fattening period and between two housing systems and two cleaning protocols. Method. Data from two consecutive fattening periods in a commercial pig barn were used. Results. Very high correlations were found between PM10 and PM2.5 indoor concentrations. Depending on the measuring instrument, high or low correlations were found between PM1 and PM10 or PM2.5 indoor concentrations. No differences in PSD could be found between the two housing systems or the two cleaning protocols. Conclusions. The results from the present study showed high correlations between the indoor concentrations of PM10 and PM2.5. In the present study, no differences in PSD were found.

  3. Uncertainty associated with the gravimetric measurement of particulate matter concentration in ambient air.

    Science.gov (United States)

    Lacey, Ronald E; Faulkner, William Brock

    2015-07-01

    This work applied a propagation of uncertainty method to typical total suspended particulate (TSP) sampling apparatus in order to estimate the overall measurement uncertainty. The objectives of this study were to estimate the uncertainty for three TSP samplers, develop an uncertainty budget, and determine the sensitivity of the total uncertainty to environmental parameters. The samplers evaluated were the TAMU High Volume TSP Sampler at a nominal volumetric flow rate of 1.42 m3 min(-1) (50 CFM), the TAMU Low Volume TSP Sampler at a nominal volumetric flow rate of 17 L min(-1) (0.6 CFM) and the EPA TSP Sampler at the nominal volumetric flow rates of 1.1 and 1.7 m3 min(-1) (39 and 60 CFM). Under nominal operating conditions the overall measurement uncertainty was found to vary from 6.1x10(-6) g m(-3) to 18.0x10(-6) g m(-3), which represented an uncertainty of 1.7% to 5.2% of the measurement. Analysis of the uncertainty budget determined that three of the instrument parameters contributed significantly to the overall uncertainty: the uncertainty in the pressure drop measurement across the orifice meter during both calibration and testing and the uncertainty of the airflow standard used during calibration of the orifice meter. Five environmental parameters occurring during field measurements were considered for their effect on overall uncertainty: ambient TSP concentration, volumetric airflow rate, ambient temperature, ambient pressure, and ambient relative humidity. Of these, only ambient TSP concentration and volumetric airflow rate were found to have a strong effect on the overall uncertainty. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically. This work addresses measurement uncertainty of TSP samplers used in ambient conditions. Estimation of uncertainty in gravimetric measurements is of particular interest, since as ambient particulate

  4. Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor

    Energy Technology Data Exchange (ETDEWEB)

    Artinano, B.; Gomez-Moreno, F.J.; Pujadas, M.; Moreno, N.; Alastuey, A.; Querol, X.; Martin, F.; Guerra, A.; Luaces, J.A.; Basora, J. [CIEMAT, Madrid (Spain)

    2007-09-15

    Bulk material handling can be a significant source of particles in harbor areas. The atmospheric impact of a number of loading/unloading activities of diverse raw materials has been assessed from continuous measurements of ambient particle concentrations recorded close to the emission sources. Two experimental campaigns have been carried out in the Tarragona port to document the impact of specific handling operations and bulk materials. Dusty bulk materials such as silica-manganese powder, tapioca, coal, clinker and lucerne were dealt with during the experiments. The highest impacts on ambient particle concentrations were recorded during handling of clinker. For this material and silica-manganese powder, high concentrations were recorded in the fine grain size ({lt}2.5 {mu}m). The lowest impacts on particulate matter concentrations were recorded during handling of tapioca and lucerne, mainly in the coarse grain size (2-5-10 {mu} m). The effectiveness of several emission abatement measures, such as ground watering to diminish coal particle resuspension, was demonstrated to reduce ambient concentrations by up to two orders of magnitude. The importance of other good practices in specific handling operations, such as controlling the height of the shovel discharge, was also evidenced by these experiments. The results obtained can be further utilized as a useful experimental database for emission factor estimations.

  5. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon

    International Nuclear Information System (INIS)

    Colls, J.J.; Micallef, A.

    1999-01-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM 10 and PM 2.5 ) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data

  6. Atmospheric trace metal concentrations in Suspended Particulate ...

    African Journals Online (AJOL)

    The air particulate samples were collected from the kitchens, living rooms and outdoor environment of five households in the community. The quantification of the trace metals was done using Atomic Absorption spectrometry method, employing HNO based wet digestion. High baseline concentration of SPMwere obtained ...

  7. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon.

    Science.gov (United States)

    Kuuluvainen, Heino; Poikkimäki, Mikko; Järvinen, Anssi; Kuula, Joel; Irjala, Matti; Dal Maso, Miikka; Keskinen, Jorma; Timonen, Hilkka; Niemi, Jarkko V; Rönkkö, Topi

    2018-05-23

    The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm 2 /cm 3 measured close to the ground level to 36-40 μm 2 /cm 3 measured close to the rooftop level of the street canyon, and further to 16-26 μm 2 /cm 3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Particulate matter mass concentrations produced from pavement surface abrasion

    Directory of Open Access Journals (Sweden)

    Fullova Dasa

    2017-01-01

    Full Text Available According to the latest findings particulate matter belong to the most significant pollutants in Europe together with ground-level ozone O3 and nitrogen dioxide NO2. Road traffic is one of the main sources of particulate matter. Traffic volume has unpleasant impact on longevity of the pavements and also on the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The paper deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The paper offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  9. A panel study of airborne particulate matter concentration and impaired cardiopulmonary function in young adults by two different exposure measurement

    Science.gov (United States)

    Hu, Li-Wen; Qian, Zhengmin (Min); Bloom, Michael S.; Nelson, Erik J.; Liu, Echu; Han, Bin; Zhang, Nan; Liu, Yimin; Ma, Huimin; Chen, Duo-Hong; Yang, Bo-Yi; Zeng, Xiao-Wen; Chen, Wen; Komppula, Mika; Leskinen, Ari; Hirvonen, Maija-Riitta; Roponen, Marjut; Jalava, Pasi; Bai, Zhipeng; Dong, Guang-Hui

    2018-05-01

    This study sought to clarify the correlation of individual exposure measurements and PM2.5 measurements collected at regulatory monitoring sites in short-term panel study settings. To achieve this goal, 30 young, healthy adult participants were assigned to three groups with 4 samplers in each group to collect individual exposures during four weekends in March 2016. Participants also completed cardiopulmonary function tests during the same periods. For comparison, ambient air pollution data were obtained from the Air Pollution Surveillance Network in Guangzhou, China. The 8-h ambient pollutant averages and group sampler concentrations were used as separate indicators of air pollution exposure. Results showed that the 8-h mean concentration of personal PM2.5 exposure was 65.09 ± 22.18 μg/m3, which was 24.34 μg/m3 statistically higher than the ambient concentrations over the same period (p < 0.05). However, these concentrations were strongly correlated (Spearman's r = 0.937, p < 0.01). Separate mixed-effect models were fit for ambient and personal exposures to estimate their associations with cardiopulmonary outcomes. Higher PM2.5 and PM10 exposures were related to lower lung function of maximal mid-expiratory flow (MMEF). A 10 μg/m3 higher PM was associated with 0.11 L/S to 0.52 L/S lower MMEF. No effects on cardiovascular function were found. In conclusion, personal PM2.5 exposure might be higher than ambient concentrations. Young, healthy adults in urban areas may experience reduced lung function (lower MMEF), even after just 8 h of exposure to PM2.5 and PM10.

  10. Identification and Characterization of Particulate Matter Concentrations at Construction Jobsites

    Directory of Open Access Journals (Sweden)

    Ingrid P. S. Araújo

    2014-11-01

    Full Text Available The identification and characterization of particulate matter (PM concentrations from construction site activities pose major challenges due to the diverse characteristics related to different aspects, such as concentration, particle size and particle composition. Moreover, the characterization of particulate matter is influenced by meteorological conditions, including temperature, humidity, rainfall and wind speed. This paper is part of a broader investigation that aims to develop a methodology for assessing the environmental impacts caused by the PM emissions that arise from construction activities. The objective of this paper is to identify and characterize the PM emissions on a construction site with different aerodynamic diameters (PM2.5, PM10, total suspended particulates (TSP, based on an exploratory study. Initially, a protocol was developed to standardize the construction site selection criteria, laboratory procedures, field sample collection and laboratory analysis. This protocol was applied on a multifamily residential building construction site during three different construction phases (earthworks, superstructure and finishings aimed at measuring and monitoring PM concentrations arising from construction activities. The particulate matter was characterized in different particle sizes. Results showed that the higher TSP emissions arising from construction activities provoked environmental impacts. Some limitations to the results were identified, especially with regards the need for a detailed investigation about the influence of different construction phases on PM emissions. The findings provided significant knowledge about various situations, serving as a basis for improving the existing methodology for particulate material collection on construction sites and the development of future studies on the specific construction site phases.

  11. Field evaluation of a new particle concentrator- electrostatic precipitator system for measuring chemical and toxicological properties of particulate matter

    Directory of Open Access Journals (Sweden)

    Pakbin Payam

    2008-11-01

    Full Text Available Abstract Background A newly designed electrostatic precipitator (ESP in tandem with Versatile Aerosol Concentration Enrichment System (VACES was developed by the University of Southern California to collect ambient aerosols on substrates appropriate for chemical and toxicological analysis. The laboratory evaluation of this sampler is described in a previous paper. The main objective of this study was to evaluate the performance of the new VACES-ESP system in the field by comparing the chemical characteristics of the PM collected in the ESP to those of reference samplers operating in parallel. Results The field campaign was carried out in the period from August, 2007 to March, 2008 in a typical urban environment near downtown Los Angeles. Each sampling set was restricted to 2–3 hours to minimize possible sampling artifacts in the ESP. The results showed that particle penetration increases and ozone concentration decreases with increasing sampling flow rate, with highest particle penetration observed between 100 nm and 300 nm. A reference filter sampler was deployed in parallel to the ESP to collect concentration-enriched aerosols, and a MOUDI sampler was used to collect ambient aerosols. Chemical analysis results showed very good agreement between the ESP and MOUDI samplers in the concentrations of trace elements and inorganic ions. The overall organic compound content of PM collected by the ESP, including polycyclic aromatic hydrocarbons (PAHs, hopanes, steranes, and alkanes, was in good agreement with that of the reference sampler, with an average ESP -to -reference concentration ratio of 1.07 (± 0.38. While majority of organic compound ratios were close to 1, some of the semi-volatile organic species had slightly deviated ratios from 1, indicating the possibility of some sampling artifacts in the ESP due to reactions of PM with ozone and radicals generated from corona discharge, although positive and negative sampling artifacts in the

  12. Spatial and temporal variability in urban fine particulate matter concentrations

    International Nuclear Information System (INIS)

    Levy, Jonathan I.; Hanna, Steven R.

    2011-01-01

    Identification of hot spots for urban fine particulate matter (PM 2.5 ) concentrations is complicated by the significant contributions from regional atmospheric transport and the dependence of spatial and temporal variability on averaging time. We focus on PM 2.5 patterns in New York City, which includes significant local sources, street canyons, and upwind contributions to concentrations. A literature synthesis demonstrates that long-term (e.g., one-year) average PM 2.5 concentrations at a small number of widely-distributed monitoring sites would not show substantial variability, whereas short-term (e.g., 1-h) average measurements with high spatial density would show significant variability. Statistical analyses of ambient monitoring data as a function of wind speed and direction reinforce the significance of regional transport but show evidence of local contributions. We conclude that current monitor siting may not adequately capture PM 2.5 variability in an urban area, especially in a mega-city, reinforcing the necessity of dispersion modeling and methods for analyzing high-resolution monitoring observations. - Highlights: →Fine particulate matter (PM 2.5 ) hot spots are hard to identify in urban areas. → Literature conclusions about PM 2.5 hot spots depend on study design and methods. → Hot spots are more likely for short-term concentrations at high spatial density. → Statistical methods illustrate local source impacts beyond regional transport. → Dispersion models and high-resolution monitors are both needed to find hot spots. - Fine particulate matter can vary spatially within large urban areas, in spite of the significant contribution from regional atmospheric transport.

  13. Particulate Matter Concentrations in East Oakland's High Street Corridor

    Science.gov (United States)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  14. Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements

    Science.gov (United States)

    Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua

    2017-10-01

    A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.

  15. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  16. Elemental concentration of zooplankton and their particulate products

    International Nuclear Information System (INIS)

    Fowler, S.W.; Oregioni, B.

    1974-01-01

    Since zooplankton fecal pellets and molts are major vectors in the vertical transport of zinc in the sea, analyses have been made also for other trace metals in these particulate products. Euphausiids and pelagic shrimp were collected live off the Monaco coast by taking several short oblique tows with an Issacs-Kidd midwater trawl. Animals were placed in clean sea water, sorted according to species and immediately transported to the laboratory in plastic containers filled with filtered sea water taken at the collection site. Samples of microplankton, which serve as food for the macroplankton were also taken. Elemental concentrations in whole euphausiids and shrimp were measured. It was observed that molt analyses strongly support the contention that crustacean molts play an important role in the transport of metals and radionuclides in marine ecosystems. Molts can release metals to the water column or sediments upon decomposition or serve as a rich source of metals for organisms of other trophic levels which ingest them

  17. Daily variability of suspended particulate concentrations and yields and their effect on river particulates chemistry

    Directory of Open Access Journals (Sweden)

    M. Meybeck

    2015-03-01

    Full Text Available Daily total suspended solids concentrations (TSS, mg L-1, yields (Y, kg day-1 km-2 and runoff (q, L s-1 km-2 in world rivers are described by the median (C50, the upper percentile (C99, the discharge-weighted average concentrations (C*, and by their corresponding yields (Y50, Y99, Y* and runoff (q*, q50, q99. These intra-station descriptors range over two to six orders of magnitude at a given station. Inter-station variability is considered through three sets of dimensionless metrics: (i q*/q50, C*/C50 and Y*/Y50, defining the general temporal variability indicators, and q99/q50, C99/C50 and Y99/Y50, defining the extreme variability indicators; (ii river flow duration (W2 and flux duration (M2 in 2% of time; and (iii the truncated rating curve exponent (b50sup of the C vs q relationship for the upper flows. The TSS and Y variability, measured on US, French and world rivers, are first explained by hydrological variability through the b50sup metric, the variability amplifier, then by basin size, erodibility, relief and lake occurrence. Yield variability is the product of runoff variability × TSS variability. All metrics are considerably modified after river damming. The control of river particulate matter (RPM composition by TSS or yields depends on the targeted component. For major elements (Al, Fe, Mn, Ti, Si, Ca, Mg, Na, K, the average RPM chemistry is not dependent on C* and Y* in most world hydroregions, except in the tropical hydrobelt where it is controlled by basin relief. By contrast, the particulate organic carbon content (POC, as a percentage of RPM is inversely correlated to TSS concentrations for (i intra-station measurements in any hydroregion, and (ii inter-station average POC and TSS figures in world rivers. TSS controls heavy metal content (ppm in highly contaminated basins (e.g. Cd in the Seine vs the Rhone, and total metal concentration (ng/L in all cases. Relations between RPM composition and TSS should be taken into account

  18. On-road particulate emission measurement

    Science.gov (United States)

    Mazzoleni, Claudio

    Particulate matter (PM) suspended in the atmosphere has harmful health effects, contributes to visibility impairment, and affects atmospheric radiative transfer, thereby contributing to global change. Vehicles contribute substantially to the ambient PM concentration in urban areas, yet the fraction of ambient PM originating from vehicle emissions is poorly characterized because suitable measurement methods have not been available. This dissertation describes the development and the use of a new vehicle emission remote sensing system (VERSS) for the on-road measurement of PM emission factors for vehicles. The PM VERSS measures PM by ultraviolet backscattering and transmission. PM backscattering and transmission mass efficiencies have been calculated from Mie theory based on an homogeneous spherical model for gasoline particles and on a two-layers, spherical model for diesel particles. The VERSS was used in a large-scale study in Las Vegas, NV. A commercial gaseous VERSS was used for the measurement of gaseous emission factors (i.e., carbon monoxide, hydrocarbons, and nitrogen oxide). Speed and acceleration were also measured for each vehicle. A video image of each vehicle's rear license plate was acquired and license plate numbers were matched with the Clark County department of motor vehicle database to retrieve vehicle information such as model year, vehicle weight category and engine ignition type. PM VERSS has precisely estimated PM fleet average emission factors and clearly shown the dependence of PM emission factors on vehicle model year. Under mostly hot-stabilized operation, diesel vehicle PM emission factors are about 25 times higher than those of gasoline vehicles. Furthermore, the fleet frequency distributions of PM emission factors are highly skewed, meaning that most of the fleet emission factor is accounted for by a small portion of the fleet. The PM VERSS can measure PM emission factors for these high emitting vehicles on an individual basis. PM

  19. Air quality more extensive monitoring of particulates pollution but concentrations must be reduced by 2005

    International Nuclear Information System (INIS)

    Ba, M.; Colosio, J.

    2000-09-01

    Most epidemiological data point to a link between the concentrations of particles measured in the ambient air and the effects of air pollution on human health. Particulates emitted by road traffic and industry are among the most harmful; they carry serious risks. The particulate monitoring network and legislation on the issue are constantly changing. In France, the number of monitoring stations has more than doubled in recent years. EC Directive 1999/30/EC of 22 April 1999 sets limit values for concentrations of particulates in ambient air to be complied with at certain given dates. In France, while the concentrations measured in urban areas with over 100 000 inhabitants are below the limit values set by the Directive for today, they are significantly higher than those to be complied with by 1 January 2005. (author)

  20. Airborne particulate concentrations and fluxes at an active uranium mill tailings site

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1978-01-01

    Direct measurements of airborne particulate concentrations and fluxes of transported mill tailing materials were measured at an active mill tailings site. Experimental measurement equipment consisted of meteorological instrumentation to automatically activate total particulate air samplers as a function of wind speed increments and direction, as well as particle cascade impactors to measure airborne respirable concentrations as a function of particle size. In addition, an inertial impaction device measured nonrespirable fluxes of airborne particles. Caclulated results are presented in terms of the airborne solid concentration in g/m 3 , the horizontal airborne mass flux in g/(m 2 -day) for total collected nonrespirable particles and the radionuclide concentrations in dpm/g as a function of particle diameter for respirable and nonrespirable particles

  1. Particulate Matter Concentration Levels in South Central Richmond, California (Invited)

    Science.gov (United States)

    Bonner, B.; Byias, C.; Cuff, K. E.; Diaz, J.; Love, K.; Marks-Block, T.; McLane, F.; Mollique, Z.; Montes, E.; Ross, R.; Washington, B.

    2009-12-01

    South Central Richmond, California is the home of one of the nation’s most innovative green workforce training centers, Richmond BUILD - Green Jobs Training facility. A near constant stream of young people engaged in training activities, instructors, invited guests, and journalists of various ages can be seen moving in and out of the facility nearly every day of the week throughout a given year. Additionally, the comings and goings of young children and adults associated with a mid-sized elementary school just north of the facility contributes to the general area’s substantial human traffic. Unfortunately, however, a major highway, Interstate 580, a major thoroughfare, 23rd Street and a railway line operated by Burlington Northern Santa Fe, Union Pacific, and the Richmond Pacific Railroad frame the triangular area within which these two sites are situated. In addition, a major petrochemical complex and several shipping facilities are located less than three kilometers away north and west of this area. As part of a general assessment of air quality in this heavily human traveled area, we conducted a study of particulate matter (PM) concentrations over a five-month period beginning in August of 2009. Measurements were made at a variety of locations, and results were used to map the spatial distribution of PM of various sizes. Regions of high concentration levels were identified, and these particular areas then were monitored over time. Preliminary results of our study indicate that regions with high concentrations are consistent across the range of particle sizes measured, which suggests a common source for PM found in the study area. As these regions are located close to a major thoroughfare and railway line, we believe that diesel-burning vehicles are major contributors to the PM levels found in the study area. Time series results suggest a fairly strong correlation between higher than average PM concentrations and abnormally high wind gusts. On days when wind

  2. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C D [DRA, Farnborough (United Kingdom)

    1998-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  3. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C.D. [DRA, Farnborough (United Kingdom)

    1997-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  4. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  5. Seasonal Variability of Airborne Particulate Matter and Bacterial Concentrations in Colorado Homes

    Directory of Open Access Journals (Sweden)

    Nicholas Clements

    2018-04-01

    Full Text Available Aerosol measurements were collected at fifteen homes over the course of one year in Colorado (USA to understand the temporal variability of indoor air particulate matter and bacterial concentrations and their relationship with home characteristics, inhabitant activities, and outdoor air particulate matter (PM. Indoor and outdoor PM2.5 concentrations averaged (±st. dev. 8.1 ± 8.1 μg/m3 and 6.8 ± 4.5 μg/m3, respectively. Indoor PM2.5 was statistically significantly higher during summer compared to spring and winter; outdoor PM2.5 was significantly higher for summer compared to spring and fall. The PM2.5 I/O ratio was 1.6 ± 2.4 averaged across all homes and seasons and was not statistically significantly different across the seasons. Average indoor PM10 was 15.4 ± 18.3 μg/m3 and was significantly higher during summer compared to all other seasons. Total suspended particulate bacterial biomass, as determined by qPCR, revealed very little seasonal differences across and within the homes. The qPCR I/O ratio was statistically different across seasons, with the highest I/O ratio in the spring and lowest in the summer. Using one-minute indoor PM10 data and activity logs, it was observed that elevated particulate concentrations commonly occurred when inhabitants were cooking and during periods with elevated outdoor concentrations.

  6. YOGYAKARTA AIR BORNE QUALITY BASED ON THE LEAD PARTICULATE CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zaenal Abidin

    2010-06-01

    Full Text Available Analysis of Yogyakarta air quality based on concentration of lead particulate using Fast Neutron Activation Analysis (FNAA method has been done. The sample was taken 3 times in 16 strategic locations of Yogyakarta city using Hi-Vol air sampler that equipped with cellulose filter TFA 2133. The sample irradiated for 30 min with 14 MeV fast neutron and then counted using gamma spectroscopy (AccuSpec. The result indicated that concentration of Pb-208 along Diponegoro street up to Janti street respectively are minimally (0.689 - 0.775 mg/m3, and maximally:  (1.598 - 1.785 mg/m3. According to DIY governor decree No. 153/2002 about the limited toxicity ambient on Yogyakarta area it is concentration that Pb. The concentration of Pb-208 are still below the permitted value of 2 mg/m3, but in certain areas, the Pb concentration is almost equal to upper limit of permitted concentration of Pb.   Keywords: air borne, neutron generator, FNAA

  7. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  8. Particulate Matter Mass Concentration in Residential Prefabricated Buildings Related to Temperature and Moisture

    Science.gov (United States)

    Kraus, Michal; Juhásová Šenitková, Ingrid

    2017-10-01

    Building environmental audit and the assessment of indoor air quality (IAQ) in typical residential buildings is necessary process to ensure users’ health and well-being. The paper deals with the concentrations on indoor dust particles (PM10) in the context of hygrothermal microclimate in indoor environment. The indoor temperature, relative humidity and air movement are basic significant factors determining the PM10 concentration [μg/m3]. The experimental measurements in this contribution represent the impact of indoor physical parameters on the concentration of particulate matter mass concentration. The occurrence of dust particles is typical for the almost two-thirds of interiors of the buildings. Other parameters indoor environment, such as air change rate, volume of the room, roughness and porosity of the building material surfaces, static electricity, light ions and others, were set constant and they are not taken into account in this study. The mass concentration of PM10 is measured during summer season in apartment of residential prefabricated building. The values of global temperature [°C] and relative humidity of indoor air [%] are also monitored. The quantity of particulate mass matter is determined gravimetrically by weighing according to CSN EN 12 341 (2014). The obtained results show that the temperature difference of the internal environment does not have a significant effect on the concentration PM10. Vice versa, the difference of relative humidity exhibits a difference of the concentration of dust particles. Higher levels of indoor particulates are observed for low values of relative humidity. The decreasing of relative air humidity about 10% caused 10µg/m3 of PM10 concentration increasing. The hygienic limit value of PM10 concentration is not exceeded at any point of experimental measurement.

  9. Fitting the Probability Distribution Functions to Model Particulate Matter Concentrations

    International Nuclear Information System (INIS)

    El-Shanshoury, Gh.I.

    2017-01-01

    The main objective of this study is to identify the best probability distribution and the plotting position formula for modeling the concentrations of Total Suspended Particles (TSP) as well as the Particulate Matter with an aerodynamic diameter<10 μm (PM 10 ). The best distribution provides the estimated probabilities that exceed the threshold limit given by the Egyptian Air Quality Limit value (EAQLV) as well the number of exceedance days is estimated. The standard limits of the EAQLV for TSP and PM 10 concentrations are 24-h average of 230 μg/m 3 and 70 μg/m 3 , respectively. Five frequency distribution functions with seven formula of plotting positions (empirical cumulative distribution functions) are compared to fit the average of daily TSP and PM 10 concentrations in year 2014 for Ain Sokhna city. The Quantile-Quantile plot (Q-Q plot) is used as a method for assessing how closely a data set fits a particular distribution. A proper probability distribution that represents the TSP and PM 10 has been chosen based on the statistical performance indicator values. The results show that Hosking and Wallis plotting position combined with Frechet distribution gave the highest fit for TSP and PM 10 concentrations. Burr distribution with the same plotting position follows Frechet distribution. The exceedance probability and days over the EAQLV are predicted using Frechet distribution. In 2014, the exceedance probability and days for TSP concentrations are 0.052 and 19 days, respectively. Furthermore, the PM 10 concentration is found to exceed the threshold limit by 174 days

  10. Distribution and seasonal variation of concentrations of particulate carbohydrates and uronic acids in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khodse, V.B.; Fernandes, L.; Gopalakrishna, V.V.; Bhosle, N.B.; Fernandes, V.; Matondkar, S.G.P.; Bhushan, R.

    particulate carbohydrate (TPCHO), total particulate uronic acid (TPURA) and total particulate neutral carbohydrate (TPNCHO) concentrations and composition. Strong spatial, temporal and depth related variations were evident in the distribution...

  11. Characterizing temporal changes of agricultural particulate matter number concentrations

    Science.gov (United States)

    Docekal, G. P.; Mahmood, R.; Larkin, G. P.; Silva, P. J.

    2017-12-01

    It is widely accepted among literature that particulate matter (PM) are of detriment to human health and the environment as a whole. These effects can vary depending on the particle size. This study examines PM size distributions and number concentrations at a poultry house. Despite much literature on PM concentrations at agricultural facilities, few studies have looked at the size distribution of particles at such facilities from the nucleation up through the coarse mode. Two optical particle counters (OPCs) were placed, one inside of a chicken house, and one on the outside of an exhaust fan to determine particle size distributions. In addition, a scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) sampled poultry house particles to give sizing information from a full size range of 10 nm - 20 mm. The data collected show several different types of events where observed size distributions changed. While some of these are due to expected dust generation events producing coarse mode particles, others suggest particle nucleation and accumulation events at the smaller size ranges that also occurred. The data suggest that agricultural facilities have an impact one the presence of PM in the environment beyond just generation of coarse mode dust. Data for different types of size distribution changes observed will be discussed.

  12. FK concentrator outdoor measurements

    OpenAIRE

    Hernández Sanz, Maikel; Vilaplana, J., J.; Benitez Gimenez, Pablo; Mohedano,, Rubén; Zamora Herranz, Pablo; Miñano Dominguez, Juan Carlos; Mendes Lopes, Joao

    2013-01-01

    The FK is a two-stage optical concentrator for CPV, composed by a Fresnel lens working as POE and a refractive element working as SOE. Both elements perform Köhler integration, for uniform irradiance purposes. The FK has demonstrated that compares very well with other Fresnel-based concentrator optics. Recent on-sun measurements carried out on an FK mono-module prototype have already shown outstanding results, achieving electrical efficiencies over 34%. Further optimization of optical design ...

  13. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  14. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case-crossover analysis.

    Science.gov (United States)

    Yamazaki, S; Nitta, H; Ono, M; Green, J; Fukuhara, S

    2007-01-01

    To examine the association of hourly time lagged concentration of ambient particulate matter and death due to stroke. Mortality data for five years (January 1990 to December 1994) were obtained from the Ministry of Health, Labour, and Welfare of Japan. Data were used only if the deceased was 65 years old or older at the time of death, if death was attributed to intracerebral haemorrhage or ischaemic stroke, and if the deceased lived in one of 13 major urban areas. Hourly mean concentrations of PM7, NO2, and photochemical oxidants were measured at monitoring stations in the 13 areas. Time stratified case-crossover analysis was used to examine the data for evidence of triggering stroke mortality. The 1-hour mean concentration of PM7 measured about 2 hours before death was associated with the risk of death due to intracerebral haemorrhage from April to September (odds ratio = 2.40, 95% CI 1.48 to 3.89, for exposure to PM7 of more than 200 microg/m3 (threshold)). The higher risk was independent of the 24-hour mean concentration of PM7. PM7 was not associated with death due to ischaemic stroke. Transiently high concentrations of PM7 are associated with death due to intracerebral haemorrhage. Air quality standards or guidelines for particulate matter should be based not only on 24-hour mean concentrations, but also on hourly data.

  15. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case‐crossover analysis

    Science.gov (United States)

    Yamazaki, S; Nitta, H; Ono, M; Green, J; Fukuhara, S

    2007-01-01

    Aims To examine the association of hourly time lagged concentration of ambient particulate matter and death due to stroke. Methods Mortality data for five years (January 1990 to December 1994) were obtained from the Ministry of Health, Labour, and Welfare of Japan. Data were used only if the deceased was 65 years old or older at the time of death, if death was attributed to intracerebral haemorrhage or ischaemic stroke, and if the deceased lived in one of 13 major urban areas. Hourly mean concentrations of PM7, NO2, and photochemical oxidants were measured at monitoring stations in the 13 areas. Time stratified case‐crossover analysis was used to examine the data for evidence of triggering stroke mortality. Results The 1‐hour mean concentration of PM7 measured about 2 hours before death was associated with the risk of death due to intracerebral haemorrhage from April to September (odds ratio = 2.40, 95% CI 1.48 to 3.89, for exposure to PM7 of more than 200 μg/m3 (threshold)). The higher risk was independent of the 24‐hour mean concentration of PM7. PM7 was not associated with death due to ischaemic stroke. Conclusions Transiently high concentrations of PM7 are associated with death due to intracerebral haemorrhage. Air quality standards or guidelines for particulate matter should be based not only on 24‐hour mean concentrations, but also on hourly data. PMID:16847037

  16. Satellite-based retrieval of particulate matter concentrations over the United Arab Emirates (UAE)

    Science.gov (United States)

    Zhao, Jun; Temimi, Marouane; Hareb, Fahad; Eibedingil, Iyasu

    2016-04-01

    In this study, an empirical algorithm was established to retrieve particulate matter (PM) concentrations (PM2.5 and PM10) using satellite-derived aerosol optical depth (AOD) over the United Arab Emirates (UAE). Validation of the proposed algorithm using ground truth data demonstrates its good accuracy. Time series of in situ measured PM concentrations between 2014 and 2015 showed high values in summer and low values in winter. Estimated and in situ measured PM concentrations were higher in 2015 than 2014. Remote sensing is an essential tool to reveal and back track the seasonality and inter-annual variations of PM concentrations and provide valuable information on the protection of human health and the response of air quality to anthropogenic activities and climate change.

  17. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    Science.gov (United States)

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources.

  18. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  19. Trace metals concentration assessment in urban particulate matter ...

    African Journals Online (AJOL)

    This study was conducted to investigate the distribution and correlation of selected trace elements (Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in Yenagoa, Bayelsa State and its environs. Air particulate matter was collected gravimetrically at five stations (using a high volume portable SKC air check MTXSidekickair sampler ...

  20. AGE AND STRAIN INFLUENCES ON LUNG RESPONSES TO CONCENTRATED AIR PARTICULATES (CAPS) IN RODENTS

    Science.gov (United States)

    Asthma, an inflammatory airways disease, is an urgent health problem. Recent epidemiologic studies have demonstrated positive associations between ambient air particulate matter concentrations and daily respiratory morbidity ? including exacerbations of asthma. Of note, elderly i...

  1. Assessment of background particulate matter concentrations in small cities and rural locations--Prince George, Canada.

    Science.gov (United States)

    Veira, Andreas; Jackson, Peter L; Ainslie, Bruce; Fudge, Dennis

    2013-07-01

    This study investigates the development and application of a simple method to calculate annual and seasonal PM2.5 and PM10 background concentrations in small cities and rural areas. The Low Pollution Sectors and Conditions (LPSC) method is based on existing measured long-term data sets and is designed for locations where particulate matter (PM) monitors are only influenced by local anthropogenic emission sources from particular wind sectors. The LPSC method combines the analysis of measured hourly meteorological data, PM concentrations, and geographical emission source distributions. PM background levels emerge from measured data for specific wind conditions, where air parcel trajectories measured at a monitoring station are assumed to have passed over geographic sectors with negligible local emissions. Seasonal and annual background levels were estimated for two monitoring stations in Prince George, Canada, and the method was also applied to four other small cities (Burns Lake, Houston, Quesnel, Smithers) in northern British Columbia. The analysis showed reasonable background concentrations for both monitoring stations in Prince George, whereas annual PM10 background concentrations at two of the other locations and PM2.5 background concentrations at one other location were implausibly high. For those locations where the LPSC method was successful, annual background levels ranged between 1.8 +/- 0.1 microg/m3 and 2.5 +/- 0.1 microg/m3 for PM2.5 and between 6.3 +/- 0.3 microg/m3 and 8.5 +/- 0.3 microg/m3 for PM10. Precipitation effects and patterns of seasonal variability in the estimated background concentrations were detectable for all locations where the method was successful. Overall the method was dependent on the configuration of local geography and sources with respect to the monitoring location, and may fail at some locations and under some conditions. Where applicable, the LPSC method can provide a fast and cost-efficient way to estimate background PM

  2. Concentration and movement of neonicotinoids as particulate matter downwind during agricultural practices using air samplers in southwestern Ontario, Canada.

    Science.gov (United States)

    Forero, Luis Gabriel; Limay-Rios, Victor; Xue, Yingen; Schaafsma, Arthur

    2017-12-01

    Atmospheric emissions of neonicotinoid seed treatment insecticides as particulate matter in field crops occur mainly for two reasons: 1) due to abraded dust of treated seed generated during planting using vacuum planters, and 2) as a result of disturbances (tillage or wind events) in the surface of parental soils which release wind erodible soil-bound residues. In the present study, concentration and movement of neonicotinoids as particulate matter were quantified under real conditions using passive and active air samplers. Average neonicotinoid concentrations in Total Suspended Particulate (TSP) using passive samplers were 0.48 ng/cm 2 , trace, trace (LOD 0.80 and 0.04 ng/cm 2 for clothianidin and thiamethoxam, respectively), and using active samplers 16.22, 1.91 and 0.61 ng/m 3 during planting, tillage and wind events, respectively. There was a difference between events on total neonicotinoid concentration collected in particulate matter using either passive or active sampling. Distance of sampling from the source field during planting of treated seed had an effect on total neonicotinoid air concentration. However, during tillage distance did not present an effect on measured concentrations. Using hypothetical scenarios, values of contact exposure for a honey bee were estimated to be in the range from 1.1% to 36.4% of the reference contact LD 50 value of clothianidin of 44 ng/bee. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Seasonal and diurnal variation in concentrations of gaseous and particulate phase endosulfan

    Science.gov (United States)

    Li, Qingbo; Wang, Xianyu; Song, Jing; Sui, Hongqi; Huang, Lei; Li, Lu

    2012-12-01

    Successive 52-week air monitoring of α-endosulfan (α-E), β-endosulfan (β-E) and endosulfan sulfate (E.S) in the gaseous and particulate phases was conducted in Dalian city, northeast China by using an active high-volume sampler. Significant seasonal and diurnal variations in endosulfan concentrations were observed. It was found that the concentration of gaseous-phase α-E peaked in the summer and the concentration of particulate phase α-E peaked in the winter. For E.S, both gaseous and particulate phase concentrations peaked in the summer. α-E was distributed predominantly in the gas phase in the summer but was distributed mainly in the particulate phase in the winter. β-E was distributed mainly in the gas phase in the summer and in the particulate phase at other times of the year. E.S was distributed mainly in the particulate phase throughout the year. Elevated temperatures facilitated the volatilization of α-E from particle surfaces but exerted little effect on β-E and had almost no effect on E.S. Trajectory-based analysis indicates that the seasonal variation in atmospheric concentrations of endosulfan in Dalian city was influenced strongly by the land and sea air masses. In addition, differences in endosulfan concentrations in the particulate phase between day and night were likely due to the circulation of sea/land breezes. The 'cold-condensation' effect occurring during the night may result in the attachment of endosulfan to the particulate phase.

  4. Artificial neural network forecast application for fine particulate matter concentration using meteorological data

    Directory of Open Access Journals (Sweden)

    M. Memarianfard

    2017-09-01

    Full Text Available Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consist of weather-related and air pollution-related data, i.e. wind speed, humidity, temperature, SO2, CO, NO2, and PM2.5 as target values. These factors have been considered in 19 measuring stations (zones over urban area across Tehran City during four years, from March 2011 to March 2015. The results indicate that the network with hidden layer including six neurons at training epoch 113, has the best performance with the lowest error value (MSE=0.049438 on considering PM2.5 concentrations across metropolitan areas in Tehran. Furthermore, the “R” value for regression analysis of training, validation, test, and all data are 0.65898, 0.6419, 0.54027, and 0.62331, respectively. This study also represents the artificial neural networks have satisfactory implemented for resolving complex patterns in the field of air pollution.

  5. Concentration, size, and density of total suspended particulates at the air exhaust of concentrated animal feeding operations.

    Science.gov (United States)

    Yang, Xufei; Lee, Jongmin; Zhang, Yuanhui; Wang, Xinlei; Yang, Liangcheng

    2015-08-01

    Total suspended particulate (TSP) samples were seasonally collected at the air exhaust of 15 commercial concentrated animal feeding operations (CAFOs; including swine finishing, swine farrowing, swine gestation, laying hen, and tom turkey) in the U.S. Midwest. The measured TSP concentrations ranged from 0.38 ± 0.04 mg m⁻³ (swine gestation in summer) to 10.9 ± 3.9 mg m⁻³ (tom turkey in winter) and were significantly affected by animal species, housing facility type, feeder type (dry or wet), and season. The average particle size of collected TSP samples in terms of mass median equivalent spherical diameter ranged from 14.8 ± 0.5 µm (swine finishing in winter) to 30.5 ± 2.0 µm (tom turkey in summer) and showed a significant seasonal effect. This finding affirmed that particulate matter (PM) released from CAFOs contains a significant portion of large particles. The measured particle size distribution (PSD) and the density of deposited particles (on average 1.65 ± 0.13 g cm⁻³) were used to estimate the mass fractions of PM10 and PM2.5 (PM ≤ 10 and ≤ 2.5 μm, respectively) in the collected TSP. The results showed that the PM10 fractions ranged from 12.7 ± 5.1% (tom turkey) to 21.1 ± 3.2% (swine finishing), whereas the PM2.5 fractions ranged from 3.4 ± 1.9% (tom turkey) to 5.7 ± 3.2% (swine finishing) and were smaller than 9.0% at all visited CAFOs. This study applied a filter-based method for PSD measurement and deposited particles as a surrogate to estimate the TSP's particle density. The limitations, along with the assumptions adopted during the calculation of PM mass fractions, must be recognized when comparing the findings to other studies.

  6. The impact of total suspended particulate concentration on workers’ health at ceramic industry

    Science.gov (United States)

    Sintorini, M. M.

    2018-01-01

    Ceramic production process pollutes the air with particulate matter at high concentration and has negative impact on the workers. The objective of this research was to determine the particulate concentration in the air and to analyse its impact on the workers. This research used cross sectional method to correlate the particulate concentration, temperature, humidity, smoke level and level of workers’ compliance with safety regulations. Sampling was conducted from April to May 2012 in three locations, i.e. exposure area (Mass Preparation I, II) and non-exposure area (Forming area). In the exposure area (Mass Preparation I and II) where the particulate concentrations were 22.3673 mg/m3 and 14.8277 mg/m3, and 58.33%, the workers had bad health status. In the non-exposure area, where the particulate concentration was 3.2185 mg/m3 and 25% the workers had bad health status. The Odds Ratio among the workers in exposure area was 4.2 times higher than the workers in the non-exposure area.

  7. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    Directory of Open Access Journals (Sweden)

    Pavla Dagsson-Waldhauserova

    2016-06-01

    Full Text Available Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 µg·m−3 (PM10 = 7 to 583 µg·m−3. The mean PM1 concentrations were 97–241 µg·m−3 with a maximum of 261 µg·m−3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34–0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  8. Evaluation of atmospheric particulate concentrations derived from analysis of ratio Thematic Mapper data

    Science.gov (United States)

    Carnahan, W. H.; Mausel, P. W.; Zhou, G. P.

    1984-01-01

    An approach for atmospheric particulate concentration evaluation above urban areas using ratio Thematic Mapper (TM) data is discussed. October 25, 1982 TM data over Chicago, IL are analyzed using TM band ratios of 1/2, 1/3, 1/4, 1/5, and 1/6 and particulate concentration estimates derived from TM ratios are tested over low reflective turbid water sites and highly reflective concrete highways. From analysis of the data it is evident that for water, the pattern of increasing particulate concentration is associated with decreasing ratio values in all band combinations used. Over concrete features, the TM band 1/4 ratio values follow the predicted pattern, while the TM band 1/6 has ratios which are reversed from anticipated values.

  9. Iatroscan-measured particulate and dissolved lipids in the Almeria-Oran frontal system (Almofront-1, May 1991)

    Science.gov (United States)

    Gérin, C.; Goutx, M.

    1994-08-01

    The Chromarod-Iatroscan system was used to measure dissolved and particulate lipids at six sites representative of the main hydrological zones of the Almeria-Oran frontal system in May 1991. Concentrations ranged from 9 to 113 μg 1 -1 and from 3 to 84 μg 1 -1 respectively. Particulate carbon was estimated on a CHN Leco analyzer. Dissolved lipid concentrations were highly variable with depth and exhibited clear signatures of phytoplankton degradation throughout the profiles. In the 300-400 m layer, particulate wax esters denoted the presence of deep zooplankton which may be benefit from the downward fluxes of organic matter from the frontal zone. In surface water, high concentrations of dissolved lipids and particulate carbon marked the presence of the jet front. Particulate lipid classes in samples were related to the presence of zooplankton and to the physiological state of cells rather than to phytoplankton biomass. Particulate triglyceride concentrations (storage lipids in phytoplankton) increased from the left to the right border of the jet core and further southwards, culminating in the Atlantic anticyclonic gyre. The distribution of particulate lipids to carbon and chlorophyllatios and the increasing level of triglycerides from the jet and southwards suggested a rapid removal of the frontal production by physical transports. The ability of anticyclonic structures to enhance accumulations of energetically rich compounds and thus to play a role as fertilizers of the oligotrophic waters of the Mediterranean Sea is discussed.

  10. Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.

    Science.gov (United States)

    Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry

    2014-12-16

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.

  11. Comparison of Particulate Mercury Measured with Manual and Automated Methods

    Directory of Open Access Journals (Sweden)

    Rachel Russo

    2011-01-01

    Full Text Available A study was conducted to compare measuring particulate mercury (HgP with the manual filter method and the automated Tekran system. Simultaneous measurements were conducted with the Tekran and Teflon filter methodologies in the marine and coastal continental atmospheres. Overall, the filter HgP values were on the average 21% higher than the Tekran HgP, and >85% of the data were outside of ±25% region surrounding the 1:1 line. In some cases the filter values were as much as 3-fold greater, with

  12. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  13. [Real-time measurement of indoor particulate matter originating from environmental tobacco smoke: a pilot study].

    Science.gov (United States)

    Invernizzi, Giovanni; Ruprecht, Ario; Mazza, Roberto; Majno, Edoardo; Rossetti, Edoardo; Paredi, Paolo; Boffi, Roberto

    2002-01-01

    Short-term measurement of suspended particulate matter has been recently made possible since the release of laser-operating portable instruments. Data of a pilot study of field evaluation of environmental tobacco smoke (ETS) with a portable instrument are reported. We analysed the concentrations of total suspended particle (TSP) and of the fine particles PM10, PM7, PM2.5 and PM1 released indoor from a single cigarette, and their levels inside smoking- and non-smoking-areas of a restaurant. The results indicate that ETS creates high level indoor particulate pollution, with concentrations of PM10 exceeding air quality standards. This kind of field evaluation could allow a more careful assessing of short-term exposure to ETS and its relevance to public health.

  14. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners.

    Science.gov (United States)

    Batterman, S; Du, L; Mentz, G; Mukherjee, B; Parker, E; Godwin, C; Chin, J-Y; O'Toole, A; Robins, T; Rowe, Z; Lewis, T

    2012-06-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84±27%, but dropped to 63±33% in subsequent seasons. In months when households were not visited, use averaged only 34±30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. Environmental tobacco smoke (ETS) increased particulate matter (PM) levels by about 14 μg/m3 and was often detected using ETS-specific tracers despite restrictions on smoking in the house as reported on questionnaires administered to caregivers. PM concentrations depended on season, filter usage, relative humidity, air exchange ratios, number of children, outdoor PM levels, sweeping/dusting, and presence of a central air conditioner (AC). Free-standing air filters can be an effective intervention that provides substantial reductions in PM concentrations if the filters are used. However, filter use was variable across the study population and declined over the study duration, and

  15. Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study

    International Nuclear Information System (INIS)

    Nguyen, Thanh T N; Bui, Hung Q; Pham, Ha V; Luu, Hung V; Man, Chuc D; Pham, Hai N; Le, Ha T; Nguyen, Thuy T

    2015-01-01

    Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM 2.5 data compared to ground-based PM 2.5 (n = 285, r 2  = 0.411, RMSE = 20.299 μg m −3 and RE = 39.789%). Further, validation of satellite-derived PM 2.5 on two independent datasets for North East and South Central Coast suggested similar results (n = 40, r 2  = 0.455, RMSE = 21.512 μg m −3 , RE = 45.236% and n = 45, r 2  = 0.444, RMSE = 8.551 μg m −3 , RE = 46.446% respectively). Also, our satellite-derived PM 2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM 2.5 peaks needs further investigations on ground data, atmospheric conditions and physical aspects. (letter)

  16. Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study

    Science.gov (United States)

    Nguyen, Thanh T. N.; Bui, Hung Q.; Pham, Ha V.; Luu, Hung V.; Man, Chuc D.; Pham, Hai N.; Le, Ha T.; Nguyen, Thuy T.

    2015-09-01

    Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM2.5 data compared to ground-based PM2.5 (n = 285, r2 = 0.411, RMSE = 20.299 μg m-3 and RE = 39.789%). Further, validation of satellite-derived PM2.5 on two independent datasets for North East and South Central Coast suggested similar results (n = 40, r2 = 0.455, RMSE = 21.512 μg m-3, RE = 45.236% and n = 45, r2 = 0.444, RMSE = 8.551 μg m-3, RE = 46.446% respectively). Also, our satellite-derived PM2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM2.5 peaks needs further investigations on ground data, atmospheric conditions and physical aspects.

  17. LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPS) IN RATS

    Science.gov (United States)

    2003 AAR PM MeetingParticulate Matter: Atmospheric Sciences,Exposure and the Fourth Colloquium on PM and Human HealthLACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPs) IN RATS. JA Dye, LC Walsh, C...

  18. Concentrations of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio, from August 1971 to August 1972 and their dependence on wind direction: Complete data listing and concentration roses

    Science.gov (United States)

    King, R. B.; Neustadter, H. E.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio during 1971 and 1972. Daily values, maxima, geometric means and their standard deviations covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented on microfiche for 60 elements, and for a lesser number of days for 10 polycyclic aromatic hydrocarbon compounds (PAH), the aliphatic hydrocarbon compounds (AH) as a group and carbon. In addition, concentration roses showing directional properties are presented for 39 elements, 10 PAH and the AH as a group. The elements (except carbon) are shown both in terms of concentration and percentage of the suspended particulate matter.

  19. Preliminary analysis of variability in concentration of fine particulate matter - PM1.0, PM2.5 and PM10 in area of Poznań city

    Directory of Open Access Journals (Sweden)

    Sówka Izabela

    2018-01-01

    Full Text Available It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10 in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 – 8.7-69.6 μg/m3, PM2.5 – 2.2-88.5 μg/m3, PM1.0 – 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10, 1.2-40.3 μg/m3 (PM2.5 and 2.7-10.4 (PM1.0 in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street, -0.53 and -0.53 (Szymanowskiego Street, for PM2.5: -0.60 and -0.53 (Jana Pawła II Street and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street.

  20. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  1. Particulate sulfate ion concentration and SO2 emission trends in the United States from the early 1990s through 2010

    Directory of Open Access Journals (Sweden)

    W. C. Malm

    2012-11-01

    Full Text Available We examined particulate sulfate ion concentrations across the United States from the early 1990s through 2010 using remote/rural data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network and from early 2000 through 2010 using data from the Environmental Protection Agency's (EPA urban Chemical Speciation Network (CSN. We also examined measured sulfur dioxide (SO2 emissions from power plants from 1995 through 2010 from the EPA's Acid Rain Program. The 1992–2010 annual mean sulfate concentrations at long-term rural sites in the United States have decreased significantly and fairly consistently across the United States at a rate of −2.7% yr−1 (p −1 (p −1 (p 2 emissions from power plants across the United States have decreased at a similar rate as sulfate concentrations from 2001 to 2010 (−6.2% yr−1, p 2 emissions and average sulfate concentrations. This linearity was strongest in the eastern United States and weakest in the West where power plant SO2 emissions were lowest and sulfate concentrations were more influenced by non-power-plant and perhaps international SO2 emissions. In addition, annual mean, short-term sulfate concentrations decreased more rapidly in the East relative to the West due to differences in seasonal trends at certain regions in the West. Specifically, increased wintertime concentrations in the central and northern Great Plains and increased springtime concentrations in the western United States were observed. These seasonal and regional positive trends could not be explained by changes in known local and regional SO2 emissions, suggesting other contributing influences. This work implies that on an annual mean basis across the United States, air quality mitigation strategies have been successful in reducing the particulate loading of sulfate in the atmosphere; however, for certain seasons and regions, especially in the West, current mitigation strategies appear insufficient.

  2. Ambient air quality of karachi city as reflected by atmospheric particulate matter (PM/sub 10/) concentrations

    International Nuclear Information System (INIS)

    Hashmi, D.R.; Shareef, A.

    2016-01-01

    The present study examines the variation of ambient aerosol (PM/sub 10/) concentrations in Karachi, city. Samples were collected from ten different locations, representative of urban background, residential, traffic and industrial areas from 2007 to 2011. At each location, PM/sub 10/) was measured continuously from 08:00 am to 06:00 pm at local time. The maximum 10 h average particulate matter (PM/sub 10/) mass concentrations were found at Tibet Centre (440.1 mg/m/sup 3/) and minimum at PCSIR Campus (21.7 mg/m/sup 3/) during 2008. A rising trend during 2008 may be due to the civil works for bridges and extension of roads at different locations in Karachi. The results also suggest that urban traffic and industrial areas appeared to have higher PM/sub 10/) concentration than residential and background areas. (author)

  3. Magnetic Approaches to Measuring and Mitigating Airborne Particulate Pollution

    Science.gov (United States)

    Maher, B.

    2014-12-01

    Human exposure to airborne particulate matter (PM) generates adverse human health impacts at all life stages from the embryonic to the terminal, including damage to respiratory and cardiovascular health, and neurodevelopment and cognitive function. Detailed understanding of the causal links between PM exposure and specific health impacts, and possible means to reduce PM exposure require knowledge of PM concentrations, compositions and sources at the fine-scale; i.e. beyond the current resolution of spatially-sparse conventional PM monitoring, non-unique elemental analyses, or poorly-validated PM modelling. Magnetically-ordered iron oxide minerals appear to be a ubiquitous component of urban PM. These minerals derive partly from the presence of iron impurities in fuels, which form, upon combustion, a non-volatile residue, often dominated by magnetite, within glassy, spherical condensates. Iron-rich, magnetic PM also arises from abrasion from vehicle components, including disk brakes, and road dust. The ubiquity and diversity of these magnetic PM phases, and the speed and sensitivity of magnetic analyses (down to trace concentrations), makes possible rapid, cost-effective magnetic characterization and quantification of PM, a field of study which has developed rapidly across the globe over the last 2 decades. Magnetic studies of actively-sampled PM, on filters, and passively-sampled PM, on tree leaves and other depositional surfaces, can be used to: monitor and map at high spatial resolution ambient PM concentrations; address the controversial issue of the efficacy of PM capture by vegetation; and add a new, discriminatory dimension to PM source apportionment.

  4. Composition and Sources of Particulate Matter Measured near Houston, TX: Anthropogenic-Biogenic Interactions

    Directory of Open Access Journals (Sweden)

    Jeffrey K. Bean

    2016-05-01

    Full Text Available Particulate matter was measured in Conroe, Texas (~60 km north of downtown Houston, Texas during the September 2013 DISCOVER-AQ campaign to determine the sources of particulate matter in the region. The measurement site is influenced by high biogenic emission rates as well as transport of anthropogenic pollutants from the Houston metropolitan area and is therefore an ideal location to study anthropogenic-biogenic interactions. Data from an Aerosol Chemical Speciation Monitor (ACSM suggest that on average 64 percent of non-refractory PM1 was organic material, including a high fraction (27%–41% of organic nitrates. There was little diurnal variation in the concentrations of ammonium sulfate; however, concentrations of organic and organic nitrate aerosol were consistently higher at night than during the day. Potential explanations for the higher organic aerosol loadings at night include changing boundary layer height, increased partitioning to the particle phase at lower temperatures, and differences between daytime and nighttime chemical processes such as nitrate radical chemistry. Positive matrix factorization was applied to the organic aerosol mass spectra measured by the ACSM and three factors were resolved—two factors representing oxygenated organic aerosol and one factor representing hydrocarbon-like organic aerosol. The factors suggest that the measured aerosol was well mixed and highly processed, consistent with the distance from the site to major aerosol sources, as well as the high photochemical activity.

  5. Evaluating the influence of particulate matter on spectroscopic measurements of a combusting flow

    Science.gov (United States)

    Herlan, Jonathan; Murray, Nathan

    2017-11-01

    An adiabatic table-top burner has been used to develop a method for estimating the temperature and concentration of OH in a measurement volume of a non-premixed, hydrogen-air flame. The estimation method uses a nonlinear curve-fitting routine to compare experimental absorption spectra with a model derived, using statistical mechanics, from the Beer-Lambert law. With the aim of applying this method to the analysis of rocket exhaust plumes, this study evaluates whether or not it provides faithful estimates of temperature and OH concentration when the combusting flow contains particulate matter-such as soot or tracers used for particle image velocimetry (PIV) measurements. The hydrogen line of the table-top burner will be seeded with alumina, Al2O3, particles and their influence on spectroscopic measurements elucidated. The authors wish to thank Mr. Bernard Jansen for his support and insight in laboratory activities.

  6. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Directory of Open Access Journals (Sweden)

    Longxiang Li

    Full Text Available Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  7. Nighttime residential wood burning evidenced from an indirect method for estimating real-time concentration of particulate organic matter (POM)

    International Nuclear Information System (INIS)

    Sciare, J.; Sarda-Esteve, R.; Favez, O.; Cachier, H.; Aymoz, G.; Laj, P.

    2008-01-01

    Real-time analyzers of selected chemical components (sulfate, nitrate, Black Carbon) and integrative aerosol parameters (particulate matter and light scattering coefficient) were implemented for a 2-week campaign (November-December 2005) in a suburban area of Clermont-Ferrand (France) in order to document fast changes in the chemical composition of submicron aerosols. Measurements of particulate organic matter (POM) were not available in the field but were indirectly estimated from time-resolved (3-min) reconstruction of the light scattering coefficient. This methodology offered the opportunity to investigate almost real-time and artifact-free POM concentrations even at low concentrations (typically below 0.1 mu g m(-3)). The overall uncertainties associated with this POM calculation were of the order of 20%, which are comparable to those commonly referred in literature for POM calculation or measurements. A chemical mass balance (CMB) of PM1 was performed using the derived POM concentrations and showed a very good correlation (slope = 0.93; r(2) = 0.91, N = 663) with real-time PM1 measurements obtained from R and P TEOM-FDMS, demonstrating the consistency of our approach. Important diurnal variations were observed in POM concentrations, with a dominant contribution of POM from fossil fuel origin during daytime and a dominant contribution of POM from residential wood burning at night. POM was calculated to contribute as much as 70% of PM1 during our study, pointing out the major role of carbonaceous aerosols at this period of the year at our residential area. (authors)

  8. An extensive study of the concentrations of particulate/dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory

    International Nuclear Information System (INIS)

    Yoshimura, Kazuya; Onda, Yuichi; Sakaguchi, Aya; Yamamoto, Masayoshi; Matsuura, Yuki

    2015-01-01

    An extensive investigation of particulate radiocaesium in suspended solids and dissolved radiocaesium in river water was undertaken at 30 sites in Fukushima and Miyagi Prefectures in December 2012, and their relationships with catchment inventory and the solid/liquid distribution coefficient (K d ) were evaluated. Rivers located in the coastal region on the north side of the Fukushima Dai-ichi Nuclear Power Plant exhibited relatively higher particulate radiocaesium concentrations. Significant correlations were found between concentrations of particulate/dissolved radiocaesium and average catchment inventories, indicating that the concentrations of particulate/dissolved radiocaesium could be approximated from the catchment inventory. Particulate radiocaesium concentration was significantly correlated with dissolved radiocaesium concentration (with the exception of concentrations measured in estuaries), and the geometric mean K d was calculated as 3.6 × 10 5 with a 95% confidence interval of 2.6–5.1 × 10 5 . - Highlights: • Particulate radiocaesium concentration correlated with catchment inventory. • Particulate size can be an important factor of the correlation. • Solid/liquid distribution coefficients were obtained for extensive area

  9. Factors determining the concentration and chemical composition of particulate matter in the air of selected service facilities

    Science.gov (United States)

    Rogula-Kopiec, Patrycja; Pastuszka, Józef; Mathews, Barbara; Widziewicz, Kamila

    2018-01-01

    The link between increased morbidity and mortality and increasing concentrations of particulate matter (PM) resulted in great attention being paid to the presence and physicochemical properties of PM in closed rooms, where people spends most of their time. The least recognized group of such indoor environments are small service facilities. The aim of this study was to identify factors which determine the concentration, chemical composition and sources of PM in the air of different service facilities: restaurant kitchen, printing office and beauty salon. The average PM concentration measured in the kitchen was 5-fold (PM4, particle fraction ≥ 4 μm) and 5.3-fold (TSP, total PM) greater than the average concentration of these PM fractions over the same period. During the same measurement period in the printing office and in the beauty salon, the mean PM concentration was 10- and 4-fold (PM4) and 8- and 3-fold (TSP) respectively greater than the mean concentration of these PM fractions in outdoor air. In both facilities the main source of PM macro-components, especially organic carbon, were chemicals, which are normally used in such places - solvents, varnishes, paints, etc. The influence of some metals inflow from the outdoor air into indoor environment of those facilities was also recognized.

  10. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  11. Spatiotemporal distribution and short-term trends of particulate matter concentration over China, 2006-2010.

    Science.gov (United States)

    Yao, Ling; Lu, Ning

    2014-01-01

    Air quality problems caused by atmospheric particulate have drawn broad public concern in the global scope. In the paper, the spatiotemporal distributions of fine particle (PM2.5) and inhalable particle (PM10) concentrations estimated with the artificial neural network (ANN) over China during 2006 to 2010 have been discussed. Most high PM10 concentration appears in Xinjiang, Qinghai, Gansu, Ningxia, Hubei, and parts of Inner Mongolia. The distribution of PM2.5 concentration is consistent with China's three gradient terrains. The seasonal variations of PM2.5 and PM10 concentrations both indicate that they are higher in north China in spring and winter, lowest in summer. In autumn, most provinces in south China appear high value. In particular, high PM2.5 concentration appears in the southeast coastal cities while high PM10 concentration prefers the central regions in south China. On this basis, seasonal Mann-Kendall test method is utilized to analyze the short-term trends. The results also show significant changes of PM2.5 and PM10 concentrations of China in the past 5 years, and most provinces present the tendency of reduction (3-5 μg/m(3) for PM2.5 and 10-20 μg/m(3) for PM10 per year) while a fraction of provinces appear the increasing trend of 8-16 μg/m(3) (PM2.5) and 16-30 μg/m(3) (PM10). Simultaneously, PM2.5 population exposure is discussed with the combination of population density-gridded data. Municipalities get much higher exposure level than other provinces. Shanghai suffers the highest population exposure to PM2.5, followed by Beijing and then Tianjin, Jiangsu province. Most provincial capitals, such as Guangzhou, Nanjing, Chengdu, and Wuhan, face much higher exposure level than other regions of their province. Moreover, the PM2.5 exposure situation is more serious in southeast than northwest regions for Beijing-Tianjin-Hebei region. Also, per capita PM2.5 concentration and population-weighted PM2.5 concentration are calculated. The former shows that

  12. Bayesian spatio-temporal modeling of particulate matter concentrations in Peninsular Malaysia

    Science.gov (United States)

    Manga, Edna; Awang, Norhashidah

    2016-06-01

    This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.

  13. Aerosol measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction.

    Science.gov (United States)

    Grimm, Hans; Eatough, Delbert J

    2009-01-01

    The GRIMM model 1.107 monitor is designed to measure particle size distribution and particulate mass based on a light scattering measurement of individual particles in the sampled air. The design and operation of the instrument are described. Protocols used to convert the measured size number distribution to a mass concentration consistent with U.S. Environmental Protection Agency protocols for measuring particulate matter (PM) less than 10 microm (PM10) and less than 2.5 microm (PM2.5) in aerodynamic diameter are described. The performance of the resulting continuous monitor has been evaluated by comparing GRIMM monitor PM2.5 measurements with results obtained by the Rupprecht and Patashnick Co. (R&P) filter dynamic measurement system (FDMS). Data were obtained during month-long studies in Rubidoux, CA, in July 2003 and in Fresno, CA, in December 2003. The results indicate that the GRIMM monitor does respond to total PM2.5 mass, including the semi-volatile components, giving results comparable to the FDMS. The data also indicate that the monitor can be used to estimate water content of the fine particles. However, if the inlet to the monitor is heated, then the instrument measures only the nonvolatile material, more comparable to results obtained with a conventional heated filter tapered element oscillating microbalance (TEOM) monitor. A recent modification of the model 180, with a Nafion dryer at the inlet, measures total PM2.5 including the nonvolatile and semi-volatile components, but excluding fine particulate water. Model 180 was in agreement with FDMS data obtained in Lindon, UT, during January through February 2007.

  14. Impacts of roadway emissions on urban particulate matter concentrations in sub-Saharan Africa: new evidence from Nairobi, Kenya

    International Nuclear Information System (INIS)

    Vliet, E D S van; Kinney, P L

    2007-01-01

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA). However, the lack of ambient monitoring data, and particularly urban roadside concentrations for particulate matter in SSA cities severely hinders our ability to describe temporal and spatial patterns of concentrations, characterize exposure-response relationships for key health outcomes, estimate disease burdens, and promote policy initiatives to address air quality. As part of a collaborative transportation planning exercise between Columbia University and University of Nairobi, air monitoring was carried out in February 2006 in Nairobi, Kenya. The objective of the monitoring was to collect pilot data on air concentrations (PM 2.5 and black carbon) encountered while driving in the Nairobi metropolitan area, and to compare those data to simultaneous 'urban background' concentrations measured in Nairobi but away from roadways. For both the background and roadway monitoring, we used portable air sampling systems that collect integrated filter samples. Results from this pilot study found that roadway concentrations of PM 2.5 were approximately 20-fold higher than those from the urban background site, whereas black carbon concentrations differed by 10-fold. If confirmed by more extensive sampling, these data would underscore the need for air quality and transportation planning and management directed at mitigating roadway pollution

  15. Impacts of roadway emissions on urban particulate matter concentrations in sub-Saharan Africa: new evidence from Nairobi, Kenya

    Science.gov (United States)

    van Vliet, E. D. S.; Kinney, P. L.

    2007-10-01

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA). However, the lack of ambient monitoring data, and particularly urban roadside concentrations for particulate matter in SSA cities severely hinders our ability to describe temporal and spatial patterns of concentrations, characterize exposure response relationships for key health outcomes, estimate disease burdens, and promote policy initiatives to address air quality. As part of a collaborative transportation planning exercise between Columbia University and the University of Nairobi, air monitoring was carried out in February 2006 in Nairobi, Kenya. The objective of the monitoring was to collect pilot data on air concentrations (PM2.5 and black carbon) encountered while driving in the Nairobi metropolitan area, and to compare those data to simultaneous 'urban background' concentrations measured in Nairobi but away from roadways. For both the background and roadway monitoring, we used portable air sampling systems that collect integrated filter samples. Results from this pilot study found that roadway concentrations of PM2.5 were approximately 20-fold higher than those from the urban background site, whereas black carbon concentrations differed by 10-fold. If confirmed by more extensive sampling, these data would underscore the need for air quality and transportation planning and management directed at mitigating roadway pollution.

  16. Concentration and Size Distribution of Particulate Matter in a Broiler House Ambient Air

    Directory of Open Access Journals (Sweden)

    Ismael Rodrigues Amador

    2016-07-01

    Full Text Available Atmospheric particulate matter (PM is an important constituent of ambient air. The determination of its concentration and size distribution in different environments is essential because of its ability to penetrate deeply into animal and human respiratory tract. In this study, air sampling was performed in a broiler house to estimate the concentration and size distribution of PM emitted along with its activities. Low-vol impactor (< 10 mm, cyclones (< 2.5 e < 1.0 mm, and Sioutas cascade impactor (> 2.5; 1.0 – 2.5; 0.50 – 1.0; 0.25 – 0.50; < 0.25 mm connected with membrane pumps were used. PM10 showed high concentration (209 - 533 mg m-3. PM2.5 and PM1.0 initially showed relatively low concentration (20.8 and 16.0 mg m-3 respectively with significantly increasing levels (412.9 and 344.8 mg m-3 respectively during the samplings. It was also possible to observe the contribution of fine particles. This was evidenced by the high correlation between PM2.5 and PM1.0 and by the profile of particle distribution in the Sioutas sampler. PM concentration levels are considered excessively high, with great potential to affect animal and human health. DOI: http://dx.doi.org/10.17807/orbital.v8i3.847 

  17. Measurements of particulate matter and 3,4-benzopyrene in Zurich

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, M; Wanner, H U

    1974-01-01

    Measurements of particulate matter and 3,4 benzoyrene were carried out at six measuring points in and around Zurich in 1971/72. The measuring points differed according to their immediate surroundings; they were subdivided into industrial zone, heavy traffic spots, residential area, and recreation ground. The correlations were calculated to clarify the connections between emissions and meteorological influences including temperature, inversions, humidity, air pressure, wind strength, visibility, and sunlight. The annual average values for the aerosol concentration were highest (160-181 microgram/cu m) where traffic is very heavy. An industrial center and a residential area of the old part of the city assumed a middle position. The modern residential section of Triemli measured the lowest concentration, 100 micrograms/cu m. The annual average concentrations for BaP were 5.3 ng/cu m for the industrial center, 5.5 and 7/7 ng/cu m for Paradeplatz and Albisriederplatz and 4.1 ng/cu m for Triemli. A high BaP concentration of 6.4 ng/cu m was measured in the old residential section. A correlation between the aerosol concentration of the air and the mortality from stomach cancer was found. Particularly pronounced was the influence of air pollution on mortality due to respiratory diseases. It tripled from the zone with lowest aerosol concentration (less than 80 micrograms/cu m) to the zone with highest air pollution (more than 135 micrograms/cu m). Compared to West German and U.S. cities the aerosol and BaP concentrations measured in Zurich were rather high.

  18. The measurement of the charging properties of fine particulate materials in pneumatic suspension

    International Nuclear Information System (INIS)

    Armour-Chelu, D.I.

    1998-11-01

    This document describes a programme of work that was designed to develop an improved understanding of the electrostatic charging properties of particulate materials with a view to applying this knowledge to the measurement of particulate concentrations in air-solid suspensions. An extensive literature review has been carried out. Some eighty published works were found and these concentrated on indirect charge measurement, the measurement of the two-phase pipe flow parameters, and on finding suitable models to explain tile work function given to insulators during metal to insulator contact. These areas are covered well in the field of electrostatics but data currently available in the area of programme of work being described here is very, limited, and so it is proposed that this research project will aim to improve such understanding. A test facility was developed to provide information from the flow of a particulate material under known conditions (particle velocity, suspension density). This test facility utilised three sensing probes, each with discrete charge amplifier units, at specific locations: one at the beginning and two further down the pipeline being utilised. Hence, the charging tendencies of any material were observed using this facility. The results obtained from this facility show the charging tendency of three particulate materials under various flow conditions. Signal processing techniques were developed to infer the suspension density for each flow condition and to estimate average particle velocity. Further analysis of the data resulted in tile derivation of a power spectral estimate for some of the flow conditions. This estimate was considered with the particle size distribution, as well as the estimate of tile average particle velocity, and there is a linkage. The main material selected for this programme was aluminium hydroxide. This was tested at environmental temperatures of 19 and 30 deg. C with relative humidity (RH) levels of 35, 45, and

  19. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  20. Application of digital image processing to a β-gauge for determining mass concentration of suspending particulate matter in atmosphere

    International Nuclear Information System (INIS)

    Gotoh, Takao

    1992-01-01

    A two-dimensional image of the mass concentration of suspending particulate matter (SPM) collected on Millipore filter paper was photographed with Ultrofilm- 3 H. The printed paper image was transformed into a digital image (256 x 256 pixels) with 256 gray levels. Two results were obtained. The averaged values of gray level over all pixels of the digital image was found to correlate with the mass value measured by a β-gauge. The characteristic range of the digital image which was transformed to frequency by two-dimensional fast fourier transformation was found in the low frequency. It was presumed to relate to SPM from anthropogenic sources because the SPMs usually show higher density and smaller particle size than SPMs from natural sources. (author)

  1. Impact of regional ventilation changes on surface particulate matter concentrations in South Korea

    Science.gov (United States)

    Kim, H. C.; Stein, A. F.; Chai, T.; Ngan, F.; Kim, B. U.; Jin, C. S.; Hong, S. Y.; Park, R.; Son, S. W.; Bae, C.; Bae, M.; Song, C. K.; Kim, S.

    2017-12-01

    The recent increase in surface particulate matter (PM) concentrations in South Korea is intriguing due to its disagreement with current intensive emission reduction efforts. The long-term trend of surface PM concentrations in South Korea declined in the 2000s, but since 2012 its concentrations have tended to increase, resulting in frequent severe haze events in the region. This study demonstrates that the interannual variation of surface PM concentrations in South Korea is not only affected by changes in local or regional emission sources, but also closely linked with the interannual variations in regional ventilation. Using EPA Community Multiscale Air Quality modeling system, a 12-year (2004-2015) regional air quality simulation was conducted to assess the impact of the meteorological conditions under constant anthropogenic emissions. In addition, NOAA HYSPLIT dispersion model was utilized to estimate the strength of regional ventilation that dissipates local pollutions. Simulated PM concentrations show a strong negative correlation (i.e. R=-0.86) with regional wind speed, implying that reduced regional ventilation is likely associated with more stagnant conditions that cause severe pollutant episodes in South Korea. We conclude that the current PM concentration trend in South Korea is a combination of long-term decline by emission control efforts and short-term fluctuations in regional wind speed interannual variability. When the meteorology-driven variations are removed, PM concentrations in South Korea have declined continuously even after 2012, with -1.45±0.12, -1.41±0.16, and -1.09±0.16 mg/m3 per year in Seoul, the Seoul Metropolitan Area, and South Korea, respectively.

  2. Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy

    Directory of Open Access Journals (Sweden)

    Canepari S.

    2013-04-01

    Full Text Available Atmospheric particulate matter is characterized by a variety of chemical components, generally produced by different sources. Chemical fractionation of elements, namely the determination of their extractable and residual fractions, may reliably increase the selectivity of some elements as tracers of specific PM sources. Seasonal variations of atmospheric particulate matter concentration in PM10 and PM2.5, of elemental concentration in PM10 and PM2.5, of the extractable and residual fraction of elements in different size fractions in the range 0.18 – 18 μm are reported in this paper. The effect of the ageing of the air masses is discussed.

  3. Long-term measurements of respirable sulfates and particulates inside and outside homes

    Energy Technology Data Exchange (ETDEWEB)

    Spengler, J D; Dockery, D W; Turner, W A; Wolfson, J M; Ferris, B G

    1981-01-01

    To better understand the health effects of air pollution, the results of extensive indoor and outdoor measurements of mass respirable particulates and water-soluble respirable particulates are analyzed. The measurements were taken in six U.S. citiesPortage, Wis./ Topeka, Kans./ Kingston/Harriman, Tenn./ Watertown, Mass./ St. Louis, Mo./ and Steubenville, Ohio. Results indicated that the major source of indoor air pollution is cigarette smoke, which contributes about 20

  4. Spatiotemporal analysis of particulate matter, sulfur dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil

    Science.gov (United States)

    Zeri, Marcelo; Oliveira-Júnior, José Francisco; Lyra, Gustavo Bastos

    2011-09-01

    Time series of pollutants and weather variables measured at four sites in the city of Rio de Janeiro, Brazil, between 2002 and 2004, were used to characterize temporal and spatial relationships of air pollution. Concentrations of particulate matter (PM10), sulfur dioxide (SO2) and carbon monoxide (CO) were compared to national and international standards. The annual median concentration of PM10 was higher than the standard set by the World Health Organization (WHO) on all sites and the 24 h means exceeded the standards on several occasions on two sites. SO2 and CO did not exceed the limits, but the daily maximum of CO in one of the stations was 27% higher on weekends compared to weekdays, due to increased activity in a nearby Convention Center. Air temperature and vapor pressure deficit have both presented the highest correlations with pollutant's concentrations. The concentrations of SO2 and CO were not correlated between sites, suggesting that local sources are more important to those pollutants compared to PM10. The time series of pollutants and air temperature were decomposed in time and frequency by wavelet analysis. The results revealed that the common variability of air temperature and PM10 is dominated by temporal scales of 1-8 days, time scales that are associated with the passage of weather events, such as cold fronts.

  5. Evaluation of consumer monitors to measure particulate matter.

    Science.gov (United States)

    Sousan, Sinan; Koehler, Kirsten; Hallett, Laura; Peters, Thomas M

    2017-05-01

    Recently, inexpensive (consumer aerosol monitors (CAMs) targeted for use in homes have become available. We evaluated the accuracy, bias, and precision of three CAMs (Foobot from Airoxlab, Speck from Carnegie Mellon University, and AirBeam from HabitatMap) for measuring mass concentrations in occupational settings. In a laboratory study, PM 2.5 measured with the CAMs and a medium-cost aerosol photometer (personal DataRAM 1500, Thermo Scientific) were compared to that from reference instruments for three aerosols (salt, welding fume, and Arizona road dust, ARD) at concentrations up to 8500 μg/m 3 . Three of each type of CAM were included to estimate precision. Compared to reference instruments, mass concentrations measured with the Foobot (r-value = 0.99) and medium-cost photometer (r-value = 0.99) show strong correlation, whereas those from the Speck (r-value range 0.88 - 0.99) and AirBeam (0.7 - 0.96) were less correlated. The Foobot bias was (-12%) for ARD and measurements were similar to the medium-cost instrument. Foobot bias was (< -46%) for salt and welding fume aerosols. Speck bias was at 18% salt for ARD and -86% for welding fume. AirBeam bias was (-36%) for salt and (-83%) for welding fume. All three photometers had a bias (< -82%) for welding fume. Precision was excellent for the Foobot (coefficient of variation range: 5% to 8%) and AirBeam (2% to 9%), but poorer for the Speck (8% to 25%). These findings suggest that the Foobot, with a linear response to different aerosol types and good precision, can provide reasonable estimates of PM 2.5 in the workplace after site-specific calibration to account for particle size and composition.

  6. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2010-11-01

    Full Text Available The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5 in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000–2006 (present climate with present emissions and 2047–2053 (future climate with present emissions. Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4–39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized.

    Surface temperature, relative humidity (RH, rain rate, and wind speed were predicted to increase in the future climate

  7. Estimating the acute health effects of coarse particulate matter accounting for exposure measurement error.

    Science.gov (United States)

    Chang, Howard H; Peng, Roger D; Dominici, Francesca

    2011-10-01

    In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse particulate matter (PM) with aerodynamic diameter between 2.5 and 10 μm. Coarse PM concentrations can exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not remain suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling approach for estimating the short-term effects of air pollution in time series analysis when the ambient concentrations vary spatially within the study region. Specifically, our approach quantifies the error in the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations measured across monitoring stations. This is accomplished by viewing monitor-level measurements as error-prone repeated measurements of the unobserved population average exposure. Inference is carried out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters. Finally, by using different exposure indicators, we investigate the sensitivity of the association between coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive association between coarse PM and same-day admission for cardiovascular diseases.

  8. Variations of lead isotopes and airborne particulate concentrations from the Kozani basin, West Macedonia, Greece.

    Science.gov (United States)

    Charalampides, G; Manoliadis, O; Triantafyllou, A

    2002-03-01

    The spread and variation in 206Pb/207Pb ratios make Pb isotopes a powerful tool when it comes to detecting trends in airborne particulates originating mainly from power plants. This study was conducted to determine the source of pollution in Kozani area, an affected industrial area. Lead isotopic ratios of air filters under certain meteorological conditions were compared to Pb isotope analyses sampled from lignite mines, but also to Pb isotope analyses of cultivations in soil originating from the reclamation of old abandoned lignite-mines. The particles taken into consideration have an aerodynamic diameter less than 10 microm (PM10). The measurements were carried out in a central part of the town of Kozani, West Macedonia, for one year observation period. The lead isotope values of air filters and of wheat in the Kozani area are between the values of lignite Pb and of Greek gasoline.

  9. The Effects of Bus Ridership on Airborne Particulate Matter (PM10 Concentrations

    Directory of Open Access Journals (Sweden)

    Jaeseok Her

    2016-07-01

    Full Text Available Air pollution caused by rapid urbanization and the increased use of private vehicles seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel buses with compressed natural gas (CNG buses that emit less exhaust gas. Urban planning strategies such as transit-oriented development (TOD posit that reducing private vehicle use and increasing public transportation use would reduce air pollution levels. The present study examined the effects of bus ridership on airborne particulate matter (PM10 concentrations in the capital region of Korea. We interpolated the levels of PM10 from 128 air pollution monitoring stations, utilizing the Kriging method. Spatial regression models were used to estimate the impact of bus ridership on PM10 levels, controlling for physical environment attributes and socio-economic factors. The analysis identified that PM10 concentration levels tend to be lower in areas with greater bus ridership. This result implies that urban and transportation policies designed to promote public transportation may be effective strategies for reducing air pollution.

  10. Impact of banning of two-stroke engines on airborne particulate matter concentrations in Dhaka, Bangladesh.

    Science.gov (United States)

    Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K

    2006-01-01

    Vehicular air pollution is common in growing metropolitan areas throughout the world. Vehicular emissions of fine particles are particularly harmful because they occur near ground level, close to where people live and work. Two-stroke engines represented an important contribution to the motor vehicle emissions where they constitute approximately half of the total vehicle fleet in Dhaka city. Two-stroke engines have lower fuel efficiency than four-stroke engines, and they emit as much of an order of magnitude and more particulate matter (PM) than four-stroke engines of similar size. To eliminate their impact on air quality, the government of Bangladesh promulgated an order banning all two-stroke engines from the roads in Dhaka starting on December 31, 2002. The effect of the banning of two-stroke engines on airborne PM was studied at the Farm Gate air quality-monitoring station in Dhaka (capital of Bangladesh), a hot spot with very high-pollutant concentrations because of its proximity to major roadways. The samples were collected using a "Gent" stacked filter unit in two fractions of 0-2.2 microm and 2.2-10 microm sizes. Samples of fine and coarse fractions of airborne PM collected from 2000 to 2004 were studied. It has been found that the fine PM and black carbon concentrations decreased from the previous years because of the banning of two-stroke engine baby taxies.

  11. Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities

    Directory of Open Access Journals (Sweden)

    Sun-Young Kim

    2014-09-01

    Full Text Available Objectives Cohort studies of associations between air pollution and health have used exposure prediction approaches to estimate individual-level concentrations. A common prediction method used in Korean cohort studies is ordinary kriging. In this study, performance of ordinary kriging models for long-term particulate matter less than or equal to 10 μm in diameter (PM10 concentrations in seven major Korean cities was investigated with a focus on spatial prediction ability. Methods We obtained hourly PM10 data for 2010 at 226 urban-ambient monitoring sites in South Korea and computed annual average PM10 concentrations at each site. Given the annual averages, we developed ordinary kriging prediction models for each of the seven major cities and for the entire country by using an exponential covariance reference model and a maximum likelihood estimation method. For model evaluation, cross-validation was performed and mean square error and R-squared (R2 statistics were computed. Results Mean annual average PM10 concentrations in the seven major cities ranged between 45.5 and 66.0 μg/m3 (standard deviation=2.40 and 9.51 μg/m3, respectively. Cross-validated R2 values in Seoul and Busan were 0.31 and 0.23, respectively, whereas the other five cities had R2 values of zero. The national model produced a higher crossvalidated R2 (0.36 than those for the city-specific models. Conclusions In general, the ordinary kriging models performed poorly for the seven major cities and the entire country of South Korea, but the model performance was better in the national model. To improve model performance, future studies should examine different prediction approaches that incorporate PM10 source characteristics.

  12. Multitechnique determination of elemental concentrations in NBS Urban Air Particulate SRM 1648 and evaluation of its use for quality assurance

    International Nuclear Information System (INIS)

    Gladney, E.S.; Perrin, D.R.; Robinson, R.D.; Trujillo, P.E.

    1984-01-01

    Concentrations of forty-one elements were determined in NBS Urban Air Particulate materials using neutron activation, atomic absorption, and instrumental combustion methods. The usefulness of this reference material is evaluated as a function of composition, certified value availability, matrix format, and cost. (author)

  13. Black Carbon and Particulate Matter (PM2.5) Concentrations in New York City’s Subway Stations

    Science.gov (United States)

    2015-01-01

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m3, with 1 min average peaks >100 μg/m3, while real time PM2.5 levels ranged from 35 to 200 μg/m3. Mean EC levels ranged from 9 to 12.5 μg/m3. At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m3, respectively. This study shows that both BC soot and PM levels in NYC’s subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted. PMID:25409007

  14. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    Science.gov (United States)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  15. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan.

    Science.gov (United States)

    Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen

    2016-07-01

    To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM2.5) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM2.5, the sampling days were classified into high PM2.5 concentration event days (PM2.5>35 μg m(-3)) and non-event days (PM2.5<35 μg m(-3)). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl(-) and NO3(-) increased when a high PM2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM2.5 concentration event days. In order to reduction of high PM2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Characterization of size, number, concentration and morphology of particulate matter emitted from a high performance diesel combustion system using biomass derived fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Om Parkash; Krishnamurthy, Ketan; Kremer, Florian; Pischinger, Stefan [RWTH Aachen Univ. (Germany). Inst. for Combustion Engines; Berg, Angelika von; Roth, Georg [RWTH Aachen Univ. (Germany). Inst. of Crystallography; Lueers, Bernhard; Kolbeck, Andreas; Koerfer, Thomas [FEV GmbH, Aachen (Germany)

    2013-06-01

    Motor vehicle emissions have been identified as a major source of particulates. Although the low limits of particulate matter cause a need for a particulate trap in most of the present day diesel engines, the physical and chemical characterization of particles with the measures of size, number, volatility and reactivity etc. is of increasing interest with respect to the regeneration frequency and regeneration efficiency of a particulate trap. Within the Cluster of Excellence ''Tailor-Made Fuels from Biomass (TMFB)'' at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for future combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6 compliant High Efficiency Diesel Combustion System (HECS) with petroleum based diesel fuel as reference and today's biofuel (i.e. FAME) as well as a potential future biomass derived fuel candidate (i.e. 2-MTHF I DBE), being developed under TMFB approach. Soot samples collected on polycarbonate filters were analyzed using SEM; revealing vital informations regarding particle size distribution. Furthermore, thermophoretic sampling was also performed on copper grids and samples were analyzed using TEM to determine its graphitic micro-structure. In addition, X-Ray diffraction (XRD) measurements were also performed to get further quantitative information regarding crystal lattice parameters and structure of investigated soot. The results indicate more than 90% reduction in the mass and number concentrations of engine out particle emissions using future biomass derived fuel candidate. A good co-relation was observed between TEM micro-structure results and quantitative crystal lattice and structure information obtained from XRD studies, indicating higher reactivity for soot emitted from 2-MTHF/DBE. (orig.)

  17. Suspended Particulates Concentration (PM10 under Unstable Atmospheric Conditions over Subtropical Urban Area (Qena, Egypt

    Directory of Open Access Journals (Sweden)

    M. El-Nouby Adam

    2013-01-01

    Full Text Available The main purpose of this study is to evaluate the suspended particulates (PM10 in the atmosphere under unstable atmospheric conditions. The variation of PM10 was investigated and primary statistics were employed. The results show that, the PM10 concentrations values ranged from 6.00 to 646.74 μg m−3. The average value of PM10 is equal to 114.32 μg m−3. The high values were recorded in April and May (155.17 μg m−3 and 171.82 μg m−3, respectively and the low values were noted in February and December (73.86 μg m−3 and 74.05 μg m−3, respectively. The average value of PM10 of the hot season (125.35 × 10−6 g m−3 was higher than its value for the cold season (89.27 μg m−3. In addition, the effect of weather elements (air temperature, humidity and wind on the concentration of PM10 was determined. The multiple R between PM10 and these elements ranged from 0.05 to 0.47 and its value increased to reach 0.73 for the monthly average of the database used. Finally, the PM10 concentrations were grouped depending on their associated atmospheric stability class. These average values were equal to 122.80 ± 9 μg m−3 (highly unstable or convective, 109.37 ± 12 μg m−3 (moderately unstable and 104.42 ± 15 μg m−3 (slightly unstable.

  18. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Science.gov (United States)

    Wang, Liwei; Wang, Xinfeng; Gu, Rongrong; Wang, Hao; Yao, Lan; Wen, Liang; Zhu, Fanping; Wang, Weihao; Xue, Likun; Yang, Lingxiao; Lu, Keding; Chen, Jianmin; Wang, Tao; Zhang, Yuanghang; Wang, Wenxing

    2018-03-01

    Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain) in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m-3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m-3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  19. Emission Sectoral Contributions of Foreign Emissions to Particulate Matter Concentrations over South Korea

    Science.gov (United States)

    Kim, E.; Kim, S.; Kim, H. C.; Kim, B. U.; Cho, J. H.; Woo, J. H.

    2017-12-01

    In this study, we investigated the contributions of major emission source categories located upwind of South Korea to Particulate Matter (PM) in South Korea. In general, air quality in South Korea is affected by anthropogenic air pollutants emitted from foreign countries including China. Some studies reported that foreign emissions contributed 50 % of annual surface PM total mass concentrations in the Seoul Metropolitan Area, South Korea in 2014. Previous studies examined PM contributions of foreign emissions from all sectors considering meteorological variations. However, little studies conducted to assess contributions of specific foreign source categories. Therefore, we attempted to estimate sectoral contributions of foreign emissions from China to South Korea PM using our air quality forecasting system. We used Model Inter-Comparison Study in Asia 2010 for foreign emissions and Clean Air Policy Support System 2010 emission inventories for domestic emissions. To quantify contributions of major emission sectors to South Korea PM, we applied the Community Multi-scale Air Quality system with brute force method by perturbing emissions from industrial, residential, fossil-fuel power plants, transportation, and agriculture sectors in China. We noted that industrial sector was pre-dominant over the region except during cold season for primary PMs when residential emissions drastically increase due to heating demand. This study will benefit ensemble air quality forecasting and refined control strategy design by providing quantitative assessment on seasonal contributions of foreign emissions from major source categories.

  20. Cardiopulmonary Toxicity Induced by Ambient Particulate Matter (BI City Concentrated Ambient Particle Study)

    Energy Technology Data Exchange (ETDEWEB)

    Annette Rohr; James Wagner Masako Morishita; Gerald Keeler; Jack Harkema

    2010-06-30

    Alterations in heart rate variability (HRV) have been reported in rodents exposed to concentrated ambient particles (CAPs) from different regions of the United States. The goal of this study was to compare alterations in cardiac function induced by CAPs in two distinct regional atmospheres. AirCARE 1, a mobile laboratory with an EPA/Harvard fine particle (particulate matter <2.5 {micro}m; PM{sub 2.5}) concentrator was located in urban Detroit, MI, where the PM mixture is heavily influenced by motor vehicles, and in Steubenville, OH, where PM is derived primarily from long-range transport and transformation of power plant emissions, as well as from local industrial operations. Each city was studied during both winter and summer months, for a total of four sampling periods. Spontaneously hypertensive rats instrumented for electrocardiogram (ECG) telemetry were exposed to CAPs 8 h/day for 13 consecutive days during each sampling period. Heart rate (HR), and indices of HRV (standard deviation of the average normal-to-normal intervals [SDNN]; square root of the mean squared difference of successive normal-to-normal intervals [rMSSD]), were calculated for 30-minute intervals during exposures. A large suite of PM components, including nitrate, sulfate, elemental and organic carbon, and trace elements, were monitored in CAPs and ambient air. In addition, a unique sampler, the Semi-Continuous Elements in Air Sampler (SEAS) was employed to obtain every-30-minute measurements of trace elements. Positive matrix factorization (PMF) methods were applied to estimate source contributions to PM{sub 2.5}. Mixed modeling techniques were employed to determine associations between pollutants/CAPs components and HR and HRV metrics. Mean CAPs concentrations in Detroit were 518 and 357 {micro}g/m{sup 3} (summer and winter, respectively) and 487 and 252 {micro}g/m{sup 3} in Steubenville. In Detroit, significant reductions in SDNN were observed in the summer in association with cement

  1. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES).

    Science.gov (United States)

    Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros

    2012-09-01

    Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.

  2. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior.

    Science.gov (United States)

    Patton, Allison P; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J; Krogmann, Uta; Mainelis, Gediminas

    2016-01-20

    There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings.

  3. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior

    Directory of Open Access Journals (Sweden)

    Allison P. Patton

    2016-01-01

    Full Text Available There are limited data on air quality parameters, including airborne particulate matter (PM in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1 measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E and mechanical (Building L ventilation; (2 compare indoor and outdoor PM mass concentrations and their ratios (I/O in these buildings, taking into account the effects of occupant behavior; and (3 evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m3 than in Building L (37 µg/m3; I/O was higher in Building E (1.3–2.0 than in Building L (0.5–0.8 for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation are important factors affecting residents’ exposure to PM in residential green buildings.

  4. Source contribution analysis of surface particulate polycyclic aromatic hydrocarbon concentrations in northeastern Asia by source–receptor relationships

    International Nuclear Information System (INIS)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-01-01

    We analyzed the source–receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40–60%) and central China (30–40°N, 10–40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40–80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O 3 on particulate surfaces may be an important component of the PAH oxidation processes. -- Highlights: •Source–receptor analysis was conducted for investigating PAHs in northeast Asia. •In winter, transboundary transport from China is large contribution in leeward. •Relative contribution from Korea, Japan, and eastern Russia is increased in summer. •This seasonal variation is strongly controlled by the meteorological conditions. •The transport distance is different among PAH species. -- Transboundary transport of PAHs in northeast Asia was investigated by source–receptor analysis

  5. Mortality associated with particulate concentration and Asian dust storms in Metropolitan Taipei

    Science.gov (United States)

    Wang, Yu-Chun; Lin, Yu-Kai

    2015-09-01

    This study evaluates mortality risks from all causes, circulatory diseases, and respiratory diseases associated with particulate matter (PM10 and PM2.5) concentrations and Asian dust storms (ADS) from 2000 to 2008 in Metropolitan Taipei. This study uses a distributed lag non-linear model with Poisson distribution to estimate the cumulative 5-day (lags 0-4) relative risks (RRs) and confidence intervals (CIs) of cause-specific mortality associated with daily PM10 and PM2.5 concentrations, as well as ADS, for total (all ages) and elderly (≥65 years) populations based on study periods (ADS frequently inflicted period: 2000-2004; and less inflicted period: 2005-2008). Risks associated with ADS characteristics, including inflicted season (winter and spring), strength (the ratio of stations with Pollutant Standard Index >100 is increase in PM10 from 10 μg/m3 to 50 μg/m3 was associated with increased all-cause mortality risk with cumulative 5-day RR of 1.10 (95% CI: 1.04, 1.17) for the total population and 1.10 (95% CI: 1.02, 1.18) for elders. Mortality from circulatory diseases for the elderly was related to increased PM2.5 from 5 μg/m3 to 30 μg/m3, with cumulative 5-day RR of 1.21 (95% CI: 1.02, 1.44) from 2005 to 2008. Compared with normal days, the mortality from all causes and circulatory diseases for the elderly population was associated with winter ADS with RRs of 1.05 (95% CI: 1.01, 1.08) and 1.08 (95% CI: 1.01, 1.15), respectively. Moreover, all-cause mortality was associated with shorter and less area-affected ADS with an RR of 1.04 for total and elderly populations from 2000 to 2004. Population health risk differed not only with PM concentration but also with ADS characteristics.

  6. Temporal variations in C-13 and C-14 concentrations in particulate organic matter from the southern North Sea

    NARCIS (Netherlands)

    Megens, L.; Plicht, J. van der; Leeuw, J.W. de

    As a new approach for the characterization and determination of the origin of particulate organic matter (POM) in coastal waters, we measured the 14C activity and 13C/12C isotope ratios and applied molecular analysis by means of AMS, IRMS and pyrolysis-GCMS for both bulk samples and isolated

  7. Indoor-outdoor concentrations of fine particulate matter in school building microenvironments near a mine tailing deposit

    Directory of Open Access Journals (Sweden)

    Leonardo Martínez

    2016-11-01

    Full Text Available Indoor air quality in school classrooms is a major pediatric health concern because children are highly susceptible to adverse effects from xenobiotic exposure. Fine particulate matter (PM2.5 emitted from mining waste deposits within and near cities in northern Chile is a serious environmental problem. We measured PM2.5 in school microenvironments in urban areas of Chañaral, a coastal community whose bay is contaminated with mine tailings. PM2.5 levels were measured in six indoor and outdoor school environments during the summer and winter of 2012 and 2013. Measurements were taken during school hours on two consecutive days. Indoor PM2.5 concentrations were 12.53–72.38 μg/m3 in the summer and 21.85–100.53 μg/m3 in winter, while outdoor concentrations were 11.86–181.73 μg/m3 in the summer and 21.50–93.07 μg/m3 in winter. Indoor/outdoor ratios were 0.17–2.76 in the summer and 0.64–4.49 in winter. PM2.5 levels were higher in indoor microenvironments during the winter, at times exceeding national and international recommendations. Our results demonstrate that indoor air quality Chañaral school microenvironments is closely associated with outdoor air pollution attributable to the nearby mine tailings. Policymakers should enact environmental management strategies to minimize further environmental damage and mitigate the risks that this pollution poses for pediatric health.

  8. Analysis of Particulate matter (PM 10 and PM 2.5 concentration in Khorramabad city

    Directory of Open Access Journals (Sweden)

    Seyed Hamed Mirhosseini

    2013-01-01

    Full Text Available Aims: In this study, the concentration of PM10 and PM2.5 in eight station of Khorramabad city was analyzed. Materials and Methods: For this study, the data were taken from April 2010 to March 2011. The eight sampling point were chosen in account to Khorramabad maps. During this period, 240 daily PM samples including coarse particle (PM 10 and fine particle (PM 2.5 were collected. A two-part sampler was used to collect samples of PM. According to one-way ANOVA, multiple comparisons Scheffe, the obtained data were analyzed and then compared with the Environment protection organization standard rates. Khorramabad Results: The results revealed that during measuring the maximum concentration of PM 10 and PM 2.5 was respectively 120.9 and 101.09 μ/m 3 at Shamshirabad station. There was a significant difference between the mean values of PM 10 concentration (μg/m 3 in the seasons of summer. In addition, the mean concentrations of PM 10 in warmer months exceeded to the maximum permissible concentration. Conclusions: Year comparison of PM 10 and PM 2.5 concentration with standard were revealed particle matter concentration in summer season was higher than standard. Although total mean of particle matter was less than standard concentration.

  9. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan

    International Nuclear Information System (INIS)

    Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen

    2016-01-01

    To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM 2.5 ) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM 2.5 , the sampling days were classified into high PM 2.5 concentration event days (PM 2.5 >35 μg m −3 ) and non-event days (PM 2.5 <35 μg m −3 ). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl − and NO 3 − increased when a high PM 2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM 2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM 2.5 concentration event days. In order to reduction of high PM 2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. - Highlights: • The mass fractions of NH 4 + , K + , Cl − and NO 3 − increased during PM 2.5 event days. • Reduction of coal combustion/urban waste incineration emissions should be prioritized. • The control of vehicle emission is important in the locally emitted periods. • Secondary

  10. Fine particulate matter measurements in Swiss restaurants, cafés and bars: what is the effect of spatial separation between smoking and non-smoking areas?

    NARCIS (Netherlands)

    Huss, A.; Kooijman, C.; Breuer, M.; Bohler, P.; Zund, T.; Wenk, S.; Roosli, M.

    2010-01-01

    We performed 124 measurements of particulate matter (PM(2.5)) in 95 hospitality venues such as restaurants, bars, cafés, and a disco, which had differing smoking regulations. We evaluated the impact of spatial separation between smoking and non-smoking areas on mean PM(2.5) concentration, taking

  11. Measures to reduce particulate matter and nitrogen dioxide; Massnahmen zur Reduzierung von Feinstaub und Stickstoffdioxid

    Energy Technology Data Exchange (ETDEWEB)

    Diegmann, Volker; Pfaefflin, Florian; Wiegand, Goetz; Wursthorn, Heike [IVU Umwelt GmbH, Freiburg (Germany)

    2007-06-15

    1. Clean Air Plans and Action Plans published in Germany up to October 2005 are comparatively analysed. In the synopsis, these plans outline an extensive representation of the current air pollution situation, the different methods of forecast and the measures discussed. A thematic map representing the data of the clean air plans is used as an important means to the comparative reporting. The comparison shows among other things the regional (specific to Federal States) distinctions in the methods used and described. 2. A scheme of measures is being developed and filled with data, in order to research and evaluate the measures for PM{sub 10} and NO{sub 2} reduction as described in the plans. Source groups, fields of action, types and target values serve to classify the measures. The PM{sub 10} reducing measures analysed within the framework of the project are focussing with 79 % on the source group of motor vehicle traffic. Analyses of publications in other European countries show a focus on motor vehicle traffic as well. 3. The reduction potential of measures concerning PM10 emissions of motor vehicle traffic is determined. Selected measures are being analysed in regard to their impact limit and the administrative executive level. The emission and concentration reduction potential is being calculated for different configurations. If procurable, a concluding estimation of the cost efficiency is carried out und implementation conditions and barriers are discussed. 4. The most important results in section 3 are summarized in the separate abridged report 'Traffic measures to reduce particulate matter - possibilities and reduction potentials'. (orig.)

  12. Suspended particulate matter in New York City: element concentrations as a function of particle size and elevation above street

    International Nuclear Information System (INIS)

    Bauman, S.E.; Williams, E.T.; Finston, H.L.; Bond, A.H. Jr.; Lesser, P.M.S.; Ferrand, E.F.

    1977-01-01

    Aerosol samples were simultaneously collected at two street-level locations and the 16th floor, on two sides of a Manhattan city block. The results of PIXE analysis, together with CO and SO 2 data, show that the concentrations of substances emitted at street level (CO, Pb, etc) are significantly less at the 16th floor whereas particulate sulfur shows little variation. Other conclusions are presented

  13. Effect of grinding intensity and pelleting of the diet on indoor particulate matter concentrations and growth performance of weanling pigs.

    Science.gov (United States)

    Ulens, T; Demeyer, P; Ampe, B; Van Langenhove, H; Millet, S

    2015-02-01

    This study evaluated the effect of feed form and grinding intensity of the pig diet and the interaction between both on the particulate matter (PM) concentrations inside a pig nursery and the growth performances of weanling pigs. Four diets were compared: finely ground meal, coarsely ground meal, finely ground pellets, and coarsely ground pellets. Four weaning rounds with 144 pigs per weaning round, divided over 4 identical compartments, were monitored. Within each weaning round, each compartment was randomly assigned to 1 of 4 treatments. A hammer mill with a screen of 1.5 or 6 mm was used to grind the ingredients of the finely ground and coarsely ground feeds, respectively. Indoor concentrations of the following PM fractions were measured: PM that passes through a size-selective inlet with a 50 % efficiency cutoff at 10 (PM10) , 2.5 (PM2.5), or 1 (PM1) μm aerodynamic diameter, respectively (USEPA, 2004). Feeding pelleted diets instead of meal diets gave rise to higher PM10 (P Grinding intensity had an effect only on PM10 (P grinding intensity was found for any of the PM fractions. Interactions (P grinding intensity on ADFI and ADG were found. Grinding intensity had an effect only on the meal diets with higher ADFI for the coarsely ground meal. Pigs fed the finely ground meal had a lower (P grinding intensity. Pelleting the feed gave rise to a higher G:F. In conclusion, a contradiction between environmental concerns and performance results was found. Feeding pelleted diets to the piglets improved growth performance but also increased indoor PM concentrations.

  14. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures

    Science.gov (United States)

    Fruin, Scott A.; Winer, Arthur M.; Rodes, Charles E.

    This research assessed in-vehicle exposures to black carbon (BC) as an indicator of diesel particulate matter (DPM) exposures. Approximately 50 h of real-time Aethalometer BC measurements were made inside vehicles driven on freeway and arterial loops in Los Angeles and Sacramento. Video tapes of the driver's view were transcribed to record the traffic conditions, vehicles followed, and vehicle occupant observations, and these results were tested for their associations with BC concentration. In-vehicle BC concentrations were highest when directly following diesel-powered vehicles, particularly those with low exhaust pipe locations. The lowest BC concentrations were observed while following gasoline-powered passenger cars, on average no different than not following any vehicle. Because diesel vehicles were over-sampled in the field study, results were not representative of real-world driving. To calculate representative exposures, in-vehicle BC concentrations were grouped by the type of vehicle followed, for each road type and congestion level. These groupings were then re-sampled stochastically, in proportion to the fraction of statewide vehicle miles traveled (VMT) under each of those conditions. The approximately 6% of time spent following diesel vehicles led to 23% of the in-vehicle BC exposure, while the remaining exposure was due to elevated roadway BC concentrations. In-vehicle BC exposures averaged 6 μg m -3 in Los Angeles and the Bay Area, the regions with the highest congestion and the majority of the state's VMT. The statewide average in-vehicle BC exposure was 4 μg m -3, corresponding to DPM concentrations of 7-23 μg m -3, depending on the Aethalometer response to elemental carbon (EC) and the EC fraction of the DPM. In-vehicle contributions to overall DPM exposures ranged from approximately 30% to 55% of total DPM exposure on a statewide population basis. Thus, although time spent in vehicles was only 1.5 h day -1 on average, vehicles may be the most

  15. Recalculation of measured fuel nuclide concentrations

    International Nuclear Information System (INIS)

    Moeller, W.

    1984-01-01

    The concentrations and concentration ratios of heavy fuel nuclides determined in the Central Institute for Nuclear Research Rossendorf on the basis of destructive burnup measurements are compared with the results of microburnup calculations. The possibility is discussed to improve the results by taking into account the spectral characteristics at the positions of the measuring samples. (author)

  16. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Directory of Open Access Journals (Sweden)

    L. Wang

    2018-03-01

    Full Text Available Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m−3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m−3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  17. MEASURING THE PARTICULATE BACKSCATTERING OF INLAND WATERS: A COMPARISON OF TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G. Campbell

    2012-07-01

    Full Text Available The objective of this work was to examine whether the standard particulate backscattering IOP (Inherent Optical Properties measurement method could be simplified. IOP measurements are essential for parameterising several forms of algorithms used to estimate water quality parameters from airborne and satellite images. Field measurements of the backscattering IOPs are more difficult to make than absorption measurements as correction of the raw Hydroscat-6 backscattering sensor observations is required to allow for the systematic errors associated with the water and water quality parameter absorption. The standard approach involves making simultaneous measurement of the absorption and attenuation of the water with an absorption and attenuation meter (ac-9 or making assumptions about the particulate backscattering probability. Recently, a number of papers have been published that use an alternative method to retrieve the particulate backscattering spectrum by using laboratory measured absorption values and in situ spectroradiometric observations. The alternative method inverts a model of reflectance iteratively using non-linear least squares fitting to solve for the particulate backscattering at 532 nm (bbp0(532 and the particulate backscattering spectral slope (γ. In this paper, eleven observations made at Burdekin Falls Dam, Australia are used to compare the alternative reflectance method to the conventional corrected Hydroscat-6 observations. Assessment of the alternative reflectance method showed that the result of the inversions were highly dependent on the starting conditions. To overcome this limitation, Particle Swarm Optimisation, a stochastic search technique which includes a random element in the search approach, was used. It was found that when compared to the conventionally corrected Hydroscat-6 observations, the alternative reflectance method underestimated bbp0(532 by approximately 50% and overestimated γ by approximately 40

  18. Observations of a narrow zone of high suspended particulate matter (SPM) concentrations along the Dutch coast

    NARCIS (Netherlands)

    van der Hout, C.M.; Gerkema, T.; Nauw, J.J.; Ridderinkhof, H.

    2015-01-01

    The objective of the study described in this paper is to localize the transport path of suspended particulate matter (SPM) in the Dutch coastal zone in the southern North Sea. It is known that a large mass of SPM is transported northward from the Strait of Dover, which is however mostly hidden from

  19. Indoor/outdoor Particulate Matter Number and Mass Concentration in Modern Offices

    Czech Academy of Sciences Publication Activity Database

    Chatoutsidou, S.E.; Ondráček, Jakub; Tesař, Ondřej; Tørseth, K.; Ždímal, Vladimír; Lazaridis, M.

    2015-01-01

    Roč. 92, OCT 2015 (2015), s. 462-474 ISSN 0360-1323 EU Projects: European Commission(XE) 315760 Institutional support: RVO:67985858 Keywords : modern offices * particulate matter * mechanical ventilation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.394, year: 2015

  20. From concentration to dose: factors influencing airborne particulate matter deposition in humans and rats

    NARCIS (Netherlands)

    Winter-sorkina R de; Cassee FR; LBV; LBO

    2003-01-01

    Particulate matter (PM) consisting of solid particles and droplets is present in the ambient air. Particles with an aerodynamic diameter less than 10 micro m can be inhaled by humans. Knowledge of the tissue-specific internal dose of PM is a critical link between individual external exposure and

  1. PIXE analysis of vehicle exhaust particulate

    International Nuclear Information System (INIS)

    Shi Xianfeng; Yao Huiying; Liu Bo; Sun Minde; Xu Huawei; Mi Yong; Shen Hao

    2001-01-01

    PIXE technique on the analysis of vehicle exhaust particulate is introduced. The clement composition and concentration of particulate are obtained. Some elements which are related to environmental pollution such as sulfur lead, silicon and manganese, were analyzed and discussed in detail by PIXE technique Nowadays although unleaded gasoline is widely used, the lead concentration is still very high in exhaust particulate. The concentrations of silicon and manganese in exhaust particulate from different model vehicles are also quite high from measurements. It shows that an evidence for exhaust pollution control could be provided from this work

  2. Continuous measurements of outdoor radon concentrations

    International Nuclear Information System (INIS)

    Iida, T.; Ikebe, Y.; Suzuki, K.; Ueno, K.; Komura, K.; Kato, I.; Jin Yihe

    1993-01-01

    The authors studied and developed an electrostatic 222 Rn monitor and have measured continuously outdoor radon ( 222 Rn) concentrations at Nagoya University since 1985. Four 222 Rn monitors were newly constructed to measure outdoor 222 Rn concentrations at other locations. The 222 Rn concentrations at Nagoya and Kasugai show a clear diurnal variation in autumn, and a seasonal pattern of a spring-summer minimum and a autumn-winter maximum. The results at Toki are the same pattern as that at Nagoya except spring. The concentrations at Kanazawa show a slight seasonal variation. A clear diurnal variation is observed in summer. (4 figs.)

  3. Indoor and outdoor sources of size-resolved mass concentration of particulate matter in a school gym-implications for exposure of exercising children.

    Science.gov (United States)

    Braniš, Martin; Safránek, Jiří; Hytychová, Adéla

    2011-05-01

    It has been noticed many times that schools are buildings with high levels of particulate matter concentrations. Several authors documented that concentrations of particulate matter in indoor school microenvironments exceed limits recommended by WHO namely when school buildings are situated near major roads with high traffic densities. In addition, exercise under conditions of high particulate concentrations may increase the adverse health effects, as the total particle deposition increases in proportion to minute ventilation, and the deposition fraction nearly doubles from rest to intense exercise. Mass concentrations of size-segregated aerosol were measured simultaneously in an elementary school gym and an adjacent outdoor site in the central part of Prague by two pairs of collocated aerosol monitors-a fast responding photometer DusTrak and a five stage cascade impactor. To encompass seasonal and annual differences, 89 days of measurements were performed during ten campaigns between 2005 and 2009. The average (all campaigns) outdoor concentration of PM(2.5) (28.3 μg m(-3)) measured by the cascade impactors was higher than the indoor value (22.3 μg m(-3)) and the corresponding average from the nearest fixed site monitor (23.6 μg m(-3)). Indoor and outdoor PM(2.5) concentrations exceeded the WHO recommended 24-h limit in 42% and 49% of the days measured, respectively. The correlation coefficient (r) between corresponding outdoor and indoor aerosol sizes increased with decreasing aerodynamic diameter of the collected particles (r = 0.32-0.87), suggesting a higher infiltration rate of fine and quasi-ultrafine particles. Principal component analysis revealed five factors explaining more than 82% of the data variability. The first two factors reflected a close association between outdoor and indoor fine and quasi-ultrafine particles confirming the hypothesis of high infiltration rate of particles from outdoors. The third factor indicated that human

  4. Laser scattering methodology for measuring particulates in the air

    Directory of Open Access Journals (Sweden)

    Carlo Giglioni

    2009-03-01

    Full Text Available A description is given of the laser scattering method to measure PM10, PM2.5 and PM1 dusts in confirmed environments (museums, libraries, archives, art galleries, etc.. Such equipment presents many advantages, in comparison with those which are actually in use, not only from an analytic but also from a functional point of view.

  5. In-stack condensible particulate matter measurement and permitting issues

    International Nuclear Information System (INIS)

    Corio, L.A.; Sherwell, J.

    1997-01-01

    Based on the results of recent epidemiological studies and assessments of the causes of visibility degradation, EPA is proposing to regulate PM2.5 emissions. PM can be classified as either filterable or condensible PM. Condensible PM includes sulfates, such as sulfuric acid. Sulfates typically account for at least half of the total dry fine PM mass in the atmosphere. Power plant SO x -based emissions make a significant contribution to ambient fine PM levels in the eastern US. Although much of this mass is derived from secondary chemical reactions in the atmosphere, a portion of this sulfate is emitted directly from stacks as condensible PM. The potential condensible PM fraction associated with coal-burning boiler emissions is somewhat uncertain. The characterization of PM emissions from these sources has been, until recently, based on in-stack filterable PM measurements only. To determine the relative magnitude of condensible PM emissions and better understand condensible PM measurement issues, a review and analysis of actual EPA Method 202 results and state-developed hybrid condensible PM methods were conducted. A review of available Method 202 results for several coal-burning boilers showed that the condensible PM, on average, comprises 60% of the total PM10. A review of recent results for state-developed measurement methods for condensible PM for numerous coal-burning boilers indicated that condensible PM accounted for, on average, approximately 49% of total PM. Caution should be exercised in the use of these results because of the seemingly unresolved issue of artifact formation, which may bias the Method 202 and state-developed methods results on the high side. Condensible PM10 measurement results and issues, and potential ramifications of including condensible PM10 emissions in the PSD permit review process are discussed. Selected power plants in Maryland are discussed as examples

  6. ASSOCIATIONS BETWEEN OUTDOOR PARTICULATE (PM2.5) CONCENTRATIONS AND GASEOUS CO-POLLUTANT EXPOSURE LEVELS FOR COPD AND MI COHORTS IN ATLANTA, GA

    Science.gov (United States)

    Epidemiological studies indicate that daily ambient particulate matter (PM2.5) concentrations are associated with increased mortality, hospital admissions, and respiratory and cardiovascular effects. It is possible that the observed significant associations are the result of c...

  7. Concentration and limit behaviors of stationary measures

    Science.gov (United States)

    Huang, Wen; Ji, Min; Liu, Zhenxin; Yi, Yingfei

    2018-04-01

    In this paper, we study limit behaviors of stationary measures of the Fokker-Planck equations associated with a system of ordinary differential equations perturbed by a class of multiplicative noise including additive white noise case. As the noises are vanishing, various results on the invariance and concentration of the limit measures are obtained. In particular, we show that if the noise perturbed systems admit a uniform Lyapunov function, then the stationary measures form a relatively sequentially compact set whose weak∗-limits are invariant measures of the unperturbed system concentrated on its global attractor. In the case that the global attractor contains a strong local attractor, we further show that there exists a family of admissible multiplicative noises with respect to which all limit measures are actually concentrated on the local attractor; and on the contrary, in the presence of a strong local repeller in the global attractor, there exists a family of admissible multiplicative noises with respect to which no limit measure can be concentrated on the local repeller. Moreover, we show that if there is a strongly repelling equilibrium in the global attractor, then limit measures with respect to typical families of multiplicative noises are always concentrated away from the equilibrium. As applications of these results, an example of stochastic Hopf bifurcation and an example with non-decomposable ω-limit sets are provided. Our study is closely related to the problem of noise stability of compact invariant sets and invariant measures of the unperturbed system.

  8. A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine

    Directory of Open Access Journals (Sweden)

    W. Birmili

    2008-02-01

    Full Text Available On 24 March 2007, an extraordinary dust plume was observed in the Central European troposphere. Satellite observations revealed its origins in a dust storm in Southern Ukraine, where large amounts of soil were resuspended from dried-out farmlands at wind gusts up to 30 m s−1. Along the pathway of the plume, maximum particulate matter (PM10 mass concentrations between 200 and 1400 μg m−3 occurred in Slovakia, the Czech Republic, Poland, and Germany. Over Germany, the dust plume was characterised by a volume extinction coefficient up to 400 Mm−1 and a particle optical depth of 0.71 at wavelength 0.532 μm. In-situ size distribution measurements as well as the wavelength dependence of light extinction from lidar and Sun photometer measurements confirmed the presence of a coarse particle mode with diameters around 2–3 μm. Chemical particle analyses suggested a fraction of 75% crustal material in daily average PM10 and up to 85% in the coarser fraction PM10–2.5. Based on the particle characteristics as well as a lack of increased CO and CO2 levels, a significant impact of biomass burning was ruled out. The reasons for the high particle concentrations in the dust plume were twofold: First, dust was transported very rapidly into Central Europe in a boundary layer jet under dry conditions. Second, the dust plume was confined to a relatively stable boundary layer of 1.4–1.8 km height, and could therefore neither expand nor dilute efficiently. Our findings illustrate the capacity of combined in situ and remote sensing measurements to characterise large-scale dust plumes with a variety of aerosol parameters. Although such plumes from Southern Eurasia seem to occur rather infrequently in Central Europe, its unexpected features highlights the need to improve the description of dust emission, transport and transformation processes needs, particularly when facing the

  9. Establishing aeolian particulate 'fingerprints' in an airport environment using magnetic measurements and SEM/EDAX

    Science.gov (United States)

    Jones, Sue; Hoon, Stephen R.; Richardson, Nigel; Bennett, Michael

    2016-04-01

    The significant increase in global air travel which has occurred during the last fifty years has generated growing concern regarding the potential impacts associated with increasing emissions of particulate matter (PM) from aviation activity on health and the environment. PM within the airport environment, in particular, may be derived from a wide range of potential sources including aircraft; vehicles; ground support equipment and buildings. In order to investigate and remediate potential problem sources, it is important to be able to identify characteristic particulate 'fingerprints' which would allow source attribution, particularly respirable particulates. To date the identification of such 'fingerprints' has remained elusive but remains a key research priority for the aviation industry (Webb et al, 2008). In previous PM studies, environmental magnetism has been used as a successful technique for discriminating between different emission types and particulate sources in both urban and industrial environments (e.g. Hunt et al 1984; Lecoanet et al 2003, Jones et al 2015). Environmental magnetism is a non-destructive and relatively rapid technique involving the use of non-directional, rock magnetic measurements to characterise the mineral magnetic properties of natural and anthropogenic materials. In other studies scanning electron microscopy (SEM) has also been used as an effective characterisation technique for the investigation of grain size and morphology of PM derived from vehicle emissions (e.g. Bucko et al 2010) and fossil fuel combustion sources (Kim et al 2009). In this study, environmental magnetic measurements and SEM/EDAX have been used to characterise dusts from specific aircraft sources including engines, brakes and tyres. Furthermore, these methods have also been applied to runway (both hard and grass covered surfaces), taxiway and apron dusts collected during extensive environmental sampling at Manchester International Airport, UK in order to

  10. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters...

  11. Measurements of natural 41Ca concentrations

    International Nuclear Information System (INIS)

    Steinhof, A.

    1989-05-01

    Atomic mass spectroscopic examinations on 41 Ca were carried out in the UNILAC accelerator. A sensitivity of about 10 -15 was achieved. This would allow the measurement of present natural 41 Ca concentrations as soon as the problem of the transmission determination is solved. In this respect suggestions were worked out and their feasibility discussed. The detection of 41 Ca-ions is especially free of background when high UNILAC-energies are applied. An estimation showed a background level corresponding with a 41 Ca concentration of less then 10 -17 referred to 40 Ca. Besides an independent concept for the electromagnetic concentration of 41 Ca with variable concentration factors was developed. After being concentrated up to 50 respectively 25 times the initial concentration in the GSI mass separator, the 41 Ca concentration of three recent deer bones found in the Odenwald was measured by atomic mass spectroscopy in the 14UD-Pelletron Tandem in Rehovot (Israel). The measured 41 Ca concentrations ranged between 10 -14 to 10 -13 with consideration of the concentration factor. A theoretical study of the 41 Ca production in the earth's surface based on cosmic radiation illustrates the influence of trace elements on the neutron flux and thus on the 41 Ca production. This influence might be a possible explanation for the observed amplitude of variation of the 41 Ca concentration in recent bones which are of decisive importance for the feasibility of 41 Ca-related dating. In this work a method is suggested that does not depend on the amplitude of variation mentioned above and which would allow the determination of the erosion rate of rocks by its 41 Ca concentrations. (orig./HP) [de

  12. PIXE and neutron activation analysis: intercomparison in the elemental concentration of airborne particulate matter

    International Nuclear Information System (INIS)

    Cassorla, V.; Rojas, X.; Gras, N.; Chuaqui, L.; Dinator, M.I.; Morales, J.R.; Llona, F.; Romo-Kroeger, C.

    1993-01-01

    Two nuclear analytical techniques, neutron activation analysis (NAA) and proton induced X-ray emission (PIXE), were used to determine major and trace elements in airborne particulate matter collected during the first fortnight of June 1991 at the La Reina Nuclear Center. NAA detected the presence of 15 elements in the samples. PIXE, for the same samples, allowed the detection of 12 elements. The elements determined by both techniques were Al, Ca, Mn, Fe, Cu, and Zn. A good correlation between results for these elements for each of the two techniques was demonstrated. (author)

  13. Note on the sanitary impact of diesel particulates; Note sur l'impact sanitaire des particules diesel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-15

    In the actual situation of scientific works, the epidemiology studies on environment do not allow to say the carcinogen contribution of diesel particulates at the concentration levels measured in the urban air. But according to the experimental data for the rat and the data observed for the personnel exposed to diesel particulates these particulates are classified as probably carcinogen. (N.C.)

  14. Isocyanate and total inhalable particulate air measurements in the European wood panel industry.

    Science.gov (United States)

    Vangronsveld, E; Berckmans, S; Verbinnen, K; Van Leeuw, C; Bormans, C

    2010-11-01

    It is well known that the use of MDI (methylene diphenyldiisocyanate) as an alternative for formaldehyde-based resins is seen as a responsible option to reduce formaldehyde emissions for CWP (Composite Wood Products) in buildings. However, there are concerns raised regarding the exposure risk of workers. The purpose of this article is to provide the reader with factual information to demonstrate that the use of MDI compared to other agents used in CWP production processes does not pose increased inhalation exposure risks for workers. Personal and area air measurements were carried out at nine Composite Wood Panel plants throughout Europe to assess potential inhalation exposures to MDI and wood dust as Total Inhalable Particulates (TIP). In total, 446 pairs of samples were collected for MDI and TIP of which 283 pairs were personal samples and the remaining 163 pairs were area samples collected at key locations along the production line. This data together with published formaldehyde exposure data has been used to evaluate the exposure safety margin opposite what are considered relevant occupational exposure limits. The methods used for sampling and analysing MDI and TIP are based on internationally accepted methods, i.e. MDHS 25/3 (or ISO 16702) for MDI, and MDHS 14/3 for TIP. The job functions with an increased exposure profile for TIP were the cleaners, drying operators and quality control staff, and for MDI, the cleaners and quality control staff. The areas with an increased exposure profile for TIP are the conveyor area from OSB blender to former area and the OSB press infeed, and for MDI the OSB weigh belt and OSB former bin area. The exposure safety margin opposite the selected exposure limits can be ranked as MDI>TIP>formaldehyde (high margin of safety to low margin of safety), indicating that the use of MDI also reduces the exposure risks to workers during production of CWP compared to formaldehyde. By reducing the airborne TIP concentrations, a respiratory

  15. Measurement of tritium concentration in urine

    International Nuclear Information System (INIS)

    Sekiyama, Shigenobu; Deshimaru, Takehide

    1979-01-01

    Concerning the safety management of the advanced thermal reactor ''Fugen'', the internal exposure management for tritium is important, because heavy water is used as the moderator in the reactor, and tritium is produced in the heavy water. Tritium is the radioactive nuclide with the maximum β-ray energy of 18 keV, and the radiation exposure is limited to the internal exposure in human bodies, as tritium is taken in through the skin and by breathing. The tritium concentration in urine of the operators of the Fugen plant was measured. As for tritium measurement, the analysis of raw urine, the analysis after passing through mixed ion exchange resin and the analysis after distillation are applied. The scintillator, the liquid scintillation counter, the ion exchange resin and the distillator are introduced. The preliminary survey was conducted on the urine sample, the scintillator the calibration, etc. The measuring condition, the measurement of efficiency, and the limitation of detection with various background are explained, with the many experimental data and the calculating formula. Concerning the measured tritium concentration in urine, the tritium concentrations in distilled urine, raw urine and the urine refined with ion exchange resin were compared, and the correlation formulae are presented. The actual tritium concentration value in urine was less than 50 pci/ml. The measuring methods of raw urine and the urine refined with ion exchange resin are adequate as they are quick and accurate. (Nakai, Y.)

  16. A new technique for online measurement of total and water-soluble copper (Cu) in coarse particulate matter (PM)

    International Nuclear Information System (INIS)

    Wang, Dongbin; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2015-01-01

    This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5–10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2–4 h) without obvious shortcomings. - Highlights: • A novel only PM sampling and Cu measuring technology is developed. • Very good particle collection efficiency for coarse PM is observed. • Excellent agreement is obtained between Cu ISE and offline ICP-MS measurements. • The new system can be continuously operated for at least 6 consecutive days. - A new technique for online measurements of Cu in coarse PM is described

  17. Heat transfer through particulated media in stagnant gases model and laboratory measurements: Application to Mars

    Science.gov (United States)

    Piqueux, Sylvain Loic Lucien

    The physical characterization of the upper few centimeters to meters of the Martian surface has greatly benefited from remote temperature measurements. Typical grain sizes, rock abundances, subsurface layering, soil cementation, bedrock exposures, and ice compositions have been derived and mapped using temperature data in conjunction with subsurface models of heat conduction. Yet, these models of heat conduction are simplistic, precluding significant advances in the characterization of the physical nature of the Martian surface. A new model of heat conduction for homogeneous particulated media accounting for the grain size, porosity, gas pressure and composition, temperature, and the effect of any cementing phase is presented. The incorporation of the temperature effect on the bulk conductivity results in a distortion of the predicted diurnal and seasonal temperatures when compared to temperatures predicted with a temperature-independent conductivity model. Such distortions have been observed and interpreted to result from subsurface heterogeneities, but they may simply be explained by a temperature-dependency of the thermal inertia, with additional implications on the derived grain sizes. Cements are shown to significantly increase the bulk conductivity of a particulated medium and bond fractions duricrust. A laboratory setup has been designed, built, calibrated and used to measure the thermal conductivity of particulated samples in order to test and refine the models mentioned above. Preliminary results confirm the influence of the temperature on the bulk conductivity, as well as the effect of changing the gas composition. Cemented samples are shown to conduct heat more efficiently than their uncemented counterparts.

  18. Measurements of light absorbing particulates on the glaciers in the Cordillera Blanca, Peru

    Science.gov (United States)

    Schmitt, C. G.; All, J. D.; Schwarz, J. P.; Arnott, W. P.; Cole, R. J.; Lapham, E.; Celestian, A.

    2014-10-01

    Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in air temperature, increases in light absorbing particulates deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light absorbing particulates sampled from glaciers during three surveys in the Cordillera Blanca in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, two hundred and forty snow samples were collected from fifteen mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the three expeditions and some mountains were sampled multiple times during the same expedition. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particulates on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective Black Carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the filter analysis and the SP2 refractory Black Carbon (rBC) results were well correlated (r2 = 0.92). These results indicate that a substantial portion of the light absorbing particulates in the more polluted areas were likely BC. The three years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g-1) than remote glaciers (as low as 2.0 ng g-1 eBC), indicating that population centers can influence local glaciers by sourcing BC.

  19. Concentration levels and temporal variations of heavy elements in the urban particulate matter of Navi Mumbai, India

    International Nuclear Information System (INIS)

    Kothai, P.; Saradhi, I.V.; Prathibha, P.; Pandit, G.G.; Puranik, V.D.

    2012-01-01

    Coarse and fine fractions of particulate matter (PM) were collected and analysed for trace elements using Instrumental Neutron Activation Analysis and Energy Dispersive X-ray Fluorescence techniques. The result showed high concentrations of Fe, S, Zn and Pb in both the size fractions. The elemental data obtained is used to analyze the temporal and seasonal variations. The trend showed maximum concentrations of PM and metals during winter and minimum during the monsoon season. Enrichment Factor (EF) and source analysis was performed for the same data set to identify the strength of contribution of anthropogenic sources and the possible contributing sources in the study area. EF studies showed high enrichments of Zn, Pb and As in the fine fraction particles. Crustal, vehicular and industrial emissions are identified as the major contributing sources of PM in the study area. (author)

  20. Measurement of concentration of heavy water

    International Nuclear Information System (INIS)

    Tsukamoto, Yuichi; Kondo, Mitsuo; Sakurai, Naoyuki

    1979-01-01

    The concentration of heavy water is measured as one of the technical management in the Fugen plant. The heavy water is used as the moderator in the reactor. The measuring method depends on the theory of light absorption. The light absorption range of heavy water spreads from near infrared to infrared zone. The near infrared absorption was adopted for the purpose, as the absorption is much larger in infrared zone, and the measurement has to be conducted, limiting the apparent absorption. This measuring method is available to determine the concentration of heavy water in the broad range exactly. The preparation of heavy water sample and the measurement of the absorption spectra of near infrared ray are explained, as the experimental procedure. The sample cell was made of quartz, and the spectroscope was the Hitachi 323 type. The resolving power is 100 nm and 27 nm for the wave length of 1000 nm and 2500 nm, respectively. Concerning the measured results, the absorption was recorded in the wave length range from 600 nm to 2600 nm, and for the heavy water concentration range from 0 to 99.77 wt. %. The peaks of absorption were located at the wave length of 1450, 1660, 1920, 1970, 2020 and 2600 nm. The three kinds of fundamental vibration mode of the molecules of both light and heavy water are shown, and the peaks belong to H 2 O, HDO and D 2 O, respectively. The relation between the absorption and the heavy water concentration, and that between the transmissivity and the wave length are shown, when the cell thickness was varied to 5 mm and 20 mm, and the heavy water concentration to 21%, 62% and 99.85%. (Nakai, Y.)

  1. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  2. An exploratory analysis of the relationship between ambient ozone and particulate matter concentrations during early pregnancy and selected birth defects in Texas

    Science.gov (United States)

    Background: Associations between ozone (O3) and fine particulate matter (PM2.5) concentrations and birth outcomes have been previously demonstrated. We perform an exploratory analysis of O3 and PM2.5 concentrations during early pregnancy and multiple types of birth defects. Met...

  3. Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations

    Directory of Open Access Journals (Sweden)

    G. Prabhakar

    2017-12-01

    Full Text Available This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3−(p concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality study at one of the most polluted cities in the United States – Fresno, CA – in the San Joaquin Valley (SJV and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3−(p concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3−(p aloft in the residual layer (RL can play in determining daytime surface-level NO3−(p concentrations. Further, they indicate that nocturnal production of NO3−(p in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3−(p, despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3−(p concentrations. Entrainment of clean free-tropospheric (FT air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3−(p and limits buildup during pollution episodes. The influence of dry deposition of HNO

  4. Spatiotemporal Association of Real-Time Concentrations of Black Carbon (BC with Fine Particulate Matters (PM2.5 in Urban Hotspots of South Korea

    Directory of Open Access Journals (Sweden)

    Sungroul Kim

    2017-11-01

    Full Text Available We evaluated the spatiotemporal distributions of black carbon (BC and particulate matters with aerodynamic diameters of less than 2.5 m (PM2.5 concentrations at urban diesel engine emission (DEE hotspots of South Korea. Concentrations of BC and PM2.5 were measured at the entrance gate of two diesel bus terminals and a train station, in 2014. Measurements were conducted simultaneously at the hotspot (Site 1 and at its adjacent, randomly selected, residential areas, apartment complex near major roadways, located with the same direction of 300 m (Site 2 and 500 m (Site 3 away from Site 1 on 4 different days over the season, thrice per day; morning (n = 120 measurements for each day and site, evening (n = 120, and noon (n = 120. The median (interquartile range PM2.5 ranged from 12.6 (11.3–14.3 to 60.1 (47.0–76.0 μg/m3 while those of BC concentrations ranged from 2.6 (1.9–3.7 to 6.3 (4.2–10.3 μg/m3. We observed a strong relationship of PM2.5 concentrations between sites (slopes 0.89–0.9, the coefficient of determination 0.89–0.96 while the relationship for BC concentrations between sites was relatively weak (slopes 0.76–0.85, the coefficient of determination 0.54–0.72. PM2.5 concentrations were changed from 4% to 140% by unit increase of BC concentration, depending on site and time while likely supporting the necessity of monitoring of BC as well as PM2.5, especially at urban DEE related hotspot areas.

  5. Inter-annual Variability in Global Suspended Particulate Inorganic Carbon Inventory Using Space-based Measurements

    Science.gov (United States)

    Hopkins, J.; Balch, W. M.; Henson, S.; Poulton, A. J.; Drapeau, D.; Bowler, B.; Lubelczyk, L.

    2016-02-01

    Coccolithophores, the single celled phytoplankton that produce an outer covering of calcium carbonate coccoliths, are considered to be the greatest contributors to the global oceanic particulate inorganic carbon (PIC) pool. The reflective coccoliths scatter light back out from the ocean surface, enabling PIC concentration to be quantitatively estimated from ocean color satellites. Here we use datasets of AQUA MODIS PIC concentration from 2003-2014 (using the recently-revised PIC algorithm), as well as statistics on coccolithophore vertical distribution derived from cruises throughout the world ocean, to estimate the average global (surface and integrated) PIC standing stock and its associated inter-annual variability. In addition, we divide the global ocean into Longhurst biogeochemical provinces, update the PIC biomass statistics and identify those regions that have the greatest inter-annual variability and thus may exert the greatest influence on global PIC standing stock and the alkalinity pump.

  6. Polarization-based enhancement of ocean color signal for estimating suspended particulate matter: radiative transfer simulations and laboratory measurements.

    Science.gov (United States)

    Liu, Jia; He, Xianqiang; Liu, Jiahang; Bai, Yan; Wang, Difeng; Chen, Tieqiao; Wang, Yihao; Zhu, Feng

    2017-04-17

    Absorption and scattering by molecules, aerosols and hydrosols, and the reflection and transmission over the sea surface can modify the original polarization state of sunlight. However, water-leaving radiance polarization, containing embedded water constituent information, has largely been neglected. Here, the efficiency of the parallel polarization radiance (PPR) for enhancing ocean color signal of suspended particulate matter is examined via vector radiative transfer simulations and laboratory experiments. The simulation results demonstrate that the PPR has a slightly higher ocean color signal at the top-of-atmosphere as compared with that of the total radiance. Moreover, both the simulations and laboratory measurements reveal that, compared with total radiance, PPR can effectively enhance the normalized ocean color signal for a large range of observation geometries, wavelengths, and suspended particle concentrations. Thus, PPR has great potential for improving the ocean color signal detection from satellite.

  7. Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas.

    Science.gov (United States)

    Kurth, Laura M; McCawley, Michael; Hendryx, Michael; Lusk, Stephanie

    2014-07-01

    People who live in Appalachian areas where coal mining is prominent have increased health problems compared with people in non-mining areas of Appalachia. Coal mines and related mining activities result in the production of atmospheric particulate matter (PM) that is associated with human health effects. There is a gap in research regarding particle size concentration and distribution to determine respiratory dose around coal mining and non-mining areas. Mass- and number-based size distributions were determined with an Aerodynamic Particle Size and Scanning Mobility Particle Sizer to calculate lung deposition around mining and non-mining areas of West Virginia. Particle number concentrations and deposited lung dose were significantly greater around mining areas compared with non-mining areas, demonstrating elevated risks to humans. The greater dose was correlated with elevated disease rates in the West Virginia mining areas. Number concentrations in the mining areas were comparable to a previously documented urban area where number concentration was associated with respiratory and cardiovascular disease.

  8. Efficiency of Emission Control Measures on Particulate Matter-Related Health Impacts and Economic Cost during the 2014 Asia-Pacific Economic Cooperation Meeting in Beijing

    Directory of Open Access Journals (Sweden)

    Qichen Liu

    2016-12-01

    Full Text Available Background: The Asia-Pacific Economic Cooperation (APEC meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods: The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results: Average concentrations of PM2.5 and PM10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM2.5 and PM10 during the APEC were the lowest. The economic cost associated with mortality caused by PM2.5 and PM10 during the APEC were reduced by (61.3% and 66.6% and (50.3% and 60.8% respectively, compared with pre-APEC and post-APEC. Conclusions: The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection.

  9. Efficiency of Emission Control Measures on Particulate Matter-Related Health Impacts and Economic Cost during the 2014 Asia-Pacific Economic Cooperation Meeting in Beijing.

    Science.gov (United States)

    Liu, Qichen; Huang, Jing; Guo, Bin; Guo, Xinbiao

    2016-12-28

    Background : The Asia-Pacific Economic Cooperation (APEC) meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods : The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results : Average concentrations of PM 2.5 and PM 10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM 2.5 and PM 10 during the APEC were the lowest. The economic cost associated with mortality caused by PM 2.5 and PM 10 during the APEC were reduced by (61.3% and 66.6%) and (50.3% and 60.8%) respectively, compared with pre-APEC and post-APEC. Conclusions : The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection.

  10. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China.

    Science.gov (United States)

    Li, Guangdong; Fang, Chuanglin; Wang, Shaojian; Sun, Siao

    2016-11-01

    Rapid economic growth, industrialization, and urbanization in China have led to extremely severe air pollution that causes increasing negative effects on human health, visibility, and climate change. However, the influence mechanisms of these anthropogenic factors on fine particulate matter (PM 2.5 ) concentrations are poorly understood. In this study, we combined panel data and econometric methods to investigate the main anthropogenic factors that contribute to increasing PM 2.5 concentrations in China at the prefecture level from 1999 to 2011. The results showed that PM 2.5 concentrations and three anthropogenic factors were cointegrated. The panel Fully Modified Least Squares and panel Granger causality test results indicated that economic growth, industrialization, and urbanization increased PM 2.5 concentrations in the long run. The results implied that if China persists in its current development pattern, economic growth, industrialization and urbanization will inevitably lead to increased PM 2.5 emissions in the long term. Industrialization was the principal factor that affected PM 2.5 concentrations for the total panel, the industry-oriented panel and the service-oriented panel. PM 2.5 concentrations can be reduced at the cost of short-term economic growth and industrialization. However, reducing the urbanization level is not an efficient way to decrease PM 2.5 pollutions in the short term. The findings also suggest that a rapid reduction of PM 2.5 concentrations relying solely on adjusting these anthropogenic factors is difficult in a short-term for the heavily PM 2.5 -polluted panel. Moreover, the Chinese government will have to seek much broader policies that favor a decoupling of these coupling relationships.

  11. Low correlation between household carbon monoxide and particulate matter concentrations from biomass-related pollution in three resource-poor settings

    International Nuclear Information System (INIS)

    Klasen, Elizabeth M.; Wills, Beatriz; Naithani, Neha; Gilman, Robert H.; Tielsch, James M.; Chiang, Marilu; Khatry, Subarna; Breysse, Patrick N.; Menya, Diana; Apaka, Cosmas; Carter, E. Jane; Sherman, Charles B.; Miranda, J. Jaime; Checkley, William

    2015-01-01

    Household air pollution from the burning of biomass fuels is recognized as the third greatest contributor to the global burden of disease. Incomplete combustion of biomass fuels releases a complex mixture of carbon monoxide (CO), particulate matter (PM) and other toxins into the household environment. Some investigators have used indoor CO concentrations as a reliable surrogate of indoor PM concentrations; however, the assumption that indoor CO concentration is a reasonable proxy of indoor PM concentration has been a subject of controversy. We sought to describe the relationship between indoor PM 2.5 and CO concentrations in 128 households across three resource-poor settings in Peru, Nepal, and Kenya. We simultaneously collected minute-to-minute PM 2.5 and CO concentrations within a meter of the open-fire stove for approximately 24 h using the EasyLog-USB-CO data logger (Lascar Electronics, Erie, PA) and the personal DataRAM-1000AN (Thermo Fisher Scientific Inc., Waltham, MA), respectively. We also collected information regarding household construction characteristics, and cooking practices of the primary cook. Average 24 h indoor PM 2.5 and CO concentrations ranged between 615 and 1440 μg/m 3 , and between 9.1 and 35.1 ppm, respectively. Minute-to-minute indoor PM 2.5 concentrations were in a safe range (<25 μg/m 3 ) between 17% and 65% of the time, and exceeded 1000 μg/m 3 between 8% and 21% of the time, whereas indoor CO concentrations were in a safe range (<7 ppm) between 46% and 79% of the time and exceeded 50 ppm between 4%, and 20% of the time. Overall correlations between indoor PM 2.5 and CO concentrations were low to moderate (Spearman ρ between 0.59 and 0.83). There was also poor agreement and evidence of proportional bias between observed indoor PM 2.5 concentrations vs. those estimated based on indoor CO concentrations, with greater discordance at lower concentrations. Our analysis does not support the notion that indoor CO concentration is a

  12. Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data

    Science.gov (United States)

    Baxter, Lisa K.; Clougherty, Jane E.; Paciorek, Christopher J.; Wright, Rosalind J.; Levy, Jonathan I.

    Previous studies have identified associations between traffic-related air pollution and adverse health effects. Most have used measurements from a few central ambient monitors and/or some measure of traffic as indicators of exposure, disregarding spatial variability and factors influencing personal exposure-ambient concentration relationships. This study seeks to utilize publicly available data (i.e., central site monitors, geographic information system, and property assessment data) and questionnaire responses to predict residential indoor concentrations of traffic-related air pollutants for lower socioeconomic status (SES) urban households. As part of a prospective birth cohort study in urban Boston, we collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO 2) and fine particulate matter (PM 2.5) in 43 low SES residences across multiple seasons from 2003 to 2005. Elemental carbon (EC) concentrations were determined via reflectance analysis. Multiple traffic indicators were derived using Massachusetts Highway Department data and traffic counts collected outside sampling homes. Home characteristics and occupant behaviors were collected via a standardized questionnaire. Additional housing information was collected through property tax records, and ambient concentrations were collected from a centrally located ambient monitor. The contributions of ambient concentrations, local traffic and indoor sources to indoor concentrations were quantified with regression analyses. PM 2.5 was influenced less by local traffic but had significant indoor sources, while EC was associated with traffic and NO 2 with both traffic and indoor sources. Comparing models based on covariate selection using p-values or a Bayesian approach yielded similar results, with traffic density within a 50 m buffer of a home and distance from a truck route as important contributors to indoor levels of NO 2 and EC, respectively. The Bayesian approach also highlighted the uncertanity in the

  13. Portable method of measuring gaseous acetone concentrations.

    Science.gov (United States)

    Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2013-08-15

    Measurement of acetone in human breath samples has been previously shown to provide significant non-invasive diagnostic insight into the control of a patient's diabetic condition. In patients with diabetes mellitus, the body produces excess amounts of ketones such as acetone, which are then exhaled during respiration. Using various breath analysis methods has allowed for the accurate determination of acetone concentrations in exhaled breath. However, many of these methods require instrumentation and pre-concentration steps not suitable for point-of-care use. We have found that by immobilizing resorcinol reagent into a perfluorosulfonic acid polymer membrane, a controlled organic synthesis reaction occurs with acetone in a dry carrier gas. The immobilized, highly selective product of this reaction (a flavan) is found to produce a visible spectrum color change which could measure acetone concentrations to less than ppm. We here demonstrate how this approach can be used to produce a portable optical sensing device for real-time, non-invasive acetone analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Control of polysilicon on-film particulates with on-product measurements

    Science.gov (United States)

    Barker, Judith B.; Chain, Elizabeth E.; Plachecki, Vincent E.

    1997-08-01

    Historically, a number of in-line particle measurements have been performed on separate test wafers included with product wafers during polysilicon processes. By performing film thickness and particulate measurements directly on product wafers, instead, a number of benefits accrue: (1) reduced test wafer usage, (2) reduced test wafer storage requirements, (3) reduced need for equipment to reclaim test wafers, (4) reduced need for direct labor to reclaim test wafers, and (5) reduced engineering 'false alarms' due to incorrectly processed test wafers. Implementation of on-product measurements for the polysilicon diffusion process required a number of changes in both philosophy and methodology. We show the necessary steps to implementation of on-product particle measurements with concern for overall manufacturing efficiency and the need to maintain appropriate control. Particle results from the Tencor 7600 Surfscan are presented.

  15. CLEAR PM: Teaching, Outreach, and Research Through Real-Time Particulate Measurements

    Science.gov (United States)

    DeCarlo, P. F.

    2013-12-01

    An understanding of particulate matter (also called aerosols) can be made through measurement. This measurement does not change in value if it is made in a teaching, research, or outreach environment. A grant from the Camille and Henry Dreyfus Foundation provided funding to construct an instrument suite composed of 1-4 second measurements that are displayed in real-time through a software interface. This display module is called CLEAR PM (Chemistry Lessons Enabling Aerosol Realizations through Particulate Measurement), and was conceived to apply across outreach activities, teaching activities, and research activities. The construction and software design of CLEAR PM was done as part of a special topics course for chemistry and engineering graduate students at Drexel University. Measurement principles of the different (research grade) instruments were taught as part of the course, with emphasis put on the fundamental measurements and their limitations, and an introduction to data acquisition software was also integral to the teaching component. As a final project of the course graduate students were required to create a 'teaching' module that illustrates a chemistry or physics concept and utilizes the measurements of CLEAR PM. These modules ranged from gas-phase ozone chemistry creating secondary organic aerosols, to the wavelength dependent absorption profiles of wood smoke versus propane soot. The teaching modules developed by the graduate students have been used in outreach activities sponsored by The Franklin Institute and the Clean Air Council in Philadelphia, where underrepresented groups often make up a large fraction of the audience. CLEAR PM is designed to give students and citizens a hands-on opportunity to see how we measure and understand the world around us. As mentioned previously, the instruments that are part of CLEAR PM are research grade instruments, and are actively being used in research projects in the DeCarlo lab at Drexel to study particulate

  16. Apparatus for measuring a concentration of radioactivity

    International Nuclear Information System (INIS)

    Tabuchi, H.; Ogushi, A.

    1978-01-01

    Disclosed is an apparatus for measuring concentration of radioactivity in a fluid circulating in a cooling system or a disposal system, etc., of a nuclear power plant (e.g. coolant), the apparatus having a plurality of sampling tubes with different diameters depending on the intensities of radioactivity, and the sampling tubes having valves for switching from one fluid to another fluid. The sampling tubes are connected to the system to a discharge pipe, and are disposed in the proximity of a radiation detector adapted to issue a signal representative of radiation. The issued signal is supplied to a multichannel pulse height analyzer and a data processing system providing an indication of the concentrations of radioactivities for respective radionuclides

  17. Comparison of remote sensing algorithms for retrieval of suspended particulate matter concentration from reflectance in coastal waters

    Science.gov (United States)

    Freeman, Lauren A.; Ackleson, Steven G.; Rhea, William Joseph

    2017-10-01

    Suspended particulate matter (SPM) is a key environmental indicator for rivers, estuaries, and coastal waters, which can be calculated from remote sensing reflectance obtained by an airborne or satellite imager. Here, algorithms from prior studies are applied to a dataset of in-situ at surface hyperspectral remote sensing reflectance, collected in three geographic regions representing different water types. These data show the optically inherent exponential nature of the relationship between reflectance and sediment concentration. However, linear models are also shown to provide a reasonable estimate of sediment concentration when utilized with care in similar conditions to those under which the algorithms were developed, particularly at lower SPM values (0 to 20 mg/L). Fifteen published SPM algorithms are tested, returning strong correlations of R2>0.7, and in most cases, R2>0.8. Very low SPM values show weaker correlation with algorithm calculated SPM that is not wavelength dependent. None of the tested algorithms performs well for high SPM values (>30 mg/L), with most algorithms underestimating SPM. A shift toward a smaller number of simple exponential or linear models relating satellite remote sensing reflectance to suspended sediment concentration with regional consideration will greatly aid larger spatiotemporal studies of suspended sediment trends.

  18. Construction of Multi-Year Time-Series Profiles of Suspended Particulate Inorganic Matter Concentrations Using Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Pannimpullath R. Renosh

    2017-12-01

    Full Text Available Hydro-sedimentary numerical models have been widely employed to derive suspended particulate matter (SPM concentrations in coastal and estuarine waters. These hydro-sedimentary models are computationally and technically expensive in nature. Here we have used a computationally less-expensive, well-established methodology of self-organizing maps (SOMs along with a hidden Markov model (HMM to derive profiles of suspended particulate inorganic matter (SPIM. The concept of the proposed work is to benefit from all available data sets through the use of fusion methods and machine learning approaches that are able to process a growing amount of available data. This approach is applied to two different data sets entitled “Hidden” and “Observable”. The hidden data are composed of 15 months (27 September 2007 to 30 December 2008 of hourly SPIM profiles extracted from the Regional Ocean Modeling System (ROMS. The observable data include forcing parameter variables such as significant wave heights ( H s and H s 50 (50 days from the Wavewatch 3-HOMERE database and barotropic currents ( U b a r and V b a r from the Iberian–Biscay–Irish (IBI reanalysis data. These observable data integrate hourly surface samples from 1 February 2002 to 31 December 2012. The time-series profiles of the SPIM have been derived from four different stations in the English Channel by considering 15 months of output hidden data from the ROMS as a statistical representation of the ocean for ≈11 years. The derived SPIM profiles clearly show seasonal and tidal fluctuations in accordance with the parent numerical model output. The surface SPIM concentrations of the derived model have been validated with satellite remote sensing data. The time series of the modeled SPIM and satellite-derived SPIM show similar seasonal fluctuations. The ranges of concentrations for the four stations are also in good agreement with the corresponding satellite data. The high accuracy of the

  19. Measurements of radon concentrations in dwelling houses

    International Nuclear Information System (INIS)

    Birkholz, W.; Klink, T.

    1993-01-01

    Radon and its daughter products gain in importance in health protection and radiation safety. Especially in the southern region of Saxony radon concentrations in dwellings may be high by former silver and uranium mines. We found radon contents of about 20.000 Bq/m 3 in dwellings. To redevelop such houses it is necessary to know intrude path of radon. In present work we studied different measuring systems, active and passive detectors, short and long term integrating devices. By means of investigation of radon sources several redeveloping methods are rates as well from radiological as from civil engineering point of view. (author)

  20. Assessment of life quality in patients with bronchial asthma residing in Krakow in the areas of varying concentrations of particulate matter (PM10

    Directory of Open Access Journals (Sweden)

    Monika Ścibor

    2015-03-01

    Full Text Available Introduction. Asthma is a chronic disease, from which more and more people in the world suffer. It is connected with many bothersome symptoms and limitations, which result in decreased quality of life for the patient. Environmental and individual aspects do not necessarily affect individuals in the same way, so it is necessary to determine which factors have predominantly impacted on an individual, in order to minimize their impact and to take better control over treatment of asthma. The aim of this research was to compare the quality of life among patients with bronchial asthma living in Krakow in the areas where they get exposed to varying concentrations of particulate matter (PM10. Material and methods. The study included 98 adults diagnosed with bronchial asthma. The research was conducted using the AQLQ poll. PM10 concentration was measured in several Malopolska Air Pollution Monitoring Stations located throughout the city. Results. Analyzing the quality of life in the view of symptoms, activity limitations and emotional well being, there was a substantial statistical difference observed in people occupying the areas with different PM10 concentrations. No significant statistical difference was observed in the frequency of asthma symptoms caused by the environmental stimuli between the 2 discussed groups. One group of patients who came to the allergy clinic for control of asthma symptoms and the second group who live in the vicinity of the monitoring stations measuring PM10 concentrations. Conclusions. For many of the cases, the quality of life was not worse for patients with asthma living in an area with slightly elevated concentrations of PM10, and sometimes paradoxically the quality of life was improved. These results show that PM10 concentrations do not correlate with quality of life of asthma patients.

  1. A measurement based analysis of the spatial distribution, temporal variation and chemical composition of particulate matter in Munich and Augsburg

    Directory of Open Access Journals (Sweden)

    Klaus Schäfer

    2011-02-01

    Full Text Available The objective of the studies presented in this paper is to present an analysis of spatial distribution and temporal variation of particulate matter in Munich and Augsburg, Germany, and to identify and discuss the factors determining the aerosol pollution in both areas. Surface-based in-situ and remote sensing measurements of particle mass and particle size distribution have been performed in, around, and above the two cities. Two measurement campaigns were conducted in Munich, one in late spring and one in winter 2003. Another campaign has been on-going in Augsburg since 2004. Spatial and temporal variations are analyzed from this data (PM10, PM2.5, and PM1. There are higher particle mass concentrations at the urban site than at the surrounding rural sites, especially in winter. No significant difference in the major ionic composition of the particles between the urban and the rural site was detected. This is considered to be related to the spatial distribution of secondary inorganic aerosol that is more homogeneous than aerosol resulting from other sources like traffic or urban releases in general. During the measurement campaigns mixing layer heights were determined continuously by remote sensing (SODAR, ceilometer, RASS. Significant dependence of particle size distribution and particle mass concentration on mixing layer height was found. This finding paves the way to new applications of satellite remote sensing products.

  2. Air pollution in Aleppo city, gases,suspended particulates

    International Nuclear Information System (INIS)

    Othman, I.; Sabra, Sh.; Al-Kharfan, K.

    1994-06-01

    Total suspended particulates measured by using High Volume Air Sampler. The Co and O 3 were measured during weekday and weekend. The concentration of all pollutants at city center are higher than other measured areas. (author). 10 figs., 10 tabs

  3. Kuwaiti oil fires—Particulate monitoring

    Science.gov (United States)

    Husain, Tahir; Amin, Mohamed B.

    The total suspended particulate (TSP) matters using a high-volume sampler and inhalable particulate matters using PM-10 samplers were collected at various locations in the Eastern Province of Saudi Arabia during and after the Kuwaiti oil fires. The collected samples were analysed for toxic metals and oil hydrocarbon concentrations including some carcinogenic organic compounds in addition to gravimetric analysis. The concentration values of particulate matters were determined on a daily basis at Dhahran. Abqaiq, Rahima, Tanajib and Jubail locations. The analyses of the filters show a high concentration of the inhalable particulate at various locations, especially when north or northwest winds were blowing. It was found that the inhalable particulate concentration exceeded the Meteorology and Environmental Protection Administration (MEPA) permissible limit of 340 μg m- 3 at most of these locations during May-October 1991. A trend between the total suspended particulate and inhalable particulate measured concurrently at the same locations was observed and a regression equation was developed to correlate PM-10 data with the total suspended particulate data.

  4. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  5. Measurement of radon activity concentration in buildings

    International Nuclear Information System (INIS)

    Godet, J.L.; Perrin, M.L.; Pineau, C.; Dechaux, E.

    2010-01-01

    Radon exposure, along with medical-related exposure, is the leading source of exposure to ionising radiation for the French population. Measurement campaigns are done in the action plan, drawn up by the French nuclear safety authority (ASN), in cooperation with the French directorate for housing, town planning and countryside (DHUP), the French radiation protection and nuclear safety institute (IRSN), the French health monitoring institute (InVS) and the French scientific and technical centre for construction (CSTB). The review of 2005-2008 measurement campaign shows that of the 7356 buildings screened, 84.8% had activity concentration levels below the 400 Bq/m 3 action level. For the other buildings (15.2%), action will be required to reduce human exposure to radon, possibly including building renovation/redevelopment work. In the 1999-2002 measurement campaign,12% of the 13,000 buildings screened had a radon activity concentration level higher than 400 Bq/m 3 . In addition, the ASN and the French general directorate of labour (DGT) are continuing to work on drawing up regulations for occupational risk management. The second national health and environment plan (PNSE 2) was published on 26 June 2009. It follows on from the actions initiated in PNSE 1, a document provided for under the Public Health Act dated 9 August 2004 and under the French 'Grenelle' environmental agreements. On the basis of guidelines laid out in PNSE 2, a radon action plan for 2009-2012 will be drawn up, enabling some of the actions to be continued, particularly in the fields of new building projects and dwellings. (author)

  6. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  7. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Renard, Jean-Baptiste; Gaubicher, Bertrand; Thaury, Claire; Mineau, Jean-Luc

    2010-01-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  8. Response of winter fine particulate matter concentrations to emission and meteorology changes in North China

    Directory of Open Access Journals (Sweden)

    M. Gao

    2016-09-01

    Full Text Available The winter haze is a growing problem in North China, but the causes are not well understood. The chemistry version of the Weather Research and Forecasting model (WRF-Chem was applied in North China to examine how PM2.5 concentrations change in response to changes in emissions (sulfur dioxide (SO2, black carbon (BC, organic carbon (OC, ammonia (NH3, and nitrogen oxides (NOx, as well as meteorology (temperature, relative humidity (RH, and wind speeds changes in winter. From 1960 to 2010, the dramatic changes in emissions lead to +260 % increases in sulfate, +320 % increases in nitrate, +300 % increases in ammonium, +160 % increases in BC, and +50 % increases in OC. The responses of PM2.5 to individual emission species indicate that the simultaneous increases in SO2, NH3, and NOx emissions dominated the increases in PM2.5 concentrations. PM2.5 shows more notable increases in response to changes in SO2 and NH3 as compared to increases in response to changes in NOx emissions. In addition, OC also accounts for a large fraction in PM2.5 changes. These results provide some implications for haze pollution control. The responses of PM2.5 concentrations to temperature increases are dominated by changes in wind fields and mixing heights. PM2.5 shows relatively smaller changes in response to temperature increases and RH decreases compared to changes in response to changes in wind speed and aerosol feedbacks. From 1960 to 2010, aerosol feedbacks have been significantly enhanced due to higher aerosol loadings. The discussions in this study indicate that dramatic changes in emissions are the main cause of increasing haze events in North China, and long-term trends in atmospheric circulations may be another important cause since PM2.5 is shown to be substantially affected by wind speed and aerosol feedbacks. More studies are necessary to get a better understanding of the aerosol–circulation interactions.

  9. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Li, Xingru; Sun, Ying; Li, Yi; Wentworth, Gregory R; Wang, Yuesi

    2015-12-15

    Public concerns over airborne trace elements (TEs) in metropolitan areas are increasing, but long-term and multi-site observations of size-resolved aerosol TEs in China are still lacking. Here, we identify highly elevated levels of atmospheric TEs in megacities and industrial sites in a Beijing-Tianjin-Hebei urban agglomeration relative to background areas, with the annual mean values of As, Pb, Ni, Cd and Mn exceeding the acceptable limits of the World Health Organization. Despite the spatial variability in concentrations, the size distribution pattern of each trace element was quite similar across the region. Crustal elements of Al and Fe were mainly found in coarse particles (2.1-9 μm), whereas the main fraction of toxic metals, such as Cu, Zn, As, Se, Cd and Pb, was found in submicron particles (metals were enriched by over 100-fold relative to the Earth's crust. The size distributions of Na, Mg, K, Ca, V, Cr, Mn, Ni, Mo and Ba were bimodal, with two peaks at 0.43-0.65 μm and 4.7-5.8 μm. The combination of the size distribution information, principal component analysis and air mass back trajectory model offered a robust technique for distinguishing the main sources for airborne TEs, e.g., soil dust, fossil fuel combustion and industrial emissions, at different sites. In addition, higher elemental concentrations coincided with westerly flow, indicating that polluted soil and fugitive dust were major sources of TEs on the regional scale. However, the contribution of coal burning, iron industry/oil combustion and non-ferrous smelters to atmospheric metal pollution in Northern China should be given more attention. Considering that the concentrations of heavy metals associated with fine particles in the target region were significantly higher than those in other Asian sites, the implementations of strict environmental standards in China are required to reduce the amounts of these hazardous pollutants released into the atmosphere. Copyright © 2015 Elsevier B

  10. Device for measuring the tritium concentration in a measuring gas

    International Nuclear Information System (INIS)

    Koran, P.

    1987-01-01

    The measuring gas is brought into contact via a measuring gas path with a diaphragm permeable to water, which separates the measuring gas path from a counter gas path leading to a proportional detector. The measuring gas path and the counter gas path are in counterflow in the area of diaphragm. The preferably hose diaphragm consists of a well-known ion exchange material, which can be used for gas drying purposes, which is permeable to water and tritium compounds similar to water, but is impermeable to other gases and liquids contained in air, particularly rare gases. In this way, the tritium concentration can be measured with great rare gas suppression. (orig./HP) [de

  11. Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

    Science.gov (United States)

    Wang, Zhanyong; Lu, Feng; He, Hong-di; Lu, Qing-Chang; Wang, Dongsheng; Peng, Zhong-Ren

    2015-03-01

    At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA-WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.

  12. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe

    Directory of Open Access Journals (Sweden)

    A. G. Megaritis

    2013-03-01

    Full Text Available PMCAMx-2008, a three dimensional chemical transport model (CTM, was applied in Europe to quantify the changes in fine particle (PM2.5 concentration in response to different emission reductions as well as to temperature increase. A summer and a winter simulation period were used, to investigate the seasonal dependence of the PM2.5 response to 50% reductions of sulfur dioxide (SO2, ammonia (NH3, nitrogen oxides (NOx, anthropogenic volatile organic compounds (VOCs and anthropogenic primary organic aerosol (POA emissions and also to temperature increases of 2.5 and 5 K. Reduction of NH3 emissions seems to be the most effective control strategy for reducing PM2.5, in both periods, resulting in a decrease of PM2.5 up to 5.1 μg m−3 and 1.8 μg m−3 (5.5% and 4% on average during summer and winter respectively, mainly due to reduction of ammonium nitrate (NH4NO3 (20% on average in both periods. The reduction of SO2 emissions decreases PM2.5 in both periods having a significant effect over the Balkans (up to 1.6 μg m−3 during the modeled summer period, mainly due to decrease of sulfate (34% on average over the Balkans. The anthropogenic POA control strategy reduces total OA by 15% during the modeled winter period and 8% in the summer period. The reduction of total OA is higher in urban areas close to its emissions sources. A slight decrease of OA (8% in the modeled summer period and 4% in the modeled winter period is also predicted after a 50% reduction of VOCs emissions due to the decrease of anthropogenic SOA. The reduction of NOx emissions reduces PM2.5 (up to 3.4 μg m−3 during the summer period, due to a decrease of NH4NO3, causing although an increase of ozone concentration in major urban areas and over Western Europe. Additionally, the NOx control strategy actually increases PM2.5 levels during the winter period, due to more oxidants becoming available to react with SO2 and VOCs. The increase of temperature results in a decrease of PM2

  13. The Concentrations and Reduction of Airborne Particulate Matter (PM10, PM2.5, PM1 at Shelterbelt Site in Beijing

    Directory of Open Access Journals (Sweden)

    Jungang Chen

    2015-05-01

    Full Text Available Particulate matter is a serious source of air pollution in urban areas, where it exerts adverse effects on human health. This article focuses on the study of subduction of shelterbelts for atmospheric particulates. The results suggest that (1 the PM mass concentration is higher in the morning or both morning and noon inside the shelterbelts and lower mass concentrations at other times; (2 the particle mass concentration inside shelterbelt is higher than outside; (3 the particle interception efficiency of the two forest belts over the three months in descending order was PM10 > PM1 > PM2.5; and (4 the two shelterbelts captured air pollutants at rates of 1496.285 and 909.075 kg/month and the major atmospheric pollutant in Beijing city is PM10. Future research directions are to study PM mass concentration variation of shelterbelt with different tree species and different configuration.

  14. Temporal evolution of cadmium, copper and lead concentration in the Venice Lagoon water in relation with the speciation and dissolved/particulate partition.

    Science.gov (United States)

    Morabito, Elisa; Radaelli, Marta; Corami, Fabiana; Turetta, Clara; Toscano, Giuseppa; Capodaglio, Gabriele

    2018-04-01

    In order to study the role of sediment re-suspension and deposition versus the role of organic complexation, we investigated the speciation of cadmium (Cd), copper (Cu) and lead (Pb) in samples collected in the Venice Lagoon during several campaigns from 1992 to 2006. The increment in Cd and Pb concentration in the dissolved phases, observed in the central and northern basins, can be linked to important alterations inside the lagoon caused by industrial and urban factors. The study focuses on metal partition between dissolved and particulate phases. The analyses carried out in different sites illustrate the complex role of organic matter in the sedimentation process. While Cd concentration in sediments can be correlated with organic matter, no such correlation can be established in the case of Pb, whose particulate concentration is related only to the dissolved concentration. In the case of Cu, the role of organic complexation remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area

    OpenAIRE

    Fettweis, M.; Baeye, M.; Francken, F.; Lauwaert, B.; Van den Eynde, D.; Van Lancker, V.; Martens, C.; Michielsen, T.

    2012-01-01

    The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub...

  16. Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area (southern North Sea)

    OpenAIRE

    Fettweis, M.; Baeye, M.; Francken, F.; Lauwaert, B.; Van den Eynde, D.; Van Lancker, V.; Martens, C.; Michielsen, T.

    2011-01-01

    The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub...

  17. Assessing the Variability in the Relationship Between the Particulate Backscattering Coefficient and the Chlorophyll a Concentration From a Global Biogeochemical-Argo Database

    Science.gov (United States)

    Barbieux, Marie; Uitz, Julia; Bricaud, Annick; Organelli, Emanuele; Poteau, Antoine; Schmechtig, Catherine; Gentili, Bernard; Obolensky, Grigor; Leymarie, Edouard; Penkerc'h, Christophe; D'Ortenzio, Fabrizio; Claustre, Hervé

    2018-02-01

    Characterizing phytoplankton distribution and dynamics in the world's open oceans requires in situ observations over a broad range of space and time scales. In addition to temperature/salinity measurements, Biogeochemical-Argo (BGC-Argo) profiling floats are capable of autonomously observing at high-frequency bio-optical properties such as the chlorophyll fluorescence, a proxy of the chlorophyll a concentration (Chla), the particulate backscattering coefficient (bbp), a proxy of the stock of particulate organic carbon, and the light available for photosynthesis. We analyzed an unprecedented BGC-Argo database of more than 8,500 multivariable profiles collected in various oceanic conditions, from subpolar waters to subtropical gyres. Our objective is to refine previously established Chla versus bbp relationships and gain insights into the sources of vertical, seasonal, and regional variability in this relationship. Despite some regional, seasonal and vertical variations, a general covariation occurs at a global scale. We distinguish two main contrasted situations: (1) concomitant changes in Chla and bbp that correspond to actual variations in phytoplankton biomass, e.g., in subpolar regimes; (2) a decoupling between the two variables attributed to photoacclimation or changes in the relative abundance of nonalgal particles, e.g., in subtropical regimes. The variability in the bbp:Chla ratio in the surface layer appears to be essentially influenced by the type of particles and by photoacclimation processes. The large BGC-Argo database helps identifying the spatial and temporal scales at which this ratio is predominantly driven by one or the other of these two factors.

  18. Evaluations of particulate mass loading from visibility observations and atmospheric turbidity measurements: Pt. 1

    International Nuclear Information System (INIS)

    Tomasi, C.; Vitale, V.

    1984-01-01

    Two extinction models for continental and rural particles were defined by using a very accurate computer programme based on Mie extinction theory for spherical particles. The first extinction model gives several sets of volume extinction coefficients at seven visible and near-infra-red wave-lengths, calculated for twenty-seven Junge-type size distribution curves (with Junge parameter ranging from 1.8 to 4.4) and for eight relative-humidity values of the air. This model also gives the corresponding values of Aangstroem's exponent α and mean particle mass. The second extinction model gives similar sets of data, calculated for two log-normal size distribution curves of tropospheric and large rural particles at five relative-humidity values of the air. These monomodal models can be used to determine bimodal extinction models consisting of variable number fractions of tropospherics and rural particles. Evaluations of the particulate mass loading can be obtained from measurements of visual range and atmospheric turbidity, choosing the most appropriate extinction model on the basis of the spectral features characterizing atmospheric attenuation. Measurements of visibility and atmospheric turbidity in two rural localities of the Po valley were examined by employing both the present extinction models and other extinction models commonly used. The comparison of the results shows that the Junge-type extinction model can be reliably used in cases in which the exponent Junge-type extinction model and bimodal model were found to give realistic evaluations of the lower and upper limits of particulate mass loading

  19. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Science.gov (United States)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  20. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  1. EFFECTS OF SUBCHRONIC EXPOSURE TO CONCENTRATED AMBIENT PARTICULATES ON ELECTROCARDIOGRAM AND HEART RATE VARIABILITY IN SPONTANEOUSLY HYPERTENSIVE RATS

    Science.gov (United States)

    Epidemiological studies have linked air pollution exposure to adverse respiratory health effects, especially in individuals with inflammatory airways disease. Symptomatic asthmatics appear to be at greatest risk. We previously demonstrated that exposure of rats to particulate...

  2. An integrated system for the determination of the local, regional and long-transport contributions to Particulate Matter concentrations

    Science.gov (United States)

    Amodio, M.; Andriani, E.; Daresta, B. E.; de Gennaro, G.; di Gilio, A.; Ielpo, P.,; Placentino, C. M.; Trizio, L.; Tutino, M.

    2010-05-01

    Several epidemiological studies have shown the negative effects of air pollution on human health, which range from respiratory and cardiovascular disease to neurotoxic effects, and cancer. Most recent investigations have been focused on health toxicological features of Particulate Matter (PM) and its interactions with other pollutants: it was found that fine particles (PM2.5) could be an effective media to transport these pollutants deeply into the lung and to cause many kind of reactions which include oxidative stress, local pulmonary and systemic inflammatory responses (Künzli and Perez, 2009). Based on these implications on public health, many countries have developed plans to suggest effective control strategies which involve the identification of Particulate Matter sources, the quantitative estimation of the emission rates of the pollutants, the understanding of PM transport, mixing and transformation processes and the identification of main factors influencing PM concentrations. In this field, receptor models can be useful tools to estimate sources contributions to PM collected in an area under investigations. Different approaches to receptor model analysis can be distinguished on basis of whether chemical characteristics of emission sources are required to be known before the source apportionment. The multivariate approach could be preferred when a lack of information concerning sources profiles occurred (Hopke, 2003). In this work, the results obtained by applying an integrated approach in the monitoring of PM using several typologies of instrumentations will be shown. A prototype for the determination of the contributions of a single source (‘fugitive emission') on the fine PM concentrations has been developed: it consists of a Swam dual-channel sampler, an OPC Monitor, a sonic anemometer and a PBL Mixing monitor. The investigated site chosen for the application of prototype will be the iron and steel pole of Taranto (Apulia Region, South of Italy

  3. Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator

    Directory of Open Access Journals (Sweden)

    Ahuja Tarushee

    2011-04-01

    Full Text Available Abstract Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG. In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2.

  4. Uranium concentrations in fossils measured by SIMS

    International Nuclear Information System (INIS)

    Uyeda, Chiaki; Okano, Jun

    1988-01-01

    Semiquantitative analyses of uranium in fossil bones and teeth were carried out by SIMS. The results show a tendency that uranium concentrations in the fossils increase with the ages of the fossils. It is noticed that fossil bones and teeth having uranium concentration of more than several hundred ppm are not rare. (author)

  5. Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments

    Science.gov (United States)

    Hagler, Gayle S. W.

    Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.

  6. Low correlation between household carbon monoxide and particulate matter concentrations from biomass-related pollution in three resource-poor settings

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, Elizabeth M.; Wills, Beatriz [Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore (United States); Naithani, Neha [Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore (United States); Nepal Nutrition Intervention Project Sarlahi, Kathmandu (Nepal); Gilman, Robert H. [Program in Global Disease Epidemiology and Control, Bloomberg School of Public Health, Johns Hopkins University, Baltimore (United States); Tielsch, James M. [Department of Global Health, School of Public Health and Health Services, George Washington University, Washington DC (United States); Chiang, Marilu [Biomedical Research Unit, A.B. PRISMA, Lima (Peru); Khatry, Subarna [Nepal Nutrition Intervention Project Sarlahi, Kathmandu (Nepal); Breysse, Patrick N. [Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore (United States); Menya, Diana [School of Public Health, Moi University, Eldoret (Kenya); AMPATH (Academic Model Providing Access to Healthcare), Eldoret (Kenya); Apaka, Cosmas [AMPATH (Academic Model Providing Access to Healthcare), Eldoret (Kenya); Carter, E. Jane; Sherman, Charles B. [AMPATH (Academic Model Providing Access to Healthcare), Eldoret (Kenya); Division of Pulmonary Medicine, The Warren Alpert School of Medicine, Brown University, Providence (United States); Miranda, J. Jaime [CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima (Peru); Checkley, William, E-mail: wcheckl1@jhmi.edu [Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore (United States); Program in Global Disease Epidemiology and Control, Bloomberg School of Public Health, Johns Hopkins University, Baltimore (United States); CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima (Peru)

    2015-10-15

    Household air pollution from the burning of biomass fuels is recognized as the third greatest contributor to the global burden of disease. Incomplete combustion of biomass fuels releases a complex mixture of carbon monoxide (CO), particulate matter (PM) and other toxins into the household environment. Some investigators have used indoor CO concentrations as a reliable surrogate of indoor PM concentrations; however, the assumption that indoor CO concentration is a reasonable proxy of indoor PM concentration has been a subject of controversy. We sought to describe the relationship between indoor PM{sub 2.5} and CO concentrations in 128 households across three resource-poor settings in Peru, Nepal, and Kenya. We simultaneously collected minute-to-minute PM{sub 2.5} and CO concentrations within a meter of the open-fire stove for approximately 24 h using the EasyLog-USB-CO data logger (Lascar Electronics, Erie, PA) and the personal DataRAM-1000AN (Thermo Fisher Scientific Inc., Waltham, MA), respectively. We also collected information regarding household construction characteristics, and cooking practices of the primary cook. Average 24 h indoor PM{sub 2.5} and CO concentrations ranged between 615 and 1440 μg/m{sup 3}, and between 9.1 and 35.1 ppm, respectively. Minute-to-minute indoor PM{sub 2.5} concentrations were in a safe range (<25 μg/m{sup 3}) between 17% and 65% of the time, and exceeded 1000 μg/m{sup 3} between 8% and 21% of the time, whereas indoor CO concentrations were in a safe range (<7 ppm) between 46% and 79% of the time and exceeded 50 ppm between 4%, and 20% of the time. Overall correlations between indoor PM{sub 2.5} and CO concentrations were low to moderate (Spearman ρ between 0.59 and 0.83). There was also poor agreement and evidence of proportional bias between observed indoor PM{sub 2.5} concentrations vs. those estimated based on indoor CO concentrations, with greater discordance at lower concentrations. Our analysis does not support the

  7. Submicron particulate organic matter in the urban atmosphere: a new method for real-time measurement, molecular-level characterization and source apportionment

    Science.gov (United States)

    Müller, Markus; Eichler, Philipp; D'Anna, Barbara; Tan, Wen; Wisthaler, Armin

    2017-04-01

    We used a novel chemical analytical method for measuring submicron particulate organic matter in the atmosphere of three European cities (Innsbruck, Lyon, Valencia). Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) was used in combination with the "chemical analysis of aerosol online" (CHARON) inlet for detecting particulate organic compounds on-line (i.e. without filter pre-collection), in real-time (1-min time resolution), at ng m-3 concentrations, with molecular-level resolution (i.e. obtaining molecular weight and elemental composition information). The CHARON-PTR-ToF-MS system monitored molecular tracers associated with different particle sources including levoglucosan from biomass combustion, PAHs from vehicular traffic, nicotine from cigarette smoking, and monoterpene oxidation products secondarily formed from biogenic emissions. The tracer information was used for interpreting positive matrix factorization (PMF) data which allowed us to apportion the sources of submicron particulate organic matter in the different urban environments. This work was funded through the PIMMS ITN, which was supported by the European Commission's 7th Framework Programme under grant agreement number 287382.

  8. Measurements and Analysis of Chemical Composition of Particulate Matter during High Pollution Events at Guanzhong Plain, China

    Science.gov (United States)

    Junji, C.

    2017-12-01

    Particulate matter pollution is a serious environmental problem which influencing air quality, regional and global climates, and human health. PM2.5 samples were collected at Guanzhong Plain with six sampling sites atdifferent cities in the year scale from 2012 to 2014. All of the six sites exhibited highest organic carbon (OC)and elemental carbon (EC) values in winter and lowest values in summer. OC correlates well with EC indicating similar emission sources. The contributions of secondary species SO42-, NO3- and NH4+ in total ions were greatest, and the high concentrations in winter were mainly due to emissions from coal combustion and biomass burning.During autumn the haze days were severest in Xi'an city with similar tendency of PM2.5 variations, and it was proved that biomass burning may be the main emission source of the regional pollution. In winter pollution episodes, the pollution patterns in Guanzhong Plain were similar which was resulted from strong secondary reactions and coal burning.Source apportionment using a positive matrix factorizationreceptor model indicates that on average secondary aerosol was the main source of PM2.5 (39.3%), followed by coal burning (17.3%), motor vehicle/industrial emissions (15.7%), fugitive dust (14.9%), and biomass burning (12.8%). The online, in situ measurement airborne species, especially the chemical composition of non-refectory submicron aerosol, during a heavyhaze-fog event, was analyzed in detailed.The formation of secondary sulfate and organic aerosol were observed during the event. The sulfur oxidation ratio (SOR), defined as sulfate/(SO2+sulfate) were mostly over 0.10, with a maximum of 0.30, when relative humidity > 80%. The aging product of organic aerosol (OA) were also observed in the event. The wet scattering coefficient was influenced by secondary sulfate, in the form of (NH4)2SO4, with contribution of 48.9% of wet particulate phase scattering. Thus decreased the visibility dramatically with a minimum of

  9. Passive Sampler for Measurements of Atmospheric Nitric Acid Vapor (HNO3 Concentrations

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2001-01-01

    Full Text Available Nitric acid (HNO3 vapor is an important nitrogenous air pollutant responsible for increasing saturation of forests with nitrogen and direct injury to plants. The USDA Forest Service and University of California researchers have developed a simple and inexpensive passive sampler for monitoring air concentrations of HNO3. Nitric acid is selectively absorbed on 47-mm Nylasorb nylon filters with no interference from particulate NO3-. Concentrations determined with the passive samplers closely corresponded with those measured with the co-located honeycomb annular denuder systems. The PVC protective caps of standardized dimensions protect nylon filters from rain and wind and allow for reliable measurements of ambient HNO3 concentrations. The described samplers have been successfully used in Sequoia National Park, the San Bernardino Mountains, and on Mammoth Mountain in California.

  10. Ferromagnetic resonance and transverse susceptibility measurements on particulate recording media (abstract)

    Science.gov (United States)

    Orth, Th.; Pelzl, J.; Chantrell, R. W.; Veitch, R.; Jakusch, H.

    1993-05-01

    The FMR absorption of different particulate recording tapes was investigated at microwave frequencies in the X band and Q band using temperatures from 70 to 400 K. The FMR spectra as a function of the external magnetic field were recorded for four different orientations of the static and high frequency magnetic fields with respect to the tape. Particular interest of the experimental and theoretical study was devoted to the interaction fields between the particles, texture effects within the tape sample and the effective anisotropy fields. Tape samples with different particle materials, varying packing densities and orientation ratios were prepared. The shape and line position of the FMR spectra obtained are strongly dependent on the pigment material and the tape parameters mentioned above. The experimental data are compared with theoretical calculations, based on a phenomenological model and a computer simulation. This comparison gives information on the orientational distribution of the particles, which is the most important source for inhomogeneous line broadening, the mean interaction, and anisotropy fields which govern the line position, the effective magnetization of the tape, and the relaxation time. The influence of the crystalline anisotropy can be investigated via temperature dependent measurements. The results are proved by additional transverse susceptibility measurements.

  11. Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.

    Science.gov (United States)

    Forder, James A

    2014-08-01

    This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. Measuring Concentration in Data with an Exogenous Order

    OpenAIRE

    Abedieh, Jasmin; Groll, Andreas; Eugster, Manuel J. A.

    2013-01-01

    Concentration measures order the statistical units under observation according to their market share. However, there are situations where an order according to an exogenous variable is more appropriate or even required. The present article introduces a generalized definition of market concentration and defines a corresponding concentration measure. It is shown that this generalized concept of market concentration satisfies the common axioms of (classical) concentration measures. In an appl...

  13. Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Seiffen, Germany

    Science.gov (United States)

    Poulain, L.; Iinuma, Y.; Müller, K.; Birmili, W.; Weinhold, K.; Brüggemann, E.; Gnauk, T.; Hausmann, A.; Löschau, G.; Wiedensohler, A.; Herrmann, H.

    2011-12-01

    Residential wood burning is becoming an increasingly important cause of air quality problems since it has become a popular source of alternative energy to fossil fuel. In order to characterize the contribution of residential wood burning to local particle pollution, a field campaign was organized at the village of Seiffen (Saxony, Germany). During this campaign, an Aerosol Mass Spectrometer (AMS) was deployed in parallel to a PM1 high volume filter sampler. The AMS mass spectra were analyzed using Positive Matrix Factorization (PMF) to obtain detailed information about the organic aerosol (OA). Biomass-burning organic aerosol (BBOA), Hydrocarbon-like organic aerosol (HOA), and Oxygenated Organic Aerosol (OOA) were identified and represented 20%, 17% and 62% of total OA, respectively. Additionally, Polycyclic Aromatic Hydrocarbons (PAH) were measured by the AMS with an average concentration of 10 ng m-3 and short term events of extremely high PAH concentration (up to 500 ng m-3) compared to the mean PAH value were observed during the whole measurement period. A comparison with the results from PM1 filter samples showed that the BBOA factor and the AMS PAH are good indicators of the total concentration of the different monosaccharide anhydrides and PAH measured on the filter samples. Based on its low correlation with CO and the low car traffic, the HOA factor was considered to be related to residential heating using liquid fuel. An influence of the time of the week (week vs. weekend) on the diurnal profiles of the different OA components was observed. The weekdays were characterized by two maxima; a first one early in the morning and a stronger one in the evening. During the weekend days, the different OA components principally reached only one maximum in the afternoon. Finally, the PAH emitted directly from residential wood combustion was estimated to represent 1.5% of the total mass of the BBOA factor and around 62% of the total PAH concentration measured at

  14. Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs in Seiffen, Germany

    Directory of Open Access Journals (Sweden)

    L. Poulain

    2011-12-01

    around 62% of the total PAH concentration measured at Seiffen. This result highlights the important contribution of residential wood combustion to air quality and PAH emissions at the sampling place, which might have a significant impact on human health. Moreover, it also emphasizes the need for a better time resolution of the chemical characterization of toxic particulate compounds in order to provide more information on variations of the different sources through the days as well as to better estimate the real human exposure.

  15. Long-term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in California Seventh-Day Adventists

    Energy Technology Data Exchange (ETDEWEB)

    Abbey, D.E.; Mills, P.K.; Petersen, F.F.; Beeson, W.L. (Loma Linda Univ. School of Medicine, CA (United States))

    1991-08-01

    Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution.

  16. Long-term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in California Seventh-Day Adventists.

    Science.gov (United States)

    Abbey, D E; Mills, P K; Petersen, F F; Beeson, W L

    1991-08-01

    Cancer incidence and mortality in a cohort of 6000 nonsmoking California Seventh-Day Adventists were monitored for a 6-year period, and relationships with long-term cumulative ambient air pollution were observed. Total suspended particulates (TSP) and ozone were measured in terms of numbers of hours in excess of several threshold levels corresponding to national standards as well as mean concentration. For all malignant neoplasms among females, risk increased with increasing exceedance frequencies of all thresholds of TSP except the lowest one, and those increased risks were highly statistically significant. For respiratory cancers, increased risk was associated with only one threshold of ozone, and this result was of borderline significance. Respiratory disease symptoms were assessed in 1977 and again in 1987 using the National Heart, Lung and Blood Institute respiratory symptoms questionnaire on a subcohort of 3914 individuals. Multivariate analyses which adjusted for past and passive smoking and occupational exposures indicated statistically significantly (p less than 0.05) elevated relative risks ranging up to 1.7 for incidence of asthma, definite symptoms of airway obstructive disease, and chronic bronchitis with TSP in excess of all thresholds except the lowest one but not for any thresholds of ozone. A trend association (p = 0.056) was noted between the threshold of 10 pphm ozone and incidence of asthma. These results are presented within the context of standards setting for these constituents of air pollution.

  17. Evaluation of correlating factors between 238U concentration measured in fine and course atmospheric particles

    International Nuclear Information System (INIS)

    Peixoto, Claudia Marques; Jacomino, Vanusa Maria Feliciano; Barreto, Alberto Avelar; Dias, Vagner Silva; Dias, Fabiana Ferrari

    2009-01-01

    Air quality is ever more important in function of the enormous proportion of human actions that have affected the environment over the last two centuries. Particulate material is one among many pollutants that can cause great risk to human health and the environment. It can be classified as: Total Suspended Particles (TSP), defined simply as particles with less than 50 μm aerodynamic diameter (one group of these particles can be inhaled and may cause health problems, while others may unfavorably affect the population's quality of life, interfering in environmental conditions and impairing normal community activities); and Inhalable Particles (PM 10 ), defined as those particles with less than 10 μm aerodynamic diameter. These particles penetrate the respiratory system and can reach pulmonary alveoli due to their small size, causing serious health damage. The Nuclear Technology Development Center (CDTN) has monitored air quality around its installations since 2000. CDTN's Environmental Monitoring Program (EMP) includes monitoring radioactivity levels contained in atmospheric TSP. In order to optimize its program, CDTN is carrying out a study to estimate the correlation between concentrations of particulate material measured in TSP and those measured in PM 10 , PI 2.5 and PI 1 , as well as determination of activity concentration for each controlled radionuclide in all parts. The objective of this study is to present preliminary results and report 238 U activity concentration results. (author)

  18. Concentrations of volatile organic compounds, carbon monoxide, carbon dioxide and particulate matter in buses on highways in Taiwan

    Science.gov (United States)

    Hsu, Der-Jen; Huang, Hsiao-Lin

    2009-12-01

    Although airborne pollutants in urban buses have been studied in many cities globally, long-distance buses running mainly on highways have not been addressed in this regard. This study investigates the levels of volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO 2) and particulate matter (PM) in the long-distance buses in Taiwan. Analytical results indicate that pollutants levels in long-distance buses are generally lower than those in urban buses. This finding is attributable to the driving speed and patterns of long-distance buses, as well as the meteorological and geographical features of the highway surroundings. The levels of benzene, toluene, ethylbenzene and xylene (BTEX) found in bus cabins exceed the proposed indoor VOC guidelines for aromatic compounds, and are likely attributable to the interior trim in the cabins. The overall average CO level is 2.3 ppm, with higher average level on local streets (2.9 ppm) than on highways (2.2 ppm). The average CO 2 level is 1493 ppm, which is higher than the guideline for non-industrial occupied settings. The average PM level in this study is lower than those in urban buses and IAQ guidelines set by Taiwan EPA. However, the average PM 10 and PM 2.5 is higher than the level set by WHO. Besides the probable causes mentioned above, fewer passenger movements and less particle re-suspension from bus floor might also cause the lower PM levels. Measurements of particle size distribution reveal that more than 75% of particles are in submicron and smaller sizes. These particles may come from the infiltration from the outdoor air. This study concludes that air exchange rates in long-distance buses should be increased in order to reduce CO 2 levels. Future research on long-distance buses should focus on the emission of VOCs from brand new buses, and the sources of submicron particles in bus cabins.

  19. Comparing on-road real-time simultaneous in-cabin and outdoor particulate and gaseous concentrations for a range of ventilation scenarios

    Science.gov (United States)

    Leavey, Anna; Reed, Nathan; Patel, Sameer; Bradley, Kevin; Kulkarni, Pramod; Biswas, Pratim

    2017-10-01

    Advanced automobile technology, developed infrastructure, and changing economic markets have resulted in increasing commute times. Traffic is a major source of harmful pollutants and consequently daily peak exposures tend to occur near roadways or while travelling on them. The objective of this study was to measure simultaneous real-time particulate matter (particle numbers, lung-deposited surface area, PM2.5, particle number size distributions) and CO concentrations outside and in-cabin of an on-road car during regular commutes to and from work. Data was collected for different ventilation parameters (windows open or closed, fan on, AC on), whilst travelling along different road-types with varying traffic densities. Multiple predictor variables were examined using linear mixed-effects models. Ambient pollutants (NOx, PM2.5, CO) and meteorological variables (wind speed, temperature, relative humidity, dew point) explained 5-44% of outdoor pollutant variability, while the time spent travelling behind a bus was statistically significant for PM2.5, lung-deposited SA, and CO (adj-R2 values = 0.12, 0.10, 0.13). The geometric mean diameter (GMD) for outdoor aerosol was 34 nm. Larger cabin GMDs were observed when windows were closed compared to open (b = 4.3, p-value = <0.01). When windows were open, cabin total aerosol concentrations tracked those outdoors. With windows closed, the pollutants took longer to enter the vehicle cabin, but also longer to exit it. Concentrations of pollutants in cabin were influenced by outdoor concentrations, ambient temperature, and the window/ventilation parameters. As expected, particle number concentrations were impacted the most by changes to window position/ventilation, and PM2.5 the least. Car drivers can expect their highest exposures when driving with windows open or the fan on, and their lowest exposures during windows closed or the AC on. Final linear mixed-effects models could explain between 88 and 97% of cabin pollutant

  20. Turbidimetry for measurement of radon concentration

    International Nuclear Information System (INIS)

    Wang Huanqiang

    1993-01-01

    This paper describes a turbidimetric technique counting the tracks registered on CR-39 foils exposed to radon. Instead of eyeview through microscope, by using the differential spectrophotometer, strong correlation between the radon cumulative concentration and track turbidence was observed(r=0.999). Under the etching condition of 7.07 mol·L -1 KOH water solution at 80 o C for 16 hr, linear regression showed that the ratio of track turbidence and cumulative concentration of radon exposure was 1.99 x 10 -1 turbidence (KBq m -1 h) -1 and the determination limit was 36 KBq m -3 h. The details of the experiments are represented in this paper. (Author)

  1. Radon concentration measurements in therapeutic spring water

    International Nuclear Information System (INIS)

    Deak, N.; Horvath, A.; Sajo B, L.; Marx, G.

    1996-01-01

    It is believed that people undergoing a curative cycle in a given spa, may receive a dose in the range of 400 mSv/year which is many times the average annual dose so that their risk of lung cancer may increase by 3% or more. To determine the risk due to the natural radioactivity, of the most frequented spas in Budapest (H), we selected four and some others located on the country side being of particular interest. Results of the radon concentration in spring water are presented, with the evidence that some spas have a high radon concentration. We conclude that patients receiving treatment may be exposed to an additional dose in the range of 29-76 mSv/year that at the bronchia could be between 445-1182 mSv/year. (authors). 6 refs., 2 figs., 2 tabs

  2. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    International Nuclear Information System (INIS)

    Balasubramani, Aparna; Howell, Nathan L.; Rifai, Hanadi S.

    2014-01-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K oc values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K ow , organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs

  3. An exploratory analysis of the relationship between ambient ozone and particulate matter concentrations during early pregnancy and selected birth defects in Texas

    International Nuclear Information System (INIS)

    Vinikoor-Imler, Lisa C.; Stewart, Thomas G.; Luben, Thomas J.; Davis, J. Allen; Langlois, Peter H.

    2015-01-01

    We performed an exploratory analysis of ozone (O 3 ) and fine particulate matter (PM 2.5 ) concentrations during early pregnancy and multiple types of birth defects. Data on births were obtained from the Texas Birth Defects Registry (TBDR) and the National Birth Defects Prevention Study (NBDPS) in Texas. Air pollution concentrations were previously determined by combining modeled air pollution concentrations with air monitoring data. The analysis generated hypotheses for future, confirmatory studies; although many of the observed associations were null. The hypotheses are provided by an observed association between O 3 and craniosynostosis and inverse associations between PM 2.5 and septal and obstructive heart defects in the TBDR. Associations with PM 2.5 for septal heart defects and ventricular outflow tract obstructions were null using the NBDPS. Both the TBDR and the NBPDS had inverse associations between O 3 and septal heart defects. Further research to confirm the observed associations is warranted. - Highlights: • Air pollution concentrations combined modeled air data and air monitoring data. • No associations were observed between the majority of birth defects and PM 2.5 and O 3 . • Estimated associations between PM 2.5 and certain heart defects varied by dataset. • Results were suggestive of an inverse association between O 3 and septal heart defects. • Higher O 3 concentrations may be associated with increased odds of craniosynostosis. - Although most observed associations between ozone and fine particulate matter concentrations and birth defects were null, some were present and warrant further consideration

  4. Ambient concentrations of total suspended particulate matter and its elemental constituents at the wider area of the mining facilities of TVX Hellas in Chalkidiki, Greece.

    Science.gov (United States)

    Gaidajis, George

    2003-01-01

    To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.

  5. Characteristics of Airborne Particulates Containing Naturally Occurring Radioactive Materials in Monazite Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Geon; Choi, Cheol Kyu; Park, Il; Kim, Min Jun; Go, A Ra; Ji, Seung Woo; Kim, Kwang Pyo [Kyunghee University, Yongin (Korea, Republic of); Koo, Bon Cheol [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of this study was to characterize physicochemical properties of airborne particulates at a monazite pulverization industry. The properties included particulate size distribution, concentration, shape, density, and radioactivity concentration. Monazite is one of the minerals containing naturally occurring radioactive material (NORM). Therefore, external and internal exposure can be occurred to the workers in monazite industry. The major exposure pathway of the workers is internal exposure due to inhalation of airborne particulates. According to International Commission on Radiological Protection (ICRP), radiation dose due to inhaled particulates containing NORM depends on particulate properties. Therefore, ICRP recommended the internal dose assessment using measured physicochemical properties of the airborne particulates. In the absence of specific information, ICRP provided default reference values. In this study, we characterized physicochemical properties of airborne particulates at a monazite pulverization industry. The databases of particulate information can be used for accurate internal dose assessment of worker.

  6. Prediction of Hourly Particulate Matter Concentrations in Chiangmai, Thailand Using MODIS Aerosol Optical Depth and Ground-Based Meteorological Data

    Directory of Open Access Journals (Sweden)

    Thongchai Kanabkaew

    2013-07-01

    Full Text Available Various extreme events recorded over the world have been recognized as scientific-based evidence from possible climate change and variability. The incidence of increasing forest fires and intensive agricultural field burning in Chiangmai and Northern Thailand due to favor conditions may also due to a likely increase of droughts caused by the changing climate. Smog from biomass burning, particularly particulate matter (PM seriously affects health and the environment. Lack and sparse of ground monitors may cause unreliability for warning information. Satellite remote sensing is now a promising technology for air quality prediction at ground level. This study was to investigate the statistical model for predicting PM concentration using satellite data. Aerosol optical depth (AOD data were gathered from MODIS-Terra platform while hourly PM2.5 and PM10 data were collected from the Pollution Control Department. The relationship between AOD and hourly PM over Chiangmai was addressed by Model I-Simple linear regression and Model II-Multiple linear regression with ground-based meteorological data correction. The data used for the statistical analyses were from smog period in 2012 (January-April. Results revealed that AOD and hourly PM in Model I were positively correlated with the coefficient of determination (R2 of 0.22 and 0.21, respectively for PM2.5 and PM10. The relationship between AOD and hourly PM was improved significantly when correcting with relative humidity and temperature data. The model II gave R2 of 0.77 and 0.71, respectively for PM2.5 and PM10. To investigate the validity of model, the regression equation obtained from Model II was then applied with smog data over Chiangmai in March 2007. The model performed reasonably with R2 of 0.74. The model applications would provide supplementary data to other areas with similar conditions and without air quality monitoring stations, and reduce false warning the level of air pollution associated

  7. The Effect of Mississippi River Discharge on the Concentration and Composition of Particulate Matter along the Texas-Louisiana Shelf during Summers 2012 and 2013

    Science.gov (United States)

    Richardson, M. J.; Zuck, N.; Gardner, W. D.

    2016-02-01

    Flow from the Mississippi-Atchafalaya River System generally peaks during the spring freshet, discharging nutrient-rich fresh water and sediment into the northern Gulf of Mexico. The peak discharge varies year to year as a result of varying drought or flood conditions in the Mississippi watershed. When compared to an 8-year climatological average, summer 2012 is characterized by low discharge into the northern Gulf of Mexico, whereas summer 2013 is characterized by average discharge conditions. Water samples were collected during four cruises during June and August of 2012 and 2013 to assess the changes in concentration and composition of bulk particulate matter. While no consistent relationship between particulate matter composition and hypoxia was observed, there are several statistically significant seasonal and inter-annual changes in the concentration and composition of particulate matter associated with varying river discharge. There is also evidence that some sub-pycnocline turbidity and chlorophyll-a may be due to in situ primary productivity, rather than settled plankton containing chlorophyll-a.

  8. Investigation of time-resolved atmospheric conditions and indoor/outdoor particulate matter concentrations in homes with gas and biomass cook stoves in Nogales, Sonora, Mexico.

    Science.gov (United States)

    Holmes, Heather A; Pardyjak, Eric R

    2014-07-01

    This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor

  9. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    D. Stramski

    2008-02-01

    Full Text Available We have examined several approaches for estimating the surface concentration of particulate organic carbon, POC, from optical measurements of spectral remote-sensing reflectance, Rrs(λ, using field data collected in tropical and subtropical waters of the eastern South Pacific and eastern Atlantic Oceans. These approaches include a direct empirical relationship between POC and the blue-to-green band ratio of reflectance, RrsB/Rrs(555, and two-step algorithms that consist of relationships linking reflectance to an inherent optical property IOP (beam attenuation or backscattering coefficient and POC to the IOP. We considered two-step empirical algorithms that exclusively include pairs of empirical relationships and two-step hybrid algorithms that consist of semianalytical models and empirical relationships. The surface POC in our data set ranges from about 10 mg m−3 within the South Pacific Subtropical Gyre to 270 mg m−3 in the Chilean upwelling area, and ancillary data suggest a considerable variation in the characteristics of particulate assemblages in the investigated waters. The POC algorithm based on the direct relationship between POC and RrsB/Rrs(555 promises reasonably good performance in the vast areas of the open ocean covering different provinces from hyperoligotrophic and oligotrophic waters within subtropical gyres to eutrophic coastal upwelling regimes characteristic of eastern ocean boundaries. The best error statistics were found for power function fits to the data of POC vs. Rrs(443/Rrs(555 and POC vs. Rrs(490/Rrs(555. For our data set that includes over 50 data pairs, these relationships are characterized by the mean normalized bias of about 2% and the normalized root mean square error of about 20%. We

  10. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    Science.gov (United States)

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.

  11. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  12. Particulate carbon in the atmosphere

    International Nuclear Information System (INIS)

    Surakka, J.

    1992-01-01

    Carbonaceous aerosols are emitted to the atmosphere in combustion processes. Carbon particles are very small and have a long residence time in the air. Black Carbon, a type of carbon aerosol, is a good label when transport of combustion emissions in the atmosphere is studied. It is also useful tool in air quality studies. Carbon particles absorb light 6.5 to 8 times stronger than any other particulate matter in the air. Their effect on decreasing visibility is about 50 %. Weather disturbances are also caused by carbon emissions e.g. in Kuwait. Carbon particles have big absorption surface and capacity to catalyze different heterogenous reactions in air. Due to their special chemical and physical properties particulate carbon is a significant air pollution specie, especially in urban air. Average particulate carbon concentration of 5.7 μg/m 2 have been measured in winter months in Helsinki

  13. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions

    Science.gov (United States)

    Levia, Delphis F.; Michalzik, Beate; Bischoff, Sebastian; NäThe, Kerstin; Legates, David R.; Gruselle, Marie-Cecile; Richter, Susanne

    2013-04-01

    Particulate matter (PM) plays an important role in biogeosciences, affecting biosphere-atmosphere interactions and ecosystem health. This is the first known study to quantify and model PM diameter distributions of bulk precipitation, throughfall, stemflow, and organic layer (Oa) solution. Solutions were collected from a European beech (Fagus sylvatica L.) forest during leafed and leafless periods. Following scanning electron microscopy and image analysis, PM distributions were quantified and then modeled with the Box-Cox transformation. Based on an analysis of 43,278 individual particulates, median PM diameter of all solutions was around 3.0 µm. All PM diameter frequency distributions were skewed significantly to the right. Optimal power transformations of PM diameter distributions were between -1.00 and -1.56. The utility of this model reconstruction would be that large samples having a similar probability density function can be developed for similar forests. Further work on the shape and chemical composition of particulates is warranted.

  14. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    Science.gov (United States)

    Phillips-Smith, Catherine; Jeong, Cheol-Heon; Healy, Robert M.; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Brook, Jeffrey R.; Evans, Greg

    2017-08-01

    The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter) were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010-November 2012) at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013), hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow, water, and biota samples collected

  15. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramani, Aparna, E-mail: aparna.27889@gmail.com; Howell, Nathan L., E-mail: nlhowell@central.uh.edu; Rifai, Hanadi S., E-mail: rifai@uh.edu

    2014-03-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K{sub oc} values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K{sub ow}, organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs.

  16. Quantifying uncertainty in measurement of mercury in suspended particulate matter by cold vapor technique using atomic absorption spectrometry with hydride generator.

    Science.gov (United States)

    Singh, Nahar; Ahuja, Tarushee; Ojha, Vijay Narain; Soni, Daya; Tripathy, S Swarupa; Leito, Ivo

    2013-01-01

    As a result of rapid industrialization several chemical forms of organic and inorganic mercury are constantly introduced to the environment and affect humans and animals directly. All forms of mercury have toxic effects; therefore accurate measurement of mercury is of prime importance especially in suspended particulate matter (SPM) collected through high volume sampler (HVS). In the quantification of mercury in SPM samples several steps are involved from sampling to final result. The quality, reliability and confidence level of the analyzed data depends upon the measurement uncertainty of the whole process. Evaluation of measurement uncertainty of results is one of the requirements of the standard ISO/IEC 17025:2005 (European Standard EN IS/ISO/IEC 17025:2005, issue1:1-28, 2006). In the presented study the uncertainty estimation in mercury determination in suspended particulate matter (SPM) has been carried out using cold vapor Atomic Absorption Spectrometer-Hydride Generator (AAS-HG) technique followed by wet chemical digestion process. For the calculation of uncertainty, we have considered many general potential sources of uncertainty. After the analysis of data of seven diverse sites of Delhi, it has been concluded that the mercury concentration varies from 1.59 ± 0.37 to 14.5 ± 2.9 ng/m(3) with 95% confidence level (k = 2).

  17. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    International Nuclear Information System (INIS)

    Chan, K.L.; Jiang, S.Y.N.; Ning, Z.

    2016-01-01

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R 2  > 0.999) and low detection limit (0.06 μg L −1 ) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  18. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.L. [Meteorological Institute, Ludwig Maximilian University of Munich, Munich (Germany); School of Energy and Environment, City University of Hong Kong (Hong Kong); Jiang, S.Y.N. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong)

    2016-03-31

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R{sup 2} > 0.999) and low detection limit (0.06 μg L{sup −1}) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  19. Particulate matter emission from livestock houses: measurement methods, emission levels and abatement systems

    NARCIS (Netherlands)

    Winkel, Albert

    2016-01-01

    Animal houses are extremely dusty environments. Airborne particulate matter (PM) poses a health threat not only to the farmer and the animals, but, as a result of emissions from ventilation systems, also to residents living in livestock farming areas. In relation to this problem, the objectives

  20. Advances in deuterium dioxide concentration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Shon, Woojung [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Sung Paal, E-mail: nspyim@kaeri.re.kr [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Lim; Park, Hyunmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Kwang Rag; Chung, Hongsuk [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheo Kyung [Handong Global University, Pohang (Korea, Republic of)

    2016-11-01

    Highlights: • Heavy water (D{sub 2}O) with a high purity level is necessary for nuclear fusion application. • D{sub 2}O purity is analyzed using Fourier Transform infrared (FT-IR) spectroscopy and newly introduced off-axis integrated cavity output spectroscopy (OA-ICOS). • OA-ICOS has advantages in terms of analysis of D{sub 2}O vapor. • OA-ICOS is expected that it can be used for accurate isotopic analyses in the future. - Abstract: The deuterium–tritium (D–T) reaction has been identified as the most efficient reaction for fusion devices. Deuterium can be obtained by heavy water electrolysis. Heavy water (D{sub 2}O) with a high purity level is necessary for nuclear fusion application. A D{sub 2}O isotopic analysis is thus very important. A system for a heavy water analysis was built and a newly designed isotopic analysis experiment was carried out. We tried to analyze the D{sub 2}O purity using Fourier Transform infrared (FT-IR) spectroscopy and newly introduced off-axis integrated cavity output spectroscopy (OA-ICOS). We found that the OA-ICOS based on measurement via laser absorption spectroscopy shows very high sensitivity. We ameliorated the sensitivity by an order of magnitude of more than 10{sup 3}–10{sup 5}. We could make the apparatus smaller by employing very tiny diode laser and fiber optics elements of a DFB (Distributed Feedback) type. Consequently, our device has advantages in terms of maintainability and mobility even in a radioactive environment. This new method could be used for an accurate isotopic analysis in the future.

  1. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    Energy Technology Data Exchange (ETDEWEB)

    Fruin, S. [California Air Resources Board, Sacramento (United States); University of Southern California, Los Angeles (United States). Keck School of Medicine, Department of Preventive Medicine; Westerdahl, D.; Sax, T. [California Air Resources Board, Sacramento (United States); Sioutas, C. [University of Southern California, Los Angeles (United States). Civil and Environmental Engineering; Fine, P.M. [University of Southern California, Los Angeles (United States). Civil and Environmental Engineering; South Coast Air Quality Management District, Diamond Bar, CA (United States)

    2008-01-15

    Motor vehicles are the dominant source of oxides of nitrogen (NO{sub x}), particulate matter(PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction ({approx}6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated wth readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles. (author)

  2. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    International Nuclear Information System (INIS)

    Fruin, S.; Sioutas, C.

    2008-01-01

    Motor vehicles are the dominant source of oxides of nitrogen (NO x ), particulate matter(PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (∼6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated wth readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles. (author)

  3. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    Science.gov (United States)

    Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C.; Fine, P. M.

    Motor vehicles are the dominant source of oxides of nitrogen (NO x), particulate matter (PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (˜6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated with readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles.

  4. Aircraft measurements to characterize polluted winter boundary layers: Overview of twin otter flights during the Utah Winter Fine Particulate Matter Study

    Science.gov (United States)

    Brown, S. S.; Baasandorj, M.; Franchin, A.; Middlebrook, A. M.; Goldberger, L.; Thornton, J. A.; Dube, W. P.; McDuffie, E. E.; Womack, C.; Fibiger, D. L.; Moravek, A.; Clark, J. C.; Murphy, J. G.; Mitchell, R.

    2017-12-01

    Winter air pollution is a significant public health concern. In many regions of the U.S., Europe and Asia, wintertime particulate matter concentrations exceed national and / or international air quality standards. Winter air pollution also represents a scientific challenge because these events occur during stagnation events in shallow, vertically stratified boundary layers whose composition is difficult to probe from surface level measurements. Chemical processes responsible for the conversion of primary emissions to secondary pollutants such as ammonium nitrate aerosol vary with height above ground level. Sources of oxidants are poorly understood and may result from both local chemical production and mixing between shallow inversion layers and background air. During the Utah Winter Fine Particulate Study (UWFPS) in January - February 2017, the NOAA twin otter executed 23 research flights with a payload designed to characterize the formation of ammonium nitrate aerosol in three mountain valleys of northern Utah (Salt Lake, Cache, and Utah). These valleys are subject to periodic episodes of winter aerosol pollution well in excess of U.S. national ambient air quality standards. This presentation will describe the measurement strategy of the twin otter flights to address the specific features of aerosol pollution within winter boundary layer of this region. This strategy is relevant to understanding the broader issue of winter air pollution in other regions and potentially to the design of future studies. The presentation will summarize findings from UWFPS related to boundary layer structure, emissions and chemical processes responsible for ammonium nitrate aerosol in this region.

  5. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    Science.gov (United States)

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  6. Waste Gas And Particulate Control Measures For Laser Cutters In The Automotive Cloth Industry

    Science.gov (United States)

    Ball, R. D.; Kulik, B. F.; Stoncel, R. J.; Tan, S. L.

    1986-11-01

    Demands for greater flexibility and accuracy in the manufacture of automobile trim parts has made single-ply laser cutting an attractive proposition. Lasers are able to cut a large variety of cloth types, from vinyls to velours. Unlike mechanically cut parts, which in the case of velours produce rough edges and dust problems, laster cutting of parts produces smooth edges, fumes and fine particulate. A detailed study of the nature of the laser effluent from a cross section of typical synthetic cloth found in an automotive trim plant was undertaken. Most samples were cut by a fast axial flow, 500 Watt, continuous wave CO2 laser. A 254 mm (10-inch) focussing optics package was used. The width of the kerf varied with the material, and values were determined at between 0.2 and 0.7 mm. Particle size distribution analysis and rates of particulate emission for each cloth were determined. Gases were collected in gas sample bags and analyzed using Fourier transform infrared analysis. Low boiling point organics were collected on activated charcoal tubes, identified on a gas chromatograph mass spectrometer, and quantified on a gas chromatograph. Inorganic contaminants were collected on filter paper and analysed on an inductively coupled plasma atomic emission spectrometer. A number of different effluent control systems were evaluated. Due to the very fine and sticky nature of the particulate, filters capable of removing particulate sizes in the 10 μm or lower range, tend to clog rapidly. Laboratory scale models of wet scrubbers, and electrostatic precipitators were built and tested. The most effective dust and effluent gas control was given by a wet electrostatic precipitator. This system, in conjunction with a scrubber, should maintain emission levels within environmental standards.

  7. Indoor particulate matter measurement as a tool in the process of the implementation of smoke-free hospitals.

    Science.gov (United States)

    Nardini, S; Cagnin, R; Invernizzi, G; Ruprecht, A; Boffi, R; Formentini, S

    2004-01-01

    There are International and National standards that requires hospitals and health premises to be smoke-free. According to recent data from Italy and other European Countries, smoking is a widespread habit in hospitals. To get smoke-free hospitals in an Italian region, we have adopted the European Code for smoke-free hospitals, which sets standards and provides instruments for its implementation. According to the Code, whenever possible, each step towards a smoke-free hospital, should be shared by all staff. As a mean for achieving this goal, in our region the certification of single units as smoke-free units has been chosen. For getting the certification, besides implementing the Code, we planned to use ETS (Environmental Tobacco Smoke) monitoring, as ETS should not be present in hospitals. As a marker of ETS we have chosen Particulate Matter (PM), as it can easily be measured in real-time with a portable instrument and, when other even outdoor--sources of combustion can be ruled out, it is an accurate detector of cigarette smoke. Here the first experience of measuring PM in hospitals for monitoring ETS and certificating smoke-free health premises, is described. PM measurements were carried out without any previous notification in different areas of two Network hospitals of the Veneto Region, during a single working day. A real time laser-operated aerosol mass analyser was used. Several classes of PM (PM1, PM2.5, PM7, PM10, TSP Total Suspended Particles) were measured. Outdoor PM levels were found to be repeatedly lower than the annual official limits of 65 mcg/m3 and around the 24 hour official limits of 15 mcg/m3 [15 to 20 mcg/m3, with an overall mean (+/-SD) of 17.8 (1.9)] throughout the whole day. Very good indoor air quality was found in the operating theaters and isolation department, where PM2.5 concentrations were much lower than outdoor levels [1.6 (0.9) and 5.9 (0.6) mcg/m3, respectively]. No increase in PM pollution was found in the surveyed medical

  8. Airborne particulate concentration during laser hair removal: A comparison between cold sapphire with aqueous gel and cryogen skin cooling.

    Science.gov (United States)

    Ross, Edward V; Chuang, Gary S; Ortiz, Arisa E; Davenport, Scott A

    2018-04-01

    High concentrations of sub-micron nanoparticles have been shown to be released during laser hair removal (LHR) procedures. These emissions pose a potential biohazard to healthcare workers that have prolonged exposure to LHR plume. We sought to demonstrate that cold sapphire skin cooling done in contact mode might suppress plume dispersion during LHR. A total of 11 patients were recruited for laser hair removal. They were treated on the legs and axilla with a 755 or 1064 nm millisecond-domain laser equipped with either (i) cryogen spray (CSC); (ii) refrigerated air (RA); or (iii) contact cooling with sapphire (CC). Concentration of ultrafine nanoparticles <1 μm were measured just before and during LHR with the three respective cooling methods. For contact cooling (CC), counts remained at baseline levels, below 3,500 parts per cubic centimeter (ppc) for all treatments. In contrast, the CSC system produced large levels of plume, peaking at times to over 400,000 ppc. The CA cooled system produced intermediate levels of plume, about 35,000 ppc (or about 10× baseline). Cold Sapphire Skin cooling with gel suppresses plume during laser hair removal, potentially eliminating the need for smoke evacuators, custom ventilation systems, and respirators during LHR. Lasers Surg. Med. 50:280-283, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. The impact of photovoltaic (PV) installations on downwind particulate matter concentrations: Results from field observations at a 550-MWAC utility-scale PV plant.

    Science.gov (United States)

    Ravikumar, Dwarakanath; Sinha, Parikhit

    2017-10-01

    With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM 2.5 and PM 10 (PM with aerodynamic diameters construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM 2.5 and PM 10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM 2.5 and PM 10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM 2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions. This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM

  10. Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent

    Science.gov (United States)

    Aikawa, Masahide; Ohara, Toshimasa; Hiraki, Takatoshi; Oishi, Okihiro; Tsuji, Akihiro; Yamagami, Makiko; Murano, Kentaro; Mukai, Hitoshi

    2010-01-01

    We found a significant geographic gradient (longitudinal and latitudinal) in the sulfate (SO 42-) concentrations measured at multiple sites over the East Asian Pacific Rim region. Furthermore, the observed gradient was well reproduced by a regional chemical transport model. The observed and modeled SO 42- concentrations were higher at the sites closer to the Asian continent. The concentrations of SO 42- from China as calculated by the model also showed the fundamental features of the longitudinal/latitudinal gradient. The proportional contribution of Chinese SO 42- to the total in Japan throughout the year was above 50-70% in the control case, using data for Chinese sulfur dioxide (SO 2) emission from the Regional Emission Inventory in Asia (40-60% in the low Chinese emissions case, using Chinese SO 2 emissions data from the State Environmental Protection Administration of China), with a winter maximum of approximately 65-80%, although the actual concentrations of SO 42- from China were highest in summer. The multiple-site measurements and the model analysis strongly suggest that the SO 42- concentrations in Japan were influenced by the outflow from the Asian continent, and this influence was greatest in the areas closer to the Asian continent. In contrast, we found no longitudinal/latitudinal gradient in SO 2 concentrations; instead SO 2 concentrations were significantly correlated with local SO 2 emissions. Our results show that large amounts of particulate sulfate are transported over long distances from the East Asian Pacific Rim region, and consequently the SO 42- concentrations in Japan are controlled by the transboundary outflow from the Asian continent.

  11. Lessons learned from a review of post-accident sampling systems, high range effluent monitors and high concentration particulate iodine samplers

    International Nuclear Information System (INIS)

    Hull, A.P.; Knox, W.H.; White, J.R.

    1987-01-01

    Post-accident sampling systems (PASS), high range gaseous effluent monitors and sampling systems for particulates and iodine in high concentrations have been reviewed at twenty-one licensee sites in Region I of the US Nuclear Regulatory Commission which includes fifteen BWR's and fourteen PWR's. Although most of the installed PASS met the criteria, the highest operational readiness was found in on-line systems that were also used for routine sampling and analysis. The detectors used in the gaseous effluent monitors included external ion chambers, GM tubes, organic scintillators and Cd-Te solid state crystals. Although all were found acceptable, each had its own inherent limitations in the conversion of detector output to the time varying concentration of a post-accident mixture of noble gases. None of the installed particulate and iodine samplers fully met all of the criteria. Their principal limitations included a lack of documentation showing that they could obtain a representative sample and that many of them would collect of an excessive amount of activity at the design criteria. 10 refs., 4 figs., 5 tabs

  12. Nondestructive measurement for radionuclide concentration distribution in soil column

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Ohnuki, Toshihiko; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1985-01-01

    A nondestructive method has been studied for determining the concentration of radionuclide (Cs-137) distributed in a soil column. The concentration distribution was calculated from the counting rate distribution using the efficiency matrix of a detector. The concentration distribution obtained by this method, with measuring efficiencies of theoretical calculation, coincides well with that obtained by the destructive sampling method. This method is, therefore, found to be effective for the measurement of one dimensional concentration distribution. The measuring limit of this method is affected not only by the radionuclide concentration but also by the shape of concentration distribution in a soil column and also by the way it is divided into concentration blocks. It is found that, the radioactive concentration up to 2.6 x 10 -4 μCi/g (9.62 Bq/g), and also the distribution up to where the concentration reduces to half at every 1 cm of depth, can be measured by this system. The concentration blocks can be divided into 1 cm of thickness as a minimum value. (author)

  13. National-scale exposure prediction for long-term concentrations of particulate matter and nitrogen dioxide in South Korea.

    Science.gov (United States)

    Kim, Sun-Young; Song, Insang

    2017-07-01

    The limited spatial coverage of the air pollution data available from regulatory air quality monitoring networks hampers national-scale epidemiological studies of air pollution. The present study aimed to develop a national-scale exposure prediction model for estimating annual average concentrations of PM 10 and NO 2 at residences in South Korea using regulatory monitoring data for 2010. Using hourly measurements of PM 10 and NO 2 at 277 regulatory monitoring sites, we calculated the annual average concentrations at each site. We also computed 322 geographic variables in order to represent plausible local and regional pollution sources. Using these data, we developed universal kriging models, including three summary predictors estimated by partial least squares (PLS). The model performance was evaluated with fivefold cross-validation. In sensitivity analyses, we compared our approach with two alternative approaches, which added regional interactions and replaced the PLS predictors with up to ten selected variables. Finally, we predicted the annual average concentrations of PM 10 and NO 2 at 83,463 centroids of residential census output areas in South Korea to investigate the population exposure to these pollutants and to compare the exposure levels between monitored and unmonitored areas. The means of the annual average concentrations of PM 10 and NO 2 for 2010, across regulatory monitoring sites in South Korea, were 51.63 μg/m3 (SD = 8.58) and 25.64 ppb (11.05), respectively. The universal kriging exposure prediction models yielded cross-validated R 2 s of 0.45 and 0.82 for PM 10 and NO 2 , respectively. Compared to our model, the two alternative approaches gave consistent or worse performances. Population exposure levels in unmonitored areas were lower than in monitored areas. This is the first study that focused on developing a national-scale point wise exposure prediction approach in South Korea, which will allow national exposure assessments and

  14. Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production

    International Nuclear Information System (INIS)

    Hahn, D. W.; Hencken, K. R.; Johnsen, H. A.; Ross, J. R.; Walsh, P. M.

    1998-01-01

    Particulate matter emissions and some components of the particles were measured in the exhaust from combustion equipment used in oil and gas production operations near Bakersfield, California. The combustion sources included a 22.5 MW (electric) turbine generator, a 342-Bhp rich-burn spark ignition engine, and a 50 million Btu/h steam generator, all fired using natural gas. The particle components and measurement techniques were as follows: (1) Calcium, magnesium, sodium, silicon, and iron were measured using laser-induced breakdown spectroscopy (LIBS), (2) particle-bound polycyclic aromatic hydrocarbons (PAH) were detected using the charge produced by photoionization, (3) particles having sizes between 0.1 and 7.5 (micro)m were counted using an instrument based on light scattering, and (4) total particulate matter was measured according to US EPA Method 5. Not all of the methods were applied to all of the sources. Measurements were also made in the ambient air near the combustion air inlets to the units, for comparison with the concentrations in the exhaust, but the inlet and outlet measurements were not done simultaneously. Calcium, sodium, and silicon were found in the exhaust from the steam generator at concentrations similar to those in the ambient air near the inlet to the burner. Sodium and silicon were observed in the engine exhaust at levels a factor of four higher than their concentrations in the air. The principal metal observed in the engine exhaust was calcium, a component of the lubricating oil, at a concentration of 11.6 (micro)g/m 3 . The air entering the gas turbine is filtered, so the average concentrations of metals in the turbine exhaust under steady operating conditions were even lower than in the air. During start-up following a shut-down to wash the turbine, silicon and iron were the major species in the stack, at concentrations of 6.4 and 16.2 (micro)g/m 3 , respectively. A possible source of silicon is the water injected into the turbine

  15. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    Directory of Open Access Journals (Sweden)

    C. Phillips-Smith

    2017-08-01

    Full Text Available The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010–November 2012 at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013, hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow

  16. The influence of air-suspended particulate concentration on the incidence of suicide attempts and exacerbation of schizophrenia

    Science.gov (United States)

    Yackerson, Naomy S.; Zilberman, Arkadi; Todder, Doron; Kaplan, Zeev

    2014-01-01

    The main objective of this study was to evaluate the role of the concentration of solid air-suspended particles (SSP) in the incidence of mental disorders. The study is based on 1,871 cases, registered in the Beer-Sheva Mental Health Center (BS-MHC) at Ben-Gurion University (Israel) during a 16-month period from 2001 to 2002; 1,445 persons were hospitalized due to exacerbation of schizophrenia (ICD-10: F20-F29) and 426 after committing a suicide attempt using a variety of means as coded in the ICD-10 (ICD-10: X60-X84). Pearson and Spearman test correlations were used; the statistical significance was tested at p suicide attempts, N SU , was found ( ρ > 0.3, p 0.2). A trend towards positive correlation ( ρ > 0.2, p 0.1). Obviously, concentration of SSP is not the one and only parameter of air pollution state determining meteorological-biological impact, involving incidence of mental disorders, although its role can scarcely be overstated. However, since it is one of the simplest measured parameters, it could be widely used and helpful in the daily struggle for human life comfort in semi-arid areas as well as urban and industrial surroundings, where air pollution reaches crucial values. This study may permit determination of the limits for different external factors, which do not overcome threshold values (without provoking avalanche situations), to single out the group of people at increased risk (with according degree of statistic probability), whose reactions to the weather violations can involve the outbreak of frustration points and prevent or alleviate detrimental mental effects.

  17. Measured and calculated NO2 concentrations in Amsterdam in 2008

    International Nuclear Information System (INIS)

    Wesseling, J.P.; Nguyen, P.L.; Van der Zee, S.

    2010-08-01

    Calculations using the Dutch standard calculation method for air quality in urban streets performed for 38 streets in Amsterdam in 2008 yield, on average, lower Nitrogen dioxide concentrations than measurements at those locations. This follows from research by the RIVM and the Public Health Service of Amsterdam (GGD Amsterdam). The average difference between measured and calculated concentrations is 11 %. At measuring locations of the National Air Quality Measuring Network in the Netherlands no significant underestimation of concentrations by the model is observed. The research was performed by the Dutch ministry of Housing, Spatial Planning en the Environment (VROM). The air quality in the streets that were investigated is mainly determined by emissions from local traffic. The measurements have been performed during thirteen periods of four weeks each, using so called 'Palmes' diffusion tubes. These measurements have been calibrated using the European reference method that is operational in the permanent measuring stations of the GGD Amsterdam. The calculations were performed using the geometry of the roads and information of the traffic at the measuring locations. Part of the differences can be explained, as some locations are not within the scope of the model. In these situations the model is known to perform slightly less. Apart from local traffic, other sources, like shipping, also contribute to the NO2 background concentrations in streets in Amsterdam. Sources that have only globally been included in the calculation of this background concentration may influence concentrations at specific locations. Further studies on this subject will be conducted in 2010. [nl

  18. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air.

    Science.gov (United States)

    Han, Inkyu; Symanski, Elaine; Stock, Thomas H

    2017-03-01

    Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM 2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM 2.5 concentration (13.2 ± 13.7 µg/m 3 ) was similar to the average measured Grimm 11-R PM 2.5 concentration (11.3 ± 15.1 µg/m 3 ). The overall correlation (r 2 ) for PM 2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m 3 ) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m 3 ) with an r 2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 . The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM 2.5 and coarse PM (PM 10-2.5 ) mass concentrations

  19. Effects of Barium Concentration on Oropharyngeal Swallow Timing Measures

    OpenAIRE

    Stokely, Shauna L.; Molfenter, Sonja M.; Steele, Catriona M.

    2013-01-01

    Videofluoroscopy is commonly used for evaluating oropharyngeal swallowing but requires radiopaque contrast (typically barium). Prior studies suggest that some aspects of swallowing, including timing measures of oral and pharyngeal bolus transit, vary depending on barium concentration. The aim of our study was to identify timing differences in healthy swallowing between “thin” (40 % w/v concentration) and “ultrathin” (22 % w/v concentration) barium solutions. Twenty healthy adults (Ten women; ...

  20. Variation of pH-measurement in platelet concentrates

    NARCIS (Netherlands)

    van der Meer, P. F.; van Zanten, A. P.; Pietersz, R. N.; Reesink, H. W.

    2001-01-01

    To measure pH in platelet concentrates, blood gas analysers with different calibration principles may be used. In this study, variances observed in pH measurements with two types of blood gas analysers were investigated. pH was measured in crystalloid solutions (platelet additive solution (PAS-II),

  1. The in-situ cometary particulate size distribution measured for one comet: P/Halley

    International Nuclear Information System (INIS)

    McDonnell, J.A.M.; Pankiewicz, G.S.

    1989-01-01

    The close approach of Giotto to comet Halley during its 1986 apparition offered an opportunity to study the particulate mass distribution to masses of up to one gram. Data acquired by the front end channels of the highly sensitive mass spectrometer PIA and the dust shield detector system, DIDSY, provide definition to the detected distribution as close as 1000 km to the nucleus. Dynamic motion of the particulates after emission leads to a spatial differentiation affecting the size distribution in several forms: (1) ejecta velocity dispersion; (2) radiation pressure; (3) varying heliocentric distance; and (4) anisotropic nucleus emission. Transformation of the in-situ distribution from PIA and DIDSY weighted heavily by the near-nucleus fluxes leads to a presumed nucleus distribution. The data lead to a puzzling distribution at large masses, not readily explained in an otherwise monotonous power law distribution. Although temporal changes in nucleus activity could and do modify the in-situ size distribution, such an explanation is not wholly possible, because the same form is observed at differing locations in the coma where the time of flight from the nucleus greatly varies. Thus neither a general change in comet activity nor spatial variations lead to a satisfactory explanation

  2. Measurement of emissions of fine particulate organic matter from Chinese cooking

    Science.gov (United States)

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan

    Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.

  3. In situ measurement of heavy metals in water using portable EDXRF and APDC pre-concentration methodology

    International Nuclear Information System (INIS)

    Melquiades, Fabio L.; Parreira, Paulo S.; Appoloni, Carlos R.; Silva, Wislley D.; Lopes, Fabio

    2007-01-01

    With the objective of identify and quantify metals in water and obtain results in the sampling place, Energy Dispersive X-Ray Fluorescence (EDXRF) methodology with a portable equipment was employed. In this work are presented metal concentration results for water samples from two points of Londrina city. The analysis were in situ, measuring in natura water and samples pre-concentrated in membranes. The work consisted on the use of a portable X-ray tube to excite the samples and a Si-Pin detector with the standard data acquisition electronics to register the spectra. The samples were filtered in membranes for suspended particulate matter retention. After this APDC precipitation methodology was applied for sample pre-concentration with posterior filtering in membranes. For in natura samples were found concentrations of total iron in Capivara River 254 ± 30 mg L -1 and at Igapo Lake 63 ± 9 mg L -1 . For membrane measurements, the results for particulate suspended matter at Capivara River were, in mg L -1 : 31.0 ± 2.5 (Fe), 0.17 ± 0.03 (Cu) and 0.93 ± 0.08 (Pb) and for dissolved iron was 0.038 ± 0.004. For Igapo Lake just Fe was quantified: 1.66 ±0.19 mg L -1 for particulate suspended iron and 0.79 ± 0.11 mg L -1 for dissolved iron. In 4 h of work at field it was possible to filter 14 membranes and measure around 16 samples. The performance of the equipment was very good and the results are satisfactory for in situ measurements employing a portable instrument. (author)

  4. Effects of barium concentration on oropharyngeal swallow timing measures.

    Science.gov (United States)

    Stokely, Shauna L; Molfenter, Sonja M; Steele, Catriona M

    2014-02-01

    Videofluoroscopy is commonly used for evaluating oropharyngeal swallowing but requires radiopaque contrast (typically barium). Prior studies suggest that some aspects of swallowing, including timing measures of oral and pharyngeal bolus transit, vary depending on barium concentration. The aim of our study was to identify timing differences in healthy swallowing between "thin" (40 % w/v concentration) and "ultrathin" (22 % w/v concentration) barium solutions. Twenty healthy adults (Ten women; mean age = 31 years) each performed a series of three noncued 5-ml swallows each of ultrathin and thin liquid barium solutions in videofluoroscopy. Timing measures were compared between barium concentrations using a mixed-model ANOVA. The measures of interest were stage transition duration, pharyngeal transit time, and duration of upper esophageal sphincter opening. Significant differences were observed in the timing measures of swallowing with respect to barium concentration. In all cases, longer durations were seen with the higher barium concentration. Barium concentration influences timing parameters in healthy swallowing, even between ultrathin and thin concentrations. Clinicians need to understand and control for the impact of different barium stimuli on swallowing physiology.

  5. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  6. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10

    International Nuclear Information System (INIS)

    Xie, RuiKai; Seip, Hans Martin; Wibetoe, Grethe; Nori, Showan; McLeod, Cameron William

    2006-01-01

    Coal burning generates toxic elements, some of which are characteristic of coal combustion such as arsenic and selenium, besides conventional coal combustion products. Airborne particulate samples with aerodynamic diameter less than 10 μm (PM 10 ) were collected in Taiyuan, China, and multi-element analyses were performed by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of arsenic and selenium from ambient air in Taiyuan (average 43 and 58 ng m -3 , respectively) were relatively high compared to what is reported elsewhere. Arsenic and selenium were found to be highly correlated (r=0.997), indicating an overwhelmingly dominant source. Correlation between these two chalcophile elements and the lithophile element Al is high (r is 0.75 and 0.72 for As and Se, respectively). This prompted the hypothesis that the particles were from coal combustion. The enrichment of the trace elements could be explained by the volatilization-condensation mechanism during coal combustion process. Even higher correlations of arsenic and selenium with PM 10 (r=0.90 and 0.88) give further support that airborne particulate pollution in Taiyuan is mainly a direct result of heavy coal consumption. This conclusion agrees with the results from our previous study of individual airborne particles in Taiyuan. (author)

  7. Concentrations and Size Distributions of Trace Metals in Particulate Matter in Urban New Jersey: Preliminary Results from the Newly Established Rutgers Newark Urban Air Quality Observatory.

    Science.gov (United States)

    Rabinovich, O.; Gao, Y.

    2017-12-01

    Particulate air pollution has been associated with health issues in general and respiratory diseases in particular. Some research has shown that higher concentration of fine particulate matter (PM) is found in lungs. However, why and what kind of PM plays the roles affecting the human health still need more investigations, and most of previous and current studies were limited to those focusing on PM2.5 or larger particles. The city of Newark in New Jersey is the largest metropolitan center in the state with dense population; it is a commerce and transportation hub surrounded by many highways and busy airports, in addition to numerous power plants, waste combustion treatment facilities, etc. in the area. Thus, the city is impacted by air pollution emissions In some areas of the city, the elevated records of respiratory illness were reported. Although some PM2.5 concentration studies were done in the past, the enrichment of toxic metals in PM with respect to their sizes have not been fully addressed. The Rutgers Newark Air Quality Observatory (RNAQO) was recently established to address urban air pollution and its impact on human health. During this study, both size-segregated PM and PM2.5 are collected in RNAQO, Newark, New Jersey. The samples are analyzed to evaluate the enrichment of trace metals focusing on Pb, Cd, Cu, and Zn in different sizes of PM that will be discussed in this presentation. Such data will be valuable to further investigations into the health effects of fine mode PM. Particularly, this data will be helpful in exploring the relationships between respiratory sickness and fine mode toxic metals' concentrations.

  8. Measurement of radon activity concentrations in air of Tuzla city

    International Nuclear Information System (INIS)

    Adrovic, F.; Fazlic, R.; Tresnjo, Z.

    2004-01-01

    The survey was conducted over one year in the area of Tuzla city and its surrounding. At the measuring locations there were registered Daily and seasonal variations in outdoor radon concentration were observed, with average values lying within the region of 9 - 30 Bq/m 3 . The results of the measurements will be included in the concentration map of radon activity in Bosnia and Herzegovina, which is under preparation. (P.A.)

  9. A Comparison of Outcomes of Particulated Juvenile Articular Cartilage and Bone Marrow Aspirate Concentrate for Articular Cartilage Lesions of the Talus.

    Science.gov (United States)

    Lanham, Nathan S; Carroll, John J; Cooper, Minton T; Perumal, Venkat; Park, Joseph S

    2017-08-01

    Articular cartilage lesions of the talus remain a challenging clinical problem because of the lack of natural regeneration and limited treatment options. Microfracture is often the first-line therapy, however lesions larger than 1.5 cm 2 have been shown to not do as well with this treatment method. The objective of this retrospective study was to evaluate the outcomes of iliac crest bone marrow aspirate concentrate/collagen scaffold (ICBMA) and particulated juvenile articular cartilage (PJAC) for larger articular cartilage lesions of the talus. Fifteen patients undergoing ICBMA or PJAC for articular cartilage lesions of the talus from 2010 to 2013 were reviewed. Twelve patients, 6 from each treatment option, were included in the study. American Orthopaedic Foot and Ankle Surgeons (AOFAS), Foot and Ankle Ability Measure (FAAM), and Short Form-12 (SF-12) outcome scores were collected for each patient. The mean age was 34.7 ± 14.8 years for ICBMA and 31.5 ± 7.4 years for PJAC. Lesion size was 2.0 ± 1.1 cm 2 for ICBMA and 1.9 ± 0.9 cm 2 for PJAC. At a mean follow-up of 25.7 months (range, 12-42 months), the mean AOFAS score was 71.33 for ICBMA and 95.83 for PJAC (  P = .019). The FAAM activities of daily living subscale mean was 77.77 for ICBMA and 97.02 for PJAC (   P = .027). The mean FAAM sports subscale was 45.14 for ICBMA and 86.31 for PJAC (  P = .054). The SF-12 physical health mean was 47.58 for ICBMA and 53.98 for PJAC (  P = .315). The SF-12 mental health mean was 53.25 for ICBMA and 57.8 for PJAC (  P = .315). One patient in treated initially with ICBMA underwent revision fixation for nonunion of their medial malleolar osteotomy, which ultimately resulted in removal of hardware and tibiotalar arthrodesis at 2 years from the index procedure. In the present analysis, PJAC yields better clinical outcomes at 2 years when compared with ICBMA for articular cartilage lesions of the talus that were on average greater than 1.5cm 2 . Therapeutic, Level

  10. Measurements of indoor radon concentration in Libyan cities

    International Nuclear Information System (INIS)

    Elarabiy, S. F.; Khalifa, M.; Misrati, N.; Chahboune, N.; Ahmed, M.

    2012-12-01

    Studies confirm that the risk of exposure to indor radon is attributable to lung cancer worldwide. The relationship between radon exposure and cancer is a linear one which necessitates for need for measurements of indoor radon concentration. This paper presents the results of measurements of indoor radon in several libya cities using CR-39 plastic. The results showed that the average radon concentration in the cities of Tripoli, Al-harcha and Alrajaban were 48.8 Bg/m 3 , 51.4 Bg/m 3 and 55.5 Bg/m 3 respectively. The average indoor radon concentration in Libya is low comparing with other studies. (Author)

  11. Workplace aerosol mass concentration measurement using optical particle counters.

    Science.gov (United States)

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  12. An optimum city size? The scaling relationship for urban population and fine particulate (PM_2_._5) concentration

    International Nuclear Information System (INIS)

    Han, Lijian; Zhou, Weiqi; Pickett, Steward T.A.; Li, Weifeng; Li, Li

    2016-01-01

    We utilize the distribution of PM_2_._5 concentration and population in large cities at the global scale to illustrate the relationship between urbanization and urban air quality. We found: 1) The relationship varies greatly among continents and countries. Large cities in North America, Europe, and Latin America have better air quality than those in other continents, while those in China and India have the worst air quality. 2) The relationships between urban population size and PM_2_._5 concentration in large cities of different continents or countries were different. PM_2_._5 concentration in large cities in North America, Europe, and Latin America showed little fluctuation or a small increasing trend, but those in Africa and India represent a “U” type relationship and in China represent an inverse “U” type relationship. 3) The potential contribution of population to PM_2_._5 concentration was higher in the large cities in China and India, but lower in other large cities. - Highlights: • Urban population and PM_2_._5 concentration varies greatly among regions. • Urban population size increase does not always enhances PM_2_._5 concentration. • Population's potential contribution to PM_2_._5 concentration higher in China. - We utilize the distribution of PM_2_._5 concentration and population in large cities at the global scale to illustrate the relationship between urbanization and urban air quality.

  13. Validation of image cytometry for sperm concentration measurement

    DEFF Research Database (Denmark)

    Egeberg Palme, Dorte L.; Johannsen, Trine Holm; Petersen, Jørgen Holm

    2017-01-01

    Sperm concentration is an essential parameter in the diagnostic evaluation of men from infertile couples. It is usually determined by manual counting using a hemocytometer, and is therefore both laborious and subjective. We have earlier shown that a newly developed image cytometry (IC) method may...... be used to determine sperm concentration. Here we present a validation of the IC method by analysis of 4010 semen samples. There was high agreement between IC and manual counting at sperm concentrations above 3 mill/ml and in samples with concentrations above 12 mill/ml the two methods can be used...... a lower coefficient of variation than the manual method (5% vs 10%), indicating a better precision of the IC method. In conclusion, measurement of sperm concentration by IC can be used at concentrations above 3 mill/ml and seems more accurate and precise than manual counting, making it an attractive...

  14. Application of positron emission tomography to particulate flow measurement in chemical engineering processes

    International Nuclear Information System (INIS)

    Bemrose, C.R.; Fowles, P.; Hawkesworth, M.R.; O'Dwyer, M.A.

    1988-01-01

    Many chemical engineering processes involve the motion of fluids or particulate solids in bulk, and a detailed knowledge of the flow characteristics is important to their efficient and reliable operation. Initial results on the application of PET to fluidized bed studies are reported. Because back-projection image reconstruction strategies are prohibitively inefficient for locating moving single labelled particles, a new technique has been developed based on the closest approach of photon trajectories to give the most probable position. Investigations involving a single particle moving in a known manner have been used to analyse the camera performance and a preliminary relationship between uncertainty and source location is described. To supplement the normal graphical presentation of results, a new animated colour display system has been developed and used to observe for the first time particle motion within a fluidized bed. (orig.)

  15. An economic passive sampling method to detect particulate pollutants using magnetic measurements.

    Science.gov (United States)

    Cao, Liwan; Appel, Erwin; Hu, Shouyun; Ma, Mingming

    2015-10-01

    Identifying particulate matter (PM) emitted from industrial processes into the atmosphere is an important issue in environmental research. This paper presents a passive sampling method using simple artificial samplers that maintains the advantage of bio-monitoring, but overcomes some of its disadvantages. The samplers were tested in a heavily polluted area (Linfen, China) and compared to results from leaf samples. Spatial variations of magnetic susceptibility from artificial passive samplers and leaf samples show very similar patterns. Scanning electron microscopy suggests that the collected PM are mostly in the range of 2-25 μm; frequent occurrence of spherical shape indicates industrial combustion dominates PM emission. Magnetic properties around power plants show different features than other plants. This sampling method provides a suitable and economic tool for semi-quantifying temporal and spatial distribution of air quality; they can be installed in a regular grid and calibrate the weight of PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Traceable measurements of the activity concentration in air

    CERN Document Server

    Paul, A; Forkel-Wirth, Doris; Müller, A; Marcos, A

    2002-01-01

    The nuclear reactions induced by high energetic protons in heavy targets such as UC/sub 2/ and ThC cause a particular, complex radiation protection task at facilities like ISOLDE: the measurement of a mixture of different isotopes of the radioactive noble gas radon and the radon progenies in air. The knowledge of their respective activity concentration is fundamental for exposure assessments. Due to the complex mixture of activity concentrations in air, its precise determination is quite difficult. Therefore, a new procedure for taking reference samples was developed and implemented for the traceable measurement of the activity concentration of radioactive ions (e.g., radon progenies) in air. This technique is combined by measuring alpha -particles with a multi-wire ionization chamber for the parallel on-line determination of the activity concentration of different radon isotopes. (10 refs).

  17. Intercomparison of different instruments for measuring radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, Michikuni; Iida, Takao

    1990-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap method, a flow-type ionization chamber (pulse-counting method), a two-filter method, an electrostatic collection method and a passive integration radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq·m -3 (in outdoor air) to 110 Bq·m -3 (in indoor air). The results obtained by these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling method was about 52% of radon concentration. (author)

  18. Intercomparison of different instruments that measure radon concentration in air

    International Nuclear Information System (INIS)

    Shimo, M.; Iida, T.; Ikebe, Y.

    1987-01-01

    An intercomparison of different instruments for measurement of radon concentration was carried out. The instruments include an ionization chamber, the charcoal-trap technique, a flow-type ionization chamber (pulse-counting technique), a two-filter method, an electrostatic collection method and a passive integrating radon monitor. All instruments except for the passive radon monitor have been calibrated independently. Measurements were performed over a concentration range from about 3.5 Bq/m/sup 3/ (in outdoor air) to 110 Bq/m/sup 3/ (in indoor air). The results obtained from these techniques, except the two-filter technique, are comparable. Radon daughter concentration measured using a filter-sampling technique was about 52% of radon concentrations

  19. Traceable measurements of the activity concentration in air

    International Nuclear Information System (INIS)

    Paul, Annette; Honig, Anja; Forkel-Wirth, Doris; Mueller, Andre; Marcos, Alicia

    2002-01-01

    The nuclear reactions induced by high energetic protons in heavy targets such as UC 2 and ThC cause a particular, complex radiation protection task at facilities like ISOLDE: the measurement of a mixture of different isotopes of the radioactive noble gas radon and the radon progenies in air. The knowledge of their respective activity concentration is fundamental for exposure assessments. Due to the complex mixture of activity concentrations in air, its precise determination is quite difficult. Therefore, a new procedure for taking reference samples was developed and implemented for the traceable measurement of the activity concentration of radioactive ions (e.g., radon progenies) in air. This technique is combined by measuring α-particles with a multi-wire ionization chamber for the parallel on-line determination of the activity concentration of different radon isotopes

  20. Temporal multiscaling characteristics of particulate matter PM 10 and ground-level ozone O3 concentrations in Caribbean region

    Science.gov (United States)

    Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra

    2017-11-01

    A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.

  1. Reflective measurement of water concentration using millimeter wave illumination

    Science.gov (United States)

    Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren

    2011-04-01

    THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.

  2. Concentration of Radon Progeny in Air by Alpha Spectrometry Measurement

    International Nuclear Information System (INIS)

    Acena, M. L.; Crespo, M. T.

    1989-01-01

    The concentration of radon progeny in air has been determined by alpha spectrometry measurement of 214 Po and 318 Po. A known volume of air was passed through a filter, then the alpha activity was directly measured on this filter. (Author) 15 refs

  3. Comparison of predicted and measured variations of indoor radon concentration

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Maekelaeinen, I.; Castren, O.; Winqvist, K.

    1988-01-01

    Prediction of the variations of indoor radon concentration were calculated using a model relating indoor radon concentration to radon entry rate, air infiltration and meteorological factors. These calculated variations have been compared with seasonal variations of 33 houses during 1-4 years, with winter-summer concentration ratios of 300 houses and the measured diurnal variation. In houses with a slab in ground contact the measured seasonal variations are quite often in agreement with variations predicted for nearly pure pressure difference driven flow. The contribution of a diffusion source is significant in houses with large porous concrete walls against the ground. Air flow due to seasonally variable thermal convection within eskers strongly affects the seasonal variations within houses located thereon. Measured and predicted winter-summer concentration ratios demonstrate that, on average, the ratio is a function of radon concentration. The ratio increases with increasing winter concentration. According to the model the diurnal maximum caused by a pressure difference driven flow occurs in the morning, a finding which is in agreement with the measurements. The model presented can be used for differentiating between factors affecting radon entry into houses. (author)

  4. Simultaneous in situ measurements of properties of particulates in rf silane plasmas using a polarization-sensitive laser-light-scattering method

    Science.gov (United States)

    Shiratani, Masaharu; Kawasaki, Hiroharu; Fukuzawa, Tsuyoshi; Yoshioka, Takashi; Ueda, Yoshio; Singh, Sanjay; Watanabe, Yukio

    1996-01-01

    A polarization-sensitive laser-light-scattering method is developed for simultaneous in situ measurements of properties (size, size dispersion, density, and refractive index) of particulates formed in processing plasmas. The developed system is applied to observe the growth processes of particulates in a range of their size larger than about 10 nm in rf silane plasmas. A size, a size dispersion (logarithm of a standard deviation of size), a density, and a refractive index of particulates in the plasmas are found to be 10-200 nm, about 0.1, 107-109 cm-3 and about 3-5i, respectively. The former three of such values agree fairly well with ones deduced from scanning electron microscopic (SEM) observation. These particulates grow through three phases of nucleation and initial growth, rapid growth, and growth saturation. Coexistence of two size groups of particulates with narrow size dispersions during and after the rapid growth phase verified by the SEM observation may be explained by a model taking into account coagulation between oppositely charged particulates.

  5. Efficiency of mitigation measures to reduce particulate air pollution--a case study during the Olympic Summer Games 2008 in Beijing, China.

    Science.gov (United States)

    Schleicher, Nina; Norra, Stefan; Chen, Yizhen; Chai, Fahe; Wang, Shulan

    2012-06-15

    Atmospheric particles were studied before, during, and after the period of the Olympic Summer Games in Beijing, China, in August 2008 in order to investigate the efficiency of the mitigation measures implemented by the Chinese Government. Total suspended particles (TSP) and fine particles (PM(2.5) and PM(1)) were collected continuously from October 2007 to February 2009 and were analyzed in detail with regard to mass and element concentrations, water-soluble ions, and black carbon (BC). Mass as well as element concentrations during the Olympic air quality control period were lower than the respective concentrations during the time directly before and after the Olympic Games. The results showed that the applied aerosol source control measures, such as shutting down industries and reducing traffic, had a huge impact on the reduction of aerosol pollution in Beijing. However, the meteorological conditions, especially rainfall, certainly also contributed to the successful reduction of particulate air pollution. Coarse particles were reduced more efficiently than finer particles, which indicates that long-range transport of atmospheric particles is difficult to control and that presumably the established mitigation area was not large enough. The study further showed that elements from predominantly anthropogenic sources, such as S, Cu, As, Cd, and Pb, as well as BC, were reduced more efficiently during the Olympic Games than elements for which geogenic sources are more significant, such as Al, Fe, Rb or Sr. Furthermore, the mentioned anthropogenic element concentrations were reduced more in the finer PM(2.5) samples whereas geogenic ones were reduced stronger in TSP samples including the coarser fraction. Consequently, it can be assumed that the mitigation measures, as intended, were successful in reducing more toxic and health-relevant particles from anthropogenic sources. Firework displays, especially at the Opening Ceremony, could be identified as a special short

  6. Comparing predicted estrogen concentrations with measurements in US waters

    International Nuclear Information System (INIS)

    Kostich, Mitch; Flick, Robert; Martinson, John

    2013-01-01

    The range of exposure rates to the steroidal estrogens estrone (E1), beta-estradiol (E2), estriol (E3), and ethinyl estradiol (EE2) in the aquatic environment was investigated by modeling estrogen introduction via municipal wastewater from sewage plants across the US. Model predictions were compared to published measured concentrations. Predictions were congruent with most of the measurements, but a few measurements of E2 and EE2 exceed those that would be expected from the model, despite very conservative model assumptions of no degradation or in-stream dilution. Although some extreme measurements for EE2 may reflect analytical artifacts, remaining data suggest concentrations of E2 and EE2 may reach twice the 99th percentile predicted from the model. The model and bulk of the measurement data both suggest that cumulative exposure rates to humans are consistently low relative to effect levels, but also suggest that fish exposures to E1, E2, and EE2 sometimes substantially exceed chronic no-effect levels. -- Highlights: •Conservatively modeled steroidal estrogen concentrations in ambient water. •Found reasonable agreement between model and published measurements. •Model and measurements agree that risks to humans are remote. •Model and measurements agree significant questions remain about risk to fish. •Need better understanding of temporal variations and their impact on fish. -- Our model and published measurements for estrogens suggest aquatic exposure rates for humans are below potential effect levels, but fish exposure sometimes exceeds published no-effect levels

  7. The active titration method for measuring local hydroxyl radical concentration

    Science.gov (United States)

    Sprengnether, Michele; Prinn, Ronald G.

    1994-01-01

    We are developing a method for measuring ambient OH by monitoring its rate of reaction with a chemical species. Our technique involves the local, instantaneous release of a mixture of saturated cyclic hydrocarbons (titrants) and perfluorocarbons (dispersants). These species must not normally be present in ambient air above the part per trillion concentration. We then track the mixture downwind using a real-time portable ECD tracer instrument. We collect air samples in canisters every few minutes for roughly one hour. We then return to the laboratory and analyze our air samples to determine the ratios of the titrant to dispersant concentrations. The trends in these ratios give us the ambient OH concentration from the relation: dlnR/dt = -k(OH). A successful measurement of OH requires that the trends in these ratios be measureable. We must not perturb ambient OH concentrations. The titrant to dispersant ratio must be spatially invariant. Finally, heterogeneous reactions of our titrant and dispersant species must be negligible relative to the titrant reaction with OH. We have conducted laboratory studies of our ability to measure the titrant to dispersant ratios as a function of concentration down to the few part per trillion concentration. We have subsequently used these results in a gaussian puff model to estimate our expected uncertainty in a field measurement of OH. Our results indicate that under a range of atmospheric conditions we expect to be able to measure OH with a sensitivity of 3x10(exp 5) cm(exp -3). In our most optimistic scenarios, we obtain a sensitivity of 1x10(exp 5) cm(exp -3). These sensitivity values reflect our anticipated ability to measure the ratio trends. However, because we are also using a rate constant to obtain our (OH) from this ratio trend, our accuracy cannot be better than that of the rate constant, which we expect to be about 20 percent.

  8. Continuous measurement of uranium concentrations with the laser spark

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Cremers, D.A.; Wachter, J.R.

    1987-01-01

    Laser-induced breakdown spectroscopy has been applied to the continuous determination of uranium concentrations between 0.1 and 300 g/L in flowing solutions. The technique is rapid, noninvasive, and unaffected by radioactivity. A concentration of 10 g/L was measured with 0.8% precision in 3 min. Substances that absorb at the laser wavelength, suspended materials, and variations in the acidity of the solution have little or no effect on the results. High concentrations of zirconium, cadmium, aluminum, or stainless steel in solution do not interfere

  9. Measurements in Concentrated Sun using a Remote Controlled Robot

    Directory of Open Access Journals (Sweden)

    Dan Floroian

    2013-04-01

    Full Text Available Nowdays, using the concentrated sunlight is a big issue because the amount of energy is very high and the light is concentrated in a very small area. The main problem in this situation is the heating, and in order to make safe measurements a remote controlled robot is needed. After that, a remote controlled robot will assume the duty of protect the measured sample and to expose it for a precise time to the concentrated sun in order to reduce heating of the sample. For easy operating, and for automatize the process, all the duties, starting with initial conditions, continuing with triggering the measurements, and conditioning the signals and finalizing with data saving must be assured by the robot.

  10. Measurement of average radon gas concentration at workplaces

    International Nuclear Information System (INIS)

    Kavasi, N.; Somlai, J.; Kovacs, T.; Gorjanacz, Z.; Nemeth, Cs.; Szabo, T.; Varhegyi, A.; Hakl, J.

    2003-01-01

    In this paper results of measurement of average radon gas concentration at workplaces (the schools and kindergartens and the ventilated workplaces) are presented. t can be stated that the one month long measurements means very high variation (as it is obvious in the cases of the hospital cave and the uranium tailing pond). Consequently, in workplaces where the expectable changes of radon concentration considerable with the seasons should be measure for 12 months long. If it is not possible, the chosen six months period should contain summer and winter months as well. The average radon concentration during working hours can be differ considerable from the average of the whole time in the cases of frequent opening the doors and windows or using artificial ventilation. (authors)

  11. TXRF 'measurements' of concentration distribution below the detection limit

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Banas, D.; Braziewicz, J.; Majewska, U.; Mrowczynski, S.; Pajek, M.

    2000-01-01

    We demonstrate that a shape of the concentration distribution of the element in a set of samples, as measured by the TXRF method, can be determined even for the concentrations below the detection limit (DL). This can be done, when the measurements reporting the concentration below DL level are included properly in the analysis of the results. The method developed for such correction is presented and discussed. It is demonstrated that this correction is particularly important when the studied concentrations are close to the DL level of the method, which is a common case for TXRF. In the paper a precision of the developed correction is discussed in details, by using the results of numerical simulations of experiments for different concentration distributions and number of performed measurements. It is demonstrated that the factor, which limits the accuracy of the correction, is the number of measurements, not the correction procedure itself. The applicability and importance of the developed correction is demonstrated for routine TXRF analysis of different types of samples of bio-medical interest. (author)

  12. Gaseous and particulate air pollutants in the Northeastern Mediterranean Coast

    International Nuclear Information System (INIS)

    Soner Erduran, M.; Tuncel, Semra G.

    2001-01-01

    The concentrations of sulfur dioxide (SO 2 ), ammonia (NH 3 ) and particulate matter were measured for a 6-month period and the concentration of gas phase nitric acid (HNO 3 ) was measured for a 1-month period in the North-eastern Mediterranean atmosphere (Kuecuek Calticak, Antalya) using a 'filter pack' system that was developed and optimised in our laboratory. Among all the gas phase pollutants, HNO 3 had the lowest concentration (0.42 μg m -3 ) followed by ammonia. Most of the measured parameters showed variation in time depending on strengths of source regions and meteorological conditions. Nitric acid is found mostly in particulate form, but gas to particulate partitioning of SO 2 shows seasonal variation. Wind trajectory analyses indicate that the major contribution to the observed concentrations come mostly from Eastern Europe and Blacksea regions as well as the southern sector

  13. QA/QC For Radon Concentration Measurement With Charcoal Canister

    International Nuclear Information System (INIS)

    Pantelic, G.; Zivanovic, M.; Rajacic, M.; Krneta Nikolic, J.; Todorovic, D.

    2015-01-01

    The primary concern of any measuring of radon or radon progeny must be the quality of the results. A good quality assurance program, when properly designed and diligently followed, ensures that laboratory staff will be able to produce the type and quality of measurement results which is needed and expected. Active charcoal detectors are used for testing the concentration of radon in dwellings. The method of measurement is based on radon adsorption on coal and measurement of gamma radiation of radon daughters. Upon closing the detectors, the measurement was carried out after achieving the equilibrium between radon and its daughters (at least 3 hours) using NaI or HPGe detector. Radon concentrations as well as measurement uncertainties were calculated according to US EPA protocol 520/5-87-005. Detectors used for the measurements were calibrated by 226Ra standard of known activity in the same geometry. Standard and background canisters are used for QA and QC, as well as for the calibration of the measurement equipment. Standard canister is a sealed canister with the same matrix and geometry as the canisters used for measurements, but with the known activity of radon. Background canister is a regular radon measurement canister, which has never been exposed. The detector background and detector efficiency are measured to ascertain whether they are within the warning and acceptance limits. (author).

  14. Development of Land Use Regression models for particulate matter and associated components in a low air pollutant concentration airshed

    NARCIS (Netherlands)

    Dirgawati, Mila; Heyworth, Jane S.; Wheeler, Amanda J.; McCaul, Kieran A.; Blake, David; Boeyen, Jonathon; Cope, Martin; Yeap, Bu Beng; Nieuwenhuijsen, Mark; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Hinwood, Andrea

    2016-01-01

    Perth, Western Australia represents an area where pollutant concentrations are considered low compared with international locations. Land Use Regression (LUR) models for PM10, PM2.5 and PM2.5 Absorbance (PM2.5Abs) along with their elemental components: Fe, K, Mn, V, S, Zn and Si were developed for

  15. Fissile materials in solution concentration measured by active neutron interrogation

    International Nuclear Information System (INIS)

    Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.

    1993-01-01

    The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a 252 Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.)

  16. Measurement of radon concentration in water with Lucas cell detector

    International Nuclear Information System (INIS)

    Machaj, B.; Pienkos, J.P.

    2003-01-01

    A method for the measurement of radon concentration in water is presented based on flushing a water sample with air in a closed loop with the Lucas cell as alpha radiation detector. The main feature of the method is washing radon away from the larger sample of water (0.75 l) to a small volume of air, approximately 0.5 l, thanks to which a high radon concentration in air and a considerable sensitivity of measurement is achieved. Basic relations and results of measurements of a model of a gauge is given. The estimated measuring sensitivity (S) is 8.5 (cpm)/(Bq/l). The random error due to the statistical fluctuations of count rate at radon concentrations 1,10, 100, 1000, 10000 Bq/l is 11, 3.6, 1.1, 0.4, 0.1% correspondingly at a counting (measuring) time of 10 min. The minimum detectable radon concentration in water is 0.11 Bq/l. (author)

  17. Overview of surface measurements and spatial characterization of submicrometer particulate matter during the DISCOVER-AQ 2013 campaign in Houston, TX.

    Science.gov (United States)

    Leong, Y J; Sanchez, N P; Wallace, H W; Karakurt Cevik, B; Hernandez, C S; Han, Y; Flynn, J H; Massoli, P; Floerchinger, C; Fortner, E C; Herndon, S; Bean, J K; Hildebrandt Ruiz, L; Jeon, W; Choi, Y; Lefer, B; Griffin, R J

    2017-08-01

    The sources of submicrometer particulate matter (PM 1 ) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM 1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM 1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM 1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM 1 mass concentrations (average 11.6 ± 5.7 µg/m 3 ) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM 1 (average 4.4 ± 3.3 µg/m 3 ), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA. This

  18. Do causal concentration-response functions exist? A critical review of associational and causal relations between fine particulate matter and mortality.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2017-08-01

    Concentration-response (C-R) functions relating concentrations of pollutants in ambient air to mortality risks or other adverse health effects provide the basis for many public health risk assessments, benefits estimates for clean air regulations, and recommendations for revisions to existing air quality standards. The assumption that C-R functions relating levels of exposure and levels of response estimated from historical data usefully predict how future changes in concentrations would change risks has seldom been carefully tested. This paper critically reviews literature on C-R functions for fine particulate matter (PM2.5) and mortality risks. We find that most of them describe historical associations rather than valid causal models for predicting effects of interventions that change concentrations. The few papers that explicitly attempt to model causality rely on unverified modeling assumptions, casting doubt on their predictions about effects of interventions. A large literature on modern causal inference algorithms for observational data has been little used in C-R modeling. Applying these methods to publicly available data from Boston and the South Coast Air Quality Management District around Los Angeles shows that C-R functions estimated for one do not hold for the other. Changes in month-specific PM2.5 concentrations from one year to the next do not help to predict corresponding changes in average elderly mortality rates in either location. Thus, the assumption that estimated C-R relations predict effects of pollution-reducing interventions may not be true. Better causal modeling methods are needed to better predict how reducing air pollution would affect public health.

  19. Short-term changes in particulate fluxes measured by drifting sediment traps during end summer oligotrophic regime in the NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. C. Marty

    2009-05-01

    Full Text Available Short-term changes in the flux of particulate matter were determined in the central north western Mediterranean Sea (near DYFAMED site using drifting sediment traps at 200 m depth in the course of the DYNAPROC 2 cruise (14 September–17 October 2004. In this period of marked water column stratification, POC fluxes varied by an order of magnitude, in the range of 0.03–0.29 mgC m−2 h−1 over the month and showed very rapid and high variations. Particulate carbon export represented less than 5% of integrated primary production, suggesting that phytoplankton production was essentially sustained by internal recycling of organic matter and retained within the photic zone. While PON and POP fluxes paralleled one another, the elemental ratios POC/PON and POC/POP, varied widely over short-term periods. Values of these ratios generally higher than the conventional Redfield ratio, together with the very low chlorophyll a flux recorded in the traps (mean 0.017 μg m−2 h−1, and the high phaeopigment and acyl lipid hydrolysis metabolite concentrations of the settling material, indicated that the organic matter reaching 200 m depth was reworked (by grazing, fecal pellets production, degradation and that algal sinking, dominated by nano- and picoplankton, made a small contribution to the downward flux. Over time, the relative abundance of individual lipid classes in organic matter (OM changed from glycolipids-dominated to neutral (wax esters, triacylglycerols and phospholipids-dominated, suggesting ecosystem maturation as well as rapid and continual exchanges between dissolved, suspended and sinking pools. Our most striking result was documenting the rapid change in fluxes of the various measured parameters. In the situation encountered here, with dominant regenerated production, a decrease of fluxes was noticed during windy periods (possibly through reduction of grazing. But fluxes increased as soon as calm

  20. Particulate matter and polycyclic aromatic hydrocarbons in a selected athletic hall: ambient concentrations, origin and effects on human health

    Science.gov (United States)

    Kuskowska, Karolina; Rogula-Kozłowska, Wioletta; Rogula-Kopiec, Patrycja

    2018-01-01

    The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) associated with total suspended particles (TSP) and their respirable fraction (PM4) in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air) of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air.

  1. Particulate matter and polycyclic aromatic hydrocarbons in a selected athletic hall: ambient concentrations, origin and effects on human health

    Directory of Open Access Journals (Sweden)

    Kuskowska Karolina

    2018-01-01

    Full Text Available The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs associated with total suspended particles (TSP and their respirable fraction (PM4 in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air.

  2. Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area

    Science.gov (United States)

    Schäfer, Klaus; Blumenstock, Thomas; Bonn, Boris; Gerwig, Holger; Hase, Frank; Münkel, Christoph; Nothard, Rainer; von Schneidemesser, Erika

    2015-10-01

    Mixing layer height (MLH) is a key parameter to determine the influence of meteorological parameters upon air pollutants such as trace gas species and particulate concentrations near the surface. Meteorology, and MLH as a key parameter, affect the budget of emission source strengths, deposition, and accumulation. However, greater possibilities for the application of MLH data have been identified in recent years. Here, the results of measurements in Berlin in 2014 are shown and discussed. The concentrations of NO, NO2, O3, CO, PM1, PM2.5, PM10 and about 70 volatile organic compounds (anthropogenic and biogenic of origin) as well as particle size distributions and contributions of SOA and soot species to PM were measured at the urban background station of the Berlin air quality network (BLUME) in Nansenstr./Framstr., Berlin-Neukölln. A Vaisala ceilometer CL51, which is a commercial mini-lidar system, was applied at that site to detect the layers of the lower atmosphere in real time. Special software for these ceilometers with MATLAB provided routine retrievals of MLH from vertical profiles of laser backscatter data. Five portable Bruker EM27/SUN FTIR spectrometers were set up around Berlin to detect column averaged abundances of CO2 and CH4 by solar absorption spectrometry. Correlation analyses were used to show the coupling of temporal variations of trace gas compounds and PM with MLH. Significant influences of MLH upon NO, NO2, PM10, PM2.5, PM1 and toluene (marker for traffic emissions) concentrations as well as particle number concentrations in the size modes 70 - 100 nm, 100 - 200 nm and 200 - 500 nm on the basis of averaged diurnal courses were found. Further, MLH was taken as important auxiliary information about the development of the boundary layer during each day of observations, which was required for the proper estimation of CO2 and CH4 source strengths from Berlin on the basis of atmospheric column density measurements.

  3. Measurement of plasma homovanillic acid concentrations in schizophrenic patients.

    Science.gov (United States)

    Kaminski, R; Powchick, P; Warne, P A; Goldstein, M; McQueeney, R T; Davidson, M

    1990-01-01

    1. Several lines of evidence suggest that abnormalities of central dopaminergic transmission may be involved in the expression of some schizophrenic symptoms. However, elucidation of the role of dopamine (DA) in schizophrenia has eluded investigative efforts partially because no accurate and easily repeatable measure of brain DA activity exists. 2. The development of a technique to measure homovanillic acid in plasma has offered the possibility of performing serial measurements of this major DA metabolite. 3. Assuming that plasma homovanillic acid (PHVA) concentrations is an index of brain DA activity, measurement of PHVA can play a role in elucidating the DA abnormality in schizophrenia. 4. Results to date suggest that plasma homovanillic acid concentrations are lower in chronic schizophrenic patients compared to normal controls, and that PHVA values correlate with schizophrenic symptom severity. 5. In addition, PHVA levels were shown to initially rise and subsequently decline during chronic neuroleptic administration in treatment responsive but not in treatment refractory schizophrenic patients.

  4. Development of electret technology to measure indoor radon-daughter concentrations: Final report (Phase 1)

    International Nuclear Information System (INIS)

    Kotrappa, P.; Dempsey, J.C.; Stieff, L.R.

    1989-05-01

    A new type of radon progeny monitor called an electret radon progeny integrating sampling unit (E-RPISU) was developed and demonstrated which uses an electret ion chamber to measure the progeny concentration. A conventional 1 LPM particulate air sampling system is used to collect the progeny on a 35 cm 2 filter which is mounted on the side of the electret ion chamber such that the collected progeny are exposed to the inside of the chamber. The alpha radiation emitted by the progeny collected on the filter ionizes the air in the 220 ml chamber. The ions of opposite polarity collect on the surface of the 127 μm thick electret and reduce its surface voltage. A specially built surface voltmeter is used to measure the electret voltage before and after sampling. The electret voltage drop which occurs during the sampling period is shown to be proportional to the time integrated progeny concentration. Two prototype systems were fabricated and tested in homes and in calibrated radon chambers. The resulting data are presented and analyzed. The calibration factor for the E-RPISU ranged from 1.5 to 2.0 V/mWL-day depending on the electret voltage. Two of the E-RPISUs were delivered to UNC Geotech for further testing. 32 refs., 11 figs., 5 tabs

  5. Fiber Optic Displacement Sensor for Measuring Cholesterol Concentration

    Directory of Open Access Journals (Sweden)

    Moh. Budiyanto

    2017-11-01

    Full Text Available A simple design of a cholesterol concentration detection is proposed and demonstrated using a fiber optic displacement sensor based on an intensity modulation technique. The proposed sensor uses a bundled plastic optical fiber (POF as a probe in conjunction with a flat mirror as a target. It is obtained that the peak voltage reduces with increasing cholesterol concentration. The sensor is capable of measuring the cholesterol concentration ranging from 0 to 300 ppm in a distilled water with a measured sensitivity of 0.01 mV/ppm, a linearity of more than 99.62 % and a resolution of 3.9188 ppm. The proposed sensor also shows a high degree of stability and good repeatability. The simplicity of design, accuracy, flexible dynamic range, and the low cost of fabrication are favorable attributes of the sensor and beneficial for real- field applications. Fiber optic sensors

  6. Long-term particulate matter modeling for health effect studies in California - Part 2: Concentrations and sources of ultrafine organic aerosols

    Science.gov (United States)

    Hu, Jianlin; Jathar, Shantanu; Zhang, Hongliang; Ying, Qi; Chen, Shu-Hua; Cappa, Christopher D.; Kleeman, Michael J.

    2017-04-01

    Organic aerosol (OA) is a major constituent of ultrafine particulate matter (PM0. 1). Recent epidemiological studies have identified associations between PM0. 1 OA and premature mortality and low birth weight. In this study, the source-oriented UCD/CIT model was used to simulate the concentrations and sources of primary organic aerosols (POA) and secondary organic aerosols (SOA) in PM0. 1 in California for a 9-year (2000-2008) modeling period with 4 km horizontal resolution to provide more insights about PM0. 1 OA for health effect studies. As a related quality control, predicted monthly average concentrations of fine particulate matter (PM2. 5) total organic carbon at six major urban sites had mean fractional bias of -0.31 to 0.19 and mean fractional errors of 0.4 to 0.59. The predicted ratio of PM2. 5 SOA / OA was lower than estimates derived from chemical mass balance (CMB) calculations by a factor of 2-3, which suggests the potential effects of processes such as POA volatility, additional SOA formation mechanism, and missing sources. OA in PM0. 1, the focus size fraction of this study, is dominated by POA. Wood smoke is found to be the single biggest source of PM0. 1 OA in winter in California, while meat cooking, mobile emissions (gasoline and diesel engines), and other anthropogenic sources (mainly solvent usage and waste disposal) are the most important sources in summer. Biogenic emissions are predicted to be the largest PM0. 1 SOA source, followed by mobile sources and other anthropogenic sources, but these rankings are sensitive to the SOA model used in the calculation. Air pollution control programs aiming to reduce the PM0. 1 OA concentrations should consider controlling solvent usage, waste disposal, and mobile emissions in California, but these findings should be revisited after the latest science is incorporated into the SOA exposure calculations. The spatial distributions of SOA associated with different sources are not sensitive to the choice of

  7. Measurements of radon activity concentrations in air at Niska spa

    International Nuclear Information System (INIS)

    Adrovic, F.; Vuckovic, B.; Ninkovic, M.

    2004-01-01

    Radon activity concentrations in air were measured in the recreational-tourist center of Niska Banja. Alpha Guard PQ 2000/ MC50 instrumentation (Genitron instruments, Frankfurt) was used. The observed indoor radon concentrations in the air of the Radon Hotel pool lay within the range of 0.980-1.908 kBq/m 3 and were directly dependent on the exhalation of radon from thermomineral waters. Radon concentrations were also measured outdoors, at locations for capping thermomineral water, as well as at locations for draining used water from the Radon Hotel pool. Outdoor radon concentrations as high as over 500 Bq/m 3 were observed. Gamma dose rates were measured in parallel and found to lie within the range of 72-420 nSv/h. The gamma doses correlated well with the observed radon levels. The largest gamma dose rates in air were measured in the pool of Radon Hotel and at the site where this thermomineral water is being capped

  8. Measurements of ion concentration in gasoline and diesel engine exhaust

    Science.gov (United States)

    Yu, Fangqun; Lanni, Thomas; Frank, Brian P.

    The nanoparticles formed in motor vehicle exhaust have received increasing attention due to their potential adverse health effects. It has been recently proposed that combustion-generated ions may play a critical role in the formation of these volatile nanoparticles. In this paper, we design an experiment to measure the total ion concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported in this study and for the specific engines used, the total ion concentration is ca. 3.3×10 6 cm -3 with almost all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7×10 8 cm -3 with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion properties is interpreted as a result of the different residence times of exhaust inside the tailpipe/connecting pipe and the different concentrations of soot particles in the exhaust. The measured ion concentrations appear to be within the ranges predicted by a theoretical model describing the evolution of ions inside a pipe.

  9. Measurement of fine particulate matter water-soluble inorganic species and precursor gases in the Alberta Oil Sands Region using an improved semicontinuous monitor.

    Science.gov (United States)

    Hsu, Yu-Mei; Clair, Thomas A

    2015-04-01

    The ambient ion monitor-ion chromatography (AIM-IC) system, which provides hourly measurements of the main chemical components of PM2.5 (particulate matter with an aerodynamic diametergases, was evaluated and deployed from May to July 2011 and April to December 2013 in the Athabasca Oil Sands Region (AOSR) of northeastern Alberta, Canada. The collection efficiencies for the gas-phase SO2 and HNO3 using the cellulose membrane were 96% and 100%, respectively, and the collection efficiency of NH3 using the nylon membrane was 100%. The AIM-IC was compared with a collocated annular denuder sampling system (ADSS) and a Federal Reference Method (FRM) Partisol PM2.5 sampler. The correlation coefficients of SO4(2-) concentrations between the AIM-IC and ADSS and between the AIM-IC and the Partisol PM2.5 sampler were 0.98 and 0.95, respectively. The comparisons also showed no statistically significant difference between the measurement sets, suggesting that the AIM-IC measurements of the PM2.5 chemical composition are comparable to the ADSS and Partisol PM2.5 methods. NH3 concentration in the summer (mean±standard deviation, 1.9±0.7 µg m(-3)) was higher than in the winter (1.3±0.9 µg m(-3)). HNO3 and NO3- concentrations were generally low in the AOSR, and especially in the winter months. NH4+ (0.94±0.96 µg m(-3)) and SO4(2-) (0.58±0.93 µg m(-3)) were the major ionic species of PM2.5. Direct SO2 emissions from oil sands processing operations influenced ambient particulate NH4+ and SO4(2-) values, with hourly concentrations of NH4+ and SO4(2-) measured downwind (~30 km away from the stack) at 10 and 28 µg m(-3). During the regional forest fire event in 2011, high concentrations of NO3-, NH4+, HNO3, NH3, and PM2.5 were observed and the corresponding maximum hourly concentrations were 31, 15, 9.6, 89, and >450 (the upper limit of PM2.5 measurement) µg m(-3), suggesting the formation of NH4NO3. The AOSR in Canada is one of the most scrutinized industrial regions in the

  10. Laser system for measuring small changes in plasma tracer concentrations.

    Science.gov (United States)

    Klaesner, J W; Pou, N A; Parker, R E; Galloway, R L; Roselli, R J

    1996-01-01

    The authors developed a laser-diode system that can be used for on-line optical concentration measurements in physiologic systems. Previous optical systems applied to whole blood have been hampered by artifacts introduced by red blood cells (RBCs). The system introduced here uses a commercially available filter cartridge to separate RBCs from plasma before plasma concentration measurements are made at a single wavelength. The filtering characteristics of the Cellco filter cartridge (#4007-10, German-town, MD) were adequate for use in the on-line measurement system. The response time of the filter cartridge was less than 40 seconds, and the sieving characteristics of the filter for macromolecules were excellent, with filtrate-to-plasma albumin ratios of 0.98 +/- 0.11 for studies in sheep and 0.94 +/- 0.15 for studies in dogs. The 635-nm laser diode system developed was shown to be more sensitive than the spectrophotometer used in previous studies (Klaesner et al., Annals of Biomedical Engineering, 1994; 22, 660-73). The new system was used to measure the product of filtration coefficient (Kfc) and reflection coefficient for albumin (delta f) in an isolated canine lung preparation. The delta fKfc values [mL/(cmH2O.min.100 g dry lung weight)] measured with the laser diode system (0.33 +/- 0.22) compared favorably with the delta fKfc obtained using a spectrophotometer (0.27 +/- 0.20) and with the Kfc obtained using the blood-corrected gravimetric method (0.32 +/- 0.23). Thus, this new optical system was shown to accurately measure plasma concentration changes in whole blood for physiologic levels of Kfc. The same system can be used with different optical tracers and different source wavelengths to make optical plasma concentration measurements for other physiologic applications.

  11. Short-term population-based non-linear concentration-response associations between fine particulate matter and respiratory diseases in Taipei (Taiwan): a spatiotemporal analysis.

    Science.gov (United States)

    Yu, Hwa-Lung; Chien, Lung-Chang

    2016-01-01

    Fine particulate matter respiratory disease remain inconsistent. The short-term, population-based association between the respiratory clinic visits of children and PM2.5 exposure levels were investigated by considering both the spatiotemporal distributions of ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between children's respiratory clinic visits and PM2.5 concentrations. This analysis was separately performed on three respiratory disease categories that were selected from the Taiwanese National Health Insurance database, which includes 41 districts in the Taipei area of Taiwan from 2005 to 2007. The findings reveal a non-linear C-R pattern of PM2.5, particularly in acute respiratory infections. However, a PM2.5 increase at relatively lower levels can elevate the same-day respiratory health risks of both preschool children (increase from 0.76 to 7.44 μg/m(3), and in schoolchildren, same-day health risks rise when concentrations increase from 0.76 to 7.52 μg/m(3). Changes in PM2.5 levels generally exhibited no significant association with same-day respiratory risks, except in instances where PM2.5 levels are extremely high, and these occurrences do exhibit a significant positive influence on respiratory health that is especially notable in schoolchildren. A significant high relative rate of respiratory clinic visits are concentrated in highly populated areas. We highlight the non-linearity of the respiratory health effects of PM2.5 on children to investigate this population-based association. The C-R relationship in this study can provide a highly valuable alternative for assessing the effects of ambient air pollution on human health.

  12. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic

    Science.gov (United States)

    Lam, Phoebe J.; Doney, Scott C.; Bishop, James K. B.

    2011-09-01

    We have compiled a global data set of 62 open ocean profiles of particulate organic carbon (POC), CaCO3, and opal concentrations collected by large volume in situ filtration in the upper 1000 m over the last 30 years. We define concentration-based metrics for the strength (POC concentration at depth) and efficiency (attenuation of POC with depth in the mesopelagic) of the biological pump. We show that the strength and efficiency of the biological pump are dynamic and are characterized by a regime of constant and high transfer efficiency at low to moderate surface POC and a bloom regime where the height of the bloom is characterized by a weak deep biological pump and low transfer efficiency. The variability in POC attenuation length scale manifests in a clear decoupling between the strength of the shallow biological pump (e.g., POC at the export depth) and the strength of the deep biological pump (POC at 500 m). We suggest that the paradigm of diatom-driven export production is driven by a too restrictive perspective on upper mesopelagic dynamics. Indeed, our full mesopelagic analysis suggests that large, blooming diatoms have low transfer efficiency and thus may not export substantially to depth; rather, our analysis suggests that ecosystems characterized by smaller cells and moderately high %CaCO3 have a high mesopelagic transfer efficiency and can have higher POC concentrations in the deep mesopelagic even with relatively low surface or near-surface POC. This has negative implications for the carbon sequestration prospects of deliberate iron fertilization.

  13. Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign

    Science.gov (United States)

    Minguillón, María Cruz; Campos, Arturo Alberto; Cárdenas, Beatriz; Blanco, Salvador; Molina, Luisa T.; Querol, Xavier

    2014-05-01

    This work was carried out in the framework of the Cal-Mex project, which focuses on investigating the atmosphere along Mexico-California border region. Sampling was carried out at two sites located in Tijuana urban area: Parque Morelos and Metales y Derivados. PM2.5 and PM10 24 h samples were collected every three days from 17th May 2010 to 27th June 2010, and were used for gravimetric and chemical analyses (major and minor elements, inorganic ions, organic and elemental carbon) of PM. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM2.5 and PM10 average concentrations during Cal-Mex were relatively lower compared to usual annual averages. Trace elements concentrations recorded in the present study were lower than those recorded in Mexico City in 2006, with the exception of Pb at Metales y Derivados, attributed to the influence of a specific industrial source, which also includes As, Cd and Tl. Apart from this industrial source, both urban sites were found to be affected by similar sources with respect to bulk PM. Fine PM (PM2.5) was mainly apportioned by fueloil and biomass combustion and secondary aerosols, and road traffic. Coarse PM (PM2.5-10) was mainly apportioned by a mineral source (sum of road dust resuspension, construction emissions and natural soil) and fresh and aged sea salt. The road traffic was responsible for more than 60% of the fine elemental carbon and almost 40% of the fine organic matter.

  14. Radon concentration measurements in the desert caves of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Mustafa, Hanan; Al-Jarallah, M.I.; Fazal-ur-Rehman; Abu-Jarad, F.

    2005-01-01

    Beneath the harsh deserts of Saudi Arabia lie dark chambers and complex mazes filled with strange shapes and wondrous beauty. Radon concentration measurements have been carried out in the desert caves of Al-Somman Plateau in the Eastern Province of Saudi Arabia. Passive radon dosimeters, based on alpha particle etch track detectors with an inlet filter, were used in this study. A total of 59 dosimeters were placed in five caves for a period of six months. Out of 59 dosimeters, 37 could be collected for analysis. Measurements showed significant variations in radon concentrations in caves depending upon their natural ventilation. The results of the study show that the average radon concentration in the different caves ranges from 74 up to 451Bqm -3 . The average radon concentration in four of the caves was low in the range 74-114Bqm -3 . However, one cave showed an average radon concentration of 451Bqm -3 . Radon is not a problem for tourists in the majority of caves. However, sometimes it may imply some limitation to the working time of guides

  15. Radon concentration measurements in the desert caves of Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mustafa, Hanan [Women College, P. O. Box 838, Dammam 31113 (Saudi Arabia); Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco P.O. Box 13027, Dhahran 31311 (Saudi Arabia)

    2005-11-15

    Beneath the harsh deserts of Saudi Arabia lie dark chambers and complex mazes filled with strange shapes and wondrous beauty. Radon concentration measurements have been carried out in the desert caves of Al-Somman Plateau in the Eastern Province of Saudi Arabia. Passive radon dosimeters, based on alpha particle etch track detectors with an inlet filter, were used in this study. A total of 59 dosimeters were placed in five caves for a period of six months. Out of 59 dosimeters, 37 could be collected for analysis. Measurements showed significant variations in radon concentrations in caves depending upon their natural ventilation. The results of the study show that the average radon concentration in the different caves ranges from 74 up to 451Bqm{sup -3}. The average radon concentration in four of the caves was low in the range 74-114Bqm{sup -3}. However, one cave showed an average radon concentration of 451Bqm{sup -3}. Radon is not a problem for tourists in the majority of caves. However, sometimes it may imply some limitation to the working time of guides.

  16. Estimates of CO2 traffic emissions from mobile concentration measurements

    Science.gov (United States)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  17. Market power in electricity markets: Beyond concentration measures

    International Nuclear Information System (INIS)

    Borenstein, S.; Bushnell, J.; Knittel, C.R.

    1999-01-01

    The wave of electricity market restructuring both within the US and abroad has brought the issue of horizontal market power to the forefront of energy policy. Traditionally, estimation and prediction of market power has relied heavily on concentration measures. In this paper, the authors discuss the weaknesses of concentration measures as a viable measure of market power in the electricity industry, and they propose an alternative method based on market simulations that take advantage of existing plant level data. The authors discuss results from previous studies they have performed, and present new results that allow for the detection of threshold demand levels where market power is likely to be a problem. In addition, the authors analyze the impact of that recent divestitures in the California electricity market will have on estimated market power. They close with a discussion of the policy implications of the results

  18. Measurement of 222Rn in soil concentrations in interstitial air

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Carretero, J.; Liger, E.

    1996-01-01

    Measurements of 222 Rn soil concentrations were made by inserting stainless-steel sampling tubes into the soil. The samples of the soil interstitial air were taken in to pre-evacuated 1 L glass flasks. The glass flasks are cylindrical and coated with a film of ZnS(Ag). 222 Rn was measured by counting the alpha particles emitted by 222 Rn and its daughter products, 218 Po and 214 Bi, when they reached radioactive equilibrium. Measurements of 222 Rn gas concentrations in the soil air interstices by the method at different depths were used to calculate the diffusion coefficient of the 222 Rn in the soil air. This study has been carried out for diverse soils. (Author)

  19. Performance tests for instruments measuring radon activity concentration

    International Nuclear Information System (INIS)

    Beck, T.R.; Buchroeder, H.; Schmidt, V.

    2009-01-01

    Performance tests of electronic instruments measuring the activity concentration of 222 Rn have been carried out with respect to the standard IEC 61577-2. In total, 9 types of instrument operating with ionization chambers or electrostatic collection have been tested for the influence of different climatic and radiological factors on the measurement characteristics. It is concluded that all types of instrument, which are commercially available, are suitable for indoor radon measurements. Because of the dependence on climatic conditions, the outdoor use is partly limited.

  20. Monitoring particulate matters in urban areas in Malaysia using remote sensing and ground-based measurements

    Science.gov (United States)

    Kanniah, K. D.; Kamarul Zaman, Nurul Amalin Fatihah; Lim, H. Q.; Reba, Mohd Nadzri Md.

    2014-10-01

    Monitoring particulate matter less than 10 μm (PM10) near the ground routinely is critical for Malaysia for emergency management because Malaysia receives considerable amount of pollutants from both local and trans-boundary sources. Nevertheless, aerosol data covering major cities over a large spatial extent and on a continuous manner are limited. Thus, in the present study we aimed to estimate PM10 at 5 km spatial scale using AOD derived from MERIS sensor at 3 metropolitan cities in Malaysia. MERIS level 2 AOD data covering 5 years (2007-2011) were used to develop an empirical model to estimate PM10 at 11 locations covering Klang valley, Penang and Johor Bahru metropolitan cities. This study is different from previous studies conducted in Malaysia because in the current study we estimated PM10 by considering meteorological parameters that affect aerosol properties, including atmospheric stability, surface temperature and relative humidity derived from MODIS data and our product will be at ~5 km spatial scale. Results of this study show that the direct correlation between monthly averaged AOD and PM10 yielded a low and insignificant relationship (R2= 0.04 and RMSE = 7.06μg m-3). However, when AOD, relative humidity, land surface temperature and k index (atmospheric stability) were combined in a multiple linear regression analysis the correlation coefficient increased to 0.34 and the RMSE decreased to 8.91μg m-3. Among the variables k- index showed highest correlation with PM 10 (R2=0.35) compared to other variables. We further improved the relationship among PM10 and the independent variables using Artificial Neural Network. Results show that the correlation coefficient of the calibration dataset increased to 0.65 with low RMSE of 6.72μg m-3. The results may change when we consider more data points covering 10 years (2002- 2011) and enable the construction of a local model to estimate PM10 in urban areas in Malaysia.

  1. Measurement of mean radon concentrations in the Tokai districts

    International Nuclear Information System (INIS)

    Iida, Takao; Ikebe, Yukimasa; Yamanishi, Hirokuni

    1989-01-01

    This paper describes an electrostatic integrating radon monitor designed for the environmental radon monitoring and longterm measurements of mean radon concentrations in outdoor and indoor air. The position of the collecting electrode within the monitor was determined based on the calculation of the internal electric field. The radon exchange rate between the monitor and the outside air through the filter was 0.75 h -1 . The exchange rate can make the radon concentration inside the monitor to follow thoroughly the outside concentration. Since the electrostatic collection of RaA + ( 218 Po + ) atoms depends on the humidity of the air, the inside of the monitor was dehumidified with a diphosphorus pentaoxide (P 2 O 5 ) drying agent which is powerful and dose not absorb radon gas. From the relationship between track density and radon exposure, the calibration factor was derived to be 0.52 ± 0.002 tracks cm -2 (Bq m -3 h) -1 . The detection limit of mean radon level is 1.2 Bq m -3 for an exposure time fo 2 months. The mean radon concentrations in various environments were measured through the year using the monitors this developed. The annual mean outdoor radon level in the Tokai districts was 7.0 Bq m -3 . The mean radon concentrations was found to vary from 3.5 to 11.7 Bq m -3 depending upon the geographical conditions even in this relatively small region. The annual indoor radon concentrations at Nagoya and Sapporo ranged from 6.4 to 11.9 Bq m -3 and from 15.5 to 121.1 Bq m -3 , respectively, with the type of building material and the ventilation rate. The mean radon concentrations in tightly built houses selected at Sapporo are about 10 times as high as those in drafty houses at Nagoya. (author)

  2. Radon concentration measurements in waters in Greece and Cyprus

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Tzortzi, A.; Thanassas, D.; Serefoglou, A.; Georgiou, E.; Vogiannis, E.; Koukouliou, V.

    2004-01-01

    A total of 35 measurements in Greece and 15 in Cyprus were performed. Radon concentrations in drinking water in Greece were from (1.1±0.5) to (410±50) Bq/L. The corresponding concentrations in underground potable waters in Cyprus ranged between (0.4±0.3) Bq/L and (15±4) Bq/L. High concentrations, viz. (120±20), (320±40) and (410±50) Bq/L, were observed in three samples collected from the city of Arnea Chalkidekis in northern Greece. One water sample from Lesvos Island (north-eastern part of Greece) exhibited a radon concentration of (140±20) Bq/L. Six samples of hot spring water from the city of Loutraki (Attica prefecture), characterized as 'medicinal drinking water', contained concentrations of radon between (220±10) and (340±20) Bq/L. Radon concentrations in potable and non-potable underground water in Greece and Cyprus ranged between (0.4±0.3) and (15±4) Bq/L, whereas in surface water the range was from (2.7±0.8) to (24±6) Bq/L. (P.A.)

  3. Measurements of radon concentrations at caves in Jeju

    Energy Technology Data Exchange (ETDEWEB)

    Go, S. H.; Kang, D. H.; Jung, B. J. [Cheju National University, Cheju (Korea, Republic of)

    2004-07-01

    Radon is a radioactive gas emitting {alpha} particles. It is chemically stable due to its inert characteristic. While its daughter products, {sup 218}Po, {sup 214}Bi, {sup 214}Pb and {sup 214}Po, attached with aerosol particles, is known to cause lung cancer. As radon is produced from uranium and thorium, it accumulates in poorly ventilative underground voids such as caves and mine. Radon concentrations at caves in Jeju were measured in this study. The measurements were made by setting three CR-39 detectors for 70 days at 2 {approx} 4 positions in Manjang, Hyupjae and Ssangyong caves. The radon levels of the caves spread 403.1 . 606.7 Bq/m{sup 3}. With these results, it is concluded that the Jeju caves have 6 times higher radon concentrations than ordinary house of 65.3 Bq/m{sup 3} and that they are higher than Seoul subway stations due to poor ventilation. While, the caves in Jeju have lower radon concentrations than limestone caves of Robin Hood. The radon concentration in the middle of Manjang cave is slightly higher than the action level in the work place of 500 Bq/m{sup 3} suggested by the ICRP. The measurement errors are estimated to be less than 5 % from its calibration factor.

  4. Measurements of radon concentrations at caves in Jeju

    International Nuclear Information System (INIS)

    Go, S. H.; Kang, D. H.; Jung, B. J.

    2004-01-01

    Radon is a radioactive gas emitting α particles. It is chemically stable due to its inert characteristic. While its daughter products, 218 Po, 214 Bi, 214 Pb and 214 Po, attached with aerosol particles, is known to cause lung cancer. As radon is produced from uranium and thorium, it accumulates in poorly ventilative underground voids such as caves and mine. Radon concentrations at caves in Jeju were measured in this study. The measurements were made by setting three CR-39 detectors for 70 days at 2 ∼ 4 positions in Manjang, Hyupjae and Ssangyong caves. The radon levels of the caves spread 403.1 . 606.7 Bq/m 3 . With these results, it is concluded that the Jeju caves have 6 times higher radon concentrations than ordinary house of 65.3 Bq/m 3 and that they are higher than Seoul subway stations due to poor ventilation. While, the caves in Jeju have lower radon concentrations than limestone caves of Robin Hood. The radon concentration in the middle of Manjang cave is slightly higher than the action level in the work place of 500 Bq/m 3 suggested by the ICRP. The measurement errors are estimated to be less than 5 % from its calibration factor

  5. Measurement of the concentration of radon in the air

    International Nuclear Information System (INIS)

    Aten, J.B.Th.; Bierhuizen, H.W.J.; Hoek, L.P. van; Ros, D.; Weber, J.

    1975-01-01

    A simple transportable air monitoring apparatus was developed for controlling the radon contamination of air in laboratory rooms. It is not highly accurate but is sufficient to register the order of magnitude of the radon concentration. Air is pumped through a filter for one or two hours and an alpha decay curve of the dust on the filter is determined. Scintillation counting forty minutes after sampling indicates the radon activity. The calibration method of measuring the equilibrium of daughter product concentrations is discussed extensively

  6. Measurement of Alpha Emitters Concentration in Imported Cigarettes

    International Nuclear Information System (INIS)

    Nasser Allah, Z.K.; Musa, W.A.; AL-Rawi, A.A.S.

    2011-01-01

    The aime of this study was to measured the alpha emitters concentration of (15) different kinds of imported cigarettes. the nuclear reaction used U-235(n, f) obtained by the bombardment of U-235 with thermal neutrons from (Am B e)neutron source with thermal flux of(5*10 3 n.cm -2 .s -1 ). The Results obtained showed the values of the Uranium concentration, and varies from (0.041 ppm) in five stares kind to (2.374ppm) in Machbeth (chocolate) 100's kind. All the result obtained are within the limit levels as given by UNSCAR data

  7. Monitoring and measurement of oxygen concentrations in liquid sodium

    International Nuclear Information System (INIS)

    Smith, D.L.

    1976-01-01

    The measurement of oxygen concentrations in sodium at levels of interest for LMFBR applications is reviewed. Additional data are presented to support the validity of the vanadium-equilibration method as a reference for determination of oxygen concentrations in sodium at levels equal to or less than 15 ppM. Operating experience with electrochemical oxygen meters that have a thoria-yttria electrolyte and a Na--Na 2 O reference electrode is described. Meter lifetimes in excess of one year have generally been achieved for operating temperatures of 352 and 402 0 C, and fairly stable emfs have been observed for periods of several months. 7 fig, 21 references

  8. Measurement of radon concentration in air employing Lucas chamber

    International Nuclear Information System (INIS)

    Machaj, B.

    1997-01-01

    The results of investigations aimed to determine the main features of radon concentration gauge in air, employing 0.17 L Lucas chamber, and air sample forced by an air pump are presented. For two hour sampling and measuring cycle time the dynamic error in the worst case (first read out) equals 5 % relative to the step jump of radon concentration. This is due to the increase of activity of the decay products in the chamber. It was observed that the short lived radon decay products (Po-218, Pb-214, Bi-214) are depositing on the walls of the chamber and they are not removed by flushing the chamber with air. (author)

  9. Water-soluble ions measured in fine particulate matter next to cement works

    Science.gov (United States)

    Galindo, N.; Yubero, E.; Nicolás, J. F.; Crespo, J.; Pastor, C.; Carratalá, A.; Santacatalina, M.

    2011-04-01

    PM2.5 samples were collected for one year in a suburban area close to an industrial complex formed by two cement factories and some quarries in southeastern Spain. Samples were analyzed by ion chromatography to determine the concentrations of major inorganic ions: Cl -, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+. The average PM2.5 concentration (17.6 μg m -3) was within the interval reported for other Mediterranean suburban environments. Concentration peaks were registered during both winter and summer, concurrently with maxima levels of nitrate and sulfate, due to stagnation conditions and African dust episodes, respectively. Sulfate was found to be a main contributor to PM2.5 aerosol mass (4.2 μg m -3, 24%), followed by nitrate and ammonium (1.5 μg m -3, 9% each one). Correlation analyses demonstrated that fine sulfate was present as (NH 4) 2SO 4, CaSO 4 and Na 2SO 4 since ammonium concentrations were not high enough to neutralize both anions. The mean concentration of calcium (1.0 μg m -3), an element commonly found in the coarse fraction, was higher than those found in other locations of the Mediterranean basin. Additionally, the lowest levels were registered during summer, in contrast with previous findings. This was attributed to resuspension and transport of mineral dust from the neighboring quarries and cement plants during fall and winter, which was supported by the results of the CPF analysis. Atmospheric levels of potassium and chloride (0.28 and 0.51 μg m -3 annual average, respectively) also seemed to be affected by cement works, as suggested by correlation and CPF analyses. In the case of Cl -, a marked seasonality was observed, with mean winter concentrations considerably higher than summer ones, indicating a clear prevalence of anthropogenic sources over sea spray emissions.

  10. Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals

    DEFF Research Database (Denmark)

    Bräuner, E. V.; Møller, P.; Barregård, L.

    2008-01-01

    artery tone following arm ischemia. Biomarkers included haemoglobin, red blood cells, platelet count, coagulation factors, C-reactive protein, fibrinogen, interleukin-6, tumour necrosis factor a, lag time to copper-induced oxidation of plasma lipids and protein oxidation measured as 2-aminoadipic...

  11. Deposition rates of atmospheric particulates determined from 210Pb measurements in soils and air

    International Nuclear Information System (INIS)

    Likuku, A. S.; Branford, D.

    2011-01-01

    Deposition rates of atmospheric particles were determined using previously published 210P b data in soils and air. The dry deposition velocities for moorland and woodland soils were 2.2 ± 1.8 and 9 ± 2 mm · s - 1 , respectively. The 210P b concentration in rain was calculated to be 94 ± 10 mBq · L - 1. The large (∼ 4 times) deposition velocities in woodland relative to moorland soils is an indication of the degree of accumulation of particles, and most possibly contaminants within woodland soils, which is of practical importance in the mitigation of pollutant concentrations in urban areas by planting trees. (authors)

  12. Oscillator measurements of the reactivity changes resulting from the irradiation of low enrichment particulate fuel in the Dragon reactor

    International Nuclear Information System (INIS)

    Burbidge, B.L.H.; Franklin, B.M.; Small, V.G.

    1983-01-01

    This Report describes a series of experiments carried out as a joint UKAEA/CEA/DRAGON project to determine the reactivity changes of low-enrichment particulate fuel samples following their irradiation in the DRAGON reactor to various levels up to approximately 60,000 MWD/Te. The samples are described, together with the method of measurement of reactivity in the Winfrith reactor HECTOR, which was an extension of the well-known Oscillator Technique to yield simultaneously overall reactivity changes and changes in macroscopic absorption cross-sections. Measurements were carried out at room temperature in two reactor spectra; a thermal spectrum and one typical of an HTR type reactor. The resultant reactivity changes are presented together with the relevant sample burn-ups as determined by #betta#-scanning methods and, in some cases, by rigorous chemical analysis. The results of supporting measurements are also reported, carried out to characterise the neutron spectra in which the oscillator measurements were made and to determine the neutron flux distributions in the HECTOR reactor. (author)

  13. Characterization of particulate amines

    International Nuclear Information System (INIS)

    Gundel, L.A.; Chang, S.G.; Clemenson, M.S.; Markowitz, S.S.; Novakov, T.

    1979-01-01

    The reduced nitrogen compounds associated with ambient particulate matter are chemically characterized by means of ESCA and proton activation analysis. Ambient particulate samples collected on silver filters in Berkeley, California were washed with water and organic solvents, and ESCA and proton activation analysis were performed in order to determine the composition of various nitrogen compounds and the total nitrogen content. It is found that 85% of the amines originally present in ambient particulate matter can be removed by water extraction, whereas the ammonium and nitrate are completely removed. An observed increase in ammonium ion in the extract, compared with its concentration in the original sample, coupled with the commensurate decrease in amine concentration, is attributed to the hydrolysis of amide groups, which may cause analytical methods based on extraction to yield erroneous results

  14. Method and device for measuring the smoke concentration in air

    International Nuclear Information System (INIS)

    Rennemo, B.

    1994-01-01

    The patent deals with a method and a device for measuring the smoke concentration in air. In a smoke chamber are located two electrodes, connected to a voltage source for forming a circuit in which a DC current flows. A radioactive radiation source to ionize the air molecules is located in the vicinity of the smoke chamber, so that the number of ionized air molecules which are formed is dependent upon the radiation intensity of the ion source and the concentration of smoke particles in the smoke chamber. The charging voltage will further imply that a cloud of high ion concentration is built up close to the surface of the electrodes. The ion cloud will be discharged capacitively upon a plurality of short voltages pulses applied to the electrodes to thereby result in current pulses substantially greater than the DC current flowing through the chamber. 8 figs

  15. Diagnostics of and measures against radon concentrations in a dwelling

    International Nuclear Information System (INIS)

    Berger, H.

    1994-02-01

    Results are presented of measurements in a test-dwelling in the period april 1993 - november 1993. The purpose of the measurements was to investigate the possibilities of using a blower door (a fan in a wall of the dwelling) for specifying sources of radon in the dwelling, employing the diagnostic method developed at the KVI (Nuclear Physics Accelerator Institute in Groningen, Netherlands). Special attention is paid to the measurement of two input variables for the diagnostic method: transparency of the walls of the dwelling and the strength of static sources. Also measures aimed at reducing radon concentrations in the dwelling are discussed. The main conclusions are that (a) the pressure-variation method is a valid procedure to measure the transparency of walls and floors; (b) the blower door is a suitable technique for arriving at a correct diagnosis; and (c) over-pressurizing the crawl-space is the most effective measure in reducing the radon concentration of the crawl-space. More research on air flows in the soil is recommended. 21 figs., 28 tabs., 7 refs

  16. Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal variation and sensitivity to meteorology and emissions inventory

    Science.gov (United States)

    Kim, Hyun Cheol; Kim, Eunhye; Bae, Changhan; Cho, Jeong Hoon; Kim, Byeong-Uk; Kim, Soontae

    2017-09-01

    The impact of regional emissions (e.g., domestic and international) on surface particulate matter (PM) concentrations in the Seoul metropolitan area (SMA), South Korea, and its sensitivities to meteorology and emissions inventories are quantitatively estimated for 2014 using regional air quality modeling systems. Located on the downwind side of strong sources of anthropogenic emissions, South Korea bears the full impact of the regional transport of pollutants and their precursors. However, the impact of foreign emissions sources has not yet been fully documented. We utilized two regional air quality simulation systems: (1) a Weather Research and Forecasting and Community Multi-Scale Air Quality (CMAQ) system and (2) a United Kingdom Met Office Unified Model and CMAQ system. The following combinations of emissions inventories are used: the Intercontinental Chemical Transport Experiment-Phase B, the Inter-comparison Study for Asia 2010, and the National Institute of Environment Research Clean Air Policy Support System. Partial contributions of domestic and foreign emissions are estimated using a brute force approach, adjusting South Korean emissions to 50 %. Results show that foreign emissions contributed ˜ 60 % of SMA surface PM concentration in 2014. Estimated contributions display clear seasonal variation, with foreign emissions having a higher impact during the cold season (fall to spring), reaching ˜ 70 % in March, and making lower contributions in the summer, ˜ 45 % in September. We also found that simulated surface PM concentration is sensitive to meteorology, but estimated contributions are mostly consistent. Regional contributions are also found to be sensitive to the choice of emissions inventories.

  17. The Development of the Redox Concept Inventory as a Measure of Students' Symbolic and Particulate Redox Understandings and Confidence

    Science.gov (United States)

    Brandriet, Alexandra R.; Bretz, Stacey Lowery

    2014-01-01

    This article describes the development of the Redox Concept Inventory (ROXCI) as a measure of students' understandings and confidence of both the symbolic and particulate domains of oxidation-reduction (redox) reactions. The ROXCI was created using a mixed-methods design in which the items were developed based upon themes that emerged from…

  18. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    Science.gov (United States)

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  19. A constant-volume rapid exhaust dilution system for motor vehicle particulate matter number and mass measurements.

    Science.gov (United States)

    Maricq, M Matti; Chase, Richard E; Xu, Ning; Podsiadlik, Diane H

    2003-10-01

    An improved version of the constant volume sampling (CVS) methodology that overcomes a number of obstacles that exist with the current CVS dilution tunnel system used in most diesel and gasoline vehicle emissions test facilities is presented. The key feature of the new sampling system is the introduction of dilution air immediately at the vehicle tailpipe. In the present implementation, this is done concentrically through a cylindrical air filter. Elimination of the transfer hose conventionally used to connect the tailpipe to the dilution tunnel significantly reduces the hydrocarbon and particulate matter (PM) storage release artifacts that can lead to wildly incorrect particle number counts and to erroneous filter-collected PM mass. It provides accurate representations of particle size distributions for diesel vehicles by avoiding the particle coagulation that occurs in the transfer hose. Furthermore, it removes the variable delay time that otherwise exists between the time that emissions exit the tailpipe and when they are detected in the dilution tunnel. The performance of the improved CVS system is examined with respect to diesel, gasoline, and compressed natural gas vehicles.

  20. Measuring Low Concentrations of Liquid Water in Soil

    Science.gov (United States)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  1. Apparatus for measuring the concentration of a gas

    International Nuclear Information System (INIS)

    Manin, Ange.

    1974-01-01

    The apparatus described for measuring the concentration of a gas in an atmosphere is of the kind which has an ionization chamber with an internal radioactive source and associated electronics enabling the ionization current crossing the chamber to be measured. It includes at least one cylindrical metal grid forming an electrode brought to a high voltage in relation to a cylindrical collection electrode fitted to the axis of the grid coated with a radioactive deposit and, around this grid, a screen acting as a protective envelope. The radioactive deposit is tritiated titanium [fr

  2. Laser metrology in fluid mechanics granulometry, temperature and concentration measurements

    CERN Document Server

    Boutier, Alain

    2013-01-01

    In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp

  3. Measurement of indoor radon concentration by CR-39 track detector

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Yoneda, Shigeru; Nakanishi, Takashi.

    1990-01-01

    A convenient and cheap method for measuring indoor radon ( 222 Rn) concentration with a CR-39 track detector is described. The detector consisted of two sheets of CR-39 enclosed separately in two plastic pots : one covered by a filter (cup method) and another no covering (bare method). The bare method was used here to supplement the cup method. To compare with the result of the CR-39 detector, alpha-ray spectrometry was carried out with a Si(Au) detector in a controlled radon exposure chamber. Indoor radon concentration measured in 133 houses in several districts of Ishikawa Prefecture have been found to range from 6 Bq/m 3 to as high as 113 Bq/m 3 with a median value of 24 Bq/m 3 . The problems to measure indoor radon concentration using the CR-39 detector are also discussed with emphasis on the position of setting the detector in the room and the possible thoron contribution to the detector. (author)

  4. Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China

    Directory of Open Access Journals (Sweden)

    Lili Li

    2015-06-01

    Full Text Available Satellite remote sensing offers an effective approach to estimate indicators of air quality on a large scale. It is critically significant for air quality monitoring in areas experiencing rapid urbanization and consequently severe air pollution, like the Pearl River Delta (PRD in China. This paper starts with examining ground observations of particulate matter (PM and the relationship between PM10 (particles smaller than 10 μm and aerosol optical thickness (AOT by analyzing observations on the sampling sites in the PRD. A linear regression (R2 = 0.51 is carried out using MODIS-derived 500 m-resolution AOT and PM10 concentration from monitoring stations. Data of atmospheric boundary layer (ABL height and relative humidity are used to make vertical and humidity corrections on AOT. Results after correction show higher correlations (R2 = 0.55 between extinction coefficient and PM10. However, coarse spatial resolution of meteorological data affects the smoothness of retrieved maps, which suggests high-resolution and accurate meteorological data are critical to increase retrieval accuracy of PM. Finally, the model provides the spatial distribution maps of instantaneous and yearly average PM10 over the PRD. It is proved that observed PM10 is more relevant to yearly mean AOT than instantaneous values.

  5. Measurement of concentrations of 7Be, 90Sr, 134,137Cs, 210Pb and 226Ra in the tropospheric and lower stratospheric air in 1997 and 1998

    International Nuclear Information System (INIS)

    Kownacka, L.; Jaworowski, Z.; Zajac, B.

    1999-01-01

    In this report the results of the vertical distribution of atmospheric particulates concentrations of fission products and natural radionuclides 7 Be, 210 Pb, 226 Ra are presented for 1997 and 1998. The measurements have been carried out over north-eastern part of Poland. The samples of aerosols were collected with airplane samplers at 1, 3, 6, 9, 12 and 15 km altitudes, and with a stationary sampler near the ground level. Concentrations of radiocesium in both stratospheric and ground level air were in 1997 and 1998 lower then before the Chernobyl accident. In the troposphere in 1998 concentration increased by a factor of 6 due to a nuclear incident in Spain. (author)

  6. Radon concentration measurements in waters in Greece and Cyprus

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Tzortzi, A.; Thanassas, D.; Serefoglou, A.; Georgiou, E.; Vogiannis, E.; Koukouliou, V.

    2004-01-01

    The radon content of drinking water samples was determined with Alpha Guard Pro equipped with an appropriate unit (Aqua Kit). The samples were collected from water taps in dwellings located at various cities in Greece and Cyprus. In addition, surface water samples from rivers, lakes and seas as well as potable underground and hot spring water samples from Greece and Cyprus were also collected. For a precise determination of radon concentration in water samples, special procedures were followed both for sampling and transportation, as well as for measurement. Intercomparison experiments were designed and implemented before and during the study. Radon concentrations in drinking water samples in Greece ranged between 1.1 ± 0.5 Bq/L and 410±50 Bq/L. The corresponding concentrations in Cyprus ranged between 1.3 ± 0.8 Bq/L and 15±4 Bq/L. Three samples collected from the city of Arnea Chalkidikis (Northern Greece) exhibited high concentrations of 120±20 Bq/L, 320±40 Bq/L and 410±50 Bq/L. This city is identified as a high radon potential area. One water sample located in Lesvos Island (North-East part of Greece) exhibited radon concentration 140±20 Bq/L. Additional six samples displayed high concentrations in potable hot spring water samples. These samples which were collected from the city of Loutraki (Peloponnesus) ranged between 220-230 Bq/L. In addition, two samples characterized as 'medicinal drinking water' gave concentrations between 320 Bq/L and 340 Bq/L. For underground water samples the radon concentrations ranged between 1.2±0.7 Bq/L and 15±4 Bq/L, while for surface water samples the range was 2.7±0.8 Bq/L to 24±6 Bq/L. The observed concentrations of radon gas in potable water samples in Greece were found to be largely low. In Cyprus, they were all well below 15 Bq/L

  7. Observations on particulate organic nitrates and unidentified components of NOy

    DEFF Research Database (Denmark)

    Nielsen, T.; Egeløv, A.H.; Granby, K.

    1995-01-01

    A method to determine the total content of particulate organic nitrates (PON) has been developed and ambient air measurements of PON, NO, NO2, HNO3, peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), gas NOy and particulate inorganic nitrate have been performed in the spring and early...... summer al an agricultural site in Denmark and compared with measurements of ozone, H2O2, SO2, formic acid, acetic acid and methane sulphonic acid. The gas NOy detector determines the sum NO + NO2 + HNO2 + HNO3 + PAN + PPN + gas phase organic nitrates + 2 x N2O5 + NO3. The content of residual gas NOy...... = gas NOy + particulate inorganic nitrate). Residual gas NOy was much higher than the particulate fraction of organic nitrates (PON). PON was only 0.25 +/- 0.11% of concentrations of photochemical oxidants in connection with high-pressure systems suggesting atmospheric processes being the major source...

  8. Locomotive emissions test stand with particulate matter measurement integration : final report.

    Science.gov (United States)

    2015-10-01

    This project builds upon previous research efforts, in which a complete instruction manual and bill of materials was developed for : a blueprint that allows any organization in the railroad industry to build their own locomotive emissions measurement...

  9. Measurement of plasma adenosine concentration: methodological and physiological considerations

    International Nuclear Information System (INIS)

    Gewirtz, H.; Brown, P.; Most, A.S.

    1987-01-01

    This study tested the hypothesis that measurements of plasma adenosine concentration made on samples of blood obtained in dipyridamole and EHNA (i.e., stopping solution) may be falsely elevated as a result of ongoing in vitro production and accumulation of adenosine during sample processing. Studies were performed with samples of anticoagulated blood obtained from anesthesized domestic swine. Adenosine concentration of ultra filtrated plasma was determined by HPLC. The following parameters were evaluated: (i) rate of clearance of [ 3 H]adenosine added to plasma, (ii) endogenous adenosine concentration of matched blood samples obtained in stopping solution alone, stopping solution plus EDTA, and perchloric acid (PCA), (iii) plasma and erythrocyte endogenous adenosine concentration in nonhemolyzed samples, and (iv) plasma adenosine concentration of samples hemolyzed in the presence of stopping solution alone or stopping solution plus EDTA. We observed that (i) greater than or equal to 95% of [ 3 H]adenosine added to plasma is removed from it by formed elements of the blood in less than 20 s, (ii) plasma adenosine concentration of samples obtained in stopping solution alone is generally 10-fold greater than that of matched samples obtained in stopping solution plus EDTA, (iii) deliberate mechanical hemolysis of blood samples obtained in stopping solution alone resulted in substantial augmentation of plasma adenosine levels in comparison with matched nonhemolyzed specimens--addition of EDTA to stopping solution prevented this, and (iv) adenosine content of blood samples obtained in PCA agreed closely with the sum of plasma and erythrocyte adenosine content of samples obtained in stopping solution plus EDTA

  10. Source apportionment of traffic emissions of particulate matter using tunnel measurements

    Science.gov (United States)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal; Mao, Hongjun; Prain, Hunter Douglas; Bull, Ian D.

    2013-10-01

    This study aims to quantify exhaust/non-exhaust emissions and the uncertainties associated with them by combining innovative motorway tunnel sampling and source apportionment modelling. Analytical techniques ICP-AES and GC-MS were used to identify the metallic and organic composition of PM10, respectively. Good correlation was observed between Fe, Cu, Mn, Ni, Pb and Sb and change in traffic volume. The concentration of polycyclic aromatic hydrocarbons and other organics varies significantly at the entrance and exit site of the tunnel, with fluoranthene, pyrene, benzo[a]pyrene, chrysene and benzothiazole having the highest incremented concentrations. The application of Principal Component Analysis and Multiple Linear Regression Analysis helped to identify the emission sources for 82% of the total PM10 mass inside the tunnel. Identified sources include resuspension (27%), diesel exhaust emissions (21%), petrol exhaust emissions (12%), brake wear emissions (11%) and road surface wear (11%). This study shows that major health related chemical species of PM10 originate from non-exhaust sources, further signifying the need for legislation to reduce these emissions.

  11. Measurement of indoor and outdoor radon concentrations during Superstorm Sandy.

    Science.gov (United States)

    Kotrappa, Payasada; Paul, Prateek; Stieff, Alex; Stieff, Frederick

    2013-12-01

    Superstorm Sandy affected much of the US East Coast extending over 1800 km. It passed over the test location in the State of Maryland on 29 October 2012. Being 350 km away from the regions of highest intensity the storm was of lower intensity at the test location. Continuous radon monitors and passive radon monitors were used for the measurement. The test location was the basement of a single family home representing the indoor concentration. A partially opened garage of the same test home represented the outdoor radon concentration. In 24 h, the atmospheric pressure dropped from 990 to 960 mbar and the indoor radon concentration increased from 70 to 1500 Bq m(-3) and returned to the normal of 70 Bq m(-3) at the end of the storm. Throughout the storm, the outdoor radon concentration was not significantly affected. Probable reasons for such surprisingly large changes are discussed. However, the outdoor temperature dropped from 13°C to 7°C during the radon peak.

  12. Geospatial analysis of residential proximity to open-pit coal mining areas in relation to micronuclei frequency, particulate matter concentration, and elemental enrichment factors.

    Science.gov (United States)

    Espitia-Pérez, Lyda; Arteaga-Pertuz, Marcia; Soto, José Salvador; Espitia-Pérez, Pedro; Salcedo-Arteaga, Shirley; Pastor-Sierra, Karina; Galeano-Páez, Claudia; Brango, Hugo; da Silva, Juliana; Henriques, João A P

    2018-05-03

    During coal surface mining, several activities such as drilling, blasting, loading, and transport produce large quantities of particulate matter (PM) that is directly emitted into the atmosphere. Occupational exposure to this PM has been associated with an increase of DNA damage, but there is a scarcity of data examining the impact of these industrial operations in cytogenetic endpoints frequency and cancer risk of potentially exposed surrounding populations. In this study, we used a Geographic Information Systems (GIS) approach and Inverse Distance Weighting (IDW) methods to perform a spatial and statistical analysis to explore whether exposure to PM 2.5 and PM 10 pollution, and additional factors, including the enrichment of the PM with inorganic elements, contribute to cytogenetic damage in residents living in proximity to an open-pit coal mining area. Results showed a spatial relationship between exposure to elevated concentrations of PM 2.5, PM 10 and micronuclei frequency in binucleated (MNBN) and mononucleated (MNMONO) cells. Active pits, disposal, and storage areas could be identified as the possible emission sources of combustion elements. Mining activities were also correlated with increased concentrations of highly enriched elements like S, Cu and Cr in the atmosphere, corroborating its role in the inorganic elements pollution around coal mines. Elements enriched in the PM 2.5 fraction contributed to increasing of MNBN but seems to be more related to increased MNMONO frequencies and DNA damage accumulated in vivo. The combined use of GIS and IDW methods could represent an important tool for monitoring potential cancer risk associated to dynamically distributed variables like the PM. Copyright © 2018. Published by Elsevier Ltd.

  13. Integrating measurements of indoor thoron and its progeny concentrations

    International Nuclear Information System (INIS)

    Zhuo, W.H.; Iida, T.; Hashiguchi, Y.

    2000-01-01

    In recent years, indoor surveys in Europe and Asia revealed that the dose contribution from thoron and its progeny can equal or even exceed that of radon and its progeny. For measuring thoron and its progeny, several methods had been reported. However, convenient, low-cost and time-integrating measuring methods which are suitable for large-scale surveys are still unavailable. To solve this problem, three integrating measuring methods with allyl diglycol carbonate plastic (CR-39) as detectors have recently been. The results indicated that they are suitable for estimating the indoor thoron and its progeny concentrations when the public exposure to thoron and its progeny is taken into account. Cup monitor - Former types of passive integrating 222 Rn and 220 Rn cup monitors had been reported. Recently, in order to improve the sensitivity of thoron detection, the air exchange rate between the inner and outer cup was enhanced, and the radius of the hemisphere was reduced to 37.5 mm. Furthermore, the procedure of detector exchange was made to be more convenient. Equilibrium-equivalent 222 Rn and 220 Rn concentrations monitor (EEC monitor) - The measuring system is composed of a monitor head and a diaphragm pump. The total weight of the system is less than 1.5 kg, which makes it portable. The construction of the monitor head and the measuring principle were also reported by the authors. Thoron progeny deposition rate monitor - The monitor is simply constituted a piece of CR-39 covered with thin sheets of absorbers. The thickness of the absorbers are adjusted to let only the α particles emitted from 212 Pb impinge on the detector. The concentrations of thoron progeny are estimated from the deposition rates, assuming that the deposition velocities of thoron progeny are constant in general dwellings. The improved cup monitor has higher sensitivity than former monitors, with a calibration factor of 1.59x10 -3 tracks·cm -2 (Bq·m -3 ·h) -1 for thoron. The accuracy of the ECC

  14. PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    Science.gov (United States)

    Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...

  15. Dust measurement campaign in the Mantes region atmosphere; Campagne de mesures ``poussieres`` dans l`atmosphere de la region Mantaise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A measurement campaign have been carried out in the Mantes region (West of Paris) in order to determine particulate concentrations and types in the city atmosphere: granulometric particulate concentrations and concentration levels of the various types of airborne particulates (metals and metalloids, black smoke, polycyclic aromatic hydrocarbons, mono-cyclic aromatic hydrocarbons) are presented. The wind direction and speed have been taken into consideration

  16. Omega-3 Fatty Acid Attenuates Cardiovascular Effects in Healthy Older Volunteers Exposed to Concentrated Ambient Fine and UltrafineParticulate Matter

    Science.gov (United States)

    Rationale: Ambient particulate matter (PM) exposure has been associated with adverse cardiovascular effects. A recent epidemiology study reported that omega-3 polyunsaturated fatty acid (fish oil) supplementation blunted the response of study participants to PM. Our study was des...

  17. Measurements of serum-free thyroid hormone concentrations by ultrafiltration

    International Nuclear Information System (INIS)

    Konno, Norimichi; Hagiwara, Kohji; Taguchi, Hideo; Murakami, Shigeki; Taguchi, Shizuko

    1987-01-01

    An ultrafiltration method (UF) for measuring free thyroxine (FT 4 ) and free triiodothyronine (FT 3 ) using the Diaflow YM membrane (Centricon-10) is described. The results are compared with those by equilibrium dialysis (ED) and also by mathematical calculations derived from T 4 , T 3 , and binding protein concentrations. The precision with the UF method was excellent. The normal ranges of FT 4 and FT 3 by the three methods are all comparable. There was a high degree of correlation of FT 4 or FT 3 results by UF with those by ED and by calculation (r = 0.940 - 0.974, n = 161, P 4 and FT 3 by all methods agreed well for hyperthyroidism, hypothyroidism, and for patients with low T 4 -binding globulin. The mean FT 3 in pregnancy was lower than the normal value for all methods, and FT 4 concentrations by UF and calculation also decreased in late pregnancy. The mean FT 4 by UF and ED in low T 3 syndrome were significantly higher than in the normal controls, while the calculated FT 4 was lower. The FT 3 in low T 3 syndrome distributed normal to subnormal in all methods. These results indicate that a) the UF method is a reliable reference method for measuring FT 4 and FT 3 concentrations; b) the UF results agree well with those by ED and also with theoretically derived values in subjects with thyroid diseases and TBG abnormalities; c) for patients with low T 3 syndrome, the FT 4 results obtained by UF and ED are similarly discrepant from the calculated results, implying the existence of binding inhibitor(s) which affect both UF and ED measurements. (author)

  18. assessment of Seawater Intrusion in Concrete by Measuring Chlorine Concentration

    International Nuclear Information System (INIS)

    Abdel-Monem, A.M.; Kansouh, W.A.; Osman, A.M.; Bashter, I.I.

    2011-01-01

    The object of this work is to measure water intrusion in concrete using a new methodology based on neutron activation technique. The applied method depends on measuring the activated gamma energy lines emitted from 38 Cl using a gamma spectrometer with Ge(Li) and HPGe detectors. Concrete samples with different percentages of silica fume (SF), up to 20 % submerged in seawater for different period of time were used to perform the investigation. Samples of concrete taken from different positions along the direction of water intrusion in concrete block were irradiated by thermal neutrons using the irradiation cell of 252 Cf neutron source and one of the vertical channels of search reactor at Delft University. The measured 38 Cl concentrations of the irradiated samples were used to plot groups of water profiles distribution in concrete samples with different SF % and submerged in seawater for different periods. These profiles were compared with the others which use here measured by neutron back emitted method where a satisfactory agreement was observed between the two. Further, the displayed measured results; show that the diffusivity for all water contents decreases with increasing the silica fume percentage up to 15 %. However, for concrete samples with silica fume 20 % the observed phenomenon is reversed due to the deterioration of concrete physical and mechanical properties

  19. Si-Traceable Scale for Measurements of Radiocarbon Concentration

    Science.gov (United States)

    Hodges, Joseph T.; Fleisher, Adam J.; Liu, Qingnan; Long, David A.

    2017-06-01

    Radiocarbon (^{14}C) dating of organic materials is based on measuring the ^{14}C/^{12}C atomic fraction relative to the nascent value that existed when the material was formed by photosynthetic conversion of carbon dioxide present in the atmosphere. This field of measurement has numerous applications including source apportionment of anthropogenic and biogenic fuels and combustion emissions, carbon cycle dynamics, archaeology, and forensics. Accelerator mass spectrometry (AMS) is the most widely used method for radiocarbon detection because it can measure extremely small amounts of radiocarbon (background of nominally 1.2 parts-per-trillion) with high relative precision (0.4 %). AMS measurements of radiocarbon are typically calibrated by reference to standard oxalic-acid (C_2H_2O_4) samples of known radiocativity that are derived from plant matter. Specifically, the internationally accepted absolute dating reference for so-called "modern-equivalent" radiocarbon is 95 % of the specific radioactivity in AD 1950 of the National Bureau of Standards (NBS) oxalic acid standard reference material and normalized to δ^{13}C_{VPDB} = 19 per mil. With this definition, a "modern-equivalent" corresponds to 1.176(70) parts-per-trillion of ^{14}C relative to total carbon content. As an alternative radiocarbon scale, we propose an SI-traceable method to determine ^{14}C absolute concentration which is based on linear Beer-Lambert-law absorption measurements of selected ^{14}C^{16}O_2 ν_3-band line areas. This approach is attractive because line intensities of chosen radiocarbon dioxide transitions can be determined by ab initio calculations with relative uncertainties below 0.5 %. This assumption is justified by the excellent agreement between theoretical values of line intensities and measurements for stable isotopologues of CO_2. In the case of cavity ring-down spectroscopy (CRDS) measurements of ^{14}C^{16}O_2 peak areas, we show that absolute, SI-traceable concentrations of

  20. Measurements of thoron and radon progeny concentrations in Beijing, China

    International Nuclear Information System (INIS)

    Zhang Lei; Liu Cuihong; Guo Qiuju

    2008-01-01

    It has been reported that thoron levels in China are above the world average and may therefore make a significant contribution to the natural background radiation dose. We therefore conducted a pilot study of concentrations of both thoron and radon progeny during the spring of 2006 in the Beijing area, China. A new type of portable 24 h integrating monitor with a CR-39 detector was used during the survey. Seventy dwellings and eight outdoor sites were measured during the survey. For country houses built of red bricks and slurry, the average equilibrium equivalent concentrations (EEC) of thoron and radon were 1.02 ± 0.48 and 16.41 ± 9.02 Bq m -3 , respectively, whereas for city dwellings built of cement blocks and floor slabs, the results were 0.48 ± 0.47 and 11.50 ± 6.99 Bq m -3 for thoron and radon, respectively. For outdoor air, concentrations of thoron and radon progeny were 0.29 ± 0.28 and 7.05 ± 2.68 Bq m -3 , respectively. Radiation exposures from thoron and radon progeny were also evaluated; the ratio of dose contribution from thoron progeny to that of radon progeny was evaluated to be 28% and 17% in country houses and city dwellings, respectively. (note)

  1. Measurements of indoor 222Rn concentration in two art galleries

    International Nuclear Information System (INIS)

    Carneiro, Luana Gomes; Braz, Delson; Jesus, Edgar Francisco de; Cunha, Kenya Dias da; Medeiros, Geiza; Zouain, Felipe; Pitassi, Gabriel; Leite, Carlos Barros; Cardoso, Katia

    2009-01-01

    It is point out that radon and their decay products in environment give high dose to human lung. Studies indicate that the indoor radon inhalation by humans has been considered probably the second most important cause of lung cancer after of smoking. A passive-type radon detector was used for measuring indoor radon concentration in two art galleries at Rio de Janeiro city during 90 days January to March, 2009. The aim of this study is to evaluate the occupational and public radon exposure in art galleries and museums. This paper shows the preliminary results of samples collected at two art galleries located in Gavea, Rio de Janeiro city. 30 LEXAN (GE) track detectors were exposed in the air (indoor as well as outdoor). The samples were collected in the same building which is a construction of XIX century. The analysis of the results suggests that the 222 Rn concentration levels are different in both sampling site, in closed environmental, demonstrating that, although the construction materials are the same the absence of circulating air is a factor very important to increase the concentration of indoor Rn. (author)

  2. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  3. Incorporation monitoring by measurements of activity concentrations in air

    International Nuclear Information System (INIS)

    Breukelmann, G.; Dalheimer, A.; Dilger, H.; Henrichs, K.

    1997-01-01

    The incorporation monitoring of workers handling actinides is in many cases not possible by individual methods: The sensitivity of bioassay of methods (in vivo, in vitro) is not sufficient to detect amounts as required by the low annual limits of intake. Similar difficulties may occur with the use of radionuclides with very short physical half-lives. In these cases, the measuring of activity concentrations in the air is the only way to monitor the workers and to meet legal requirements. The essential problem connected with this approach is to make sure, that the air sample analyzed represents the average air inhaled actually. Correspondingly, the new system regulating the incorporation monitoring in Germany requires additional measures to ensure this representatively. (author)

  4. Ground based measurements of particulate emissions from supersonic transports. Concorde olympus engine

    Energy Technology Data Exchange (ETDEWEB)

    Whitefield, Ph D; Hagen, D E [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H V [McDonnell Douglas Corp., St. Louis, MO (United States)

    1998-12-31

    The application of a mobile aerosol monitoring facility, the Mobile Aerosol Sampling System (MASS) is described to characterize engine aerosol emissions from the Rolls Royce Olympus Engine. The multi-configurational MASS has been employed in both ground and airborne field operations. It has been successfully flown on research aircrafts. In ground tests the MASS has participated in numerous jet engine related ground tests, and has been deployed to resolve aerosol generation problems in a high power chemical laser system. In all cases the measurements were made on samples taken from a harsh physical and chemical environment, with both high and low temperature and pressure, and in the presence of highly reactive gases. (R.P.) 9 refs.

  5. Ground based measurements of particulate emissions from supersonic transports. Concorde olympus engine

    Energy Technology Data Exchange (ETDEWEB)

    Whitefield, Ph.D.; Hagen, D.E. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Corp., St. Louis, MO (United States)

    1997-12-31

    The application of a mobile aerosol monitoring facility, the Mobile Aerosol Sampling System (MASS) is described to characterize engine aerosol emissions from the Rolls Royce Olympus Engine. The multi-configurational MASS has been employed in both ground and airborne field operations. It has been successfully flown on research aircrafts. In ground tests the MASS has participated in numerous jet engine related ground tests, and has been deployed to resolve aerosol generation problems in a high power chemical laser system. In all cases the measurements were made on samples taken from a harsh physical and chemical environment, with both high and low temperature and pressure, and in the presence of highly reactive gases. (R.P.) 9 refs.

  6. Functional exploratory data analysis for high-resolution measurements of urban particulate matter.

    Science.gov (United States)

    Ranalli, M Giovanna; Rocco, Giorgia; Jona Lasinio, Giovanna; Moroni, Beatrice; Castellini, Silvia; Crocchianti, Stefano; Cappelletti, David

    2016-09-01

    In this work we propose the use of functional data analysis (FDA) to deal with a very large dataset of atmospheric aerosol size distribution resolved in both space and time. Data come from a mobile measurement platform in the town of Perugia (Central Italy). An OPC (Optical Particle Counter) is integrated on a cabin of the Minimetrò, an urban transportation system, that moves along a monorail on a line transect of the town. The OPC takes a sample of air every six seconds and counts the number of particles of urban aerosols with a diameter between 0.28 μm and 10 μm and classifies such particles into 21 size bins according to their diameter. Here, we adopt a 2D functional data representation for each of the 21 spatiotemporal series. In fact, space is unidimensional since it is measured as the distance on the monorail from the base station of the Minimetrò. FDA allows for a reduction of the dimensionality of each dataset and accounts for the high space-time resolution of the data. Functional cluster analysis is then performed to search for similarities among the 21 size channels in terms of their spatiotemporal pattern. Results provide a good classification of the 21 size bins into a relatively small number of groups (between three and four) according to the season of the year. Groups including coarser particles have more similar patterns, while those including finer particles show a more different behavior according to the period of the year. Such features are consistent with the physics of atmospheric aerosol and the highlighted patterns provide a very useful ground for prospective model-based studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    International Nuclear Information System (INIS)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang

    2016-01-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  8. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2016-11-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  9. Particulate and soluble 210Pd activities in the deep sea

    International Nuclear Information System (INIS)

    Somayajulu, B.L.K.; Craig, H.

    1976-01-01

    Particulate and soluble, 210 Pb activities have been measured by filtration of large-volume water samples at two stations in the South Atlantic. Particulate phase 210 Pb (caught by a 0.4-μm filter) varies from 0.3% of total 210 Pb in equatorial surface water to 15% in the bottom water. The 'absolute activity' of 210 Pb per unit mass of particulate matter is about 10 7 times the activity of soluble 210 Pb per unit mass of water, but because the mass ratio of particulate matter to water is about 10 -8 , the particulate phase carries only about 10% of the total activity. In Antarctic surface water the particulate phase carries 40% of the total 210 Pb activity; the absolute activity of this material is about the same as in other water masses and the higher fraction is due to the much larger concentration of suspended matter in surface water in this region. In the equatorial Atlantic the particulate phase 210 Pb activity increases with depth, by a factor of 40 from surface to bottom, and by a factor of 4 from the Antarctic Intermediate water core to the Antarctic Bottom Water. (Auth.)

  10. On the origin and variability of suspended particulate matter (PM1, PM2.5 and PM10) concentrations in Cyprus.

    Science.gov (United States)

    Pikridas, Michael; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Kizas, Christos; Savvides, Chrysanthos; Sciare, Jean

    2017-04-01

    The Eastern Mediterranean (EM) lies at the crossroad of three different continents (Europe, Asia, and Africa). EM is a densely populated region including several cities with 3M inhabitants or more (e.g. Athens, Istanbul, Izmir, and Cairo). It has been identified as the most polluted area in Europe with respect to particulate matter (PM) mainly due to the combination of high photochemical activity, which causes pollutants to oxidize and partitioning in the particle phase, with the elevated pollutants emissions from neighboring regions. In addition, the proximity to Africa and the Middle East allows frequent transport of dust particles. At the center of the Eastern Mediterranean lies the island of Cyprus, which has received very little attention regarding its PM levels despite being the location in Europe most frequently impacted by air masses from the Middle East. Herewith, we present a historical PM archive that spans 2 decades. It involves ongoing monitoring on a daily basis of particulate matter with diameters smaller than 10 μm (PM10), 2.5 μm (PM2.5), and 1 μm (PM1) conducted in at least one, of the 12 currently existing air quality stations in Cyprus since 1997, 2005, and 2009, respectively. The most extended PM datasets correspond a) to the Agia Marina Xyliatou (AMX) monitoring station established at a remote area at the foothills of mount Troodos and b) that of the inland capital, Nicosia. Based on this long-term dataset, the diurnal, temporal and annual variability is assessed. Prior to 2010, PM10 concentration at all sites remained relatively constant, but at different levels, violating the annual EU legislated PM10 limit of 40 μg m-3. Since 2010, coarse mode levels have decreased at all sites. The reported decrease was equal to 30% at AMX. As a result, since 2010 the observed levels comply with the EU legislation threshold. Satellite observations of Aerosol Optical Thickness (AOT) Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA

  11. Measurement limits to 134Cs concentration in soil

    International Nuclear Information System (INIS)

    Ahn, J.K.; Kim, J.S.; Lee, H.M.; Kim, H.; Kim, T.H.; Park, J.N.; Kang, Y.S.; Lee, H.S.; Kim, S.J.; Park, J.Y.; Ryu, S.Y.; Kim, H.-Ch.; Kang, W.G.; Kim, S.K.

    2011-01-01

    We investigate the caesium concentrations in soils in mountain areas near Gori nuclear power plant in Korea, focusing on the measurement limits to the 134 Cs. In order to lower the minimum detectable amount (MDA) of activity for the 134 Cs, we have used the ammonium molybdophosphate (AMP) precipitation method to get rid of the 40 K existing in natural radioactivity, which reduces the MDA activity about 10 times smaller than those without the AMP precipitation method. The MDA results for the 134 Cs were found to be in the range between 0.015 and 0.044 Bq/kg-dry weight. In order to diminish the background, we also have measured a part of the soil samples in Yangyang, a small town in the east coast of Korea. However, it turns out that in order to detect the 134 Cs in the samples the MDA should be reduced to the level of mBq/kg-dry weight. - Highlights: → We study the caesium concentrations in soils in mountain areas near Gori NPT in Korea. → We use the AMP precipitation method to lower the minimum detectable amount (MDA) of activity for the 134 Cs. → The results of the MDA for the 134 Cs turn out to be in the range between 0.015 and 0.044. → In order to detect the 134 Cs in the samples, the MDA should be reduced to the level of mBq/kg-dry weight.

  12. Measuring the energy security implications of fossil fuel resource concentration

    International Nuclear Information System (INIS)

    Lefevre, Nicolas

    2010-01-01

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies-France and the United Kingdom-looking at the evolution of both indexes to 2030.

  13. Measuring the energy security implications of fossil fuel resource concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Nicolas [Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey (United States)

    2010-04-15

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies - France and the United Kingdom - looking at the evolution of both indexes to 2030. (author)

  14. Radioactivity concentration measuring device for radiation waste containing vessel

    International Nuclear Information System (INIS)

    Goto, Tetsuo.

    1994-01-01

    The device of the present invention can precisely and accurately measure a radioactive concentration of radioactive wastes irrespective of the radioactivity concentration distribution. Namely, a Ge detector having a collimator and a plurality of radiation detectors are placed at the outside of the radioactive waste containing vessel in such a way that it can rotate and move vertically relative to the vessel. The plurality of radiation detectors detect radiation coefficient signals at an assumed segment unit of a predetermined length in vertical direction and for every predetermined angle unit in the rotational direction. A weight measuring device determines the weight of the vessel. A computer calculates an average density of radioactivity for the region filled with radioactivity based on the determined net weight and radiation coefficient signals assuming that the volume of the radioactivity is constant. In addition, the computer calculates the amount of radioactivity in the assumed segment by conducting γ -ray absorption compensation calculation for the material in the vessel. Each of the amount of radioactivity is integrated to determine the amount of radioactivity in the vessel. (I.S.)

  15. Tracking and shape errors measurement of concentrating heliostats

    Science.gov (United States)

    Coquand, Mathieu; Caliot, Cyril; Hénault, François

    2017-09-01

    In solar tower power plants, factors such as tracking accuracy, facets misalignment and surface shape errors of concentrating heliostats are of prime importance on the efficiency of the system. At industrial scale, one critical issue is the time and effort required to adjust the different mirrors of the faceted heliostats, which could take several months using current techniques. Thus, methods enabling quick adjustment of a field with a huge number of heliostats are essential for the rise of solar tower technology. In this communication is described a new method for heliostat characterization that makes use of four cameras located near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. From knowledge of a measured sun profile, data processing of the acquired images allows reconstructing the slope and shape errors of the heliostats, including tracking and canting errors. The mathematical basis of this shape reconstruction process is explained comprehensively. Numerical simulations demonstrate that the measurement accuracy of this "backward-gazing method" is compliant with the requirements of solar concentrating optics. Finally, we present our first experimental results obtained at the THEMIS experimental solar tower plant in Targasonne, France.

  16. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    Science.gov (United States)

    Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-08-01

    A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.

  17. In-situ, satellite measurement and model evidence for a~dominant regional contribution to fine particulate matter levels in the Paris Megacity

    Science.gov (United States)

    Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-03-01

    A detailed characterization of air quality in Paris (France), a megacity of more than 10 million inhabitants, during two one month intensive campaigns and from additional one year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in-situ measurements during short intensive and longer term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by a comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions contributed less than 20% in winter and 40% in summer to carbonaceous fine PM, unexpectedly little for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e. from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only controlling part of its own average and peak PM levels has important implications for air pollution regulation policies.

  18. Laboratory measurements of immersion freezing abilities of non-proteinaceous and proteinaceous biological particulate proxies

    Science.gov (United States)

    Cory, K.; Tobo, Y.; Murata, K.; Whiteside, C. L.; McCauley, B.; Bouma, C.; Hiranuma, N.

    2017-12-01

    Non-proteinaceous and proteinaceous biological aerosols are abundant within the atmosphere and have the potential to impact the climate through cloud and precipitation formation. In this study, we present the differences in the laboratory-measured freezing capabilities of the non-proteinaceous and proteinaceous biological materials to determine which has more potential to impact the ice nucleation in the clouds. As non-proteinaceous surrogates, we examined multiple cellulose materials (e.g., microcrystalline and nanocrystalline cellulose) whose sizes range from 100 nm to >100 μm (according to manufacturer report). For proteinaceous proxies, we looked at different gram-negative bacteria, such as Pseudamonas aeruginosa, Escherichia coli, Serratia marcescens, Citrobacter freundii, and Snomax, (which contains P. syringae) that can be found around the proximity of the Texas Panhandle. By using the Cryogenic Refrigeration Applied Freezing Test (CRAFT) system, we estimated immersion freezing efficiency (i.e., ice nucleation activity scaled to a unit of mass) of each sample at the temperatures greater than -30°C. We have observed that not all gram-negative bacteria has high immersion freezing activity, but the few do have a warmer temperature onset (>-20 °C) than the cellulose used. For those that did not exhibit substantial freezing efficiencies, they had similar freezing properties as the broth, in which the bacteria were incubated, as well as the cellulose materials examined. These observations suggest the presence and potential importance of bacterial cellulose in the atmospheric ice nucleation. From here, we need to conduct more in-depth investigation in the effects of a wider variety of atmospherically relevant biological aerosols to get a better understanding of the effects of said aerosols on overall aerosol-cloud interactions. Acknowledgments: K. Cory would like to acknowledge NSF-EAPSI and JSPS Summer Program for the travel fellowship support. N. Hiranuma

  19. Particulate emission factor: A case study of a palm oil mill boiler

    International Nuclear Information System (INIS)

    Chong, W.C.; Rashid, M.; Ramli, M.; Zainura, Z.N.; NorRuwaida, J.

    2010-01-01

    A study to investigate the particulate emission from a boiler of a palm oil mill plant equipped with a multi-cyclones particulate arrest or was performed and reported in this paper. The particulate emission concentration was measured at the outlet of a 8 mt/ hr capacity water-tube typed boiler of a palm oil mill plant processing 27mt/ hr of fresh fruit bunch (FFB). The particulate sample was collected iso-kinetically using the USEPA method 5 sampling train through a sampling port made at the duct of the exiting flue gas between the boiler and a multi-cyclones unit. Results showed that the particulate emission rates exiting the boiler varied from 0.09 to 0.60 g/s with an average of 0.29 + 0.18 g/ s. While the average particulate emission concentration exiting the boiler was 12.1 + 7.36 g/ Nm 3 (corrected to 7 % oxygen concentration), ranging from 3.62 to 25.3 g/ Nm 3 (at 7 % O 2 ) of the flue gas during the measurement. Based on the 27 mt/ hr FFB processed and the capacity of the boiler of 8mt steam/ hr, the calculated particulate emission factor was 39 g particulate/ mt FFB processed or 131 g particulate/ mt boiler capacity, respectively. In addition, based on the finding and in order to comply with the emission limits of 0.4 g/ Nm 3 , the collection efficiency of any given particulate emission pollution control system to consider for the mill will be from 87 to 98 %, which is not easily achievable with the existing multi-cyclones unit. A considerable amount of efforts are still needed pertaining to the particulate emission control problem in the industry. (author)

  20. Concentrations of Platinum Group Elements (Pt, Pd, Rh) in Airborne Particulate Matter (PM2.5 and PM10-2.5) Collected at Selected Canadian Urban Sites: a Case Study

    OpenAIRE

    Celo V.; Zhao J. J.; Dabek-Zlotorzynska E.

    2013-01-01

    Increasing environmental concentrations of platinum group elements (PGEs), in particular platinum (Pt), palladium (Pd) and rhodium (Rh), from catalytic converters has been reported worldwide. Initially it was believed that the emitted PGEs remain in the roadside environment, but recent studies have shown that fine PGE-containing particles can be transported and distributed at regional and long-range levels. Therefore, the monitoring of PGEs in airborne particulate matter (PM) is important for...

  1. Individual-Level Concentrations of Fine Particulate Matter Chemical Components and Subclinical Atherosclerosis: A Cross-Sectional Analysis Based on 2 Advanced Exposure Prediction Models in the Multi-Ethnic Study of Atherosclerosis

    Science.gov (United States)

    Kim, Sun-Young; Sheppard, Lianne; Kaufman, Joel D.; Bergen, Silas; Szpiro, Adam A.; Larson, Timothy V.; Adar, Sara D.; Diez Roux, Ana V.; Polak, Joseph F.; Vedal, Sverre

    2014-01-01

    Long-term exposure to outdoor particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) has been associated with cardiovascular morbidity and mortality. The chemical composition of PM2.5 that may be most responsible for producing these associations has not been identified. We assessed cross-sectional associations between long-term concentrations of PM2.5 and 4 of its chemical components (sulfur, silicon, elemental carbon, and organic carbon (OC)) and subclinical atherosclerosis, measured as carotid intima-media thickness (CIMT) and coronary artery calcium, between 2000 and 2002 among 5,488 Multi-Ethnic Study of Atherosclerosis participants residing in 6 US metropolitan areas. Long-term concentrations of PM2.5 components at participants' homes were predicted using both city-specific spatiotemporal models and a national spatial model. The estimated differences in CIMT associated with interquartile-range increases in sulfur, silicon, and OC predictions from the spatiotemporal model were 0.022 mm (95% confidence interval (CI): 0.014, 0.031), 0.006 mm (95% CI: 0.000, 0.012), and 0.026 mm (95% CI: 0.019, 0.034), respectively. Findings were generally similar using the national spatial model predictions but were often sensitive to adjustment for city. We did not find strong evidence of associations with coronary artery calcium. Long-term concentrations of sulfur and OC, and possibly silicon, were associated with CIMT using 2 distinct exposure prediction modeling approaches. PMID:25164422

  2. Understanding Spatiotemporal Variability of Fine Particulate Matter in an Urban Environment Using Combined Fixed and Mobile Measurements

    Science.gov (United States)

    Sullivan, R.; Pryor, S. C.; Barthelmie, R. J.; Filippelli, G. M.

    2013-12-01

    Acute and chronic exposure to elevated levels of aerosol particles represents a well-documented threat to public health. This is especially true in urban areas where in situ emissions elevate concentrations above regional background levels and population density is high, exposing a greater number of people to unhealthy air. The EPA's evaluation of compliance with National Ambient Air Quality Standards (NAAQS) for ambient fine particle (PM 2.5) concentrations in a city is frequently based on a limited number of observing stations and daily average concentrations. For example, data from only three locations indicates that Indianapolis (a city of nearly 1 million people) fails the NAAQS for PM2.5. However, the true population exposure exhibits spatial and temporal variability and thus is not adequately represented by long-term measurements. Thus, since 2011 we have conducted additional highly time-resolved PM2.5 measurements at four additional stations within Indianapolis. Analyses of these data indicate: ● PM2.5 concentrations in the city are an average of over 4 micrograms per cubic meter above a non-urban regionally representative site. ● A distinct diurnal cycle of PM2.5 concentrations in the city with a daily maximum in concentrations and higher outliers typically occurring during the morning hours (approx. 0700-0900 LST) and a daily minimum in concentrations and fewer outliers occurring in the afternoon (approx. 1400-1800 LST). ● Highest concentrations typically occur during weekdays. This hebdomadal pattern was amplified in proximity to the main interstate junction through the center of the city. ● PM2.5 concentrations thus exhibit similar timescales of variability to carbon monoxide, of which over 90% derives from the mobile sector, indicating a strong signature from motor vehicles. An additional mode of variability in PM2.5 as observed in power spectra equates to synoptic time scales (four days up to two weeks). ● On average wind speeds during

  3. Measurement of PCB concentrations in waters using a biomonitoring programme

    International Nuclear Information System (INIS)

    Mast, P.G.

    1993-01-01

    The book describes a PCB biomonitoring programme which was developed for measuring instantaneous PCB concentrations and permits the compilation of PCB action cadastres for different types of waters and subsequent derivation of current trends. Six representative congeners were selected as a basis for the quantitative routine analysis. The fish species bream (abramis brama) and roach (rutilus rutilus) were used as indicators in the PCB biomonitoring programme on account of their distribution and ecological demands. The age and growth rate of each fish destined for analysis was determined so as to ensure that only healthy fish would be used. In both fish species the dorsal musulature with its low scatter of test results and consistent PCB pattern (internal quantification) proved a representative body region. (orig.) [de

  4. Measurement of interstitial cetirizine concentrations in human skin

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Church, M K; Rihoux, J P

    1999-01-01

    BACKGROUND: The purpose of the present study was to measure the concentrations of cetirizine in the extracellular water compartment in intact human skin and assess simultaneously inhibition of histamine-induced wheal and flare reactions. METHODS: Skin cetirizine levels were collected...... by the microdialysis technique and analyzed by high-pressure liquid chromatography with mass spectrometry detection. Skin levels in 20 subjects were compared to plasma levels for 4 h after a single oral dose of 10 or 20 mg of cetirizine. Skin prick tests were performed with histamine 100 mg/ml. RESULTS: Plasma...... cetirizine levels increased within 30 min to reach peak values of 315+/-10 and 786+/-45 ng/ml 90-120 min after administration of 10 and 20 mg of cetirizine. This was followed by a slow decline. In the skin, dialysate cetirizine levels (non-protein-bound fraction only) peaked at 1.6+/-0.1 and 2.4+/-0.3 ng...

  5. An Alpha spectrometer for measuring radon daughter individual activity concentration

    International Nuclear Information System (INIS)

    Berico, M.; Formignani, M.; Mariotti, F.

    2001-01-01

    In the frame of the program of the Institute for Radiation Protection of ENEA, related to the evaluation of dose from radon and thoron progeny, an alpha spectrometer for the continuous air monitoring (CAM type) of radon and thoron has been realized. The constructive characteristics of the device are here presented together with energy and efficiency calibration. The device allows, by means of a screen type diffusion battery and a filter, to determinate the single radioactivity of each radionuclide of the progeny selecting them in relation to their diffusive behaviour (dichotomous particle size selection). The three-count filter method has been employed to measure the concentrations of 218 Po, 214 Pb and 214 Bi in air. Radon and thoron effective doses using a dosimetric, instead of an epidemiologic approach, will be then evaluated [it

  6. Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building.

    Science.gov (United States)

    Wang, Zuocheng; Calderón, Leonardo; Patton, Allison P; Sorensen Allacci, MaryAnn; Senick, Jennifer; Wener, Richard; Andrews, Clinton J; Mainelis, Gediminas

    2016-11-01

    This study used several real-time and filter-based aerosol instruments to measure PM 2.5 levels in a high-rise residential green building in the Northeastern US and compared performance of those instruments. PM 2.5 24-hr average concentrations were determined using a Personal Modular Impactor (PMI) with 2.5 µm cut (SKC Inc., Eighty Four, PA) and a direct reading pDR-1500 (Thermo Scientific, Franklin, MA) as well as its filter. 1-hr average PM 2.5 concentrations were measured in the same apartments with an Aerotrak Optical Particle Counter (OPC) (model 8220, TSI, Inc., Shoreview, MN) and a DustTrak DRX mass monitor (model 8534, TSI, Inc., Shoreview, MN). OPC and DRX measurements were compared with concurrent 1-hr mass concentration from the pDR-1500. The pDR-1500 direct reading showed approximately 40% higher particle mass concentration compared to its own filter (n = 41), and 25% higher PM 2.5 mass concentration compared to the PMI 2.5 filter. The pDR-1500 direct reading and PMI 2.5 in non-smoking homes (self-reported) were not significantly different (n = 10, R 2 = 0.937), while the difference between measurements for smoking homes was 44% (n = 31, R 2 = 0.773). Both OPC and DRX data had substantial and significant systematic and proportional biases compared with pDR-1500 readings. However, these methods were highly correlated: R 2 = 0.936 for OPC versus pDR-1500 reading and R 2 = 0.863 for DRX versus pDR-1500 reading. The data suggest that accuracy of aerosol mass concentrations from direct-reading instruments in indoor environments depends on the instrument, and that correction factors can be used to reduce biases of these real-time monitors in residential green buildings with similar aerosol properties. This study used several real-time and filter-based aerosol instruments to measure PM 2.5 levels in a high-rise residential green building in the northeastern United States and compared performance of those instruments. The data show that while the use of real

  7. Characterization and Scaling of Black Carbon Aerosol Concentration with City Population Based on In-Situ Measurements and Analysis

    Science.gov (United States)

    Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.

    2010-12-01

    The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.

  8. ARE CARS OR TREES MORE IMPORTANT TO PARTICULATE MATTER AIR POLUTION? WHAT RADIOCARBON MEASUREMENTS HAVE TO SAY

    Science.gov (United States)

    Air pollution in the form of particulate matter (PM) originates from both human activities and "natural" phenomena. Setting and achieving National Ambient Air Quality Standards (NAAQS) for PM has to take into account the latter since they are in general less controllable than th...

  9. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1320-90 Gas meter or flow..., methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  10. THE INFLUENCE OF PARTICULATE MATTER OF AMBIENT ORIGIN UPON INDOOR RESIDENTIAL MASS CONCENTRATIONS INVOLVING SENSITIVE SUBPOPULATIONS-RESULTS FROM LONGITUDINAL PANEL STUDIES

    Science.gov (United States)

    The US EPA has completed field data collections from a series of longitudinal particulate matter (PM) exposure panel field studies. These studies were conducted in Baltimore, Maryland (1998), Fresno, California (1999), and Research Triangle Park (RTP), North Carolina (2000-2001) ...

  11. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States

    Directory of Open Access Journals (Sweden)

    Y. F. Lam

    2011-05-01

    Full Text Available Simulations of present and future average regional ozone and PM2.5 concentrations over the United States were performed to investigate the potential impacts of global climate change and emissions on regional air quality using CMAQ. Various emissions and climate conditions with different biogenic emissions and domain resolutions were implemented to study the sensitivity of future air quality trends from the impacts of changing biogenic emissions. A comparison of GEOS-Chem and CMAQ was performed to investigate the effect of downscaling on the prediction of future air quality trends. For ozone, the impacts of global climate change are relatively smaller when compared to the impacts of anticipated future emissions reduction, except for the Northeast area, where increasing biogenic emissions due to climate change have stronger positive effects (increases to the regional ozone air quality. The combination effect from both climate change and emission reductions leads to approximately a 10 % or 5 ppbv decrease of the maximum daily average eight-hour ozone (MDA8 over the Eastern United States. For PM2.5, the impacts of global climate change have shown insignificant effect, where as the impacts of anticipated future emissions reduction account for the majority of overall PM2.5 reductions. The annual average 24-h PM2.5 of the future-year condition was found to be about 40 % lower than the one from the present-year condition, of which 60 % of its overall reductions are contributed to by the decrease of SO4 and NO3 particulate matters. Changing the biogenic emissions model increases the MDA8 ozone by about 5–10 % or 3–5 ppbv in the Northeast area. Conversely, it reduces the annual average PM2.5 by 5 % or 1.0 μg m−3 in the Southeast region.

  12. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    Science.gov (United States)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size

  13. Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China.

    Science.gov (United States)

    Zhang, Lijun; Guo, Changyi; Jia, Xiaodong; Xu, Huihui; Pan, Meizhu; Xu, Dong; Shen, Xianbiao; Zhang, Jianghua; Tan, Jianguo; Qian, Hailei; Dong, Chunyang; Shi, Yewen; Zhou, Xiaodan; Wu, Chen

    2018-01-01

    The aim of this study was to perform an exposure assessment of PM2.5 (particulate matter less than 2.5μm in aerodynamic diameter) among children and to explore the potential sources of exposure from both indoor and outdoor environments. In terms of real-time exposure measurements of PM2.5, we collected data from 57 children aged 8-12 years (9.64 ± 0.93 years) in two schools in Shanghai, China. Simultaneously, questionnaire surveys and time-activity diaries were used to estimate the environment at home and daily time-activity patterns in order to estimate the exposure dose of PM2.5 in these children. Principle component regression analysis was used to explore the influence of potential sources of PM2.5 exposure. All the median personal exposure and microenvironment PM2.5 concentrations greatly exceeded the daily 24-h PM2.5 Ambient Air Quality Standards of China, the USA, and the World Health Organization (WHO). The median Etotal (the sum of the PM2.5 exposure levels in different microenvironment and fractional time) of all students was 3014.13 (μg.h)/m3. The concentration of time-weighted average (TWA) exposure of all students was 137.01 μg/m3. The median TWA exposure level during the on-campus period (135.81 μg/m3) was significantly higher than the off-campus period (115.50 μg/m3, P = 0.013 < 0.05). Besides ambient air pollution and meteorological conditions, storey height of the classroom and mode of transportation to school were significantly correlated with children's daily PM2.5 exposure. Children in the two selected schools were exposed to high concentrations of PM2.5 in winter of 2013 in Shanghai. Their personal PM2.5 exposure was mainly associated with ambient air conditions, storey height of the classroom, and children's transportation mode to school.

  14. Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin) and Abidjan (Côte d'Ivoire)

    Science.gov (United States)

    Djossou, Julien; Léon, Jean-François; Barthélemy Akpo, Aristide; Liousse, Cathy; Yoboué, Véronique; Bedou, Mouhamadou; Bodjrenou, Marleine; Chiron, Christelle; Galy-Lacaux, Corinne; Gardrat, Eric; Abbey, Marcellin; Keita, Sékou; Bahino, Julien; Touré N'Datchoh, Evelyne; Ossohou, Money; Awanou, Cossi Norbert

    2018-05-01

    Air quality degradation is a major issue in the large conurbations on the shore of the Gulf of Guinea. We present for the first time PM2.5 time series collected in Cotonou, Benin, and Abidjan, Côte d'Ivoire, from February 2015 to March 2017. Measurements were performed in the vicinity of major combustion aerosol sources: Cotonou/traffic (CT), Abidjan/traffic (AT), Abidjan/landfill (AL) and Abidjan/domestic fires (ADF). We report the weekly PM2.5 mass and carbonaceous content as elemental (EC) and organic (OC) carbon concentrations. We also measure the aerosol optical depth (AOD) and the Ångström exponent in both cities. The average PM2.5 mass concentrations were 32 ± 32, 32 ± 24 and 28 ± 19 µg m-3 at traffic sites CT and AT and landfill site AL, respectively. The domestic fire site shows a concentration of 145 ± 69 µg m-3 due to the contribution of smoking and roasting activities. The highest OC and EC concentrations were also measured at ADF at 71 ± 29 and 15 ± 9 µg m-3, respectively, while the other sites present OC concentration between 8 and 12 µg m-3 and EC concentrations between 2 and 7 µg m-3. The OC / EC ratio is 4.3 at CT and 2.0 at AT. This difference highlights the influence of two-wheel vehicles using gasoline in Cotonou compared to that of four-wheel vehicles using diesel fuel in Abidjan. AOD was rather similar in both cities, with a mean value of 0.58 in Cotonou and of 0.68 in Abidjan. The seasonal cycle is dominated by the large increase in surface mass concentration and AOD during the long dry season (December-February) as expected due to mineral dust advection and biomass burning activities. The lowest concentrations are observed during the short dry season (August-September) due to an increase in surface wind speed leading to a better ventilation. On the other hand, the high PM2.5 / AOD ratio in the short wet season (October-November) indicates the stagnation of local pollution.

  15. Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin and Abidjan (Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    J. Djossou

    2018-05-01

    Full Text Available Air quality degradation is a major issue in the large conurbations on the shore of the Gulf of Guinea. We present for the first time PM2.5 time series collected in Cotonou, Benin, and Abidjan, Côte d'Ivoire, from February 2015 to March 2017. Measurements were performed in the vicinity of major combustion aerosol sources: Cotonou/traffic (CT, Abidjan/traffic (AT, Abidjan/landfill (AL and Abidjan/domestic fires (ADF. We report the weekly PM2.5 mass and carbonaceous content as elemental (EC and organic (OC carbon concentrations. We also measure the aerosol optical depth (AOD and the Ångström exponent in both cities. The average PM2.5 mass concentrations were 32 ± 32, 32 ± 24 and 28 ± 19 µg m−3 at traffic sites CT and AT and landfill site AL, respectively. The domestic fire site shows a concentration of 145 ± 69 µg m−3 due to the contribution of smoking and roasting activities. The highest OC and EC concentrations were also measured at ADF at 71 ± 29 and 15 ± 9 µg m−3, respectively, while the other sites present OC concentration between 8 and 12 µg m−3 and EC concentrations between 2 and 7 µg m−3. The OC ∕ EC ratio is 4.3 at CT and 2.0 at AT. This difference highlights the influence of two-wheel vehicles using gasoline in Cotonou compared to that of four-wheel vehicles using diesel fuel in Abidjan. AOD was rather similar in both cities, with a mean value of 0.58 in Cotonou and of 0.68 in Abidjan. The seasonal cycle is dominated by the large increase in surface mass concentration and AOD during the long dry season (December–February as expected due to mineral dust advection and biomass burning activities. The lowest concentrations are observed during the short dry season (August–September due to an increase in surface wind speed leading to a better ventilation. On the other hand, the high PM2.5 ∕ AOD ratio in the short wet season (October–November indicates the

  16. Transcutaneous Measurement of Blood Analyte Concentration Using Raman Spectroscopy

    Science.gov (United States)

    Barman, Ishan; Singh, Gajendra P.; Dasari, Ramachandra R.; Feld, Michael S.

    2008-11-01

    Diabetes mellitus is a chronic disorder, affecting nearly 200 million people worldwide. Acute complications, such as hypoglycemia, cardiovascular disease and retinal damage, may occur if the disease is not adequately controlled. As diabetes has no known cure, tight control of glucose levels is critical for the prevention of such complications. Given the necessity for regular monitoring of blood glucose, development of non-invasive glucose detection devices is essential to improve the quality of life in diabetic patients. The commercially available glucose sensors measure the interstitial fluid glucose by electrochemical detection. However, these sensors have severe limitations, primarily related to their invasive nature and lack of stability. This necessitates the development of a truly non-invasive glucose detection technique. NIR Raman Spectroscopy, which combines the substantial penetration depth of NIR light with the excellent chemical specificity of Raman spectroscopy, provides an excellent tool to meet the challenges involved. Additionally, it enables simultaneous determination of multiple blood analytes. Our laboratory has pioneered the use of Raman spectroscopy for blood analytes' detection in biological media. The preliminary success of our non-invasive glucose measurements both in vitro (such as in serum and blood) and in vivo has provided the foundation for the development of feasible clinical systems. However, successful application of this technology still faces a few hurdles, highlighted by the problems of tissue luminescence and selection of appropriate reference concentration. In this article we explore possible avenues to overcome these challenges so that prospective prediction accuracy of blood analytes can be brought to clinically acceptable levels.

  17. Description and measurement of concentration problems in depressed patients.

    Science.gov (United States)

    Watts, F N; Sharrock, R

    1985-05-01

    Depressed patients commonly complain of concentration problems, yet these have seldom been the focus of systematic investigation. A structured interview about concentration problems was administered to a group of relatively severely depressed patients. Problems in reading and watching television were the most common, and were highly correlated with each other. Direct report of the number of concentration lapses on a reading task was the most generally satisfactory task-performance correlate of complaints of reading/TV concentration problems. Evidence both from this task and from the interview suggests that depressive concentration problems may often be due to 'mind-wandering'. The correlations with concentration problems with the severity and endogeneity of depression and with state anxiety were generally similar.

  18. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    Science.gov (United States)

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.

  19. Measures to comply with future particulate number standards with GDI engines; Massnahmen zum Erreichen zukuenftiger Grenzwerte fuer Partikelanzahl beim direkteinspritzenden Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Dobes, Thomas; Fraidl, Guenter K.; Hollerer, Peter; Kapus, Paul E.; Ogris, Martin; Riener, Markus [AVL List GmbH, Graz (Austria)

    2011-07-01

    With the ongoing general discussion on fine particulates, also the particulates of Gasoline engines are now a focus of public interest. Compared to conventional Diesel engine, where due to the heterogeneous combustion, a certain amount of particles cannot be avoided; Gasoline engines a substantial reduction of particle number towards a level that does not compromise environmental aspects can be expected even without particle filter, however, with respective high development effort. Certainly the particle number emission is the most complex emission component with Gasoline engines both with regard to measurement technology, conditioning, reproducibility, tolerance sensitivity, long term stability, and OBD as well as development methodology. Thus a comprehensive development methodology - ranging from the detail optimization of individual injection parameters to mastering oil consumption and deposit formation over the whole vehicle lifetime, is most essential for an effective reduction of particle emission. Within this complex subject, the particulate counter itself proves to be uncritical whereas the sufficient conditioning of engine and vehicle and dilution tunnel, comprehensive base investigations have to be performed. All the established know how already generated for gaseous emission components is not sufficient to handle the particulate number issue properly. In spite of the fact, that very low particle numbers can be shown with single prototype vehicles, a reliable transfer into robust production solutions, comprehensive basic investigations especially with regard to tolerance sensitivity and robustness against fuel quality impacts and deposit formation have to be performed. Both for these open issues as well as for robust OBD solutions, actual field experience with a first generation of low particle engines is required. Thus, when introducing enhanced particle limits, the respective increased development durations and significantly enhanced efforts both for

  20. Measurement of local interfacial area concentration in boiling loop

    International Nuclear Information System (INIS)

    Kyoung, Ho Kang; Byong, Jo Yun; Goon, Cherl Park

    1995-01-01

    An accurate prediction of two-phase flow is essential to many energy systems, including nuclear reactors. To model the two-phase flow, detailed information on the internal flow structure is required. The void fraction and interfacial area concentration are important fundamental parameters characterizing the internal structure of two-phase flow. The interfacial area concentration is defined as the available interfacial area per unit volume of the two-phase mixture in calculations of the interfacial transport of mass, momentum, and energy. Although a number of studies have been made in this area, the interfacial area concentration in two-phase flow has not been sufficiently investigated either experimentally or analytically. Most existing models for interfacial area concentration are limited to area-averaged interfacial area concentration in a flow channel. And the studies on local interfacial area concentration are limited to the case of air-water two-phase flow. However, the internal flow structure of steam-water two-phase flow having various bubble sizes could be quite different from that of air-water two-phase flow, the reliability of which weak in practical applications. In this study, the local interfacial area concentration steam-water two-phase flow has been investigated experimentally in a circular boiling tube having a heating rod in the center, and for the low flow with liquid superficial velocity <1 m/s

  1. Measurements of Radon Concentration in Yemen Using Spark Counter

    International Nuclear Information System (INIS)

    Arafa, W.; Abou-Leila, M.; Hafiz, M.E.; Al-Glal, N.

    2011-01-01

    Spark counter has been designed and realized and the optimum applied voltage was found to be 600 V. Excellent consistent agreements was observed between counted number of tracks by spark counter and reading by optical microscope. Radon concentration in some houses in Sana'a and Hodeidah cities in Yemen had been performed using LR-115 SSNTD and spark counter system. The average radon concentration in both cities was far lower the alert value. The results showed that radon concentration in the metropolitan area Sana'a was higher than that in Hodeidah city. Also, it was observed that old residential houses had higher levels of radon concentrations have compared to newly built houses in the metropolitan area Sana'a

  2. Health impact assessment of ambient fine particulate matter exposure in impacts by different vehicle control measures in China

    Science.gov (United States)

    LI, S.; Wang, H.; Jiang, F.; Zhang, S.

    2017-12-01

    Road transportation is the one of the largest emission sources contributing to ambient PM2.5 pollution in China. Since the 1990s, China has adopted comprehensive control measures to mitigate vehicle emissions. However, the effects of these measures on reducing emissions, improving air quality and avoiding negative health impacts have not been systematically evaluated. In this study, we combine emissions inventory, air quality modeling, and IER model to evaluate the effect of various vehicle control measures on premature deaths attributable to ambient PM2.5 at a spatial resolution of 36 km × 36 km across China. Our results show that, comparing to no control scenarios, the total vehicular emissions with the actual vehicle emission controls implemented have reduced the emissions of NOX, HC, CO, PM2.5 by 57%, 69%, 75%, 71% respectively; and reduced the national annual mean PM2.5 concentration by 2.5ug/m³ across China by 2010. The number of avoidable deaths associated with reducing PM2.5 level is 150 thousands (95% Confidence interval: 66 thousand - 212 thousand). The geographic distribution of the absolute number of avoidable deaths presents a distinct regional feature and is particularly evident in several regions. The most influential areas are mainly concentrated in Beijing and its south part, which formed a large area of continuous high value. Our results have important policy implications on prioritizing vehicular emission control strategy in China.

  3. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  4. The Applicability of the Distribution Coefficient, KD, Based on Non-Aggregated Particulate Samples from Lakes with Low Suspended Solids Concentrations.

    Directory of Open Access Journals (Sweden)

    Aine Marie Gormley-Gallagher

    Full Text Available Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, KD. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS. Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic lake sediment, transient variations in KD were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the KD (n = 15 for each metal, p > 0.05 for Mn (r2 = 0.0063, Cu (r2 = 0.0002, Cr (r2 = 0.021, Ni (r2 = 0.0023, Cd (r2 = 0.00001, Co (r2 = 0.096, Hg (r2 = 0.116 or Pb (r2 = 0.164. The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing fraction, which inhibited the spurious lowering of KD. The findings conform to the increasingly documented theory that the use of KD in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water.

  5. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland

    Science.gov (United States)

    Setyan, Ari; Patrick, Michael; Wang, Jing

    2017-10-01

    A field campaign has been performed in two municipal solid waste incineration (MSWI) plants in Switzerland, at Hinwil (ZH) and Giubiasco (TI). The aim was to measure airborne pollutants at different locations of the abatement systems (including those released from the stacks into the atmosphere) and at a near-field (∼1 km) downwind site, in order to assess the efficiency of the abatement systems and the environmental impact of these plants. During this study, we measured the particle number concentration with a condensation particle counter (CPC), and the size distribution with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). We also sampled particles on filters for subsequent analyses of the morphology, size and elemental composition with a scanning electron microscope coupled to an energy dispersive X-ray spectroscope (SEM/EDX), and of water soluble ions by ion chromatography (IC). Finally, volatile organic compounds (VOCs) were sampled on adsorbing cartridges and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS), and a portable gas analyzer was used to monitor NO, SO2, CO, CO2, and O2. The particle concentration decreased significantly at two locations of the plants: at the electrostatic precipitator and the bag-house filter. The particle concentrations measured at the stacks were very low (incinerators. At Giubiasco, no significant differences were observed for the morphology and chemical composition of the particles collected in the ambient background and at the downwind site, suggesting that the incineration plant released very limited amounts of particles to the surrounding areas.

  6. Calibration of cellulose nitrate film for measurement of time-integrated concentration of radon-222 in air

    International Nuclear Information System (INIS)

    Jha, G.; Raghavayya, M.

    1986-01-01

    Measurement of time-integrated concentration of 222 Rn in air by using solid-state nuclear track detectors (SSNTD) is finding increasing application in such diverse fields as radiation protection, exploration of radioactive minerals, prediction of earthquakes etc. While there are several types of SSNTDs sensitive to specific types of particulate radiation, films made from cellulose nitrate (CN) are found to be the best suited for quick and quantitative measurement of alpha radiation. This is because CN films are available in small thicknesses, of the order of 10-12 μm, which can be suitably evaluated by spark counting technique. This report describes the use of a sensitive thin film of CN (Kodak LR 115, Type II) for quantitative estimation of 222 Rn. The film (along with the base is exposed in a cylindrical plastic cup closed at one end with a special rubber membrane which permits discrimination of 222 Rn against 220 Rn, which is also present in air to varying extents. The calibration procedure, including etching and evaluation of track registration efficiency, are described in detail. The mean track registration efficiency works out to 41.9 per cent and the sensitivity of the system is found to be 58.92 tracks cm -2 per (Bq.litre -1 ) day. The report lists the advantages and limitations of the system for measurement of time-integrated concentration of 222 Rn in air. (author)

  7. Comparison of spectroscopically measured tissue alcohol concentration to blood and breath alcohol measurements

    Science.gov (United States)

    Ridder, Trent D.; Ver Steeg, Benjamin J.; Laaksonen, Bentley D.

    2009-09-01

    Alcohol testing is an expanding area of interest due to the impacts of alcohol abuse that extend well beyond drunk driving. However, existing approaches such as blood and urine assays are hampered in some testing environments by biohazard risks. A noninvasive, in vivo spectroscopic technique offers a promising alternative, as no body fluids are required. The purpose of this work is to report the results of a 36-subject clinical study designed to characterize tissue alcohol measured using near-infrared spectroscopy relative to venous blood, capillary blood, and breath alcohol. Comparison of blood and breath alcohol concentrations demonstrated significant differences in alcohol concentration [root mean square of 9.0 to 13.5 mg/dL] that were attributable to both assay accuracy and precision as well as alcohol pharmacokinetics. A first-order kinetic model was used to estimate the contribution of alcohol pharmacokinetics to the differences in concentration observed between the blood, breath, and tissue assays. All pair-wise combinations of alcohol assays were investigated, and the fraction of the alcohol concentration variance explained by pharmacokinetics ranged from 41.0% to 83.5%. Accounting for pharmacokinetic concentration differences, the accuracy and precision of the spectroscopic tissue assay were found to be comparable to those of the blood and breath assays.

  8. The Critical Micelle Concentration of Asphaltenes as Measured by Calorimetry

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Christensen, S. D.

    2000-01-01

    Micellization of asphaltenes in solution has been investigated using a micro calorimetric titration procedure (Andersen, S. I.; Birdi, K. S. J Colloid Interface Sci. 1991, 142, 497). The method uses the analysis of heat of dissociation and dilution of asphaltene micelles when a pure solvent (or...... solvent mixture) is titrated with a solution of asphaltene in the same solvent. The asphaltene concentration of the injected solution is at a level above the critical micelle concentration (CMC). In the present paper the procedure is applied in investigation of asphaltenes as well as subfractions...

  9. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    Science.gov (United States)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  10. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations

    Directory of Open Access Journals (Sweden)

    I. N. Polonsky

    2014-04-01

    Full Text Available GeoCARB is a proposed instrument to measure column averaged concentrations of CO2, CH4 and CO from geostationary orbit using reflected sunlight in near-infrared absorption bands of the gases. The scanning options, spectral channels and noise characteristics of geoCARB and two descope options are described. The accuracy of concentrations from geoCARB data is investigated using end-to-end retrievals; spectra at the top of the atmosphere in the geoCARB bands are simulated with realistic trace gas profiles, meteorology, aerosol, cloud and surface properties, and then the concentrations of CO2, CH4 and CO are estimated from the spectra after addition of noise characteristic of geoCARB. The sensitivity of the algorithm to aerosol, the prior distributions assumed for the gases and the meteorology are investigated. The contiguous spatial sampling and fine temporal resolution of geoCARB open the possibility of monitoring localised sources such as power plants. Simulations of emissions from a power plant with a Gaussian plume are conducted to assess the accuracy with which the emission strength may be recovered from geoCARB spectra. Scenarios for "clean" and "dirty" power plants are examined. It is found that a reliable estimate of the emission rate is possible, especially for power plants that have particulate filters, by averaging emission rates estimated from multiple snapshots of the CO2 field surrounding the plant. The result holds even in the presence of partial cloud cover.

  11. Concentration Polarization to Measure Nano-pore Accessibility

    NARCIS (Netherlands)

    Solsona, Miguel; Eijkel, Jan C.T.; Olthuis, Wouter; Papadimitriou, Vasileios; van den Berg, Albert; Abelmann, Leon; Weckhuysen, Bert M.; Nieuwelink, A. E.

    2017-01-01

    Understanding the deactivation process in porous catalysts is of tremendous economic significance. We demonstrate the feasibility of using the concentration polarization method to obtain the pore accessibility distribution at single particle level for the first time. By using this technique we could

  12. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation

    Science.gov (United States)

    Sjostedt, S. J.; Slowik, J. G.; Brook, J. R.; Chang, R. Y.-W.; Mihele, C.; Stroud, C. A.; Vlasenko, A.; Abbatt, J. P. D.

    2011-06-01

    We report simultaneous measurements of volatile organic compound (VOC) mixing ratios including C6 to C8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Aerosol Mass Spectrometry (AMS), respectively. During the three-week-long Border Air Quality and Meteorology Study in June-July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA) during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light- and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O3 concentrations, and laboratory SOA yields, we calculate integrated local organic aerosol production amounts associated with each measured SOA precursor. Under the assumption that biogenic precursors are uniformly distributed across the southwestern Ontario location, we conclude that such precursors contribute significantly to the total amount of SOA formation, even during the period of Detroit outflow. The importance of aromatic precursors is more difficult to assess given that their sources are likely to be localized and thus of variable impact at the sampling location.

  13. Concentration measurement in a road tunnel as a method to assess "real-world" vehicles exhaust emissions

    Science.gov (United States)

    Zanini, G.; Berico, M.; Monforti, F.; Vitali, L.; Zambonelli, S.; Chiavarini, S.; Georgiadis, T.; Nardino, M.

    An experiment aimed at comparing particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) concentrations produced in a road tunnel by buses is described. The experiment took place in 2001 in Bologna when a couple of buses belonging to the public transport fleet where driven backwards and forwards in a road tunnel closed to all other vehicles. Buses run in the tunnel for 8 h a day for 4 experiment days, each day using a different fuel: biodiesel, diesel-water emulsion, diesel-water emulsion with low sulphur content and commercial diesel. Average daily concentrations of PM of different sizes and of 12 PHAs were measured and comparison between different fuels was attempted in order to assess "real-world" exhaust emissions of different fuels. Due to heterogeneity of experimental conditions in different days and the relatively large measurement uncertainties, the effort was only partially successful, and it was not possible to state any firm conclusion on fuels reliability even if some indications in agreement with literature were found. Nevertheless, the experiment and the data analysis method developed could be of interest as a methodological approach for future experiments aimed at evaluating "real-world" exhaust emissions of single vehicles.

  14. The measurement of airborne rodon daughter concentrations in the atmosphere

    International Nuclear Information System (INIS)

    Ha, C.W.; Lee, J.K.; Moon, P.S.

    1979-01-01

    A simple method for determining the airborne concentration of radon daughter products has been developed, which is based on gross alpha counting of the air filter collections at several time intervals after completion of air sampling. The concentration of each nuclide is then obtained from an equation involving the alpha disintegrations, the sampling time, and the known numerical coefficients. The state of radioactive disequilibrium is also inventigated. The atmosphere sampled in the TRIGA Mark-III reactor room was largely in disequilibrium. The extent of radioactive disequilibrium between radon daughter products seems likely depend on sampling times associated with turbulence conditions. The data obtained here will certainly provide useful information on the evaluation of internal exposure and calibration of effluent monitoring instruments. (author)

  15. Composition and concentration of soluble and particulate matter in the coolant of the reactor primary cooling system of the Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Garcia Rodenas, Luis; La Gamma, Ana M.; Villegas, Marina; Fernandez, Alberto N.; Allemandi, Walter; Manera, Raul; Rosales, Hugo

    2000-01-01

    Nuclear power plants type PWR and PHWR (pressurized water reactor and pressurized heavy water reactor) have three coolant circuits which only exchange energy among them. The primary circuit, whose coolant extracts the reactor energy, the secondary circuit or water-steam cycle and the tertiary circuit which could be lake, river or sea water. The chemistry of the primary and secondary coolants is carefully controlled with the aim of minimizing the corrosion of structural materials. However, very low rates of corrosion are inevitable and one of the consequences of the corrosion processes is the presence of soluble and particulate matter in the coolant from where several problems associated with mass transfer arisen. In this way radioactive nuclides are transported out of the core to the steam generators, hydraulic resistance increases and heat transfer capability degrades. In the present paper some alternative techniques are proposed for the quantification of both, the particulate and soluble matter present in the coolant and their correspondent composition. Some results are also included and discussed. (author)

  16. Direct sampling of sub-µm atmospheric particulate organic matter in sub-ng m-3 mass concentrations by proton-transfer-reaction mass spectrometry

    Science.gov (United States)

    Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.

    2017-12-01

    A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).

  17. The analyses of measured nuclide concentration in project ISTC 2670

    International Nuclear Information System (INIS)

    Chrapciak, V.

    2006-01-01

    In this article are analyzed experiments for WWER-440 fuel and compared with theoretical results by new version of the SCALE 5 code: nuclide compositions - measurement in Kurchatov institute for 3.6% - measurement in Dimitrovgrad for 3.6% (project ISTC 2670) The focus is on modules TRITON and ORIGEN-S (Authors)

  18. Analytical solutions to compartmental indoor air quality models with application to environmental tobacco smoke concentrations measured in a house.

    Science.gov (United States)

    Ott, Wayne R; Klepeis, Neil E; Switzer, Paul

    2003-08-01

    This paper derives the analytical solutions to multi-compartment indoor air quality models for predicting indoor air pollutant concentrations in the home and evaluates the solutions using experimental measurements in the rooms of a single-story residence. The model uses Laplace transform methods to solve the mass balance equations for two interconnected compartments, obtaining analytical solutions that can be applied without a computer. Environmental tobacco smoke (ETS) sources such as the cigarette typically emit pollutants for relatively short times (7-11 min) and are represented mathematically by a "rectangular" source emission time function, or approximated by a short-duration source called an "impulse" time function. Other time-varying indoor sources also can be represented by Laplace transforms. The two-compartment model is more complicated than the single-compartment model and has more parameters, including the cigarette or combustion source emission rate as a function of time, room volumes, compartmental air change rates, and interzonal air flow factors expressed as dimensionless ratios. This paper provides analytical solutions for the impulse, step (Heaviside), and rectangular source emission time functions. It evaluates the indoor model in an unoccupied two-bedroom home using cigars and cigarettes as sources with continuous measurements of carbon monoxide (CO), respirable suspended particles (RSP), and particulate polycyclic aromatic hydrocarbons (PPAH). Fine particle mass concentrations (RSP or PM3.5) are measured using real-time monitors. In our experiments, simultaneous measurements of concentrations at three heights in a bedroom confirm an important assumption of the model-spatial uniformity of mixing. The parameter values of the two-compartment model were obtained using a "grid search" optimization method, and the predicted solutions agreed well with the measured concentration time series in the rooms of the home. The door and window positions in

  19. Evaluation of airborne particulates and fungi during hospital renovation.

    Science.gov (United States)

    Overberger, P A; Wadowsky, R M; Schaper, M M

    1995-07-01

    This study was conducted over 30 weeks on a hospital floor undergoing partial renovation. Some patients housed on the floor were immunosuppressed, including bone marrow transplant recipients. The construction zone was placed under negative pressure and was separated from patient rooms by existing hospital walls and via erection of a temporary barrier. Other control measures minimized patient exposure to airborne materials. Air sampling was done for 3 weeks prior to construction, 24 weeks during construction, and 3 weeks after renovation was completed. Airborne particulate concentrations, total spore counts, particle size, and fungal species were assessed. At the beginning of the renovation there were increases in airborne particulates (from 0.2 to 2.0 mg/m3) and fungal spores (from 3.5 to 350 colony forming units (CFU/m3), but only in the construction zone. Throughout the remainder of the renovation, particulate and fungal spore levels fluctuated inside the construction zone but remained close to baseline values in the patient area. When renovation was completed, particulates and spore counts inside the construction zone decreased to preconstruction levels. The primary fungus isolated from air samples was Penicillium. This study demonstrated that control measures were effective in reducing exposures of hospitalized patients to airborne particulates and spores and in reducing the increased risk of aspergillosis and other fungal infections associated with hospital construction projects. The data from this study may be useful in establishing exposure guidelines for other health care settings.

  20. Polarimetric Remote Sensing of Atmospheric Particulate Pollutants

    Science.gov (United States)

    Li, Z.; Zhang, Y.; Hong, J.

    2018-04-01

    Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  1. POLARIMETRIC REMOTE SENSING OF ATMOSPHERIC PARTICULATE POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Z. Li

    2018-04-01

    Full Text Available Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF, whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  2. Characteristics of lead isotope ratios and elemental concentrations in PM 10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline

    Science.gov (United States)

    Zheng, Jian; Tan, Mingguang; Shibata, Yasuyuki; Tanaka, Atsushi; Li, Yan; Zhang, Guilin; Zhang, Yuanmao; Shan, Zuci

    The stable lead (Pb) isotope ratios and the concentrations of 23 elements, including heavy metals and toxic elements, were measured in the PM 10 airborne particle samples collected at seven monitoring sites in Shanghai, China, to evaluate the current elemental compositions and local airborne Pb isotope ratio characteristics. Some source-related samples, such as cement, coal and oil combustion dust, metallurgic dust, vehicle exhaust particles derived from leaded gasoline and unleaded gasoline, and polluted soils were analyzed for their Pb content and isotope ratio and compared to those observed in PM 10 samples. Airborne Pb concentration ranged from 167 to 854 ng/m 3 in the seven monitored sites with an average of 515 ng/m 3 in Shanghai, indicating that a high concentration of Pb remains in the air after the phasing out of leaded gasoline. Lead isotopic compositions in airborne particles ( 207Pb/ 206Pb, 0.8608±0.0018; 208Pb/ 206Pb, 2.105±0.005) are clearly distinct from the vehicle exhaust particles ( 207Pb/ 206Pb, 0.8854±0.0075; 208Pb/ 206Pb, 2.145±0.006), suggesting that the automotive lead is not currently the major component of Pb in the air. By using a binary mixing equation, a source apportionment based on 207Pb/ 206Pb ratios, indicates that the contribution from automotive emission to the airborne Pb is around 20%. The Pb isotope ratios obtained in the source-related samples confirmed that the major emission sources are metallurgic dust, coal combustion, and cement.

  3. Distribution of medium-to-coarse glass beads in slurry pipe flow: evaluation of measured concentration profiles

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav; Krupička, Jan; Pěník, Vojtěch

    2014-01-01

    Roč. 32, č. 2 (2014), s. 186-196 ISSN 0272-6351. [7th International Conference for Conveying and Handling of Particulate Solids (CHoPS). Friedrichshafen, 10.09.2013-13.09.2012] R&D Projects: GA ČR GA103/09/0383 Institutional support: RVO:67985874 Keywords : concentration distribution * high concentrated slurry * pipeline flow * slurry flow experiment Subject RIV: BK - Fluid Dynamics Impact factor: 0.523, year: 2014

  4. Measurement of aerosol concentration with a beta-ray gage

    International Nuclear Information System (INIS)

    Auzac, G. d'; Dubillot, J.

    1978-01-01

    Because dusts in suspension are a dangerous polluting agent, several methods have been used to monitor their concentration. Among these, the beta-ray gage enjoys a privileged position. The authors describe such a gage and discuss the conditions to be observed for it to be capable of giving results comparable to those obtained with manual gravimetric methods. The satisfactory results obtained led to standardization of the method and a whole range of instruments based on this principle are employed in pollution supervising networks and for continuously monitoring industrial emissions [fr

  5. Study on Concentration of Particulate Matter with Diameter Less than 10 Microns, Heavy Metals and Polycyclic Aromatic Hydrocarbons Related to PM2.5 in the Ambient Air of Sina Hospital District

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2014-03-01

    Full Text Available Background:In recent decades, extensive studies have shown a number of short and long-term health effects of particle matters. In addition to particle matters, polycyclic aromatic hydrocarbons (PAHs and heavy metals in airborne particles due to their mutagenic and carcinogenic properties are considered major air pollutants. So, the aim of this study was to evaluate the concentration of PM2.5particulate, 7heavy metal concentrations and 13 PAHs compound associated with fine particles (PM2.5-boud PAHs in the district of Sina hospital, Tehran. Methods: This cross-sectional study was carried out in air of Sina Hospital district in Tehran. Concentrations of fine particulate matter (PM2.5 were determined by gravimetric. Also heavy metal concentrations in samples after digestion were determined with ICP-AES instrument through injection. Then the PAHs compounds from each sample were extracted by ultrasonic method. After this step, extracted sample was injected for analysis by GC-MS and concentration of each compound was read. Results: The daily average concentration of PM2.5 during the study was 41.19 µg/m3.Concentration values for zinc, lead, cadmium, chromium, nickel and arsenic, were 92/69, 05/38, 2/18, 24/4, 19/4 and 34/1 ng/m3 respectively but mercury not found in this study. Average concentrations of PAHs compounds have been variable from0.07 ng/m3 for Chrysene to 1.21ng/m3 for Dibenzo(ahanthracene. Conclusion: In this study, the daily average of PM2.5 concentrations was above the Iranian National PM, WHO (25 µg/m3 and EPA (35 µg/m3 standards established for PM2.5 particles. Heavy metal concentrations in this study were lower than values reported in previous studies in Tehran. The highest concentrations among PAHs compounds belonging toIndeo(cd 1,2,3pyren, Dibenzo(ah anthracene, Benzo (B flouranthin and Benzo (Kflouranthin that all of these compounds are related to vehicle emissions.

  6. Particulate air pollution and daily mortality in Detroit.

    Science.gov (United States)

    Schwartz, J

    1991-12-01

    Particulate air pollution has been associated with increased mortality during episodes of high pollution concentrations. The relationship at lower concentrations has been more controversial, as has the relative role of particles and sulfur dioxide. Replication has been difficult because suspended particle concentrations are usually measured only every sixth day in the U.S. This study used concurrent measurements of total suspended particulates (TSP) and airport visibility from every sixth day sampling for 10 years to fit a predictive model for TSP. Predicted daily TSP concentrations were then correlated with daily mortality counts in Poisson regression models controlling for season, weather, time trends, overdispersion, and serial correlation. A significant correlation (P less than 0.0001) was found between predicted TSP and daily mortality. This correlation was independent of sulfur dioxide, but not vice versa. The magnitude of the effect was very similar to results recently reported from Steubenville, Ohio (using actual TSP measurements), with each 100 micrograms/m3 increase in TSP resulting in a 6% increase in mortality. Graphical analysis indicated a dose-response relationship with no evidence of a threshold down to concentrations below half of the National Ambient Air Quality Standards for particulate matter.

  7. Humidity and Gravimetric Equivalency Adjustments for Nephelometer-Based Particulate Matter Measurements of Emissions from Solid Biomass Fuel Use in Cookstoves

    Science.gov (United States)

    Soneja, Sutyajeet; Chen, Chen; Tielsch, James M.; Katz, Joanne; Zeger, Scott L.; Checkley, William; Curriero, Frank C.; Breysse, Patrick N.

    2014-01-01

    Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM) concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH) and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error). For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration), do not contain an RH threshold, and is straightforward. PMID:24950062

  8. Humidity and gravimetric equivalency adjustments for nephelometer-based particulate matter measurements of emissions from solid biomass fuel use in cookstoves.

    Science.gov (United States)

    Soneja, Sutyajeet; Chen, Chen; Tielsch, James M; Katz, Joanne; Zeger, Scott L; Checkley, William; Curriero, Frank C; Breysse, Patrick N

    2014-06-19

    Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM) concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH) and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error). For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration), do not contain an RH threshold, and is straightforward.

  9. The measurement of dissolved and gaseous carbon dioxide concentration

    Science.gov (United States)

    Zosel, J.; Oelßner, W.; Decker, M.; Gerlach, G.; Guth, U.

    2011-07-01

    In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO2. In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements.

  10. The measurement of dissolved and gaseous carbon dioxide concentration

    International Nuclear Information System (INIS)

    Zosel, J; Oelßner, W; Decker, M; Gerlach, G; Guth, U

    2011-01-01

    In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO 2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO 2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO 2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO 2 . In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements. (topical review)

  11. Quality control of the concentration measurement of specific radioactive isotopes

    International Nuclear Information System (INIS)

    Loria, Luis Guillermo; Badilla, Mauricio

    2008-01-01

    The counting efficiency of a gamma spectroscopy chain with a Ge (H.p) detector was measured. The Monte Carlo simulation and standard reference materials, in order to calculate the specific activity from 4 reference materials, and from intercomparison samples were used. The purpose was to evaluate the analytical results obtained in the Laboratorio de Espectroscopia Gamma. (author) [es

  12. Fluxes of chemically reactive species inferred from mean concentration measurements

    NARCIS (Netherlands)

    Galmarini, S.; Vilà-Guerau De Arellano, J.; Duyzer, J.H.

    1997-01-01

    A method is presented for the calculation of the fluxes of chemically reactive species on the basis of routine measurements of meteorological variables and chemical species. The method takes explicity into account the influence of chemical reactions on the fluxes of the species. As a demonstration

  13. Quantification of vehicle fleet PM_1_0 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques

    International Nuclear Information System (INIS)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal

    2016-01-01

    Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM_1_0 and PM_2_._5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM_2_._5 fraction contributes 66% of PM_1_0 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM_1_0 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003–0.001 mg/vkm), Cars (26.1–33.4 mg/vkm), LDVs (2.4–3.0 mg/vkm), HDVs (2.2–2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM_1_0 emission of brake wear (3.8–4.4 mg/vkm), petrol exhaust (3.9–4.5 mg/vkm), diesel exhaust (7.2–8.3 mg/vkm), re-suspension (9–10.4 mg/vkm), road surface wear (3.9–4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM_1_0 emission factor (16.7–19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1–12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations. - Highlights: • Calculations of exhaust/non-exhaust particulate emission factors using tunnel sampling and source apportionment techniques. • Non-exhaust emission dominates in the fine particle fraction, considered responsible for adverse human health impacts. • Emission factors for non-exhaust sources (e.g. tyre and brake) were calculated. • Fleet source PM_1_0 emission factor were also calculated, which can be used in dispersion modelling and health risk assessment. • Tukey mean

  14. Double Compressions of Atmospheric Depth by Geopotential Tendency, Vorticity, and Atmospheric Boundary Layer Affected Abrupt High Particulate Matter Concentrations at a Coastal City for a Yellow Dust Period in October

    Directory of Open Access Journals (Sweden)

    Hyo Choi

    2014-01-01

    Full Text Available Using GRIMM-aerosol sampler, NOAA-HYSPLIT model, and 3D-WRF-3.3 model, the transportation of dusts from Gobi Desert toward Gangneung city, Korea was investigated from 09:00 LST October 27 to 04:00 LST October 28, 2003. Maximum PM10 (PM2.5, PM1 concentration was detected with 3.8 (3.4, 14.1 times higher magnitude than one in non-Yellow Dust period. The combination of dusts transported from the desert under westerly wind with particulate matters and gases from vehicles on the road of the city caused high PM concentrations near the ground surface at 09:00 LST and their maxima at 17:00 LST near sunset with further pollutants from heating boilers in the resident area. Positive geopotential tendency at the 500 hPa level of the city (∂Φ/∂t; m day−1 corresponding to negative vorticity of -4×10-5 sec−1 (-2.5×10-5 sec−1 at 0900 LST (21:00 LST; at night was +83 m day−1 (+30 m day−1 and it caused atmospheric depth between 500 hPa level and the ground surface to be vertically expanded. However, its net reduction to −53 m/12 hrs until 21:00 LST indicated synoptic-scale atmospheric layer to be vertical shrunken, resulting in the increase of PM concentrations at 17:00 LST. Simultaneously, much shallower microscale stable nocturnal surface inversion layer (NSIL than daytime thermal internal boundary layer induced particulate matters to be merged inside the NSIL, resulting in maximum PM concentrations at 17:00 LST.

  15. Measurement of radon concentration in Taiz city dwellings-yemen

    International Nuclear Information System (INIS)

    Ali, Taher M.; Ahmed, Hayel A.; Ismail, Rokhsana M.

    2001-01-01

    Radon gas considered being a high part of natural radiation background. Emitting alpha particles; radon daughters may be deposited into the lungs and cause health hazards. For this reason, estimation of radon levels in dwellings was done in many countries. In our country, Radon group in the Department of physics, University of Aden has been studied radon level in Aden dwelling. The present study is about the radon level in Taiz City - Yemen. Passive diffusion dosimeters containing (SSNTD s ) Cr - 39 detectors were used in the present work. 125 dosimeters were distributed into dwellings of ten regions in Taiz City. Results obtained show that Rn 222 levels vary between 4 Bq/m 3 and 99 Bq/m 3 . The average concentration in Al-Hasseb district is 23 Bq/m 3 and in Algumhuri hospital district is 53 Bq/m 3 . In other regions it varies between the two values. Whereas the general average in the Taiz City is 34 Bq/m 3 . (author)

  16. Is lowering reducing sugars concentration in French fries an effective measure to reduce acrylamide concentration in food service establishments?

    Science.gov (United States)

    Sanny, M; Jinap, S; Bakker, E J; van Boekel, M A J S; Luning, P A

    2012-12-01

    The objective of this study was to obtain insight into the actual effectiveness of lowering reducing sugars concentration in par-fried potato strips on the concentration and variation of acrylamide in French fries prepared in real-life situations in food service establishments. Acrylamide, frying time, frying temperature, and reducing sugars were measured and characteristics of fryers were recorded. Data showed that the use of par-fried potato strips with lower concentrations of reducing sugars than the commonly used potato strips was an effective measure to reduce acrylamide concentrations in French fries prepared under standardised frying conditions. However, there was still large variation in the acrylamide concentrations in French fries, although the variation in reducing sugars concentrations in low and normal types of par-fried potato strips was very small and the frying conditions were similar. Factors that could affect the temperature-time profile of frying oil were discussed, such as setting a lower frying temperature at the end than at the start of frying, product/oil ratio and thawing practice. These need to be controlled in daily practice to reduce variation in acrylamide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Understanding particulate coating microstructure development

    Science.gov (United States)

    Roberts, Christine Cardinal

    How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.

  18. Concentration measurements of biodiesel in engine oil and in diesel fuel

    International Nuclear Information System (INIS)

    Mäder, A; Eskiner, M; Burger, C; Rossner, M; Krahl, J; Ruck, W

    2012-01-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  19. Urban tree effects on fine particulate matter and human health

    Science.gov (United States)

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  20. The measurement of radon concentration of soil in a civil construction site

    International Nuclear Information System (INIS)

    Liu Hanbin; Fan Guang

    2004-01-01

    Radon is one of radioactive resources which do harm to human body. Therefore, its concentration in the soil should be measured before the civil construction works. Code for Indoor Environmental Pollution Control of Civil Building Engineering (GB50325-2001) is the main norm used for soil radon concentration measurement. By using FD-3017 RaA radon measuring equipment, the soil radon concentration in a civil building engineering site has been measured, the result shows that the concentration is lower than the regional average value, radon protective measures should not be installed in that site. (authors)

  1. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki

    2002-01-01

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  2. System for measuring of air concentration in air-steam mixture during the transients

    International Nuclear Information System (INIS)

    Gorbenko, Gennady A.; Gakal, Pavlo G.; Epifanov, Konstantin S.; Osokin, Gennady V.; Smirnov, Sergey V.

    2006-01-01

    Description of system for air concentration measuring in air-steam mixture during the transients is represented. Air concentration measuring is based on discrete sampling method. The measuring system consists of sampler, transport pipeline, distributor and six measuring vessels. From the sampler air-steam mixture comes to distributor through transport pipeline and fills consecutively the measuring vessels. The true air concentration in place of measurement was defined based on measured air concentration in samples taken from measuring vessels. For this purpose, the mathematical model of transients in measuring system was developed. Air concentration transient in air-steam mixture in place of measurement was described in mathematical model by air concentration time-dependent function. The function parameters were defined based on air concentration measured in samples taken from measuring vessels. Estimated error of air concentration identification was about 10%. Measuring system was used in experiments on EREC BKV-213 test facility intended for testing of VVER-440/V-213 reactor barbotage-vacuum system

  3. ANALYSIS OF THE RESULTS OF MEASUREMENT OF CONCENTRATIONS OF AIR POLLUTION WITH PM10 AND PM2.5 MEASURING STATION SQUARE OF POZNAN IN BYDGOSZCZ

    Directory of Open Access Journals (Sweden)

    Rafał Pasela

    2017-02-01

    Full Text Available The phenomenon of suspended particulate pollution PM10 and PM2.5 occurs in large urban areas where the main source of their presence is communication, which is primarily related to the combustion of liquid fuels. PM2.5 dust pollution is a major risk factor for diseases of the respiratory, cardiovascular, and allergy. Act regulating the standards and target dates for reducing concentrations of particulate matter in urban areas and in all the cities of over 100 thousand. residents of the Directive of the European Parliament and Council Directive 2008/50/EC of 21 May 2008. on ambient air quality and cleaner air for Europe (CAFE. The acceptable level of average daily concentration of PM10 is 50 μg/m3 and may be exceeded by not more than 35 times a year, while the level of allowable annual average concentration of 40 μg/m3. The aim of this study was to assess the state of air pollution of dust PM10 and PM2.5 for the selected area of the city of Bydgoszcz. The analysis was conducted using data from air monitoring stations located at Poznanska street. The station is owned by the Provincial Inspectorate for Environmental Protection (VIEP in Bydgoszcz. The studies have shown that the annual average concentration of particulate matter analyzed station in Bydgoszcz in the years 2013-2015 amounted to PM10 41 μg/m3 PM2.5 and 23 μg/m3. The results are on the borderline of acceptable levels of concentration resulting from the Regulation of the Minister of the Environment of 2 August 2012. The concentrations of particulate matter in ambient air are strongly associated with meteorological conditions. The definitely higher concentrations observed in the autumn-winter season. The decrease in temperature causes the combustion in the boiler house of fuels with a high emissions. The highest average daily concentration of suspended particulate matter was observed on Thursday and Friday in the winter months, and while the lowest concentration was recorded in the

  4. Allegheny County Particulate Matter 2.5

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The U.S. Environmental Protection Agency provides information on the particulate matter concentration for Allegheny County that have a diameter greater or equal to...

  5. Particulates in Europe; Fijn stof in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Eeftens, M.; Brunekreef, B. [Institute for Risk Assessment Sciences IRAS, Utrecht University, Utrecht (Netherlands)

    2013-08-15

    Although the same air quality standards apply across Europe, there are large differences in concentration within, but also between countries. There are also differences between the methods that these countries use for regular monitoring networks, which makes a direct comparison of concentrations difficult. The ESCAPE project (European Study of Cohorts for Air Pollution Effects) mapped the differences in the European particulate concentrations using one unified measuring method [Dutch] Hoewel voor heel Europa dezelfde luchtkwaliteitsnormen gelden, bestaan er grote concentratieverschillen binnen, maar ook tussen landen. Ook zijn er verschillen tussen de meetmethoden die deze landen binnen reguliere meetnetten hanteren, wat een directe vergelijking van concentraties vaak moeilijk maakt. Het ESCAPE-project (European Study of Cohorts for Air Pollution Effects) bracht de Europese fijnstofcontrasten in kaart met behulp van 1 identieke meetmethode.

  6. PM1 and PM2.5 ionic composition and VOCs measurements in two typical apartments in Athens, Greece: investigation of smoking contribution to indoor air concentrations.

    Science.gov (United States)

    Saraga, Dikaia E; Maggos, Thomas; Helmis, Constantinos G; Michopoulos, John; Bartzis, John G; Vasilakos, Christos

    2010-08-01

    During the last decades, the air quality of the city of Athens has been quite aggravated. Scientific interest has been focused on health effects caused by both outdoor and indoor air pollution. The purpose of this study was the presentation of results from air quality measurements in two similar typical Athenian apartments in the same suburban area. In addition, smoking contribution is investigated, as it is the main factor which differentiates the two apartments. The results showed that it is the outdoor environment that mainly contributes to the air quality of the non-smokers' house. In the second apartment, PM2.5, PM1, and benzene concentrations were found significantly higher due to smoking activity. In contrast, no clear difference in particulate matter ionic composition between the two areas was observed, although in the smoker's house, ion concentrations were found elevated. This observation amplifies the assumption that in the smoker's apartment, significant outdoor sources' contribution cannot be excluded.

  7. Particulate matter and neutron activation analysis

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko

    2003-01-01

    In these years, economy of East Asian region is rapidly growing, and countries in this region are facing serious environmental problems. Neutron activation analysis is known as one of high-sensitive analytical method for multi elements. And it is a useful tool for environmental research, particularly for the study on atmospheric particulate matter that consists of various constituents. Elemental concentration represents status of air, such as emission of heavy metals from industries and municipal incinerators, transportation of soil derived elements more than thousands of kilometers, and so on. These monitoring data obtained by neutron activation analysis can be a cue to evaluate environment problems. Japanese government launched National Air Surveillance Network (NASN) employing neutron activation analysis in 1974, and the data has been accumulated at about twenty sampling sites. As a result of mitigation measure of air pollution sources, concentrations of elements that have anthropogenic sources decreased particularly at the beginning of the monitoring period. However, even now, concentrations of these anthropogenic elements reflect the characteristics of each sampling site, e.g. industrial/urban, rural, and remote. Soil derived elements have a seasonal variation because of the contribution of continental dust transported by strong westerly winds prevailing in winter and spring season. The health effects associated with trace elements in particulate matter have not been well characterized. However, there is increasing evidence that particulate air pollution, especially fine portion of particles in many different cities is associated with acute mortality. Neutron activation analysis is also expected to provide useful information to this new study field related to human exposures and health risk. (author)

  8. 40 CFR 761.316 - Interpreting PCB concentration measurements resulting from this sampling scheme.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Interpreting PCB concentration... § 761.79(b)(3) § 761.316 Interpreting PCB concentration measurements resulting from this sampling... composite is 20 µg/100 cm2, then the entire 9.5 square meters has a PCB surface concentration of 20 µg/100...

  9. Relationship between indoor and outdoor carbonaceous particulates in roadside households

    Energy Technology Data Exchange (ETDEWEB)

    Funasaka, K.; Miyazaki, T.; Tsuruho, K. [Osaka City Institute of Public Health and Environmental Sciences (Japan); Tamura, K. [The National Institute for Minamata Disease, Kumamoto (Japan); Mizuno, T. [Mie University (Japan). Dept. of Chemistry for Materials; Kuroda, K. [Osaka City University Medical School (Japan). Dept. of Preventive Medicine and Environmental Health

    2000-07-01

    Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 {mu}m, 2-10 {mu}m (coarse) and below 2 {mu}m (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r = 0.86 (n = 30, p < 0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 {mu}m (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors. (author)

  10. Airborne plutonium and americium concentrations measured from the top of Rattlesnake Mountain

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1979-01-01

    Airborne plutonium-239+240 and americium-241 blowing from offsite was measured in an initial experiment at the top of Rattlesnake Mountain. Average airborne concentration measured was similar to fallout concentrations. Airborne plutonium concentrations were independent of wind speed for seven wind speed increments between 0.5 and 31 m/sec. In contrast the airborne americium concentration was a minimum at a wind speed of approximately 7 m/sec. Similarly, the airborne solids concentration in μg/m 3 was a minimum at an intermediate wind speed increment of 7 to 11 m/sec

  11. Measurements of neonatal bilirubin and albumin concentrations : a need for improvement and quality control

    NARCIS (Netherlands)

    van Imhoff, Deirdre E.; Dijk, Peter H.; Weykamp, Cas W.; Cobbaert, Christa M.; Hulzebos, Christian V.

    Accurate and precise bilirubin and albumin measurements are essential for proper management of jaundiced neonates. Data hereon are lacking for Dutch laboratories. We aimed to determine variability of measurements of bilirubin and albumin concentrations typical for (preterm) neonates. Aqueous, human

  12. Measurements of neonatal bilirubin and albumin concentrations: a need for improvement and quality control

    NARCIS (Netherlands)

    Imhoff, D.E. van; Dijk, P.H.; Weykamp, C.W.; Cobbaert, C.M.; Hulzebos, C.V.; Liem, K.D.; et al.,

    2011-01-01

    Accurate and precise bilirubin and albumin measurements are essential for proper management of jaundiced neonates. Data hereon are lacking for Dutch laboratories. We aimed to determine variability of measurements of bilirubin and albumin concentrations typical for (preterm) neonates. Aqueous, human

  13. Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices

    Science.gov (United States)

    Zhang, Ying; Li, Zhengqiang; Sun, Yele; Lv, Yang; Xie, Yisong

    2018-04-01

    Aerosols have adverse effects on human health and air quality, changing Earth's energy balance and lead to climate change. The components of aerosol are important because of the different spectral characteristics. Based on the low hygroscopic and high scattering properties of organic matter (OM) in fine modal atmospheric aerosols, we develop an inversion algorithm using remote sensing to obtain aerosol components including black carbon (BC), organic matter (OM), ammonium nitrate-like (AN), dust-like (DU) components and aerosol water content (AW). In the algorithm, the microphysical characteristics (i.e. volume distribution and complex refractive index) of particulates are preliminarily separated to fine and coarse modes, and then aerosol components are retrieved using bimodal parameters. We execute the algorithm using remote sensing measurements of sun-sky radiometer at AERONET site (Beijing RADI) in a period from October of 2014 to January of 2015. The results show a reasonable distribution of aerosol components and a good fit for spectral feature calculations. The mean OM mass concentration in atmospheric column is account for 14.93% of the total and 56.34% of dry and fine-mode aerosol, being a fairly good correlation (R = 0.56) with the in situ observations near the surface layer.

  14. Key sources and distribution patterns of particulate material in the South Atlantic: data from the UK GEOTRACES A10 cruise

    Science.gov (United States)

    Milne, A.; Palmer, M.; Lohan, M. C.

    2016-02-01

    Particles play a fundamental role in the biogeochemical cycling of both major- and micro-nutrients in marine systems, including trace elements and isotopes. However, knowledge of particulate distributions, and their potential to regulate dissolved elemental concentrations, remains limited and poorly understood. The paradox is, that the oceanic inventory of trace metals is dominated by particulate inputs (e.g. aerosol deposition, shelf sediment resuspension). Moreover the labile fraction of particulate trace elements could be an important regulator of dissolved concentrations. Here we present particulate data from the UK GEOTRACES South Atlantic transect (GA10) from South Africa to Uruguay. Data from a range of elements (e.g. Fe, Al, Mn) revealed a greater input of particulate metals from the Argentine shelf (up to 290 nM of pFe) in comparison to the South African shelf (basin and penetrated deeper up the water column (up to 1300 m), a result of intense benthic storms. The imprint of leakage from the Agulhas Current, identified through temperature and salinity, was observed in the upper water column profile of numerous particulate data (e.g. Pb, Ni, Cd). Measured elemental gradients, combined with measurements from a vertical mixing-profiler, will allow estimates of particulate fluxes to be calculated.

  15. Automatic measuring device for atomic oxygen concentrations (1962); Dispositif de mesure automatique de concentrations d'oxygene atomique (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Deiss, M; Mercier, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Within the framework of the activities of the Autonomous Reactor Electronics Section we have developed a device, which renders automatic one type of measurement carried out in the Physical Chemistry Department at the Saclay Research Centre. We define here: - the physico-chemical principle of the apparatus which is adapted to the measurement of atomic oxygen concentrations; - the physical principle of the automatic measurement; - the properties, performance, constitution, use and maintenance of the automatic measurement device. It is concluded that the principle of the automatic device, whose tests have confirmed the estimation of the theoretical performance, could usefully be adapted to other types of measurement. (authors) [French] Dans le cadre des activites de la Section Autonome d'Electronique des Reacteurs, il a ete realise et mis au point un dispositif permettant de rendre automatique un type de mesures effectuees au Departement de Physico-Chimie du C.E.N. SACLAY. On definit ici: - le principe physico-chimique de l'appareillage, adapte a la mesure de concentrations de l'oxygene atomique; - le principe physique de la mesure automatique; - les qualites, performances, constitution, utilisation, et maintenance du dispositif de mesure automatique. Il est porte en conclusion, que le principe du dispositif automatique realise, dont les essais ont sensiblement confirme l'evaluation des performances theoriques, pourrait etre utilement adapte a d'autres types de mesures courantes. (auteurs)

  16. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates

    Science.gov (United States)

    An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate conce...

  17. Identification of chemical composition and measurement of V, As, Cr and Fe in Yogyakarta ambient air particulate by neutron activation method

    International Nuclear Information System (INIS)

    Gede-Sutresna W; Sutjipto

    1996-01-01

    Activation neutron analysis can be used to identify chemical composition and measure V, As, Cr and Fe contents in Yogyakarta ambient particulate. The air sampling has been done around Yogyakarta city such as: Gg. Narada Gandok around North Ring road (A1 post), Mentri Supeno cross road (A2 post), Purbanegaran GK II (A3 post), Wirobrajan cross road (A4 post), Adisutjipto (A5 post), and in front of Sentul market on JI. Sultan Agung with low volume sampler equipped with AP millipore fiber glass filter. Other places used for air sampling were around PPNY, JI. Babarsari (B1) and Jl. Gejayan (B2) by using high volume sampler equipped with TF A 21133 series filter. The filter was irradiated at Kartini reactor at the average of 1.04 x 10 1 1 n.cm -2 .s -1 on January 10, 1995. The V, As, Cr and Fe content in air around Yogyakarta respectively was: 81.5 - 264.9 ng/m 3 air; 56.7 - 596.4 ng/m 3 air; 30.5 - 153.8 ng/m 3 air and 22.4 - 108μg/m 3 air. The accuracy of the analysis method was checked by comparing the analysis result to the certificate label of the reference material SRM 1633a. The accuracy was: 21.1%; 13.9%; 7.7% and 13.3% for V, As, Cr and Fe. The V, As, Cr and Fe content in air particulate around Yogyakarta is still the below permissible level of the World Health Organization (WHO) in 1987

  18. Plasma concentrations of blood coagulation factor VII measured by immunochemical and amidolytic methods

    DEFF Research Database (Denmark)

    Bladbjerg, E-M; Gram, J; Jespersen, J

    2000-01-01

    Ever since the coagulant activity of blood coagulation factor VII (FVII:C) was identified as a risk indicator of cardiac death, a large number of studies have measured FVII protein concentrations in plasma. FVII protein concentrations are either measured immunologically with an ELISA method (FVII...

  19. Determination of deuterium concentrations in JET plasmas from fusion reaction rate measurements

    International Nuclear Information System (INIS)

    Jarvis, O.N.; Balet, B.; Cordey, J.G.; Morgan, P.D.; Sadler, G.; Belle, P. van; Conroy, S.; Elevant, T.

    1989-01-01

    The concentration of deuterium in the central regions of JET plasmas, expressed as a fraction of the electron concentration (n d /n e ), has been determined using four different methods involving neutron detection. These measurements are found to be consistent and agree within experimental errors with values deduced from Z eff measurements using visible bremsstrahlung radiation. (author) 11 refs., 1 fig., 1 tab

  20. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  1. PERSONAL, INDOOR, AND OUTDOOR CONCENTRATIONS OF PM2.5, PARTICULATE NITRATE, AND ELEMENTAL CARBON FOR INDIVIDUALS WITH COPD IN LOS ANGELES, CA

    Science.gov (United States)

    This study characterizes the personal, indoor, and outdoor concentrations of PM2.5 and the major components of PM2.5, including nitrate (NO3-), elemental carbon (EC), and the elements for individuals with chronic obstructive pulmonary disease (COPD) living in Los Angeles, CA. ...

  2. Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument

    Science.gov (United States)

    Stockwell, Chelsea E.; Kupc, Agnieszka; Witkowski, Bartłomiej; Talukdar, Ranajit K.; Liu, Yong; Selimovic, Vanessa; Zarzana, Kyle J.; Sekimoto, Kanako; Warneke, Carsten; Washenfelder, Rebecca A.; Yokelson, Robert J.; Middlebrook, Ann M.; Roberts, James M.

    2018-05-01

    The chemical composition of aerosol particles is a key aspect in determining their impact on the environment. For example, nitrogen-containing particles impact atmospheric chemistry, air quality, and ecological N deposition. Instruments that measure total reactive nitrogen (Nr = all nitrogen compounds except for N2 and N2O) focus on gas-phase nitrogen and very few studies directly discuss the instrument capacity to measure the mass of Nr-containing particles. Here, we investigate the mass quantification of particle-bound nitrogen using a custom Nr system that involves total conversion to nitric oxide (NO) across platinum and molybdenum catalysts followed by NO-O3 chemiluminescence detection. We evaluate the particle conversion of the Nr instrument by comparing to mass-derived concentrations of size-selected and counted ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), sodium nitrate (NaNO3), and ammonium oxalate ((NH4)2C2O4) particles determined using instruments that measure particle number and size. These measurements demonstrate Nr-particle conversion across the Nr catalysts that is independent of particle size with 98 ± 10 % efficiency for 100-600 nm particle diameters. We also show efficient conversion of particle-phase organic carbon species to CO2 across the instrument's platinum catalyst followed by a nondispersive infrared (NDIR) CO2 detector. However, the application of this method to the atmosphere presents a challenge due to the small signal above background at high ambient levels of common gas-phase carbon compounds (e.g., CO2). We show the Nr system is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation using single-component, laboratory-generated, Nr-containing particles below 2.5 µm in size. In addition we show agreement with mass measurements of an independently calibrated online particle-into-liquid sampler directly coupled to the

  3. Significance of radioelement concentration measurements made by airborne gamma-ray spectrometry over the Canadian Shield

    International Nuclear Information System (INIS)

    Charbonneau, B.W.; Killeen, P.G.; Carson, J.M.; Cameron, G.W.; Richardson, K.A.

    1976-01-01

    Results of airborne gamma-ray spectrometer surveys conducted by the Geological Survey of Canada are presented as maps contoured in units of radioelement and concentration ratios. These contoured values represent the average surface concentrations of the radioelements over areas of the order of several square kilometres. The relationship between this ''average surface concentration'' and the radioelement concentration in bedrock underlying the area depends on: (1) the percentage of outcrop; (2) the relation between overburden and bedrock radioelement concentration; (3) percentage of marshland or surface water in the area; (4) soil moisture; and (5) density of vegetation. More than 2500 portable gamma-ray spectrometer analyses of outcrop and overburden have been made in the Bancroft, Elliot Lake and Fort Smith areas of the Canadian Precambrian Shield. In the areas examined, the radioelement concentrations in glacial drift reflect the concentrations in the underlying bedrock. Rocks with near-crustal average contents of thorium, uranium and potassium are overlain by glacial drift having approximately the same concentrations. As the concentration in bedrock increases, the concentration in the local overburden also increases, but not to the same extent. In addition, in-situ gamma-ray spectrometry measurements were made at almost 1000 stations within the area of airborne surveys near Mont Laurier and Elliot Lake. These ground measurements were compared with the airborne measurements by averaging the values for all those ground stations located in the areas between each contour level on airborne maps. Radioelement concentrations in bedrock are considerably higher than corresponding airborne measurements, and this difference between bedrock and airborne values increases at higher radioelement concentrations. Radioelement concentrations in glacial drift are only slightly higher than airborne contour values for the same area. Airborne contour maps of the radioelement ratios

  4. Measurement of airborne concentrations of radon-220 daughter products by alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Kerr, G.D.; Ryan, M.T.; Perdue, P.T.

    1978-01-01

    The decay of naturally occurring uranium-238 and thorium-232 produces radon-222 and radon-220 isotopes which can escape into the atmosphere. If these radon gases become concentrated in air, their daughter products may present an inhalation hazard to man. The airborne concentrations of radon-222 can usually be measured very accurately in the presence of normal airborne concentrations of radon-220 and its daughters. In contrast, the measurements of the airborne concentrations of radon-220 daughters are usually complicated by the presence of radon-222 and its daughters even at normally occurring airborne concentrations. The complications involved in these measurements can be overcome in most situations by using an alpha particle spectrometer to distinguish the activity of radon-222 daughters from that due to radon-220 daughters collected on a filter. A practical spectrometer for field measurements of alpha particle activity on a filter is discussed

  5. Characteristics and source appointment of atmospheric particulate mercury over East China Sea: Implication on the deposition of atmospheric particulate mercury in marine environment.

    Science.gov (United States)

    Duan, Lian; Cheng, Na; Xiu, Guangli; Wang, Fujiang; Chen, Ying

    2017-05-01

    Total Suspended Particulate (TSP) samples were collected at Huaniao Island in northern East China Sea (ECS) from March 2012 to January 2013. Chemical analysis were conducted to measure the concentration of total particulate mercury (TPM) and speciated particulate mercury including HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury (RPM). The bromine (Br) and iodine (I) on particles were also detected. The mean concentration of TPM during the study period was 0.23 ± 0.15 ng m -3 , while the obviously seasonal variation was found that the concentrations of TPM in spring, summer, fall and winter were 0.34 ± 0.20 ng m -3 , 0.15 ± 0.03 ng m -3 , 0.15 ± 0.05 ng m -3 and 0.27 ± 0.26 ng m -3 , respectively. The statistically strong correlation of bromine and iodine to HPM was only found in spring with r = 0.81 and 0.77 (p mercury due to the deposition of mercury over the sea. The cluster of air mass across the sea had low concentration of HPM in winter, which suggested that the oxidation of mercury in winter might be related to other oxidants. During the whole sampling period, the air mass from the north of China contributed to the higher concentration of TPM in Huaniao Island. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Lability of Secondary Organic Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  7. Short-term population-based and spatiotemporal nonlinear concentration-response associations between fine particulate matter and children's respiratory clinic visits

    Science.gov (United States)

    Yu, Hwa-Lung; Chien, Lung-Chang

    2014-05-01

    Advert health impacts associated with the PM2.5 exposure have been confirmed in mortality and cardiovascular diseases; however, findings of the influence of PM2.5 on respiratory diseases investigated among previous studies are still inconsistent. We investigated the short-term population-based associations between the respiratory clinic visits of children population and the PM2.5 exposure levels with considering both the spatiotemporal distributions of the ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between daily children's respiratory clinic visits and PM2.5 concentrations. The analysis was performed separately on the four selected respiratory disease categories of the population-based dataset, obtained from Taiwan National Health Insurance database, covering the 41 districts in Taipei area during the period of 2005 to 2007. This study reveals a strong nonlinear C-R pattern that the PM2.5 increment can significantly affect respiratory health at PM2.5 concentration ≤ 18.17µg/m3 for both preschool children and schoolchildren. The elevated risks are especially present in the category of acute respiratory infections. PM2.5 increase is mostly non-significant to the more severe respiratory diseases, e.g., COPD and pneumonia, over the ranges of 8.85-92.45µg/m3. The significantly higher relative rate of respiratory clinic visit most likely concentrated at populated areas. We highlight the nonlinearity of the respiratory health impacts of PM2.5 on children's populations from the first study, to our knowledge, to investigate this population-based association. The strong nonlinearity can possibly cause the inconsistency of PM2.5 health impact assessments with linear assumptions.

  8. Global Particulate Matter Source Apportionment

    Science.gov (United States)

    Lamancusa, C.; Wagstrom, K.

    2017-12-01

    As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.

  9. A new method to measure effective soil solution concentration predicts copper availability to plants.

    Science.gov (United States)

    Zhang, H; Zhao, F J; Sun, B; Davison, W; McGrath, S P

    2001-06-15

    Risk assessments of metal contaminated soils need to address metal bioavailability. To predict the bioavailability of metals to plants, it is necessary to understand both solution and solid phase supply processes in soils. In striving to find surrogate chemical measurements, scientists have focused either on soil solution chemistry, including free ion activities, or operationally defined fractions of metals. Here we introduce the new concept of effective concentration, CE, which includes both the soil solution concentration and an additional term, expressed as a concentration, that represents metal supplied from the solid phase. CE was measured using the technique of diffusive gradients in thin films (DGT) which, like a plant, locally lowers soil solution concentrations, inducing metal supply from the solid phase, as shown by a dynamic model of the DGT-soil system. Measurements of Cu as CE, soil solution concentration, by EDTA extraction and as free Cu2+ activity in soil solution were made on 29 different soils covering a large range of copper concentrations. Theywere compared to Cu concentrations in the plant material of Lepidium heterophyllum grown on the same soils. Plant concentrations were linearly related and highly correlated with CE but were more scattered and nonlinear with respect to free Cu2+ activity, EDTA extraction, or soil solution concentrations. These results demonstrate that the dominant supply processes in these soils are diffusion and labile metal release, which the DGT-soil system mimics. The quantity CE is shown to have promise as a quantitative measure of the bioavailable metal in soils.

  10. Continuous measurement of the radon concentration in water using electret ion chamber method

    International Nuclear Information System (INIS)

    Dua, S.K.; Hopke, P.K.

    1992-10-01

    A radon concentration of 300 pCi/L has been proposed by the US Environmental Protection Agency as a limit for radon dissolved in municipal drinking water supplies. There is therefore a need for a continuous monitor to insure that the daily average concentration does not exceed this limit. In order to calibrate the system, varying concentrations of radon in water have been generated by bubbling radon laden air through a dynamic flowthrough water system. The value of steady state concentration of radon in water from this system depends on the concentration of radon in air, the air bubbling rate, and the water flow rate. The measurement system has been designed and tested using a 1 L volume electret ion chamber to determine the radon in water. In this dynamic method, water flows directly through the electret ion chamber. Radon is released to the air and measured with the electret. A flow of air is maintained through the chamber to prevent the build-up of high radon concentrations and too rapid discharge of the electret. It was found that the system worked well when the air flow was induced by the application of suction. The concentration in the water was calculated from the measured concentration in air and water and air flow rates. Preliminary results suggest that the method has sufficient sensitivity to measure concentrations of radon in water with acceptable accuracy and precision

  11. Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux

    International Nuclear Information System (INIS)

    Lee, Hyunjin; Chai, Kwankyo; Kim, Jongkyu; Lee, Sangnam; Yoon, Hwanki; Yu, Changkyun; Kang, Yongheack

    2014-01-01

    We evaluated optical performance of a solar furnace in the KIER (Korea Institute of Energy Research) by measuring the highly concentrated solar flux with the flux mapping method. We presented and analyzed optical performance in terms of concentrated solar flux distribution and power distribution. We investigated concentration ratio, stagnation temperature, total power, and concentration accuracy with help of a modeling code based on the ray tracing method and thereby compared with other solar furnaces. We also discussed flux changes by shutter opening angles and by position adjustment of reflector facets. In the course of flux analysis, we provided a better understanding of reference flux measurement for calibration, reflectivity measurement with a portable reflectometer, shadowing area consideration for effective irradiation, as well as accuracy and repeatability of flux measurements. The results in the present study will help proper utilization of a solar furnace by facilitating comparison between flux measurements at different conditions and flux estimation during operation

  12. Removal of particulates from nuclear offgas

    International Nuclear Information System (INIS)

    Burchsted, C.A.

    1976-01-01

    Particulate removal from nuclear offgases can be broken down into three parts: pretreatment, prefiltration, and absolute filtration. Pretreatment, using conventional air cleaning devices in most cases, is sometimes required to temper the gases and remove heavy concentrations of particulate matter. Prefiltration, if required, serves primarily to protect the final filter stages from heavy dust loadings in order to extend their life. HEPA filters are the most commonly used ''absolute'' filtration devices and are always required for removal of submicrometer particulates that cannot be removed effectively by other devices

  13. Measurement of radon, thoron and their progeny concentrations in the dwellings of Pauri Garhwal, Uttarakhand, India

    International Nuclear Information System (INIS)

    Joshi, Veena; Bijalwan, Pramesh; Rawat, Jasbir; Yadav, Manjulata; Ramola, R.C.; Mishra, Rosaline

    2015-01-01

    It is well known that inhalation of radon, thoron and their progeny contribute more than 50% of natural background radiation dose to human being. The time integrated passive measurements of radon, thoron and their progeny concentrations were carried out in the dwellings of Pauri Garhwal, Uttarakhand, India. The measurements of radon and thoron concentrations were performed by LR-115 detector based single entry Pin-Hole dosimeter while for the measurement of progeny concentrations, LR-115 deposition based DTPS/DRPS technique was used. The experimental techniques and results obtained are discussed in detail. (author)

  14. Estimation of the local and long-range contributions to particulate matter levels using continuous measurements in a single urban background site

    Science.gov (United States)

    Diamantopoulou, Marianna; Skyllakou, Ksakousti; Pandis, Spyros N.

    2016-06-01

    The Particulate Matter Source Apportionment Technology (PSAT) algorithm is used together with PMCAMx, a regional chemical transport model, to develop a simple observation-based method (OBM) for the estimation of local and regional contributions of sources of primary and secondary pollutants in urban areas. We test the hypothesis that the minimum of the diurnal average concentration profile of the pollutant is a good estimate of the average contribution of long range transport levels. We use PMCAMx to generate "pseudo-observations" for four different European cities (Paris, London, Milan, and Dusseldorf) and PSAT to estimate the corresponding "true" local and regional contributions. The predictions of the proposed OBM are compared to the "true" values for different definitions of the source area. During winter, the estimates by the OBM for the local contributions to the concentrations of total PM2.5, primary pollutants, and sulfate are within 25% of the "true" contributions of the urban area sources. For secondary organic aerosol the OBM overestimates the importance of the local sources and it actually estimates the contributions of sources within 200 km from the receptor. During summer for primary pollutants and cities with low nearby emissions (ratio of emissions in an area extending 100 km from the city over local emissions lower than 10) the OBM estimates correspond to the city emissions within 25% or so. For cities with relatively high nearby emissions the OBM estimates correspond to emissions within 100 km from the receptor. For secondary PM2.5 components like sulfate and secondary organic aerosol the OBM's estimates correspond to sources within 200 km from the receptor. Finally, for total PM2.5 the OBM provides approximately the contribution of city emissions during the winter and the contribution of sources within 100 km from the receptor during the summer.

  15. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Science.gov (United States)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO2) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO2 and HHb, total haemoglobin concentration and SO2. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l-1 (±58 µM) and ±4

  16. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, London WC1E 6BT (United Kingdom)

    2007-01-07

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO{sub 2}) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO{sub 2}) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO{sub 2} and HHb, total haemoglobin concentration and SO{sub 2}. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of {+-}3

  17. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    International Nuclear Information System (INIS)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO 2 ) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO 2 ) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO 2 and HHb, total haemoglobin concentration and SO 2 . The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l -1 (±58

  18. Concentrations of Platinum Group Elements (Pt, Pd, Rh in Airborne Particulate Matter (PM2.5 and PM10-2.5 Collected at Selected Canadian Urban Sites: a Case Study

    Directory of Open Access Journals (Sweden)

    Celo V.

    2013-04-01

    Full Text Available Increasing environmental concentrations of platinum group elements (PGEs, in particular platinum (Pt, palladium (Pd and rhodium (Rh, from catalytic converters has been reported worldwide. Initially it was believed that the emitted PGEs remain in the roadside environment, but recent studies have shown that fine PGE-containing particles can be transported and distributed at regional and long-range levels. Therefore, the monitoring of PGEs in airborne particulate matter (PM is important for the estimation of potential risks to human health and to the ecosystem. The aim of this study is to present the first results from an analysis on the concentration and distribution of Pt, Pd and Rh in PM collected on Teflon filters at two selected urban sites (Toronto, Ontario; Edmonton, Alberta collected within the Canadian National Air Pollution Surveillance (NAPS network. In this work, a quadruple inductively coupled plasma mass spectrometry (ICP-MS, combined with microwave assisted acid digestion using aqua regia was used. A cation exchange separation was used to alleviate the matrix-induced spectral and nonspectral interferences prior to ICP-MS analysis. To obtain sufficient material needed for PGEs analysis, fine PM (particles with aerodynamic diameter less than 2.5 mm; PM2.5 and coarse PM (with aerodynamic diameter between 2.5 and 10 mm; PM10-2.5 samples were combined into composite samples on a seasonal basis. The obtained results will be discussed and compared with literature data.

  19. Gender Disparity in Lung Function Abnormalities among a Population Exposed to Particulate