WorldWideScience

Sample records for measured log porosity

  1. Earth formation porosity log using measurement of neutron energy spectrum

    International Nuclear Information System (INIS)

    1981-01-01

    Methods and apparatus are described for measuring the porosity of subsurface earth formations in the vicinity of a well borehole by means of neutron well logging techniques. All the commercial techniques for measuring porosity currently available are not as accurate as desirable due to variations in the borehole wall diameter, in the borehole fluids (e.g. with chlorine content) in the casings of the borehole etc. This invention seeks to improve accuracy by using a measurement of the epithermal neutron population at one detector and the fast neutron population at a second detector, spaced approximately the same distance from a neutron source. The latter can be detected either by a fast neutron detector or indirectly by an inelastic gamma ray detector. Background correction can be made, and special detectors used, to discriminate against the detection of thermal neutrons or their resultant capture gamma rays. These fluctuations affect the measurement of thermal neutron populations. (U.K.)

  2. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  3. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  4. Benchmark neutron porosity log calculations

    International Nuclear Information System (INIS)

    Little, R.C.; Michael, M.; Verghese, K.; Gardner, R.P.

    1989-01-01

    Calculations have been made for a benchmark neutron porosity log problem with the general purpose Monte Carlo code MCNP and the specific purpose Monte Carlo code McDNL. For accuracy and timing comparison purposes the CRAY XMP and MicroVax II computers have been used with these codes. The CRAY has been used for an analog version of the MCNP code while the MicroVax II has been used for the optimized variance reduction versions of both codes. Results indicate that the two codes give the same results within calculated standard deviations. Comparisons are given and discussed for accuracy (precision) and computation times for the two codes

  5. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1979-01-01

    A simultaneous pulsed neutron porosity and thermal neutron capture cross section logging system is provided for radiological well logging of subsurface earth formations. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a combination gamma ray and fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations; and, during the bursts, the fast neutron and epithermal neutron populations are sampled. During the interval between bursts the thermal neutron capture gamma ray population is sampled in two or more time intervals. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity phi. The capture gamma ray measurements are combined to provide a simultaneous determination of the thermal neutron capture cross section Σ

  6. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Schultz, W.E.; Smith, H.D.; Smith, M.P.

    1980-01-01

    An improved method and apparatus are described for simultaneously measuring the porosity and thermal neutron capture cross section of earth formations in situ in the vicinity of a well borehole using pulsed neutron well logging techniques. The logging tool which is moved through the borehole consists of a 14 MeV pulsed neutron source, an epithermal neutron detector and a combination gamma ray and fast neutron detector. The associated gating systems, counters and combined digital computer are sited above ground. (U.K.)

  7. Generating porosity spectrum of carbonate reservoirs using ultrasonic imaging log

    Science.gov (United States)

    Zhang, Jie; Nie, Xin; Xiao, Suyun; Zhang, Chong; Zhang, Chaomo; Zhang, Zhansong

    2018-03-01

    Imaging logging tools can provide us the borehole wall image. The micro-resistivity imaging logging has been used to obtain borehole porosity spectrum. However, the resistivity imaging logging cannot cover the whole borehole wall. In this paper, we propose a method to calculate the porosity spectrum using ultrasonic imaging logging data. Based on the amplitude attenuation equation, we analyze the factors affecting the propagation of wave in drilling fluid and formation and based on the bulk-volume rock model, Wyllie equation and Raymer equation, we establish various conversion models between the reflection coefficient β and porosity ϕ. Then we use the ultrasonic imaging logging and conventional wireline logging data to calculate the near-borehole formation porosity distribution spectrum. The porosity spectrum result obtained from ultrasonic imaging data is compared with the one from the micro-resistivity imaging data, and they turn out to be similar, but with discrepancy, which is caused by the borehole coverage and data input difference. We separate the porosity types by performing threshold value segmentation and generate porosity-depth distribution curves by counting with equal depth spacing on the porosity image. The practice result is good and reveals the efficiency of our method.

  8. Application of nuclear logging to porosity studies in Itaborai basin

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Milena F.S.; Lima, Inaya; Lopes, Ricardo Tadeu, E-mail: milena@lin.ufrj.br, E-mail: inaya@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Ferrucio, Paula Lucia; Borghi, Leonardo, E-mail: ferrucio@acd.ufrj.br, E-mail: borghi@ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias. Dept. de Geologia; Abreu, Carlos Jorge, E-mail: jo_abreu@unb.br [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Geociencias

    2011-07-01

    Nuclear logging provides information on bulk density and porosity variations by measuring the intensity of the scattered radiation induced on the formation by radioactive sources. In this study, nuclear logging was employed to analyze the pore-space system of the 2-ITAB-1-RJ well placed on the Itaborai limestone basin, in the state of Rio de Janeiro. This is one of the smallest sedimentary basin in Brazil and it is formed by clastic deposits and travertine limestone rocks which are fractured. Understanding the pore-space system of carbonate rocks has become important subject for the oil industry, specially in Brazil. A Density Gamma Probe (LSD) and a Neutron Probe (NEUT) were used for data acquisition, which nuclear logging was carried out in part of the well, with continuous detection for about 50 m of deep. The detection speed was 4 m/min for the LSD and 5 m/min for the NEUT. The results obtained by nuclear logging showed that the 2-ITAB-1-RJ well consists of three different intervals with rocks ranging from low to moderate porosity present in travertine, marls and gneisses. (author)

  9. Method and apparatus for epithermal neutron porosity well logging

    International Nuclear Information System (INIS)

    Hertzog, R.C.; Loomis, W.A.; Wraight, P.

    1991-01-01

    This patent describes a method for investigating the porosity of a subsurface earth formation surrounding a borehole. It comprises repetitively irradiating the borehole and earth formation with discrete bursts of high energy neutrons from a neutron source, which neutrons interact with nuclei of the materials in the borehole and the formation to produce therein populations of epithermal neutrons; detecting the populations of epithermal neutrons at near and far locations in the borehole spaced apart longitudinally by different distances from the neutron source; generating count signals indicative of the magnitudes of the detected epithermal neutron populations at the respective near and far locations; detecting the decay of the epithermal neutron populations following the neutron bursts at least at one location in the borehole and generating signals representative thereof; deriving from the decay signals a signal indicative of the slowing down time of epithermal neutrons in the formation of the at least one location; and deriving from the near and far count signals and the slowing down time signal a measurement signal representative of the porosity of the formation surrounding the borehole inherently compensated for the effects of tool standoff on the responses of the logging tool

  10. Monte Carlo Study on Gas Pressure Response of He-3 Tube in Neutron Porosity Logging

    Directory of Open Access Journals (Sweden)

    TIAN Li-li;ZHANG Feng;WANG Xin-guang;LIU Jun-tao

    2016-10-01

    Full Text Available Thermal neutrons are detected by (n,p reaction of Helium-3 tube in the compensated neutron logging. The helium gas pressure in the counting area influences neutron detection efficiency greatly, and then it is an important parameter for neutron porosity measurement accuracy. The variation law of counting rates of a near detector and a far one with helium gas pressure under different formation condition was simulated by Monte Carlo method. The results showed that with the increasing of helium pressure the counting rate of these detectors increased firstly and then leveled off. In addition, the neutron counting rate ratio and porosity sensitivity increased slightly, the porosity measurement error decreased exponentially, which improved the measurement accuracy. These research results can provide technical support for selecting the type of Helium-3 detector in developing neutron porosity logging.

  11. Determination of reservoir effective porosity using nuclear magnetic logging data

    International Nuclear Information System (INIS)

    Aksel'rod, S.M.; Danevich, V.I.; Sadykov, D.M.

    1979-01-01

    In connection with the development of nuclear magnetic logging (NML) the possibility has occurred to determine the effective porosity coefficient for rocks directly under the conditions of their occurrence. The initial amplitude of a signal of free precession of NML is proportional to the quantity of free fluid in the rock volume, which is determined by the index of free fluid (IFF). On the basis of the laboratory studies it is shown that the relation between IFF and free water content is always linear and doesn't depend on lithological characteristics of rocks, porous dimensions and distribution. Using this relation it's possible to estimate bound water content. While filling the reservoir with weakly mineralized water the IFF value coincides numerically with the effective porosity coefficient. Otherwise the content of hydrogen nuclei in a volume unit is much less; while calculating the effective porosity coefficient this fact is recorded by the index of the amplitude decrease which depends on temperature and increases with its growth (for oils). In strata containing intercalations of reservoirs and non-reservoirs the averaged according to stratum IFF value determines the mean-weighted values of effective porosity

  12. Computation of porosity and water content from geophysical logs, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.

    1996-01-01

    Neutron and density logs acquired in boreholes at Yucca Mountain, Nevada are used to determine porosity and water content as a function of depth. Computation of porosity requires an estimate of grain density, which is provided by core data, mineralogical data, or is inferred from rock type where neither core nor mineralogy are available. The porosity estimate is merged with mineralogical data acquired by X-ray diffraction to compute the volumetric fractions of major mineral groups. The resulting depth-based portrayal of bulk rock composition is equivalent to a whole rock analysis of mineralogy and porosity. Water content is computed from epithermal and thermal neutron logs. In the unsaturated zone, the density log is required along with a neutron log. Water content can also be computed from dielectric logs, which were acquired in only a fraction of the boreholes, whereas neutron logs were acquired in all boreholes. Mineralogical data are used to compute a structural (or bound) water estimate, which is subtracted from the total water estimate from the neutron-density combination. Structural water can be subtracted only from intervals where mineralogical analyses are available; otherwise only total water can be reported. The algorithms and procedures are applied to logs acquired during 1979 to 1984 at Yucca Mountain. Examples illustrate the results. Comparison between computed porosity and core measurements shows systematic differences ranging from 0.005 to 0.04. These values are consistent with a sensitivity analysis using uncertainty parameters for good logging conditions. Water content from core measurements is available in only one borehole, yielding a difference between computed and core-based water content of 0.006

  13. Three frequency modulated combination thermal neutron lifetime log and porosity

    International Nuclear Information System (INIS)

    Paap, H.J.; Arnold, D.M.; Smith, M.P.

    1976-01-01

    Methods are disclosed for measuring simultaneously the thermal neutron lifetime of the borehole fluid and earth formations in the vicinity of a well borehole, together with the formation porosity. A harmonically intensity modulated source of fast neutrons is used to irradiate the earth formations with fast neutrons at three different modulation frequencies. Intensity modulated clouds of thermal neutrons at each of the three modulation frequencies are detected by dual spaced detectors and the relative phase shift of the thermal neutrons with respect to the fast neutrons is determined at each of the three modulation frequencies at each detector. These measurements are then combined to determine simultaneously the thermal neutron decay time of the borehole fluid, the thermal neutron decay time of surrounding earth formation media and the porosity of the formation media

  14. Earth formation pulsed neutron porosity logging system utilizing epithermal neutron and inelastic scattering gamma ray detectors

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  15. Porosity measurements of crystalline rocks by laboratory and geophysical methods

    International Nuclear Information System (INIS)

    Alexander, J.; Hall, D.H.; Storey, B.C.

    1981-12-01

    Porosity values of igneous and metamorphic crystalline rocks have been determined from core samples taken at specific depths from Altnabreac, by a combination of laboratory and geophysical techniques. Using resaturation and mercury injection methods in three laboratories within I.G.S., porosity values have been derived and the effect of variations in the measuring techniques and results obtained have been compared. Comparison of inter-laboratory porosity values illustrates that systematic errors are present, resulting in higher porosity values for samples subjected to re-testing. This is considered to be caused by the variable nature of the initial samples combined with the inability to completely dry or resaturate samples during a second testing. Geophysical techniques for determining in situ porosity using the neutron log have been carried out in borehole ALA. The neutron log has been calibrated with laboratory derived porosity values and an empirical formula derived enabling porosity values to be ascribed throughout the logged borehole ALA. Comparison of the porosity results from Altnabreac with crystalline samples elsewhere in America, Europe and the U.K. suggest that porosities at Altnabreac are lower than average. However, very few publications concerned with water movement in crystalline areas actually state the method used. (author)

  16. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Shultz, W.E.

    1980-01-01

    A method for simultaneously determining the porosity and thermal neutron capture cross-section of earth formations in the vicinity of a well borehole is claimed. It comprises the following steps: passing a well tool into a cased well borehole. The tool has a pulsed source of fast neutrons, a combination fast neutron and gamma ray detector and an epithermal neutron detector; repetitively irradiating the earth formations in the vicinity of the borehole with bursts of fast neutrons; detecting the fast neutron and epithermal neutron populations in the borehole (during the neutron bursts) and generating first and second measurement signals; detecting for second and third time intervals during the time between the neutron bursts, the gamma radiation present in the borehole due to the capture of thermalized neutrons by the nuclei of elements comprising the earth formations and generating third and fourth measurement signals; and combining the first and second measurement signals according to a predetermined relationship to derive an indication of the porosity of the earth formations and combining the third and fourth measurement signals to derive an indication of the thermal neutron capture cross-section of the earth formations

  17. Hydrocarbon type identification with MWD neutron porosity logging

    International Nuclear Information System (INIS)

    Simms, G.J.; Koopersmith, C.A.

    1991-01-01

    This paper reports on measurement-while-drilling (MWD) information which accurately defined gas, oil, and water in an offshore field. Basic MWD and wireline formation evaluation data compare favorably. A cost saving of $120,000 was realized when MWD information was used instead of wireline data on one well. In the future, MWD logs may serve as the primary evaluation data on routine development wells in similar fields

  18. Fuzzy model to predict porosity thought conventional well logs; Modelo Fuzzy para predicao de porosidade via perfis convencionais de poco

    Energy Technology Data Exchange (ETDEWEB)

    Mimbela, Renzo R.F.; Silva, Jadir C. [Universidade Estadual do Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao do Petroleo (LENEP)

    2004-07-01

    The well logs have a great applicability in the search and evaluation of hydrocarbon. In this work we calculate porosities of the Namorado field with help of the 'Fuzzy Rule'. This is done segmenting jointly both the neutron ({phi}{sub N}) and density ({phi}{sub d}) porosities logs in groups with better relation of internal linearity. The grouping is processed keeping the best number of groups, which is efficiently chosen by a criterion related to the minimum value of 'Fuzzy Validity' measurement. As a first step, we choose the {phi}{sub N} and {phi}{sub d} values only at that depths where cores exist. To prevent picking measurements errors a previous data filtering is performed by selecting only the and their correspondent values that exhibit a maximum discrepancy with core porosity ({phi}{sub C}) around 5pu (porosity unit). A conventional average porosity {phi}{sub MED}, mixing {phi}{sub N} and {phi}{sub d} is calculated at each point, concerning its own lithological and fluids characteristics. Finally, an inversion algorithm is applied to indicate the best curve curve that fit linearly {phi}{sub C} vs. {phi}{sub MED}, {phi}{sub C} vs. {phi}{sub D} and {phi}{sub C} vs. {phi}{sub N}, and at the same time determines the values of the constants to be extrapolated in order to calculate the porosity of the whole field. (author)

  19. SALTSTONE VARIABILITY STUDY - MEASUREMENT OF POROSITY

    International Nuclear Information System (INIS)

    Harbour, J; Vickie Williams, V; Tommy Edwards, T; Russell Eibling, R; Ray Schumacher, R

    2007-01-01

    One of the goals of the Saltstone Variability Study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. One of the key performance properties is porosity which is a measure of the volume percent of a cured grout that is occupied by salt solution (for the saturated case). This report presents (1) the results of efforts to develop a method for the measurement of porosity of grout samples and (2) initial results of porosity values for samples that have been previously produced as part of the Saltstone Variability Study. A cost effective measurement method for porosity was developed that provides reproducible results, is relatively fast (30 to 60 minutes per sample) and uses a Mettler Toledo HR83 Moisture Analyzer that is already operational and routinely calibrated at Aiken County Technology Laboratory. The method involves the heating of the sample at 105 C until no further mass loss is observed. This mass loss value, which is due to water evaporation, is then used to calculate the volume percent porosity of the mix. The results of mass loss for mixes at 105 C were equivalent to the results obtained using thermal gravimetric analysis. The method was validated by comparing measurements of mass loss at 105 C for cured portland cement in water mixes to values presented in the literature for this system. A stereopycnometer from Quantachrome Instruments was selected to measure the cured grout bulk densities. Density is a property that is required to calculate the porosities. A stereopycnometer was already operational at Aiken County Technology Laboratory, has been calibrated using a solid stainless steel sphere of known volume, is cost effective and fast (∼15 minutes per sample). Cured grout densities are important in their own right because they can be used to project the volume of waste form produced from a given amount of salt feed of known composition. For mixes

  20. Dual detector pulsed neutron logging for providing indication of formation porosity

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1979-01-01

    A logging instrument contains a pulsed neutron source and a pair of radiation detectors spaced along the length of the instrument. The radiation detectors are gated differently from each other to provide an indication of formation porosity which is substantially independent of the formation salinity. In the preferred embodiment, the electrical signals indicative of radiation detected by the long-spaced detector are gated for almost the entire interval between neutron pulses and the short-spaced signals are gated for a significantly smaller time interval which commences soon after the termination of a given neutron burst. The signals from the two detectors are combined in a ratio circuit for determination of porosity

  1. Method and apparatus for producing a porosity log of a subsurface formation corrected for detector standoff

    International Nuclear Information System (INIS)

    Allen, L.S.; Mills, W.R.; Stromswold, D.C.

    1991-01-01

    This paper describes a method and apparatus for producing a porosity log of a substance formation corrected for detector stand of. It includes: lowering a logging tool having a neutron source and a neutron detector into the borehole, irradiating the subsurface formation with neutrons from the neutron source as the logging tool is traversed along the subsurface formation, recording die-away signals representing the die-away of nuclear radiation in the subsurface formation as detected by the neutron detector, producing intensity signals representing the variations in intensity of the die-away signals, producing a model of the die-away of nuclear radiation in the subsurface formation having terms varying exponentially in response to borehole, formation and background effects on the die-away of nuclear radiation as detected by the detector

  2. Application of Monte Carlo perturbation methods to a neutron porosity logging tool, using DUCKPOND/McBEND

    International Nuclear Information System (INIS)

    Kemshell, P.B.; Wright, W.V.; Sanders, L.G.

    1984-01-01

    DUCKPOND, the sensitivity option of the Monte Carlo code McBEND, is being used to study the effect of environmental perturbations on the response of a dual detector neutron porosity logging tool. Using a detailed model of an actual tool, calculations have been performed for a 19% porosity limestone rock sample in the API Test Pit. Within a single computer run, the tool response, or near-to-far detector count ratio, and the sensitivity of this response to the concentration of each isotope present in the formation have been estimated. The calculated tool response underestimates the measured value by about 10%, which is equal to 1.5 ''standard errors'', but this apparent discrepancy is shown to be within the spread of calculated values arising from uncertainties on the rock composition

  3. Application of MRIL-WD (Magnetic Resonance Imaging Logging While Drilling) for irreducible water saturation, total reservoir, free-fluid, bound-fluid porosity measurements and its value for the petrophysical analysis of RT/RM data from the Shah Deniz well

    Science.gov (United States)

    Amirov, Elnur

    2016-04-01

    Sperry-Sun (Sperry Drilling Services) is the leader in MWD/LWD reliability, has developed the industry's first LWD NMR/MRIL-WD (nuclear magnetic resonance) tool. The MRIL-WD (magnetic resonance imaging logging-while-drilling) service directly measures the T1 component of hydrogen in subsurface rock units while drilling to obtain total reservoir porosity and to dissect the observed total porosity into its respective components of free fluid and bound fluid porosity. These T1 data are used to secure accurate total, free-fluid, capillary-bound water, and clay-bound water porosity of the reservoir sections which can be drilled in the several Runs. Over the last decade, results from Magnetic Resonance Imaging logs (NMR) have added significant value to petrophysical analysis and understanding by providing total, free-fluid and bound-fluid porosities, combined with fluid typing capabilities. With MRIL-WD very valuable Real-Time or Recorded Memory data/information is now available during or shortly after the drilling operation (formation properties measurement can be taken right after a drill bit penetration), while trip in and trip out as well. A key point in utilizing MRIL in an LWD environment is motion-tolerant measurements. Recent MRIL-WD logging runs from the Shah Deniz wells located in the Khazarian-Caspian Sea of the Azerbaijan Republic helped to delineate and assess hydrocarbon bearing zones. Acquired results demonstrate how MRIL data can be acquired while-drilling and provide reliable/high quality measurements. Magnetic Resonance Imaging logs at some developments wells have become a cornerstone in formation evaluation and petrophysical understanding. By providing total, free-fluid, and bound-fluid porosities together with fluid typing, MRIL results have significantly added to the assessment of reservoirs. In order to reduce NPT (Non-Productive Time) and save the rig operations time, there is always the desire to obtain logging results as soon as possible

  4. Void porosity measurements in coastal structures

    NARCIS (Netherlands)

    Bosma, C.; Verhagen, H.J.; D'Angremond, K.; Sint Nicolaas, W.

    2002-01-01

    The paper describes the use of two fundamental design parameters, the void porosity and layer thickness in rock armour constructions. These design parameters are very sensible for factors such as the boundary definition of a rock layer, rock production properties, intrinsic properties and

  5. Theory and application of a measurement-while-drilling neutron porosity sensor

    International Nuclear Information System (INIS)

    Roesler, R.F.; Barnett, W.C.; Paske, W.C.

    1987-01-01

    The authors describe the first MWD compensated neutron porosity measurement service (CNO) which employs a dual-spaced, borehole-compensated detector system to measure neutron-capture gamma rays. CNO service, when combined with existing MWD gamma ray and resistivity services, provides the basic data necessary for calculation of water saturation from MWD logs, making it possible to replace wireline logs in many situations with resulting savings in both logging costs and associated rig time. This is particularly cost effective when drilling high angle offshore development wells and in other high cost development drilling

  6. Porosity and hydraulic conductivity estimation of the basaltic aquifer in Southern Syria by using nuclear and electrical well logging techniques

    Science.gov (United States)

    Asfahani, Jamal

    2017-08-01

    An alternative approach using nuclear neutron-porosity and electrical resistivity well logging of long (64 inch) and short (16 inch) normal techniques is proposed to estimate the porosity and the hydraulic conductivity ( K) of the basaltic aquifers in Southern Syria. This method is applied on the available logs of Kodana well in Southern Syria. It has been found that the obtained K value by applying this technique seems to be reasonable and comparable with the hydraulic conductivity value of 3.09 m/day obtained by the pumping test carried out at Kodana well. The proposed alternative well logging methodology seems as promising and could be practiced in the basaltic environments for the estimation of hydraulic conductivity parameter. However, more detailed researches are still required to make this proposed technique very performed in basaltic environments.

  7. Porosity measurement of amorphous materials by gamma ray transmission

    International Nuclear Information System (INIS)

    Poettker, Walmir Eno

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV), a NaI (Tl) scintillation detector, collimators, a XYZ, micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  8. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    Science.gov (United States)

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  9. Method and apparatus for producing a porosity log of a subsurface formation corrected for detector standoff

    International Nuclear Information System (INIS)

    Allen, L.S.; Leland, F.P.; Lyle, W.D. Jr.; Stromswold, D.C.

    1993-01-01

    A borehole logging tool with a pulsed source of fast neutrons is lowered into a borehole traversing a subsurface formation, and a neutron detector measures the die-away of nuclear radiation in the formation. A model of the die-away is produced using exponential terms varying as the sum of borehole, formation and thermal neutron background components. Exponentially weighted moments of both the die-away measurements and a model are determined and equated. The formation decay constant is determined from the formation and thermal neutron background. An epithermal neutron lifetime is determined from the formation decay constant and is used with the amplitude ratio by a trained neural network to determine a lifetime correction. A standoff corrected lifetime is determined from the epithermal neutron lifetime and the lifetime correction. (author)

  10. Dual detector pulsed neutron logging for providing indication of formation porosity

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1980-01-01

    A new improved apparatus for determining rock formation porosity was developed which is substantially independent of the formation salinity. The improvements achieved by using differing gating intervals for the two detectors. The rock formations surrounding the earth borehole are first pulse-irradiated with discrete bursts from a high-energy neutron source. The radiations at two different points in the formation are detected and electrical signals are generated. The electrical signals from the first point are gated for a shorter time interval than those from the second point. The gated first and second electrical signals are combined to determine the porosity of the formations. (DN)

  11. Oceanic crustal velocities from laboratory and logging measurements of Integrated Ocean Drilling Program Hole 1256D

    Science.gov (United States)

    Gilbert, Lisa A.; Salisbury, Matthew H.

    2011-09-01

    Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.

  12. Physical properties of Martian meteorites: Porosity and density measurements

    Science.gov (United States)

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  13. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  14. Integration of ANFIS, NN and GA to determine core porosity and permeability from conventional well log data

    Science.gov (United States)

    Ja'fari, Ahmad; Hamidzadeh Moghadam, Rasoul

    2012-10-01

    Routine core analysis provides useful information for petrophysical study of the hydrocarbon reservoirs. Effective porosity and fluid conductivity (permeability) could be obtained from core analysis in laboratory. Coring hydrocarbon bearing intervals and analysis of obtained cores in laboratory is expensive and time consuming. In this study an improved method to make a quantitative correlation between porosity and permeability obtained from core and conventional well log data by integration of different artificial intelligent systems is proposed. The proposed method combines the results of adaptive neuro-fuzzy inference system (ANFIS) and neural network (NN) algorithms for overall estimation of core data from conventional well log data. These methods multiply the output of each algorithm with a weight factor. Simple averaging and weighted averaging were used for determining the weight factors. In the weighted averaging method the genetic algorithm (GA) is used to determine the weight factors. The overall algorithm was applied in one of SW Iran’s oil fields with two cored wells. One-third of all data were used as the test dataset and the rest of them were used for training the networks. Results show that the output of the GA averaging method provided the best mean square error and also the best correlation coefficient with real core data.

  15. Integration of ANFIS, NN and GA to determine core porosity and permeability from conventional well log data

    International Nuclear Information System (INIS)

    Ja’fari, Ahmad; Moghadam, Rasoul Hamidzadeh

    2012-01-01

    Routine core analysis provides useful information for petrophysical study of the hydrocarbon reservoirs. Effective porosity and fluid conductivity (permeability) could be obtained from core analysis in laboratory. Coring hydrocarbon bearing intervals and analysis of obtained cores in laboratory is expensive and time consuming. In this study an improved method to make a quantitative correlation between porosity and permeability obtained from core and conventional well log data by integration of different artificial intelligent systems is proposed. The proposed method combines the results of adaptive neuro-fuzzy inference system (ANFIS) and neural network (NN) algorithms for overall estimation of core data from conventional well log data. These methods multiply the output of each algorithm with a weight factor. Simple averaging and weighted averaging were used for determining the weight factors. In the weighted averaging method the genetic algorithm (GA) is used to determine the weight factors. The overall algorithm was applied in one of SW Iran’s oil fields with two cored wells. One-third of all data were used as the test dataset and the rest of them were used for training the networks. Results show that the output of the GA averaging method provided the best mean square error and also the best correlation coefficient with real core data. (paper)

  16. Etude de la diagraphie neutron du granite de Beauvoir. Effet neutron des altérations et de la matrice du granite. Calibration granite. Porosité totale à l'eau et porosité neutron Analysis of the Beauvoir Granite Neutron Log. Neutron Effect of Alterations and of the Granite Matrix. Granite Calibration. Total Water Porosity and Neutron Porosity

    Directory of Open Access Journals (Sweden)

    Galle C.

    2006-11-01

    carottes (n. Nous montrons que, pour le granite de Beauvoir, l'effet neutron de la matrice est important (en moyenne proche de 7% et ne peut être négligé lorsque l'on mesure des porosités voisines de 0,5% sur carottes. La calibration de l'outil neutron dans le granite et non pas dans des calcaires est d'autre part capitale quant à la précision quantitative des résultats. This article describes the research done on the Beauvoir granite (Echassières GPF 1 borehole, French Massif Central range. The aim of this project was to obtain representative values of the water saturation (n total free water porosity of the Beauvoir granite from PorosityN neutron porosity (BRGM neutron log. The exact knowledge of the porosity of a crystalline block is effectively fundamental to determine its possibilities for being used as a waste storage site. With this goal, neutron logging provides indispensable information concerning the characterization of a porous medium. Our procedure was experimental, and we tried to go more deeply into various problems linked to the use of neutron logging in a granitic rock. Two main factors governed the neutron response : (i the hydrogen concentration of the formation (free water and combined water of various minerals and (ii the presence of absorber elements with a large capture cross-section such as gadolinium, cadmium, boron as well as lithium for the Beauvoir granite. After measuring the Beauvoir granite n total (free water porosity on core samples, we evaluated the combined water content of each sample tested on the basis of fire loss tests on rock powder at 900°C. From the hydrogen atoms volumic concentration, we determined a hydrogen index that we directly converted into the PorosityN(OH- neutron porosity, (by definition, pure water at 20°C has a hydrogen index of 1 which is equivalent to a 100% porosity. For the Beauvoir granite, the matrix combined water represents an average neutron porosity (Table 1 of about 4%. In the second phase, we used

  17. The use of multi-energy-group neutron diffusion theory to numerically evaluate the relative utility of three dial-detector neutron porosity well logging tools

    International Nuclear Information System (INIS)

    Zalan, T.A.

    1988-01-01

    Multi-energy-group neutron diffusion theory is used to numerically evaluate the utility of two different dual-detector neutron porosity logging devices, a 14 MeV (accelerator) neutron source - epithermal neutron detector device and a 4 MeV neutron source - capture gamma-ray detector device, relative to the traditional 4 MeV neutron source - thermal neutron detector device. Fast and epithermal neutron diffusion parameters are calculated using Monte Carlo - derived neutron flux distributions. Thermal parameters are calculated from tabulated cross sections. An existing analytical method to describe the transport of gamma-rays through common earth materials is modified in order to accommodate the modeling of the 4 MeV neutron - capture gamma-ray device. The 14 MeV neutron - epithermal neutron device is found to be less sensitive to porosity than the 4 MeV neutron - capture gamma-ray device, which in turn is found to be less sensitive to porosity than the traditional 4 MeV neutron - thermal neutron device. Salinity effects are found to be comparable for the 4 MeV neutron - capture gamma-ray and 4 MeV neutron - thermal neutron devices. The 4 MeV neutron capture gamma-ray measurement is found to be deepest investigating

  18. An interlaboratory comparison of methods for measuring rock matrix porosity

    International Nuclear Information System (INIS)

    Rasilainen, K.; Hellmuth, K.H.; Kivekaes, L.; Ruskeeniemi, T.; Melamed, A.; Siitari-Kauppi, M.

    1996-09-01

    An interlaboratory comparison study was conducted for the available Finnish methods of rock matrix porosity measurements. The aim was first to compare different experimental methods for future applications, and second to obtain quality assured data for the needs of matrix diffusion modelling. Three different versions of water immersion techniques, a tracer elution method, a helium gas through-diffusion method, and a C-14-PMMA method were tested. All methods selected for this study were established experimental tools in the respective laboratories, and they had already been individually tested. Rock samples for the study were obtained from a homogeneous granitic drill core section from the natural analogue site at Palmottu. The drill core section was cut into slabs that were expected to be practically identical. The subsamples were then circulated between the different laboratories using a round robin approach. The circulation was possible because all methods were non-destructive, except the C-14-PMMA method, which was always the last method to be applied. The possible effect of drying temperature on the measured porosity was also preliminarily tested. These measurements were done in the order of increasing drying temperature. Based on the study, it can be concluded that all methods are comparable in their accuracy. The selection of methods for future applications can therefore be based on practical considerations. Drying temperature seemed to have very little effect on the measured porosity, but a more detailed study is needed for definite conclusions. (author) (4 refs.)

  19. Permeability log using new lifetime measurements

    International Nuclear Information System (INIS)

    Dowling, D.J.; Boyd, J.F.; Fuchs, J.A.

    1975-01-01

    Comparative measurements of thermal neutron decay time are obtained for a formation after irradiation with a pulsed neutron source. Chloride ions in formation fluids are concentrated by the electrosmosis effect using charged poles on a well logging sonde. The formation is irradiated with fast neutrons and a first comparative measure of the thermal neutron decay time or neutron lifetime is taken. The chloride ions are then dispersed by acoustic pumping with a magnetostrictive transducer. The formation is then again irradiated with fast neutrons and a comparative measure of neutron lifetime is taken. The comparison is a function of the variation in chloride concentration between the two measurements which is related to formation permeability

  20. Applying the universal neutron transport codes to the calculation of well-logging probe response at different rock porosities

    International Nuclear Information System (INIS)

    Bogacz, J.; Loskiewicz, J.; Zazula, J.M.

    1991-01-01

    The use of universal neutron transport codes in order to calculate the parameters of well-logging probes presents a new approach first tried in U.S.A. and UK in the eighties. This paper deals with first such an attempt in Poland. The work is based on the use of MORSE code developed in Oak Ridge National Laboratory in U.S.A.. Using CG MORSE code we calculated neutron detector response when surrounded with sandstone of porosities 19% and 38%. During the work it come out that it was necessary to investigate different methods of estimation of the neutron flux. The stochastic estimation method as used currently in the original MORSE code (next collision approximation) can not be used because of slow convergence of its variance. Using the analog type of estimation (calculation of the sum of track lengths inside detector) we obtained results of acceptable variance (∼ 20%) for source-detector spacing smaller than 40 cm. The influence of porosity on detector response is correctly described for detector positioned at 27 cm from the source. At the moment the variances are quite large. (author). 33 refs, 8 figs, 8 tabs

  1. Qualitative and quantitative comparison of geostatistical techniques of porosity prediction from the seismic and logging data: a case study from the Blackfoot Field, Alberta, Canada

    Science.gov (United States)

    Maurya, S. P.; Singh, K. H.; Singh, N. P.

    2018-05-01

    In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.

  2. Influence of borehole-eccentred tools on wireline and logging-while-drilling sonic logging measurements

    KAUST Repository

    Pardo, David; Matuszyk, Paweł Jerzy; Torres-Verdí n, Carlos; Mora Cordova, Angel; Muga, Ignacio; Calo, Victor M.

    2013-01-01

    We describe a numerical study to quantify the influence of tool-eccentricity on wireline (WL) and logging-while-drilling (LWD) sonic logging measurements. Simulations are performed with a height-polynomial-adaptive (hp) Fourier finite-element method

  3. Monte Carlo Simulation on Compensated Neutron Porosity Logging in LWD With D-T Pulsed Neutron Generator

    International Nuclear Information System (INIS)

    Zhang Feng; Hou Shuang; Jin Xiuyun

    2010-01-01

    The process of neutron interaction induced by D-T pulsed neutron generator and 241 Am-Be source was simulated by using Monte Carlo method. It is concluded that the thermal neutron count descend exponentially as the spacing increasing. The smaller porosity was, the smaller the differences between the two sources were. When the porosity reached 40%, the ratio of thermal neutron count generated by D-T pulsed neutron source was much larger than that generated by 241 Am-Be neutron source, and its distribution range was wider. The near spacing selected was 20-30 cm, and that of far spacing was about 60-70 cm. The detection depth by using D-T pulsed neutron source was almost unchanged under condition of the same sapcing, and the sensitivity of measurement to the formation porosity decreases. The results showed that it can not only guarantee the statistic of count, but also improve detection sensitivity and depth at the same time of increasing spacing. Therefore, 241 Am-Be neutron source can be replaced by D-T neutron tube in LWD tool. (authors)

  4. Estimation and measurement of porosity change in cement paste

    International Nuclear Information System (INIS)

    Lee, Eunyong; Jung, Haeryong; Kwon, Ki-jung; Kim, Do-Gyeum

    2011-01-01

    Laboratory-scale experiments were performed to understand the porosity change of cement pastes. The cement pastes were prepared using commercially available Type-I ordinary Portland cement (OPC). As the cement pastes were exposed in water, the porosity of the cement pastes sharply increased; however, the slow decrease of porosity was observed as the dissolution period was extended more than 50 days. As expected, the dissolution reaction was significantly influenced by w/c ratio and the ionic strength of solution. A thermodynamic model was applied to simulate the porosity change of the cement pastes. It was highly influenced by the depth of the cement pastes. There was porosity increase on the surface of the cement pastes due to dissolution of hydration products, such as portlandite, ettringite, and CSH. However, the decrease of porosity was estimated inside the cement pastes due to the precipitation of cement minerals. (author)

  5. Dependence of the neutron-gamma log on the porosity of Malmian limestones from the central part of the Nida Trough

    International Nuclear Information System (INIS)

    Szczerba, A.

    1974-01-01

    Results of correlation-regression analysis of the relationship of the prosity Kp to the relative intensity of neutron-induced gamma radiation dIng are reviewed. The geophysical results and laboratory tests of Malmian carbonate rocks from 10 boreholes from the central part of the Nida trough have been utilized to study this relationship. The regression equation dIng=∫(Kp) and the nomogram to determine the porosity Kp on the basis of neutron-gamma log or neutron-gamma and gamma logs, when the correction for the content is to be considered, have been also presented. (author)

  6. Inverse Porosity-Hydraulic Conductivity Relationship in Sand-and-Gravel Aquifers Determined From Analysis of Geophysical Well Logs: Implications for Transport Processes

    Science.gov (United States)

    Morin, R. H.

    2004-05-01

    It is intuitive to think of hydraulic conductivity K as varying directly and monotonically with porosity P in porous media. However, laboratory studies and field observations have documented a possible inverse relationship between these two parameters in unconsolidated deposits under certain grain-size distributions and packing arrangements. This was confirmed at two sites in sand-and-gravel aquifers on Cape Cod, Massachusetts, where sets of geophysical well logs were used to examine the interdependence of several aquifer properties. Along with K and P, the resistivity R and the natural-gamma activity G of the surrounding sediments were measured as a function of depth. Qualitative examination of field results from the first site was useful in locating a contaminant plume and inferred an inverse relation between K and P; this was substantiated by a rigorous multivariate analysis of log data collected from the second site where K and P were determined to respond in a bipolar manner among the four independent variables. Along with this result come some implications regarding our conceptual understanding of contaminant transport processes in the shallow subsurface. According to Darcy's law, the interstitial fluid velocity V is proportional to the ratio K/P and, consequently, a general inverse K-P relationship implies that values of V can extend over a much wider range than conventionally assumed. This situation introduces a pronounced flow stratification within these granular deposits that can result in large values of longitudinal dispersivity; faster velocities occur in already fast zones and slower velocities in already slow zones. An inverse K-P relationship presents a new perspective on the physical processes associated with groundwater flow and transport. Although the results of this study apply strictly to the Cape Cod aquifers, they may merit a re-evaluation of modeling approaches undertaken at other locations having similar geologic environments.

  7. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  8. Comparison of porosity measurement techniques for porous titanium scaffolds evaluation

    International Nuclear Information System (INIS)

    Oliveira, M.V.; Ribeiro, A.A.; Moreira, A.C.; Moraes, A.M.C.; Appoloni, C.R.; Pereira, L.C.

    2009-01-01

    Porous titanium has been used for grafts and implant coatings as it allows the mechanical interlocking of the pores and bone. Evaluation of porous scaffolds for bone regeneration is essential for their manufacture. Porosity, pore size, pore shape and pore homogeneity are parameters that influence strongly the mechanical strength and biological functionality. In this study, porous titanium samples were manufactured by powder metallurgy by using pure titanium powders mixed with a pore former. The quantification of the porosity parameters was assessed in this work by geometric method and gamma-ray transmission, the non-destructive techniques and metallographic images processing, a destructive technique. Qualitative evaluation of pore morphology and surface topography were performed by scanning electron microscopy and optical microscopy. The results obtained and the effectiveness of the techniques used were compared in order to select those most suitable for characterization of porous titanium scaffolds. (author)

  9. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    Science.gov (United States)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  10. Irrationality measures of $\\log 2$ and $\\pi/\\sqrt{3}$

    OpenAIRE

    Brisebarre, Nicolas

    2001-01-01

    Using a class of polynomials that generalizes Legendre polynomials, we unify previous works of E. A. Rukhadze, A. K. Dubitskas, M. Hata, D. V. and G. V. Chudnovsky about irrationality measures of $\\log 2$ and $\\pi/\\sqrt{3}$

  11. Porosity, Bulk Density, and Volume Reduction During Drying: Review of Measurement Methods and Coefficient Determinations

    NARCIS (Netherlands)

    Qiu, J.; Khalloufi, S.; Martynenko, A.; Dalen, van G.; Schutyser, M.A.I.; Almeida-Rivera, C.

    2015-01-01

    Several experimental methods for measuring porosity, bulk density and volume reduction during drying of foodstuff are available. These methods include among others geometric dimension, volume displacement, mercury porosimeter, micro-CT, and NMR. However, data on their accuracy, sensitivity, and

  12. Physical and measuring principles of nuclear well logging techniques

    International Nuclear Information System (INIS)

    Loetzsch, U.; Winkler, R.

    1981-01-01

    Proceeding from the general task of nuclear geophysics as a special discipline of applied geophyscis, the essential physical problems of nuclear well logging techniques are considered. Particularly, the quantitative relationship between measured values and interesting geologic parameters to be determined are discussed taking into account internal and external perturbation parameters. Resulting from this study, the technological requirements for radiation sources and their shielding, for detectors, electronic circuits in logging tools, signal transmission by cable and recording equipment are derived, and explained on the basis of examples of gamma-gamma and neutron-neutron logging. (author)

  13. Characterization of bentonite pore structure by combining chloride porosity and SAXS measurements

    International Nuclear Information System (INIS)

    Muurinen, A.

    2010-01-01

    Document available in extended abstract form only. The total water porosity, chloride porosity and the microstructure were studied in compacted samples prepared from MX-80 and Deponit bentonites equilibrated through filter plates with 0.1 M NaCl solution for 12.5 months. The dry densities of the samples varied approximately from 0.7 to 1.55 g/cm 3 . XRD and SAXS (Small Angle X-ray Scattering) were used to study the microstructure of the bentonites. It was obvious that the chloride porosity was lower than the water porosity in both clays, which indicates the exclusion caused by the negatively charged montmorillonite surfaces. In the XRD and SAXS measurements the measured basal spaces represented by the diffraction peaks were smaller than the theoretical ones assuming a homogenous microstructure. This indicates that there was a substantial amount of water also in the pores, which were not represented by the peaks. This could explain the difference between the measured chloride porosity and the modelling curve obtained with the Donnan model. By combining the information from the SAXS measurements and the chloride exclusion measurements, it was possible to evaluate the volumes of the soft and dense fractions and the pore sizes in each fraction for MX-80. The chloride porosity was mostly caused by the pores in the soft clay where the pore size is larger. The volume of the soft fraction decreased and its density increased with increasing density of the sample. (authors)

  14. Measurement of the porosity of amorphous materials by gamma ray transmission methodology

    International Nuclear Information System (INIS)

    Pottker, Walmir Eno; Appoloni, Carlos Roberto

    2000-01-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a 241 Am source (59,53 keV ), a NaI(Tl) scintillation detector, collimators, a XYZ micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  15. Porosity measurement of solid pharmaceutical dosage forms by gamma-ray transmission

    International Nuclear Information System (INIS)

    Martins de Oliveira, Jose; Andreo Filho, Newton; Vinicius Chaud, Marco; Angiolucci, Tatiana; Aranha, Norberto; Germano Martins, Antonio Cesar

    2010-01-01

    The aim of the present work is the determination of porosity in tablets by using the gamma-ray transmission technique. Tablet dissolution depends on some inherent characteristics of the manufacturing process, such as compression force, tablet volume, density and porosity, nature of excipients, preparation methods and its physical-chemical properties. Porosity is a measure of empty spaces in a material and can be determined by various techniques. In this paper, we propose the use of a gamma-ray transmission technique to obtain the porosity of experimental formulation of tablets. The results of porosity were compared with those obtained by using conventional methodology (density and mercury intrusion). The experimental setup for gamma-ray transmission consists of a gamma-ray source of 241 Am (photons of 59.6 keV and an activity of 3.7x10 9 Bq), an NaI(Tl) scintillation detector, collimators and a standard gamma-ray spectrometry electronics. Our results suggest that the gamma-ray transmission technique is a powerful tool for non-destructive porosity quantification of solid pharmaceutical forms and presents smaller errors than those obtained with conventional methodologies.

  16. Estimation of water-filled and air-filled porosity in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.

    1993-01-01

    Water content and porosity vary considerably within the unsaturated zone at Yucca Mountain. Measurement of these quantities has been based on core samples. A log-based approach offers the advantage of in-situ measurements, continuous throughout the borehole. This paper describes an algorithm which determines the air-filled and water-filled porosities from density and dielectric logs. The responses of density and dielectric logs are formulated in terms of the matrix properties, air-filled porosity and water-filled porosity. Porosity values obtained from logs from borehole USW G-2 are in reasonable agreement with estimates from core determinations

  17. Using data logging to measure Young’s modulus

    Science.gov (United States)

    Richardson, David

    2018-03-01

    Historically the Young’s modulus of a material is measured by increasing the applied force to a wire and measuring the extension. The cross sectional area and original length allow this to be plotted as a graph of stress versus strain. This article describes how data logging sensors can be used to measure how the force changes with extension, allowing a strain versus stress graph to be plotted into the region of plastic deformation.

  18. Influence of borehole-eccentred tools on wireline and logging-while-drilling sonic logging measurements

    KAUST Repository

    Pardo, David

    2013-02-13

    We describe a numerical study to quantify the influence of tool-eccentricity on wireline (WL) and logging-while-drilling (LWD) sonic logging measurements. Simulations are performed with a height-polynomial-adaptive (hp) Fourier finite-element method that delivers highly accurate solutions of linear visco-elasto-acoustic problems in the frequency domain. The analysis focuses on WL instruments equipped with monopole or dipole sources and LWD instruments with monopole excitation. Analysis of the main propagation modes obtained from frequency dispersion curves indicates that the additional high-order modes arising as a result of borehole-eccentricity interfere with the main modes (i.e., Stoneley, pseudo-Rayleigh and flexural). This often modifies (decreases) the estimation of shear and compressional formation velocities, which should be corrected (increased) to account for borehole-eccentricity effects. Undesired interferences between different modes can occur at different frequencies depending upon the properties of the formation and fluid annulus size, which may difficult the estimation of the formation velocities. © 2013 European Association of Geoscientists & Engineers.

  19. The efficiency of windbreaks on the basis of wind field and optical porosity measurement

    Directory of Open Access Journals (Sweden)

    Tomáš Středa

    2008-01-01

    Full Text Available Windbreaks have been used for many years to reduce wind speed as a wind-erosion control mea­su­re. To assessment of windbreak efficiency two main parameters are using: height of windbreak (H and aerodynamic porosity. In South Moravian Region the total area of windbreaks is approximately 1200 ha. For purposes of horizontal profile measurement of wind speed and wind direction windbreaks with various spices composition, age and construction in cadastral territory Suchá Loz and Micmanice were chosen. Windbreak influence on horizontal wind profile was found out in distance of 50, 100, 150 and 200 m in front and behind windbreak in two-meter height above surface. For the optical porosity measurement the ImageTool program was used. The wind field measurement results of windbreak in Suchá Loz cadastral shows limited effect of windbreak on wind speed. The windbreak is created mainly by Canadian poplars (Populus × canadensis. In dependence on main species foliage stage the effect of windbreak was obvious on leeward side to distance of 100–150 m (c. 5–7 H. Average optical porosity of windbreak in Suchá Loz was 50% (April. Reduction of average wind speed was about 17% maximally in this stage. Optical porosity was 20% and wind speed reduction was about 37% during second measurement (October. The second monitored windbreak (Micmanice had a significant influence on wind speed even to the maximal measured distance (200 m, c. 14 H. This windbreak crea­ted mainly by Acer sp. and Fraxinus excelsior reduced the wind speed about 64%. During first measurement (May the optical porosity of 20% and maximal wind speed reduction of 64% were assessed. For optical porosity of 21% (October the wind speed reduction was about 55%. Close relation between optical porosity and wind speed reduction was found out by statistical evaluation. Correlation coefficient regardless locality for distance of 50 m was −0.80, 100 m −0.92, 150 m −0.76 and for distance of 200 m

  20. Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.

    1986-01-01

    A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole

  1. Saturation and porosity measurements of different soil samples by gamma ray transmission

    International Nuclear Information System (INIS)

    Akbal, S.; Filiz Baytas, A.

    2000-01-01

    Gamma-ray transmission methods have been used accurately for the study of the properties of soil samples. In this study, the soil samples were collected from various regions of Turkey and a Nal (TI) detector measured the attenuation of strongly collimated monoenergetic gamma beam (from Cs-137) through soil samples. The water saturation and porosity were therefore calculated from the transmission measurements for each soil sample. (authors)

  2. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  3. Basalt identification by interpreting nuclear and electrical well logging measurements using fuzzy technique (case study from southern Syria)

    International Nuclear Information System (INIS)

    Asfahani, J.; Abdul Ghani, B.; Ahmad, Z.

    2015-01-01

    Fuzzy analysis technique is proposed in this research for interpreting the combination of nuclear and electrical well logging data, which include natural gamma ray, density and neutron-porosity, while the electrical well logging include long and short normal. The main objective of this work is to describe, characterize and establish the lithology of the large extended basaltic areas in southern Syria. Kodana well logging measurements have been used and interpreted for testing and applying the proposed technique. The established lithological cross section shows the distribution and the identification of four kinds of basalt, which are hard massive basalt, hard basalt, pyroclastic basalt and the alteration basalt products, clay. The fuzzy analysis technique is successfully applied on the Kodana well logging data, and can be therefore utilized as a powerful tool for interpreting huge well logging data with higher number of variables required for lithological estimations. - Highlights: • Apply fuzzy analysis technique on the nuclear and electrical well logging data of Kodana well in Southern Syria. • Determine and differentiate between four kinds of basalt. • Establish the lithological section of the studied well.

  4. Development of ultrasonic technique for measure of porosity of UO2 pellets

    International Nuclear Information System (INIS)

    Baroni, Douglas Brandao

    2008-01-01

    The characterization of nuclear fuel is of great importance to guarantee the efficiency and even the safety in the power stations. At present, the techniques used implicate elevated costs with equipment, materials and installations of radiological protection. Besides, because of being destructive techniques, they impose that the checking of the characteristics of this material is done by sampling. In this work a not destructive technique was developed for measures of porosity in ceramic materials with efficiency and precision. The objective of this work is to this technique will be able to be used in laboratory practice for measures in UO 2 pellets, so it would become viable the inspection of up to 100% of the nuclear fuel, guaranteeing bigger control of the characteristics of the used material, turning in increasing safety, efficiency and economy. The innovation of the technique is due to the fact of analysing the specter of frequency of the ultrasonic wrist, and not his time of course in the material, frequently used. In this work 40 ceramic pellets of alumina were used with values of porosity between 5,09% and 37,30%. A system of recognition of signs using artificial neural networks made possible to distinguish pellets with differences of porosity of 0,04%. It was observed that this technique can be used for several others aims, for example, in the determination of the void fraction in regimen of two-phase flow, what is very important to guarantee the efficiency and safety of nuclear reactors. (author)

  5. Economic incentives exist to support measures to reduce illegal logging

    Science.gov (United States)

    J.A. Turner; J. Buongiorno; A. Katz; S. Zhu; R. Li

    2008-01-01

    Three studies of the global economic implications of eliminating illegal logging are summarized. Processors of illegally sourced wood would lose from the elimination of illegal logging through high prices for logs and decreased production of wood products. Associated with these changes could be losses in employment and income. Beyond these losses to the processing...

  6. Measurement of the open porosity of agricultural soils with acoustic waves

    Science.gov (United States)

    Luong, Jeanne; Mercatoris, Benoit; Destain, Marie-France

    2015-04-01

    soil, since there are more voids filled with air and water, increasing the viscous losses. Fellah et al. (2003) showed that porosity can be determined from phase speed and reflection coefficient. The propagation of acoustic waves in soil is investigated to develop a rapid method for the quantification of the porosity level of agricultural soils. In the present contribution, correlations are determined between the acoustic signatures of agricultural soil in function of its structural properties. In laboratory, compression tests are performed on unsaturated soil samples to reproduce different porosity levels. Ultrasonic pulses are sent through the considered samples. The propagated signals are treated in both time and frequency domains in order to determine the speed of the phase velocity and the reflection. Porosity is then determined and compared with water content measured by gravimetric method. Alaoui, A., Lipiec, J. & Gerke, H.H., 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 115-116, pp.1-15. Fellah Z.E.A., Berger S., Lauriks W., Depollier C., Aristegui C., Chapelon J.Y., 2003. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America 113 (5), pp 2424-2433 Hamza, M.A. & Anderson, W.K., 2005. Soil compaction in cropping systems. Soil and Tillage Research, 82(2), pp.121-145. Lu, Z., 2005. Role of hysteresis in propagating acousitcs waves in soils. Geophysical Research Letter, pp.32:1-4. Lu, Z., Hickey, C.J. & Sabatier, J.M., 2004. Effects of compaction on the acoustic velocity in soils. Soil Science Society of America Journal, 68(1), pp.7-16. Lu, Z. & Sabatier, J.M., 2009. Effects of soil water potential and moisture content on sound speed. Soil Science Society of America Journal, 73(5), pp.1614-1625. Le Maitre, D.C., Kotzee, I.M. & O'Farrell, P.J., 2014. Impacts of land-cover change on

  7. Automated mineralogical logging of coal and coal measure core

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Fraser; Joan Esterle; Colin Ward; Ruth Henwood; Peter Mason; Jon Huntington; Phil Connor; Reneta Sliwa; Dave Coward; Lew Whitbourn [CSIRO Exploration & Mining (Australia)

    2006-06-15

    A mineralogical core logging system based on spectral reflectance (HyLogger{trademark}) has been used to detect and quantify mineralogies in coal and coal measure sediments. The HyLogger{trademark} system, as tested, operates in the visible-to-shortwave infrared spectral region, where iron oxides, sulphates, hydroxyl-bearing and carbonate minerals have characteristic spectral responses. Specialized software assists with mineral identification and data display. Three Phases of activity were undertaken. In Phase I, carbonates (siderite, ankerite, calcite) and clays (halloysite, dickite) were successfully detected and mapped in coal. Repeat measurements taken from one of the cores after three months demonstrated the reproducibility of the spectral approach, with some spectral differences being attributed to variations in moisture content and oxidation. Also, investigated was HyLogger{trademark} ability to create a 'brightness-profile' on coal materials, and these results were encouraging. In Phase II, geotechnically significant smectitic clays (montmorillonite) were detected and mapped in cores of clastic roof and floor materials. Such knowledge would be useful for mine planning and design purposes. In Phase III, our attempts at determining whether phosphorus-bearing minerals such as apatite could be spectrally detected were less than conclusive. A spectral index could only be created for apatite, and the relationships between the spectrally-derived apatite-index, the XRD results and the analytically-derived phosphorus measurements were ambiguous.

  8. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations.

    Science.gov (United States)

    Holm, René; Borkenfelt, Simon; Allesø, Morten; Andersen, Jens Enevold Thaulov; Beato, Stefania; Holm, Per

    2016-02-10

    Compounds wettability is critical for a number of central processes including disintegration, dispersion, solubilisation and dissolution. It is therefore an important optimisation parameter both in drug discovery but also as guidance for formulation selection and optimisation. Wettability for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed, however for six out of seven compounds similar results were obtained by applying a standard pressure (866 MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle. Only for special cases where compounds have poor compressibility would there be a need for a surface-quality-control step before the contact angle determination. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The neutron porosity tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1988-01-01

    The report contains a review of available information on neutron porosity tools with the emphasis on dual thermal-neutron-detector porosity tools and epithermal-neutron-detector porosity tools. The general principle of such tools is discussed and theoretical models are very briefly reviewed. Available data on tool designs are summarized with special regard to the source-detector distance. Tool operational data, porosity determination and correction of measurements are briefly discussed. (author) 15 refs

  10. Porosity measurement of amorphous materials by gamma ray transmission; Medida de porosidade de materiais amorfos por transmissao de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Poettker, Walmir Eno

    2000-07-01

    In this work it is presented the measurement of the total porosity of TRe soil, Sandstone Berea rocks and porous ceramics samples. For the determination of the total porosity, the Arquimedes method (conventional) and the gamma ray transmission methodology were employed. The porosity measurement using the gamma methodology has a significant advantage respect to the conventional method due to the fast and non-destructive determination, and also for supplying results with a greater characterization in small scales, in relation to the heterogeneity of the porosity. The conventional methodology presents good results only for homogeneous samples. The experimental set up for the gamma ray transmission technique consisted of a {sup 241} Am source (59,53 keV), a NaI (Tl) scintillation detector, collimators, a XYZ, micrometric table and standard gamma spectrometry electronics connected to a multichannel analyser. (author)

  11. Electro-location, tomography and porosity measurements in geotechnical centrifuge models based on electrical resistivity concepts

    Science.gov (United States)

    Li, Zhihua

    This research was focused on the development of electrical techniques for soil characterization and soil dynamic behavior assessment. The research carried out mainly includes (1) development of a needle probe tool for assessment of soil spatial variability in terms of porosity with high-resolution in the centrifuge testing; (2) development of an electro-location technique to accurately detect buried objects' movements inside the soil during dynamic events; (3) collaborative development of a new electrode switching system to implement electrical resistivity tomography, and electro-location with high speed and high resolution. To assess soil spatial variability with high-resolution, electrical needle probes with different tip shapes were developed to measure soil electrical resistivity. After normalizing soil resistivity by pore fluid resistivity, this information can be correlated to soil porosity. Calibrations in laboratory prepared soils were conducted. Loosening due to insertion of needle probes was evaluated. A special needle probe tool, along with data acquisition and data processing tools were developed to be operated by the new NEES robot on the centrifuge. The needle probes have great potential to resolve interfaces between soil layers and small local porosity variations with a spatial resolution approximately equal to the spacing between electrodes (about half of the probe diameter). A new electrode switching system was developed to accurately detect buried objects' movements using a new electro-location scheme. The idea was to establish an electromagnetic field in a centrifuge model by injecting low-frequency alternating currents through pairs of boundary electrodes. The locations of buried objects are related to the potentials measured on them. A closed form expression for the electric field in a rectangular specimen with insulated boundaries was obtained based on the method of images. Effects of sampling parameters on spatial resolution and tradeoffs

  12. FITTING A THREE DIMENSIONAL PEM FUEL CELL MODEL TO MEASUREMENTS BY TUNING THE POROSITY AND

    DEFF Research Database (Denmark)

    Bang, Mads; Odgaard, Madeleine; Condra, Thomas Joseph

    2004-01-01

    the distribution of current density and further how thisaffects the polarization curve.The porosity and conductivity of the catalyst layer are some ofthe most difficult parameters to measure, estimate and especiallycontrol. Yet the proposed model shows how these two parameterscan have significant influence...... on the performance of the fuel cell.The two parameters are shown to be key elements in adjusting thethree-dimensional model to fit measured polarization curves.Results from the proposed model are compared to single cellmeasurements on a test MEA from IRD Fuel Cells.......A three-dimensional, computational fluid dynamics (CFD) model of a PEM fuel cell is presented. The model consists ofstraight channels, porous gas diffusion layers, porous catalystlayers and a membrane. In this computational domain, most ofthe transport phenomena which govern the performance of the...

  13. Acoustic measurements on trees and logs: a review and analysis

    Science.gov (United States)

    Xiping Wang

    2013-01-01

    Acoustic technologies have been well established as material evaluation tools in the past several decades, and their use has become widely accepted in the forest products industry for online quality control and products grading. Recent research developments on acoustic sensing technology offer further opportunities to evaluate standing trees and logs for general wood...

  14. A new measurement-while-drilling gamma ray log calibrator

    International Nuclear Information System (INIS)

    Meisner, J.; Brooks, A.; Wisniewski, W.

    1985-01-01

    Many of the present methods of calibration for both wireline and MWD gamma ray detectors use a point source at a fixed distance from the detector. MWD calibration errors are introduced from scattering effects, from spectral differences, from position sensitivity and form lack of cylindrical geometry. A new method has been developed at Exploration Logging INc. (EXLOG) that eliminates these errors. The method uses a wrap-around or annular calibrator, referenced to the University of Houston gamma ray API pit. The new calibrator is designed to simulate the API pit's gamma ray emission spectrum with a finite amount of natural source material in the annular shape. Because of the thickness of steel between the MWD gamma ray detector and the formation, there is theoretical necessity for spectral matching. A simple theoretical approach was used to calibrate the new calibrator. Spectral matching allows a closer approximation to wireline logs and makes it possible to estimate the relative spectral content of a formation

  15. Importance of well logging measurements in the design of underground railway tunnels

    International Nuclear Information System (INIS)

    Kiss, E.Z.; Szlaboczky, P.

    1981-01-01

    The paper shows how logs can be used in the construction of underground railway tunnels in terciary sediments. Even standard well logging techniques (electric conductivity, gamma logging) can provide important additional information on the wells if conclusions concerning construction technology are gained from the logs. In the course of continuous research work the application of well logs renders an essential help if the measurements give in-situ information on absolute values of the well sections by revealing the various geological formations based on the distribution of characteristic parameters. Well logging increases the resolving power of the mechanical method of layer differentiation. Beside the usual geological interpretation of logs the zones of shifting rocks, hard and friable formations as well as intercalations leading to problems in construction technology can be pointed out. (author)

  16. Laser scanning measurements on trees for logging harvesting operations.

    Science.gov (United States)

    Zheng, Yili; Liu, Jinhao; Wang, Dian; Yang, Ruixi

    2012-01-01

    Logging harvesters represent a set of high-performance modern forestry machinery, which can finish a series of continuous operations such as felling, delimbing, peeling, bucking and so forth with human intervention. It is found by experiment that during the process of the alignment of the harvesting head to capture the trunk, the operator needs a lot of observation, judgment and repeated operations, which lead to the time and fuel losses. In order to improve the operation efficiency and reduce the operating costs, the point clouds for standing trees are collected with a low-cost 2D laser scanner. A cluster extracting algorithm and filtering algorithm are used to classify each trunk from the point cloud. On the assumption that every cross section of the target trunk is approximate a standard circle and combining the information of an Attitude and Heading Reference System, the radii and center locations of the trunks in the scanning range are calculated by the Fletcher-Reeves conjugate gradient algorithm. The method is validated through experiments in an aspen forest, and the optimized calculation time consumption is compared with the previous work of other researchers. Moreover, the implementation of the calculation result for automotive capturing trunks by the harvesting head during the logging operation is discussed in particular.

  17. Automated method for measuring the extent of selective logging damage with airborne LiDAR data

    Science.gov (United States)

    Melendy, L.; Hagen, S. C.; Sullivan, F. B.; Pearson, T. R. H.; Walker, S. M.; Ellis, P.; Kustiyo; Sambodo, Ari Katmoko; Roswintiarti, O.; Hanson, M. A.; Klassen, A. W.; Palace, M. W.; Braswell, B. H.; Delgado, G. M.

    2018-05-01

    Selective logging has an impact on the global carbon cycle, as well as on the forest micro-climate, and longer-term changes in erosion, soil and nutrient cycling, and fire susceptibility. Our ability to quantify these impacts is dependent on methods and tools that accurately identify the extent and features of logging activity. LiDAR-based measurements of these features offers significant promise. Here, we present a set of algorithms for automated detection and mapping of critical features associated with logging - roads/decks, skid trails, and gaps - using commercial airborne LiDAR data as input. The automated algorithm was applied to commercial LiDAR data collected over two logging concessions in Kalimantan, Indonesia in 2014. The algorithm results were compared to measurements of the logging features collected in the field soon after logging was complete. The automated algorithm-mapped road/deck and skid trail features match closely with features measured in the field, with agreement levels ranging from 69% to 99% when adjusting for GPS location error. The algorithm performed most poorly with gaps, which, by their nature, are variable due to the unpredictable impact of tree fall versus the linear and regular features directly created by mechanical means. Overall, the automated algorithm performs well and offers significant promise as a generalizable tool useful to efficiently and accurately capture the effects of selective logging, including the potential to distinguish reduced impact logging from conventional logging.

  18. Exploration and grade control neutron logging

    International Nuclear Information System (INIS)

    Eisler, P.L.

    1982-01-01

    Techniques used in neutron logging in boreholes are discussed. They include the application of neutron probes to porosity measurements, to lithological determinations based on macroscopic cross-section measurements and measurements of the concentration of chemical constituents in rocks and ores

  19. Reversed phase parallel artificial membrane permeation assay for log P measurement

    Directory of Open Access Journals (Sweden)

    Zihao Song

    2016-03-01

    Full Text Available A reversed phase parallel artificial membrane permeation assay (RP-PAMPA was newly invented for log P measurement. An oil/water/oil sandwich was constructed using a conventional PAMPA instrument. 1 % agarose was used to improve the physical stability of the water phase. A linear correlation between log P and the apparent permeability was observed in the -0.24 < log P < 2.85 region (R2 = 0.98. RP-PAMPA was also applied to pKa measurement.

  20. A new NMR measuring instrument for logging while drilling; Ein neues Logging While Drilling Kernspinresonanz-Messgeraet

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.M.; Thern, H.F.; Kruspe, T.; Blanz, M. [Baker Hughes INTEQ GmbH, Celle (Germany); Strobel, J. [RWE Dea AG, Hamburg (Germany)

    2003-07-01

    Since 1990, commercial wireline MR measurements are carried out in boreholes. Logging while drilling is a comparatively new technique, in which a MR sensor is integrated in the drilling equipment so that the measured data are available more quickly. Problems may be caused by movement of the drilling rig. The resulting vibrations may distort the MR signal. Current development activities therefore focus on design optimization for higher vibration stability. The contribution explains vibration-induced wrong measuring signals and presents measures to reduce the effects of vibration. Further, a new LWD-MR measuring instrument is presented, the so-called MagTrak{sup TM} which combines the quality and advantages of cable MR-T{sub 2} measurements with a minimum of vibration effects, as is shown by MR data from a commercial borehole. [German] Seit 1990 werden Wireline-MR-Messungen kommerziell im Bohrloch durchgefuehrt. In den letzten Jahren wird an Messgeraeten gearbeitet, die bereits waehrend des Bohrens MR-Daten aufzeichnen (Logging While Drilling, LWD). Dazu wird ein MR-Sensor in den Bohrstrang integriert. Neben der schnelleren Verfuegbarkeit der MR-Daten besteht ein grosser Vorteil der LWD-MR-Messung darin, dass die Daten bereits kurz nach dem Bohren gemessen werden. Die Invasion von Bohrlochspuelung in die Formation dauert dann noch nicht lange an, und die MR-Messung findet im relativ unveraenderten Gestein statt. Probleme beim Einsatz von MR-Messgeraeten waehrend des Bohrens werden vor allem durch die Bewegungen des Bohrstranges verursacht. Vibrationen des MR-Sensors fuehren zu veraenderten Messbedingungen waehrend des Messvorgangs, was zu Verzerrungen im MR-Signal fuehren kann. Den Aufbau des Messgeraetes so zu optimieren, dass Vibrationen einen moeglichst kleinen Einfluss auf die Messung haben, ist ein aktuelles Ziel der heutigen LWD-MR-Entwicklung. In diesem Artikel werden vibrationsverursachte Signalfehler erklaert und Massnahmen genannt, die die

  1. Investigation the effect of porosity on corrosion of macroporous silicon in 1.0 M sodium hydroxide solution using weight loss measurements, electrochemical methods and scanning electron microscope

    International Nuclear Information System (INIS)

    Lai, Chuan; Xiang, Zhen

    2015-01-01

    Highlights: • The dissolution of silicon wafers conforms Faraday’s laws of electrolysis. • The porosity effect on macroporous silicon corrosion was investigated. • The corrosion rate increase linearly with porosity increasing. • The porosity effect on activation parameters was obtained. - Abstract: In this study, the macroporous silicon has been fabricated by electrochemical anodization. The dissolution of n-type silicon wafers in etching solution conforms Faraday’s laws of electrolysis. The fabricated macroporous silicon with different porosity corrosion in 1.0 M NaOH was systemically investigated by weight loss measurements, electrochemical methods and scanning electron microscope. Results show that with the porosity increasing, the corrosion rate of macroporous silicon in 1.0 M NaOH increases linearly. In addition, the increase of corrosion rate of macroporous silicon with relative higher porosity was determined by the pre-exponential factor.

  2. A history of nuclear well logging in the oil industry

    International Nuclear Information System (INIS)

    Tittle, C.W.

    1989-01-01

    Spurred by an interest in logging through steel casing γ-ray logging began in the late 1930s followed soon by neutron logging for porosity. These were the first two nuclear well logs. Gamma-gamma density logging was developed during the 1950s. Pulsed neutron lifetime logging appeared in the 1960s; the slim tools came in the early 1970s. Developments since then have included dual detector devices of several types which offered improved measurements or interpretation, γ-ray spectrometry logging (natural and neutron-induced) which identifies certain chemical elements, induced radioactivity logging, and the photoelectric absorption log, which, combined with the density log in a single tool, is known as litho-density logging. A combination of several γ-ray spectrometers in one tool, designed to determine 10 formation elements, was recently introduced, and a new neutron porosity tool measuring epithermal neutron die-away time has been developed. Digital transmission of logging data was a step forward in about 1975. Also, log interpretation techniques have greatly expanded since the advent of digital computers, and the microcomputer has had a distinct impact. It is now practical and economical to do iterative analysis on a suite of logs to obtain an optimum overall interpretation. (author)

  3. Well logging. Acquisition and applications; Diagraphies. Acquisition et applications

    Energy Technology Data Exchange (ETDEWEB)

    Serra, O.; Serra, L.

    2001-07-01

    This reference book on wire-line and LWD well logging covers all geophysical methods of underground survey in a synthetic, visual and dynamical way. It treats of: the physical principle of well logging measurements, the different types of existing probes, the factors that can influence the measurements, and the applications of these measurements. The following well-logging methods are reviewed: resistivity; electromagnetic wave propagation; magnetic susceptibility and magnetic field; spontaneous potential; nuclear logging: natural gamma radioactivity, density logging, photoelectric index, neutron emission probes, hydrogen index or neutron porosity, neutron induced gamma spectroscopy, neutron relaxation time, NMR; acoustic measurements: sonic logging, seismic profiles; texture, structure and stratigraphy data acquisition; borehole diameter measurement; temperature measurement; wire sampling methods; place and role of well-logging in petroleum exploration; well-logging programs. (J.S.)

  4. Pulse neutron logging technique

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Dylyuk, A.A.

    1975-01-01

    A new method of neutron-burst logging is proposed, residing in irradiating rocks with fast neutron bursts and registering the integrated flux burst of thermal and/or epithermal neutrons, from the moment of its initiation to that of full absorption. The obtaained value is representative of the rock properties (porosity, hydrogen content). The integrated flux in a burst of thermal and epithermal neutrons can be measured both by way of activation of a reference sample of a known chemical composition during the neutron burst and by recording the radiation of induced activity of the sample within an interval between two bursts. The proposed method features high informative value, accuracy and efficiency

  5. Linking air and water transport in intact soils to macro-porosity by combining laboratory measurements and X-ray Computed Tomography

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Norgaard, Trine; Møldrup, Per

    -porosity (R2 = 0.80 for air permeability: R2= 0.61 for 5% arrival time) and macro-porosity of the restricting layer (R2=0.83 for air permeability: R2= 0.71 for 5% arrival time) over air-filled porosity and all the correlations were positive. The high positive correlation these air and water transport...... functions with macro-porosity stressed the importance of continuity and tortuosity of pores in air, water and solute flow and transport through the soils. Negative correlations of air permeability, 5% arrival time of tracer and macro-porosity were obtained with bulk density whereas with other soil physical......With an objective to link the hydraulic properties of soil with the soil structural properties, air permeability and 5% arrival time of a conservative tracer was measured for large undisturbed soil columns from the same agricultural field. The same soil columns were scanned with a medical scanner...

  6. Estimating tree bole and log weights from green densities measured with the Bergstrom Xylodensimeter.

    Science.gov (United States)

    Dale R. Waddell; Michael B. Lambert; W.Y. Pong

    1984-01-01

    The performance of the Bergstrom xylodensimeter, designed to measure the green density of wood, was investigated and compared with a technique that derived green densities from wood disk samples. In addition, log and bole weights of old-growth Douglas-fir and western hemlock were calculated by various formulas and compared with lifted weights measured with a load cell...

  7. Development of an Intelligent System to Synthesize Petrophysical Well Logs

    Directory of Open Access Journals (Sweden)

    Morteza Nouri Taleghani

    2013-07-01

    Full Text Available Porosity is one of the fundamental petrophysical properties that should be evaluated for hydrocarbon bearing reservoirs. It is a vital factor in precise understanding of reservoir quality in a hydrocarbon field. Log data are exceedingly crucial information in petroleum industries, for many of hydrocarbon parameters are obtained by virtue of petrophysical data. There are three main petrophysical logging tools for the determination of porosity, namely neutron, density, and sonic well logs. Porosity can be determined by the use of each of these tools; however, a precise analysis requires a complete set of these tools. Log sets are commonly either incomplete or unreliable for many reasons (i.e. incomplete logging, measurement errors, and loss of data owing to unsuitable data storage. To overcome this drawback, in this study several intelligent systems such as fuzzy logic (FL, neural network (NN, and support vector machine are used to predict synthesized petrophysical logs including neutron, density, and sonic. To accomplish this, the petrophysical well logs data were collected from a real reservoir in one of Iran southwest oil fields. The corresponding correlation was obtained through the comparison of synthesized log values with real log values. The results showed that all intelligent systems were capable of synthesizing petrophysical well logs, but SVM had better accuracy and could be used as the most reliable method compared to the other techniques.

  8. Stochastic modelling of porosity using seismic impedances on a volume of chalk in the Dan Field

    Energy Technology Data Exchange (ETDEWEB)

    Vejbaek, O.V.

    1995-12-31

    Seismic impedances calculated from logs show very good correlation to log porosities in wells penetrating the chalk reservoir in the Dan Field, Danish North Sea. This is the basis for an attempt to use seismic impedances derived from inversion as soft data for geostatistical reservoir characterization. The study focusses on porosity description of the Maastrichtian chalk reservoir unit, laterally restricted to an area covered by a subset of a 3D seismic survey. This seismic volume was inverted using the ISIS software producing a volume of seismic impedances. Spatial porosity realizations are produced using a gaussian collocated co-simulation algorithm, where well log porosities constitute the hard data input and seismic impedances are the soft data input. The simulated volume measures 1400 m x 1525 m x 102 m and is oriented parallel to lines and cross lines in the seismic dataset. Simulated blocks measures 25 m x 25 m x 6 m equivalent to twice the line and trace spacing, and approximately equivalent to the seismic sample rate. The correlation coefficient between log porosities and impedances calculated from logs alone are shown to be misleading since they suggest unrealistic high coefficients. However, the actual data used, namely inversion derived impedances and log porosities, still show correlation coefficients in the order of -0,45, which is quite sufficient to make the inversion results very useful. It is remarkable that the calculated correlation coefficient is based on 15 wells, and the inversion is based on only one well. The negative correlation coefficient indicate that high impedances correspond to low porosities and vice-versa. The impedance data indicate the level of average porosities at locations between wells. The fine structure is produced by the geostatistic process, with averages constrained by seismic impedances. The seismic impedances derived from the inversion process are thus shown to constitute useful primary data to constrain reservoir

  9. Geophysical well-log measurements in three drill holes at Salt Valley, Utah

    International Nuclear Information System (INIS)

    Daniels, J.J.; Hite, R.J.; Scott, J.H.

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material. The following geophysical well-log measurements were made in each of the three drill holes: (1) density, (2) neutron, (3) acoustic velocity, (4) normal resistivity, and (5) gamma ray. Widely spaced resistivity and conductivity well-log measurements were made in the deep drill hole. Each of these well-log measurements shows the division of the evaporite sequence into halite and interbed sections. At the present time the most useful well-logging measurements for determining the individual lithologies in an evaporite sequence are gamma ray, neutron, density, and acoustic velocity. The high resistivity contrast between the drilling fluid (0.5 ohm-m) and salt (10,000 ohm-m) makes it difficult to obtain quantitative measurements of electrical properties in an evaporite sequence. Tests of widely spaced electrode configurations show that the effects of the brine on the resistivity measurements can be reduced, and the depth of investigation increased, by increasing the source-receiver electrode spacing. Tests of a single-coil induction probe show good resolution of the contrasting electrical properties of the various interbed lithologies

  10. Linearity improvement on wide-range log signal of neutron measurement system for HANARO

    International Nuclear Information System (INIS)

    Kim, Young-Ki; Tuetken, Jeffrey S.

    1998-01-01

    This paper discusses engineering activities for improving the linearity characteristics of the Log Power signal from the neutron measurement system for HANARO. This neutron measurement system uses a fission chamber based detector which covers 10.3 decade-wide range from 10 -8 % full power(FP) up to 200%FP, The Log Power signal is designed to control the reactor at low power levels where most of the reactor physics tests are carried out. Therefore, the linearity characteristics of the Log Power signal is the major factor for accurate reactor power control. During the commissioning of the neutron measurement system, it was found that the linearity characteristics of the Log Power signal, especially near 10 -2 %FP, were not accurate enough for controlling the reactor during physics testing. Analysis of the system linearity data directly measured with reactor operating determined that the system was not operating per the design characteristics established from previous installations. The linearity data, which were taken as the reactor was increased in power, were sent to manufacturer's engineering group and a follow-up measures based on the analysis were then fed back to the field. Through step by step trouble-shooting activities, which included minor circuit modifications and alignment procedure changes, the linearity characteristics have been successfully improved and now exceed minimum performance requirements. This paper discusses the trouble-shooting techniques applied, the changes in the linearity characteristics, special circumstances in the HANARO application and the final resolution. (author)

  11. Testing of a uranium downhole logging system to measure in-situ plutonium concentrations in sediments

    International Nuclear Information System (INIS)

    Kasper, R.B.; Kay, M.A.; Bruns, L.E.; Stokes, J.A.; Steinman, D.K.; Adams, J.

    1980-11-01

    A prototype urainium borehole logging system, developed for uranium exploration, was modified for Pu assay and testing at the site. It uses the delayed fission neutron (DFN) method. It was tested in a retired Pu facility, the 216-Z-1A Crib. General agreement between laboratory determined Pu concentrations in sediment samples and neutron flux measurements was found for the relative distribution with depth

  12. High Resolution ground penetrating radar (GPR) measurements at the laboratory scale to model porosity and permeability in the Miami Limestone in South Florida.

    Science.gov (United States)

    Mount, G. J.; Comas, X.

    2015-12-01

    Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.

  13. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    Science.gov (United States)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  14. hp-HGS strategy for inverse 3D DC resistivity logging measurement simulations

    KAUST Repository

    Gajda-Zaǵorska, Ewa

    2012-06-02

    In this paper we present a twin adaptive strategy hp-HGS for solving inverse problems related to 3D DC borehole resistivity measurement simulations. The term “simulation of measurements” is widely used by the geophysical community. A quantity of interest, voltage, is measured at a receiver electrode located in the logging instrument. We use the self-adaptive goal-oriented hp-Finite Element Method (hp-FEM) computer simulations of the process of measurements in deviated wells (when the angle between the borehole and formation layers are < 90 deg). We also employ the hierarchical genetic search (HGS) algorithm to solve the inverse problem. Each individual in the population represents a single configuration of the formation layers. The evaluation of the individual is performed by solving the direct problem by means of the hp-FEM algorithm and by comparison with measured logging curve. We conclude the paper with some discussion on the parallelization of the algorithm.

  15. hp-HGS strategy for inverse 3D DC resistivity logging measurement simulations

    KAUST Repository

    Gajda-Zaǵorska, Ewa; Paszý nski, Maciej; Schaefer, Robert; Pardo, David; Calo, Victor M.

    2012-01-01

    In this paper we present a twin adaptive strategy hp-HGS for solving inverse problems related to 3D DC borehole resistivity measurement simulations. The term “simulation of measurements” is widely used by the geophysical community. A quantity of interest, voltage, is measured at a receiver electrode located in the logging instrument. We use the self-adaptive goal-oriented hp-Finite Element Method (hp-FEM) computer simulations of the process of measurements in deviated wells (when the angle between the borehole and formation layers are < 90 deg). We also employ the hierarchical genetic search (HGS) algorithm to solve the inverse problem. Each individual in the population represents a single configuration of the formation layers. The evaluation of the individual is performed by solving the direct problem by means of the hp-FEM algorithm and by comparison with measured logging curve. We conclude the paper with some discussion on the parallelization of the algorithm.

  16. Geophysical borehole logging in Lavia borehole - results and interpretation of sonic and tube wave measurements

    International Nuclear Information System (INIS)

    Andersson, P.; Stenberg, L.

    1985-02-01

    Swedish Nuclear Fuel and Waste Management Co, SKB has been contracted by Industrial Power Company LTD, TVO to perform geophysical logging in a borehole at Lavia in Western Finland. The logging has been conducted by Swedish Geological Co, SGAB in accordance with an agreement for cooperation with SKB. The depth of the borehole is 1001 m, diameter 56 mm and inclination 10-20 degrees to the vertical. The aim of the logging was to determine the various geophysical parameters in the borehole in order to interpret and understand the rock mass properties in the vicinity of the borehole. According to the contract the report covers the following main objectives: a technical description of the field work and the equipment used; a review of the theoretical base for the sonic and tube wave methods; an interpretation and presentation of the results obtained by sonic and tube wave mesurements. The evaluation of the sonic and tube wave measurements shows good correlation. On a qualitative basis there seems to be a correlation between tube wave generating points, the relative tube wave amplitudes and the hydraulic conductivity measurements performed as hydraulical tests between packers in the borehole. The low velocity anamalies in the sonic log are mainly caused by tectonic features like fractures and fracture zones but to some extent also by contacts between granite and diorite. The estimation of elastic properties of the rock mass from observation of tube wave velocity are in accordance with laboratory determinations made on core samples. (author)

  17. Monte Carlo simulation of determining porosity by using dual gamma detectors

    International Nuclear Information System (INIS)

    Zhang Feng; Liu Juntao; Yu Huawei; Yuan Chao; Jia Yan

    2013-01-01

    Current formation elements spectroscopy logging technology utilize 241 Am-Be neutron source and single BGO detector to determine elements contents. It plays an important role in mineral analysis and lithology identification of unconventional oil and gas exploration, but information measured is relatively ld. Measured system based on 241 Am-Be neutron and dual detectors can be developed to realize the measurement of elements content as well as determine neutron gamma porosity by using ratio of gamma count between near and far detectors. Calculation model is built by Monte Carlo method to study neutron gamma porosity logging response with different spacing and shields. And it is concluded that measuring neutron gamma have high counts and good statistical property contrasted with measuring thermal neutron, but the sensitivity of porosity decrease. Sensitivity of porosity will increase as the spacing of dual detector increases. Spacing of far and near detectors should be around 62 cm and 35 cm respectively. Gamma counts decrease and neutron gamma porosity sensitivity increase when shield is fixed between neutron and detector. The length of main shield should be greater than 10 cm and associated shielding is about 5 cm. By Monte Carlo Simulation study, the result provides technical support for determining porosity in formation elements spectroscopy logging using 241 Am-Be neutron and gamma detectors. (authors)

  18. Method and apparatus for determining the spontaneous earth potential log from downhole gradient measurements

    International Nuclear Information System (INIS)

    Maciejewski, W. J.

    1985-01-01

    A method and apparatus for measuring the differential or gradient of an earth variable within a well bore (e.g., the spontaneous earth potential) and producing improved logs of this gradient or differential and its integral variable essentially free of any accumulated instrument and base line drift or error. The differential spontaneous potential of an earth formation traversed by a well bore is measured at repeated multiple depths by moving a pair of closely spaced electrodes through the well bore wherein each electrode is electrically insulated externally from the other and from a third downhole local ground (such as the well tool cable) to which each is internally resistively referenced. The measured electrical potential across the closely spaced electrodes is amplified and digitized before being transmitted to the earth's surface, whereupon an averaged value of such differential measurements within a traveling data window of predetermined length and adjacent to each successive measurement is used to adjust for base line drift, noise and instrument induced error. The resulting compensated differential logs are integrated, resulting in spontaneous potential logs of improved character

  19. Accounting for measurement error in log regression models with applications to accelerated testing.

    Directory of Open Access Journals (Sweden)

    Robert Richardson

    Full Text Available In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  20. Accounting for measurement error in log regression models with applications to accelerated testing.

    Science.gov (United States)

    Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M

    2018-01-01

    In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  1. MC simulation of the collimation effects on measurement precision of high-resolution logging

    International Nuclear Information System (INIS)

    Wu Wensheng; Xiao Lizhi

    2010-01-01

    In this paper,the MCNP code is used to calculate responses to detector counting rate and formation sensitivity in oil-well logging with different opening shapes and angles of the γ-ray source aperture and detector collimator. The results show that the opening shape and angle of the source aperture affect the measurement precision far more than the opening shape and angle of the detector collimator, and the influences are greater than that of the formation sensitivity. A logging system that is equipped with a γ-ray source having a cuniform aperture of 45 degree opening angle, and a window aperture of 0 degree opening angle for a long-spacing detector or a short-spacing detector, and 5 degree-15 degree opening angle for a middle-spacing detector, will improve the measurement precision. (authors)

  2. Mapping porosity of the deep critical zone in 3D using near-surface geophysics, rock physics modeling, and drilling

    Science.gov (United States)

    Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.

    2017-12-01

    Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.

  3. Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen

    2004-01-01

    Measurement of soil respiration to quantify ecosystem carbon cyclingrequires absolute, not relative, estimates of soil CO2 efflux. We describe a novel, automated efflux apparatus that can be used to test the accuracy of chamber-based soil respiration measurements by generating known CO2 fluxes. Artificial soil is supported...

  4. Estimating porosity and solid dielectric permittivity in the Miami Limestone using high-frequency ground penetrating radar (GPR) measurements at the laboratory scale

    Science.gov (United States)

    Mount, Gregory J.; Comas, Xavier

    2014-10-01

    Subsurface water flow in South Florida is largely controlled by the heterogeneous nature of the karst limestone in the Biscayne aquifer and its upper formation, the Miami Limestone. These heterogeneities are amplified by dissolution structures that induce changes in the aquifer's material and physical properties (i.e., porosity and dielectric permittivity) and create preferential flow paths. Understanding such patterns are critical for the development of realistic groundwater flow models, particularly in the Everglades, where restoration of hydrological conditions is intended. In this work, we used noninvasive ground penetrating radar (GPR) to estimate the spatial variability in porosity and the dielectric permittivity of the solid phase of the limestone at centimeter-scale resolution to evaluate the potential for field-based GPR studies. A laboratory setup that included high-frequency GPR measurements under completely unsaturated and saturated conditions was used to estimate changes in electromagnetic wave velocity through Miami Limestone samples. The Complex Refractive Index Model was used to derive estimates of porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates of the samples ranged between 45.2 and 66.0% and showed good correspondence with estimates of porosity using analytical and digital image techniques. Solid dielectric permittivity values ranged between 7.0 and 13.0. This study shows the ability of GPR to image the spatial variability of porosity and dielectric permittivity in the Miami Limestone and shows potential for expanding these results to larger scales and other karst aquifers.

  5. Study on the simulation of acoustic logging measurements in horizontal and deviated wells

    Science.gov (United States)

    Liu, He; Wang, Bing; Tao, Guo; Zhang, Kuo; Yue, Wen-Zheng

    2017-09-01

    The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This unsuitability is because during horizontal and deviated well drilling, cuttings will splash on the well wall or fall into the borehole bottom and form a thin bed of cuttings. In addition, the high velocity layers at different depths and intrinsic anisotropy may affect acoustic logging measurements. In this study, we examine how these factors affect the acoustic wave slowness measured in horizontal and deviated wells that are surrounded by an anisotropic medium using numerical simulation. We use the staggered-grid finite difference method in time domain (FDTD) combined with hybrid-PML. First, we acquire the acoustic slowness using a simulated array logging system, and then, we analyze how various factors affect acoustic slowness measurements and the differences between the effects of these factors. The factors considered are high-velocity layers, thin beds of cuttings, dipping angle, formation thickness, and anisotropy. The simulation results show that these factors affect acoustic wave slowness measurements differently. We observe that when the wavelength is much smaller than the distance between the borehole wall and high velocity layer, the true slowness of the formation could be acquired. When the wavelengths are of the same order (i.e., in the near-field scenarios), the geometrical acoustics theory is no longer applicable. Furthermore, when a thin bed of cuttings exists at the bottom of the borehole, Fermat's principle is still applicable, and true slowness can be acquired. In anisotropic formations, the measured slowness changes with increments in the dipping angle. Finally, for a measurement system with specific spacing, the slowness of a thin target layer can be acquired when the distance covered by the logging tool is sufficiently long. Based

  6. SU-G-BRB-04: Automated Output Factor Measurements Using Continuous Data Logging for Linac Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X; Li, S; Zheng, D; Wang, S; Lei, Y; Zhang, M; Ma, R; Fan, Q; Wang, X; Li, X; Verma, V; Enke, C; Zhou, S [University of Nebraska Medical Center, Omaha, NE (United States)

    2016-06-15

    Purpose: Linac commissioning is a time consuming and labor intensive process, the streamline of which is highly desirable. In particular, manual measurement of output factors for a variety of field sizes and energy greatly hinders the commissioning efficiency. In this study, automated measurement of output factors was demonstrated as ‘one-click’ using data logging of an electrometer. Methods: Beams to be measured were created in the recording and verifying (R&V) system and configured for continuous delivery. An electrometer with an automatic data logging feature enabled continuous data collection for all fields without human intervention. The electrometer saved data into a spreadsheet every 0.5 seconds. A Matlab program was developed to analyze the excel data to monitor and check the data quality. Results: For each photon energy, output factors were measured for five configurations, including open field and four wedges. Each configuration includes 72 fields sizes, ranging from 4×4 to 20×30 cm{sup 2}. Using automation, it took 50 minutes to complete the measurement of 72 field sizes, in contrast to 80 minutes when using the manual approach. The automation avoided the necessity of redundant Linac status checks between fields as in the manual approach. In fact, the only limiting factor in such automation is Linac overheating. The data collection beams in the R&V system are reusable, and the simplified process is less error-prone. In addition, our Matlab program extracted the output factors faithfully from data logging, and the discrepancy between the automatic and manual measurement is within ±0.3%. For two separate automated measurements 30 days apart, consistency check shows a discrepancy within ±1% for 6MV photon with a 60 degree wedge. Conclusion: Automated output factor measurements can save time by 40% when compared with conventional manual approach. This work laid ground for further improvement for the automation of Linac commissioning.

  7. SU-G-BRB-04: Automated Output Factor Measurements Using Continuous Data Logging for Linac Commissioning

    International Nuclear Information System (INIS)

    Zhu, X; Li, S; Zheng, D; Wang, S; Lei, Y; Zhang, M; Ma, R; Fan, Q; Wang, X; Li, X; Verma, V; Enke, C; Zhou, S

    2016-01-01

    Purpose: Linac commissioning is a time consuming and labor intensive process, the streamline of which is highly desirable. In particular, manual measurement of output factors for a variety of field sizes and energy greatly hinders the commissioning efficiency. In this study, automated measurement of output factors was demonstrated as ‘one-click’ using data logging of an electrometer. Methods: Beams to be measured were created in the recording and verifying (R&V) system and configured for continuous delivery. An electrometer with an automatic data logging feature enabled continuous data collection for all fields without human intervention. The electrometer saved data into a spreadsheet every 0.5 seconds. A Matlab program was developed to analyze the excel data to monitor and check the data quality. Results: For each photon energy, output factors were measured for five configurations, including open field and four wedges. Each configuration includes 72 fields sizes, ranging from 4×4 to 20×30 cm"2. Using automation, it took 50 minutes to complete the measurement of 72 field sizes, in contrast to 80 minutes when using the manual approach. The automation avoided the necessity of redundant Linac status checks between fields as in the manual approach. In fact, the only limiting factor in such automation is Linac overheating. The data collection beams in the R&V system are reusable, and the simplified process is less error-prone. In addition, our Matlab program extracted the output factors faithfully from data logging, and the discrepancy between the automatic and manual measurement is within ±0.3%. For two separate automated measurements 30 days apart, consistency check shows a discrepancy within ±1% for 6MV photon with a 60 degree wedge. Conclusion: Automated output factor measurements can save time by 40% when compared with conventional manual approach. This work laid ground for further improvement for the automation of Linac commissioning.

  8. Application of water vapor sorption measurements for porosity characterization of hardened cement pastes

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    data were reviewed. Water vapor sorption measurements were then applied to two hardened cement pastes and one model porous material MCM-41. The specific surface area was calculated based on different equations accounting for multilayer adsorption and the PSD was analyzed from both the absorption...

  9. Measurement of structured purple soil porosity by using gamma ray transmission technique

    International Nuclear Information System (INIS)

    Costa, Elizabeth Cristina S. da; Rocha, Wilson Roberto Dejato da; Oliveira, Ricardo M. de; Silva, Luzeli Moreira da; Moreira, Anderson Camargo; Portezan, Otaio Portezan; Appoloni, Carlos Roberto; Coimbra, Melayne Martins

    2002-01-01

    The soil structure defines the particle arrangement which in turn largely determines the pore size distribution. In this work, we present the measurements of total, macro and microporosity for TRe soil with clayey texture. Soil samples were collected from a trench located at University of Londrina. The deformed and undeformed soil samples were collected from soil surface down to the depth of 0,50 m in 0,10 m intervals and separated into six aggregate size classes: 0.053; 0.125; 0.30; 0.71; 2 e 4 mm. We also prepared samples mixing different size classes, like as: (4+0.125), (2+0.125), (4+2+0.71), (4+2+0.30) e (4+0.30+0.125)mm. Measurements of particle density and aggregate bulk density using conventional method were performed to all depths. The linear soil attenuation coefficients and aggregate soil attenuation coefficients were measured with gamma-ray transmission system using an 241 Am (59,53 keV and 100 mCi) radiation source, a (2 x 2) in NaI scintillation detector, cylindric collimators (2 mm diameter to the source and 5 mm diameter to the detector) and gamma spectrometry standard electronics, connected to a multichannel. The obtained results for total, macro and microporosity are in a good agreement with the ones using the convention method, showing the applicability of the gamma-ray transmission method. (author)

  10. Tucker Wireline Open Hole Wireline Logging; FINAL

    International Nuclear Information System (INIS)

    Milliken, M.

    2002-01-01

    The Tucker Wireline unit ran a suite of open hole logs right behind the RMOTC logging contractor for comparison purposes. The tools included Dual Laterolog, Phased Induction, BHC Sonic, and Density-Porosity

  11. Effective diffusion coefficients and porosity values for argillaceous rocks and bentonite: measured and estimated values for the provisional safety analyses for SGT-E2

    International Nuclear Information System (INIS)

    Van Loon, L.R.

    2014-11-01

    In Stage 2 of the Sectoral Plan for Deep Geological Repositories, safety analyses have to be performed. Geochemical parameters describing the transport and retardation of radionuclides in the argillaceous rocks considered and in compacted bentonite are required. In the present report, diffusion parameters for all clay host rocks, confining units and compacted bentonite are derived. Diffusion of tritiated water (HTO), "3"6Cl"- and "2"2Na"+ was studied. The measurements gave values for effective diffusion coefficients (D_e) and diffusion accessible porosities. The general observed trend "N"aD_e > "H"T"OD_e > "C"lD_e is in agreement with the expected behaviour of the three species in clay materials: ion exchanging cations show an enhanced mobility due to surface diffusion effects and anions are slowed down due to anion exclusion. Due to the negatively charged clay surfaces, anionic species are repelled from these surfaces resulting in an accessible porosity that is smaller than the total porosity as measured with HTO. The effect of porewater composition on the diffusion of HTO, "3"6Cl"- and "2"2Na"+ in Opalinus Clay was investigated. For ionic strength (IS) values between 0.17 M and 1.07 M, no significant effect on D_e could be observed. In the case of "3"6Cl"-, no effect on the accessible porosity was observed. The anion diffusion accessible porosity equals 50-60 % of the total porosity, independent on the ionic strength of the porewater. The diffusion parameters were measured on sedimentary rocks such as chalk, clay and limestone rocks. All data could be described by one single modified version of Archie's relation (extended Archie's relation). For values of porosity greater than about 0.1, the classical Archie's relation was valid. For values smaller than 0.1, the data deviated from the classical Archie's relation; this can be explained by additional changes of tortuosity with porosity values. At high porosity values (low density rocks), the microfabric of the clay

  12. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    Science.gov (United States)

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.

  13. Problems of the processing of nuclear magnetic logging signals (identification of fluid-containing strata from a number of measurements)

    International Nuclear Information System (INIS)

    Aliev, T.M.; Orlov, G.L.; Lof, V.M.; Mityushin, E.M.; Ragimova, E.K.

    1978-01-01

    Problems of the processing of nuclear magnetic logging signals to identification of fluid-containing strata from a number of measurements. Problems of application statistical decision theory to discovery of fluid-containing beds from a number of measurements are considered. Using the technique possibilities of nuclear magnetic logging method the necessary volume of samples is motivated, the rational algorithm for processing of sequential measurements is obtained

  14. A new type of compensated neutron logging probe

    International Nuclear Information System (INIS)

    Ji Changsong; Shang Xiulan; Dai Zhude; Huang Heyi; Zhang Jianguo; Zu Shihuan; Zhao Jianqiang

    1988-01-01

    A new type of compensated neutron logging probe with glass scintillators has been designed. High sensitivity, long plateau and stability are the features of this probe which differs from the probes with 3 He or LiI(Eu) detector. From the results of field application the measured porosity is in good correspondence with the one obtained by rock core sampling method

  15. The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis

    Science.gov (United States)

    Oden, C.P.; Schweitzer, J.S.; McDowell, G.M.

    2006-01-01

    Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min. ?? 2006 Elsevier Ltd. All rights reserved.

  16. Radiographically detectable intracortical porosity

    International Nuclear Information System (INIS)

    Meema, H.E.

    1986-01-01

    Since the measurement of intracortical resorptive spaces by histologic methods is difficult and very few data are available in normal humans, we have measured their lengths and widths and calculated the intracortical porosity in metacarpals and phalanges of 79 normal women and 69 normal men, using fine-detail radiographs of the hands and a computerized semi-automatic image analysis system (Zeiss MOP-3), this being the first study of this kind. Several methodological problems were solved satisfactorily, and the results of this study could serve as a data bank for further investigations concerned with intracortical resorption. Significant differences were found between age and sex versus several intracortical resorptive parameters; also significant correlations were found with age in some cases. Normal intracortical porosity was found to be about three times greater in the proximal phalanges than in the metacarpals. It is concluded that this methodology could be used for further studies of intracortical resorption in osteoporosis and other metabolic bone diseases. (orig.)

  17. Interpretation of geophysical well-log measurements in drill hole UE25a-1, Nevada Test Site, Radioactive Waste Program

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    An exploratory hole (UE25a-1) was drilled at Nevada Test Site (NTS) to determine the suitability of pyroclastic deposits as storage sites for radioactive waste. Studies have been conducted to investigate the stratigraphy, structure, mineralogy, petrology, and physical properties of the tuff units encountered in the drill hole. This report deals with the interpretation of physical properties for the tuff units from geophysical well-log measurements. The ash-flow and bedded tuff sequences at NTS comprise complex lithologies of variously welded tuffs with superimposed crystallization and altered zones. To characterize these units, resistivity, density, neutron, gamma-ray, induced polarization, and magnetic susceptibility geophysical well-log measurements were made. Although inherently subjective, a consistent interpretation of the well-log measurements was facilitated by a computer program designed to interpret well logs either individually or simultaneously. The broad features of the welded tuff units are readily distinguished by the geophysical well-log measurements. However, many details revealed by the logs indicate that more work is necessary to clarify the casual elements of well-log response in welded tuffs

  18. Quality-assured evaluation of effective porosity using fit-for-purpose estimates of clay-mineral volume fraction

    Science.gov (United States)

    Worthington, Paul F.

    2010-05-01

    Reservoirs that contain dispersed clay minerals traditionally have been evaluated petrophysically using either the effective or the total porosity system. The major weakness of the former is its reliance on "shale" volume fraction ( Vsh) as a clay-mineral indicator in the determination of effective porosity from well logs. Downhole clay-mineral indicators have usually delivered overestimates of fractional clay-mineral volume ( Vcm) because they use as a reference nearby shale beds that are often assumed to comprise clay minerals exclusively, whereas those beds also include quartzitic silts and other detritus. For this reason, effective porosity is often underestimated significantly, and this shortfall transmits to computed hydrocarbons in place and thence to estimates of ultimate recovery. The problem is overcome here by using, as proxy groundtruths, core porosities that have been upscaled to match the spatial resolutions of porosity logs. Matrix and fluid properties are established over clean intervals in the usual way. Log-derived values of Vsh are tuned so that, on average, the resulting log-derived porosities match the corresponding core porosities over an evaluation interval. In this way, Vsh is rendered fit for purpose as an indicator of clay-mineral content Vcm for purposes of evaluating effective porosity. The method is conditioned to deliver a value of effective porosity that shows overall agreement with core porosity to within the limits of uncertainty of the laboratory measurements. This is achieved through function-, reservoir- and tool-specific Vsh reduction factors that can be applied to downhole estimates of clay-mineral content over uncored intervals of similar reservoir character. As expected, the reduction factors can also vary for different measurement conditions. The reduction factors lie in the range of 0.29-0.80, which means that in its raw form, log-derived Vsh can overestimate the clay-mineral content by more than a factor of three. This

  19. A Measuring System for Well Logging Attitude and a Method of Sensor Calibration

    Directory of Open Access Journals (Sweden)

    Yong Ren

    2014-05-01

    Full Text Available This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  20. A measuring system for well logging attitude and a method of sensor calibration.

    Science.gov (United States)

    Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

    2014-05-23

    This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  1. Mapping the lithotypes using the in-situ measurement of time domain induced polarization: El-log

    DEFF Research Database (Denmark)

    Auken, Esben; Fiandaca, Gianluca; Christiansen, Anders Vest

    This study presents a novel application of the El-log-drilling technique for measurement while drilling of the DC, time domain IP and gamma log. In addition pore water samples can be taken at arbitrary levels. The technique itself is developed in Denmark and has been widely used in the field...... of ground water and environmental studies. The El-log drilling method yields detailed information on small changes in lithology, sediment chemistry and water quality and with data comparable to what can be obtained in the laboratory. . We collected the data at a landfill site located near Grindsted...... in the southern part of Denmark. The purpose of the study was 1) to obtain a direct correlation between the undisturbed geophysical logs and surface measurements, 2) correlation of IP parameters to lithology and grain size distribution and 3) to investigate any correlation with effluent and IP parameters. We...

  2. Advances in complex reservoir evaluation based on geophysical well logs

    Energy Technology Data Exchange (ETDEWEB)

    Fertl, W.H.; Sinha, A.K. (Western Atlas International, Inc., Houston, TX (USA)); McDougall, J.G. (Western Atlas Canada Ltd., Calgary, AB (Canada))

    1988-09-01

    The matrix of reservoirs having complex lithologies, cause different density, neutron, and acoustic responses. Therefore the lithologies and effective porosity of reservoirs can be determined by using various crossplot techniques on data collected from two of these logs. The Complex Reservoir Analysis program (CRA) computes lithology, porosity, water saturation and relative permeabilities in formations with interbedded limestone, dolomite, and anhydrite. Porosity options include crossplot and individual log response techniques. Corrections for light hydrocarbons were applied. In solving for porosity and mineral volumes, sand, limestone, dolomite, and anhydrite lines were defined on either density/neutron or neutron/acoustic crossplots. Four additional mineral lines were specified. Incorporation of Pe data from the Z-Densilog provided a significant advance in evaluating complex reservoirs via the Z-CRA analysis. The classic reservoir evaluation program CLASS, was used to perform both minerals and shaly evaluation based on density, neutron, resistivity, and natural gamma ray spectral measurements. Computations included total and effective porosities, fluid saturation distribution based on the Wasman-Smits model, productivity indices, and volume and distribution of clay minerals. Additional computed formation parameters included log-derived cation exchange capacity and hydrogen index of dry clay matrix to determine the type and amount of smectite, illite and chlorite/kaolinite present. Canadian field experiences was used to illustrate and support the techniques described. 11 refs., 11 figs., 6 tabs.

  3. Problems of calibrating measuring instruments for selective gamma-gamma logging

    International Nuclear Information System (INIS)

    Daniel, J.; Smolarova, H.

    1977-01-01

    Quantitative determination of copper content in the Novoveska Huta chalcopyrite deposit is described using selective gamma-gamma logging. Factors influencing the calibration quality are discussed. (author)

  4. Comparative analysis of nuclear magnetic resonance well logging and nuclear magnetic resonance mud logging

    International Nuclear Information System (INIS)

    Yuan Zugui

    2008-01-01

    The hydrogen atoms in oil and water are able to resonate and generate signals in the magnetic field, which is used by the NMR (nuclear magnetic resonance) technology in petroleum engineering to research and evaluate rock characteristics. NMR well logging was used to measure the physical property parameters of the strata in well bore, whereas NMR mud logging was used to analyze (while drilling) the physical property parameters of cores, cuttings and sidewall coring samples on surface (drilling site). Based on the comparative analysis of the porosity and permeability parameters obtained by NMR well logging and those from analysis of the cores, cuttings and sidewall coring samples by NMR mud logging in the same depth of 13 wells, these two methods are of certain difference, but their integral tendency is relatively good. (authors)

  5. Predicting internal red oak (Quercus rubra) log defect features using surface defect defect measurements

    Science.gov (United States)

    R. Edward. Thomas

    2013-01-01

    Determining the defects located within a log is crucial to understanding the tree/log resource for efficient processing. However, existing means of doing this non-destructively requires the use of expensive x-ray/CT (computerized tomography), MRI (magnetic resonance imaging), or microwave technology. These methods do not lend themselves to fast, efficient, and cost-...

  6. Encyclopedia of well logging

    International Nuclear Information System (INIS)

    Desbrandes, R.

    1985-01-01

    The 16 chapters of this book aim to provide students, trainees and engineers with a manual covering all well-logging measurements ranging from drilling to productions, from oil to minerals going by way of geothermal energy. Each chapter is a summary but a bibliography is given at the end of each chapter. Well-logging during drilling, wireline logging equipment and techniques, petroleum logging, data processing of borehole data, interpretation of well-logging, sampling tools, completion and production logging, logging in relief wells to kill off uncontrolled blowouts, techniques for high temperature geothermal energy, small-scale mining and hydrology, logging with oil-base mud and finally recommended logging programs are all topics covered. There is one chapter on nuclear well-logging which is indexed separately. (UK)

  7. Measurement and Evaluation of Finger Tapping Movements Using Log-linearized Gaussian Mixture Networks

    Directory of Open Access Journals (Sweden)

    Masaru Yokoe

    2009-03-01

    Full Text Available This paper proposes a method to quantitatively measure and evaluate finger tapping movements for the assessment of motor function using log-linearized Gaussian mixture networks (LLGMNs. First, finger tapping movements are measured using magnetic sensors, and eleven indices are computed for evaluation. After standardizing these indices based on those of normal subjects, they are input to LLGMNs to assess motor function. Then, motor ability is probabilistically discriminated to determine whether it is normal or not using a classifier combined with the output of multiple LLGMNs based on bagging and entropy. This paper reports on evaluation and discrimination experiments performed on finger tapping movements in 33 Parkinson’s disease (PD patients and 32 normal elderly subjects. The results showed that the patients could be classified correctly in terms of their impairment status with a high degree of accuracy (average rate: 93:1 § 3:69% using 12 LLGMNs, which was about 5% higher than the results obtained using a single LLGMN.

  8. Inertial Navigation System/Doppler Velocity Log (INS/DVL Fusion with Partial DVL Measurements

    Directory of Open Access Journals (Sweden)

    Asaf Tal

    2017-02-01

    Full Text Available The Technion autonomous underwater vehicle (TAUV is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS aided by a Doppler velocity log (DVL, magnetometer, and pressure sensor (PS. In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  9. The pdk-100 enhances interpretation capabilities for pulsed neutron capture logs

    International Nuclear Information System (INIS)

    Randall, R.R.; Oliver, D.W.; Ferti, W.H.

    1986-01-01

    The PDK-100 is a new pulsed neutron logging system designed to measure Sigma (Σ), the macroscopic thermal neutron capture cross section. In addition to determining Σ, the system provides logging curves which are a measure of formation porosity and which furnish information concerning borehole conditions. This paper reviews the principles of operation of the PDK-100, and presents examples which illustrate the utility of the logging system. In addition, the progress of investigations into new parameters which can be derived with pulsed neutron logging data will be reported

  10. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  11. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  12. Development of self-learning Monte Carlo technique for more efficient modeling of nuclear logging measurements

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1988-01-01

    The self-learning Monte Carlo technique has been implemented to the commonly used general purpose neutron transport code MORSE, in order to enhance sampling of the particle histories that contribute to a detector response. The parameters of all the biasing techniques available in MORSE, i.e. of splitting, Russian roulette, source and collision outgoing energy importance sampling, path length transformation and additional biasing of the source angular distribution are optimized. The learning process is iteratively performed after each batch of particles, by retrieving the data concerning the subset of histories that passed the detector region and energy range in the previous batches. This procedure has been tested on two sample problems in nuclear geophysics, where an unoptimized Monte Carlo calculation is particularly inefficient. The results are encouraging, although the presented method does not directly minimize the variance and the convergence of our algorithm is restricted by the statistics of successful histories from previous random walk. Further applications for modeling of the nuclear logging measurements seem to be promising. 11 refs., 2 figs., 3 tabs. (author)

  13. Dual detector neutron lifetime log: theory and practical applications

    International Nuclear Information System (INIS)

    Serpas, C.J.; Wichmann, P.A.; Fertl, W.H.; DeVries, M.R.; Rndall, R.R.

    1977-01-01

    The Neutron Lifetime Log instrumentation has continued to evolve and now is equipped with dual detectors for increased ease in gas detection and also a ratio response for a simultaneous porosity determination. A good deal of experimentation was involved to minimize both lithology and salinity effects on the porosity indication. This paper contains a discussion of the theory and concepts related to the application of the Dual Detector Neutron Lifetime Log (DNLL). It is important to note that with these advances the recording of thermal neutron capture cross section (Σ) remains consistent with the past measurements of earlier generations of instruments as the most accurate determination of this parameter. A number of field examples of the newly logged results are shown. These field cases include Dual Detector NLL's run thru the drill strings of highly deviated holes when difficulties were encountered in getting conventional open hole logs to bottom, logs thru open perforations and hot radioactive zones, comparisons of the large and small diameter instruments, logs with anomalous fluids in the annulus, logs thru multiple casing strings, and a number of other examples

  14. Diffusion coefficient, porosity measurement, dynamic and equilibrium swelling studies of Acrylic acid/Polyvinyl alcohol (AA/PVA hydrogels

    Directory of Open Access Journals (Sweden)

    Nazar Mohammad Ranjha

    2015-06-01

    Full Text Available Objective of the present work was to synthesize hydrogels of acrylic acid/polyvinyl alcohol (AA/PVA by free radical polymerization by using glutaradehyde (GA as crosslinkers. The hydrogels were evaluated for swelling, diffusion coefficient and network parameters like the average molecular weight between crosslink’s, polymer volume fraction in swollen state, number of repeating units between crosslinks and crosslinking density by using Flory-Huggins theory. It was found that the degree of swelling of AA/PVA hydrogels increases greatly within the pH range 5-7. The gel fraction and porosity increased by increasing the concentration of AA or PVA. Increase in degree of crosslinking, decreased the porosity and inverse was observed in gel fraction. Selected samples were loaded with metoprolol tartrate. Drug release was studied in USP hydrochloric acid solution of pH 1.2 and phosphate buffer solutions of pH 5.5 and 7.5. Various kinetics models like zero order, first order, Higuchi and Peppas model were used for in vitro kinetic studies. The results showed that the drug release followed concentration dependent effect (First order kinetics with non-Fickian diffusion. FTIR and SEM used to study the structure, crystallinity, compatibility, thermal stability and morphology of prepared and drug loaded hydrogels respectively.

  15. An approach to derive some simple empirical equations to calibrate nuclear and acoustic well logging tools.

    Science.gov (United States)

    Mohammad Al Alfy, Ibrahim

    2018-01-01

    A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dual-porosity modeling of groundwater recharge: testing a quick calibration using in situ moisture measurements, Areuse River Delta, Switzerland

    Science.gov (United States)

    Alaoui, Abdallah; Eugster, Werner

    A simple method for calibrating the dual-porosity MACRO model via in situ TDR measurements during a brief infiltration run (2.8 h) is proposed with the aim of estimating local groundwater recharge (GR). The recharge was modeled firstly by considering the entire 3 m of unsaturated soil, and secondly by considering only the topsoil to the zero-flux plane (0-0.70 m). The modeled recharge was compared against the GR obtained from field measurements. Measured GR was 313 mm during a 1-year period (15 October 1990-15 October 1991). The best simulation results were obtained when considering the entire unsaturated soil under equilibrium conditions excluding the macropore flow effect (330 mm), whereas under non-equilibrium conditions GR was overestimated (378 mm). Sensitivity analyses showed that the investigation of the topsoil is sufficient in estimating local GR in this case, since the water stored below this depth appears to be below the typical rooting depth of the vegetation and is not available for evapotranspiration. The modeled recharge under equilibrium conditions for the 0.7-m-topsoil layer was found to be 364 mm, which is in acceptable agreement with measurements. Une méthode simple pour la calibration du modèle à double porosité MACRO par des mesures TDR in situ durant un bref essai d'infiltration (2.8 h) a été proposée pour l'estimation locale de la recharge de la nappe (RN). La RN a été d'abord simulée en tenant compte de toute la zone non saturée (3 m) et ensuite, en considérant uniquement la couverture du sol entre zéro et le plan du flux nul (0.70 m). La RN simulée a été comparée à la RN observée. La RN mesurée durant une année (15 octobre 1990-15 octobre 1991) était de 313 mm. Les meilleures simulations ont été obtenues en tenant compte de toute la zone non saturée sous les conditions d'équilibre excluant le flux préférentiel (330 mm). Sous les conditions de non équilibre, la RN a été surestimée (378 mm). Les analyses de

  17. Integration of crosswell seismic data for simulating porosity in a heterogeneous carbonate aquifer

    Science.gov (United States)

    Emery, Xavier; Parra, Jorge

    2013-11-01

    A challenge for the geostatistical simulation of subsurface properties in mining, petroleum and groundwater applications is the integration of well logs and seismic measurements, which can provide information on geological heterogeneities at a wide range of scales. This paper presents a case study conducted at the Port Mayaca aquifer, located in western Martin County, Florida, in which it is of interest to simulate porosity, based on porosity logs at two wells and high-resolution crosswell seismic measurements of P-wave impedance. To this end, porosity and impedance are transformed into cross-correlated Gaussian random fields, using local transformations. The model parameters (transformation functions, mean values and correlation structure of the transformed fields) are inferred and checked against the data. Multiple realizations of porosity can then be constructed conditionally to the impedance information in the interwell region, which allow identifying one low-porosity structure and two to three flow units that connect the two wells, mapping heterogeneities within these units and visually assessing fluid paths in the aquifer. In particular, the results suggest that the paths in the lower flow units, formed by a network of heterogeneous conduits, are not as smooth as in the upper flow unit.

  18. Pentachlorophenol measurements in body fluids of people in log homes and workplaces

    Energy Technology Data Exchange (ETDEWEB)

    Cline, R.E.; Hill, R.H. Jr.; Phillips, D.L.; Needham, L.L.

    1989-07-01

    Human exposure to pentachlorophenol (PCP) was evaluated in the normal population (controls), residents of PCP-treated log homes, and persons exposed primarily in the workplace. Blood and urine samples were analyzed by gas chromatography after extraction and acetylation. For 34 controls, serum PCP values ranged from 15-75 ppb with a mean of 40 ppb. For 123 residents of log homes, serum levels ranged from 69-1,340 ppb with a mean of 420 ppb. In such homes, serum levels for children were significantly higher than those for parents, averaging 1.8 times greater. Serum and urine values for workers varied widely, depending on the workplace, with serum levels ranging from 26 to 84,900 ppb of PCP. Urinary concentrations when corrected for creatinine values correlated well (r = 0.92) with serum concentrations. Coating PCP-treated logs of home interiors with a sealant reduced serum PCP levels in the residents.

  19. From Log Files to Assessment Metrics: Measuring Students' Science Inquiry Skills Using Educational Data Mining

    Science.gov (United States)

    Gobert, Janice D.; Sao Pedro, Michael; Raziuddin, Juelaila; Baker, Ryan S.

    2013-01-01

    We present a method for assessing science inquiry performance, specifically for the inquiry skill of designing and conducting experiments, using educational data mining on students' log data from online microworlds in the Inq-ITS system (Inquiry Intelligent Tutoring System; www.inq-its.org). In our approach, we use a 2-step process: First we use…

  20. Fundamentals of Acoustic Measurements on Trees and Logs and Their Implication to Field Application

    Science.gov (United States)

    Xiping Wang

    2011-01-01

    Acoustic technologies have been well established as material evaluation tools in the past several decades, and their use has become widely accepted in the forest products industry for on-line quality control and products grading. Recent research developments on acoustic sensing technology offer further opportunities to evaluate standing trees and logs for general wood...

  1. Insights into fluid flow and environmental conditions present in deep-sea hydrothermal vent deposits from measurements of permeability and porosity

    Science.gov (United States)

    Gribbin, J. L.; Zhu, W.; Tivey, M. K.

    2008-12-01

    Evolution of permeability-porosity relationships (EPPRs) of different seafloor vent deposit sample types provide crucial information about how fluid flows within the deposits. In this study, we conducted permeability and porosity measurements on a wide range of vent sample types recovered from many different active seafloor vent fields. The sample set includes chalcopyrite-lined black smoker chimneys, Zn-rich diffusing spires (including white smokers), flanges/slabs/crusts (i.e., plate-like deposits that overlie pooled fluid), massive anhydrite, and cores recovered from the sides of vent structures. Using a probe permeameter, permeability measurements were systematically taken of each sample along several orientations. The measured permeability ranges over 6 orders of magnitude from 10-14 to 10-8 m2. Our data indicate that in general massive anhydrite samples are the least permeable with a mean at ~10-13 m2 and the samples from Zn-rich diffusing spires that were actively venting when collected are the most permeable with a mean at ~10-11 m2. With a mean at 10-11.5 m2, permeability data of flanges/slabs/crusts span over 4 orders of magnitude from 10-13 to 10-9 m2, the largest spread among all sample types tested. Permeability values of the outer portions of relict spires, ranging from ~10-13 m2 to 10-9.5 m2, displayed clear anisotropic trends: permeability along the radial directions is higher than that along the axial direction. Black smokers exhibit a strong layered heterogeneity, where inner chalcopyrite linings were significantly less permeable than outermost layers. To conduct porosity and directional permeability measurements, cylindrical cores will be taken from these vent samples. We will examine whether different sample types, or portions of samples, exhibit distinct permeability-porosity relationships, and will then use micro-structural observations of the cores to examine chimney growth processes (e.g., mineral deposition or cracking) that likely result

  2. Borehole logging

    International Nuclear Information System (INIS)

    Olsen, H.

    1995-01-01

    Numerous ground water investigations have been accomplished by means of borehole logging. Borehole logging can be applied to establish new water recovery wells, to control the existing water producing wells and source areas and to estimate ground water quality. (EG)

  3. Integrating geophysical and hydrochemical borehole-log measurements to characterize the Chalk aquifer, Berkshire, United Kingdom

    Science.gov (United States)

    Schürch, Marc; Buckley, David

    2002-09-01

    Geophysical and hydrochemical borehole-logging techniques were integrated to characterize hydraulic and hydrogeochemical properties of the Chalk aquifer at boreholes in Berkshire, UK. The down-hole measurements were made to locate fissures in the chalk, their spatial extent between boreholes, and to determine the groundwater chemical quality of the water-bearing layers. The geophysical borehole logging methods used were caliper, focused resistivity, induction resistivity, gamma ray, fluid temperature, fluid electrical conductivity, impeller and heat-pulse flowmeter, together with borehole wall optical-imaging. A multiparameter data transmitter was used to measure groundwater temperature, electrical conductivity, dissolved oxygen, pH, and redox potential of the borehole fluid down-hole. High permeability developed at the Chalk Rock by groundwater circulation provides the major flow horizon at the Banterwick Barn study site and represents a conduit system that serves as an effective local hydraulic connection between the boreholes. The Chalk Rock includes several lithified solution-ridden layers, hardgrounds, which imply a gap in sedimentation possibly representing an unconformity. Lower groundwater temperature, high dissolved-oxygen content, and flowmeter evidence of preferential groundwater flow in the Chalk Rock indicated rapid groundwater circulation along this horizon. By repeating the logging at different times of the year under changing hydraulic conditions, other water-inflow horizons within the Chalk aquifer were recognized. Résumé. Des techniques géophysiques et hydrochimiques de diagraphies en forage ont été mises en oeuvre pour caractériser les propriétés hydrauliques et hydrogéochimiques de l'aquifère de la craie dans des forages du Berkshire (Grande-Bretagne). Les mesures en descente ont été faites pour localiser les fissures dans la craie et leur développement spatial entre forages, et pour déterminer la qualité de l'eau souterraine des

  4. Report on televiewer log and stress measurements in core hole USW G-2, Nevada Test Site, October-November, 1982

    International Nuclear Information System (INIS)

    Stock, J.M.; Healy, J.H.; Hickman, S.H.

    1984-01-01

    Hydraulic fracturing stress measurements and a borehole televiewer log were obtained in hole USW G-2 at Yucca Mountain, Nevada, to depths of 1200 m. Results indicate that at the depths tested, the minimum ad maximum horizontal stresses are less than the vertical stress, corresponding to a normal faulting stress regime. Drilling-induced hydrofractures seen in the televiewer log imply a least horizontal principal stress direction of N 60 0 W to N 65 0 W. For reasonable values of the coefficient of friction, the magnitude of the least horizontal stress is close to the value at which slip would occur on preexisting faults of optimal orientation (strike N 25 0 E to N 30 0 E and dipping 60 0 to 67 0 ). The prominent drilling-induced fractures seen in the televiewer log are believed to have been caused by excess downhole pressures applied during drilling the hole. Many throughgoing fractures are also seen in the televiewer log; most of these are high angle, stringing N 10 0 E to N 40 0 E. These fractures show a general decrease in angle of dip with depth. Stress-induced wellbore breakouts are seen at depths below 1050 m. The average N 60 0 W azimuth of these breakouts agrees very closely with the N 60 0 W to N 65 0 W direction of least horizontal principal stress inferred from the drilling-induced hydrofracs. 19 references, 13 figures, 3 tables

  5. Physical properties of fault zone rocks from SAFOD: Tying logging data to high-pressure measurements on drill core

    Science.gov (United States)

    Jeppson, T.; Tobin, H. J.

    2013-12-01

    In the summer of 2005, Phase 2 of the San Andreas Fault Observatory at Depth (SAFOD) borehole was completed and logged with wireline tools including a dipole sonic tool to measure P- and S-wave velocities. A zone of anomalously low velocity was detected from 3150 to 3414 m measured depth (MD), corresponding with the subsurface location of the San Andreas Fault Zone (SAFZ). This low velocity zone is 5-30% slower than the surrounding host rock. Within this broad low-velocity zone, several slip surfaces were identified as well as two actively deforming shear zones: the southwest deformation zone (SDZ) and the central deformation zone (CDZ), located at 3192 and 3302 m MD, respectively. The SAFZ had also previously been identified as a low velocity zone in seismic velocity inversion models. The anomalously low velocity was hypothesized to result from either (a) brittle deformation in the damage zone of the fault, (b) high fluid pressures with in the fault zone, or (c) lithological variation, or a combination of the above. We measured P- and S-wave velocities at ultrasonic frequencies on saturated 2.5 cm diameter core plug samples taken from SAFOD core obtained in 2007 from within the low velocity zone. The resulting values fall into two distinct groups: foliated fault gouge and non-gouge. Samples of the foliated fault gouge have P-wave velocities between 2.3-3.5 km/s while non-gouge samples lie between 4.1-5.4 km/s over a range of effective pressures from 5-70 MPa. There is a good correlation between the log measurements and laboratory values of P-and S wave velocity at in situ pressure conditions especially for the foliated fault gouge. For non-gouge samples the laboratory values are approximately 0.08-0.73 km/s faster than the log values. This difference places the non-gouge velocities within the Great Valley siltstone velocity range, as measured by logs and ultrasonic measurements performed on outcrop samples. As a high fluid pressure zone was not encountered during

  6. Formation evaluation in Devonian shale through application of new core and log analysis methods

    International Nuclear Information System (INIS)

    Luffel, D.L.; Guidry, F.K.

    1990-01-01

    In the Devonian shale of the Appalachian Basin all porosity in excess of about 2.5 percent is generally occupied by free hydrocarbons, which is mostly gas, based on results of new core and log analysis methods. In this study, sponsored by the Gas Research Institute, reservoir porosities averaged about 5 percent and free gas content averaged about 2 percent by bulk volume, based on analyses on 519 feet of conventional core in four wells. In this source-rich Devonian shale, which also provides the reservoir storage, the rock everywhere appears to be at connate, or irreducible, water saturation corresponding to two or three percent of bulk volume. This became evident when applying the new core and log analysis methods, along with a new plotting method relating bulk volume of pore fluids to porosity. This plotting method has proved to be a valuable tool: it provides useful insight on the fluid distribution present in the reservoir, it provides a clear idea of porosity required to store free hydrocarbons, it leads to a method of linking formation factor to porosity, and it provides a good quality control method to monitor core and log analysis results. In the Devonian shale an important part of the formation evaluation is to determine the amount of kerogen, since this appears as hydrocarbon-filled porosity to conventional logs. In this study Total Organic Carbon and pyrolysis analyses were made on 93 core samples from four wells. Based on these data a new method was used to drive volumetric kerogen and free oil content, and kerogen was found to range up to 26 percent by volume. A good correlation was subsequently developed to derive kerogen from the uranium response of the spectral gamma ray log. Another important result of this study is the measurement of formation water salinity directly on core samples. Results on 50 measurements in the four study wells ranged from 19,000 to 220,000 ppm NaCl

  7. Characterizing Mobile/Less-Mobile Porosity and Solute Exchange in Dual-Domain Media Using Tracer Experiments and Electrical Measurements in a Hassler-Type Core Holder

    Science.gov (United States)

    Falzone, S.; Slater, L. D.; Day-Lewis, F. D.; Parker, B. L.; Keating, K.; Robinson, J.

    2017-12-01

    Mass transfer is the process by which solute is retained in less-mobile porosity domains, and later released into the mobile porosity domain. This process is often responsible for the slow arrival and gradual release of contaminants and solute tracers. Recent studies have outlined methods using dual-domain mass transfer (DDMT) models for characterizing this phenomenon. These models use the non-linear relationship of bulk (σb) and fluid (σf) conductivity, collected from electrical methods during tracer experiments, to characterize the less-mobile/mobile porosity ratio (β) and the mass-transfer rate coefficient (α). DDMT models use the hysteretic σb-σf relationship observed while solute tracers are injected and then flushed from a sample media. Due to limitations in observing the hysteretic σb-σf relationship, this method has not been used to characterize low permeability samples. We have developed an experimental method for testing porous rock cores that allows us to develop a fundamental understanding of contaminant storage and release in consolidated rock. We test the approach on cores from sedimentary rock sites where mass transfer is expected to occur between hydraulically connected fractures and the adjacent low permeability rock matrix. Our method uses a Hassler-type core holder, designed to apply confining pressure around the outside of a sample core, which hydraulically isolates the sample core, allowing water to be injected into it at increased pressures. The experimental apparatus was also designed to measure σb with spectral induced polarization (SIP) measurements, and σf from a sampling port located at the center of the core. Cores were initially saturated with a solution with high electrical conductivity ( 80000 μS/cm). DI water was then injected into the cores at elevated pressures (>60 psi) and the saturating solution was flushed from the cores, in order to generate flow rates fast enough to capture the non-linear σb-σf relationship

  8. Specific features of well logging of boreholes drilled on electrical nonconducting solutions

    International Nuclear Information System (INIS)

    Ruchkin, A.F.; Fomenko, V.G.

    1978-01-01

    Methods for identification of permeable strata and determination of their porosity and oil-gas saturation using standard combination of geophysical investigations in the boreholes drilled with nonaqueous and inert drilling fluids are considered. Geophysical combination consists of the methods indications of which are independent on electrical conductivity of drilling fluids. They are all modifications of radioactivity logging (gamma logging, neutron logging, neutron-gamma logging, gamma-gamma logging, pulsed neutron logging, nuclear-magnetic logging), acoustic logging and thermal logging

  9. Water saturation in shaly sands: logging parameters from log-derived values

    International Nuclear Information System (INIS)

    Miyairi, M.; Itoh, T.; Okabe, F.

    1976-01-01

    The methods are presented for determining the relation of porosity to formation factor and that of true resistivity of formation to water saturation, which were investigated through the log interpretation of one of the oil and gas fields of northern Japan Sea. The values of the coefficients ''a'' and ''m'' in porosity-formation factor relation are derived from cross-plot of porosity and resistivity of formation corrected by clay content. The saturation exponent ''n'' is determined from cross-plot of porosity and resistivity index on the assumption that the product of porosity and irreducible water saturation is constant. The relation of porosity to irreducible water saturation is also investigated from core analysis. The new logging parameters determined from the methods, a = 1, m = 2, n = 1.4, improved the values of water saturation by 6 percent in average, and made it easy to distinguish the points which belong to the productive zone and ones belonging to the nonproductive zone

  10. Radiation transport methods for nuclear log assessment - an overview

    International Nuclear Information System (INIS)

    Badruzzaman, A.

    1996-01-01

    Methods of radiation transport have been applied to well-logging problems with nuclear sources since the early 1960s. Nuclear sondes are used in identifying rock compositions and fluid properties in reservoirs to predict the porosity and oil saturation. Early computational effort in nuclear logging used diffusion techniques. As computers became more powerful, deterministic transport methods and, finally, Monte Carlo methods were applied to solve these problems in three dimensions. Recently, the application has been extended to problems with a new generation of devices, including spectroscopic sondes that measure such quantities as the carbon/oxygen ratio to predict oil saturation and logging-while-drilling (LWD) sondes that take neutron and gamma measurements as they rotate in the borehole. These measurements present conditions that will be difficult to calibrate in the laboratory

  11. Method and device for measuring formation characteristics of geological formations

    International Nuclear Information System (INIS)

    Antkiw, S.; Murphy, R.D.

    1981-01-01

    A well-logging system is described which uses a pulsed neutron source and which by combining measurements of gamma spectra and neutron characteristics enables such parameters as salinity, porosity, water saturation, lithology and schistosity to be registered directly. (JIW)

  12. Radiometric well logging instruments

    International Nuclear Information System (INIS)

    Davydov, A.V.

    1975-01-01

    The technical properties of well instruments for radioactive logging used in the radiometric logging complexes PKS-1000-1 (''Sond-1'') and PRKS-2 (''Vitok-2'') are described. The main features of the electric circuit of the measuring channels are given

  13. Measurement of log moisture content and density by gamma and neutron backscatter

    International Nuclear Information System (INIS)

    Barry, B.J.

    2002-01-01

    Measurement of the moisture content and green density of wood was investigated using scattering of gamma rays and neutrons. Both of these processes are dependent on density but neutrons are particularly sensitive to the hydrogen content, which changes with moisture content. A material mimicking the green density and moisture content of real wood was successfully used in a laboratory study to establish the feasibility of measuring these within the range found in standing trees. A later field trial indicated that the technique needed more development to take account of the natural variability of real trees. (author). 3 refs., 11 figs., 1 table

  14. Model wells for nuclear well logging

    International Nuclear Information System (INIS)

    Tittle, C.W.

    1989-01-01

    Considerations needed in the design and construction of model wells for nuclear log calibration are covered, with special attention to neutron porosity logging and total γ-ray logging. Pulsed neutron decay-time and spectral γ-ray logging are discussed briefly. The American Petroleum Institute calibration facility for nuclear logs is a good starting point for similar or expanded facilities. A few of its shortcomings are mentioned; they are minor. The problem of fluid saturation is emphasized. Attention is given to models made of consolidated rock and those containing unconsolidated material such as Ottawa sand. Needed precautions are listed. A similarity method is presented for estimating the porosity index of formations that are not fully saturated. (author)

  15. Low-field NMR logging sensor for measuring hydraulic parameters of model soils

    Science.gov (United States)

    Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard

    2011-08-01

    SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average with decreasing saturation speaks for a enhancement of the surface relaxation as the soil dries, in

  16. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Mang, Joseph Thomas [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  17. Ultrasonic maps of porosity in aluminum castings

    International Nuclear Information System (INIS)

    Ghaffari, Bita; Potter, Timothy J.; Mozurkewich, George

    2002-01-01

    The use of cast aluminum in the automotive industry has grown dramatically in recent years, leading to increased need for quantitative characterization of microporosity. As previously reported in the literature, the attenuation of ultrasound can be used to measure the porosity volume fraction and the mean pore size. An immersion ultrasound system has been built utilizing this technique to scan castings with high spatial resolution. Maps of attenuation are shown to locate areas of varying porosity readily and reliably

  18. Monte Carlo Numerical Models for Nuclear Logging Applications

    Directory of Open Access Journals (Sweden)

    Fusheng Li

    2012-06-01

    Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models

  19. Porosity, permeability, and their relationship in granite, basalt, and tuff

    International Nuclear Information System (INIS)

    1983-04-01

    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report

  20. Nuclear borehole logging for oil exploration

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1989-01-01

    Reactor physics can be applied to the logging of boreholes for the exploration of oil and gas and the results obtained can be interpreted more correctly by use of reactor physics models, e.g. one-dimensional multi-group diffusion theory adapted for gamma quanta. The standard nuclear logging tools are: natural gamma, gamma density, neutron porosity and the pulsed-neutron tool. The models and interpretation procedures are discussed. 1 fig

  1. Geophysical logging of the Harwell boreholes

    International Nuclear Information System (INIS)

    Brightman, M.A.

    1983-08-01

    A comprehensive geophysical borehole logging survey was carried out on each of three deep boreholes drilled at the Harwell research site. KOALA and PETRA computer programs were used to analyse and interpret the logs to obtain continuous quantitative estimates of the geological and hydrogeological properties of the sequences penetrated at the Harwell site. Quantitative estimates of the mineral composition and porosity of the cores samples were made. (UK)

  2. Porosity Variation in Cenozoic and Upper Chalk from the Ontong Java Pleateau

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine

    1997-01-01

    Porosity was obtained from matrix- and intraparticle porosity assessed from image analysis of backscattered electron micrographs of 3000x and 300x magnification. Comparing porosity assessed from image analysis with porosity measured by index properties, it was seen that image analysis data at 300...

  3. Importance of the metrological network for calibration of neutron logging methods

    International Nuclear Information System (INIS)

    Rysavy, F.

    1995-01-01

    The calibration characteristics of neutron logging instrumentation are discussed. The principles of the rock, plastics, and water models are briefly outlined. Indian limestone of 9% porosity is the primary standard in the neutron logging metrology network, from which secondary standards employed during certification measurements are derived. It is recommended that rock blocks should be used as national standards, and each secondary institution should possess a set of polyethylene cylinders, one of which would serve as the main standard for the institution in question. (J.B.)

  4. Testing of a uranium downhole logging system to measure in-situ plutonium concentrations in sediments. [216-Z-1A crib

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, R.B.; Kay, M.A.; Bruns, L.E.; Stokes, J.A.; Steinman, D.K.; Adams, J.

    1980-11-01

    A prototype urainium borehole logging system, developed for uranium exploration, was modified for Pu assay and testing at the site. It uses the delayed fission neutron (DFN) method. It was tested in a retired Pu facility, the 216-Z-1A Crib. General agreement between laboratory determined Pu concentrations in sediment samples and neutron flux measurements was found for the relative distribution with depth.

  5. Permeability-Porosity Relationships of Subduction Zone Sediments

    Science.gov (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2008-12-01

    Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.

  6. Development of ultrasonic technique for measure of porosity of UO{sub 2} pellets; Desenvolvimento de tecnica ultra-sonica para medida de porosidade em pastilhas de UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Douglas Brandao

    2008-07-01

    The characterization of nuclear fuel is of great importance to guarantee the efficiency and even the safety in the power stations. At present, the techniques used implicate elevated costs with equipment, materials and installations of radiological protection. Besides, because of being destructive techniques, they impose that the checking of the characteristics of this material is done by sampling. In this work a not destructive technique was developed for measures of porosity in ceramic materials with efficiency and precision. The objective of this work is to this technique will be able to be used in laboratory practice for measures in UO{sub 2} pellets, so it would become viable the inspection of up to 100% of the nuclear fuel, guaranteeing bigger control of the characteristics of the used material, turning in increasing safety, efficiency and economy. The innovation of the technique is due to the fact of analysing the specter of frequency of the ultrasonic wrist, and not his time of course in the material, frequently used. In this work 40 ceramic pellets of alumina were used with values of porosity between 5,09% and 37,30%. A system of recognition of signs using artificial neural networks made possible to distinguish pellets with differences of porosity of 0,04%. It was observed that this technique can be used for several others aims, for example, in the determination of the void fraction in regimen of two-phase flow, what is very important to guarantee the efficiency and safety of nuclear reactors. (author)

  7. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification

  8. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    P. Sanchez

    2001-01-01

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M and O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M and O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M and O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M and O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification report uses

  9. Support vector regression to predict porosity and permeability: Effect of sample size

    Science.gov (United States)

    Al-Anazi, A. F.; Gates, I. D.

    2012-02-01

    Porosity and permeability are key petrophysical parameters obtained from laboratory core analysis. Cores, obtained from drilled wells, are often few in number for most oil and gas fields. Porosity and permeability correlations based on conventional techniques such as linear regression or neural networks trained with core and geophysical logs suffer poor generalization to wells with only geophysical logs. The generalization problem of correlation models often becomes pronounced when the training sample size is small. This is attributed to the underlying assumption that conventional techniques employing the empirical risk minimization (ERM) inductive principle converge asymptotically to the true risk values as the number of samples increases. In small sample size estimation problems, the available training samples must span the complexity of the parameter space so that the model is able both to match the available training samples reasonably well and to generalize to new data. This is achieved using the structural risk minimization (SRM) inductive principle by matching the capability of the model to the available training data. One method that uses SRM is support vector regression (SVR) network. In this research, the capability of SVR to predict porosity and permeability in a heterogeneous sandstone reservoir under the effect of small sample size is evaluated. Particularly, the impact of Vapnik's ɛ-insensitivity loss function and least-modulus loss function on generalization performance was empirically investigated. The results are compared to the multilayer perception (MLP) neural network, a widely used regression method, which operates under the ERM principle. The mean square error and correlation coefficients were used to measure the quality of predictions. The results demonstrate that SVR yields consistently better predictions of the porosity and permeability with small sample size than the MLP method. Also, the performance of SVR depends on both kernel function

  10. Interpretation of horizontal well production logs: influence of logging tool

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, E. [Colorado School of Mines, Boulder, CO (United States); Sarica, C. [Pennsylvania State Univ., College Park, PA (United States); Haci, M. [Drilling Measurements, Inc (United States)

    1998-12-31

    The influence of a production-logging tool on wellbore flow rate and pressure measurements was investigated, focusing on the disturbence caused by the production-logging tool and the coiled tubing on the original flow conditions in the wellbore. The investigation was carried out using an analytical model and single-phase liquid flow was assumed. Results showed that the production-logging tool influenced the measurements as shown by the deviation of the original flow-rate, pressure profiles and low-conductivity wellbores. High production rates increase the effect of the production-logging tool. Recovering or inferring the original flow conditions in the wellbore from the production-logging data is a very complex process which cannot be solved easily. For this reason, the conditions under which the information obtained by production-logging is meaningful is of considerable practical interest. 7 refs., 2 tabs., 15 figs.

  11. Fast neutron (14 MeV) attenuation analysis in saturated core samples and its application in well logging

    International Nuclear Information System (INIS)

    Amin Attarzadeh; Mohammad Kamal Ghassem Al Askari; Tagy Bayat

    2009-01-01

    To introduce the application of nuclear logging, it is appropriate to provide a motivation for the use of nuclear measurement techniques in well logging. Importance aspects of the geological sciences are for instance grain and porosity structure and porosity volume of the rocks, as well as the transport properties of a fluid in the porous media. Nuclear measurements are, as a rule non-intrusive. Namely, a measurement does not destroy the sample, and it does not interfere with the process to be measured. Also, non- intrusive measurements are often much faster than the radiation methods, and can also be applied in field measurements. A common type of nuclear measurement employs neutron irradiation. It is powerful technique for geophysical analysis. In this research we illustrate the detail of this technique and it's applications to well logging and oil industry. Experiments have been performed to investigate the possibilities of using neutron attenuation measurements to determine water and oil content of rock sample. A beam of 14 MeV neutrons produced by a 150 KV neutron generator was attenuated by different samples and subsequently detected with plastic scintillators NE102 (Fast counter). Each sample was saturated with water and oil. The difference in neutron attenuation between dry and wet samples was compared with the fluid content determined by mass balance of the sample. In this experiment we were able to determine 3% of humidity in standard sample model (SiO 2 ) and estimate porosity in geological samples when saturated with different fluids. (Author)

  12. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    Science.gov (United States)

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-10-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  13. Determination of Meteorite Porosity Using Liquid Nitrogen

    Science.gov (United States)

    Kohout, T.; Kletetschka, G.; Pesonen, L. J.; Wasilewski, P. J.

    2005-01-01

    We introduce a new harmless method for porosity measurement suitable for meteorite samples. The method is a modification of the traditional Archimedean method based on immersion of the samples in a liquid medium like water or organic liquids. In our case we used liquid nitrogen for its chemically inert characteristics.

  14. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  15. Mechanics of log calibration

    International Nuclear Information System (INIS)

    Waller, W.C.; Cram, M.E.; Hall, J.E.

    1975-01-01

    For any measurement to have meaning, it must be related to generally accepted standard units by a valid and specified system of comparison. To calibrate well-logging tools, sensing systems are designed which produce consistent and repeatable indications over the range for which the tool was intended. The basics of calibration theory, procedures, and calibration record presentations are reviewed. Calibrations for induction, electrical, radioactivity, and sonic logging tools will be discussed. The authors' intent is to provide an understanding of the sources of errors, of the way errors are minimized in the calibration process, and of the significance of changes in recorded calibration data

  16. Rapid estimation of aquifer salinity structure from oil and gas geophysical logs

    Science.gov (United States)

    Shimabukuro, D.; Stephens, M.; Ducart, A.; Skinner, S. M.

    2016-12-01

    We describe a workflow for creating aquifer salinity maps using Archie's equation for areas that have geophysical data from oil and gas wells. We apply this method in California, where geophysical logs are available in raster format from the Division of Oil, Gas, and Geothermal Resource (DOGGR) online archive. This method should be applicable to any region where geophysical logs are readily available. Much of the work is controlled by computer code, allowing salinity estimates for new areas to be rapidly generated. For a region of interest, the DOGGR online database is scraped for wells that were logged with multi-tool suites, such as the Platform Express or Triple Combination Logging Tools. Then, well construction metadata, such as measured depth, spud date, and well orientation, is attached. The resultant local database allows a weighted criteria selection of wells that are most likely to have the shallow resistivity, deep resistivity, and density porosity measurements necessary to calculate salinity over the longest depth interval. The algorithm can be adjusted for geophysical log availability for older well fields and density of sampling. Once priority wells are identified, a student researcher team uses Neuralog software to digitize the raster geophysical logs. Total dissolved solid (TDS) concentration is then calculated in clean, wet sand intervals using the resistivity-porosity method, a modified form of Archie's equation. These sand intervals are automatically selected using a combination of spontaneous potential and the difference in shallow resistivity and deep resistivity measurements. Gamma ray logs are not used because arkosic sands common in California make it difficult to distinguish sand and shale. Computer calculation allows easy adjustment of Archie's parameters. The result is a semi-continuous TDS profile for the wells of interest. These profiles are combined and contoured using standard 3-d visualization software to yield preliminary salinity

  17. A method of estimating log weights.

    Science.gov (United States)

    Charles N. Mann; Hilton H. Lysons

    1972-01-01

    This paper presents a practical method of estimating the weights of logs before they are yarded. Knowledge of log weights is required to achieve optimum loading of modern yarding equipment. Truckloads of logs are weighed and measured to obtain a local density index (pounds per cubic foot) for a species of logs. The density index is then used to estimate the weights of...

  18. Application of computer data processing of well logging in Azerbaijan

    International Nuclear Information System (INIS)

    Vorob'ev, Yu.A.; Shilov, G.Ya.; Samedova, A.S.

    1989-01-01

    Transition from the mannal quantitative interpretation of materials of well-logging study (WLS) to application of computer in production association (PA) Azneftegeologiya is described. WLS materials were processed manually in PA till 1986. Later on interpretation was conducted with the use of computer in order to determine clayiness, porosity, oil and gas saturation, fluid of strata. Examples of presentation of results of computer interpretation of WLS data (including gamma-logging and neutron-gamma-logging) for determining porosity and oil saturation of sandy mudrocks are given

  19. Study of the reservoirs of Jurassic and Cretaceous periods in the south-cast slope of Central Kara-Kum vault using combination of acoustic logging, neutron-gamma logging, gamma logging, and electrical logging

    International Nuclear Information System (INIS)

    Meredov, T.M.; Baranov, M.I.

    1978-01-01

    Considered is the possibility of application of the combination of neutron-gamma logging, gamma logging al partitioncoustic logging and electrical logging to lithologica of sections, discovery reservoir layers in carbonate and terrigeneous sections as well as quantitative estimation of the porosity coefficients values at prospecting areas in the south-east slope of Central Kara-Kum vault. Neutron-gamma logging mostly makes it possible to partition carbonate rocks into limestones, dolomites and their interstitial variaties and to indicate sand stone layers with different degree of carbonate content

  20. Zeolites with Continuously Tuneable Porosity**

    Science.gov (United States)

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  1. Benefits of obtaining log data in horizontal wells in the WCSB

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, D. [Reeves Wireline Technologies Ltd., Calgary, AB (Canada)

    2001-11-01

    A Compact Memory Logging (CML) system developed by Reeves Wireline Technologies was presented. It can be used to obtain log data from horizontal wells to get a better understanding of how to enhance production or completion techniques. The methods that are commonly used to obtain data from horizontal wells include measurement while drilling (MWD), logging while drilling (LWD), wet connect pipe conveyed wireline logging and CML. Each method has its unique benefits that range from information on lithology, rock parameters and fluid interfaces. Reeves has been using wireless pipe conveyed CML over the past two years. The log data includes array induction, dual spaced neutron and photo density porosity, Pe, gamma ray, compensated sonic and hose size caliper. Reeves CML is smaller, easily conveyed and has an unprecedented capability to bend and is considered to be well suited for both newly and previously drilled horizontal wells that require remedial assessment. The tool can be used to determine reservoir quality and boundaries, establish zone structures, or identify fluid interfaces for strategic planning of completions and stimulations. This paper presented examples of logs on some horizontal wells that indicate the value of obtaining log data. Reeves CML is considered to be economically and operationally ideal, particularly since data from the CML includes depth of investigation. 5 figs.

  2. Log-based identification of sweet spots for effective fracs in shale reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hashmy, K.; Barnett, C.; Jonkers, J. [Weatherford (United States); Abueita, S. [Anadarko Petroleum (United States)

    2011-07-01

    Shale reservoir exploitation requires horizontal hydro-fracturing, often in a multi-stage configuration. Fracture stages are usually evenly spaced along the horizontal well, regardless of reservoir characteristics, even though wireline logs or logging-while-drilling (LWD) methods could be used to determine sweet spots for more cost-effective fracturing locations. This paper aims to show how failure to take into consideration a reservoir's geological properties can lead to less effective exploitation, and then goes on to describe logging techniques, LWD and wireline logs combined, and their usefulness in effectively placing fracturing stages on a reservoir's sweet spots. By studying logs from different LWD and wireline log techniques, such as gamma ray, resistivity, X-ray fluorescence or shockwave sonic measurements for different existing wells, the study shows how sweet spots, where kerogen concentration is higher, with higher porosity, can be determined. These logging techniques, requiring low investments, offer a variety of methods for identifying sweet spots in shale reservoirs, and fracturing only these spots will avoid unnecessary expenditure on frac stages in zones with poor reservoir characteristics.

  3. Zeolites with continuously tuneable porosity

    OpenAIRE

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Cejka, Jiří; Morris, Russell E

    2014-01-01

    Czech Science Foundation. Grant Number: P106/12/G015 Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneabl...

  4. Measurement results of BHTV logging at the geothermal well. 1; Chinetsusei ni okeru BHTV kenso no sokutei kekka. 1

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan); Nakanishi, S.; Shimizu, I. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1997-05-27

    In association with excavation of the No. 135 steam producing well in the Onikubi geothermal power plant in Miyagi Prefecture, shapes of production zones and drilling-induced fracture (DIF) were acquired from the borehole televiewer (BHTV) data. The BHTV logging shoots sound waves onto well walls of wells filled with fluid and detects the reflection waves to investigate the state of the well walls. Vertical fracture with opening lengths from 2 to 3 m were found at depths of about 1232 m and 1312 m. Water run-off has occurred at a depth of about 1312 m during the excavation, to which these vertical fractures might have contributed possibly. In depths of about 1232 m and 1312 m, fractures inclining toward north-east direction and south-west direction are predominant. Some fractures in the depth of about 1333 m incline toward east-south-east direction and west-north-west direction. Fracture inclination azimuth in all of the present logging sections is predominantly in north-east direction and south-west direction. When the DIF is considered to show the maximum compression azimuth, the earth`s crust stress azimuth is generally in east-west direction, which crosses slightly obliquely with the running direction of the predominant fracture in this well. 1 ref., 7 figs.

  5. Acoustic properties in travertines and their relation to porosity and pore types

    NARCIS (Netherlands)

    Soete, J.; Kleipool, L.M.; Claes, H.; Claes, S.; Hamaekers, H.; Kele, S.; Özkul, M.; Foubert, A.; Reijmer, J.J.G.; Swennen, R.

    2015-01-01

    Sonic velocities of Pleistocene travertines were measured under variable confining pressures. Combined with petrographical characteristics and petrophysical data, i.e. porosity, permeability and density, it was determined that travertine porosity, pore types and cementation control

  6. Athabasca tar sand reservoir properties derived from cores and logs

    International Nuclear Information System (INIS)

    Woodhouse, R.

    1976-01-01

    Log interpretation parameters for the Athabasca Tar Sand Lease No. 24 have been determined by careful correlation with Dean and Stark core analysis data. Significant expansion of Athabasca cores occurs as overburden pressure is removed. In the more shaly sands the core analysis procedures remove adsorbed water from the clays leading to further overestimation of porosity and free water volume. Log interpretation parameters (R/sub w/ = 0.5 ohm . m and m = n = 1.5) were defined by correlation with the weight of tar as a fraction of the weight of rock solids (grain or dry weight fraction of tar). This quantity is independent of the water content of the cores, whereas porosity and the weight of tar as a fraction of the bulk weight of fluids plus solids (bulk weight fraction) are both dependent on water content. Charts are provided for the conversion of bulk weight fraction of fluids to porosity; grain weight fraction of fluids to porosity; log derived porosity and core grain weight tar to water saturation. Example results show that the core analysis grain weight fraction of tar is adequately matched by the log analyses. The log results provide a better representation of the reservoir fluid volumes than the core analysis data

  7. Pulsed radiation decay logging

    International Nuclear Information System (INIS)

    Mills, W.R. Jr.

    1983-01-01

    There are provided new and improved well logging processes and systems wherein the detection of secondary radiation is accomplished during a plurality of time windows in a manner to accurately characterize the decay rate of the secondary radiation. The system comprises a well logging tool having a primary pulsed radiation source which emits repetitive time-spaced bursts of primary radiation and detector means for detecting secondary radiation resulting from the primary radiation and producing output signals in response to the detected radiation. A plurality of measuring channels are provided, each of which produces a count rate function representative of signals received from the detector means during successive time windows occurring between the primary radiation bursts. The logging system further comprises means responsive to the measuring channels for producing a plurality of functions representative of the ratios of the radiation count rates measured during adjacent pairs of the time windows. Comparator means function to compare the ratio functions and select at least one of the ratio functions to generate a signal representative of the decay rate of the secondary radiation

  8. Mechanistic Effects of Porosity on Structural Composite Materials

    Science.gov (United States)

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  9. Nuclear log interpretation by first principle

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1988-07-01

    A weakness connected to the present interpretation of nuclear borehole logs is that the interdependence of the various logs and physical effects of importance for the tools are not always taken into account in a correct way. Therefore a new approach to the interpretation of nuclear borehole logs is considered. It is based on the logs obtained with the natural gamma, the neutron porosity, the gamma density, and the pulsed neutron tools. For each of these tools a model, taking into account the important physical effects, is established. These models are incorporated into a computer programme which from the tool signals calculates, by use of iteration, a consistent set of the corresponding formation properties. In the paper the models developed for the four tools and the interpretation programme are briefly described. An example of the use of the interpretation programme is given and compared with a conventional interpretation. (author)

  10. Neutron characteristic and spectroscopy logging methods and apparatus

    International Nuclear Information System (INIS)

    Antkiw, S.

    1977-01-01

    Earth formations surrounding a well bore are irradiated with pulses of fast neutrons, and gamma rays resulting from the ensuring thermal neutron capture interactions with nuclei of the formations are detected, from which measurements of the thermal neutron decay times characterizing the respective formations are derived. The gamma ray energy spectra of the respective formations are analyzed. Gating of the gamma ray detection periods is automatically controlled, both for the decay time and the spectroscopy functions, in accrdance with the measured values of the decay times. The duration and repetition rate of the neutron pulses are also controlled as a function of the measured decay times to provide an overall optimized decay time-spectroscopy operating cycle. spectroscopy outputs representative of formation lithology, salinity, porosity and shaliness are developed to supplement and improve decay time log interpretation

  11. Acoustics of a Mixed Porosity Felt Airfoil

    Science.gov (United States)

    2016-06-06

    NUWC-NPT Technical Report 12,212 6 June 2016 Acoustics of a Mixed Porosity Felt Airfoil Aren M. Hellum Undersea Warfare Weapons...Felt Airfoil 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Aren M. Hellum 5.d PROJECT NUMBER 5e...existing literature. Geyer et al. [5] measured a sound reduction of 5 to 15 dB for airfoils made entirely of porous material. A 1973 patent

  12. High resolution gamma spectroscopy well logging system

    International Nuclear Information System (INIS)

    Giles, J.R.; Dooley, K.J.

    1997-01-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. The absolute counting efficiencies of the GSLS detectors were determined using cylindrical reference sources. More complex borehole geometries were modeled using commercially available shielding software and correction factors were developed based on relative gamma-ray fluence rates. Examination of varying porosity and moisture content showed that as porosity increases, and as the formation saturation ratio decreases, relative gamma-ray fluence rates increase linearly for all energies. Correction factors for iron and water cylindrical shields were found to agree well with correction factors determined during previous studies allowing for the development of correction factors for type-304 stainless steel and low-carbon steel casings. Regression analyses of correction factor data produced equations for determining correction factors applicable to spectral gamma-ray well logs acquired under non-standard borehole conditions

  13. Geothermal well log interpretation midterm report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1979-02-01

    Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

  14. Well log characterization of natural gas-hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  15. A probit- log- skew-normal mixture model for repeated measures data with excess zeros, with application to a cohort study of paediatric respiratory symptoms

    Directory of Open Access Journals (Sweden)

    Johnston Neil W

    2010-06-01

    Full Text Available Abstract Background A zero-inflated continuous outcome is characterized by occurrence of "excess" zeros that more than a single distribution can explain, with the positive observations forming a skewed distribution. Mixture models are employed for regression analysis of zero-inflated data. Moreover, for repeated measures zero-inflated data the clustering structure should also be modeled for an adequate analysis. Methods Diary of Asthma and Viral Infections Study (DAVIS was a one year (2004 cohort study conducted at McMaster University to monitor viral infection and respiratory symptoms in children aged 5-11 years with and without asthma. Respiratory symptoms were recorded daily using either an Internet or paper-based diary. Changes in symptoms were assessed by study staff and led to collection of nasal fluid specimens for virological testing. The study objectives included investigating the response of respiratory symptoms to respiratory viral infection in children with and without asthma over a one year period. Due to sparse data daily respiratory symptom scores were aggregated into weekly average scores. More than 70% of the weekly average scores were zero, with the positive scores forming a skewed distribution. We propose a random effects probit/log-skew-normal mixture model to analyze the DAVIS data. The model parameters were estimated using a maximum marginal likelihood approach. A simulation study was conducted to assess the performance of the proposed mixture model if the underlying distribution of the positive response is different from log-skew normal. Results Viral infection status was highly significant in both probit and log-skew normal model components respectively. The probability of being symptom free was much lower for the week a child was viral positive relative to the week she/he was viral negative. The severity of the symptoms was also greater for the week a child was viral positive. The probability of being symptom free was

  16. Geophysical logging studies in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory: Wells 44, 45, and 46

    International Nuclear Information System (INIS)

    Morin, R.H.; Paillet, F.L.; Taylor, T.A.; Barrash, W.

    1993-01-01

    A geophysical logging program was undertaken to vertically profile changes in the hydrology and hydrochemistry of the Snake River Plain aquifer underlies the Idaho National Engineering Laboratory (INEL). Field investigations were concentrated within an area west of the Idaho Chemical Processing Plant (ICPP) in three wells that penetrated the upper 190 feet of the aquifer. The logs obtained in these wells consisted of temperature, caliper, nuclear (neutron porosity and gamma-gama density), natural gamma, borehole televiewer, gamma spectral, and thermal flowmeter (with and without pumping). The nuclear, caliper, and televiewer logs are used to delineate individual basalt flows or flow units and to recognize breaks between flows or flow units at interflow contact zones and sedimentary interbeds. The temperature logs and flowmeter measurements obtained under ambient hydraulic head conditions identified upward fluid-circulation patterns in the three wells. Gamma-spectral analyses performed at several depths in each well showed that the predominant source of gamma radiation in the formation at this site originates mainly from potassium ( 40 K). However, 137 Cesium was detected at 32 feet below land surface in well 45. An empirical investigation of the effect of source-receiver spacing on the response of the neutron-porosity logging tool was attempted in an effort to understand the conditions under which this tool might be applied to large-diameter boreholes in-unsaturated formations

  17. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1992-01-01

    Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sample tested. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  18. Influence of porosity on mechanical properties of tetragonal stabilized zirconia

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Soprani, Stefano

    2018-01-01

    3YSZ specimens with variable open porosity (1–57%) were fabricated, and the stiffness, strength and fracture properties (fracture toughness and R-curve) were measured to investigate their potential use as support structures for solid oxide fuel or electrolysis cells. The ball-on-ring test was used...... to characterize Young's modulus and Weibull strength. The variation of fracture toughness with porosity was investigated and modelled using the results from fracture mechanical testing. A distinct R-curve behaviour was observed in dense 3YSZ specimens, in samples with a porosity around 15% and in some...... supports for SOFC/SOECs from a mechanical point of view....

  19. Application of Well Log Analysis to Assess the Petrophysical Parameters of the Early Eocene Sui Main Limestone (SML in Kharnhak-1 Well, Middle Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Asad Zia

    2016-04-01

    Full Text Available The petrophysical analysis of the early Eocene Sui Main Limestone (SML has been conducted in Kharnhak-1 well for the prospect of the hydrocarbon exploration of the Khairpur-Jacobabad High, Middle Indus Basin, Pakistan. The petrophysical analysis of SML is carried out on the basis of well logs including gamma ray, spontaneous potential, resistivity, neutron, and density logs. These analyses lead to interpreting the vertical distribution of porosity and permeability in order to measure the reservoir potential of the SML. The Archie equation was used to assess the petrophysical characteristics. The SML has good porosity and poor permeability with positive correlation coefficient between the two parameters. The average volume of shale is 18%. The log signature of SML shows dominance of carbonates (limestone. The reservoir quality of the SML in Kharnhak-1 well is such that it is 77% water saturated. The porosity (x varies inversely with formation resistivity factor (F and compressional wave velocity (Vp. However, F and Vp are directly related with each other. Thus, the electric and elastic properties of the carbonate rocks can be influenced by postdepositional alterations, which include porosity enhancement and reduction processes respectively.

  20. Selective logging in the Brazilian Amazon.

    Science.gov (United States)

    G. P. Asner; D. E. Knapp; E. N. Broadbent; P. J. C. Oliveira; M Keller; J. N. Silva

    2005-01-01

    Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square...

  1. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  2. Porosity model for simultaneous radionuclide transfer in compact clay

    International Nuclear Information System (INIS)

    Grambow, B.; Ribet, S.; Landesman, C.; Altman, S.

    2010-01-01

    Document available in extended abstract form only. Both, a mono and a dual porosity model have been developed to describe diffusion in bentonite as function of compaction, which give similar results for the diffusion coefficients. There are little advantages but more computation time for the dual porosity model compared to the mono-porosity model. A significant change in paradigm has been proposed to describe diffusion accessible porosity in bentonite: Only a single micro-porosity value is considered for anions, cations and neutral species. Hydration water in the interlayers is considered as part of the solid phase and is not considered as a constitutive part of overall porosity. Since hydration water takes part of the solid phase, it is now possible to explicitly account for retention of HTO by formulating exchange between HTO and water in the interlayers. In the adaptation of the model to experimental data, a single fit constant, the geometric factor G = 7 was used, common to all ions and neutral species and for densities between 0.2 and 1.8 kg.dm -3 . The only input parameters to describe the effect of dry density on diffusion coefficients are the micro porosity (total porosity minus interlayer porosity) and the hydration numbers of exchanging cations in the interlayers, both of which can be measured by independent means (DRX, water sorption isotherms). The modelling of simultaneous mass transfer of HTO, Cs, Br and Ni has been undertaken. From the results apparent diffusion coefficients were obtained. Effective diffusion coefficients can of course only be compared to literature data if the the same porosity hypothesis is used for Da-De conversion as used in literature (total porosity for anions and HTO, micro-porosity for anions). Then, the calculated apparent diffusion coefficients for HTO match closely the measured values in the mentioned density range. Considering large experimental data uncertainty the agreement between anion diffusion data and calculations

  3. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    Science.gov (United States)

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Integrated design of castings: effect of porosity on mechanical performance

    International Nuclear Information System (INIS)

    Hardin, R A; Beckermann, C

    2012-01-01

    Porosity can significantly reduce the strength and durability of castings in service. An integrated design approach has been developed where casting simulation is combined with mechanical performance simulations. Predictions of the porosity distribution from the casting process simulation are transferred to and used in stress and fatigue life simulations. Thus, the effect of casting quality on service performance can be evaluated. Results of a study are presented where the measured porosity distribution in cast steel specimens is transferred to an elasto-plastic finite-element stress analysis model. Methods are developed to locally reduce the mechanical properties according to the porosity present, without having to resolve individual pores. Plastic deformation is modeled using porous metal plasticity theory. The predictions are compared to tensile measurements performed on the specimens. The complex deformations and the reductions in the ductility of the specimens due to porosity are predicted well. The predicted stresses are transferred to a fatigue analysis code that takes the porosity distribution into account as well. The measured and predicted fatigue lives are also in good agreement. Finally, the results of a case study are presented that illustrate the utility of the present integrated approach in optimizing the design of a steel casting.

  5. A new chlorine logging tool: Application in the oilfield development with high salinity formation water

    International Nuclear Information System (INIS)

    Qing-Yuan, He; Xin-Miao, Hu; Geng-Fei, Wu; Wen-DA, J.

    1997-01-01

    Radiating formations with isotopes neutron source (Am-Be), and using chlorine element contained in the formation water as a tracer indicator, the chlorine spectrum well logging tool has been regarded as the important and useful tool in the determination of water flooding intensity of formation intervals, especially in the oilfield development stages with high salinity formation water. However, the accuracy of determination of the oil/water-bearings needs to be improved. A new chlorine spectrum logging tool with two detectors has been developed. The short (near) detector uses a He-3 counter tube to measure formation epithermal neutron intensity, the long (far) detector uses a BGO crystal detector to replace traditional Nal detector for measuring the captured X gamma ray spectrum produced by the thermal neutron capture process in the formation. Although the energy resolution of BGO detector to gamma rays is less effective than that of Nal detector, the efficiency of BGO detector to high energy gamma rays is much better. This advantage helps to detect captured chlorine gamma rays, which increases the ability of chlorine element detection. The effect of statistical errors is also reduced. The spectrum autostabilization function in the downhole tool improves the reliability of the whole system. The new chlorine spectrum logging tool can give three log curves simultaneously, these curves are formation porosity, chlorine content, and the ratio of chlorine content and thermal neutron intensity. When formation porosity is larger than 10 p.u, formation water salinity is greater than 40,000 ppm, the resolution to the oil/water-bearings is increased to about 10% compared with the old version tool. Field tests show that the accuracy of water flooding intensity evaluation has been upgraded considerably with the use of new chlorine spectrum logging tool, which contributes greatly to the oilfield development with high salinity formation water

  6. A new chlorine logging tool: Application in the oilfield development with high salinity formation water

    Energy Technology Data Exchange (ETDEWEB)

    Qing-Yuan, He; Xin-Miao, Hu; Geng-Fei, Wu [China National Petroleum Corp. (China). Jianghan Well Logging Institute; Wen-DA, J. [China National Petroleum Corp. (China). Development Bureau

    1997-10-01

    Radiating formations with isotopes neutron source (Am-Be), and using chlorine element contained in the formation water as a tracer indicator, the chlorine spectrum well logging tool has been regarded as the important and useful tool in the determination of water flooding intensity of formation intervals, especially in the oilfield development stages with high salinity formation water. However, the accuracy of determination of the oil/water-bearings needs to be improved. A new chlorine spectrum logging tool with two detectors has been developed. The short (near) detector uses a He-3 counter tube to measure formation epithermal neutron intensity, the long (far) detector uses a BGO crystal detector to replace traditional Nal detector for measuring the captured X gamma ray spectrum produced by the thermal neutron capture process in the formation. Although the energy resolution of BGO detector to gamma rays is less effective than that of Nal detector, the efficiency of BGO detector to high energy gamma rays is much better. This advantage helps to detect captured chlorine gamma rays, which increases the ability of chlorine element detection. The effect of statistical errors is also reduced. The spectrum autostabilization function in the downhole tool improves the reliability of the whole system. The new chlorine spectrum logging tool can give three log curves simultaneously, these curves are formation porosity, chlorine content, and the ratio of chlorine content and thermal neutron intensity. When formation porosity is larger than 10 p.u, formation water salinity is greater than 40,000 ppm, the resolution to the oil/water-bearings is increased to about 10% compared with the old version tool. Field tests show that the accuracy of water flooding intensity evaluation has been upgraded considerably with the use of new chlorine spectrum logging tool, which contributes greatly to the oilfield development with high salinity formation water 4 refs., 2 tabs., 7 figs.

  7. Properties of Bulk Sintered Silver As a Function of Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity

  8. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  9. http Log Analysis

    DEFF Research Database (Denmark)

    Bøving, Kristian Billeskov; Simonsen, Jesper

    2004-01-01

    This article documents how log analysis can inform qualitative studies concerning the usage of web-based information systems (WIS). No prior research has used http log files as data to study collaboration between multiple users in organisational settings. We investigate how to perform http log...... analysis; what http log analysis says about the nature of collaborative WIS use; and how results from http log analysis may support other data collection methods such as surveys, interviews, and observation. The analysis of log files initially lends itself to research designs, which serve to test...... hypotheses using a quantitative methodology. We show that http log analysis can also be valuable in qualitative research such as case studies. The results from http log analysis can be triangulated with other data sources and for example serve as a means of supporting the interpretation of interview data...

  10. Preliminary analysis of geophysical logs from drill hole UE-25p No. 1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Muller, D.C.; Kibler, J.E.

    1984-01-01

    Geophysical logs from drill hole UE-25p No. 1 correlate well with logs through the same geologic units from other drill holes at Yucca Mountain, Nevada. The in-situ physical properties of the rocks as determined from well logs are consistent with laboratory-measured physical properties of core from other drill holes. The density, neutron and caliper logs are very spiky through most of the Topopah Spring Member. This spikiness occurs on the same logs in cored holes where the Topopah Spring Member is highly fractured and lithophysal. The uranium channel of the spectral gamma-ray log through the Topopah Spring Member correlates with uranium logs from cored holes where most of the fractures have not been healed or filled with materials that concentrate uranium. Therefore, fracture porosity and permeability of the Topopah Spring Member are expected to be high and consistent with fracture analysis from other drill holes on Yucca Mountain, and hydrologic tests from well J-13. The Paleozoic dolomites which underlie the Tertiary tuffs are intensely brecciated, and the uranium count rate is much higher than normal for dolomites because uranium has been concentrated in the recementing material. 19 references, 1 figure, 2 tables

  11. Uranium City radiation reduction program: further efforts at remedial measures for houses with block walls, concrete porosity test results, and intercomparison of Kuznetz method and Tsivoglau method

    International Nuclear Information System (INIS)

    Haubrich, E.; Leung, M.K.; Mackie, R.

    1980-01-01

    An attempt was made to reduce the levels of radon in a house in Uranium City by mechanically venting the plenums in the concrete block basement walls, with little success. A table compares the results obtained by measuring the radon WL using the Tsivoglau and the Kuznetz methods

  12. Log N-log S in inconclusive

    Science.gov (United States)

    Klebesadel, R. W.; Fenimore, E. E.; Laros, J.

    1983-01-01

    The log N-log S data acquired by the Pioneer Venus Orbiter Gamma Burst Detector (PVO) are presented and compared to similar data from the Soviet KONUS experiment. Although the PVO data are consistent with and suggestive of a -3/2 power law distribution, the results are not adequate at this state of observations to differentiate between a -3/2 and a -1 power law slope.

  13. The Meaning of Logs

    NARCIS (Netherlands)

    Etalle, Sandro; Massacci, Fabio; Yautsiukhin, Artsiom

    2007-01-01

    While logging events is becoming increasingly common in computing, in communication and in collaborative work, log systems need to satisfy increasingly challenging (if not conflicting) requirements.Despite the growing pervasiveness of log systems, to date there is no high-level framework which

  14. The Meaning of Logs

    NARCIS (Netherlands)

    Etalle, Sandro; Massacci, Fabio; Yautsiukhin, Artsiom; Lambrinoudakis, Costas; Pernul, Günther; Tjoa, A Min

    While logging events is becoming increasingly common in computing, in communication and in collaborative environments, log systems need to satisfy increasingly challenging (if not conflicting) requirements. In this paper we propose a high-level framework for modeling log systems, and reasoning about

  15. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    Science.gov (United States)

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003

  16. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  17. Simulation of wireline sonic logging measurements acquired with Borehole-Eccentered tools using a high-order adaptive finite-element method

    KAUST Repository

    Pardo, David

    2011-07-01

    The paper introduces a high-order, adaptive finite-element method for simulation of sonic measurements acquired with borehole-eccentered logging instruments. The resulting frequency-domain based algorithm combines a Fourier series expansion in one spatial dimension with a two-dimensional high-order adaptive finite-element method (FEM), and incorporates a perfectly matched layer (PML) for truncation of the computational domain. The simulation method was verified for various model problems, including a comparison to a semi-analytical solution developed specifically for this purpose. Numerical results indicate that for a wireline sonic tool operating in a fast formation, the main propagation modes are insensitive to the distance from the center of the tool to the center of the borehole (eccentricity distance). However, new flexural modes arise with an increase in eccentricity distance. In soft formations, we identify a new dipole tool mode which arises as a result of tool eccentricity. © 2011 Elsevier Inc.

  18. Simulation of wireline sonic logging measurements acquired with Borehole-Eccentered tools using a high-order adaptive finite-element method

    KAUST Repository

    Pardo, David; Matuszyk, Paweł Jerzy; Muga, Ignacio; Torres-Verdí n, Carlos; Mora Cordova, Angel; Calo, Victor M.

    2011-01-01

    The paper introduces a high-order, adaptive finite-element method for simulation of sonic measurements acquired with borehole-eccentered logging instruments. The resulting frequency-domain based algorithm combines a Fourier series expansion in one spatial dimension with a two-dimensional high-order adaptive finite-element method (FEM), and incorporates a perfectly matched layer (PML) for truncation of the computational domain. The simulation method was verified for various model problems, including a comparison to a semi-analytical solution developed specifically for this purpose. Numerical results indicate that for a wireline sonic tool operating in a fast formation, the main propagation modes are insensitive to the distance from the center of the tool to the center of the borehole (eccentricity distance). However, new flexural modes arise with an increase in eccentricity distance. In soft formations, we identify a new dipole tool mode which arises as a result of tool eccentricity. © 2011 Elsevier Inc.

  19. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schimschal, U.; Nelson, P.H.

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. The authors show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available

  20. Brazilian urban porosity : Treat or threat?

    NARCIS (Netherlands)

    Moreno Pessoa, I.; Tasan-Kok, M.T.; Korthals Altes, W.K.

    2016-01-01

    Urban areas have spatial discontinuities, such as disconnected neighbourhoods, brownfield areas and leftover places. They can be captured by the metaphor of urban porosity. This paper aims to highlight the potential social consequences of urban porosity by creating a ‘porosity index’. The authors

  1. Criteria for identification of carbonate reservoirs according to well logging data (carboniferous deposits of Astrakhan' vault taken as an example)

    International Nuclear Information System (INIS)

    Makarova, A.N.; Mitalev, I.A.

    1979-01-01

    Described are the criteria for identification of carbonate reservoirs according to well logging data (carboniferous deposits of Astrakhan' vault taken as an example). According to gamma logging and cavitymetry data clay areas (decreased readings of neutron-gamma logging opposite dense rocks) are distinguished in a well log. ''Reservoir-nonreserVoir'' boundary is relatively drawn on the basis of the relation between neutron-gamma logaing indications and average general porosity of carbonate rocks determined by accoustic and neutron gamma logging

  2. LogScope

    Science.gov (United States)

    Havelund, Klaus; Smith, Margaret H.; Barringer, Howard; Groce, Alex

    2012-01-01

    LogScope is a software package for analyzing log files. The intended use is for offline post-processing of such logs, after the execution of the system under test. LogScope can, however, in principle, also be used to monitor systems online during their execution. Logs are checked against requirements formulated as monitors expressed in a rule-based specification language. This language has similarities to a state machine language, but is more expressive, for example, in its handling of data parameters. The specification language is user friendly, simple, and yet expressive enough for many practical scenarios. The LogScope software was initially developed to specifically assist in testing JPL s Mars Science Laboratory (MSL) flight software, but it is very generic in nature and can be applied to any application that produces some form of logging information (which almost any software does).

  3. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    International Nuclear Information System (INIS)

    Haase, C.S.; King, H.L.

    1986-01-01

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs

  4. Elastic wave scattering from multiple voids (porosity)

    International Nuclear Information System (INIS)

    Thompson, D.O.; Rose, J.H.; Thompson, R.B.; Wormley, S.J.

    1983-01-01

    This paper describes the development of an ultrasonic backscatter measurement technique which provides a convenient way to determine certain characteristics of a distribution of voids (porosity) in materials. A typical ultrasonic sample prepared by placing the ''frit'' in a crucible in an RF induction heater is shown. The results of the measurements were Fourier transformed into an amplitude-frequency description, and were then deconvolved with the transducer response function. Several properties needed to characterize a void distribution are obtained from the experimental results, including average void size, the spatial extent of the voids region, the average void separation, and the volume fraction of material contained in the void distribution. A detailed comparison of values obtained from the ultrasonic measurements with visually determined results is also given

  5. Optimizing occupational exposure measurement strategies when estimating the log-scale arithmetic mean value--an example from the reinforced plastics industry.

    Science.gov (United States)

    Lampa, Erik G; Nilsson, Leif; Liljelind, Ingrid E; Bergdahl, Ingvar A

    2006-06-01

    When assessing occupational exposures, repeated measurements are in most cases required. Repeated measurements are more resource intensive than a single measurement, so careful planning of the measurement strategy is necessary to assure that resources are spent wisely. The optimal strategy depends on the objectives of the measurements. Here, two different models of random effects analysis of variance (ANOVA) are proposed for the optimization of measurement strategies by the minimization of the variance of the estimated log-transformed arithmetic mean value of a worker group, i.e. the strategies are optimized for precise estimation of that value. The first model is a one-way random effects ANOVA model. For that model it is shown that the best precision in the estimated mean value is always obtained by including as many workers as possible in the sample while restricting the number of replicates to two or at most three regardless of the size of the variance components. The second model introduces the 'shared temporal variation' which accounts for those random temporal fluctuations of the exposure that the workers have in common. It is shown for that model that the optimal sample allocation depends on the relative sizes of the between-worker component and the shared temporal component, so that if the between-worker component is larger than the shared temporal component more workers should be included in the sample and vice versa. The results are illustrated graphically with an example from the reinforced plastics industry. If there exists a shared temporal variation at a workplace, that variability needs to be accounted for in the sampling design and the more complex model is recommended.

  6. Hemodynamic transition driven by stent porosity in sidewall aneurysms.

    Science.gov (United States)

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2015-05-01

    The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Cold spray NDE for porosity and other process anomalies

    Science.gov (United States)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar

  8. Pulsed neutron generator for logging

    International Nuclear Information System (INIS)

    Thibideau, F.D.

    1977-01-01

    A pulsed neutron generator for uranium logging is described. This generator is one component of a prototype uranium logging probe which is being developed by SLA to detect, and assay, uranium by borehole logging. The logging method is based on the measurement of epithermal neutrons resulting from the prompt fissioning of uranium from a pulsed source of 17.6 MeV neutrons. An objective of the prototype probe was that its diameter not exceed 2.75 inches, which would allow its use in conventional rotary drill holes of 4.75-inch diameter. This restriction limited the generator to a maximum 2.375-inch diameter. The performance requirements for the neutron generator specified that it operate with a nominal output of 5 x 10 6 neutrons/pulse at up to 100 pulses/second for a one-hour period. The development of a neutron generator meeting the preliminary design goals was completed and two prototype models were delivered to SLA. These two generators have been used by SLA to log a number of boreholes in field evaluation of the probe. The results of the field evaluations have led to the recommendation of several changes to improve the probe's operation. Some of these changes will require additional development effort on the neutron generator. It is expected that this work will be performed during 1977. The design and operation of the first prototype neutron generators is described

  9. From obc seismic to porosity volume: A pre-stack analysis of a turbidite reservoir, deepwater Campos Basin, Brazil

    Science.gov (United States)

    Martins, Luiz M. R.

    The Campos Basin is the best known and most productive of the Brazilian coastal basins. Turbidites are, by far, the main oil-bearing reservoirs. Using a four component (4-C) ocean-bottom-cable (OBC) seismic survey I set out to improve the reservoir characterization in a deep-water turbidite field in the Campos Basin. In order to achieve my goal, pre-stack angle gathers were derived and PP and PS inversion were performed. The inversion was used as an input to predict the petrophysical properties of the reservoir. Converting seismic reflection amplitudes into impedance profiles not only maximizes vertical resolution but also minimizes tuning effects. Mapping the porosity is extremely important in the development of a hydrocarbon reservoirs. Combining seismic attributes derived from the P-P data and porosity logs I use linear multi-regression and neural network geostatistical tools to predict porosity between the seismic attributes and porosity logs at the well locations. After predicting porosity in well locations, those relationships were applied to the seismic attributes to generate a 3-D porosity volume. The predicted porosity volume highlighted the best reservoir facies in the reservoir. The integration of elastic impedance, shear impedance and porosity improved the reservoir characterization.

  10. Effect of SCM on porosity

    DEFF Research Database (Denmark)

    Canut, Mariana

    Pores are an inherent part of cement-based materials. The pores range from nm to cm varying in shape and distribution. The amount, size and distribution of pores affect the engineering properties. As a first approximation, the total porosity affects the mechanical behavior, whereas the size...... blast furnaces, fly ash from coal fired power stations, and silica fume from ferrosilicon production. Studies suggest that the improvement of the strength and durability using SCMs are governed by refinement of the pores in the cement paste. Both the chemical and physical properties of the SCMs...... and connectivity of pores affect durability. Supplementary cementitious materials (SCMs) are being increasingly used as a substitute for Portland cement in the interests of sustainability and to improve the engineering properties of concrete as strength and durability. SCMs are by-products such as slag from iron...

  11. Power to the logs!

    CERN Multimedia

    CERN. Geneva; MACMAHON, Joseph

    2015-01-01

    Are you tired of using grep, vi and emacs to read your logs? Do you feel like you’re missing the big picture? Does the word "statistics" put a smile on your face? Then it’s time to give power to the logs!

  12. Logging utilization in Idaho: Current and past trends

    Science.gov (United States)

    Eric A. Simmons; Todd A. Morgan; Erik C. Berg; Stanley J. Zarnoch; Steven W. Hayes; Mike T. Thompson

    2014-01-01

    A study of commercial timber-harvesting activities in Idaho was conducted during 2008 and 2011 to characterize current tree utilization, logging operations, and changes from previous Idaho logging utilization studies. A two-stage simple random sampling design was used to select sites and felled trees for measurement within active logging sites. Thirty-three logging...

  13. Subsurface Rock Physical Properties by Downhole Loggings - Case Studies of Continental Deep Drilling in Kanto Distinct, Japan

    Science.gov (United States)

    Omura, K.

    2014-12-01

    In recent years, many examples of physical logging have been carried out in deep boreholes. The loggings are direct in-situ measurements of rock physical properties under the ground. They provide significant basic data for the geological, geophysical and geotechnical investigations, e.g., tectonic history, seismic wave propagation, and ground motion prediction. Since about 1980's, Natl. Res. Inst. for Earth Sci. and Disast. Prev. (NIED) dug deep boreholes (from 200m to 3000m depth) in sedimentary basin of Kanto distinct, Japan, for purposes of installing seismographs and hydrological instruments, and in-situ stress and pore pressure measurements. At that time, downhole physical loggings were conducted in the boreholes: spontaneous potential, electrical resistance, elastic wave velocity, formation density, neutron porosity, total gamma ray, caliper, temperature loggings. In many cases, digital data values were provided every 2m or 1m or 0.1m. In other cases, we read printed graphs of logging plots and got digital data values. Data from about 30 boreholes are compiled. Especially, particular change of logging data at the depth of an interface between a shallow part (soft sedimentary rock) and a base rock (equivalent to hard pre-Neogene rock) is examined. In this presentation, the correlations among physical properties of rock (especially, formation density, elastic wave velocity and electrical resistance) are introduced and the relation to the lithology is discussed. Formation density, elastic wave velocity and electric resistance data indicate the data are divide in two groups that are higher or lower than 2.5g/cm3: the one correspond to a shallow part and the other correspond to a base rock part. In each group, the elastic wave velocity and electric resistance increase with increase of formation density. However the rates of increases in the shallow part are smaller than in the base rock part. The shallow part has lower degree of solidification and higher porosity

  14. On the field determination of effective porosity

    International Nuclear Information System (INIS)

    Javandel, I.

    1989-03-01

    Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs

  15. Calibration, checking and physical corrections for a new dual-spaced neutron porosity tool

    International Nuclear Information System (INIS)

    Smith, M.P.

    1986-01-01

    A new dual-spaced neutron tool has been developed that features high count rates and improved statistical precision and log repeatability. Environmental corrections including borehole diameter, standoff, and lithology are at acceptable levels for DSN-II. The effects of varying source-to-detector spacings and shielding are summarized. Porosity measurement resolution and statistical precision are discussed and it is indicated how tradeoffs between higher count rates and increased environmental corrections must be considered. The absolute calibration of a standard tool is based on its response to limestone test pits, field data, and theoretical calculations. Test data for actual manufactured tools are presented. Shop calibration and wellsite check procedures are discussed. The advantages of multiposition check operations are explained, including reduced sensitivity to check block positioning and external environment. An analysis is presented of errors from tool manufacturing, calibration, and check procedures. A generalized theory of neutron scattering and absorption has been developed to correct dual-spaced neutron logs for unusual minerals and fluids

  16. Digital mineral logging system

    International Nuclear Information System (INIS)

    West, J.B.

    1980-01-01

    A digital mineral logging system acquires data from a mineral logging tool passing through a borehole and transmits the data uphole to an electronic digital signal processor. A predetermined combination of sensors, including a deviometer, is located in a logging tool for the acquisition of the desired data as the logging tool is raised from the borehole. Sensor data in analog format is converted in the logging tool to a digital format and periodically batch transmitted to the surface at a predetermined sampling rate. An identification code is provided for each mineral logging tool, and the code is transmitted to the surface along with the sensor data. The self-identifying tool code is transmitted to the digital signal processor to identify the code against a stored list of the range of numbers assigned to that type of tool. The data is transmitted up the d-c power lines of the tool by a frequency shift key transmission technique. At the surface, a frequency shift key demodulation unit transmits the decoupled data to an asynchronous receiver interfaced to the electronic digital signal processor. During a recording phase, the signals from the logging tool are read by the electronic digital signal processor and stored for later processing. During a calculating phase, the stored data is processed by the digital signal processor and the results are outputted to a printer or plotter, or both

  17. Neutron capture in borehole logging

    International Nuclear Information System (INIS)

    Randall, R.R.

    1981-01-01

    The use is described of a pulsed source of fast neutrons and a radiation detector to measure the thermal neutron population decay rate in a well logging instrument. The macroscopic neutron absorption cross-section is calculated by taking the natural logarithm of the ratio of the detected radiation counts occurring within two measurement intervals of fixed duration and starting at a fixed time after a neutron burst. (U.K.)

  18. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1993-01-01

    The general applicability of laboratory data for engineering purposes is a prime concern for the design and licensing of a potential repository of high level nuclear waste at Yucca Mountain. In order for the results of experiments to be applicable to the repository scale, the data must be scaled to in situ size and conditions. Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sampled test. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  19. Technical difficulties of logging while drilling in carbonate reservoirs and the countermeasures: A case study from the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shudong Zhang

    2015-12-01

    Full Text Available In the Sichuan Basin, carbonate reservoirs are characterized by deep burial depth and strong heterogeneity, so it is difficult to conduct structure steering, pore space reservoir tracking and trajectory control in the process of geosteering logging while drilling. In this paper, a series of corresponding techniques for structure, reservoir and formation tracking were proposed after analysis was conducted on multiple series of carbonate strata in terms of their geologic and logging response characteristics. And investigation was performed on the adaptabilities of the following logging technologies to geosteering while drilling, including gamma ray imaging while drilling, resistivity imaging while drilling, density imaging while drilling, gamma ray logging while drilling, resistivity logging while drilling, neutron logging while drilling and density logging while drilling. After while drilling information was thoroughly analyzed, the logging suites for four common types of complicated reservoirs (thin layered reservoirs, thick massive reservoirs, denuded karst reservoirs and shale gas reservoirs were optimized, and five logging combinations suitable for different formations and reservoirs were proposed, including gamma ray logging + porosity + resistivity imaging, gamma ray logging + resistivity imaging, gamma ray logging + porosity + resistivity logging, gamma ray imaging + resistivity logging, and gamma ray logging. Field application indicates that it is of great reference and application value to use this method for the first time to summarize logging while drilling combinations for different types of carbonate reservoirs.

  20. The application of radiation logs to groundwater hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Scott Keys, W [United States Geological Survey, Denver, CO (United States)

    1967-05-15

    The drilling of exploratory holes to determine the availability of groundwater and to plan the most economical methods of water development is expensive. The only technique available at present for obtaining geological and hydrological information through the casing of pre-existing water wells and other boreholes is by radiation logging. Up to now these logging techniques have been little used in groundwater hydrology. This report describes inexpensive portable radiation logging equipment that is available or has been developed for groundwater studies in connection with a general research project on the application of borehole geophysics in groundwater hydrology. It is possible to obtain data on the following: the source, velocity, and chemical quality of groundwater; the location, extent, geometry, bulk density, porosity, permeability, and specific yield of aquifers and associated strata; and the position of casings, casing collars, leaks, perforations, and cement. The radiation logs employed include natural gamma, gamma-gamma, neutron-gamma. neutron epithermal-neutron. and radioactive tracer. The following radioisotopes are utilized: cobalt-60, plutonium-239, americium-241, and iodine-131. Typical radiation logs obtained by the various techniques are described and examples are given of practical applications of radiation logging to groundwater investigations. The applications cited are studies of perched water in basaltic rocks and associated sedimentary strata; the porosity, moisture content, and position of zones into which water was injected in volcanic tuff; the position of the interface between brine and fresh water in fine-grained carbonate rocks and associated fine clastic rocks; the interpretation of porosity from a neutron log; and the location by means of a radioactive tracer of the more permeable fracture zones in a well penetrating crystalline rock. (author)

  1. Porosity, Fracturing and Alteration of Young Oceanic Crust: New Seismic Analyses at Borehole 504B

    Science.gov (United States)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2017-12-01

    DSDP/ODP borehole 504B, drilled 2111 m into 6.9 Ma oceanic crust, provides in-situ core and logging measurements of the lithology, fracturing and porosity of crust originally formed at the Costa Rica Rift and its subsequent alteration by hydrothermal fluids. A recent active seismic survey over the borehole and surrounding area reveals wider spatial variations in velocity that can be related to this porosity and fracturing. Over 10,000 airgun shots were fired in a 30 x 30 km grid over the borehole region, using both high-frequency and low-frequency airgun arrays. The shots were recorded on a 4.5 km-long streamer and 24 ocean-bottom seismographs, each equipped with a three-component geophone and an hydrophone. A vertical hydrophone array recorded the downgoing source wavelet, and underway gravity, magnetic field and multibeam bathymetry data were also recorded. This combined dataset enables the most comprehensive geophysical analysis of this area of crust to date, while the ground-truthing provided by 504B enables us to address the questions of what do the seismic oceanic crustal layers represent and what controls their characteristics as the crust ages? Wide-angle seismic modelling with a Monte Carlo based uncertainty analysis reveals new 2D and 3D Vp and Vs models of the area, which show relatively homogeneous crust around borehole 504B, and place the seismic layer 2B/2C, and seismic layer 2/3 boundaries coincident with fracturing and alteration fronts rather than the lithological boundaries between lavas and dykes, and dykes and gabbros, respectively. Analysis of Poisson's ratio, seismic anisotropy and particle motions reveal patterns in fracturing and porosity across the survey area, and locate possible fossilised hydrothermal circulation cells. These cells appear to have influenced the porosity of the crust through alteration and mineralisation processes, with faults inherited from initial crustal accretion influencing basement topographic highs and providing

  2. Limitations and developing directions of pulsed neutron logging

    International Nuclear Information System (INIS)

    Wu Wensheng; Xiao Lizhi

    2007-01-01

    The paper explains briefly the principle of pulsed neutron logging method, summarizes the system and uses of the method in petroleum logging. The paper points out the limitations of pulsed neutron logging such as low precise measurements, low logging speed, plenty of influence factors, low vertical resolution, bad adaptability, difficult logging interpretation and so on, and expounds its developing directions in hardware, software, method and principle. (authors)

  3. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  4. Log-inject-log in sand consolidation

    International Nuclear Information System (INIS)

    Murphy, R.P.; Spurlock, J.W.

    1977-01-01

    A method is described for gathering information for the determination of the adequacy of placement of sand consolidating plastic for sand control in oil and gas wells. The method uses a high neutron cross-section tracer which becomes part of the plastic and uses pulsed neutron logging before and after injection of the plastic. Preferably, the method uses lithium, boron, indium, and/or cadmium tracers. Boron oxide is especially useful and can be dissolved in alcohol and mixed with the plastic ingredients

  5. Particle track membranes with higher porosity

    International Nuclear Information System (INIS)

    Heinrich, B.; Gemende, B.; Lueck, H.B.

    1992-01-01

    Possibilities of improvement of flux and dirt loading capacity of particle track membranes have been examined. Three different ways were investigated: using a divergent ion beam for the irradiation; enlarging the surface porosity through a conical pore shape; creating an asymmetrical membrane structure with two different porosities. Mathematical models and experimental results have been discussed. 9 figs, 3 tabs

  6. Elephant logging and environment

    International Nuclear Information System (INIS)

    Tin-Aung-Hla

    1995-01-01

    The natural environment comprises non-biological elements such as air, water, light, heat and biological elements of animal and plant life; all interact with each other to create an ecosystem. Human activities like over-exploitation of forest results in deforestation and desertification. This consequently changes ecological balance. Topics on: (1) history of elephants utilization; (2) elephant logging; (3) classification of elephants; (4) dragging gear; (5) elephant power; (6) elephant logging and environment, are discussed

  7. Nuclear well logging in hydrology

    International Nuclear Information System (INIS)

    1971-01-01

    The optimum development of regional and local groundwater resources requires a quantitative evaluation of its aquifers and aquicludes, and of the physical and chemical properties relevant to the recharge to and withdrawal of water from them. If an understanding of the groundwater regime is to be obtained, geological observations at outcrop must be augmented by subsurface measurements of the strata and the waters they contain. Measurements of many hydrological and geological parameters can be made in situ by nuclear geophysical well-logging methods. Very simply, well logging consists of lowering a measuring probe into a well and making a continuous record of the variations of a particular parameter with depth. In most circumstances, repetition of the measurements under differing hydrodynamic conditions results in a better definition of the flow regime in the aquifer. Nuclear well-logging techniques have for some years been capable of solving a number of the sub-surface measurement problems faced by hydrogeologists. However, the present usage of these methods varies from country to country and the literature concerning applications is scattered in the professional journals of several disciplines. The objective of this report is to include in a single reference volume descriptions of the physical principles of nuclear logging methods, their applications to hydrogeological problems and their limitations on a level suitable for the practising hydrologists with a limited knowledge of nuclear physics. The Working Group responsible for compiling the report recommended that it should cover a broad spectrum of hydrogeological investigations and problems. For example, it saw no valid reason to distinguish for the purposes of the report between well-logging applications for water-supply purposes and for water-flooding studies in the petroleum industry. Neutron measurements made for soil-moisture determinations in the unsaturated zone have been specifically omitted, however, as

  8. Effect of Fe content, cooling rate and porosity on the tensile properties of cast 319 and 356 aluminum alloys

    International Nuclear Information System (INIS)

    Ma, Z.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S.

    2002-01-01

    The present study was carried out to investigate the effects of Fe content, cooling rate and porosity on the tensile properties of cast 319 and 356 alloys. Both experimental and industrial 319 alloys (containing 0.1 and 0.4 wt% Mg) and industrial 356 alloys were used, with 200-300 ppm strontium additions to study the modification effect. The Fe content was varied from 0.2 to 0.8 wt% in the 319 alloys, and from 0.1 to 0.6 wt% in the 356 alloy in keeping with Fe levels observed in industry. An end-chilled mold was employed to obtain directionally solidified castings, where the cooling rate varied with the height of the casting. Tensile and microstructural samples were sectioned at heights corresponding to dendrite arm spacings of ∼23 to ∼83 μm. The microstructures were examined using optical- and scanning electron microscopy. The effect of Fe content and cooling rate was investigated through measurements of the β-Al 5 FeSi platelets, using image analysis. Porosity measurements were also made. Phase identification was done using EPMA, EDX and XRD. The results show that the β-Al 5 FeSi platelet size has a significant effect on ductility and tensile strength up to sizes of ∼100 μm in the 319 alloys and ∼70 μm in the 356 alloy, but has no significant effect on the yield strength. While tensile properties are interpreted by means of UTS vs. log Elongation plots (after the Quality index concept of Drouzy et al. (5)), in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log Elongation plots, where the properties increased linearly within low cooling rate-high Fe and high cooling rate-low Fe condition extremities. The results are explained in terms of the β-Al 5 FeSi platelet size and porosity values obtained. (author)

  9. Porosity Prediction of Plain Weft Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Muhammad Owais Raza Siddiqui

    2014-12-01

    Full Text Available Wearing comfort of clothing is dependent on air permeability, moisture absorbency and wicking properties of fabric, which are related to the porosity of fabric. In this work, a plug-in is developed using Python script and incorporated in Abaqus/CAE for the prediction of porosity of plain weft knitted fabrics. The Plug-in is able to automatically generate 3D solid and multifilament weft knitted fabric models and accurately determine the porosity of fabrics in two steps. In this work, plain weft knitted fabrics made of monofilament, multifilament and spun yarn made of staple fibers were used to evaluate the effectiveness of the developed plug-in. In the case of staple fiber yarn, intra yarn porosity was considered in the calculation of porosity. The first step is to develop a 3D geometrical model of plain weft knitted fabric and the second step is to calculate the porosity of the fabric by using the geometrical parameter of 3D weft knitted fabric model generated in step one. The predicted porosity of plain weft knitted fabric is extracted in the second step and is displayed in the message area. The predicted results obtained from the plug-in have been compared with the experimental results obtained from previously developed models; they agreed well.

  10. Time-lapse cased hole reservoir evaluation based on the dual-detector neutron lifetime log: the CHES II approach

    International Nuclear Information System (INIS)

    DeVries, M.R.; Fertl, W.

    1977-01-01

    A newly developed cased hole analysis technique provides detailed information on (1) reservoir rock properties, such as porosity, shaliness, and formation permeability, (2) reservoir fluid saturation, (3) distinction of oil and gas pays, (4) state of reservoir depletion, such as cumulative hydrocarbon-feet at present time and cumulative hydrocarbon-feet already depleted (e.g., the sum of both values then giving the cumulative hydrocarbon-feet originally present), and (5) monitoring of hydrocarbon/water and gas/oil contacts behind pipe. The basic well log data required for this type of analysis include the Dual-Detector Neutron Lifetime Log, run in casing at any particular time in the life of a reservoir, and the initial open-hole resistivity log. In addition, porosity information from open-hole porosity log(s) or core data is necessary. Field examples from several areas are presented and discussed in the light of formation reservoir and hydrocarbon production characteristics

  11. Analysis of logging data from nuclear borehole tools

    International Nuclear Information System (INIS)

    Hovgaard, J.; Oelgaard, P.L.

    1989-12-01

    The processing procedure for logging data from a borehole of the Stenlille project of Dansk Naturgas A/S has been analysed. The tools considered in the analysis were an integral, natural-gamma tool, a neutron porosity tool, a gamma density tool and a caliper tool. It is believed that in most cases the processing procedure used by the logging company in the interpretation of the raw data is fully understood. An exception is the epithermal part of the neutron porosity tool where all data needed for an interpretation were not available. The analysis has shown that some parts of the interpretation procedure may not be consistent with the physical principle of the tools. (author)

  12. Log4J

    CERN Document Server

    Perry, Steven

    2009-01-01

    Log4j has been around for a while now, and it seems like so many applications use it. I've used it in my applications for years now, and I'll bet you have too. But every time I need to do something with log4j I've never done before I find myself searching for examples of how to do whatever that is, and I don't usually have much luck. I believe the reason for this is that there is a not a great deal of useful information about log4j, either in print or on the Internet. The information is too simple to be of real-world use, too complicated to be distilled quickly (which is what most developers

  13. Borehole logging in uranium exploration

    International Nuclear Information System (INIS)

    Kulkarni, N.H.

    1992-01-01

    The ultimate objective of exploration by drilling as far as Atomic Minerals Division is concerned is to locate the ore zone in the subsurface, draw samples and analyze them for their metal content. The presence of the ore zone is also indicated by gamma-ray logging of the borehole. A gamma-ray detector is lowered in the borehole and precise depth and grade of the ore zone is established. This helps the geologist in correlating the ore horizon with the surface outcrop or the ore zone intercepted in adjoining boreholes and in deciding about further drilling and location of boreholes. Most commonly, total gamma measurements are made although some units capable of measuring the gamma-ray spectrum are also in use. It is possible to know if the mineralization is due to uranium without waiting for the laboratory results. The present write up gives a brief account of the principles, equipment and methods of borehole gamma-ray logging including density and self-potential logging. (author). 8 refs., 5 figs

  14. Mathematical modeling of porosity formation in die cast A356 wheels

    International Nuclear Information System (INIS)

    Maijer, D.; Cockcroft, S.L.; Wells, M.A.; Luciuk, T.; Hermesmann, C.

    2000-01-01

    In an effort to leverage recent advances in modeling and process simulation tools, a mathematical model has been developed to predict porosity formation in die cast A356 wheels as part of a collaborative research agreement between researchers at the University of British Columbia and Canadian Autoparts Toyota Incorporated. The heat transfer model represents a three-dimensional, 30 o , slice of the wheel and die and is based on the commercial finite element code ABAQUS. Extensive temperature measurements in the die and in the wheel taken over several cycles in the casting process were used to fine tune and validate the model. Initial work on predicting porosity formation has focused on using the Niyama parameter as a measure of the probability of porosity. To date Niyama porosity predictions agree well with plant experience and show promise for reducing losses associated with porosity. (author)

  15. Log-binomial models: exploring failed convergence.

    Science.gov (United States)

    Williamson, Tyler; Eliasziw, Misha; Fick, Gordon Hilton

    2013-12-13

    Relative risk is a summary metric that is commonly used in epidemiological investigations. Increasingly, epidemiologists are using log-binomial models to study the impact of a set of predictor variables on a single binary outcome, as they naturally offer relative risks. However, standard statistical software may report failed convergence when attempting to fit log-binomial models in certain settings. The methods that have been proposed in the literature for dealing with failed convergence use approximate solutions to avoid the issue. This research looks directly at the log-likelihood function for the simplest log-binomial model where failed convergence has been observed, a model with a single linear predictor with three levels. The possible causes of failed convergence are explored and potential solutions are presented for some cases. Among the principal causes is a failure of the fitting algorithm to converge despite the log-likelihood function having a single finite maximum. Despite these limitations, log-binomial models are a viable option for epidemiologists wishing to describe the relationship between a set of predictors and a binary outcome where relative risk is the desired summary measure. Epidemiologists are encouraged to continue to use log-binomial models and advocate for improvements to the fitting algorithms to promote the widespread use of log-binomial models.

  16. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  17. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh; Hadwiger, Markus; Ben Romdhane, Mohamed; Behzad, Ali Reza; Madhavan, Poornima; Nunes, Suzana Pereira

    2016-01-01

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore

  18. Device for investigation of the porosity of geological formations

    International Nuclear Information System (INIS)

    Tittman, J.; Hickman, W.J.

    1978-01-01

    A device for neutron well logging is described in which errors due to caked drilling mud on the walls of the hole are compensated for. This is achieved by using two neutron sources and two detectors. One of the neutron sources emits neutrons with so high energy, about 3 or 4 MeV, that their slowing down length is much greater than the thickness of the drilling mud, while the other emits neutrons with an energy of about 240 KeV (lithium-plutonium) or 25 KeV (antimony - beryllium), ie they have a very high probability of interacting with the material in the drilling mud. The detectors are adjusted to react selectively to neutrons of epithermal energy, and the difference in the signals represents the porosity, or hydrocarbon content of the geological formation. (JIW)

  19. Design and Development of a Relative Humidity and Room Temperature Measurement System with On Line Data Logging Feature for Monitoring the Fermentation Room of Tea Factory

    Directory of Open Access Journals (Sweden)

    Utpal SARMA

    2011-12-01

    Full Text Available The design and development of a Relative Humidity (RH and Room Temperature (RT monitoring system with on line data logging feature for monitoring fermentation room of a tea factory is presented in this paper. A capacitive RH sensor with on chip signal conditioner is taken as RH sensor and a temperature to digital converter (TDC is used for ambient temperature monitoring. An 8051 core microcontroller is the heart of the whole system which reads the digital equivalent of RH data with the help of a 12-bit Analog to Digital (A/D converter and synchronize TDC to get the ambient temperature. The online data logging is achieved with the help of RS-232C communication. Field performance is also studied by installing it in the fermentation room of a tea factory.

  20. Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon

    OpenAIRE

    Finer, Matt; Jenkins, Clinton N.; Sky, Melissa A. Blue; Pine, Justin

    2014-01-01

    The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US?Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3%...

  1. Fabrication of dual porosity electrode structure

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  2. Log of Apollo 11.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The major events of the first manned moon landing mission, Apollo 11, are presented in chronological order from launch time until arrival of the astronauts aboard the U.S.S. Hornet. The log is descriptive, non-technical, and includes numerous color photographs of the astronauts on the moon. (PR)

  3. Borehole logging system

    International Nuclear Information System (INIS)

    Allen, L.S.

    1988-01-01

    A radioactive borehole logging tool employs an epithermal neutron detector having a neutron counter surrounded by an inner thermal neutron filter and an outer thermal neutron filter. Located between the inner and outer filters is a neutron moderating material for extending the lifetime of epithermal neutrons to enhance the counting rate of such epithermal neutrons by the neutron counter

  4. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  5. One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness

    International Nuclear Information System (INIS)

    Maedler, Lutz; Lall, Anshuman A; Friedlander, Sheldon K

    2006-01-01

    A method is described for designing nanoparticle agglomerate films with desired film porosity and film thickness. Nanoparticle agglomerates generated in aerosol reactors can be directly deposited on substrates to form uniform porous films in one step, a significant advance over existing technologies. The effect of agglomerate morphology and deposition mechanism on film porosity and thickness are discussed. Film porosity was calculated for a given number and size of primary particles that compose the agglomerates, and fractal dimension. Agglomerate transport was described by the Langevin equation of motion. Deposition enhancing forces such as thermophoresis are incorporated in the model. The method was validated for single spherical particles using previous theoretical studies. An S-shape film porosity dependence on the particle Peclet number typical for spherical particles was also observed for agglomerates, but films formed from agglomerates had much higher porosities than films from spherical particles. Predicted film porosities compared well with measurements reported in the literature. Film porosities increased with the number of primary particles that compose an agglomerate and higher fractal dimension agglomerates resulted in denser films. Film thickness as a function of agglomerate deposition time was calculated from the agglomerate deposition flux in the presence of thermophoresis. The calculated film thickness was in good agreement with measured literature values. Thermophoresis can be used to reduce deposition time without affecting the film porosity

  6. Computer model for calculating gamma-ray pulse-height spectra for logging applications

    International Nuclear Information System (INIS)

    Evans, M.L.

    1981-01-01

    A generalized computer model has been devised to simulate the emission, transport, and detection of natural gamma radiation from various logging environments. The model yields high-resolution gamma-ray pulse-height spectra that can be used to correct both gross gamma and spectral gamma-ray logs. The technique can help provide corrections to airborne and surface radiometric survey logs for the effects of varying altitude, formation composition, and overburden. Applied to borehole logging, the model can yield estimates of the effects of varying borehole fluid and casing attenuations, as well as varying formation porosity and saturation

  7. Lithologic log and interpretation of instrument logs NURE project, Carson Sink, Nevada, borehole

    International Nuclear Information System (INIS)

    Horton, R.C.

    1978-04-01

    No uranium mineralization was penetrated by the drilling. The uranium content of the rock units are within the usual range for unmineralized rocks of the types penetrated. Although the instrument logs indicated ample porosity in the sedimentary section, drill-stem tests in the intervals 699 to 722 ft, 3,692 to 3,734 ft, and 3,920 to 3,995 ft failed to recover any formation fluid. The instrument logs generally indicated low porosity and permeability in the volcanic rocks. The low permeability may have prohibited the circulation of ground water and possible supergene enrichment. The Carson Sink is a closed basin and all water is lost by evaporation, although there may be minor subsurface interbasin transfer. As the basin subsided dense connate water (brines) may have been trapped within the sediments making circulation of less dense water impossible. At present, nonsaline water is found only at shallow depths and is underlain by saline water. The hydrologic regime of the basin is complex and general assumptions should be made with care. Detailed analysis of hydrologic data may reveal zones of deep circulation. Reducing conditions, as evidenced by thin beds of organic rich material and pyrite, are present at depth. However, the unconsolidated sediments are young (Pleistocene to Recent) and perhaps too youthful for substantial mineralization to have occurred. No further deep drilling is recommended until the complex prehistoric hydrologic regime is studied. The study should include the geologic structural history of the basin and influence of Pleistocene and earlier pluvial cycles

  8. Determination of In-situ Rock Thermal Properties from Geophysical Log Data of SK-2 East Borehole, Continental Scientific Drilling Project of Songliao Basin, NE China

    Science.gov (United States)

    Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.

    2017-12-01

    Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China

  9. The Effect of Volumetric Porosity on Roughness Element Drag

    Science.gov (United States)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for

  10. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption.

    Science.gov (United States)

    Shao, Yongjiu; Ren, Bin; Jiang, Hanmei; Zhou, Bingjie; Lv, Liping; Ren, Jingzheng; Dong, Lichun; Li, Jing; Liu, Zhenfa

    2017-07-05

    Dual-porosity materials containing both macropores and mesopores are highly desired in many fields. In this work, we prepared dual-porosity Mn 2 O 3 cube materials with large-pore mesopores, in which, macropores are made by using carbon spheres as the hard templates, while the mesopores are produced via a template-free route. The attained dual-porosity Mn 2 O 3 materials have 24nm of large-pore mesopores and 700nm of macropores. Besides, the achieved materials own cubic morphologies with particle sizes as large as 6.0μm, making them separable in the solution by a facile natural sedimentation. Dye adsorption measurements reveal that the dual-porosity materials possess a very high maximum adsorption capacity of 125.6mg/g, much larger than many reported materials. Particularly, the adsorbents can be recycled and the dye removal efficiency can be well maintained at 98% after four cycles. Adsorption isotherm and kinetics show that the Langmuir model and the pseudo-second-order kinetics model can well describe the adsorption process of Congo Red on the dual-porosity Mn 2 O 3 cube materials. In brief, the reported dual-porosity Mn 2 O 3 demonstrates a good example for controlled preparation of dual-porosity materials with large-pore mesopores, and the macropore-mesopore dual-porosity distribution is good for mass transfer in dye adsorption application. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Utilization and cost of log production from animal loging operations

    Science.gov (United States)

    Suraj P. Shrestha; Bobby L. Lanford; Robert B. Rummer; Mark Dubois

    2006-01-01

    Forest harvesting with animals is a labor-intensive operation. It is expensive to use machines on smaller woodlots, which require frequent moves if mechanically logged. So, small logging systems using animals may be more cost effective. In this study, work sampling was used for five animal logging operations in Alabama to measure productive and non-productive time...

  12. Geophysical borehole logging

    International Nuclear Information System (INIS)

    McCann, D.; Barton, K.J.; Hearn, K.

    1981-08-01

    Most of the available literature on geophysical borehole logging refers to studies carried out in sedimentary rocks. It is only in recent years that any great interest has been shown in geophysical logging in boreholes in metamorphic and igneous rocks following the development of research programmes associated with geothermal energy and nuclear waste disposal. This report is concerned with the programme of geophysical logging carried out on the three deep boreholes at Altnabreac, Caithness, to examine the effectiveness of these methods in crystalline rock. Of particular importance is the assessment of the performance of the various geophysical sondes run in the boreholes in relation to the rock mass properties. The geophysical data can be used to provide additional in-situ information on the geological, hydrogeological and engineering properties of the rock mass. Fracturing and weathering in the rock mass have a considerable effect on both the design parameters for an engineering structure and the flow of water through the rock mass; hence, the relation between the geophysical properties and the degree of fracturing and weathering is examined in some detail. (author)

  13. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    . The Cl porosity is lower than the total physical porosity, because clays have different types of water (interlayer water, adsorbed water and free water), and ions can be affected by anionic exclusion processes. The geochemical porosity includes only the free water and some of the diffuse layer and surface-sorbed water; while the total physical porosity includes both the external and interlayer water. In order to calculate the Cl or geochemical porosity (n cl ), a relationship was used, which relates leaching data and the chloride content of the pore water extracted by the squeezing technique. Aqueous leaching tests were performed at anoxic conditions in order to obtain the chloride inventory in different core samples from each argillaceous formation. Besides, the chemical composition of the pore water was obtained by squeezing at high pressures. Taking into account the measured physical properties of the rock samples, such as water content, dry density, total porosity and degree of saturation; the geochemical porosity was calculated by using the above relationship. For Boom Clay core samples, the mean Cl porosity/water loss porosity ratio is 0.81. In the case of Opalinus Clay, the mean Cl porosity/water loss porosity ratio is 0.59. In Mont Terri core samples, this ratio ranges from 0.5 to 0.7, although a value of 0.55 is frequently used. As conclusion, for indurated mud-rock formations (Callovo-Oxfordian and Opalinus Clay), the mean geochemical porosity obtained was around 8-10 %vol. (0.5-0.6 porosity ratio), whereas in the plastic Boom Clay the geochemical porosity was around 29 %vol. (0.8 porosity ratio)

  14. The use of diffusion theory to compute invasion effects for the pulsed neutron thermal decay time log

    International Nuclear Information System (INIS)

    Tittle, C.W.

    1992-01-01

    Diffusion theory has been successfully used to model the effect of fluid invasion into the formation for neutron porosity logs and for the gamma-gamma density log. The purpose of this paper is to present results of computations using a five-group time-dependent diffusion code on invasion effects for the pulsed neutron thermal decay time log. Previous invasion studies by the author involved the use of a three-dimensional three-group steady-state diffusion theory to model the dual-detector thermal neutron porosity log and the gamma-gamma density log. The five-group time-dependent code MGNDE (Multi-Group Neutron Diffusion Equation) used in this work was written by Ferguson. It has been successfully used to compute the intrinsic formation life-time correction for pulsed neutron thermal decay time logs. This application involves the effect of fluid invasion into the formation

  15. Total and methyl mercury, moisture, and porosity in Lake Michigan surficial sediment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Total and methyl mercury, moisture content (%), and porosity were measured in Lake Michigan sediment by the U.S. Environmental Protection Agency/Office of Research...

  16. Experience in well logging study of Eocene deposits at the territory of Central and West Azerbaijan

    International Nuclear Information System (INIS)

    Shilov, G.Ya.; Makhmudova, V.M.; Agabekova, L.A.

    1989-01-01

    Experience of investigation of Eocene deposits in Azerbaijan by well-logging methods (WLM), including gamma-logging (GL), neutron gamma-logging (NGL), gamma-gamma logging (GGL), is generalized. Clay rocks are characterized by the maximal NGL and GL values, tuff sandstones - by the average NGL values. NGL and GGL data are used to determine porosity of strata. Complex interpretation of WLM data enables to obtain reliable evaluations of lithology, porosity and oil saturation of Eocene rocks. Algorithm of quantitative interpretation of WLM materials is suggested. Efficiency of WLM interpretation was equal to 95 %. Since the suggested algorithm is formalized completely, it can be realized in systems of complex WLM interpretation by computer

  17. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  18. Method and apparatus for formation logging using position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Gadken, L.L.

    1986-01-01

    This patent describes a method for logging earth formations using position sensitive neutron detectors. The method consists of: 1) Irradiation of earth formations in the vicinity of a well borehole with a source of fast neutrons. 2) At four longitudinally spaced distances from the neutron source in the borehole, the epithermal neutron population is detected. Each of the four separate populations is detected in an epithermally sensitive and substantially thermally insensitive portion of the same position sensitive neutron detector. A representative signal from each is then individually generated. 3) First, second, third, and fourth neutron population representative signals are combined. They derive a simultaneous measurement signal. This signal is functionally related to the porosity and also a signal functionally related to a neutron characteristic length of the earth formations in the vicinity of the borehole

  19. Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images

    International Nuclear Information System (INIS)

    N'Diaye, Mambaye; Degeratu, Cristinel; Bouler, Jean-Michel; Chappard, Daniel

    2013-01-01

    Porous structures are becoming more and more important in biology and material science because they help in reducing the density of the grafted material. For biomaterials, porosity also increases the accessibility of cells and vessels inside the grafted area. However, descriptors of porosity are scanty. We have used a series of biomaterials with different types of porosity (created by various porogens: fibers, beads …). Blocks were studied by microcomputed tomography for the measurement of 3D porosity. 2D sections were re-sliced to analyze the microarchitecture of the pores and were transferred to image analysis programs: star volumes, interconnectivity index, Minkowski–Bouligand and Kolmogorov fractal dimensions were determined. Lacunarity and succolarity, two recently described fractal dimensions, were also computed. These parameters provided a precise description of porosity and pores' characteristics. Non-linear relationships were found between several descriptors e.g. succolarity and star volume of the material. A linear correlation was found between lacunarity and succolarity. These techniques appear suitable in the study of biomaterials usable as bone substitutes. Highlights: ► Interconnected porosity is important in the development of bone substitutes. ► Porosity was evaluated by 2D and 3D morphometry on microCT images. ► Euclidean and fractal descriptors measure interconnectivity on 2D microCT images. ► Lacunarity and succolarity were evaluated on a series of porous biomaterials

  20. Stress history influence on sedimentary rock porosity estimates: Implications for geological CO2 storage in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Jie Wu

    2017-01-01

    Full Text Available We established a stress-history-dependent porosity model of potential target rocks for CO2 geosequestration based on rock sample porosity measurements under various effective stresses (5 - 120 MPa. The measured samples were collected from shallow boreholes (< 300 m depth drilled at the frontal fold in northern Taiwan. The lithology, density, and the stress-history-dependent porosity derived from shallow boreholes enabled us to predict the porosity-depth relationship of given rock formations at (burial depths of approximately 3170 - 3470 m potential sites for CO2 geosequestration located near the Taoyuan Tableland coastline. Our results indicate that the porosity of samples derived from laboratory tests under atmospheric pressure is significantly greater than the porosity measured under stress caused by sediment burial. It is therefore strongly recommended that CO2 storage capacity assessment not be estimated from the porosity measured under atmospheric pressure. Neglecting the stress history effect on the porosity of compacted and uplifted rocks may induce a percentage error of 7.7% at a depth of approximately 1000 m, where the thickness of the eroded, formerly overlying formation is 2.5 km in a synthetic case. The CO2 injection pressure effect on the porosity was also evaluated using the stress-history-dependent porosity model. As expected, the pore pressure buildup during CO2 injection will induce an increase in the rock porosity. For example, a large injection pressure of 13 MPa at a depth of approximately 1000 m will increase the rock porosity by a percentage error of 6.7%. Our results have implications for CO2 storage capacity injection pressure estimates.

  1. Development of сertified reference materials set for opened porosity of solid substances and materials (imitators

    Directory of Open Access Journals (Sweden)

    E. P. Sobina

    2016-01-01

    Full Text Available The article deals with data of research for development of certified reference materials set for opened porosity of solid substances and materials (imitators (OPTB SO UNIIM Set Certified Reference Materials GSO 10583-2015. The certified values of opened porosity of metal cylinders were established by the method of hydrostatic weighing before and after boring of holes in. The certified reference materials are intended for calibration and verification of measuring instruments of opened porosity, based on the Boyle - Mariotte's law.

  2. Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy

    Directory of Open Access Journals (Sweden)

    J. Wang

    2015-10-01

    Full Text Available When joining the aluminum alloys, one of the biggest challenges is the formation of porosity, which deteriorates mechanical properties of welds. In this study, the lap welding was conducted on an aluminum alloy 5754 metal sheets with a thickness of 2 mm. The effects of various laser welding parameters on the weld quality were investigated. The porosity content was measured by X-ray inspections. The key is to control the solidification duration of molten pool. When the solidification duration of molten pool is large enough, more bubbles can escape from the molten pool and less remain as porosity.

  3. Oxygen plasma treatment of HKUST-1 for porosity retention upon exposure to moisture.

    Science.gov (United States)

    Bae, Jaeyeon; Jung, Jin-Woo; Park, Hyo Yul; Cho, Chang-Hee; Park, Jinhee

    2017-11-07

    Despite their remarkable properties, metal-organic frameworks (MOFs) present vulnerable structures that are sensitive to moisture; therefore, their application to real field situations is challenging. Herein, an O 2 plasma technique was introduced as a new method for the activation and protection of porosity in HKUST-1. In an unprecedented manner, O 2 plasma-treated HKUST-1 retains its porosity after a long exposure to moisture as compared to pristine HKUST-1. Porosity retention was examined by N 2 adsorption/desorption measurements of non-activated HKUST-1 after exposure to moisture.

  4. Optimization and Development of Swellable Controlled Porosity ...

    African Journals Online (AJOL)

    Purpose: To develop swellable controlled porosity osmotic pump tablet of theophylline and to define the formulation and process variables responsible for drug release by applying statistical optimization technique. Methods: Formulations were prepared based on Taguchi Orthogonal Array design and Fraction Factorial ...

  5. Compost addition reduces porosity and chlordecone transfer in soil microstructure.

    Science.gov (United States)

    Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie

    2016-01-01

    Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.

  6. Identification of carbonate reservoirs based on well logging data for boreholes drilled using oil base muds

    International Nuclear Information System (INIS)

    Abdukhalikov, Ya.N; Serebrennikov, V.S.

    1979-01-01

    Experiment on carbonate reservoir identification according to well logging data for boreholes drilled using oil base muds is described. Pulse neutron-neutron logging (PNNL) was widely used at the territory of Pripyat' hole to solve the task. To evaluate volumetric clayiness of carbonate rocks the dependence of gamma-logging, that is data of gamma-logging against clayey rocks built for every hollow, is used. Quantitative estimation of clayiness of dense and clayey carbonate rocks-non-reservoirs is carried out on the basis of the data of neutron-gamma and acoustic logging. Porosity coefficient and lithological characteristic of rocks are also determined according to the data of acoustic and neutron gamma-logging

  7. Well logging, atom and geology

    International Nuclear Information System (INIS)

    Serra, O.

    1994-01-01

    Well logging techniques exploit interactions of gamma photons and neutrons with atoms. Interactions of neutrons of different energies with atoms allow the detection and evaluation of the weight percentage of several elements composing the rocks (C, O, Si, Ca, Fe, S); spectrometry of gamma rays produced by thermal neutron absorption allows for the weight percentage determination of Si, Ca, Fe, S, Cl, H, Ti and Gd, etc. High resolution detectors (germanium doped by Li, at liquid nitrogen temperature) allow the recognition of more elements. Other techniques involving neutrons consist in determining the population in epithermal neutrons at a certain distance of the neutron source (measurement of the hydrogen index). By analyzing the intensity of the gamma flux produced by Compton scattering, the electronic and bulk densities of the rocks are measured. All these data lead to the detection and evaluation of ore deposits (uranium and potassium) and coal, and determination of the lithology, the main minerals composing the rocks, petrophysical properties... 1 fig

  8. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  9. Nova Event Logging System

    International Nuclear Information System (INIS)

    Calliger, R.J.; Suski, G.J.

    1981-01-01

    Nova is a 200 terawatt, 10-beam High Energy Glass Laser currently under construction at LLNL. This facility, designed to demonstrate the feasibility of laser driven inertial confinement fusion, contains over 5000 elements requiring coordinated control, data acquisition, and analysis functions. The large amounts of data that will be generated must be maintained over the life of the facility. Often the most useful but inaccessible data is that related to time dependent events associated with, for example, operator actions or experiment activity. We have developed an Event Logging System to synchronously record, maintain, and analyze, in part, this data. We see the system as being particularly useful to the physics and engineering staffs of medium and large facilities in that it is entirely separate from experimental apparatus and control devices. The design criteria, implementation, use, and benefits of such a system will be discussed

  10. Querying Workflow Logs

    Directory of Open Access Journals (Sweden)

    Yan Tang

    2018-01-01

    Full Text Available A business process or workflow is an assembly of tasks that accomplishes a business goal. Business process management is the study of the design, configuration/implementation, enactment and monitoring, analysis, and re-design of workflows. The traditional methodology for the re-design and improvement of workflows relies on the well-known sequence of extract, transform, and load (ETL, data/process warehousing, and online analytical processing (OLAP tools. In this paper, we study the ad hoc queryiny of process enactments for (data-centric business processes, bypassing the traditional methodology for more flexibility in querying. We develop an algebraic query language based on “incident patterns” with four operators inspired from Business Process Model and Notation (BPMN representation, allowing the user to formulate ad hoc queries directly over workflow logs. A formal semantics of this query language, a preliminary query evaluation algorithm, and a group of elementary properties of the operators are provided.

  11. Calculation of Monte Carlo importance functions for use in nuclear-well logging calculations

    International Nuclear Information System (INIS)

    Soran, P.D.; McKeon, D.C.; Booth, T.E.

    1989-07-01

    Importance sampling is essential to the timely solution of Monte Carlo nuclear-logging computer simulations. Achieving minimum variance (maximum precision) of a response in minimum computation time is one criteria for the choice of an importance function. Various methods for calculating importance functions will be presented, new methods investigated, and comparisons with porosity and density tools will be shown. 5 refs., 1 tab

  12. Machine Learning for Mapping Groundwater Salinity with Oil Well Log Data

    Science.gov (United States)

    Chang, W. H.; Shimabukuro, D.; Gillespie, J. M.; Stephens, M.

    2016-12-01

    An oil field may have thousands of wells with detailed petrophysical logs, and far fewer direct measurements of groundwater salinity. Can the former be used to extrapolate the latter into a detailed map of groundwater salinity? California Senate Bill 4, with its requirement to identify Underground Sources of Drinking Water, makes this a question worth answering. A well-known obstacle is that the basic petrophysical equations describe ideal scenarios ("clean wet sand") and even these equations contain many parameters that may vary with location and depth. Accounting for other common scenarios such as high-conductivity shaly sands or low-permeability diatomite (both characteristic of California's Central Valley) causes parameters to proliferate to the point where the model is underdetermined by the data. When parameters outnumber data points, however, is when machine learning methods are most advantageous. We present a method for modeling a generic oil field, where groundwater salinity and lithology are depth series parameters, and the constants in petrophysical equations are scalar parameters. The data are well log measurements (resistivity, porosity, spontaneous potential, and gamma ray) and a small number of direct groundwater salinity measurements. Embedded in the model are petrophysical equations that account for shaly sand and diatomite formations. As a proof of concept, we feed in well logs and salinity measurements from the Lost Hills Oil Field in Kern County, California, and show that with proper regularization and validation the model makes reasonable predictions of groundwater salinity despite the large number of parameters. The model is implemented using Tensorflow, which is an open-source software released by Google in November, 2015 that has been rapidly and widely adopted by machine learning researchers. The code will be made available on Github, and we encourage scrutiny and modification by machine learning researchers and hydrogeologists alike.

  13. Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity

    Science.gov (United States)

    Kim, Minjae; Yoo, Eunjoo; Ahn, Wha-Seung; Shim, Sang Eun

    2018-06-01

    In rechargeable lithium-oxygen (Li-O2) batteries, the porosity of porous carbon materials plays a crucial role in the electrochemical performance serving as oxygen diffusion path and Li ion transfer passage. However, the influence of optimization of porous carbon as an air electrode on cell electrochemical performance remains unclear. To understand the role of carbon porosity in Li-O2 batteries, carbon materials featuring controlled pore sizes and porosity, including C-800 (nearly 96% microporous) and AC-950 (55:45 micro/meso porosity), are designed and synthesized by carbonization using a triazine-based covalent organic polymer (TCOP). We find that the microporous C-800 cathode allows 120 cycles with a limited capacity of 1000 mAh g-1, about 2 and 10 times higher than that of mixed-porosity AC-950 and mesoporous CMK-3, respectively. Meanwhile, the specific discharge capacity of the C-800 electrode at 200 mA g-1 is 6003 mAh g-1, which is lower than that of the 8433 and 9960 mAh g-1 when using AC-950 and CMK-3, respectively. This difference in the electrochemical performance of the porous carbon cathode with different porosity causes to the generation and decomposition of Li2O2 during the charge and discharge cycle, which affects oxygen diffusion and Li ion transfer.

  14. The effect of porosity on energetic porous silicon solid propellant micro-propulsion

    International Nuclear Information System (INIS)

    Churaman, Wayne A; Morris, Christopher J; Ramachandran, Raghav; Bergbreiter, Sarah

    2015-01-01

    Energetic porous silicon is investigated as an actuator for micro-propulsion based on thrust and impulse measurements for a variety of porous silicon porosity conditions. Porosity of 2 mm diameter, porous silicon microthruster devices was varied by changing the concentration of hydrofluoric acid and ethanol in an etch solution, by changing porous silicon etch depth, and by changing the resistivity of silicon wafers used for the etch process. The porosity varied from 30% to 75% for these experiments. The highest mean thrust and impulse values measured with a calibrated Kistler 9215 force sensor were 674 mN and 271 μN s, respectively, with a 73% porosity, 2 mm diameter porous silicon device etched in a 3 : 1 etch solution on a 3.6 Ω cm wafer to a target etch depth of 30 μm. As a result of changing porosity, a 23×  increase in thrust performance and a 36×  increase in impulse performance was demonstrated. Impulse values were also validated using a pendulum experiment in which the porous silicon microthruster was unconstrained, but several non-linearities in the pendulum experimental setup resulted in less consistent data than when measured by the force sensor for microthrusters at this size scale. These thrust and impulse results complement previous work in determining the effect of porosity on other porous silicon reaction metrics such as flame speed. (paper)

  15. Applicability estimation of flowmeter logging for detecting hydraulic pass

    International Nuclear Information System (INIS)

    Miyakawa, Kimio; Tanaka, Yasuji; Tanaka, Kazuhiro

    1997-01-01

    Estimation of the hydraulic pass governing hydrogeological structure contributes significantly to the siting HLW repository. Flowmeter logging can detect hydraulic passes by measuring vertical flow velocity of groundwater in the borehole. We reviewed application of this logging in situ. The hydraulic pass was detected with combination of ambient flow logging, with pumping and/or injecting induced flow logging. This application showed that the flowmeter logging detected hydraulic passes conveniently and accurately compared with other hydraulic tests. Hydraulic conductivity by using flowmeter logging was assessed above 10 -6 m/sec and within one order from comparison with injection packer tests. We suggest that appropriate application of the flowmeter logging for the siting is conducted before hydraulic tests because test sections and monitoring sections are decided rationally for procurement of quantitative hydraulic data. (author)

  16. Investigating porosity of anthracites during thermoprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.S.; Gilyazov, U.Sh.; Samoilov, V.S.; Mel' nichenko, V.M.; Kovalevskii, N.N.

    1983-07-01

    Changes in the porous structure of anthracite during thermoprocessing up to 3000 C, and the effect of mineral impurities on the materials were studied. A mercury porometer and an electron scanning microscope were used to study Donbass anthracites. A wider spectrum of pore volume distribution was observed for high rank anthracites than for lower rank anthracites. It was established that the specific pore volume in thermographite with an apparent density of more than one unit is three times less than in thermographite with an apparent density of less than one unit. The porosity of thermoanthracite increases sharply in comparison with the starting anthracite. Anthracites are suitable for graphitization after thermoprocessing at 2800-3000 C. The porosity of thermoanthracites depends on the presence and distribution of mineral impurities in the starting anthracite. 4 references.

  17. Air filled porosity in composting processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-07-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  18. Porosity influence on UO2 pellet fracture

    International Nuclear Information System (INIS)

    Quadros, N.F. de; Abreu Aires, M. de; Gentile, E.F.

    1976-01-01

    Compression tests were made with UO 2 pellets with grain size of 0,01 mm, approximately the same for all pellets, and with different porosities. The strain rate was 5,5 X 10 -5 sec -1 at room temperature. From fractographic studies and observations made during the compression tests, it was suggested that the pores and flaws resulting from sintering at 1650 0 C, play a fundamental role on the fracture mechanism of the UO 2 pellets [pt

  19. Air filled porosity in composting processes

    International Nuclear Information System (INIS)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-01-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  20. Soil plasticity with a different porosity

    Directory of Open Access Journals (Sweden)

    Klovanych Sergii

    2017-01-01

    Full Text Available The model of soils with different porosity in the framework of the associated theory of plasticity is presented The single analytical function describes the loading surface in the stress space. The deformational hardening/softening and the phenomenon of dilatancy during plastic flow are incorporated in the model. The triaxial compression tests are simulated and compared with the experimental results for different values of the void ratio and initial hydrostatic stresses.

  1. Fracture toughness of Dy123 low porosity bulks at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Murakami, A.; Otaka, K.; Miura, T.; Iwamoto, A.

    2011-01-01

    Fracture toughness values were measured for Dy123 bulks. Fracture toughness was improved by reducing porosity. Fracture toughness values at 77 K were higher than those at room temperature. Fracture toughness was also improved by Ag addition. In order to evaluate the fracture toughness of DyBa 2 Cu 3 O x (Dy123) low porosity bulks, bending tests of V-notched specimens cut from the bulks were carried out. Fracture toughness evaluations of a conventional Dy123 bulk which had pores were also carried out and effects of elimination of pores on the fracture toughness were investigated. Fracture toughness values at 77 K of the low porosity bulks were higher than those of the porous bulk. These fracture toughness values at 77 K were higher than the values at room temperature. Fracture toughness of the low porosity bulk was improved by Ag addition.

  2. The effects of porosity in friction performance of brake pad using waste tire dust

    Directory of Open Access Journals (Sweden)

    İbrahim Mutlu

    2015-10-01

    Full Text Available Abstract This research is focused on the effect of porosity on the friction-wear properties of automotive brake pads. Waste Tire Dust (WTD was used as a new friction material in brake pads. Newly formulated brake pad materials with five different components have been produced by conventional techniques. In the experimental studies, the change of the friction coefficient, the temperature of the friction surface, the specific wear rate, and the hardness, density and porosity were measured. In addition, the micro-structural characterizations of brake pads are determined using Scanning Electron Microscopy (SEM. The mean coefficient of friction, porosity and specific wear are increased due to a WTD rate increases, on the other hand, hardness and density are decreased. As a result, WTD can be considered as an alternative to revalorize this kind of waste products in the brake pads and the amount of porosity of the brake pad affected the friction coefficient and wear behavior of the pad.

  3. Characterization of porosity via secondary reactions. Final technical report, 1 September 1991--30 November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Zhang, L.; Hall, P.J.; Antxustegi, M. [Brown Univ., Providence, RI (United States). Div. of Engineering

    1997-09-01

    A new approach to the study of porosity and porosity development in coal chars during gasification was investigated. This approach involves the establishment of the relationships between the amount and type of surface complexes evolved during post-activation temperature programmed desorption (TPD), and the porosity, as measured by gas adsorption and small angle neutron scattering (SANS) techniques. With this new method, the total surface area and micropore volume can be determined by the interpretation of post-activation TPD spectra. The primary conclusion of this work is that it is possible to predict total surface area and micropore volume from TPD spectra. From the extended random pore model, additional information about the micropore surface area, the nonmicroporous surface area, and the mean micropore size development as a function of reaction time (or burn-off) can also be predicted. Therefore, combining the TPD technique and the extended random pore model provides a new method for the characterization of char porosity.

  4. Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shahir Mohd Yusuf

    2017-02-01

    Full Text Available This study investigates the porosity and microhardness of 316L stainless steel samples fabricated by selective laser melting (SLM. The porosity content was measured using the Archimedes method and the advanced X-ray computed tomography (XCT scan. High densification level (≥99% with a low average porosity content (~0.82% were obtained from the Archimedes method. The highest porosity content in the XCT-scanned sample was ~0.61. However, the pores in the SLM samples for both cases (optical microscopy and XCT were not uniformly distributed. The higher average microhardness values in the SLM samples compared to the wrought manufactured counterpart are attributed to the fine microstructures from the localised melting and rapid solidification rate of the SLM process.

  5. Mathematical aspects of multi-porosity continua

    CERN Document Server

    Straughan, Brian

    2017-01-01

    This book is devoted to describing theories for porous media where such pores have an inbuilt macro structure and a micro structure. For example, a double porosity material has pores on a macro scale, but additionally there are cracks or fissures in the solid skeleton. The actual body is allowed to deform and thus the underlying theory is one of elasticity. Various different descriptions are reviewed. Chapter 1 introduces the classical linear theory of elastodynamics together with uniqueness and continuous dependence results. Chapters 2 and 3 review developments of theories for double and triple porosity using a pressure-displacement structure and also using voids-displacement. Chapter 4 compares various aspects of the pressure-displacement and voids-displacement theories via uniqueness studies and wave motion analysis. Mathematical analyses of double and triple porosity materials are included concentrating on uniqueness and stability studies in chapters 5 to 7. In chapters 8 and 9 the emphasis is on wa...

  6. Investigation of the porosity of rocks

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Siitari-Kauppi, M.

    1990-06-01

    Methods for characterizing the nature of rock porosity in conjunction with diffusion experiments, are amongst the primary tools used in repository-site selection investigations. At this time no experimental method, alone, is capable of giving an unambiguous picture of the narrow-aperture pore space in crystalline rock. Methods giving information on overall properties must be complemented by those having high spatial resolution; then the lateral distribution of porosity within the matrix and its association with particular mineral phases or features, such as microfissures, fissure fillings, weathered or altered mineral phases etc, and the identification of diffusion pathways in inhomogeneous rock matrices can be determined. Nonsorbing, nonelectrolytic tracers should be used when one wants to determine rock-typical properties of the internal porosity without interference of interactions with surfaces. Preliminary information on a new method fulfilling these criteria is given. Impregnating rock samples with methylmethacrylate labeled with carbon-14 which, after impregnation, was polymerized by gamma radiation, gave specimens that made preparation of sections suitable for quantification by autoradiographic methods easy. Diffusion experiments can be conducted so that labeled MMA diffuses out of rock specimens into inactive free, MMA. Additional information may be gained by leaching PMMA fractions of lower molecular weight from the matrix

  7. Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon

    Science.gov (United States)

    Finer, Matt; Jenkins, Clinton N.; Sky, Melissa A. Blue; Pine, Justin

    2014-04-01

    The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US-Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3% of all concessions supervised by authorities were suspected of major violations. Of the 609 total concessions, nearly 30% have been cancelled for violations and we expect this percentage to increase as investigations continue. Moreover, the nature of the violations indicate that the permits associated with legal concessions are used to harvest trees in unauthorized areas, thus threatening all forested areas. Many of the violations pertain to the illegal extraction of CITES-listed timber species outside authorized areas. These findings highlight the need for additional reforms.

  8. Logging concessions enable illegal logging crisis in the Peruvian Amazon.

    Science.gov (United States)

    Finer, Matt; Jenkins, Clinton N; Sky, Melissa A Blue; Pine, Justin

    2014-04-17

    The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US-Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3% of all concessions supervised by authorities were suspected of major violations. Of the 609 total concessions, nearly 30% have been cancelled for violations and we expect this percentage to increase as investigations continue. Moreover, the nature of the violations indicate that the permits associated with legal concessions are used to harvest trees in unauthorized areas, thus threatening all forested areas. Many of the violations pertain to the illegal extraction of CITES-listed timber species outside authorized areas. These findings highlight the need for additional reforms.

  9. Towards an entropy-based analysis of log variability

    DEFF Research Database (Denmark)

    Back, Christoffer Olling; Debois, Søren; Slaats, Tijs

    2017-01-01

    the development of hybrid miners: given a (sub-)log, can we determine a priori whether the log is best suited for imperative or declarative mining? We propose using the concept of entropy, commonly used in information theory. We consider different measures for entropy that could be applied and show through...... experimentation on both synthetic and real-life logs that these entropy measures do indeed give insights into the complexity of the log and can act as an indicator of which mining paradigm should be used....

  10. Towards an Entropy-based Analysis of Log Variability

    DEFF Research Database (Denmark)

    Back, Christoffer Olling; Debois, Søren; Slaats, Tijs

    2018-01-01

    the development of hybrid miners: given a log, can we determine a priori whether the log is best suited for imperative or declarative mining? We propose using the concept of entropy, commonly used in information theory. We consider different measures for entropy that could be applied and show through...... experimentation on both synthetic and real-life logs that these entropy measures do indeed give insights into the complexity of the log and can act as an indicator of which mining paradigm should be used....

  11. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  12. Well logging with natural gamma radiation

    International Nuclear Information System (INIS)

    Ellis, D.V.

    1983-01-01

    An invention is described for use in natural gamma radiation well logging in which measurements taken in a borehole are used in the search for valuable underground resources such as oil or gas. The invention comprises deriving a log of natural gamma radiation detected in selected energy windows for a selected borehole depth interval and converting it into a log of the selected subsurface materials, e.g. Th, U, K. This log is corrected for the effects of 1) either a gamma ray emitter in the borehole fluid, e.g. potassium salts and/or 2) a gamma ray attenuator in the borehole fluid, e.g. a strong attenuator such as barite and/or hematite. The Th, U, K log is particularly useful in the exploration of oil and gas resources since the Th, U, K concentrations are a good indication as to the presence, type and volume of shale and clay in the formations surrounding the borehole. (U.K.)

  13. AML (Advanced Mud Logging: First Among Equals

    Directory of Open Access Journals (Sweden)

    T. Loermans

    2017-09-01

    Full Text Available During the past ten years an enormous development in mud logging technology has been made. Traditional mud logging was only qualitative in nature, and mudlogs could not be used for the petrophysical well evaluations which form the basis for all subsequent activities on wells and fields. AML however can provide quantitative information, logs with a reliability, trueness and precision like LWD and WLL. Hence for well evaluation programmes there are now three different logging methods available, each with its own pros and cons on specific aspects: AML, LWD and WLL. The largest improvements have been made in mud gas analysis and elemental analysis of cuttings. Mud gas analysis can yield hydrocarbon fluid composition for some components with a quality like PVT analysis, hence not only revolutionising the sampling programme so far done with only LWD/WLL, but also making it possible to geosteer on fluid properties. Elemental analysis of cuttings, e.g. with XRF, with an ability well beyond the capabilities of the spectroscopy measurements possible earlier with LWD/WLL tools, is opening up improved ways to evaluate formations, especially of course where the traditional methods are falling short of requirements, such as in unconventional reservoirs. An overview and specific examples of these AML logs is given, from which it may be concluded that AML now ought to be considered as “first among its equals”.

  14. Local regularity analysis of strata heterogeneities from sonic logs

    Directory of Open Access Journals (Sweden)

    S. Gaci

    2010-09-01

    Full Text Available Borehole logs provide geological information about the rocks crossed by the wells. Several properties of rocks can be interpreted in terms of lithology, type and quantity of the fluid filling the pores and fractures.

    Here, the logs are assumed to be nonhomogeneous Brownian motions (nhBms which are generalized fractional Brownian motions (fBms indexed by depth-dependent Hurst parameters H(z. Three techniques, the local wavelet approach (LWA, the average-local wavelet approach (ALWA, and Peltier Algorithm (PA, are suggested to estimate the Hurst functions (or the regularity profiles from the logs.

    First, two synthetic sonic logs with different parameters, shaped by the successive random additions (SRA algorithm, are used to demonstrate the potential of the proposed methods. The obtained Hurst functions are close to the theoretical Hurst functions. Besides, the transitions between the modeled layers are marked by Hurst values discontinuities. It is also shown that PA leads to the best Hurst value estimations.

    Second, we investigate the multifractional property of sonic logs data recorded at two scientific deep boreholes: the pilot hole VB and the ultra deep main hole HB, drilled for the German Continental Deep Drilling Program (KTB. All the regularity profiles independently obtained for the logs provide a clear correlation with lithology, and from each regularity profile, we derive a similar segmentation in terms of lithological units. The lithological discontinuities (strata' bounds and faults contacts are located at the local extrema of the Hurst functions. Moreover, the regularity profiles are compared with the KTB estimated porosity logs, showing a significant relation between the local extrema of the Hurst functions and the fluid-filled fractures. The Hurst function may then constitute a tool to characterize underground heterogeneities.

  15. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.

    Science.gov (United States)

    Jakus, A E; Geisendorfer, N R; Lewis, P L; Shah, R N

    2018-05-01

    We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO 4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO 4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer

  16. Digitization, correction, and standardization of geophysical logs from deep boreholes of Central New York State. Final technical report

    International Nuclear Information System (INIS)

    Robinson, J.E.

    1981-07-01

    Digitization and standardization of suitable logs are provided from wells located in the area of Central New York that had been under consideration as a possible site for the disposal of radioactive waste. Digitized logs included those with geophysical parameters that could be analyzed for formation porosity and lithology and in which the log interval was sufficient to evaluate formation parameters. Digitizing equipment was purchased, interfaced, and necessary software was written and documented. Magnetic tapes and hard copy playbacks of all digitized well logs are being forwarded to the Department of Energy repository at Battelle Memorial Institute for use in future projects

  17. Porosity characterization for heterogeneous shales using integrated multiscale microscopy

    Science.gov (United States)

    Rassouli, F.; Andrew, M.; Zoback, M. D.

    2016-12-01

    Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements

  18. Log analysis in the shallow oil sands of the San Joaquin Valley, California

    International Nuclear Information System (INIS)

    Vohs, J.B.

    1976-01-01

    Many fields in the San Joaquin Valley of California produce oil from a depth of 2,500 ft or less. During the period of primary production in these fields, evaluation of potential pay intervals from logs was restricted to examination of ES logs and correlation. With the introduction of secondary and tertiary recovery techniques the need for more and better answers, more quickly available, became apparent. However, several log-analysis problems had to be resolved. Formation evaluation using well logs was complicated by the shaliness of the sand intervals, the low and variable salinity of the formation waters, and the presence of low-pressure-gas (depleted) zones in many of the shallow sands. Solutions to these problems have required more modern logging programs and interpretation techniques. Logs available for the evaluation of these sands are the dual induction-laterolog, the compensated formation density log, the compensated neutron log, and the microlaterolog or proximity log. With this suite of logs it is possible to determine the shale content, porosity, saturation in the flushed zone, and water saturation of the sand, and to locate the low-pressure-gas sands and depleted zones. In cases where freshwater and oil are interlayered, it is possible to tell which sands contain oil and which contain only water. Because a quick interpretation is required, wellsite techniques are called for. These will be described

  19. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    International Nuclear Information System (INIS)

    Gustafsson, Jaana; Gustafsson, Christer

    2010-01-01

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  20. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jaana; Gustafsson, Christer (Malaa Geoscience AB (Sweden))

    2010-01-15

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  1. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  2. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  3. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    International Nuclear Information System (INIS)

    Eneh, C. T. M.; Töyräs, J.; Jurvelin, J. S.; Malo, M. K. H.; Liukkonen, J.; Karjalainen, J. P.

    2016-01-01

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R"2 ≥ 0.493, p < 0.01 and R"2 ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated in vivo

  4. SNG-logs at Skjern

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C; Petersen, Jesper; Aage, Helle Karina

    1998-01-01

    Spectral Natural Gamma-ray logs have been run in two water supply borings at Skjern. The log data have been examined by a new technique - Noise Adjusted Singular Value Decomposition - in order to get a detailed and reliable picture of the distribution of uranium and thorium gamma-rays from heavy...

  5. Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study

    Science.gov (United States)

    Al-Anazi, A. F.; Gates, I. D.

    2010-12-01

    In wells with limited log and core data, porosity, a fundamental and essential property to characterize reservoirs, is challenging to estimate by conventional statistical methods from offset well log and core data in heterogeneous formations. Beyond simple regression, neural networks have been used to develop more accurate porosity correlations. Unfortunately, neural network-based correlations have limited generalization ability and global correlations for a field are usually less accurate compared to local correlations for a sub-region of the reservoir. In this paper, support vector machines are explored as an intelligent technique to correlate porosity to well log data. Recently, support vector regression (SVR), based on the statistical learning theory, have been proposed as a new intelligence technique for both prediction and classification tasks. The underlying formulation of support vector machines embodies the structural risk minimization (SRM) principle which has been shown to be superior to the traditional empirical risk minimization (ERM) principle employed by conventional neural networks and classical statistical methods. This new formulation uses margin-based loss functions to control model complexity independently of the dimensionality of the input space, and kernel functions to project the estimation problem to a higher dimensional space, which enables the solution of more complex nonlinear problem optimization methods to exist for a globally optimal solution. SRM minimizes an upper bound on the expected risk using a margin-based loss function ( ɛ-insensitivity loss function for regression) in contrast to ERM which minimizes the error on the training data. Unlike classical learning methods, SRM, indexed by margin-based loss function, can also control model complexity independent of dimensionality. The SRM inductive principle is designed for statistical estimation with finite data where the ERM inductive principle provides the optimal solution (the

  6. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  7. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry Mark [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  8. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    International Nuclear Information System (INIS)

    B.M. Freifeild

    2001-01-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  9. Solutes transport in unsaturated double-porosity medium. Modelling by homogenization and applications

    International Nuclear Information System (INIS)

    Tran Ngoc, T.D.

    2008-07-01

    This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)

  10. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media

    International Nuclear Information System (INIS)

    Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou

    2015-01-01

    Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately. - Highlights: • Predictive models for permeability and porosity of porous media considering stress sensitivity are developed. • The fractal theory and mechanics of materials are used in these models. • The predictions of permeability and porosity show good agreement with those obtained by the available experimental data. • The proposed models can be used to characterize the flow in porous media under stress accurately

  11. Quantification of Wellbore Leakage Risk Using Non-destructive Borehole Logging Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Duguid, Andrew; Butsch, Robert; Cary, J.; Celia, Michael; Chugunov, Nikita; Gasda, Sarah; Hovorka, Susan; Ramakrishnan, T. S.; Stamp, Vicki; Thingelstad, Rebecca; Wang, James

    2014-08-29

    Well integrity is important at all potential CCS locations and may play a crucial role establishing leakage risk in areas where there is a high density of existing wells that could be impacted by the storage operations including depleted petroleum fields where EOR or CCS will occur. To address a need for risk quantification methods that can be directly applied to individual wells using borehole logging tools a study was conducted using data from five wells in Wyoming. The objectives of the study were: Objective 1: Develop methods to establish the baseline flow parameters (porosity and permeability or mobility) from individual measurements of the material properties and defects in a well. Objective 2: Develop a correlation between field flow-property data and cement logs that can be used to establish the flow-properties of well materials and well features using cement mapping tools. Objective 3: Establish a method that uses the flow-property model (Objective 2) to analyze the statistical uncertainties associated with individual well leakage that can provide basis for uncertainty in risk calculations. The project objectives were met through the logging of five wells in Carbon and Natrona County Wyoming to collect data that was used to estimate individual and average well flow properties and model the results using ultrasonic data collected during the logging. Three of the five wells provided data on point and average flow properties for well annuli. Data from the other two wells were used to create models of cement permeability and test whether information collected in one well could be used to characterize another well. The results of the in-situ point measurements were confirmed by the lab measurements sidewall cores collected near the same depths Objective 1 was met using the data collected through logging, testing, and sampling. The methods were developed that can establish baseline flow parameters of wells by both point and average test methods. The methods to

  12. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J. [Purdue University

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a sub-porosity within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The sub-porosity may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in

  13. Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization

    KAUST Repository

    Siddiqui, Amber

    2017-04-13

    The porosity of spacer-filled feed channels influences the hydrodynamics of spiral-wound membrane systems and impacts the overall performance of the system. Therefore, an exact measurement and a detailed understanding of the impact of the feed channel porosity is required to understand and improve the hydrodynamics of spiral-wound membrane systems applied for desalination and wastewater reuse. The objectives of this study were to assess the accuracy of porosity measurement techniques for feed spacers differing in geometry and thickness and the consequences of using an inaccurate method on hydrodynamic predictions, which may affect permeate production. Six techniques were applied to measure the porosity namely, three volumetric calculations based on spacer strand count together with cuboidal (SC), cylindrical (VCC) and ellipsoidal volume calculation (VCE) and three independent techniques based on volume displacement (VD), weight and density (WD) and computed tomography scanning (CT). The CT method was introduced as an alternative for the other five already existing and applied methods in practice.Six feed spacers used for the porosity measurement differed in filament thickness, angle between the filaments and mesh-size. The results of the studies showed differences between the porosities, measured by the six methods. The results of the microscopic techniques SC, VCC and VCE deviated significantly from measurements by VD, WD and CT, which showed similar porosity values for all spacer types.Depending on the maximum deviation of the porosity measurement techniques from –6% to +6%, (i) the linear velocity deviations were −5.6% and +6.4% respectively and (ii) the pressure drop deviations were –31% and +43% respectively, illustrating the importance of an accurate porosity measurement. Because of the accuracy and standard deviation, the VD and WD method should be applied for the porosity determination of spacer-filled channels, while the CT method is recommended for

  14. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  15. Intelligent approaches for the synthesis of petrophysical logs

    International Nuclear Information System (INIS)

    Rezaee, M Reza; Kadkhodaie-Ilkhchi, Ali; Alizadeh, Pooya Mohammad

    2008-01-01

    Log data are of prime importance in acquiring petrophysical data from hydrocarbon reservoirs. Reliable log analysis in a hydrocarbon reservoir requires a complete set of logs. For many reasons, such as incomplete logging in old wells, destruction of logs due to inappropriate data storage and measurement errors due to problems with logging apparatus or hole conditions, log suites are either incomplete or unreliable. In this study, fuzzy logic and artificial neural networks were used as intelligent tools to synthesize petrophysical logs including neutron, density, sonic and deep resistivity. The petrophysical data from two wells were used for constructing intelligent models in the Fahlian limestone reservoir, Southern Iran. A third well from the field was used to evaluate the reliability of the models. The results showed that fuzzy logic and artificial neural networks were successful in synthesizing wireline logs. The combination of the results obtained from fuzzy logic and neural networks in a simple averaging committee machine (CM) showed a significant improvement in the accuracy of the estimations. This committee machine performed better than fuzzy logic or the neural network model in the problem of estimating petrophysical properties from well logs

  16. New Technique for TOC Estimation Based on Thermal Core Logging in Low-Permeable Formations (Bazhen fm.)

    Science.gov (United States)

    Popov, Evgeny; Popov, Yury; Spasennykh, Mikhail; Kozlova, Elena; Chekhonin, Evgeny; Zagranovskaya, Dzhuliya; Belenkaya, Irina; Alekseev, Aleksey

    2016-04-01

    A practical method of organic-rich intervals identifying within the low-permeable dispersive rocks based on thermal conductivity measurements along the core is presented. Non-destructive non-contact thermal core logging was performed with optical scanning technique on 4 685 full size core samples from 7 wells drilled in four low-permeable zones of the Bazhen formation (B.fm.) in the Western Siberia (Russia). The method employs continuous simultaneous measurements of rock anisotropy, volumetric heat capacity, thermal anisotropy coefficient and thermal heterogeneity factor along the cores allowing the high vertical resolution (of up to 1-2 mm). B.fm. rock matrix thermal conductivity was observed to be essentially stable within the range of 2.5-2.7 W/(m*K). However, stable matrix thermal conductivity along with the high thermal anisotropy coefficient is characteristic for B.fm. sediments due to the low rock porosity values. It is shown experimentally that thermal parameters measured relate linearly to organic richness rather than to porosity coefficient deviations. Thus, a new technique employing the transformation of the thermal conductivity profiles into continuous profiles of total organic carbon (TOC) values along the core was developed. Comparison of TOC values, estimated from the thermal conductivity values, with experimental pyrolytic TOC estimations of 665 samples from the cores using the Rock-Eval and HAWK instruments demonstrated high efficiency of the new technique for the organic rich intervals separation. The data obtained with the new technique are essential for the SR hydrocarbon generation potential, for basin and petroleum system modeling application, and estimation of hydrocarbon reserves. The method allows for the TOC richness to be accurately assessed using the thermal well logs. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).

  17. Characterization of the spatial distribution of porosity in the eogenetic karst Miami Limestone using ground penetrating radar

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.

    2014-12-01

    Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features

  18. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  19. On the porosity of barrier layers

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2009-09-01

    Full Text Available Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL thickness first proposed by de Boyer Montégut et al. (2007. In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.

  20. Physical Explanation of Archie's Porosity Exponent in Granular Materials: A Process-Based, Pore-Scale Numerical Study

    Science.gov (United States)

    Niu, Qifei; Zhang, Chi

    2018-02-01

    The empirical Archie's law has been widely used in geosciences and engineering to explain the measured electrical resistivity of many geological materials, but its physical basis has not been fully understood yet. In this study, we use a pore-scale numerical approach combining discrete element-finite difference methods to study Archie's porosity exponent m of granular materials over a wide porosity range. Numerical results reveal that at dilute states (e.g., porosity ϕ > 65%), m is exclusively related to the particle shape and orientation. As the porosity decreases, the electric flow in pore space concentrates progressively near particle contacts and m increases continuously in response to the intensified nonuniformity of the local electrical field. It is also found that the increase in m is universally correlated with the volume fraction of pore throats for all the samples regardless of their particle shapes, particle size range, and porosities.

  1. Engineering aspects of radiometric logging

    International Nuclear Information System (INIS)

    Huppert, P.

    1982-01-01

    Engineering problems encountered in the development of nuclear borehole logging techniques are discussed. Spectrometric techniques require electronic stability of the equipment. In addition the electronics must be capable of handling high count rates of randomly distributed pulses of fast rise time from the detector and the systems must be designed so that precise calibration is possible under field operating conditions. Components of a logging system are discussed in detail. They include the logging probe (electronics, detector, high voltage supply, preamplifier), electronic instrumentation for data collection and processing and auxiliary equipment

  2. Log-balanced combinatorial sequences

    Directory of Open Access Journals (Sweden)

    Tomislav Došlic

    2005-01-01

    Full Text Available We consider log-convex sequences that satisfy an additional constraint imposed on their rate of growth. We call such sequences log-balanced. It is shown that all such sequences satisfy a pair of double inequalities. Sufficient conditions for log-balancedness are given for the case when the sequence satisfies a two- (or more- term linear recurrence. It is shown that many combinatorially interesting sequences belong to this class, and, as a consequence, that the above-mentioned double inequalities are valid for all of them.

  3. Formation mechanisms of the powder porosity generated in the neighborhood of the shear plane

    International Nuclear Information System (INIS)

    Makino, K.; Kuramitsu, K.; Hoshikawa, H.; Mori, H.

    1988-01-01

    In recent years, the sophisticated technology on the process of powder feeding, packing, mixing, and compacting, by which homogeneous powder products can be manufactured in fine ceramics and electronics industries, is being established. And, in order to develop the technology, it is necessary to make clear the formation mechanism of powder porosity in the neighborhood of shear plane generated in the powder bed. However, this has not yet been sufficiently elucidated. In this paper, a single-plane shear tester which can simultaneously measure three quantities of stress, strain, and the powder porosity in the neighborhood of shear plane, was devised by using an X-ray radiograph system, and these three quantities were systematically measured under various shearing conditions. Next, a formation model of the powder porosity in the neighborhood of shear plane, composed of powder yield locus, critical state line, and Mohr stress semi, was experimentally checked by the three measured quantities mentioned above

  4. Radiation borehole logging method

    International Nuclear Information System (INIS)

    Wylie, A.; Mathew, P.J.

    1977-01-01

    A method of obtaining an indication of the diameter of a borehole is described. The method comprises subjecting the walls of the borehole to monoenergetic gamma radiation and making measurements of the intensity of gamma radiation backscattered from the walls. The energy of the radiation is sufficiently high for the shape to be substantially independent of the density and composition of the borehole walls

  5. Metaheuristic optimization approaches to predict shear-wave velocity from conventional well logs in sandstone and carbonate case studies

    Science.gov (United States)

    Emami Niri, Mohammad; Amiri Kolajoobi, Rasool; Khodaiy Arbat, Mohammad; Shahbazi Raz, Mahdi

    2018-06-01

    Seismic wave velocities, along with petrophysical data, provide valuable information during the exploration and development stages of oil and gas fields. The compressional-wave velocity (VP ) is acquired using conventional acoustic logging tools in many drilled wells. But the shear-wave velocity (VS ) is recorded using advanced logging tools only in a limited number of wells, mainly because of the high operational costs. In addition, laboratory measurements of seismic velocities on core samples are expensive and time consuming. So, alternative methods are often used to estimate VS . Heretofore, several empirical correlations that predict VS by using well logging measurements and petrophysical data such as VP , porosity and density are proposed. However, these empirical relations can only be used in limited cases. The use of intelligent systems and optimization algorithms are inexpensive, fast and efficient approaches for predicting VS. In this study, in addition to the widely used Greenberg–Castagna empirical method, we implement three relatively recently developed metaheuristic algorithms to construct linear and nonlinear models for predicting VS : teaching–learning based optimization, imperialist competitive and artificial bee colony algorithms. We demonstrate the applicability and performance of these algorithms to predict Vs using conventional well logs in two field data examples, a sandstone formation from an offshore oil field and a carbonate formation from an onshore oil field. We compared the estimated VS using each of the employed metaheuristic approaches with observed VS and also with those predicted by Greenberg–Castagna relations. The results indicate that, for both sandstone and carbonate case studies, all three implemented metaheuristic algorithms are more efficient and reliable than the empirical correlation to predict VS . The results also demonstrate that in both sandstone and carbonate case studies, the performance of an artificial bee

  6. Porosity and permeability evolution of vesicular basalt reservoirs with increasing depth: constraints from the Big Island of Hawai'i

    Science.gov (United States)

    Millett, John; Haskins, Eric; Thomas, Donald; Jerram, Dougal; Planke, Sverre; Healy, Dave; Kück, Jochem; Rossetti, Lucas; Farrell, Natalie; Pierdominici, Simona

    2017-04-01

    Volcanic reservoirs are becoming increasingly important in the targeting of petroleum, geothermal and water resources globally. However, key areas of uncertainty in relation to volcanic reservoir properties during burial in different settings remain. In this contribution, we present results from borehole logging and sampling operations within two fully cored c. 1.5 km deep boreholes, PTA2 and KMA1, from the Humúula saddle region on the Big Island of Hawai'i. The boreholes were drilled as part of the Humu'ula Groundwater Research Project (HGRP) between 2013-2016 and provide unique insights into the evolution of pore structure with increasing burial in a basaltic dominated lava sequence. The boreholes encounter mixed sequences of 'a'ā, pāhoehoe and transitional lava flows along with subsidiary intrusions and sediments from the shield to post-shield phases of Mauna Kea. Borehole wireline data including sonic, spectral gamma and Televiewer imagery were collected along with density, porosity, permeability and ultrasonic velocity laboratory measurements from core samples. A range of intra-facies were sampled for analysis from various depths within the two boreholes. By comparison with core data, the potential for high resolution Televiewer imaging to reveal spectacular intra-facies features including individual vesicles, vesicle segregations, 'a'ā rubble zones, intrusive contacts, and intricate pāhoehoe lava flow lobe morphologies is demonstrated. High quality core data enables the calibration of Televiewer facies enabling improved interpretation of volcanic reservoir features in the more common exploration scenario where core is absent. Laboratory results record the ability of natural vesicular basalt samples to host very high porosity (>50%) and permeability (>10 darcies) within lava flow top facies which we demonstrate are associated with vesicle coalescence and not micro-fractures. These properties may be maintained to depths of c. 1.5 km in regions of limited

  7. VT Route Log Points 2017

    Data.gov (United States)

    Vermont Center for Geographic Information — This data layer is used with VTrans' Integrated Route Log System (IRA). It is also used to calibrate the linear referencing systems, including the End-to-End and...

  8. New materials for fireplace logs

    Science.gov (United States)

    Kieselback, D. J.; Smock, A. W.

    1971-01-01

    Fibrous insulation and refractory concrete are used for logs as well as fireproof walls, incinerator bricks, planters, and roof shingles. Insulation is lighter and more shock resistant than fireclay. Lightweight slag bonded with refractory concrete serves as aggregrate.

  9. The effect of porosity on the mechanical properties of porous titanium scaffolds: comparative study on experimental and analytical values

    Science.gov (United States)

    Khodaei, Mohammad; Fathi, Mohammadhossein; Meratian, Mahmood; Savabi, Omid

    2018-05-01

    Reducing the elastic modulus and also improving biological fixation to the bone is possible by using porous scaffolds. In the present study, porous titanium scaffolds containing different porosities were fabricated using the space holder method. Pore distribution, formed phases and mechanical properties of titanium scaffolds were studied by Scanning Electron Microscope (SEM), x-ray diffraction (XRD) and cold compression test. Then the results of compression test were compared to the Gibson-Ashby model. Both experimentally measured and analytically calculated elastic modulus of porous titanium scaffolds decreased by porosity increment. The compliance between experimentally measured and analytically calculated elastic modulus of titanium scaffolds are also increased by porosity increment.

  10. Geomicrobial Optical Logging Detectors (GOLD)

    Science.gov (United States)

    Bramall, N. E.; Stoker, C. R.; Price, P. B.; Coates, J. D.; Allamandola, L. J.; Mattioda, A. L.

    2008-12-01

    We will present concepts for downhole instrumentation that could be used in the Deep Underground Science and Engineering Laboratory (DUSEL). We envision optical borehole-logging instruments that could monitor bacterial concentration, mineralogy, aromatic organics, temperature and oxygen concentration, allowing for the in situ monitoring of time-dependent microbial and short-scale geologic processes and provide valuable in situ data on stratigraphy to supplement core analyses, especially where instances of missing or damaged core sections make such studies difficult. Incorporated into these instruments will be a sampling/inoculation tool to allow for the recovery and/or manipulation of particularly interesting sections of the borehole wall for further study, enabling a series of microbiological studies. The borehole tools we will develop revolve around key emerging technologies and methods, some of which are briefly described below: 1) Autofluorescence Spectroscopy: Building on past instruments, we will develop a new borehole logger that searches for microbial life and organics using fluorescence spectroscopy. Many important organic compounds (e.g. PAHs) and biomolecules (e.g. aromatic amino acids, proteins, methanogenic coenzymes) fluoresce when excited with ultraviolet and visible light. Through the careful selection of excitation wavelength(s) and temporal gating parameters, a borehole logging instrument can detect and differentiate between these different compounds and the mineral matrix in which they exist. 2) Raman Spectroscopy: Though less sensitive than fluorescence spectroscopy, Raman spectroscopy is more definitive: it can provide important mineral phase distribution/proportions and other chemical data enabling studies of mineralogy and microbe-mineral interactions (when combined with fluorescence). 3) Borehole Camera: Imaging of the borehole wall with extended information in the UV, visible, and NIR for a more informative view can provide a lot of insight

  11. Air-Filled porosity and permeability relationships during solid-waste fermentation

    NARCIS (Netherlands)

    Richard, T.L.; Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2004-01-01

    An experimental apparatus was constructed to measure the structural parameters of organic porous media, i.,e. mechanical strength, air-filled porosity, air permeability, and the Ergun particle size. These parameters are critical to the engineering of aerobic bioconversion systems and were measured

  12. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...... and the highest porosity measured was 46.4% with an average pore diameter of 0.98 μm. The air flow through this cathode was measured to 5.8 ml/(min mm2). Also the effect of exposure time to the solvent was tested for the most promising PMMA pore former and it was found that the average pore diameter decreases...

  13. ADN* Density log estimation Using Rockcell*

    International Nuclear Information System (INIS)

    Okuku, C.; Iloghalu, Emeka. M.; Omotayo, O.

    2003-01-01

    This work is intended to inform on the possibilities of estimating good density data in zones associated with sliding in a reservoir with ADN* tool with or without ADOS in string in cases where repeat sections were not done, possibly due to hole stability or directional concerns. This procedure has been equally used to obtain a better density data in corkscrew holes. Density data (ROBB) was recomputed using neural network in RockCell* to estimate the density over zones of interest. RockCell* is a Schlumberger software that has neural network functionally which can be used to estimate missing logs using the combination of the responses of other log curves and intervals that are not affected by sliding. In this work, an interval was selected and within this interval twelve litho zones were defined using the unsupervised neural network. From this a training set was selected based on intervals of very good log responses outside the sliding zones. This training set was used to train and run the neural network for a specific lithostratigraphic interval. The results matched the known good density curve. Then after this, an estimation of the density curve was done using the supervised neural network. The output from this estimation matched very closely in the good portions of the log, thus providing some density measurements in the sliding zone. This methodology provides a scientific solution to missing data during the process of Formation evaluation

  14. Palm distributions for log Gaussian Cox processes

    DEFF Research Database (Denmark)

    Coeurjolly, Jean-Francois; Møller, Jesper; Waagepetersen, Rasmus Plenge

    2017-01-01

    This paper establishes a remarkable result regarding Palm distributions for a log Gaussian Cox process: the reduced Palm distribution for a log Gaussian Cox process is itself a log Gaussian Cox process that only differs from the original log Gaussian Cox process in the intensity function. This new...... result is used to study functional summaries for log Gaussian Cox processes....

  15. Using Oil and Gas Well Log Records to Understand Possible Connections Between Wastewater Injection Zones and Usable Groundwater Aquifers in California

    Science.gov (United States)

    Shimabukuro, D.; Haugen, E. A.; Battistella, C.; Treguboff, E. W.; Kale, J. M.

    2015-12-01

    Although the disposal of produced water in wastewater injection wells has been occurring in California for decades, it is not clear whether injected fluids may be migrating into usable groundwater aquifers. One problem is the poor characterization of federally-protected (oil and gas well records collected by the California Division of Oil, Gas, and Geothermal Resources (DOGGR). These scanned records contain two useful sources of information. First, geophysical well logs, such those measuring resistivity and porosity, can be used to determine aquifer salinity. This allows a three-dimensional understanding of the distribution of protected groundwater. Second, driller's logs contain lithological descriptions at depth. These lithologies can be used to construct a three-dimensional texture model, which can then be used in a groundwater flow model. A large number of undergraduate researchers at CSU Sacramento and CSU Long Beach have been collecting information on well records in the Ventura Basin and the Southern San Joaquin Valley. Each well record is examined with basic metadata entered into an online database in an effort to identify appropriate geophysical well logs and driller's logs. High-quality driller's logs are coded and used to create three-dimensional framework models for each well field. The geophysical logs are digitized and will be used to determine aquifer salinity. In addition, we are using information from the DOGGR well records to investigate wellbore integrity, waste disposal and waterflood injection volumes, and the possibility of induced seismicity. This project is part of the broader effort of the California State Water Resources Control Board to implement Senate Bill 4.

  16. Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization

    KAUST Repository

    Siddiqui, Amber; Lehmann, S.; Haaksman, V.; Ogier, J.; Schellenberg, C.; van Loosdrecht, M.C.M.; Kruithof, J.C.; Vrouwenvelder, Johannes S.

    2017-01-01

    The porosity of spacer-filled feed channels influences the hydrodynamics of spiral-wound membrane systems and impacts the overall performance of the system. Therefore, an exact measurement and a detailed understanding of the impact of the feed

  17. Change in Soil Porosity under Load

    Science.gov (United States)

    Dyba, V. P.; Skibin, E. G.

    2017-11-01

    The theoretical basis for the process of soil compaction under various loading paths is considered in the article, the theoretical assumptions are compared with the results of the tests of clay soil on a stabilometer. The variant of the critical state model of the sealing plastic-rigid environment is also considered the strength characteristics of which depend on the porosity coefficient. The loading surface is determined by the results of compression and stabilometrical tests. In order to clarify the results of this task, it is necessary to carry out stabilometric tests under conditions of simple loading, i.e. where the vertical pressure would be proportional to the compression pressure σ3 = kσ1. Within the study the attempts were made to confirm the model given in the beginning of the article by laboratory tests. After the analysis of the results, the provided theoretical assumptions were confirmed.

  18. Sintered ceramics having controlled density and porosity

    International Nuclear Information System (INIS)

    Brassfield, H.C.; DeHollander, W.R.; Nivas, Y.

    1980-01-01

    A new method was developed for sintering ceramic uranium dioxide powders, in which ammonium oxalate is admixed with the powder prior to being pressed into a cylindrical green body, so that the end-point density of the final nuclear-reactor fuel product can be controlled. When the green body is heated, the ammonium oxalate decomposes and leaves discrete porosity in the sintered body, which corresponds to the ammonium oxalate regions in the green body. Thus the end-point density of the sintered body is a function of the amount of ammonium oxalate added. The final density of the sintered product is about 90-97% of the theoretical. The addition of ammonium oxalate also allows control of the pore size and distribution throughout the fuel. The process leaves substantially no impurities in the sintered strucuture. (DN)

  19. An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs

    Science.gov (United States)

    Wang, Zhenlin; Sun, Ting; Feng, Cheng; Wang, Wei; Han, Chuang

    2018-06-01

    There can be no industrial oil production in tight oil reservoirs until fracturing is undertaken. Under such conditions, the brittleness of the rocks is a very important factor. However, it has so far been difficult to predict. In this paper, the selected study area is the tight oil reservoirs in Lucaogou formation, Permian, Jimusaer sag, Junggar basin. According to the transformation of dynamic and static rock mechanics parameters and the correction of confining pressure, an improved method is proposed for quantitatively predicting the brittleness of rocks via well logs in tight oil reservoirs. First, 19 typical tight oil core samples are selected in the study area. Their static Young’s modulus, static Poisson’s ratio and petrophysical parameters are measured. In addition, the static brittleness indices of four other tight oil cores are measured under different confining pressure conditions. Second, the dynamic Young’s modulus, Poisson’s ratio and brittleness index are calculated using the compressional and shear wave velocity. With combination of the measured and calculated results, the transformation model of dynamic and static brittleness index is built based on the influence of porosity and clay content. The comparison of the predicted brittleness indices and measured results shows that the model has high accuracy. Third, on the basis of the experimental data under different confining pressure conditions, the amplifying factor of brittleness index is proposed to correct for the influence of confining pressure on the brittleness index. Finally, the above improved models are applied to formation evaluation via well logs. Compared with the results before correction, the results of the improved models agree better with the experimental data, which indicates that the improved models have better application effects. The brittleness index prediction method of tight oil reservoirs is improved in this research. It is of great importance in the optimization of

  20. Evaluation of concrete mechanical strength through porosity

    Directory of Open Access Journals (Sweden)

    Olivares, M.

    2004-03-01

    Full Text Available The increasing on voids or pores in any material - if the rest of characteristics remains equal -always causes a decrease in their mechanical strength since the ratio volume/resistant mass is lower Following all these fact a well known conclusion rises: there is a relationship between compacity/porosity and mechanical strengths. The purpose of this research is to establish a new possible correlation between both concrete properties with independence of the proportions, type of cement, size of grain, age, use. etc. So it can be concluded that the results of this research allow the engineer or architect in charge of a restoration or reparation to determine the compression strength of a concrete element. A first step is to determine the porosity through a rather short number of tests. Subsequently, compression strength will be obtained applying just a mathematical formula.

    El aumento de huecos o poros de cualquier material, lo mismo que en otras circunstancias, redunda siempre en una merma de sus resistencias mecánicas, al haber menor volumen-masa resistente. En consecuencia, puede deducirse, que hay una relación entre la compacidad/porosidad y las resistencias mecánicas. En el presente trabajo se estudia una posible correlación entre ambas propiedades del hormigón con independencia de su dosificación, tipo de cemento, granulometría, edad, uso, etc. Las conclusiones obtenidas en la presente investigación permiten al técnico, encargado de una restauración o rehabilitación, determinar la resistencia a compresión de un elemento de hormigón, una vez hallada, de una forma sencilla, la porosidad de una muestra no muy voluminosa, mediante la aplicación de una simple fórmula matemática.

  1. Log quality enhancement: A systematic assessment of logging company wellsite performance and log quality

    International Nuclear Information System (INIS)

    Farnan, R.A.; Mc Hattie, C.M.

    1984-01-01

    To improve the monitoring of logging company performance, computer programs were developed to assess information en masse from log quality check lists completed on wellsite by the service company engineer and Phillips representative. A study of all logging jobs performed by different service companies for Phillips in Oklahoma (panhandle excepted) during 1982 enabled several pertinent and beneficial interpretations to be made. Company A provided the best tool and crew service. Company B incurred an excessive amount of lost time related to tool failure, in particular the neutron-density tool combination. Company C, although used only three times, incurred no lost time. With a reasonable data base valid conclusions were made pertaining, for example, to repeated tool malfunctions. The actual logs were then assessed for quality

  2. Cased-hole log analysis and reservoir performance monitoring

    CERN Document Server

    Bateman, Richard M

    2015-01-01

    This book addresses vital issues, such as the evaluation of shale gas reservoirs and their production. Topics include the cased-hole logging environment, reservoir fluid properties; flow regimes; temperature, noise, cement bond, and pulsed neutron logging; and casing inspection. Production logging charts and tables are included in the appendices. The work serves as a comprehensive reference for production engineers with upstream E&P companies, well logging service company employees, university students, and petroleum industry training professionals. This book also: ·       Provides methods of conveying production logging tools along horizontal well segments as well as measurements of formation electrical resistivity through casing ·       Covers new information on fluid flow characteristics in inclined pipe and provides new and improved nuclear tool measurements in cased wells ·       Includes updates on cased-hole wireline formation testing  

  3. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  4. Well logging system with linearity control

    International Nuclear Information System (INIS)

    Jones, J.M.

    1973-01-01

    Apparatus is described for controlling the gain of a nuclear well logging system comprising: (1) means for measuring the energy spectrum of gamma rays produced by earth formation materials surrounding a well borehole; (2) means for measuring the number of counts of a gamma rays having an energy falling within each of at least two predetermined energy band portions of the gamma ray energy spectrum; (3) means for generating a signal proportional to the ratio of the gamma ray counts and for comparing the ratio signal with at least one constant ratio calibration signal; (4) means for generating an error signal representative of the difference of the ratio signal and the constant ratio calibration signal; and (5) means for using the error signal to control the linearity of the well logging system. (author)

  5. Development of a digital log ratemeter

    International Nuclear Information System (INIS)

    Domienikan, Claudio; Brito, Andreia; Toledo, Fabio de; Zahn, Guilherme S.

    2011-01-01

    A compact log ratemeter that measures and displays an average count rate through a microcomputer is presented. This ratemeter was developed to be used to monitor a laboratory of production of radioactive samples and also for teaching purposes. The main features are log measurement range from .1 to 1.000 counts/sec and adjustable level alarm. The electronic circuit uses a Geiger tube LND7224, and the processed signal is applied to a National Instruments Multifunction I/O USB-6008 connected to a PC through USB input. A program developed in LabView allows storage of data and real-time observation of the rate of radiation evolution. This ratemeter was designed and constructed in the IPEN-CNEN/SP. (author)

  6. Preliminary evaluation of lithology and quality of coal and embedding rock on the basis of borehole logging data

    International Nuclear Information System (INIS)

    Nguyen Dinh Chau; Chrusciel, E.

    1990-01-01

    A simple computer method of interpretation of classic borehole logging made on coal deposits is presented. This interpretation enables fast determination of calorific value, ash content and moisture content of coal as well as shale content, porosity and sandstone matrix content of embedding rocks. A method of graphic representation of results is also shown. 5 figs., 1 tab., 13 refs. (author)

  7. Models for Strength Prediction of High-Porosity Cast-In-Situ Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Wenhui Zhao

    2018-01-01

    Full Text Available A study was undertaken to develop a prediction model of compressive strength for three types of high-porosity cast-in-situ foamed concrete (cement mix, cement-fly ash mix, and cement-sand mix with dry densities of less than 700 kg/m3. The model is an extension of Balshin’s model and takes into account the hydration ratio of the raw materials, in which the water/cement ratio was a constant for the entire construction period for a certain casting density. The results show that the measured porosity is slightly lower than the theoretical porosity due to few inaccessible pores. The compressive strength increases exponentially with the increase in the ratio of the dry density to the solid density and increases with the curing time following the composite function A2ln⁡tB2 for all three types of foamed concrete. Based on the results that the compressive strength changes with the porosity and the curing time, a prediction model taking into account the mix constitution, curing time, and porosity is developed. A simple prediction model is put forward when no experimental data are available.

  8. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Czech Academy of Sciences Publication Activity Database

    Medřický, J.; Curry, N.; Pala, Zdeněk; Vilémová, Monika; Chráska, Tomáš; Johansson, J.; Markocsan, N.

    2015-01-01

    Roč. 24, č. 4 (2015), s. 622-628 ISSN 1059-9630 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : gas turbine s * high temperature application * porosity of coatings * stabilized zirconia * thermal barrier coatings (TBCs) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.568, year: 2015

  9. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Science.gov (United States)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  10. Effect of ageing on porosity of hot mix asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, M.F.A.S. [Dept. de Estradas de Rodagem de Minas Gerais (DER/MG), Belo Horizonte, MG (Brazil); Lins, V.F.C. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil). Dept. de Engenharia Quimica], e-mail: vlins@deq.ufmg.br; Pasa, V.M.D. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil). Dept. de Quimica

    2011-01-15

    Asphalt ageing due to the action of solar radiation must be considered in the study of the performance of asphalt pavement, especially in Brazil because of its geographical characteristics. The aim of this work is to study asphalt ageing caused by the effect of xenon radiation, by using weathering tests. Sample degradation was evaluated by using Fourier transform infrared spectroscopy (FTIR). The results of FTIR indicated an oxidation process of the material, which occurred during exposure in the xenon arc chamber. The area ratio related to the bands of the aliphatic CH/OH and CH/C=O groups and those of the Si-O-Si/OH groups of bitumen decreased after exposure to xenon radiation. The samples were analyzed by using X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The porosity of the samples before and after ageing was measured by using the SEM micrographs and the image software Quantikov. (author)

  11. Non conventional empirical relations for estimating compressional-wave sonic logs; Relacoes empiricas nao-convencionais para estimativa de perfis sonicos de ondas compressionais

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, Fabricio de O.A. [Observatorio Nacional (ON), Rio de Janeiro, RJ (Brazil). Curso de Pos-graduacao em Geofisica; Martins, Jorge L. [Observatorio Nacional (ON), Rio de Janeiro, RJ (Brazil). Coordenacao da Area de Geofisica

    2008-07-01

    We apply least-squares regression using non-conventional empirical relations for estimating compressional-wave sonic logs (DTP). We investigate the applicability of five expressions which involve exponential functions, with arguments representing effective porosity ({phi}e) estimated from density logs, shaliness (V{sub clay}) estimated from gamma-ray logs (GR) and electrical resistivity (R{sub ILD}) measured by the deep-induction logging tool (ILD). First, we use such physical properties individually, i.e., as the dependence parameter of compressional-wave velocities (V{sub P}), in the argument of the exponential function; then, we combine some of these properties in order to simulate the known interdependency among them. In order to test our methodology, we adopt two vertical wells - hereafter named Poco-A and Poco-B - from 'Campo Escola Namorado', with information of all geophysical well logs necessary to our study in the turbiditic interval from 2950 e 3150 m. In Poco-A, the best fit obtained through least squares for compressional-wave velocities was V{sub P} = 4.657 exp[.1.488 {phi}e - 0.986 V{sub clay} + 5.022 {phi}e V{sub clay} ], with correlation coefficient r = 0.81; in Poco-B, we found V{sub P} 4.209 exp[- 0.658 {phi}e - 0.430 V{sub clay} + 6.620 x 10.4 R{sub ILD} - 0.035 {phi}e V{sub clay} R{sub ILD}], with correlation coefficient r = 0.52. These two non-conventional empirical models take into account the effects of the interdependence between effective porosity, shaliness and electrical resistivity of the rock on Vp (i.e., they incorporate non-linear effects), becoming alternative models for predicting the sonic logs that are incomplete and/or absent in the data set 'Campo Escola Namorado'. (author)

  12. Porosity Dependence of Piezoelectric Properties for Porous Potassium Niobate System Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wada, S; Mase, Y; Shimizu, S; Maeda, K; Fujii, I; Nakashima, K; Pulpan, P; Miyajima, N, E-mail: swada@yamanashi.ac.jp [Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510 (Japan)

    2011-10-29

    Porous potassium niobate (KNbO{sub 3}, KN) system ceramics were prepared by a conventional sintering method using carbon black (CB) nanoparticles. First, KN nanoparticles with a size of 100 nm was mixed with CB nanoparticles and binder using ball milling with ethanol. The mixture was dried, and pressed into pellets using uniaxial pressing. After binder burnout, these ceramics was sintered in air. Their piezoelectric properties were measured and discussed a relationship between porosity and piezoelectric properties. As the results, with increasing porosity, piezoelectric g33 constant increased significantly, which suggested that porous ceramics were effective for stress sensor application.

  13. In situ detection of porosity initiation during aluminum thin film anodizing

    Science.gov (United States)

    Van Overmeere, Quentin; Nysten, Bernard; Proost, Joris

    2009-02-01

    High-resolution curvature measurements have been performed in situ during aluminum thin film anodizing in sulfuric acid. A well-defined transition in the rate of internal stress-induced curvature change is shown to allow for the accurate, real-time detection of porosity initiation. The validity of this in situ diagnostic tool was confirmed by a quantitative analysis of the spectral density distributions of the anodized surfaces. These were obtained by analyzing ex situ atomic force microscopy images of surfaces anodized for different times, and allowed to correlate the in situ detected transition in the rate of curvature change with the appearance of porosity.

  14. Porosity Dependence of Piezoelectric Properties for Porous Potassium Niobate System Ceramics

    International Nuclear Information System (INIS)

    Wada, S; Mase, Y; Shimizu, S; Maeda, K; Fujii, I; Nakashima, K; Pulpan, P; Miyajima, N

    2011-01-01

    Porous potassium niobate (KNbO 3 , KN) system ceramics were prepared by a conventional sintering method using carbon black (CB) nanoparticles. First, KN nanoparticles with a size of 100 nm was mixed with CB nanoparticles and binder using ball milling with ethanol. The mixture was dried, and pressed into pellets using uniaxial pressing. After binder burnout, these ceramics was sintered in air. Their piezoelectric properties were measured and discussed a relationship between porosity and piezoelectric properties. As the results, with increasing porosity, piezoelectric g33 constant increased significantly, which suggested that porous ceramics were effective for stress sensor application.

  15. Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar

    2007-01-01

    Full Text Available The most common fabrication technique of porous silicon (PS is electrochemical etching of a crystalline silicon wafer in a hydrofluoric (HF acid-based solution. The electrochemical process allows for precise control of the properties of PS such as thickness of the porous layer, porosity, and average pore diameter. The control of these properties of PS was shown to depend on the HF concentration in the used electrolyte, the applied current density, and the thickness of PS. The change in pore diameter, porosity, and specific surface area of PS was investigated by measuring nitrogen sorption isotherms.

  16. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules

    Energy Technology Data Exchange (ETDEWEB)

    Alphenaar, P.A. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology); Perez, M.C. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology); Lettinga, G. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology)

    1993-05-01

    The relationship between porosity, diameter and methanogenic activity of anaerobic granules has been investigated. Experiments with different granular sludges revealed that substrate transport limitations increase with the diameter of the granules. As a consequence, autolysis can occur in the core of the granule, producing hollow granules. The porosity measurements revealed that the hollow centre is not available for substrate transport. Possibly as an effect of bacterial lysis, the porosity decreases in the more interior layers of the granules. This results in a inactive inner part of the large granules, which is not involved in the treatment process; the specific methanogenic activity decreases with granule size. No marked difference in substrate affinity is observed between granules of different sizes, which probably indicates that for large granules only the exterior is biological active. (orig.)

  17. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  18. Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1.

    Science.gov (United States)

    Feldblyum, Jeremy I; Liu, Ming; Gidley, David W; Matzger, Adam J

    2011-11-16

    There are several compounds for which there exists a disconnect between porosity as predicted by crystallography and porosity measured by gas sorption analysis. In this paper, the Zn-based analogue of Cu(3)(btc)(2) (HKUST-1), Zn(3)(btc)(2) (Zn-HKUST-1; btc = 1,3,5-benzenetricarboxylate) is investigated. Conventional analysis of Zn-HKUST-1 by powder X-ray diffraction and gas sorption indicates retention of crystalline structure but negligible nitrogen uptake at 77 K. By using positron annihilation lifetime spectroscopy, a densified surface layer preventing the entry of even small molecular species into the crystal framework is revealed. The material is shown to have inherent surface instability after solvent removal, rendering it impermeable to molecular guests irrespective of handling and processing methods. This previously unobserved surface instability may provide insight into the failure of other microporous coordination polymers to exhibit significant porosity despite crystal structures indicative of regular, interconnected, microporous networks.

  19. Gas hydrate saturation from acoustic impedance and resistivity logs in the shenhu area, south china sea

    Science.gov (United States)

    Wang, X.; Wu, S.; Lee, M.; Guo, Y.; Yang, S.; Liang, J.

    2011-01-01

    During the China's first gas hydrate drilling expedition -1 (GMGS-1), gas hydrate was discovered in layers ranging from 10 to 25 m above the base of gas hydrate stability zone in the Shenhu area, South China Sea. Water chemistry, electrical resistivity logs, and acoustic impedance were used to estimate gas hydrate saturations. Gas hydrate saturations estimated from the chloride concentrations range from 0 to 43% of the pore space. The higher gas hydrate saturations were present in the depth from 152 to 177 m at site SH7 and from 190 to 225 m at site SH2, respectively. Gas hydrate saturations estimated from the resistivity using Archie equation have similar trends to those from chloride concentrations. To examine the variability of gas hydrate saturations away from the wells, acoustic impedances calculated from the 3 D seismic data using constrained sparse inversion method were used. Well logs acquired at site SH7 were incorporated into the inversion by establishing a relation between the water-filled porosity, calculated using gas hydrate saturations estimated from the resistivity logs, and the acoustic impedance, calculated from density and velocity logs. Gas hydrate saturations estimated from acoustic impedance of seismic data are ???10-23% of the pore space and are comparable to those estimated from the well logs. The uncertainties in estimated gas hydrate saturations from seismic acoustic impedances were mainly from uncertainties associated with inverted acoustic impedance, the empirical relation between the water-filled porosities and acoustic impedances, and assumed background resistivity. ?? 2011 Elsevier Ltd.

  20. Hardwood log grades and lumber grade yields for factory lumber logs

    Science.gov (United States)

    Leland F. Hanks; Glenn L. Gammon; Robert L. Brisbin; Everette D. Rast

    1980-01-01

    The USDA Forest Service Standard Grades for Hardwood Factory Lumber Logs are described, and lumber grade yields for 16 species and 2 species groups are presented by log grade and log diameter. The grades enable foresters, log buyers, and log sellers to select and grade those log suitable for conversion into standard factory grade lumber. By using the apropriate lumber...

  1. The log S -log N distribution of gamma ray brust

    International Nuclear Information System (INIS)

    Yamagami, Takamasa; Nishimura, Jun; Fujii, Masami

    1982-01-01

    The relation between the size S and the frequency N of gamma ray burst has been studied. This relation may be determined from the celestial distribution of gamma ray burst sources. The present analysis gives that the log S - log N relation for any direction is determined by the celestial distribution of gamma ray burst sources. The observed bursts were analyzed. The celestial distribution of gamma ray burst sources was observed by the satellites of USSR. The results showed that the distribution seemed to be isotropic. However, the calculated log S - log N relation based on the isotropic distribution wasF in disagreement with the observed ones. As the result of analysis, it was found that the observed bursts missed low energy part because of the threshold of detectors. The levels of discrimination of detection were not clear. When a proper threshold level is set for each type of burst, and the size of bursts is determined, the above mentioned discrepancy will be deleted regardless of luminosity and the spatial distribution of bursts. (Kato, T.)

  2. Mud Logging; Control geologico en perforaciones petroliferas (Mud Logging)

    Energy Technology Data Exchange (ETDEWEB)

    Pumarega Lafuente, J.C.

    1994-12-31

    Mud Logging is an important activity in the oil field and it is a key job in drilling operations, our duties are the acquisition, collection and interpretation of the geological and engineering data at the wellsite, also inform the client immediately of any significant changes in the well. (Author)

  3. Porosity, petrophysics and permeability of the Whitby Mudstone (UK)

    Science.gov (United States)

    Houben, M.; Barnhoorn, A.; Hardebol, N.; Ifada, M.; Boersma, Q.; Douma, L.; Peach, C. J.; Bertotti, G.; Drury, M. R.

    2016-12-01

    Typically pore diameters in shales range from the µm down to the nm scale and the effective permeability of shale reservoirs is a function of the interconnectivity between the pore space and the natural fracture network present. The length and spacing of mechanical induced and natural fractures is one of the factors controlling gas produtivity from unconventional reservoirs. Permeability of the Whitby Mudstone measured on 1 inch cores was linked to microstructure and combined with natural fracture spacing present in outcrops along the Yorkshire coast (UK) to get insight into possible fluid pathways from reservoir to well. We used a combination of different techniques to characterize the porosity (gas adsorption, Scanning Electron Microscopy), mineralogy (X-Ray Fluorescence, X-Ray Diffraction, Scanning Electron Microscopy) and permeability (pressure step decay) of the Whitby Mudstone. In addition, we mapped the natural fracture network as present in outcrops along the Yorkshire coast (UK) at the 10-2-101m scale. Mineralogically we are dealing with a rock that is high in clay content and has an average organic matter content of about 10%. Results show a low porosity (max. 7%) as well as low permeability for the Whitby Mudstone. The permeability, measured parallel to bedding, depends on the confining pressure and is 86 nanodarcy at 10 MPa effective confining pressure and decreases to 16 nanodarcy at 40 MPa effective confining pressure. At the scale of observation the average distance to nearest natural fracture is in the order of 0.13 meter and 90 percent of all matrix elements are spaced within 0.4 meter to the nearest fracture. By assuming darcy flow, a permeability of 100 nanodarcy and 10% of overpressure we calculated that for the Whitby mudstone most of the gas resides in the matrix for less than 60 days until it reaches the fracture network.

  4. Porosity and Health: Perspective of Traditional Persian Medicine

    Science.gov (United States)

    Tafazoli, Vahid; Nimrouzi, Majid; Daneshfard, Babak

    2016-01-01

    Background: The authors of this manuscript aimed to show the importance of porosity and condensation in health according to traditional Persian medicine (TPM) with consideration of new evidence in conventional medicine. Methods: Cardinal traditional medical and pharmacological texts were searched for the traditional terms of takhalkhol (porosity) and takassof (condensity) focused on preventive methods. The findings were classified and compared with new medical findings. Results: According to traditional Persian medicine, porosity and condensity are the two crucial items that contribute to human health. Somatotype is a taxonomy based on embryonic development, which may be considered in parallel with porosity and condensation. However, these terms are not completely the same. There are many causes for acquired porosity comprising hot weather, too much intercourse, rage, starvation, and heavy exercises. In general, porosity increases the risk of diseases as it makes the body organs vulnerable to external hot and cold weather. On the other hand, the porose organs are more susceptible to accumulation of morbid matters because the cellular wastes cannot be evacuated in the normal way. There are some common points between traditional and conventional medicine in the context of porosity and condensity. The relation between diet and somatotype is an example. Conclusion: Condensity and porosity are the two basic items cited in the TPM resources and contribute to health maintenance and disease prevention of body organs. Creating a balance between these two states in different body organs, strongly contributes to disease prevention, treatment and diminishing chronic diseases period. Choosing proper modality including diet, drug therapy, and manual therapy depends on the amount porosity and stiffness of the considered organ and the preferred porosity of the affected organ keeping in a normal healthy state. PMID:27840513

  5. Borehole logging for uranium exploration

    International Nuclear Information System (INIS)

    1982-01-01

    The present text has been prepared taking into account the requirements of both developing countries, which might be at an incipient stage of uranium exploration, and industrialized countries, where more advanced exploration and resource evaluation techniques are commonly in use. While it was felt necessary to include some discussion of exploration concepts and fundamental physical principles underlying various logging methods, it was not the intention of the consultants to provide a thorough, detailed explanation of the various techniques, or even to give a comprehensive listing thereof. However, a list of references has been included, and it is strongly recommended that the serious student of mineral logging consult this list for further guidance

  6. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release

    NARCIS (Netherlands)

    van de Belt, H; Neut, D; Uges, DRA; Schenk, W; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    2000-01-01

    In this study, the release of gentamicin as a function of time was measured for six different gentamicin-loaded bone cements and related with the surface roughness, porosity and wettability of the cements. Initial release rates varied little between the six bone cements (CMW1, CMW3, CMW Endurance,

  7. Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks

    DEFF Research Database (Denmark)

    Canali, Chiara; Mohanty, Soumyaranjan; Heiskanen, Arto

    2015-01-01

    We present the application of electrochemical impedance spectroscopy (EIS) as a method for discriminating between different polydimethylsiloxane (PDMS) scaffolds for three-dimensional (3D) cell cultures. The validity of EIS characterisation for scaffolds having different degree of porosity...... serve as means of single-frequency measurements for fast scaffold characterization combined with in vitro monitoring of 3D cell cultures....

  8. Tunable-Porosity Membranes From Discrete Nanoparticles

    Science.gov (United States)

    Marchetti, Patrizia; Mechelhoff, Martin; Livingston, Andrew G.

    2015-01-01

    Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130–150 nm thick, which was highly permeable and able to withstand aggressive pH conditions beyond the range of available commercial membranes. The nanoparticles were found to coalesce to form a rubbery film when heated above their glass transition temperature (Tg). The retention properties of the novel membrane were strongly affected by charge repulsion, due to the negative charge of the hydroxyl functionalized nanoparticles. Porosity was tuned by annealing the membranes at different temperatures, below and above the nanoparticle Tg. This enabled fabrication of membranes with varying performance. Nanofiltration properties were achieved with a molecular weight cut-off below 500 g mol−1 and a low fouling tendency. Interestingly, after annealing above Tg, memory of the interstitial spaces between the nanoparticles persisted. This memory led to significant water permeance, in marked contrast to the almost impermeable films cast from a solution of the same polymer. PMID:26626565

  9. Porosity effects during a severe accident

    International Nuclear Information System (INIS)

    Cazares R, R. I.; Espinosa P, G.; Vazquez R, A.

    2015-09-01

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  10. Porosity effects during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Posgrado en Energia y Medio Ambiente, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Espinosa P, G.; Vazquez R, A., E-mail: ricardo-cazares@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  11. The sonic borehole logging tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1990-09-01

    This report deals with the sonic borehole tool. First a review of the various elastic wave types is given and velocity values of compressional waves in various materials listed. Next follows a discussion of 3 models for the relation between transit time and porosity, and a comparison between the 3 models is made. The design of sonic tools is described including their geometry. The path of the sonic signals is discussed. Also the effect of environmental factors on the results of the tools are considered. Finally a number of applications are described. In two appendices the mechanics of deformable bodies and formulas for the velocity of sound are reviewed. (author)

  12. Numerical simulation of responses for cased-hole density logging

    International Nuclear Information System (INIS)

    Wu, Wensheng; Fu, Yaping; Niu, Wei

    2013-01-01

    Stabilizing or stimulating oil production in old oil fields requires density logging in cased holes where open-hole logging data are either missing or of bad quality. However, measured values from cased-hole density logging are more severely influenced by factors such as fluid, casing, cement sheath and the outer diameter of the open-hole well compared with those from open-hole logging. To correctly apply the cased-hole formation density logging data, one must eliminate these influences on the measured values and study the characteristics of how the cased-hole density logging instrument responds to these factors. In this paper, a Monte Carlo numerical simulation technique was used to calculate the responses of the far detector of a cased-hole density logging instrument to in-hole fluid, casing wall thickness, cement sheath density and the formation and thus to obtain influence rules and response coefficients. The obtained response of the detector is a function of in-hole liquid, casing wall thickness, the casing's outer diameter, cement sheath density, open-hole well diameter and formation density. The ratio of the counting rate of the detector in the calibration well to that in the measurement well was used to get a fairly simple detector response equation and the coefficients in the equation are easy to acquire. These provide a new way of calculating cased-hole density through forward modelling methods. (paper)

  13. Tailoring the porosity of hierarchical zeolites by carbon-templating

    DEFF Research Database (Denmark)

    Zhu, Kake; Egeblad, Kresten; Christensen, Claus H.

    2008-01-01

    We report the synthesis and characterization of a series of hierarchical porous zeolite single crystal materials with a range of porosities made available by carbon-templating using differently-sized carbon particles as templates for the additional non-micropore porosity. The materials were...

  14. Casting Porosity-Free Grain Refined Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schwam, David [Case Western Reserve University

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  15. Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace

    Energy Technology Data Exchange (ETDEWEB)

    Dolberg, David M.

    1998-12-31

    This presentation relates to porosity prediction from seismic inversion. The porosity prediction concerns the Lavrans Field of the Halten Terrace on the Norwegian continental shelf. The main themes discussed here cover seismic inversion, rock physics, statistical analysis - verification of well trends, upscaling/sculpting, and implementation. 2 refs., 6 figs.

  16. Experiences in the use of an electronic tool to measure pressure, temperature and spinner logs in the Mexican geothermal fields; Experiencias en el uso de sondas electronicas de presion, temperatura y flujo en campos geotermicos de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly; Jaimes Maldonado, Guillermo [Gerencia de Proyectos Geotermoelectricos, Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    1999-08-01

    In this article are exposed the results of an electronic tool to measure pressure-temperature and spinner profiles in the geothermal wells of Mexico, utilized in order to identify unobservable phenomena with traditional Kuster type pressure and temperature logs. Some examples of the applications are the identifications of production zones, interaction from between two or more zones of contribution under several conditions of operation, casing damages and apparition of sink flow intervals into the formation in producer wells. It is also presented the quantitative method utilized to calculate the masic contribution of the intervals of interest. [Spanish] En este articulo se exponen los resultados obtenidos mediante el uso de una sonda electronica para la medicion de presion-temperatura y flujo en los pozos geotermicos de Mexico, utilizada para identificar fenomenos que no son observables con las mediciones tradicionales tipo Kuster de presion y temperatura. Se ejemplifican algunas de las aplicaciones hechas, tales como la identificacion de zonas de produccion, forma de interaccion entre dos o mas zonas de aporte bajo diferentes condiciones de operacion, roturas en tuberias y aparicion de zonas ladronas en pozos. Se presenta brevemente el metodo cuantitativo utilizado para calcular el aporte masico de las intervalos de interes.

  17. Logging Work Injuries in Appalachia

    Science.gov (United States)

    Charles H. Wolf; Gilbert P. Dempsey

    1978-01-01

    Logging accidents are costly. They may bring pain to injured workers, hardship to their families, and higher insurance premiums and lower productivity to their employers. Our analysis of 1,172 injuries in central Appalachia reveals that nearly half of all time lost-and almost all fatalities-resulted from accidents during felling and unloading. The largest proportion of...

  18. Log files for testing usability

    NARCIS (Netherlands)

    Klein Teeselink, G.; Siepe, A.H.M.; Pijper, de J.R.

    1999-01-01

    The aim of this study is to gain insight in the usefulness of log file analysis as a method to evaluate the usability of individual interface components and their influence on the usability of the overall user interface. We selected a music player as application, with four different interfaces and

  19. Porosity study on free mineral addition cement paste

    International Nuclear Information System (INIS)

    Salgueiro, W.; Somoza, A.; Cabrera, O.; Consolati, G.

    2004-01-01

    A study of the hydration process and the porosity evolution in a cement paste is presented. The analysis of porosity was made in samples with water to cement ratios (w/c) of 0.24, 0.40 and 0.60 at age of 3, 7, 28 and 365 days, respectively. Information on the evolution of total porosity and on the strength of the paste were obtained using positron annihilation lifetime spectroscopy (PALS), scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical tests (compression and flexion) and water absorption techniques. Specifically, positron lifetime technique allowed us to analyze the evolution of gel and capillary porosity during the hydration process. Using a simple function proposed, reasonable fits to the experimental data of the porosity evolution as a function of the compression strength were obtained

  20. Hardwood log supply: a broader perspective

    Science.gov (United States)

    Iris Montague; Adri Andersch; Jan Wiedenbeck; Urs. Buehlmann

    2015-01-01

    At regional and state meetings we talk with others in our business about the problems we face: log exports, log quality, log markets, logger shortages, cash flow problems, the weather. These are familiar talking points and real and persistent problems. But what is the relative importance of these problems for log procurement in different regions of...

  1. Unsupervised signature extraction from forensic logs

    NARCIS (Netherlands)

    Thaler, S.M.; Menkovski, V.; Petkovic, M.; Altun, Y.; Das, K.; Mielikäinen, T.; Malerba, D.; Stefanowski, J.; Read, J.; Žitnik, M.; Ceci, M.

    2017-01-01

    Signature extraction is a key part of forensic log analysis. It involves recognizing patterns in log lines such that log lines that originated from the same line of code are grouped together. A log signature consists of immutable parts and mutable parts. The immutable parts define the signature, and

  2. Nondestructive evaluation for sorting red maple logs

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; David W. Green; Karl Englund; Michael Wolcott

    2000-01-01

    Existing log grading procedures in the United States make only visual assessments of log quality. These procedures do not incorporate estimates of the modulus of elasticity (MOE) of logs. It is questionable whether the visual grading procedures currently used for logs adequately assess the potential quality of structural products manufactured from them, especially...

  3. Determination of Porosity in Shale by Double Headspace Extraction GC Analysis.

    Science.gov (United States)

    Zhang, Chun-Yun; Li, Teng-Fei; Chai, Xin-Sheng; Xiao, Xian-Ming; Barnes, Donald

    2015-11-03

    This paper reports on a novel method for the rapid determination of the shale porosity by double headspace extraction gas chromatography (DHE-GC). Ground core samples of shale were placed into headspace vials and DHE-GC measurements of released methane gas were performed at a given time interval. A linear correlation between shale porosity and the ratio of consecutive GC signals was established both theoretically and experimentally by comparing with the results from the standard helium pycnometry method. The results showed that (a) the porosity of ground core samples of shale can be measured within 30 min; (b) the new method is not significantly affected by particle size of the sample; (c) the uncertainties of measured porosities of nine shale samples by the present method range from 0.31 to 0.46 p.u.; and (d) the results obtained by the DHE-GC method are in a good agreement with those from the standard helium pycnometry method. In short, the new DHE-GC method is simple, rapid, and accurate, making it a valuable tool for shale gas-related research and applications.

  4. Linking downhole logging data and clay mineralogy analysis in the ICDP Lake Junín drilling Project, Peru

    Science.gov (United States)

    Pierdominici, S.; Schleicher, A.; Kueck, J.; Rodbell, D. T.; Abbott, M. B.

    2017-12-01

    The lake Junin drilling project, co-funded by the International Continental Drilling Program (ICDP), is located at 4000 m a.s.l. in the tropical Andes of Peru. Several boreholes were drilled with the goal to obtain both high-resolution paleoclimate records from lacustrine sediments and to reconstruct the history of the continental records covering the glacial-interglacial cycles. Lake Junín is characterized by a thick package of lacustrine sediments (> 125 m) deposited at a high rate (0.2 to 1.0 mm yr-1), and it is one of the few lakes in the tropical Andes that is hundreds of thousands of years old with a continuous sedimentation rate preserving a very long and continuous record of past ice age cycles. The boreholes reached a maximum depth of 110.08 m and continuous coring was performed at three sites with 11 boreholes. Additionally, an extensive geophysical downhole logging campaign was performed on five boreholes (1A, 1C, 1D, 2A and 3B) by the Operational Support Group of ICDP. Downhole logging measurements comprise total and spectrum gamma ray, magnetic susceptibility, borehole geometry, temperature, and sonic p-wave velocity. In order to fit the downhole logging depths to the composite profile depths, each borehole was depth-matched with the core data. Interpreting the downhole logging data permits to establish a complete lithological log, to characterize the in-situ physical properties of drilled lacustrine sediments, to determine sedimentary structures and to obtain evidences about palaeoclimatic conditions during up to 200 ka. Th and K values are used as a proxy for a first estimate and characterization of clay content in the sediments, which are present as montmorillonite, smectite, illite, and kaolinite in different amounts. Linking the clay minerals that occur in the core material with the downhole logging data allows assessing the geological history of the lake and the relationship to climate change processes. Additional laboratory analysis will be

  5. Dual excitation acoustic paramagnetic logging tool

    Energy Technology Data Exchange (ETDEWEB)

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  6. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: Wire-line log-based stratigraphy of flood basalts from the Lopra-1/1A well, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Boldreel, Lars O.

    2006-07-01

    Full Text Available The present study shows that it is possible to use conventional borehole logs to perform a detailed lithological/stratigraphical division of a column of subaerially extruded basalt. A stratigraphical division of the subaerial flood basalts penetrated by the Lopra-1/1A well has been carried out using new wire-line logging data measured in 1996 in the interval 200–2489 m depth. Resistivity data acquired in the interval 200–2178 m depth during 1981 after the initial drilling of the Lopra-1 well have also been incorporated. Eighty-six individual flow units, 18 compound flows and two dolerite dykes have been identified by combining the NPHI porosity, RHOB density, P-, S- and Stonely-sonic transit time, calliper and resistivity logs. Fifty-two sedimentary/tuffaceous layers have also been identified using the CGR and SGR gamma ray and potassium logs in combination with the aforementioned logs. Within the flow units, sonic velocity, density and resistivity are highest in the core where porosity is lowest. This relation is reversed in the uppermost and basal zones of the flow units. The sonic velocity in the core seems to be independent of the thickness of the flow unit. Porous zones seem abundant in some cores and the total section of cores containing porous zones constitutes more than 70% of the thickness of its flow unit, but where porous zones are absent the core makes up only roughly 50% of the thickness of the flow. It is suggested that the flow units with porous cores represent aa flows (88% of the flow units and the others pahoehoe flows (12% of the flow units.The log pattern of the flow units (crust, core and basal zone is similar to log patterns reported from other basalt plateaux. However the patterns in Lopra-1/1A show a larger variation than elsewhere,suggesting that the flow units are more complex vertically than previously thought. Statistical analysis of P-, S- and Stonely-waves, RHOB, NPHI, resistivity, gamma and calliper logs has

  7. Nuclear cross section library for oil well logging analysis

    International Nuclear Information System (INIS)

    Kodeli, I.; Kitsos, S.; Aldama, D.L.; Zefran, B.

    2003-01-01

    As part of the IRTMBA (Improved Radiation Transport Modelling for Borehole Applications) Project of the EU Community's 5 th Programme a special purpose multigroup cross section library to be used in the deterministic (as well as Monte Carlo) oil well logging particle transport calculations was prepared. This library is expected to improve the prediction of the neutron and gamma spectra at the detector positions of the logging tool, and their use for the interpretation of the neutron logging measurements was studied. Preparation and testing of this library is described. (author)

  8. Effective porosity and pore-throat sizes of Conasauga Group mudrock: Application, test and evaluation of petrophysical techniques

    International Nuclear Information System (INIS)

    Dorsch, J.; Katsube, T.J.; Sanford, W.E.; Univ. of Tennessee, Knoxville, TN; Dugan, B.E.; Tourkow, L.M.

    1996-04-01

    Effective porosity (specifically referring to the interconnected pore space) was recently recognized as being essential in determining the effectiveness and extent of matrix diffusion as a transport mechanism within fractured low-permeability rock formations. The research presented in this report was performed to test the applicability of several petrophysical techniques for the determination of effective porosity of fine-grained siliciclastic rocks. In addition, the aim was to gather quantitative data on the effective porosity of Conasauga Group mudrock from the Oak Ridge Reservation (ORR). The quantitative data reported here include not only effective porosities based on diverse measurement techniques, but also data on the sizes of pore throats and their distribution, and specimen bulk and grain densities. The petrophysical techniques employed include the immersion-saturation method, mercury and helium porosimetry, and the radial diffusion-cell method

  9. OBSERVATION AND ANALYSIS OF A PRONOUNCED PERMEABILITY AND POROSITY SCALE-EFFECT IN UNSATURATED FRACTURED TUFF

    Energy Technology Data Exchange (ETDEWEB)

    V. VESSELINOV; ET AL

    2001-01-01

    Over 270 single-hole (Guzman et al., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-hole tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nominal support scale of about 1 m. The corresponding log permeability data exhibit spatial behavior characteristic of a random fractal and yield a kriged estimate of how these 1-m scale log permeabilities vary in three-dimensional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a three-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure records from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach amounts to three-dimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume

  10. Monte Carlo Simulations of Neutron Oil well Logging Tools

    International Nuclear Information System (INIS)

    Azcurra, Mario

    2002-01-01

    Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented.The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively.The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation.The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B.Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation.In particular, the ratio C/O was analyzed as an indicator of oil saturation.Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition

  11. Monte Carlo simulations of neutron oil well logging tools

    International Nuclear Information System (INIS)

    Azcurra, Mario O.; Zamonsky, Oscar M.

    2003-01-01

    Monte Carlo simulations of simple neutron oil well logging tools into typical geological formations are presented. The simulated tools consist of both 14 MeV pulsed and continuous Am-Be neutron sources with time gated and continuous gamma ray detectors respectively. The geological formation consists of pure limestone with 15% absolute porosity in a wide range of oil saturation. The particle transport was performed with the Monte Carlo N-Particle Transport Code System, MCNP-4B. Several gamma ray spectra were obtained at the detector position that allow to perform composition analysis of the formation. In particular, the ratio C/O was analyzed as an indicator of oil saturation. Further calculations are proposed to simulate actual detector responses in order to contribute to understand the relation between the detector response with the formation composition. (author)

  12. Unification of acoustic drillhole logging data

    International Nuclear Information System (INIS)

    Oehman, I.; Palmen, J.; Heikkinen, E.

    2009-04-01

    Posiva Oy prepares for disposal of spent nuclear fuel in bedrock in Olkiluoto, Eurajoki. This is in accordance of the application filed in 1999, the Decision-in-Principle of the State Council in 2000, and ratification by the Parliament in 2001. The site characterization at Olkiluoto has included comprehensive geological, hydrological, geochemical and geophysical investigations airborne, on ground and in drillholes since 1988. One of key techniques in geophysical drillhole surveys has been acoustic full waveform logging, which has been implemented since 1994. Various tools have been used in acquisition of acoustic data and several processing techniques have been applied. The logging work and processing to P and S wave velocities has been previously carried out on single drillhole basis. Comparisons to actual values and levels have not been made, and the results have not been calibrated. Therefore results for different drillholes have not been comparable. Resolution of the P and S wave velocity has been rather coarse, and depth correlation to the core data has been on tentative level. As the investigation data has been accumulating, it has become possible to correlate the results to geological and laboratory control data and to calibrate the results of separate measurement campaigns and different drillholes together onto same reference level and resolution. The presented technique has been applied for drillhole OL-KR29 onwards and has set the processing standard, settings and reference levels for later surveys. This approach will further assist the application of the method for mapping and numerical description of lithology variation and possible effect of alteration and deformation on it. Further on, the P and S wave velocity data together with density can be used in computing of dynamic in situ rock mechanical parameters, and possibly in correlating rock strength laboratory data to P and S wave velocity logging data. The acoustic logging data from drillholes OL-KR1

  13. Uranium logging in earth formations

    International Nuclear Information System (INIS)

    Givens, W.W.

    1979-01-01

    A technique is provided for assaying the formations surrounding a borehole for uranium. A borehole logging tool cyclically irradiates the formations with neutrons and responds to neutron fluxes produced during the period of time that prompt neutrons are being produced by the neutron fission of uranium in the formations. A borehole calibration tool employs a steady-state (continuous output) neutron source, firstly, to produce a response to neutron fluxes in models having known concentrations of uranium and, secondly, to to produce a response to neutron fluxes in the formations surrounding the borehole. The neutron flux responses of the borehole calibration tool in both the model and the formations surrounding the borehole are utilized to correct the neutron flux response of the borehole logging tool for the effects of epithermal/thermal neutron moderation, scattering, and absorption within the borehole itself

  14. A comparison between elemental logs and core data

    International Nuclear Information System (INIS)

    Kerr, S.A.; Grau, J.A.; Schweitzer, J.S.

    1992-01-01

    Neutron-induced gamma-ray spectroscopy, of prompt capture and delayed activation, together with natural gamma-ray measurements, provides a borehole elemental analysis to characterize rock matrix composition. This study involved extensive core and log data in two wells. One well was drilled with a barite-weighted oil-based mud through a shallow marine sand. The other was drilled with fresh water-based mud through a channel sand, mudstone sequence overlying limestone. The results illustrate the importance of a suitable core sampling strategy and the problems associated with matching core to log data. Possible inaccuracies from the modelling of Ca-, Fe- and S-bearing minerals have been determined. A method for correcting the total measured aluminium concentration for that due to the borehole mud has been successfully tested against aluminium concentrations measured in the cleaned core samples. Estimates of the overall accuracy and precision of the elemental logging concentrations are obtained by comparing the log results with those obtained from the laboratory core analysis. A comprehensive core elemental analysis can also provide useful insight into the way other logs, such as the photoelectric factor or formation thermal neutron macroscopic absorption cross section, are influenced by minor and trace elements. Differences between calculated values from elemental logs and measured macroscopic parameters provide additional data for a more detailed understanding of the rock properties. (Author)

  15. Logística empresarial

    OpenAIRE

    Feres Sahid

    1987-01-01

    RESUMEN El concepto logístico, se pudo ver reflejado con exactitud desde el punto de vista etimológico e histórico a través de la revista de la E.A.N; ya que  tiene cierto carácter militar que lo hace característico a la gestión empresarial y de esto se formula un debate definitivo de este concepto.

  16. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  17. Audit Log for Forensic Photography

    Science.gov (United States)

    Neville, Timothy; Sorell, Matthew

    We propose an architecture for an audit log system for forensic photography, which ensures that the chain of evidence of a photograph taken by a photographer at a crime scene is maintained from the point of image capture to its end application at trial. The requirements for such a system are specified and the results of experiments are presented which demonstrate the feasibility of the proposed approach.

  18. Logística empresarial

    Directory of Open Access Journals (Sweden)

    Feres Sahid

    1987-04-01

    Full Text Available RESUMEN El concepto logístico, se pudo ver reflejado con exactitud desde el punto de vista etimológico e histórico a través de la revista de la E.A.N; ya que  tiene cierto carácter militar que lo hace característico a la gestión empresarial y de esto se formula un debate definitivo de este concepto.

  19. Construction and validation of a Tamil logMAR chart.

    Science.gov (United States)

    Varadharajan, Srinivasa; Srinivasan, Krithica; Kumaresan, Brindha

    2009-09-01

    To design, construct and validate a new Tamil logMAR visual acuity chart based on current recommendations. Ten Tamil letters of equal legibility were identified experimentally and were used in the chart. Two charts, one internally illuminated and one externally illuminated, were constructed for testing at 4 m distance. The repeatability of the two charts was tested. For validation, the two charts were compared with a standard English logMAR chart (ETDRS). When compared to the ETDRS chart, a difference of 0.06 +/- 0.07 and 0.07 +/- 0.07 logMAR was found for the internally and externally illuminated charts respectively. Limits of agreement between the internally illuminated Tamil logMAR chart and ETDRS chart were found to be (-0.08, 0.19), and (-0.07, 0.20) for the externally illuminated chart. The test - retest results showed a difference of 0.02 +/- 0.04 and 0.02 +/- 0.06 logMAR for the internally and externally illuminated charts respectively. Limits of agreement for repeated measurements for the internally illuminated Tamil logMAR chart were found to be (-0.06, 0.10), and (-0.10, 0.14) for the externally illuminated chart. The newly constructed Tamil logMAR charts have good repeatability. The difference in visual acuity scores between the newly constructed Tamil logMAR chart and the standard English logMAR chart was within acceptable limits. This new chart can be used for measuring visual acuity in the literate Tamil population.

  20. Bulk substrate porosity verification by applying Monte Carlo modeling and Castaing's formula using energy-dispersive x-rays

    Science.gov (United States)

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee

    2015-11-01

    The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.

  1. Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand

    Science.gov (United States)

    Zorn, Edgar U.; Rowe, Michael C.; Cronin, Shane J.; Ryan, Amy G.; Kennedy, Lori A.; Russell, James K.

    2018-04-01

    Lava domes pose a significant hazard to infrastructure, human lives and the environment when they collapse. Their stability is partly dictated by internal mechanical properties. Here, we present a detailed investigation into the lithology and composition of a Rocks with variable porosity and groundmass crystallinity were compared using measured compressive and tensile strength, derived from deformation experiments performed at room temperature and low (3 MPa) confining pressures. Based on data obtained, porosity exerts the main control on rock strength and mode of failure. High porosity (> 23%) rocks show low rock strength (rocks (5-23%) exhibit higher measured rock strengths (up to 278 MPa) and brittle failure. Groundmass crystallinity, porosity and rock strength are intercorrelated. High groundmass crystal content is inversely related to low porosity, implying crystallisation and degassing of a slowly undercooled magma that experienced rheological stiffening under high pressures deeper within the conduit. This is linked to a slow magma ascent rate and results in a lava dome with higher rock strength. Samples with low groundmass crystallinity are associated with higher porosity and lower rock strength, and represent magma that ascended more rapidly, with faster undercooling, and solidification in the upper conduit at low pressures. Our experimental results show that the inherent strength of rocks within a growing dome may vary considerably depending on ascent/emplacement rates, thus significantly affecting dome stability and collapse hazards.

  2. ANDRILL Borehole AND-1B: Well Log Analysis of Lithofacies and Glacimarine Cycles.

    Science.gov (United States)

    Jackolski, C. L.; Williams, T.; Powell, R. D.; Jarrard, R.; Morin, R. H.; Talarico, F. M.; Niessen, F.; Kuhn, G.

    2008-12-01

    During the 2006-2007 austral summer, the Antarctic geological drilling program ANDRILL recovered cores of sedimentary rock from a 1285-m-deep borehole below the McMurdo Ice Shelf. Well logging instruments were deployed to a depth of 1017 mbsf after core recovery. This study focuses on two intervals of the AND-1B borehole: upper HQ (238-343 mbsf; Pliocene) and NQ (698-1017 mbsf; upper Miocene), which were logged with natural gamma ray, induction resistivity and magnetic susceptibility tools. To understand how the well logs fit into a more complete physical properties data set, we performed factor and cluster analyses on a suite of well logs and core logs in the upper HQ and NQ intervals. In both intervals, factor analysis groups resistivity and core P-velocity into a factor that we interpret as being inversely proportional to porosity. It also groups natural gamma and potassium (from the XRF core scanner) into a factor that we interpret as a particle-size or lithology index. An additional factor in the NQ interval, influenced by clast number and magnetic susceptibility, distinguishes subglacial diamictites from other lithofacies. The factors in each interval (2 in HQ, 3 in NQ) are used as input to cluster analysis. The results are log data objectively organized into clusters, or electrofacies. We compare these electrofacies to the lithofacies, well logs and unconformity-bounded glacimarine cycles of AND-1B. Patterns in the glacimarine cycles are observed in the well logs and electrofacies. In the NQ glacimarine sediments, an electrofacies pattern is produced between subglacial diamictites at the bottom of each sequence and the glacial retreat facies above. Subglacial diamictites have higher values for the additional NQ factor, corresponding to clast number and magnetic susceptibility, than the muds and sands that form the retreat facies. Differences in the porosity factor are not observed in any electrofacies pattern in the NQ interval, but subtle patterns in the

  3. Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon.

    Science.gov (United States)

    Michael Keller; Michael Palace; Gregory P. Asner; Rodrigo Jr. Pereira; Jose Natalino M. Silva

    2004-01-01

    Coarse woody debris (CWD) is an important component of the carbon cycle in tropical forests. We measured the volume and density of fallen CWD at two sites, Cauaxi and Tapajós in the Eastern Amazon. At both sites we studied undisturbed forests (UFs) and logged forests 1 year after harvest. Conventional logging (CL) and reduced impact logging (RIL) were...

  4. Tree damage from skyline logging in a western larch/Douglas-fir stand

    Science.gov (United States)

    Robert E. Benson; Michael J. Gonsior

    1981-01-01

    Damage to shelterwood leave trees and to understory trees in shelterwood and clearcut logging units logged with skyline yarders was measured, and related to stand conditions, harvesting specifications, and yarding system-terrain interactions. About 23 percent of the marked leave trees in the shelterwood units were killed in logging, and about 10 percent had moderate to...

  5. Causes and remedies for porosity in composite manufacturing

    Science.gov (United States)

    Fernlund, G.; Wells, J.; Fahrang, L.; Kay, J.; Poursartip, A.

    2016-07-01

    Porosity is a challenge in virtually all composite processes but in particular in low pressure processes such as out of autoclave processing of prepregs, where the maximum pressure is one atmosphere. This paper discusses the physics behind important transport phenomena that control porosity and how we can use our understanding of the underlying science to develop strategies to achieve low porosity for these materials and processes in an industrial setting. A three step approach is outlined that addresses and discusses: gas evacuation of trapped air, volatiles and off-gassing, and resin infiltration of evacuated void space.

  6. Porosity in Ocean Racing Yacht Composites: a Review

    Science.gov (United States)

    Baley, Christophe; Lan, Marine; Davies, Peter; Cartié, Denis

    2015-02-01

    Ocean racing yachts are mainly manufactured from carbon/epoxy composites similar to those used by the aeronautical industry but, with some exceptions such as masts, these structures are not produced in autoclaves. This leads to the presence of higher porosity levels. This paper will first present the different types of porosity found in traditional racing yacht structures. Difficulties in evaluating defect levels will then be discussed and published work characterizing the influence of defects will be reviewed. Current developments to improve racing yacht composite quality such as thin ply technology, out-of-autoclave processing and automated fibre placement will then be described, and their implications for porosity will be discussed.

  7. Carbonate porosity: some remarks; Porosidade em reservatorios carbonaticos: algumas consideracoes

    Energy Technology Data Exchange (ETDEWEB)

    Spadini, Adali Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao]. E-mail: spadini@petrobras.com.br; Marcal, Rosely de Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-05-01

    Carbonate rocks are the major reservoirs of the largest super-giants fields in the world, including the Ghawar Field in Saudi Arabia, where the producing oil reservoir is the late Jurassic Arab-D limestone with five million barrels per day. Despite the great susceptibility to early diagenesis, that can dramatically modify the porous media, porosity values of carbonates remain essentially the same as that of deposition before burial. Porosity loss is essentially a subsurface process with a drastic reduction below 2500 m of burial depth. The occurrence of good reservoirs deeply buried, sometimes below 4,000 m, indicate that porosity can be preserved in subsurface in response to a series of mechanisms such as early oil emplacement, framework rigidity, abnormal pore pressure, among others. Percolation of geothermal fluids is a process considered to be responsible for generation of porosity in subsurface resulting in some good reservoir rocks. In Campos Basin, areas with burial around 2000 m, petrophysical data show a cyclic distribution that coincides with the shoaling upward cycles typical of the Albian carbonates. The greatest permeabilities coincide with the grain stones of the top of the cycles while the peloidal/oncolite wackestones/pack stones at the base show low values, reflecting the depositional texture. These relationships indicate that preservation of depositional porosity was very effective. The preservation of high porosity values for all the facies are related to early oil entrance in the reservoirs. In some cases, the presence of porosities of almost 30% in fine-grained peloidal carbonates, 3000 m of burial, without any clear effective preservation mechanism, suggest that corrosive subsurface brines have played an important role in porosity evolution. In Santos Basin, where reservoirs are deeply buried, only the grain stones have preserved porosity. The associated low energy facies has virtually no porosity. In this case, the depositional texture

  8. Predicting Porosity and Permeability for the Canyon Formation, SACROC Unit (Kelly-Snyder Field), Using the Geologic Analysis via Maximum Likelihood System

    International Nuclear Information System (INIS)

    Reinaldo Gonzalez; Scott R. Reeves; Eric Eslinger

    2007-01-01

    -based, probabilistic clustering analysis procedure is successfully applied to generate a high-resolution reservoir characterization outcome. The approach was applied in the Pennsylvanian-Permian reef carbonates (Cisco and Canyon Formations) of a subregion of the SACROC Unit, Horseshoe Atoll, Permian Basin, Texas, and acknowledged as a highly complex carbonate reservoir. Due to the modest results achieved with the application of soft-computing methodologies to the available information (no crosswell data at hand), the original project target about creating a data-driven device relating surface seismic information, crosswell seismic attributes, geophysical logs and core parameters for the prediction of core-scale porosity and permeability profiles in locations where only 3D surface seismic data was available, had to be reformulated. It was shown that 3D seismic information was not capable of capturing the degree of vertical variability of SACROC. As a consequence, available seismic information was unincorporated from posterior reservoir characterization tasks, and a combination of data-driven procedures and geostatistical methods was utilized for reservoir characterization purposes. A selected area within the SACROC Unit platform was used for this study. The suitable logs for the creation of an 'intelligent' log-to-core device were not present for all wells. These logs were gamma ray (GR), neutron porosity (NPHI), bulk density (RHOB), and delta time (DT). It was necessary to create a first 'intelligent' tool, a log-to-log model to provide synthetic logs of RHOB and DT (or eventually of acoustic impedance derived from them) at well locations where only GR and NPHI were available (the most common situation in this reservoir). Once the 'ideal' logs were completed, a second model, a log-to-core device, provides core scale estimates of porosity and permeability (P and P). The validity of these soft-computing devices was checked using 'holdout' wells. In this way, 'core' parameter profiles

  9. Development and testing of an interface between measurement logging system and automation software DIAdem of National Instruments(NI) and water/steam material property library LibIF97

    International Nuclear Information System (INIS)

    Pietruske, H.; Schaffrath, A.

    2002-08-01

    The Institute of Safety Research (IfS) of the Forschungszentrum Rossendorf (FZR) e.V. is constructing a new large-scale multipurpose test facility TOPFLOW (Transient Two Phase Flow Test Facility). This facility will be probably put into operation in the next two months. For an effective evaluation of the start up experiments and the acceptance trials against the vendors FZR starts with the preparation of automated software tools for the measurement data logging and automation software DIAdem, which is distributed by National Instruments (NI). In a first step an interface for the coupling of a water/steam material property library LibIF97 of the University of Applied Science Zittau/Goerlitz was developed. This report describes the programming of the General Control Interface (GPI) and its coupling with DIAdem. Additionally the capability of this coupling in connection with autosequences for data evaluation was investigated. Furtheron effective methods for TOPFLOW data evaluation were demonstrated and tested against a concrete example. Currently no TOPFLOW data are available. Therefore one selected NOKO experiment was evaluated and first practical experiences were collected. Even this example is easy understandable and clearly seen, it contains every step, which is necessary for the TOPFLOW data evaluation. This contains the opening of files, determination of water/steam material properties with the Dynamic-Link-Library LibIF97.dII, the linkage of different data channels and the generation of layouts for graphics and reports. The tools presented in this report are an important step for the evaluation of the experimental data of TOPFLOW. These tools will be adapted now for the assessment of the acceptance trails. Further on now the generation of the automated software sequences for the first scientific tests are developed. (orig.) [de

  10. Uranium favorability of tertiary sedimentary rocks of the Pend Oreille River valley, Washington. [Measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water logs

    Energy Technology Data Exchange (ETDEWEB)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the Pend Oreille River valley were investigated in a regional study to determine the favorability for potential uranium resources of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water well logs. The Box Canyon Dam area north of Ione is judged to have very high favorability. Thick-bedded conglomerates interbedded with sandstones and silty sandstones compose the Tiger Formation in this area, and high radioactivity levels are found near the base of the formation. Uranophane is found along fracture surfaces or in veins. Carbonaceous material is present throughout the Tiger Formation in the area. Part of the broad Pend Oreille valley surrounding Cusick, Washington, is an area of high favorability. Potential host rocks in the Tiger Formation, consisting of arkosic sandstones interbedded with radioactive shales, probably extend throughout the subsurface part of this area. Carbonaceous material is present and some samples contain high concentrations of uranium. In addition, several other possible chemical indicators were found. The Tiger-Lost Creek area is rated as having medium favorability. The Tiger Formation contains very hard, poorly sorted granite conglomerate with some beds of arkosic sandstone and silty sandstone. The granite conglomerate was apparently derived from source rocks having relatively high uranium content. The lower part of the formation is more favorable than the upper part because of the presence of carbonaceous material, anomalously high concentrations of uranium, and other possible chemical indicators. The area west of Ione is judged to have low favorability, because of the very low permeability of the rocks and the very low uranium content. (auth)

  11. Dynamic Planar Convex Hull with Optimal Query Time and O(log n · log log n ) Update Time

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jakob, Riko

    2000-01-01

    The dynamic maintenance of the convex hull of a set of points in the plane is one of the most important problems in computational geometry. We present a data structure supporting point insertions in amortized O(log n · log log log n) time, point deletions in amortized O(log n · log log n) time......, and various queries about the convex hull in optimal O(log n) worst-case time. The data structure requires O(n) space. Applications of the new dynamic convex hull data structure are improved deterministic algorithms for the k-level problem and the red-blue segment intersection problem where all red and all...

  12. Analysis of Electrochemical Porosity of Phosphatized Coatings on Galvanized Steel Substrate

    Directory of Open Access Journals (Sweden)

    Ponte Haroldo de Araújo

    2002-01-01

    Full Text Available This work refers to the application of a Voltammetric Anodic Dissolution (VAD Technique in the analysis of coating discontinuities, focusing on pores and cracks that exposed the substrate. An evaluation was made of the influence of several parameters, such as the concentration of the passivation solution and sweep rate (SR, on the substrate passivation process and on the porosity indexes of tricationic phosphate coatings of Fe/Zn/Mn. The phosphatization process used was a commercial tricationic Fe/Zn/Mn phosphate bath applied on a galvanized steel (GS substrate. Once the best experimental conditions for the use of the VAD technique had been defined, the grain size and layer weight were related to porosity indexes. The porosity was found to show a tendency to decrease with increasing grain size. The VAD technique consists of the anodic polarization of the substrate/coating system and measurement of the charge density involved in the substrate passivation process. A quantitative porosity index was obtained by comparing the passivation charge density of the substrate without coating (standard passivation charge density and the passivation charge of the coated substrate.

  13. Ultrasonic examination of ceramics and composites for porosities in an automatic scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Gundtoft, H.E.

    1988-05-01

    Using a very precise scanning system and computer evaluation, we can get quantitative results from automatic ultrasonic examination. In this paper two examples dealing with nonmetallic materials are presented. In a ceramic plate (>1 inch thick) small spherical prorosities (down to 0.1 mm) would harm the final product. Several artificial defects made in the plate were used for calibration and optimisation of the technique. Areas with with a microscope. Good agreement with the predicted values from the ultrasonic examination was found. From the NDT-examination the exact position of a porosity is known in all 3 coordinates (x, y and z). The size of the defect can also be measured. A single porosity with a diameter of 0.1 mm can be detected. Carbon-reinforced composites were examined. 8 prepregs were stacked and hardened in an autoclave to form a sheet (1 mm thick). Air trapped in the material resulted in porosities in the final product. A double trough transmission-scanning technique was used for the examination. The porosity percentages were determined by the NDT-technique, and agreement with destructivly determined values on samples from the same sheet was found.

  14. Optical probe for porosity defect detection on inner diameter surfaces of machined bores

    Science.gov (United States)

    Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.

    2010-12-01

    We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.

  15. Porosity-dependent fractal nature of the porous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  16. Predicting carbonate permeabilities from wireline logs using a back-propagation neural network

    International Nuclear Information System (INIS)

    Wiener, J.M.; Moll, R.F.; Rogers, J.A.

    1991-01-01

    This paper explores the applicability of using Neural Networks to aid in the determination of carbonate permeability from wireline logs. Resistivity, interval transit time, neutron porosity, and bulk density logs form Texaco's Stockyard Creek Oil field were used as input to a specially designed neural network to predict core permeabilities in this carbonate reservoir. Also of interest was the comparison of the neural network's results to those of standard statistical techniques. The process of developing the neural network for this problem has shown that a good understanding of the data is required when creating the training set from which the network learns. This network was trained to learn core permeabilities from raw and transformed log data using a hyperbolic tangent transfer function and a sum of squares global error function. Also, it required two hidden layers to solve this particular problem

  17. Determining the mechanical properties of high porosity nickel

    International Nuclear Information System (INIS)

    Frappier, J.C.; Poirier, J.

    1975-01-01

    The following tests were carried out on high porosity (40 to 70%) sintered nickel: tensile tests, compression tests, diametral crushing tests, using strain gauges and extensometers. Results were obtained on the relationship elastic properties - porosity, Poisson coefficient in relation to deformation, variations of yield strength, and breaking stress. these various properties were also studied in relation to the sintering methods and the properties of the powders used [fr

  18. Can porosity affect the hyperspectral signature of sandy landscapes?

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Kimmel, Bradley W.

    2017-10-01

    Porosity is a fundamental property of sand deposits found in a wide range of landscapes, from beaches to dune fields. As a primary determinant of the density and permeability of sediments, it represents a central element in geophysical studies involving basin modeling and coastal erosion as well as geoaccoustics and geochemical investigations aiming at the understanding of sediment transport and water diffusion properties of sandy landscapes. These applications highlight the importance of obtaining reliable porosity estimations, which remains an elusive task, notably through remote sensing. In this work, we aim to contribute to the strengthening of the knowledge basis required for the development of new technologies for the remote monitoring of environmentally-triggered changes in sandy landscapes. Accordingly, we employ an in silico investigation approach to assess the effects of porosity variations on the reflectance of sandy landscapes in the visible and near-infrared spectral domains. More specifically, we perform predictive computer simulations using SPLITS, a hyperspectral light transport model for particulate materials that takes into account actual sand characterization data. To the best of our knowledge, this work represents the first comprehensive investigation relating porosity to the reflectance responses of sandy landscapes. Our findings indicate that the putative dependence of these responses on porosity may be considerably less pronounced than its dependence on other properties such as grain size and shape. Hence, future initiatives for the remote quantification of porosity will likely require reflectance sensors with a high degree of sensitivity.

  19. Data Mining of Network Logs

    Science.gov (United States)

    Collazo, Carlimar

    2011-01-01

    The statement of purpose is to analyze network monitoring logs to support the computer incident response team. Specifically, gain a clear understanding of the Uniform Resource Locator (URL) and its structure, and provide a way to breakdown a URL based on protocol, host name domain name, path, and other attributes. Finally, provide a method to perform data reduction by identifying the different types of advertisements shown on a webpage for incident data analysis. The procedures used for analysis and data reduction will be a computer program which would analyze the URL and identify and advertisement links from the actual content links.

  20. Neutron borehole logging correction technique

    International Nuclear Information System (INIS)

    Goldman, L.H.

    1978-01-01

    In accordance with an illustrative embodiment of the present invention, a method and apparatus is disclosed for logging earth formations traversed by a borehole in which an earth formation is irradiated with neutrons and gamma radiation produced thereby in the formation and in the borehole is detected. A sleeve or shield for capturing neutrons from the borehole and producing gamma radiation characteristic of that capture is provided to give an indication of the contribution of borehole capture events to the total detected gamma radiation. It is then possible to correct from those borehole effects the total detected gamma radiation and any earth formation parameters determined therefrom

  1. 29 CFR 1918.88 - Log operations.

    Science.gov (United States)

    2010-07-01

    ...) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Handling Cargo § 1918.88 Log operations. (a) Working in..., the employer shall ensure that employees remain clear of areas where logs being dumped could strike...

  2. Artificial intelligence approach to interwell log correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong-Se [Korea Maritime University, Pusan(Korea); Kang, Joo Myung [Seoul National University, Seoul(Korea); Kim, Jung Whan [Korea National Oil Corp., Anyang(Korea)

    2000-04-30

    This paper describes a new approach to automated interwell log correlation using artificial intelligence and principal component analysis. The approach to correlate wire line logging data is on the basis of a large set of subjective rules that are intended to represent human logical processes. The data processed are mainly the qualitative information such as the characteristics of the shapes extracted along log traces. The apparent geologic zones are identified by pattern recognition for the specific characteristics of log trace collected as a set of objects by object oriented programming. The correlation of zones between wells is made by rule-based inference program. The reliable correlation can be established from the first principal component logs derived from both the important information around well bore and the largest common part of variances of all available well log data. Correlation with field log data shows that this approach can make interwell log correlation more reliable and accurate. (author). 6 refs., 7 figs.

  3. Face logging in Copenhagen Limestone, Denmark

    DEFF Research Database (Denmark)

    Jakobsen, Lisa; Foged, Niels Nielsen; Erichsen, Lars

    2015-01-01

    tunnel in Copenhagen more than 2.5 km face logs were made in 467 locations at underground stations, shafts, caverns and along bored tunnels. Over 160 geotechnical boreholes, many with geophysical logging were executed prior to construction works. The bedrock consists of Paleogene "Copenhagen limestone......The requirement for excavation support can be assessed from face logging. Face logs can also improve our knowledge of lithological and structural conditions within bedrock and supplement information from boreholes and geophysical logs. During the construction of 8 km metro tunnel and 4 km heating....... The induration degrees recorded in face logs and boreholes are compared and correlated. Distinct geophysical log markers are used to divide the limestone into three units. These marker horizons are correlated between face logs and geotechnical boreholes. A 3D model of the strength variations recorded within...

  4. The many facets of pulsed neutron cased-hole logging

    Energy Technology Data Exchange (ETDEWEB)

    Albertin, I.; Darling, H.; Mahdavi, M.; Plasek, R. [Schlumberger Houston Product Center, Sugarland, TX (United States); Cedeno, I. [City Investing Company Ltd., Quito (Ecuador); Hemingway, J.; Richter, P. [GeoQuest, Bakersfield, CA (United States); Markley, M. [Schlumberger, Bogota (Colombia); Olesen, J.R. [Schlumberger, Beijing (China); Roscoe, B. [Schlumberger-Doll Research, Ridgefield, CT (United States); Zeng, Wenchong [Shengli Petroleum Administration Bureau, China Petroleum Corporation, Beijing (China)

    1996-12-31

    The RST Reservoir Saturation Tool, which bombards formations with neutrons and detects gamma rays from the resulting interactions, is rapidly becoming a complete stand-alone, cased-hole evaluation service. Measurements like elemental analysis, thermal decay times, porosity evaluation and production analysis help reservoir engineers locate bypassed oil, detect waterflood fronts, fine-tune formation evaluations and monitor production profiles. 19 figs., 12 refs.

  5. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  6. Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates

    Science.gov (United States)

    Li, Hongbing; Zhang, Jiajia

    2018-04-01

    The pore structure in heterogeneous carbonate rock is usually very complex. This complex pore system makes the relationship between the velocity and porosity of the rock highly scattered, so that for the classical two-dimensional rock physics template (2D RPT) it is not enough to accurately describe the quantitative relationship between the rock elastic parameters of this kind of reservoir and its porosity and water saturation. Therefore it is possible to attribute the effect of pore type to that of the porosity or water saturation, and leads to great deviations when applying such a 2D RPT to predict the porosity and water saturation in seismic reservoir prediction and hydrocarbon detection. This paper first presents a method to establish a new three-dimensional rock physics template (3D RPT) by integrating the Gassmann equations and the porous rock physics model, and use it to characterize the quantitative relation between rock elastic properties and the reservoir parameters including the pore aspect ratio, porosity and water saturation, and to predict these parameters from the known elastic properties. The test results on the real logging and seismic inversion data show that the 3D RPT can accurately describe the variations of elastic properties with the porosity, water saturation and pore-structure parameters, and effectively improve the accuracy of reservoir parameters prediction.

  7. Electrical impedance spectroscopy as a potential tool for recovering bone porosity

    International Nuclear Information System (INIS)

    Bonifasi-Lista, C; Cherkaev, E

    2009-01-01

    This paper deals with the recovery of porosity of bone from measurements of its effective electrical properties. The microstructural information is contained in the spectral measure in the Stieltjes representation of the bone effective complex permittivity or complex conductivity and can be recovered from the measurements over a range of frequencies. The problem of reconstruction of the spectral measure is very ill-posed and requires the use of regularization techniques. We apply the method to the effective electrical properties of cancellous bone numerically calculated using micro-CT images of human vertebrae. The presented method is based on an analytical approach and does not rely on correlation analysis nor on any a priori model of the bone micro-architecture. However the method requires a priori knowledge of the properties of the bone constituents (trabecular tissue and bone marrow). These properties vary from patient to patient. To address this issue, a sensitivity analysis of the technique was performed. Normally distributed random noise was added to the data to simulate uncertainty in the properties of the constituents and possible experimental errors in measurements of the effective properties. The values of porosity calculated from effective complex conductivity are in good agreement with the true values of bone porosity even assuming high level errors in the estimation of the bone components. These results prove the future potential of electrical impedance spectroscopy for in vivo monitoring of level and treatment of osteoporosis.

  8. Dynamics of hydrocarbon vents: Focus on primary porosity

    Science.gov (United States)

    Johansen, C.; Shedd, W.; Abichou, T.; Pineda-Garcia, O.; Silva, M.; MacDonald, I. R.

    2012-12-01

    This study investigated the dynamics of hydrocarbon release by monitoring activity of a single vent at a 1215m deep site in the Gulf of Mexico (GC600). An autonomous camera, deployed by the submersible ALVIN, was programmed to capture a close-up image every 4 seconds for approximately 3.5 hours. The images provided the ability to study the gas hydrate outcrop site (that measured 5.2x16.3cm3) in an undisturbed state. The outcrop included an array of 38 tube-like vents through which dark brown oil bubbles are released at a rate ranging from 8 bubbles per minute to 0 bubbles per minute. The average release of bubbles from all the separate vents was 59.5 bubbles per minute, equating the total volume released to 106.38cm per minute. The rate of bubble release decreased toward the end of the observation interval, which coincided approximately with the tidal minimum. Ice worms (Hesiocaeca methanicola, Desbruyères & Toulmond, 1998) were abundant at the vent site. The image sequence showed the ice-worms actively moving in and out of burrows in the mound. It has been speculated that Hesiocaeca methanicola contribute to gas hydrate decomposition by creating burrows and depressions in the gas hydrate matrix (Fisher et al, 2000). Ice worm burrows could generate pathways for the passage of oil and gas through the gas hydrate mound. Gas hydrates commonly occur along active and/or passive continental margins (Kennicutt et al, 1988a). The release of oil and gas at this particular hydrocarbon seep site is along a passive continental margin, and controlled primarily by active salt tectonics as opposed to the movement of continental tectonic plates (Salvador, 1987). We propose a descriptive model governing the release of gas and oil from deep sub-bottom reservoirs at depths of 3000-5000m (MacDonald, 1998), through consolidated and unconsolidated sediments, and finally through gas hydrate deposits at the sea floor. The oil and gas escape from the source rock and/or reservoir through

  9. Measurement and control in solution mining of copper and uranium

    International Nuclear Information System (INIS)

    Davidson, D.H.; Huff, R.V.; Sonstelie, W.E.

    1978-01-01

    The solution mining of deep-lying mineral deposits requires an integration of oilfield and extractive mineral technology. Although instrumentation is available to measure parameters relating to the oilfield components such as permeability, porosity and flow-logging, only limited services exist for monitoring leaching performance. This paper discusses the history of copper leaching, the need for solution mining development, and solution mining process descriptions. It discusses measurement requirements for deposit evaluation and the injection and production wellfields. It is concluded with a listing of desirable but unavailable instrumentation for further development of this technology

  10. Linking log quality with product performance

    Science.gov (United States)

    D. W. Green; Robert Ross

    1997-01-01

    In the United States, log grading procedures use visual assessment of defects, in relation to the log scaling diameter, to estimate the yield of lumber that maybe expected from the log. This procedure was satisfactory when structural grades were based only on defect size and location. In recent years, however, structural products have increasingly been graded using a...

  11. Selective logging and its relation to deforestation

    Science.gov (United States)

    Gregory P. Asner; Michael Keller; Marco Lentini; Frank Merry; Souza Jr. Carlos

    2009-01-01

    Selective logging is a major contributor to the social, economic, and ecological dynamics of Brazilian Amazonia. Logging activities have expanded from low-volume floodplain harvests in past centuries to high-volume operations today that take about 25 million m3 of wood from the forest each year. The most common high-impact conventional and often illegal logging...

  12. Pacific Rim log trade: determinants and trends.

    Science.gov (United States)

    Donald F. Flora; Andrea L. Anderson; Wendy J. McGinnls

    1991-01-01

    Pacific Rim trade in softwood logs amounts to about $3 billion annually, of which the U.S. share is about $2 billion. Log exporting is a significant part of the forest economy in the Pacific Northwest. The 10 major Pacific Rim log-trading client and competitor countries differ widely in their roles in trade and in their policies affecting the industry.

  13. Well logging radioactive detector assembly

    International Nuclear Information System (INIS)

    Osburn, T.D.

    1992-01-01

    This patent describes a well logging instrument of the type having a radioactive logging sub having a sealed chamber and have a radioactive source for emitting radioactive energy into the well formation, the instrument having a radioactive energy detector for detecting gamma rays resulting from the emission of the radioactive energy into the well formation, and means for pressing the sub against the well of the well, an improved Dewar flask for the detector. It comprises: an inner housing formed of titanium and containing the detector; an outer housing formed of titanium, having a cylindrical side wall surrounding the inner housing and separated by a clearance which is evacuated, the outer housing being located within the sealed chamber in the sub of the instrument; a window section formed in the side wall of the outer housing adjacent the detector and on a side of the side wall closest to the wall of the well when the sub is pressed against the wall of the well; and wherein the inner housing has a cylindrical side wall that is of lesser wall thickness than the wall thickness of the side wall of the outer housing other than in the window section

  14. Low serum vitamin D is associated with higher cortical porosity in elderly men.

    Science.gov (United States)

    Sundh, D; Mellström, D; Ljunggren, Ö; Karlsson, M K; Ohlsson, C; Nilsson, M; Nilsson, A G; Lorentzon, M

    2016-11-01

    Bone loss at peripheral sites in the elderly is mainly cortical and involves increased cortical porosity. However, an association between bone loss at these sites and 25-hydroxyvitamin D has not been reported. To investigate the association between serum levels of 25-hydroxyvitamin D, bone microstructure and areal bone mineral density (BMD) in elderly men. A population-based cohort of 444 elderly men (mean ± SD age 80.2 ± 3.5 years) was investigated. Bone microstructure was measured by high-resolution peripheral quantitative computed tomography, areal BMD by dual-energy X-ray absorptiometry and serum 25-hydroxyvitamin D and parathyroid hormone levels by immunoassay. Mean cortical porosity at the distal tibia was 14.7% higher (12.5 ± 4.3% vs. 10.9 ± 4.1%, P vitamin D levels compared to the highest. In men with vitamin D deficiency (6.8 pmol L -1 )], cortical porosity was 17.2% higher than in vitamin D-sufficient men (P vitamin D supplementation and parathyroid hormone showed that 25-hydroxyvitamin D independently predicted cortical porosity (standardized β = -0.110, R 2 = 1.1%, P = 0.024), area (β = 0.123, R 2 = 1.4%, P = 0.007) and cortical volumetric BMD (β = 0.125, R 2 = 1.4%, P = 0.007) of the tibia as well as areal BMD of the femoral neck (β = 0.102, R 2 = 0.9%, P = 0.04). Serum vitamin D is associated with cortical porosity, area and density, indicating that bone fragility as a result of low vitamin D could be due to changes in cortical bone microstructure and geometry. © 2016 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  15. Hyporheic less-mobile porosity and solute transport in porous media

    Science.gov (United States)

    MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.

    2017-12-01

    Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.

  16. Elemental logging in the KTB Pilot Hole. Pt. 1

    International Nuclear Information System (INIS)

    Grau, J.A.; Schweitzer, J.S.; Draxler, J.K.; Gatto, H.; Lauterjung, J.

    1993-01-01

    Neutron-induced γ-ray spectrometry, of prompt capture and delayed activation, together with natural γ-ray measurements, provide a borehole elemental analysis to characterize rock matrix composition. Elemental concentrations from the prompt capture measurements are derived through the use of a closure model that was developed from data on rocks in a sedimentary environment. This set of spectrometers was used to log the 4000 m of the German Continental Deep Drilling Project (KTB) Pilot Hole. The model was tested, with a minor change, for suitability to the crystalline rock environment. Good overall agreement was found between the logging measurements and laboratory analyses performed on cuttings and cores. (Author)

  17. Effect of Temperature and Age of Concrete on Strength – Porosity Relation

    Directory of Open Access Journals (Sweden)

    T. Zadražil

    2004-01-01

    Full Text Available The compressive strengths of unsealed samples of concrete at the age of 180 days and have been measured at temperatures 20 °C, 300 °C, 600 °C and 900 °C. All of tests were performed for cold material. We compared our results with those obtained in [10] for the same type of concrete (age 28, resp. 90 days and measured at temperature ranging from 20 °C to 280 °C. Dependencies of compressive strength and porosity were correlated together and compared for the samples of age 28, 90 and 180 days. Behaviour of concrete of the age 90, resp. 180 days confirms generally accepted hypothesis that with increasing porosity strength of the concrete decreases. It has to be stressed out, howerer, that concrete samples of the age 28 days exhibit totally opposite dependency. 

  18. Porosity and thickness effect of porous silicon layer on photoluminescence spectra

    Science.gov (United States)

    Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.

    2018-05-01

    The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.

  19. Semi-automatic logarithmic converter of logs

    International Nuclear Information System (INIS)

    Gol'dman, Z.A.; Bondar's, V.V.

    1974-01-01

    Semi-automatic logarithmic converter of logging charts. An original semi-automatic converter was developed for use in converting BK resistance logging charts and the time interval, ΔT, of acoustic logs from a linear to a logarithmic scale with a specific ratio for subsequent combining of them with neutron-gamma logging charts in operative interpretation of logging materials by a normalization method. The converter can be used to increase productivity by giving curves different from those obtained in manual, pointwise processing. The equipment operates reliably and is simple in use. (author)

  20. Acoustic--nuclear permeability logging system

    International Nuclear Information System (INIS)

    Dowling, D.J.; Arnold, D.M.

    1978-01-01

    A down hole logging tool featuring a neutron generator, an acoustic disturbance generator, and a radiation detection system is described. An array of acoustic magnetostriction transducers is arranged about the target of a neutron accelerator. Two gamma ray sensors are separated from the accelerator target by shielding. According to the method of the invention, the underground fluid at the level of a formation is bombarded by neutrons which react with oxygen in the fluid to produce unstable nitrogen 16 particles according to the reaction 16 O(n,p) 16 N. Acoustic pulses are communicated to the fluid, and are incident on the boundary of the borehole at the formation. The resulting net flow of fluid across the boundary is determined from radiation detection measurements of the decaying 16 N particles in the fluid. A measure of the permeability of the formation is obtained from the determination of net fluid flow across the boundary

  1. Neutron die-away well logging

    International Nuclear Information System (INIS)

    Jacobson, L.A.

    1976-01-01

    Neutron die-away well logging is extensively used for the location and monitoring of hydrocarbon zones in cased wells. Casing prohibits the use of conventional open-hole electrical resistivity methods. Through an appropriate interpretation of the measured capture cross-section, it is possible to determine the fractional hydrocarbon content of the rock pore volume, provided that the interstitial water is moderately saline (Σ/sub w/ greater than or equal to .035 cm -1 ). Special sealed D-T accelerator tubes and high voltage supplies have been developed for this purpose. They must fit into a 25 mm design circle and operate at 175 0 C, producing approximately 10 8 neutron/sec average in repetitive bursts. In the Schlumberger method an electronic servo-system adjusts burst and measure-gate timing to minimize statistical uncertainty regardless of die-away time

  2. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...... permeability estimate comparable to the measured one for shale rich in smectite. This is probably because Yang and Aplin model was calibrated in London clay which is rich in smectite....

  3. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    International Nuclear Information System (INIS)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W.

    2013-01-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  4. Borehole Calibration Facilities to Support Gamma Logging for Hanford Subsurface Investigation and Contaminant Monitoring - 13516

    Energy Technology Data Exchange (ETDEWEB)

    McCain, R.G.; Henwood, P.D.; Pope, A.D.; Pearson, A.W. [S M Stoller Corporation, 2439 Robertson Drive, Richland, WA 99354 (United States)

    2013-07-01

    Repeated gamma logging in cased holes represents a cost-effective means to monitor gamma-emitting contamination in the deep vadose zone over time. Careful calibration and standardization of gamma log results are required to track changes and to compare results over time from different detectors and logging systems. This paper provides a summary description of Hanford facilities currently available for calibration of logging equipment. Ideally, all logging organizations conducting borehole gamma measurements at the Hanford Site will take advantage of these facilities to produce standardized and comparable results. (authors)

  5. Method and apparatus for epithermal neutron decay logging

    International Nuclear Information System (INIS)

    Nelligan, W.B.

    1998-01-01

    The nature of hydrogenous fluids filling the pore spaces in formations surrounding a well bore are determined by irradiating the formations with bursts of high energy neutrons and using the ratio of time-dependent parameters related to the decay of epithermal neutron populations above two different energy levels to provide values indicative of the kind of fluid present, independent of porosity. The measurement above the higher of these energy levels, appr. 0.4eV, indicates the existence of hydrogenous fluid, water and hydrocarbons in the formations. The lower threshold measurement, above appr. 0.15eV, is indicative of the structure of the molecule in which the hydrogen molecule is bound and of the porosity. A pulsed neutron generator in a sonde irradiates the formations with 14meV neutrons and a pair of detectors, one shielded by cadmium, to establish the 0.4eV threshold energy level and the other, shielded by gadolinium, to establish the 0.15eV threshold energy level. Time related parameters of the count rate information, e.g. the decay constants, provided by each detector are derived. The ratio of the respective parameters is used to identify the type of fluid in the information, independent of porosity. The method and apparatus can determine water saturation, i.e. percentage of water in the formation fluid and can identify specific types of hydrocarbons under 100% hydrocarbon saturation conditions. 8 figs

  6. Case-Logging Practices in Otolaryngology Residency Training: National Survey of Residents and Program Directors.

    Science.gov (United States)

    Dermody, Sarah M; Gao, William; McGinn, Johnathan D; Malekzadeh, Sonya

    2017-06-01

    Objective (1) Evaluate the consistency and manner in which otolaryngology residents log surgical cases. (2) Assess the extent of instruction and guidance provided by program directors on case-logging practices. Study Design Cross-sectional national survey. Setting Accreditation Council for Graduate Medical Education otolaryngology residency programs in the United States. Subjects and Methods US otolaryngology residents, postgraduate year 2 through graduating chiefs as of July 2016, were recruited to respond to an anonymous questionnaire designed to characterize surgical case-logging practices. Program directors of US otolaryngology residency programs were recruited to respond to an anonymous questionnaire to elucidate how residents are instructed to log cases. Results A total of 272 residents and 53 program directors completed the survey, yielding response rates of 40.6% and 49.5%, respectively. Perceived accuracy of case logs is low among residents and program directors. Nearly 40% of residents purposely choose not to log certain cases, and 65.1% of residents underreport cases performed. More than 80% of program directors advise residents to log procedures performed outside the operating room, yet only 16% of residents consistently log such cases. Conclusion Variability in surgical case-logging behaviors and differences in provided instruction highlight the need for methods to improve consistency of logging practices. It is imperative to standardize practices across otolaryngology residency programs for case logs to serve as an accurate measure of surgical competency. This study provides a foundation for reform efforts within residency programs and for the Resident Case Log System.

  7. A Universal Logging System for LHCb Online

    International Nuclear Information System (INIS)

    Nikolaidis, Fotis; Brarda, Loic; Garnier, Jean-Christophe; Neufeld, Niko

    2011-01-01

    A log is recording of system's activity, aimed to help system administrator to traceback an attack, find the causes of a malfunction and generally with troubleshooting. The fact that logs are the only information an administrator may have for an incident, makes logging system a crucial part of an IT infrastructure. In large scale infrastructures, such as LHCb Online, where quite a few GB of logs are produced daily, it is impossible for a human to review all of these logs. Moreover, a great percentage of them as just n oise . That makes clear that a more automated and sophisticated approach is needed. In this paper, we present a low-cost centralized logging system which allow us to do in-depth analysis of every log.

  8. A neutron well logging system

    International Nuclear Information System (INIS)

    1980-01-01

    A pulsed neutron well logging system using a sealed off neutron generator tube is provided with a programmable digital neutron output control system. The control system monitors the target beam current and compares a function of this current with a pre-programmed control function to develop a control signal for the neutron generator. The control signal is used in a series regulator to control the average replenisher current of the neutron generator tube. The programmable digital control system of the invention also provides digital control signals as a function of time to provide ion source voltages. This arrangement may be utilized to control neutron pulses durations and repetition rates or to produce other modulated wave forms for intensity modulating the output of the neutron generator as a function of time. (Auth.)

  9. Decomposable log-linear models

    DEFF Research Database (Denmark)

    Eriksen, Poul Svante

    can be characterized by a structured set of conditional independencies between some variables given some other variables. We term the new model class decomposable log-linear models, which is illustrated to be a much richer class than decomposable graphical models.It covers a wide range of non...... The present paper considers discrete probability models with exact computational properties. In relation to contingency tables this means closed form expressions of the maksimum likelihood estimate and its distribution. The model class includes what is known as decomposable graphicalmodels, which......-hierarchical models, models with structural zeroes, models described by quasi independence and models for level merging. Also, they have a very natural interpretation as they may be formulated by a structured set of conditional independencies between two events given some other event. In relation to contingency...

  10. Pinpointing water entries using pulsed neutron and Production logging tools

    International Nuclear Information System (INIS)

    Mukerji, P.; Oluwa, J.

    2003-01-01

    A successful work over requires a comprehensive understanding of fluid entries into the wellbore and fluid contact movement in the reservoir. Such information can be obtained by a combination of production logs and saturation-monitoring measurements. The ability to combine pulsed neutron and production logging tools provides the operator with better diagnostics for identifying candidates for remedial actions and greatly increases the possibility of a successful well intervention. Advances in pulsed neutron spectroscopy tools have improved the accuracy and precision of measured carbon/oxygen ratios. Some of the improvements in accuracy and precision have resulted from better tool characterization in a wider variety of logging environments in the calibration facility and new spectral standards. Coincident with the advances in pulsed neutron spectroscopy has been the development of production logging measurements run on a platform common. We will show how the application of pulsed neutron and production logs can optimize subsequent well intervention to reduce water production and/or increase oil production

  11. Quantifying multiscale porosity and fracture aperture distribution in granite cores using computed tomography

    Science.gov (United States)

    Wenning, Quinn; Madonna, Claudio; Joss, Lisa; Pini, Ronny

    2017-04-01

    saturating fluids to obtain a sufficiently high contrast in the acquired CT images (˜ 474 HU). 3D reconstructions of the sample have been prepared in terms of porosity at a maximum resolution of (0.24×0.24×1) mm3 . Porosity is estimated via the X-ray saturation technique, where porosity is a function of the difference between CT numbers of pure helium and krypton and the difference between the CT numbers of an individual voxel saturated with helium and krypton, respectively. Applying this method with krypton and helium is advantageous for low permeable samples where achieving complete water saturation is difficult. This allows for quantification of voxel-by-voxel-porosity distribution where the whole core porosity is less than 2%. The fracture aperture is assessed using the measured missing CT attenuation method. Use of the medical CT scanner to estimate intrinsic rock properties requires careful voxel-by-voxel consideration and appraisal of the uncertainty, which can be reduced by subtracting multiple slices taken at the exact same location. These results show that core-scale porosity and fracture distribution heterogeneity play an important role in fluid saturation and heat extraction potential in geothermal systems. Huo, D., Pini, R., and Benson, S.M., 2016, A calibration-free approach for measuring fracture aperture distributions using X-ray computed tomography: Geosphere, v. 12, no. 2, p. 558-571, doi:10.1130/GES01175.1. Vega, B., Dutta, A., and Kovscek, A.R., 2014, CT imaging of low-permeability, dual-porosity systems using high X-ray contrast gas: Transport in Porous Media, v. 101, p. 81-97, doi:10.1007/s11242-013-0232-0.

  12. Poroelasticity of high porosity chalk under depletion

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2013-01-01

    on mechanical test results is found to be low-er than the pretest dynamic Biot coefficient determined from elastic wave propagation for the loading path and with less deviation under depletion. The calculated lateral stress is lower than the experimentally measured lateral stress depending on loading path...

  13. Multivariate and spatial statistical analysis of Callovo-Oxfordian physical properties from lab and borehole logs data: towards a characterization of lateral and vertical spatial trends in the Meuse/Haute-Marne transposition zone

    International Nuclear Information System (INIS)

    Garcia, M.H.; Rabaute, A.; Yven, B.; Guillemot, D.

    2010-01-01

    relevant information about the spatial continuity of rock properties as measured on cores in laboratory. To do so, multivariate statistical analysis methods, including principal component analysis based on linear or rank (Spearman) correlations, were carried out. They show that well-log compressive velocity ( V p) is well correlated to static Young modulus and compressive strength measured on cores, and that downhole bulk density and Total CMR porosity are well correlated to dynamic Young modulus, dynamic shear modulus and compressive velocity on cores. Studying the spatial continuity and trends of properties in argillaceous units was a primary objective of the study. To do so, the spatial analysis was first conducted on the well-log properties that proved to be well correlated to properties measured on cores, lab properties remaining the reference physical properties. Lateral and vertical spatial trends were observed and interpreted on the selected well-log properties. In order to confirm that these spatial trends were effective and could apply to physical properties measured on cores, the spatial continuity of some correlated lab properties was studied. Similar trends were found that validated the approach of using log properties for characterizing the spatial continuity of core physical properties. (authors)

  14. Porosity study of synthetic sandstones by non-destructive nuclear techniques

    International Nuclear Information System (INIS)

    Marques, Leonardo Carmezini

    2008-01-01

    In this paper, nuclear techniques have been used to describe structural characteristics of ceramic samples. These samples were produced to serve as simulates of sandstones and their mainly component was silica (SiO 2 ). Three sets of these samples with different characteristics were analyzed with the gamma ray transmission and the X-ray microtomography. They had the function to describe parameters as porosity point to point and total average porosity, for the transmission case, and 2D sections average porosity, total average porosity and size porous distribution for microtomography, as well as to investigate possible irregularities in bulk sample. The experimental set up for the Gamma Ray Transmission technique consisted of: a 2'' x 2'' crystal NaI(Tl) detector, an 241 Am radioactive source (59.54 keV, 100 mCi), an automatic micrometric table for the sample XZ movement and standard gamma spectrometry electronics. Lead collimators with 2 mm diameter were placed on the source way out and on the detector entrance. The microtomographic measurements were done with a Skyscan system, model 1172, with a X -ray tube with 20 - 100 kV of voltage range and a CCD camera. Employing gamma ray transmission method was possible to obtain overall porosity values from 25.8 to 34.0 % and from 24.8 to 29.2 % for samples with parallelepiped and cylinder shape, respectively, for ceramic I set; from 58.5 to 61.0 % and from 57.1 to 61.7 % for the same geometric shape of ceramic II set. The samples analyzed by the microtomography achieved resolutions of 1.73 μm, 0.64 μm and 1.28 μm for samples of ceramic set I, II and III, respectively. This methodology provided average total porosity values from 26.6 to 29.4 %, from 48.4 to 51.0 % and from 28.2 to 30.6 % to I, II and III ceramic sets, respectively. The porous size profiles of each ceramic sample were also measured. (author)

  15. Study of the porosity of synthetic sandstones by nondestructive nuclear techniques

    International Nuclear Information System (INIS)

    Marques, Leonardo Carmezini

    2008-01-01

    In this paper, nuclear techniques have been used to describe structural characteristics of ceramic samples. These samples were produced to serve as simulates of sandstones and their mainly component was silica (SiO 2 ). Three sets of these samples with different characteristics were analyzed with the gamma ray transmission and the X-ray microtomography. They had the function to describe parameters as porosity point to point and total average porosity, for the transmission case, and 2D sections average porosity, total average porosity and size porous distribution for microtomography, as well as to investigate possible irregularities in bulk sample. The experimental set up for the gamma ray transmission technique consisted of: a 2 x 2 crystal NaI(Tl) detector, an 241 Am radioactive source (59.54 keV, 100 mCi), an automatic micrometric table for the sample XZ movement and standard gamma spectrometry electronics. Lead collimators with 2 mm diameter were placed on the source way out and on the detector entrance. The microtomographic measurements were done with a Skyscan system, model 1172, with a X-ray tube with 20-100 kV of voltage range and a CCD camera. Employing gamma ray transmission method was possible to obtain overall porosity values from 25.8 to 34.0 % and from 24.8 to 29.2 % for samples with parallelepiped and cylinder shape, respectively, for ceramic I set; from 58.5 to 61.0 % and from 57.1 to 61.7 % for the same geometric shape of ceramic II set. The samples analyzed by the microtomography achieved resolutions of 1.73 μm, 0.64 μm and 1.28 μm for samples of ceramic set I, II and III, respectively. This methodology provided average total porosity values from 26.6 to 29.4 %, from 48.4 to 51.0 % and from 28.2 to 30.6 % to I, II and III ceramic sets, respectively. The porous size profiles of each ceramic sample were also measured. (author)

  16. Use of improved hydrologic testing and borehole geophysical logging methods for aquifer characterization

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Hall, S.H.; Vermeul, V.R.

    1996-01-01

    Depth-discrete aquifer information was obtained using recently developed adaptations and improvements to conventional characterization techniques. These improvements included running neutron porosity and bulk density geophysical logging tools through a cased hole, performing an enhanced point-dilution tracer test for monitoring tracer concentration as a function of time and depth, and using pressure derivatives for diagnostic and quantitative analysis of constant rate discharge test data. Data results from the use of these techniques were used to develop a conceptual model of a heterogeneous aquifer. Depth-discrete aquifer information was required to effectively design field-scale deployment and monitoring of an in situ bioremediation technology. The bioremediation study site is located on the US Department of Energy's Hanford site. The study is being conducted by the Pacific Northwest National Laboratory to demonstrate in situ bioremediation of carbon tetrachloride (CCl 4 ). Geophysical logging and point-dilution tracer test results provided the relative distribution of porosity and horizontal hydraulic conductivity, respectively, with depth and correlated well. Hydraulic pumping tests were conducted to estimate mean values for transmissivity and effective hydraulic conductivity. Tracer test and geophysical logging results indicated that ground water flow was predominant in the upper approximate 10 feet of the aquifer investigated. These results were used to delineate a more representative interval thickness for estimating effective hydraulic conductivity. Hydraulic conductivity, calculated using this representative interval, was estimated to be 73 ft/d, approximately three times higher than that calculated using the full length of the screened test interval

  17. A new effective Monte Carlo Midway coupling method in MCNP applied to a well logging problem

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E

    1998-12-01

    The background of the Midway forward-adjoint coupling method including the black absorber technique for efficient Monte Carlo determination of radiation detector responses is described. The method is implemented in the general purpose MCNP Monte Carlo code. The utilization of the method is fairly straightforward and does not require any substantial extra expertise. The method was applied to a standard neutron well logging porosity tool problem. The results exhibit reliability and high efficiency of the Midway method. For the studied problem the efficiency gain is considerably higher than for a normal forward calculation, which is already strongly optimized by weight-windows. No additional effort is required to adjust the Midway model if the position of the detector or the porosity of the formation is changed. Additionally, the Midway method can be used with other variance reduction techniques if extra gain in efficiency is desired.

  18. Method and apparatus for nuclear logging making use of lithium detectors and equipment for gamma ray stripping; Fremgangsmaate og apparat til nuklear logging med bruk av litiummontasjer og anordning for gammastraalestripping

    Energy Technology Data Exchange (ETDEWEB)

    Perry, C.A.; Daigle, G.A.; Bruck, W.D. [and others

    1998-05-11

    The patent deals with a borehole logging tool where a pair of spaced-apart lithium detectors is lowered into a borehole traversing a sursurface formation. The formation is irradiated with bursts of neutrons, and the neutrons returning to the borehole are detected by thermal neutron detectors. The dieaway gamma ray spectra provide information on the formation porosity. A MWD system includes a programmable gain amplifier and gamma ray stripping means. 30 figs.

  19. Evaluation of porosity in Al alloy die castings

    Directory of Open Access Journals (Sweden)

    M. Říhová

    2012-01-01

    Full Text Available Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was die- cast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.

  20. Particle porosity at plasma are spraying of metals

    International Nuclear Information System (INIS)

    Petrunichev, V.A.; Koroleva, E.B.; Pushilin, N.P.

    1985-01-01

    Quantitative dependences of porosity and character of pore distribution in particles of different materials on particle size and composition of atmosphere in a working chamber are studied experimentally as applied to the process of plasma wire sputtering. Wires 1.2 mm in diameter made of tungsten, molybdenum, Kh20N80 alloy, and zirconium served as sputtering materials. It is shown that pore size and character of their distribution in particles of powders obtained by the method of plasma wire sputtering are dependent on sizes of forming particles and determined by conditions of their cooling. Intensive porosity formation is characteristic of wire sputtering in argon plasma with nitrogen additions, but there are critical values of nitrogen concentration in plasma, above which intensive porosity formation in forming particles stops

  1. Digital Rock Physics Aplications: Visualisation Complex Pore and Porosity-Permeability Estimations of the Porous Sandstone Reservoir

    Science.gov (United States)

    Handoyo; Fatkhan; Del, Fourier

    2018-03-01

    Reservoir rock containing oil and gas generally has high porosity and permeability. High porosity is expected to accommodate hydrocarbon fluid in large quantities and high permeability is associated with the rock’s ability to let hydrocarbon fluid flow optimally. Porosity and permeability measurement of a rock sample is usually performed in the laboratory. We estimate the porosity and permeability of sandstones digitally by using digital images from μCT-Scan. Advantages of the method are non-destructive and can be applied for small rock pieces also easily to construct the model. The porosity values are calculated by comparing the digital image of the pore volume to the total volume of the sandstones; while the permeability values are calculated using the Lattice Boltzmann calculations utilizing the nature of the law of conservation of mass and conservation of momentum of a particle. To determine variations of the porosity and permeability, the main sandstone samples with a dimension of 300 × 300 × 300 pixels are made into eight sub-cubes with a size of 150 × 150 × 150 pixels. Results of digital image modeling fluid flow velocity are visualized as normal velocity (streamline). Variations in value sandstone porosity vary between 0.30 to 0.38 and permeability variations in the range of 4000 mD to 6200 mD. The results of calculations show that the sandstone sample in this research is highly porous and permeable. The method combined with rock physics can be powerful tools for determining rock properties from small rock fragments.

  2. Insights into the dolomitization process and porosity modification in sucrosic dolostones, Avon Park Formation (Middle Eocene), East-Central Florida, U.S.A.

    KAUST Repository

    Maliva,, Robert G.

    2011-03-01

    The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean δ 18O = +3.91% V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the

  3. Insights into the dolomitization process and porosity modification in sucrosic dolostones, Avon Park Formation (Middle Eocene), East-Central Florida, U.S.A.

    KAUST Repository

    Maliva,, Robert G.; Budd, David A.; Clayton, Edward A.; Missimer, Thomas M.; Dickson, John Anthony D

    2011-01-01

    The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean δ 18O = +3.91% V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the

  4. The porosity effect on properties of sintered materials as their conductivity and Youngs modulus of elasticity

    International Nuclear Information System (INIS)

    Ondracek, G.; Thuemmler, F.

    1979-01-01

    A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de

  5. Relationship between fiber porosity and cellulose digestibility in steam-exploded Pinus radiata

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.K.Y.; Deverell, K.F.; Mackie, K.L.; Clark, T.A.; Donaldson, L.A.

    1988-04-05

    The use of lignocellulosic materials in bioconversion processes may be improved if the critical factors limiting conversion are better understood. Steam explosion after sulfur dioxide impregnation of wood chips is an effective method for improving the enzymatic digestibility of cellulose in the softwood Pinus radiata. Digestibility of pretreated fiber was progressively increased by altering the conditions of steam explosion. With increasing digestibility, there was an observed increase in fiber porosity as measured by the solute exclusion technique. Accessible pore volume and accessible surface area to a 5-nm dextran probe positively correlated with both 2- and 24-h digestion yields from pretreated fiber. The increase in accessibility was probably the result of hemicellulose extraction and lignin redistribution. A subsequent loss in accessibility, brought about by structural collapse or further lignin redistribution, resulted in a corresponding loss in digestibility. It appears that steam explosion increases cellulose digestibility in P. radiata by increasing fiber porosity.

  6. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    International Nuclear Information System (INIS)

    Zou, C.; Li, B.; Zhang, C.; Wang, S.; Marrow, T.J.; Reinhard, C.

    2016-01-01

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a 'node-bond' geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1∼ 9.3% closed micropores

  7. High Structural Stability of Textile Implants Prevents Pore Collapse and Preserves Effective Porosity at Strain

    Directory of Open Access Journals (Sweden)

    Uwe Klinge

    2015-01-01

    Full Text Available Reinforcement of tissues by use of textiles is encouraged by the reduced rate of recurrent tissue dehiscence but for the price of an inflammatory and fibrotic tissue reaction to the implant. The latter mainly is affected by the size of the pores, whereas only sufficiently large pores are effective in preventing a complete scar entrapment. Comparing two different sling implants (TVT and SIS, which are used for the treatment of urinary incontinence, we can demonstrate that the measurement of the effective porosity reveals considerable differences in the textile construction. Furthermore the changes of porosity after application of a tensile load can indicate a structural instability, favouring pore collapse at stress and questioning the use for purposes that are not “tension-free.”

  8. Low porosity portland cement pastes based on furan polymers

    International Nuclear Information System (INIS)

    Darweesh, H.H.M.

    2005-01-01

    The effect of three different types of Furan polymers on the porosity, mechanical properties, mechanism of hydration and microstructure of Ordinary Portland cement (OPC) pastes was investigated. The results showed that mixing the OPC with Furan polymers, the standard water of consistency of the different cement pastes decreases and therefore the setting times (initial and final) are shortened. The total porosity of the hardened cement pastes decreased, while the mechanical properties improved and enhanced at all curing ages of hydration compared with those of the pure OPC pastes. The hydration process with Furan polymers proceeded according to the following decreasing order: F.ac. > F.ph. > F.alc. > OPC

  9. Anomalously high porosity in subduction inputs to the Nankai Trough (SW Japan) potentially caused by volcanic ash and pumice

    Science.gov (United States)

    Huepers, A.; Ikari, M.; Underwood, M.; Kopf, A.

    2013-12-01

    At convergent margins, the sedimentary section seaward of the trench on the subducting oceanic lithosphere provides the source material for accretionary prisms and eventually becomes the host rock of the plate boundary megathrust. The mechanical properties of the sediments seaward of the subduction zone have therefore a first order control on subduction zone forearc mechanics and hydrogeology. At the Nankai Trough (SW Japan) the majority of sediment approaching the subduction zone is clay-rich. Scientific drilling expeditions in the framework of the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) have revealed an anomalous zone of high porosity in a major lithologic unit known as the Upper Shikoku Basin facies (USB), which is associated with elevated volcanic ash content and high amounts of silica in the interstitial water. The existence of the high porosity zone has previously been associated with advanced silica cementation, driven by the dual diagenetic transition of opal-A to opal-CT, and opal-CT to quartz. However, temperature estimates from recent drilling expeditions offshore the Kii peninsula reveal different in situ temperatures at the proposed diagenetic boundary in the Shikoku Basin. Furthermore, laboratory measurements using core samples from the USB show that cohesive strength is not elevated in the high porosity zone, suggesting that a process other than cementation may be responsible. The USB sediment is characterized by abundant volcanic ash and pumice, therefore the high porosity zone in the USB may be closely linked to the mechanical behavior of this phase. We conducted consolidation tests in the range 0.1 to 8 MPa effective vertical stress on artificial ash-smectite and pumice-smectite mixtures, as well as intact and remolded natural samples from the IODP Sites C0011 and C0012 to investigate the role of the volcanic constituent on porosity loss with progressive burial. Our results show that both remolded and intact

  10. Porosity and pore size distribution determination of Tumblagooda formation sandstone by X-ray microtomography

    International Nuclear Information System (INIS)

    Fernandes, Jaquiel S.; Appoloni, Carlos R.; Moreira, Anderson C.

    2007-01-01

    Microstructural parameters evaluations of reservoir rocks are very important to petroleum industry. This work presents total porosity and pore size distribution measurement of a sandstone sample from the Tumblagooda formation, collected at Kalbarri National Park in Australia. Porosity and pores size distribution were determined using X-Ray microtomography and imaging techniques. For these measurements, it was employed a micro-CT (μ-CT) Skyscan system model 1172 with conical beam, operated with a 1 mm Al filter at 80 kV and 125 μA, respectively, and a 2000 x 1048 pixels CCD camera. The sample was rotated from 0 deg to 180 deg, in step of 0.5 deg. For the considered sample, this equipment provided images with 2.9 μm spatial resolution. Six hundreds 2-D images where reconstructed with the Skyscan NRecon software, which were analyzed with the aid of Imago software, developed at the Laboratory of Porous Media and Thermophysical Properties (LMPT), Department of Mechanical Engineering, Federal University of Santa Catarina, Brazil, in association with the Brazilian software company Engineering Simulation and Scientific Software (ESSS), and Petroleo Brasileiro SA (PETROBRAS) Research and Development Center (CENPES). The determined average porosity was 11.45 ±1.53 %. Ninety five percent of the porous phase refers to pores with radius ranging from 2.9 to 85.2 μm, presenting the larger frequency (7.7 %) at 11.7 μm radius. (author)

  11. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.

    Science.gov (United States)

    Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A

    2015-09-01

    A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. California-Nevada uranium logging. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    The purpose of this project was to obtain geophysical logs of industry drill holes to assess the uranium resource potential of geologic formations of interest. The work was part of the US Department of Energy's National Uranium Resource Evaluation (NURE) Program. The principal objective of the logging program was to determine radioelement grade of formations through natural gamma ray detectors. Supplementary information was obtained from resistivity (R), self-potential (SP), point resistance (RE), and neutron density (NN) logs for formation interpretation. Additional data for log interpretation was obtained from caliper logs, casing schedules, and downhole temperature. This data was obtained from well operators when available, with new logs obtained where not formerly available. This report contains a summary of the project and data obtained to date

  13. Analysis of log rate noise in Ontario's CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, H.W. [Dynamic Simulation and Analysis Corp., Deep River, Ontario (Canada); Banica, C.; Arguner, D. [Ontario Power Generation, Ajax, Ontario (Canada); Scharfenberg, R. [Bruce Power, Tiverton, Ontario (Canada)

    2007-07-01

    In the fall of 2003, the operators noticed that in the recently-refurbished Bruce A Shutdown System no. 1 (SDS1) the noise level in Log Rate signals were much larger than before. At the request of the Canadian Nuclear Safety Commission (CNSC), all Canadian CANDU reactors took action to characterize their Log Rate noise. Staff of the Inspection and Maintenance Services division of Ontario Power Generation (OPG) has collected high-speed high-accuracy noise data from nearly all 16 Ontario reactors, either as part of routine measurements before planned outages or as a dedicated noise recording. This paper gives the results of examining a suitable subset of this data, with respect to the characteristics and possible causes of Log Rate noise. The reactor and instrumentation design is different at each station: the locations of the moderator injection nozzles, the location of the ion chambers for each system, and the design of the Log Rate amplifiers. It was found that the Log noise (source of Log Rate noise) was much larger for those ion chambers in the path of the moderator injection nozzles, compared to those which were not in the path. This 'extra' Log noise would then be either attenuated or amplified depending on the transfer function (time constants) of the Log Rate amplifier. It was also observed that most of the Log and Log Rate noise is independent of any other signal measured. Although all CANDU reactors in Ontario have Log and Log Rate noise, the Bruce A SDS1 system has the largest amount of Log Rate noise, because (a) its SDS1 (and RRS) ion chambers are at the top of the reactor in the path of the moderator injection nozzles, and (b) its SDS1 Log Rate amplifiers have the smallest time constants. (author)

  14. Pembangkitan Data dari Distribusi Log-logistik

    Directory of Open Access Journals (Sweden)

    Aceng Komarudin Mutaqin

    2014-11-01

    Full Text Available Distribusi log-logistik merupakan salah satu distribusi yang dapat diaplikasikan untuk data mutu lingkungan. Makalah ini membahas pembangkitan data dari distribusi log-logistik mulai dari pembangunan algoritme sampai pembuatan program komputer pada perangkat lunak MATLAB. Metode pembangkitan datanya menggunakan metode inverse transform. Ada dua jenis data yang dibangkitkan, yaitu data lengkap dan data tersensor kiri. Dalam makalah ini diberikan contoh data yang dibangkitkan dari distribusi log-logistik.

  15. Laboratory testing of rock and salt samples for determination of specific gravity and total porosity of the Zeeck No. 1 well (PD-7), Palo Duro Basin, Texas: unanalyzed data

    International Nuclear Information System (INIS)

    1984-07-01

    This report contains the specific gravity and total porosity determinations for rock and salt samples from Zeeck No. 1 Well of the Permian Basin. The laboratory test samples were measured for water content, apparent specific gravity, specific gravity of solids, total porosity and effective porosity. Specimen descriptions including specimen number, formation/group, and lithologic description as well as typical data sheets are included in the appendices. These data are preliminary. They have been neither analyzed nor evaluated

  16. SNG-logs at the Bagsvaerd Lake

    International Nuclear Information System (INIS)

    Korsbech, U.

    1992-11-01

    Spectral Natural Gamma-logs (SNG) were taken in old boreholes around Bagsvaerd Lake (Zealand). The purpose of this investigation was to clarify the geologic/lithologic conditions in this region and the potential risks of waste penetration into ground water. Relationship curves for thorium, uranium and potassium concentrations are given. Some special logs which can be useful for evaluating concentration variations or transition forms among various lithological layers are collected. Appendices contain technical information on the boreholes and discussion of differences between results of SNG-logging and the conventional gamma-logging. (EG)

  17. Porosity and reservoir potentiality of the Cherahil Formation limestone (middle-upper Eocene) in the Gulf of Gabes (Tunisia)

    Science.gov (United States)

    Njahi, Zahra; Kassabi, Nadhem; Touir, Jamel

    2017-07-01

    During the middle and upper Eocene, the deposits in the Gulf of Gabes correspond to the Cherahil Formation, which is sub-divided into three units, which are as follows from base to top: the Lower Cherahil A, the Siouf and the Upper Cherahil B members. The Siouf member has a lateral equivalent in the Souar Formation named Reineche member. The Cherahil Formation has never been considered by oil companies as a particular drilling target in the Gulf of Gabes (offshore east Tunisia) despite the presence of hydrocarbon at the bottom of Cherahil Formation in Sidi Behara and Sidi Litayem oil fields in Sfax Area (onshore east Tunisia) and in its equivalent carbonate beds in Jebel Trozza (Central Tunisia). Therefore, the evaluation of porosity in the carbonate levels of Cherahil Formation in 20 drilling wells were performed on well logging by applying Wyllie method. The obtained results show that the studied carbonates are characterized by an economically important total porosity average ranging between 5% and 55%, and both vertical and lateral variations. The vertical porosity variation was controlled by the sea-level fluctuation that, in turn, controlled the evolution of carbonate sedimentary environments and relative facies. The lateral porosity variation followed the Tunisian middle-upper Eocene paleogeography changes controlled by NW-SE synsedimentary tectonic trends. Considering the important features of the Cherahil Formation and the coexistence of components of an oil system in the Gulf of Gabes, this formation can be an important potential reservoir and subsequently a new petroleum exploration target in the Gulf of Gabes.

  18. Bayesian seismic inversion based on rock-physics prior modeling for the joint estimation of acoustic impedance, porosity and lithofacies

    Energy Technology Data Exchange (ETDEWEB)

    Passos de Figueiredo, Leandro, E-mail: leandrop.fgr@gmail.com [Physics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Grana, Dario [Department of Geology and Geophysics, University of Wyoming, Laramie (United States); Santos, Marcio; Figueiredo, Wagner [Physics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Roisenberg, Mauro [Informatic and Statistics Department, Federal University of Santa Catarina, Florianópolis (Brazil); Schwedersky Neto, Guenther [Petrobras Research Center, Rio de Janeiro (Brazil)

    2017-05-01

    We propose a Bayesian approach for seismic inversion to estimate acoustic impedance, porosity and lithofacies within the reservoir conditioned to post-stack seismic and well data. The link between elastic and petrophysical properties is given by a joint prior distribution for the logarithm of impedance and porosity, based on a rock-physics model. The well conditioning is performed through a background model obtained by well log interpolation. Two different approaches are presented: in the first approach, the prior is defined by a single Gaussian distribution, whereas in the second approach it is defined by a Gaussian mixture to represent the well data multimodal distribution and link the Gaussian components to different geological lithofacies. The forward model is based on a linearized convolutional model. For the single Gaussian case, we obtain an analytical expression for the posterior distribution, resulting in a fast algorithm to compute the solution of the inverse problem, i.e. the posterior distribution of acoustic impedance and porosity as well as the facies probability given the observed data. For the Gaussian mixture prior, it is not possible to obtain the distributions analytically, hence we propose a Gibbs algorithm to perform the posterior sampling and obtain several reservoir model realizations, allowing an uncertainty analysis of the estimated properties and lithofacies. Both methodologies are applied to a real seismic dataset with three wells to obtain 3D models of acoustic impedance, porosity and lithofacies. The methodologies are validated through a blind well test and compared to a standard Bayesian inversion approach. Using the probability of the reservoir lithofacies, we also compute a 3D isosurface probability model of the main oil reservoir in the studied field.

  19. Effects of Sintering Temperature on the Density And Porosity of ...

    African Journals Online (AJOL)

    Effects of sintering temperature on the density and porosity of sodium chloride preforms for alu- minium foam manufacturing have been investigated. Cold pressed salt preforms were sintered at 30, 760 and 790 and di erent times ranging between 6- 18 hours in a carbolite furnace at a heating rate of 5/minute. The Results of ...

  20. Initial porosity of random packing : Computer simulation of grain rearrangement

    NARCIS (Netherlands)

    Alberts, L.J.H.

    2005-01-01

    The initial porosity of clastic sediments is poorly defined. In spite of this, it is an important parameter in many models that describe the diagenetic processes taking place during the burial of sediments and which are responsible for the transition from sand to sandstone. Diagenetic models are of