WorldWideScience

Sample records for measured indoor oc

  1. Field measurement on the emissions of PM, OC, EC and PAHs from indoor crop straw burning in rural China

    International Nuclear Information System (INIS)

    Wei, Siye; Shen, Guofeng; Zhang, Yanyan; Xue, Miao; Xie, Han; Lin, Pengchuan; Chen, Yuanchen; Wang, Xilong; Tao, Shu

    2014-01-01

    Field measurements were conducted to measure emission factors of particulate matter (EF PM ), organic carbon (EF OC ), elemental carbon (EF EC ), 28 parent polycyclic aromatic hydrocarbons (EF 28pPAHs ), and 4 oxygenated PAHs (EF 4oPAHs ) for four types of crop straws burned in two stoves with similar structure but different ages. The average EF PM , EF OC , EF EC , EF 28pPAHs , and EF 4oPAHs were 9.1 ± 5.7 (1.8–22 as range), 2.6 ± 2.9 (0.30–12), 1.1 ± 1.2 (0.086–5.5), 0.26 ± 0.19 (0.076–0.96), 0.011 ± 0.14 (1.3 × 10 −4 – 0.063) g/kg, respectively. Much high EF 28pPAHs was observed in field compared with the laboratory derived EFs and significant difference in EF 28pPAHs was identified among different crop residues, indicating considerable underestimation when laboratory derived EFs were used in the inventory. The field measured EF PM , EF OC , and EF EC were significantly affected by stove age and the EFs of carbonaceous particles for the 15-year old stove were approximately 2.5 times of those for the 1-year old stove. Highlights: • Field measurements provided more reliable data for the inventory. • Emissions from indoor crop residue burning were measured in field. • Much high PAHs emissions were found in field measurement in comparison with laboratory derived results. • Emissions of carbonaceous particulate matter increased by 2.5 times in the old stove compared that in a new stove. -- Emissions of incomplete combustion pollutants strongly affected by the fuel type and stove usage

  2. Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen; Zou, Zhijun; Li, Meiling; Wang, Xin; Huang, Wugang; Yang, Jiangang [University of Shanghai for Science and Technology, Shanghai (China); Li, Wei; Xiao, Xueqin [Shanghai International Gymnastics Stadium, Shanghai (China)

    2007-05-15

    Shanghai International Gymnastics Stadium is the selected object for site-measurement. The site-measurements have been carried out during summer, winter, and the transitional seasons. Their indoor thermal environments were controlled by continuous air-conditioning, intermittent air-conditioning and natural ventilation, respectively. The site-measurement includes outdoor environment (the weather conditions and peripheral hallway), indoor air temperature distribution (the occupant zone temperature, radial temperature near upper openings and the vertical temperature distributions, etc.), and the heat balance of air-conditioning system, etc. It is found that temperature stratification in winter with air-conditioning is most obvious. The maximum difference of vertical temperature is 15{sup o}C in winter. The second largest one is 12{sup o}C in summer, and less than 2{sup o}C in the transitional season. The results of measurements indicate that it is different in the characteristics on energy saving of upper openings during the different seasons. With heat balance measurements, it is discovered that the roof load and ventilated and infiltrated load account for larger percentages in terms of cooling and heating load. In this paper, many discussions on the results of site measurements show some characteristics and regulations of indoor thermal environment in large space building. (author)

  3. Atmospheric carbonyl sulfide (OCS measured remotely by FTIR solar absorption spectrometry

    Directory of Open Access Journals (Sweden)

    G. C. Toon

    2018-02-01

    Full Text Available Atmospheric OCS abundances have been retrieved from infrared spectra measured by the Jet Propulsion Laboratory (JPL MkIV Fourier transform infra-red (FTIR spectrometer during 24 balloon flights and during nearly 1100 days of ground-based observations since 1985. Our spectral fitting approach uses broad windows to enhance the precision and robustness of the retrievals. Since OCS has a vertical profile similar in shape to that of N2O, and since tropospheric N2O is very stable, we reference the OCS observations to those of N2O, measured simultaneously in the same air mass, to remove the effects of stratospheric transport, allowing a clearer assessment of secular changes in OCS. Balloon measurements reveal less than 5 % change in stratospheric OCS amounts over the past 25 years. Ground-based measurements reveal a springtime peak of tropospheric OCS, followed by a rapid early-summer decrease, similar to the behavior of CO2. This results in a peak-to-peak seasonal cycle of 5–6 % of the total OCS column at northern mid-latitudes. In the long-term tropospheric OCS record, a 5 % decrease is seen from 1990 to 2002, followed by a 5 % increase from 2003 to 2012.

  4. Sampling artifacts in measurement of elemental and organic carbon: Low-volume sampling in indoor and outdoor environments

    Science.gov (United States)

    Olson, David A.; Norris, Gary A.

    Experiments were completed to determine the extent of artifacts from sampling elemental carbon (EC) and organic carbon (OC) under sample conditions consistent with personal sampling. Two different types of experiments were completed; the first examined possible artifacts from oils used in personal environmental monitor (PEM) impactor plates, and the second examined artifacts from microenvironmental sampling using different sampling media combinations (quartz, Teflon, XAD denuder, and electrostatic precipitator). The effectiveness of front and backup filters was evaluated for most sampling configurations. Mean total carbon concentrations from sampling configurations using impactor oils were not statistically different from the control case (using a sharp cut cyclone). Three microenvironments were tested (kitchen, library, and ambient); carbon concentrations were highest in the kitchen using a front quartz filter (mean OC of 16.4 μg m -3). The lowest front quartz filter concentrations were measured in the library using XAD denuders (mean OC of 3.6 μg m -3). Denuder removal efficiencies (average of 82% for total carbon) were lower compared with previous ambient studies and may indicate that indoor sources influenced denuder efficiency during sample collection. The highest carbon concentrations from backup quartz filters were measured using the Teflon-quartz combination.

  5. Hourly indoor radon measurements in a research house.

    Science.gov (United States)

    Sesana, Lucia; Begnini, Stefania

    2004-01-01

    This paper reports and discusses the behaviour of radon concentration with time in an uninhabited dwelling. The relationship between variations in radon concentrations and indoor-outdoor temperatures and wind intensity has also been discussed. Radon concentration was measured hourly in a house located at a height of 800 m in the Lombard Prealps, at the top of the Valassina valley. The wind velocity and indoor-outdoor temperatures were measured by means of a meteorological station located on the terrace of the house. The data were analysed using the LBL model for indoor-outdoor air exchange and the models for the indoor accumulation of radon due to exhalation from building materials and pressure-driven infiltrations located underground. The role of wind and indoor-outdoor temperatures were analysed. The agreement of measurements with modelling clearly demonstrates the importance of the different sources of indoor radon. As the investigation was conducted in an uninhabited house, the measurements were not affected by the behaviour of people, e.g. opening and closing of windows. Measurements of the outdoor atmospheric concentrations of (222)Rn provide an index of the atmospheric stability, the formation of thermal inversions and convective turbulence.

  6. Hourly indoor radon measurements in a research house

    International Nuclear Information System (INIS)

    Sesana, L.; Begnini, S.

    2004-01-01

    This paper reports and discusses the behaviour of radon concentration with time in an uninhabited dwelling. The relationship between variations in radon concentrations and indoor-outdoor temperatures and wind intensity has also been discussed. Radon concentration was measured hourly in a house located at a height of 800 m in the Lombard Pre-alps, at the top of the Valassina valley. The wind velocity and indoor-outdoor temperatures were measured by means of a meteorological station located on the terrace of the house. The data were analysed using the LBL model for indoor-outdoor air exchange and the models for the indoor accumulation of radon due to exhalation from building materials and pressure-driven infiltrations located underground. The role of wind and indoor-outdoor temperatures were analysed. The agreement of measurements with modelling clearly demonstrates the importance of the different sources of indoor radon. As the investigation was conducted in an uninhabited house, the measurements were not affected by the behaviour of people, e.g. opening and closing of windows. Measurements of the outdoor atmospheric concentrations of 222 Rn provide an index of the atmospheric stability, the formation of thermal inversions and convective turbulence. (authors)

  7. Radon in indoor air. Health risk, measurement methods and remedial measures

    International Nuclear Information System (INIS)

    Strand, T.

    1996-02-01

    Radon in indoor air is the main source of ionizing radiation in Norway. The booklet contains a presentation of radon sources, measurement methods, indoor radon concentrations, action levels, health risk and remedial measures

  8. Indoor radon measurements in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico)], E-mail: espinosa@fisica.unam.mx; Golzarri, J.I. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico); Bogard, J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6480 (United States); Gaso, I. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, 11801 Mexico, D.F. (Mexico); Ponciano, G. [Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Mena, M.; Segovia, N. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico)

    2008-08-15

    Mexico City is one of the most populated cities in the world with almost 22 million inhabitants, located at an altitude of 2200 m. The old city was founded on an ancient lake and the zone is known by its high seismicity; indoor radon determination is an important public health issue. In this paper the data of indoor radon levels in Mexico City, measured independently by two research groups, both using Nuclear Track Detector systems but different methodologies, are correlated. The measurements were done during similar exposure periods of time, at family houses from the political administrative regions of the city. The results indicate a correlation coefficient between the two sets of data of R=0.886. Most of the differences between the two sets of data are inherent to houses having extreme (very high or very low indoor radon) included in the statistics of each group. The total average indoor radon found in Mexico City considering the two methods was 87Bqm{sup -3}.

  9. Reconstruction of national distribution of indoor radon concentration in Russia using results of regional indoor radon measurement programs

    International Nuclear Information System (INIS)

    Yarmoshenko, I.; Malinovsky, G.; Vasilyev, A.; Zhukovsky, M.

    2015-01-01

    The aim of the paper is a reconstruction of the national distribution and estimation of the arithmetic average indoor radon concentration in Russia using the data of official annual 4-DOZ reports. Annual 4-DOZ reports summarize results of radiation measurements in 83 regions of Russian Federation. Information on more than 400 000 indoor radon measurements includes the average indoor radon isotopes equilibrium equivalent concentration (EEC) and number of measurements by regions and by three main types of houses: wooden, one-storey non-wooden, and multi-storey non-wooden houses. To reconstruct the national distribution, all-Russian model sample was generated by integration of sub-samples created using the results of each annual regional program of indoor radon measurements in each type of buildings. According to indoor radon concentration distribution reconstruction, all-Russian average indoor radon concentration is 48 Bq/m"3. Average indoor radon concentration by region ranges from 12 to 207 Bq/m"3. The 95-th percentile of the distribution is reached at indoor radon concentration 160 Bq/m"3. - Highlights: • Reconstruction of indoor radon concentration distribution in Russia was carried out. • Data of official annual 4-DOZ reports were used. • All-Russian average indoor radon concentration is 48 Bq/m"3. • The 95-th percentile is 160 Bq/m"3.

  10. Measurements of indoor radon concentration in Libyan cities

    International Nuclear Information System (INIS)

    Elarabiy, S. F.; Khalifa, M.; Misrati, N.; Chahboune, N.; Ahmed, M.

    2012-12-01

    Studies confirm that the risk of exposure to indor radon is attributable to lung cancer worldwide. The relationship between radon exposure and cancer is a linear one which necessitates for need for measurements of indoor radon concentration. This paper presents the results of measurements of indoor radon in several libya cities using CR-39 plastic. The results showed that the average radon concentration in the cities of Tripoli, Al-harcha and Alrajaban were 48.8 Bg/m 3 , 51.4 Bg/m 3 and 55.5 Bg/m 3 respectively. The average indoor radon concentration in Libya is low comparing with other studies. (Author)

  11. Measuring low-frequency noise indoors

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    that is exceeded in 10% of the volume of a room (L10) is proposed as a rational and objective target for a measurement method. In Sweden and Denmark rules exist for measuring low-frequency noise indoors. The performance of these procedures was investigated in three rooms. The results from the Swedish method were...

  12. Feasible Indoor Air-related measures against Avian Influenza

    NARCIS (Netherlands)

    Franchimon, F.; Pernot, C.E.E.; Bronswijk, van J.E.M.H.; Olesen, BW; Wargocki, P; Strøm-Tejsen, P; Zukowska, D; Toftum, J

    2008-01-01

    The threat of a new pandemic has forced the WHO to publish preparedness plans. Although WHO recognized the effect of airborne transmission of the causative agent, they did not attempt to include feasible measures for indoor environmental control as yet. The efficacy of indoor humidity control

  13. Relationship between indoor and outdoor carbonaceous particulates in roadside households

    Energy Technology Data Exchange (ETDEWEB)

    Funasaka, K.; Miyazaki, T.; Tsuruho, K. [Osaka City Institute of Public Health and Environmental Sciences (Japan); Tamura, K. [The National Institute for Minamata Disease, Kumamoto (Japan); Mizuno, T. [Mie University (Japan). Dept. of Chemistry for Materials; Kuroda, K. [Osaka City University Medical School (Japan). Dept. of Preventive Medicine and Environmental Health

    2000-07-01

    Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 {mu}m, 2-10 {mu}m (coarse) and below 2 {mu}m (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r = 0.86 (n = 30, p < 0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 {mu}m (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors. (author)

  14. Indoor radon measurements in dwellings of Mizoram

    International Nuclear Information System (INIS)

    Lalramengzami, R.; Laldawngliana, C.; Sinha, D.; Ghosh, S.; Dwivedi, K.K.

    1995-01-01

    The concentration of indoor radon has been measured in some dwellings of Mizoram state by employing time integrated method using solid state nuclear track detector. This state is located in the north eastern region of India which has been identified as a high background area. The indoor radon levels determined in this work are compared with data obtained from other regions of India and the Environmental Protection Agency (EPA) prescribed safe limit. (author). 7 refs., 2 figs

  15. Slovak Republic, indoor measurements

    International Nuclear Information System (INIS)

    Vicanova, M.; Daniel, S.

    2006-01-01

    In this report the annual average effective doses from indoor radon exposure were calculated for each district of Slovakia. The population-weighted arithmetic mean of indoor radon concentration was calculated for every district considering different types of houses.

  16. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  17. Measurements of MIMO Indoor Channels at 1800 MHz with Multiple Indoor and Outdoor Base Stations

    Directory of Open Access Journals (Sweden)

    Jaldén Niklas

    2007-01-01

    Full Text Available This paper proposes several configurations for multiple base stations in indoor MIMO systems and compares their performance. The results are based on channel measurements realized with a MIMO testbed. The receiver was moved along several routes and floors on an office building. Both outdoor and indoor locations are considered for the transmitters or base stations, which allow the analysis of not only indoor but also outdoor-to-indoor environment. The use of 2 base stations with different system level combinations of the two is analyzed. We show that the configuration with base station selection provides almost as good performance as a full water-filling scheme when the 2 base stations are placed at different locations. Also the spatial correlation properties for the different configurations are analyzed and the importance of considering path loss when evaluating capacity is highlighted.

  18. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  19. Measurements of indoor radon and radon progeny in Mexico City

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Rodriguez, G.P.

    1996-01-01

    Indoor radon has been a public concern associated with increased lung cancer risks. Radon decay products interact with indoor aerosols to form progeny with different size distributions, which may influence the lung dosimetry when the progeny are inhaled. Air pollution in Mexico City is a serious problems with high particulate concentrations, but there are few reports of indoor radon measurement. The purposes of this study were to measure the aerosol concentration, radon concentration, and radon activity size distribution in the living area of three houses in Mexico City. The radon concentration was monitored by a RGM-3 radon gas monitor (Eberline, Inc., Santa Fe, NM). A graded diffusion battery was used to determine the progeny concentration and activity size distribution. The concentration and size distribution of the indoor aerosols were monitored by a quartz, crystal microbalance cascade impactor. Our measurements showed high concentrations of indoor aerosols (20-180 gg m -3 ). However, the radon concentrations-were low ( -1 ), but showed a clear diurnal pattern with peak concentrations from 2-10 AM. The activity size distributions of radon progeny were trimodal, with peaks of 0.6 nm, 4-5 nm, and 100 rim. Most activities were associated with large particle sizes. Our results indicated that indoor radon concentration was not high, due in part to a relatively high air exchange with outdoor air. The high aerosol concentration may also play an important part in the activity size distribution of radon progeny

  20. Radon decay product in-door behaviour - parameter, measurement method, and model review

    International Nuclear Information System (INIS)

    Scofield, P.

    1988-01-01

    This report reviews parameters used to characterize indoor radon daughter behavior and concentrations. Certain parameters that affect indoor radon daughter concentrations are described and the values obtained experimentally or theoretically are summarized. Radon daughter measurement methods are reviewed, such as, PAEC, unattached daughters, particle size distributions, and plateout measurement methods. In addition, certain radon pressure driven/diffusion models and indoor radon daughter models are briefly described. (orig.)

  1. Indoor radon measurements and methodologies in Latin American countries

    International Nuclear Information System (INIS)

    Canoba, A.; Lopez, F.O.; Arnaud, M.I.; Oliveira, A.A.; Neman, R.S.; Hadler, J.C.; Iunes, P.J.; Paulo, S.R.; Osorio, A.M.; Aparecido, R.; Rodriguez, C.; Moreno, V.; Vasquez, R.; Espinosa, G.; Golzarri, J.I.; Martinez, T.; Navarrete, M.; Cabrera, I.; Segovia, N.; Pena, P.; Tamez, E.; Pereyra, P.; Lopez-Herrera, M.E.; Sajo-Bohus, L.

    2001-01-01

    According to the current international guidelines concerning environmental problems, it is necessary to evaluate and to know the indoor radon levels, specially since most of the natural radiation dose to man comes from radon gas and its progeny. Several countries have established National Institutions and National Programs for the study of radon and its connection with lung cancer risk and public health. The aim of this work is to present the indoor radon measurements and the detection methods used for different regions of Latin America (LA) in countries such as Argentina, Brazil, Ecuador, Mexico, Peru and Venezuela. This study shows that the passive radon devices based on alpha particle nuclear track methodology (NTM) is one of the more generalized methods in LA for long term indoor radon measurements, CR-39, LR-115 and Makrofol being the more commonly used detector materials. The participating institutions and the radon level measurements in the different countries are presented in this contribution

  2. Indoor air-quality measurements in energy-efficient residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Berk, J.V.; Hollowell, C.D.; Pepper, J.H.; Young, R.

    1980-05-01

    The potential impact on indoor air quality of energy-conserving measures that reduce ventilation is being assessed in a field-monitoring program conducted by the Lawrence Berkeley Laboratory. Using a mobile laboratory, on-site monitoring of infiltration rate, carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, formaldehyde, total aldehydes, and particulates was conducted in three houses designed to be energy-efficient. Preliminary results show that energy-conserving design features that reduce air-exchange rates compromise indoor air quality; specifically, indoor levels of several pollutants were found to exceed levels detected outdoors. Although the indoor levels of most pollutants are within limits established by present outdoor air-quality standards, considerable work remains to be accomplished before health-risk effects can be accurately assessed and broad-scale regulatory guidelines revised to comply with energy-conservation goals.

  3. OCS in He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Grebenev, V.

    2000-06-01

    Phenomenon of superfluidity of para-hydrogen (pH{sub 2}){sub 1-17} and helium {sup 4}He{sub 1-7000} systems doped with an OCS chromophore molecule was investigated in this work. The study of such systems became possible after the development of the depletion spectroscopy technique in helium droplets. The droplets can be easily created and doped with up to 100 particles such as OCS, para-hydrogen or ortho-hydrogen molecules and {sup 4}He atoms. The measured infrared depletion spectra give the information about the temperature of the droplets and their aggregate state. The depletion spectrum of OCS in pure {sup 4}He droplets was comprehensively studied. The rovibrational OCS spectrum shows well resolved narrow lines. The spectrum is shifted to the red relative to the corresponding gas phase spectrum and the rotational constant of OCS in {sup 4}He droplet is three times smaller than that for free molecule. Different models of OCS rotation in the helium environment were discussed. It was shown that the shapes of the rovibrational lines are defined mainly by inhomogeneous broadening due to the droplet size distribution. The sub-rotational structure of the OCS rovibrational lines was revealed in microwave-infrared double resonance experiments. This structure arises due to the interaction of the OCS with the He environment. However, the information obtained in the experiments was not enough to understand the nature of this interaction. (orig.)

  4. Long term and equilibrium factor indoor radon measurements

    International Nuclear Information System (INIS)

    Martinez, T.; Lartigue, J.; Navarrete, M.; Cabrera, L.; Ramirez, A.; Elizarraras, V.

    1998-01-01

    This paper presents the annual radon gas concentrations obtained during the 1994-1995 monitoring campaign using passive electret system (type E-PERM). Radon levels were measured in 154 single family dwellings, in normal occupancy conditions (open house condition) in the metropolitan zone of Mexico City. At the same time radon monitoring was performed outdoors. The results show the general log-normal distribution of integrated indoor radon concentration with an annual indoor mean of 3.8 pCi x l -1 . The seasonal variations show the minimum mean values in the summer season which are 39% lower than that in autumn. Equilibrium factors (F) were measured in 12 typical houses both in autumn and winter using a continuous working level monitor for short-lived radon decay products and H-chamber loaded with a short term electret (HST, E-PERM) for radon gas. The obtained total mean equilibrium factors are: F=0.41±0.17 and F=0.29±0.04 for indoor and outdoor, respectively. A quality program was also improved. (author)

  5. Continuous In-situ Measurements of Carbonyl Sulfide (OCS) and Carbon Dioxide Isotopes to Constrain Ecosystem Carbon and Water Exchanges

    Science.gov (United States)

    Rastogi, B.; Still, C. J.; Noone, D. C.; Berkelhammer, M. B.; Whelan, M.; Lai, C. T.; Hollinger, D. Y.; Gupta, M.; Leen, J. B.; Huang, Y. W.

    2015-12-01

    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf- level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from four heights as well as the soil to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere for the growing season. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings also seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  6. AAU-DLR 2010 Indoor Measurement Campaign

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Wang, Wei

    2011-01-01

    A measurement campaign, not part of the WHERE2 project, with the focus on indoor multilink and reverberant in-room channels was conducted by DLR and AAU. The measurement data is used from both parties within the WHERE2 project and can be shared upon request. The measurement campaign has two main...... Channels". For the measurement campaign the measurement platform for time-variant wireless channels from DLR was used. The high spatial resolution of the platform allows for combining several transmitter positions to a virtual array. Together with the circular receiver array, this enables a bi...

  7. Fieldwork measurement of indoor environmental quality (IEQ) in Malaysian platinum-rated green office buildings

    Science.gov (United States)

    Tharim, Asniza Hamimi Abdul; Samad, Muna Hanim Abdul; Ismail, Mazran

    2017-10-01

    An Indoor Environmental Quality (IEQ) fieldwork assessment was conducted in the Platinum-rated GBI office building located in Putrajaya Malaysia. The aim of the study is to determine the current indoor performance of the selected green office building. The field measurement consists of several IEQ parameters counted under the GBI Malaysia namely the Thermal Comfort of temperature, relative humidity, air movement and heat transfer as well as solar radiation. This field measurement also comprises of the measurement for the background noise, visual lighting and Indoor Air Quality (IAQ) focusing on the aspect of carbon dioxide concentration. All the selected indoor parameters were measured for the period of five working days and the results were compared to the Malaysian Standard. Findings of the field measurement show good indoor performance of the Platinum rated office building that complies with the GBI standard. It is hoped that the research findings will be beneficial for future design and construction of office building intended to be rated under the GBI Malaysia.

  8. Indoor and soil radon measurements in the Hyblean Foreland (South-East Sicily

    Directory of Open Access Journals (Sweden)

    G. Alessandro

    2007-06-01

    Full Text Available Indoor radon behavior in two sites of SE Sicily was studied as a function of the soil radon concentration. The chosen locations were Ragusa and Modica towns, placed in the Hyblean Plateau (northern margin of the African Plate. Soil samples were analysed by gamma spectrometry to determine the amount of radionuclides. Indoor air and soil gas radon measurements were simultaneously performed in both sites using active detectors. Radon in soil was measured one meter deep. A positive correlation was obtained between indoor radon concentration and the soil gas concentration.

  9. Measurement of indoor radon concentration by CR-39 track detector

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Yoneda, Shigeru; Nakanishi, Takashi.

    1990-01-01

    A convenient and cheap method for measuring indoor radon ( 222 Rn) concentration with a CR-39 track detector is described. The detector consisted of two sheets of CR-39 enclosed separately in two plastic pots : one covered by a filter (cup method) and another no covering (bare method). The bare method was used here to supplement the cup method. To compare with the result of the CR-39 detector, alpha-ray spectrometry was carried out with a Si(Au) detector in a controlled radon exposure chamber. Indoor radon concentration measured in 133 houses in several districts of Ishikawa Prefecture have been found to range from 6 Bq/m 3 to as high as 113 Bq/m 3 with a median value of 24 Bq/m 3 . The problems to measure indoor radon concentration using the CR-39 detector are also discussed with emphasis on the position of setting the detector in the room and the possible thoron contribution to the detector. (author)

  10. Development of a standard for indoor radon measurements in Australia

    International Nuclear Information System (INIS)

    O'Brien, R.S.; Solomon, S.B.

    1994-01-01

    A standard covering methodologies for the measurement of indoor radon and radon progeny concentrations in air in Australian buildings is currently under preparation as part of a set of standards covering total indoor air quality. This paper outlines the suggested methodology for radon and discusses some of the problems associated with the development of the standard. The draft standard recommends measurement of the radon concentration in air using scintillation cells, charcoal cups and solid state nuclear track detectors, and measurement of radon progeny concentration in air using the Rolle method or the Nazaroff method. 14 refs., 1 tab

  11. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    Science.gov (United States)

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

  12. Indoor radon level measurements in Iran using AEOI passive dosimeters

    International Nuclear Information System (INIS)

    Sohrabi, M.; Solaymanian, A.R.

    1988-01-01

    A passive radon diffusion dosimeter was developed at the RPD of AEOI for nationwide indoor radon level measurements. Several parameters of the dosimeter were studied. Radon levels were determined in about 250 houses in Ramsar (a high natural radiation area), Tehran, Babolsar and Gonabad. In this paper, the results of some dosimeter parameters as well as radon levels in indoor air are reported

  13. Measurements of indoor and outdoor natural radiation exposure rates in model houses

    International Nuclear Information System (INIS)

    Matsuda, Hideharu; Fukaya, Mitsuharu; Minato, Susumu

    1990-01-01

    Natural gamma-ray and cosmic-ray exposure rates were measured indoors and outdoors for 94 model houses of four housing centers in Nagoya to obtain basic data for estimation of the population dose. Influence of the structure of houses on indoor exposure rates and relationship between indoor and outdoor natural gamma-ray exposure rates were studied. Exposure rates were measured with a 1.5'' φ x 4'' NaI (Tl) scintillation counter and a 6''φ spherical plastic scintillation counter. The mean indoor natural gamma-ray exposure rate in ferro-concrete buildings was about 40% higher than that in fireproof wooden houses, about 60% higher than that in light-weight steel-framed buildings, in fireproof wooden houses, it was also about 10% higher than in light-weight steel-framed building. The ratio of indoor to outdoor natural gamma-ray exposure rate was found to be about 0.95±0.15, 0.77±0.10, and 0.72±0.13 for ferro-concrete buildings, fireproof wooden houses and light-weight steel-framed buildings, respectively. The mean indoor cosmic-ray exposure rate in ferro-concrete buildings was 2.8 μR/h, about 18% lower than the outdoors. The indoor cosmic-ray exposure rate in fireproof wooden houses and light-weight steel-framed buildings were 3.2 μR/h, about 6% lower than the outdoors. (author)

  14. Variability of indoor and outdoor VOC measurements: An analysis using variance components

    International Nuclear Information System (INIS)

    Jia, Chunrong; Batterman, Stuart A.; Relyea, George E.

    2012-01-01

    This study examines concentrations of volatile organic compounds (VOCs) measured inside and outside of 162 residences in southeast Michigan, U.S.A. Nested analyses apportioned four sources of variation: city, residence, season, and measurement uncertainty. Indoor measurements were dominated by seasonal and residence effects, accounting for 50 and 31%, respectively, of the total variance. Contributions from measurement uncertainty (<20%) and city effects (<10%) were small. For outdoor measurements, season, city and measurement variation accounted for 43, 29 and 27% of variance, respectively, while residence location had negligible impact (<2%). These results show that, to obtain representative estimates of indoor concentrations, measurements in multiple seasons are required. In contrast, outdoor VOC concentrations can use multi-seasonal measurements at centralized locations. Error models showed that uncertainties at low concentrations might obscure effects of other factors. Variance component analyses can be used to interpret existing measurements, design effective exposure studies, and determine whether the instrumentation and protocols are satisfactory. - Highlights: ► The variability of VOC measurements was partitioned using nested analysis. ► Indoor VOCs were primarily controlled by seasonal and residence effects. ► Outdoor VOC levels were homogeneous within neighborhoods. ► Measurement uncertainty was high for many outdoor VOCs. ► Variance component analysis is useful for designing effective sampling programs. - Indoor VOC concentrations were primarily controlled by seasonal and residence effects; and outdoor concentrations were homogeneous within neighborhoods. Variance component analysis is a useful tool for designing effective sampling programs.

  15. Indoor MIMO Channel Measurement and Modeling

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Andersen, Jørgen Bach

    2005-01-01

    Forming accurate models of the multiple input multiple output (MIMO) channel is essential both for simulation as well as understanding of the basic properties of the channel. This paper investigates different known models using measurements obtained with a 16x32 MIMO channel sounder for the 5.8GHz...... band. The measurements were carried out in various indoor scenarios including both temporal and spatial aspects of channel changes. The models considered include the so-called Kronecker model, a model proposed by Weichselberger et. al., and a model involving the full covariance matrix, the most...

  16. Results of indoor radon measurements in the republic of macedonia: - a review -

    International Nuclear Information System (INIS)

    Stojanovska, Zdenka; Boev, Blazho; Boev, Ivan

    2017-01-01

    Radon and its short lived decay products accumulated in indoor environment are the main source of public exposure to natural radiations. The health effects as well as a great number of natural and artificial factors affecting the radon accumulation in indoor environments are some of the motives for the scientific interest in radon issue. Following this global trend, many studies of indoor radon in the Balkan region, including the Republic of Macedonia have been conducted in the last decade. This paper is an overview of the published papers regarding indoor radon concentration measurements with nuclear track detectors in the Republic of Macedonia. It gives basic information about the spatial and temporal variability of indoor radon over the territory of the country, following by a description of the some factors which affect its variations. This review attempts: to organize available indoor radon results in order to show clear picture of the so far conducted surveys; to highlight the need for continuation of more extensive radon investigation in workplaces; to motivate the building professionals to create as much as possible mitigation methods for indoor radon reduction, to motivate the health professionals for epidemiological studies etc. (author)

  17. Indoor radio measurement and planning for UMTS/HSDPA with antennas

    Science.gov (United States)

    Eheduru, Marcellinus

    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator's point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product's response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation

  18. Preliminary indoor radon and gamma measurements in kindergartens and schools in Bucharest

    International Nuclear Information System (INIS)

    Dumitrescu, A.; Milu, C.; Gheorghe, R.; Vaupotic, J.; Stegnar, P.

    2001-01-01

    A pilot study on indoor radon and gamma dose rates in schools and kindergartens (totalling one hundred buildings) in the Bucharest metropolitan area was performed jointly by the Institute of Public Health, Bucharest, Romania, and the J. Stefan Institute, Ljubljana, Slovenia. Because the geological structure of subsoil over the whole Bucharest area is uniform (a loess platform), the criteria for selecting a kindergarten or a school to be monitored were the age of the building and the building materials. Indoor radon concentrations were measured by a single one-month exposure of radon monitoring device based on etched track detectors in December 2000. Data show a lognormal distribution within the concentration range of 43/477 Bq/m 3 . An arithmetic mean of 146 Bq/m 3 and a geometric mean of 128 Bq/m 3 were obtained. Concomitant with indoor radon levels gamma dose rates were also measured, using thermoluminescent dosimeters. Values ranged from 54 to 100 μSv mo -1 , with a mean value of 74 μSv mo -1 . Having only a single average indoor radon concentration for a winter month, it is not possible to comment on our results, applying the ICRP Publication 65 methodology for indoor radon action level for the general public. Nevertheless, they give a preliminary picture of indoor radon and gamma dose rate levels in schools and kindergartens in Bucharest, and constitute a solid basis on which to design and perform a nation-wide radon survey programme.(author)

  19. Development of measure methods of radon in indoor air

    International Nuclear Information System (INIS)

    Yaginuma, L.T.; Pela, C.A.; Navas, E.A.; Ghilardi, A.J.P.

    1992-01-01

    The development of some conventional measuring methods, aiming obtain an estimation of radon concentration in air, mainly in indoor air is described, including the charcoal absorption collector, Lucas cell and thermoluminescent dosemeters. (C.G.C)

  20. Indoor radon measurements in dwellings of four Saudi Arabian cities

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman; Abu-Jarad, F.; Al-Shukri, A

    2003-06-01

    An indoor radon survey of a total of 269 dwellings, with one dosimeter per house, distributed in four Saudi Arabian cities was carried out. The objective of this survey was to carry out indoor radon measurements of two cities in the Eastern Province, Khafji and Hafr Al-Batin and to compare this with two cities in the Western Province, Al-Madina and Taif. The survey provides additional information about indoor radon concentrations in Saudi Arabia. The results of the survey in these cities showed that the overall minimum, maximum and average radon concentration were 7,137 and 30 Bq m{sup -3}, respectively. The lowest average radon concentration (20 Bq m{sup -3}) was found in Hafr Al-Batin, while the highest average concentration was found in Khafji (40 Bq m{sup -3})

  1. Measurement of indoor background ionizing radiation in some ...

    African Journals Online (AJOL)

    Certain types of building materials are known to be radioactive. Exposure to indoor ionizing radiation like exposure to any other type of ionizing radiation results in critical health challenges. Measurement of the background ionizing radiation profile within the Chemistry Research Laboratory and Physics Laboratory III all of ...

  2. IR photodissociation spectroscopy of (OCS){sub n}{sup +} and (OCS){sub n}{sup −} cluster ions: Similarity and dissimilarity in the structure of CO{sub 2}, OCS, and CS{sub 2} cluster ions

    Energy Technology Data Exchange (ETDEWEB)

    Inokuchi, Yoshiya, E-mail: y-inokuchi@hiroshima-u.ac.jp; Ebata, Takayuki [Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2015-06-07

    Infrared photodissociation (IRPD) spectra of (OCS){sub n}{sup +} and (OCS){sub n}{sup −} (n = 2–6) cluster ions are measured in the 1000–2300 cm{sup −1} region; these clusters show strong CO stretching vibrations in this region. For (OCS){sub 2}{sup +} and (OCS){sub 2}{sup −}, we utilize the messenger technique by attaching an Ar atom to measure their IR spectra. The IRPD spectrum of (OCS){sub 2}{sup +}Ar shows two bands at 2095 and 2120 cm{sup −1}. On the basis of quantum chemical calculations, these bands are assigned to a C{sub 2} isomer of (OCS){sub 2}{sup +}, in which an intermolecular semi-covalent bond is formed between the sulfur ends of the two OCS components by the charge resonance interaction, and the positive charge is delocalized over the dimer. The (OCS){sub n}{sup +} (n = 3–6) cluster ions show a few bands assignable to “solvent” OCS molecules in the 2000–2080 cm{sup −1} region, in addition to the bands due to the (OCS){sub 2}{sup +} ion core at ∼2090 and ∼2120 cm{sup −1}, suggesting that the dimer ion core is kept in (OCS){sub 3–6}{sup +}. For the (OCS){sub n}{sup −} cluster anions, the IRPD spectra indicate the coexistence of a few isomers with an OCS{sup −} or (OCS){sub 2}{sup −} anion core over the cluster range of n = 2–6. The (OCS){sub 2}{sup −}Ar anion displays two strong bands at 1674 and 1994 cm{sup −1}. These bands can be assigned to a C{sub s} isomer with an OCS{sup −} anion core. For the n = 2–4 anions, this OCS{sup −} anion core form is dominant. In addition to the bands of the OCS{sup −} core isomer, we found another band at ∼1740 cm{sup −1}, which can be assigned to isomers having an (OCS){sub 2}{sup −} ion core; this dimer core has C{sub 2} symmetry and {sup 2}A electronic state. The IRPD spectra of the n = 3–6 anions show two IR bands at ∼1660 and ∼2020 cm{sup −1}. The intensity of the latter component relative to that of the former one becomes stronger and stronger with

  3. Indoor Climate Quality Assessment -

    DEFF Research Database (Denmark)

    Ansaldi, Roberta; Asadi, Ehsan; Costa, José Joaquim

    This Guidebook gives building professionals useful support in the practical measurements and monitoring of the indoor climate in buildings. It is evident that energy consumption in a building is directly influenced by required and maintained indoor comfort level. Wireless technologies for measure...... for measurement and monitoring have allowed a significantly increased number of possible applications, especially in existing buildings. The Guidebook illustrates several cases with the instrumentation of the monitoring and assessment of indoor climate.......This Guidebook gives building professionals useful support in the practical measurements and monitoring of the indoor climate in buildings. It is evident that energy consumption in a building is directly influenced by required and maintained indoor comfort level. Wireless technologies...

  4. Indoor Propagation Measurement for WLAN Systems Operating in 2.45 GHz ISM Band

    Directory of Open Access Journals (Sweden)

    P. Pechac

    2002-12-01

    Full Text Available For a planning of indoor Wireless LAN systems working in the ISMband, the signal propagation prediction is needed. In this article, themeasurement campaign based on two types of measurements at 2.45 GHz isintroduced. The first type of the measurement was a classicalnarrowband signal level measurement within indoor scenario withoutpresence of people. The aim of this measurement was to find empiricalparameters for COST231 Multi-Wall and One-Slope models. In order tostatistically describe the time varying nature of the received envelopeof the signal, at WLAN 2.45 GHz band, the second part of measurementcampaign was accomplished. In this case, the signal level was measuredusing commercial WLAN PCMCIA cards in two notebooks. Probabilitydensity functions and corresponding cumulative distribution functionswere set and discussed based on the specific locations and orientationof one of the notebooks. Results from both measurement campaigns werecompared and conclusions are drawn for the needs of practical planningof indoor WLAN systems coverage.

  5. Thermal indoor environment and energy consumption in a plus-energy house: cooling season measurements

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    indoor environment. For the energy consumption of the HVAC system, air-to-brine heat pump, mixing station and controller of the radiant floor, and the air handling unit were considered. The measurements were analyzed based on the achieved indoor environment category (according to EN 15251...... the floor cooling system) and increasing the ventilation rate provided a better thermal indoor environment but with increased energy consumption. The thermal indoor environment and energy performance of the house can be improved with decreased glazing area, increased thermal mass, installation of solar...

  6. A salient region detection model combining background distribution measure for indoor robots.

    Science.gov (United States)

    Li, Na; Xu, Hui; Wang, Zhenhua; Sun, Lining; Chen, Guodong

    2017-01-01

    Vision system plays an important role in the field of indoor robot. Saliency detection methods, capturing regions that are perceived as important, are used to improve the performance of visual perception system. Most of state-of-the-art methods for saliency detection, performing outstandingly in natural images, cannot work in complicated indoor environment. Therefore, we propose a new method comprised of graph-based RGB-D segmentation, primary saliency measure, background distribution measure, and combination. Besides, region roundness is proposed to describe the compactness of a region to measure background distribution more robustly. To validate the proposed approach, eleven influential methods are compared on the DSD and ECSSD dataset. Moreover, we build a mobile robot platform for application in an actual environment, and design three different kinds of experimental constructions that are different viewpoints, illumination variations and partial occlusions. Experimental results demonstrate that our model outperforms existing methods and is useful for indoor mobile robots.

  7. Measurements of indoor 222Rn concentration in two art galleries

    International Nuclear Information System (INIS)

    Carneiro, Luana Gomes; Braz, Delson; Jesus, Edgar Francisco de; Cunha, Kenya Dias da; Medeiros, Geiza; Zouain, Felipe; Pitassi, Gabriel; Leite, Carlos Barros; Cardoso, Katia

    2009-01-01

    It is point out that radon and their decay products in environment give high dose to human lung. Studies indicate that the indoor radon inhalation by humans has been considered probably the second most important cause of lung cancer after of smoking. A passive-type radon detector was used for measuring indoor radon concentration in two art galleries at Rio de Janeiro city during 90 days January to March, 2009. The aim of this study is to evaluate the occupational and public radon exposure in art galleries and museums. This paper shows the preliminary results of samples collected at two art galleries located in Gavea, Rio de Janeiro city. 30 LEXAN (GE) track detectors were exposed in the air (indoor as well as outdoor). The samples were collected in the same building which is a construction of XIX century. The analysis of the results suggests that the 222 Rn concentration levels are different in both sampling site, in closed environmental, demonstrating that, although the construction materials are the same the absence of circulating air is a factor very important to increase the concentration of indoor Rn. (author)

  8. Indoor radon measurements in the dwellings of Punjab and Himachal Pradesh, India

    International Nuclear Information System (INIS)

    Rani, A.; Singh, S.; Duggal, V.

    2013-01-01

    The measurement of indoor radon concentrations were performed in the dwellings of the Punjab and Himachal Pradesh, India by using LR-115 type II Solid-State Nuclear Track Detectors in the bare mode. The annual average indoor radon concentrations in the dwellings are found to vary from 114 to 400 Bq m -3 with an average of 194 Bq m -3 . In ∼22 % of the dwellings the indoor radon activity concentration values lies in the range of action level (200-300 Bq m -3 ) and in ∼11 % of the dwellings above the upper limit of action level recommended by the International Commission on Radiological Protection (ICRP). The annual effective dose (AED) varies from 2.88 to 10.08 mSv with an average of 4.88 mSv. In most of the villages, the AED lies in the range of action level (3-10 mSv) recommended by the ICRP. The seasonal variation in indoor radon reveals the maximum values in winter and minimum in summer. The winter/summer ratio of indoor radon ranges from 1.15 to 1.62 with an average of 1.31. Analysis of ventilation conditions reveal that the indoor radon concentration values are more in poorly ventilated dwellings compared with the well-ventilated ones. (authors)

  9. Measurement-Based Spatial Correlation and Capacity of Indoor Distributed MIMO System

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-01-01

    Full Text Available Distributed MIMO (D-MIMO system is one of the candidates for future wireless access networks. In this study, the spatial correlation and capacity in indoor D-MIMO system are presented. All results are from the actual channel measurements in typical indoor scenarios, including office and corridor. Based on measured data, spatial correlation coefficients between distributed transmitting antennas are analyzed. Although the literature about D-MIMO system assumes the small scale fading between distributed antennas is independent, we find that spatial correlation may still exist in specific propagation scenario. This correlation can also degrade the performance of D-MIMO system. To mitigate the impact of spatial correlation, one efficient method is to use transmitting antenna selection technique.

  10. Sources and protective measures of indoor radon

    International Nuclear Information System (INIS)

    Gou Quanlu; Wang Hengde

    1993-01-01

    This paper presents the relative contribution to indoor radon 222 Rn of various sources in twenty three rooms of three kinds in Taiyuan area. The results show that the major sources in this area are radon emanation from surfaces of soil and building materials and that from outdoor air, while the contribution of water and gas consumed in the rooms is less important. These results suggest a basis for taking suitable protective measures against indoor radon. Some materials are also recommended which are effective in restraining radon exhalation and low in price, by testing more than ten kinds of materials and comparing them using cost-effectiveness analysis technique, such as painting materials, polyvinyl alcohol (CH 2 :CHOH)n, etc. Their sealing effects on radon exhalation were examined with home-made REM-89 Radon Exhalation Monitor. The deposition effects of negative ion generator and humidifier on radon progeny were also tested. The maximum deposition may reach 70-90%, which proves they are also effective and economical in radon protection. (2 tabs., 3 figs.)

  11. Determination of primary combustion source organic carbon-to-elemental carbon (OC / EC ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method

    Directory of Open Access Journals (Sweden)

    C. Wu

    2016-05-01

    Full Text Available Elemental carbon (EC has been widely used as a tracer to track the portion of co-emitted primary organic carbon (OC and, by extension, to estimate secondary OC (SOC from ambient observations of EC and OC. Key to this EC tracer method is to determine an appropriate OC / EC ratio that represents primary combustion emission sources (i.e., (OC / ECpri at the observation site. The conventional approaches include regressing OC against EC within a fixed percentile of the lowest (OC / EC ratio data (usually 5–20 % or relying on a subset of sampling days with low photochemical activity and dominated by local emissions. The drawback of these approaches is rooted in its empirical nature, i.e., a lack of clear quantitative criteria in the selection of data subsets for the (OC / ECpri determination. We examine here a method that derives (OC / ECpri through calculating a hypothetical set of (OC / ECpri and SOC followed by seeking the minimum of the coefficient of correlation (R2 between SOC and EC. The hypothetical (OC / ECpri that generates the minimum R2(SOC,EC then represents the actual (OC / ECpri ratio if variations of EC and SOC are independent and (OC / ECpri is relatively constant in the study period. This Minimum R Squared (MRS method has a clear quantitative criterion for the (OC / ECpri calculation. This work uses numerically simulated data to evaluate the accuracy of SOC estimation by the MRS method and to compare with two commonly used methods: minimum OC / EC (OC / ECmin and OC / EC percentile (OC / EC10 %. Log-normally distributed EC and OC concentrations with known proportion of SOC are numerically produced through a pseudorandom number generator. Three scenarios are considered, including a single primary source, two independent primary sources, and two correlated primary sources. The MRS method consistently yields the most accurate SOC estimation. Unbiased SOC estimation by OC

  12. Indoor radon progeny aerosol size measurements in urban, suburban, and rural regions

    International Nuclear Information System (INIS)

    Tu, K.W.; Knutson, E.O.; George, A.C.

    1991-01-01

    By using direct and indirect methods, the authors conducted size distribution measurements of radon progeny particles in a variety of indoor environments in urban, suburban, and rural areas. The radon progeny particle size distribution owing to indoor activities has two definable source categories: (1) gas combustion from stoves and kerosene heaters - particles were found to be smaller than 0.1 μm in diameter, mostly in the range 0.02-0.08 μm; and (2) cigarette smoking and food frying - particles were found to be larger, in the size range 0.1-0.2 μm. The radon progeny particle size distribution, without significant indoor activities, such as cooking, was found to be larger in rural areas than in urban or suburban areas. The modal diameters of the size spectra in the rural areas were two to three times larger than those in urban or suburban areas, around 0.3-0.4 bs. 0.1-0.2 μm. Results obtained by applying the attachment theory to the measured number-weighted size spectra from an electrical aerosol size analyzer support this finding. These results, if confirmed by more extensive studies, will be useful for the assessment of the risk from the inhalation of radon progeny in various indoor environments

  13. Differential barometric-based positioning technique for indoor elevation measurement in IoT medical applications.

    Science.gov (United States)

    Wang, Hua; Wen, Yingyou; Zhao, Dazhe

    2017-07-20

    Medical applications have begun to benefit from Internet of Things (IoT) technology through the introduction of wearable devices. Several medical applications require accurate patient location as various changes affect pressure parameters inside the body. This study aims to develop a system to measure indoor altitude for IoT medical applications. We propose a differential barometric-based positioning system to estimate the altitude between a reference sensor and a localizing sensor connected to the human body. The differential barometric altimetry model is introduced to estimate indoor elevations and eliminate environmental artifacts. In addition, a Gaussian filter processing is adopted to remove noise from the elevation measurements. The proposed system is then investigated through extensive experiments, using various evaluation criteria. The results indicate that the proposed system yielded good accuracy with reduced implementation complexity and fewer costs. The proposed system is resilient compared to other indoor localization approaches, even when numerous environmental artifacts in indoor environments are present.

  14. Long term indoor radon measurements in the pelletron laboratory at the UNAM physics institute

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J. I.; Lopez, K.; Rickards, J.

    2011-01-01

    The results of six months of continuous measurement of the indoor radon concentration levels in the building where the Physics Institute 3 MV Pelletron particle accelerator is located are presented. This study has three major objectives: a) to know the actual values of the levels of indoor radon in this installation, where personnel spend many hours and sometimes days; b) assess the radiological risk from radon inhalation for personnel working permanently in the laboratory, as well as incidental users; and c) establish, if necessary, time limits for continuous permanence on the location for indoor radon exposure. Passive nuclear track detectors and dynamic systems were employed, covering six months (August, 2009 to January, 2010). For the calculation of internal dose the Radon Individual Dose Calculator was used. The results indicate that the indoor radon levels are below the US EPA recommended levels (400 Bq/m 3 ) in workplaces. The measurements help to establish levels for workplaces in Mexico. (Author)

  15. Measurement of OCS, CO2, CO and H2O aboard NASA's WB-57 High Altitude Platform Using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS)

    Science.gov (United States)

    Leen, J. B.; Owano, T. G.; Du, X.; Gardner, A.; Gupta, M.

    2014-12-01

    Carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere and has been implicated in controlling the sulfur budget and aerosol loading of the stratosphere. In the troposphere, OCS is irreversibly consumed during photosynthesis and may serve as a tracer for gross primary production (GPP). Its primary sources are ocean outgassing, industrial processes, and biomass burning. Its primary sinks are vegetation and soils. Despite the importance of OCS in atmospheric processes, the OCS atmospheric budget is poorly determined and has high uncertainty. OCS is typically monitored using either canisters analyzed by gas chromatography or integrated atmospheric column measurements. Improved in-situ terrestrial flux and airborne measurements are required to constrain the OCS budget and further elucidate its role in stratospheric aerosol formation and as a tracer for biogenic volatile organics and photosynthesis. Los Gatos Research has developed a flight capable mid-infrared Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) analyzer to simultaneously quantify OCS, CO2, CO, and H2O in ambient air at up to 2 Hz. The prototype was tested on diluted, certified samples and found to be precise (OCS, CO2, CO, and H2O to better than ±4 ppt, ±0.2 ppm, ±0.31 ppb, and ±3.7 ppm respectively, 1s in 1 sec) and linear (R2 > 0.9997 for all gases) over a wide dynamic range (OCS, CO2, CO, and H2O ranging from 0.2 - 70 ppb, 500 - 3000 ppm, 150 - 480 ppb, and 7000 - 21000 ppm respectively). Cross-interference measurements showed no appreciable change in measured OCS concentration with variations in CO2 (500 - 3500 ppm) or CO. We report on high altitude measurements made aboard NASA's WB-57 research aircraft. Two research flights were conducted from Houston, TX. The concentration of OCS, CO2, CO, and H2O were continuously recorded from sea level to approximately 60,000 feet. The concentration of OCS was observed to increase with altitude through the troposphere due to the

  16. Indoor Thermal Factors and Symptoms in Office Workers: Findings from the U.S. EPA BASE Study

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark; Mirer, Anna

    2008-06-01

    Some prior research in office buildings has associated higher indoor temperatures even within the recommended thermal comfort range with increased worker symptoms. We reexamined this relationship in data from 95 office buildings in the U.S. Environmental Protection Agency's Building Assessment Survey and Evaluation (BASE) Study. We investigated relationships between building-related symptoms and thermal metrics constructed from real-time measurements. We estimated odds ratios (ORs) and 95percent confidence intervals in adjusted logistic regression models with general estimating equations, overall and by season. Winter indoor temperatures spanned the recommended winter comfort range; summer temperatures were mostly colder than the recommended summer range. Increasing indoor temperatures, overall, were associated with increases in few symptoms. Higher winter indoor temperatures, however, were associated with increases in all symptoms analyzed. Higher summer temperatures, above 23oC, were associated with decreases in most symptoms. Humidity ratio, a metric of absolute humidity, showed few clear associations. Thus, increased symptoms with higher temperatures within the thermal comfort range were found only in winter. In summer, buildings were overcooled, and only the higher observed temperatures were within the comfort range; these were associated with decreased symptoms. Confirmation of these findings would suggest that thermal management guidelines consider health effects as well as comfort.

  17. Radon gas sampler for indoor and soil measurements and its applications

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Flores, B.; Piermattei, S.; Susanna, A.F.; Seidel, J.L.; Tommasino, L.; Torri, G.

    1988-01-01

    A national large scale survey of indoor radon (based on an optimised sampling strategy) is needed in Italy to obtain average population dose for use in epidemiological studies. Since in the great majority of cases, one of the most important radon sources is the soil and rock beneath the houses, it would be interesting to combine this survey with measurements of bed-soil radon. With these objectives in mind, a new radon monitor device has been developed consisting of two etched track detectors enclosed in a heat-sealed polyethylene bag. When compared with existing techniques, this radon gas sampler presents several advantages for both indoor and outdoor measurements. As a pilot project, radon gas measurements have been carried out in hundreds of different sites and for several locations; measurements have been made for different years. Typical houses with relatively high radon concentrations have also been thoroughly investigated. (author)

  18. Total hemispherical emissivity of pre-oxidized and un-oxidized Zr-2.5Nb pressure-tube materials at 600 {sup o}C to 1000 {sup o}C under vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L.; Paine, M.; Nitheanandan, T., E-mail: randy.fong@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The emissivity of pre-oxidized and un-oxidized pressure-tube specimens has been measured at high temperatures under vacuum. The emissivity values of un-oxidized tube specimens decreased only slightly from 0.34 at 600 {sup o}C to 0.30 at 800 {sup o}C and changed gradually to 0.25 at 1000 {sup o}C. In comparison, the emissivity of pre-oxidized pressure-tube specimens decreased drastically from 0.70 at 600 {sup o}C to 0.35 at 800 {sup o}C, and gradually decreased to 0.25 at 1000 {sup o}C. The oxide layer of the pre-oxidized tube specimens dissolved into the metal matrix when heated to 700 {sup o}C and higher. Using these results, 2 linear correlations were obtained for emissivity with the oxide thickness measured by scanning electron microscopy and secondary ion mass spectroscopy analysis. (author)

  19. Measuring the Uncertainty of Probabilistic Maps Representing Human Motion for Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Susanna Kaiser

    2016-01-01

    Full Text Available Indoor navigation and mapping have recently become an important field of interest for researchers because global navigation satellite systems (GNSS are very often unavailable inside buildings. FootSLAM, a SLAM (Simultaneous Localization and Mapping algorithm for pedestrians based on step measurements, addresses the indoor mapping and positioning problem and can provide accurate positioning in many structured indoor environments. In this paper, we investigate how to compare FootSLAM maps via two entropy metrics. Since collaborative FootSLAM requires the alignment and combination of several individual FootSLAM maps, we also investigate measures that help to align maps that partially overlap. We distinguish between the map entropy conditioned on the sequence of pedestrian’s poses, which is a measure of the uncertainty of the estimated map, and the entropy rate of the pedestrian’s steps conditioned on the history of poses and conditioned on the estimated map. Because FootSLAM maps are built on a hexagon grid, the entropy and relative entropy metrics are derived for the special case of hexagonal transition maps. The entropy gives us a new insight on the performance of FootSLAM’s map estimation process.

  20. On the differences between 1.5oC and 2oC of global warming

    Science.gov (United States)

    King, A.

    2017-12-01

    The Paris Agreement of 2015 has resulted in a drive to limit global warming to 2oC with an aim for a lower 1.5oC target. It is therefore vital that we understand some of the differences we would expect between these two levels of global warming. My research uses coupled climate model projections to investigate where and for what variables we can differentiate between worlds of 1.5oC and 2oC global warming. I place a particular focus on climate extremes and population exposure to those extremes. I have found that there are perceptible benefits in limiting global warming to 1.5oC as opposed to 2oC through reduced frequency and intensity of heat extremes, both over land and in ocean areas where thermal stress on coral has resulted in bleaching. Differences in high and low precipitation extremes between the 1.5oC and 2oC global warming levels are projected for some regions. I have also examined how "scalable" changes from the 1.5oC to 2oC level are. In areas of the world such as Eastern China I find that changes in anthropogenic aerosol concentrations will influence the level of change projected at 1.5oC and 2oC, such that past warming is likely to be a poor indicator of future changes. Overall, my research finds clear benefits to limiting global warming to 1.5oC relative to higher levels.

  1. Comparative study of short- and long-term indoor radon measurements

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman,; Abdalla, Khalid [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2008-08-15

    Short-term indoor radon measurements are used widely. Therefore, it is interesting to find out a correlation between these measurements and long-term measurements which reflect a better average radon concentration of individual measurement. To find the correlation between the two measurements of indoor radon concentrations at low radon levels, a study was carried out at 34 locations of King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia using active and passive methods. In the short-term active method, a radon gas analyzer (AlphaGUARD) was used for a duration of 24 h in each measurement. In the long-term passive method, CR-39 based radon dosimeters were utilized for a period of 6 months, from January 2006 to June 2006. The short-term active measurements showed that the average, minimum and maximum radon concentrations were 19, 8 and 58Bqm{sup -3}, respectively, with a standard deviation of 8.6Bqm{sup -3}. The long-term passive measurements showed that the average, minimum and maximum radon concentrations were 25, 10 and 67Bqm{sup -3}, respectively, with a standard deviation of 12Bqm{sup -3}. The two measurements showed a poor correlation (R{sup 2}=0.38). The long-term measurements showed on the average higher concentrations by a factor of 1.3.

  2. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovska, Zdenka; Janevik, Emilija; Taleski, Vaso [Goce Delcev University, Faculty of Medical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Boev, Blazo [Goce Delcev University, Faculty of Natural and Technical Sciences, Stip (Macedonia, The Former Yugoslav Republic of); Zunic, Zora S. [University of Belgrade, Institute of Nuclear Sciences ' ' Vinca' ' , Belgrade (Serbia); Ivanova, Kremena; Tsenova, Martina [National Center of Radiobiology and Radiation Protection, Sofia (Bulgaria); Ristova, Mimoza [University in Ss. Cyril and Methodius, Faculty of Natural Sciences and Mathematic, Institute of Physics, Skopje (Macedonia, The Former Yugoslav Republic of); Ajka, Sorsa [Croatian Geological Survey, Zagreb (Croatia); Bossew, Peter [German Federal Office for Radiation Protection, Berlin (Germany)

    2016-05-15

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m{sup 3} for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported. (orig.)

  3. Indoor and outdoor Radon concentration measurements in Sivas, Turkey, in comparison with geological setting

    Energy Technology Data Exchange (ETDEWEB)

    Mihci, Metin [Iller Bankasi, Etud Plan ve Yol Dairesi, Opera, 06053 Ankara (Turkey); Buyuksarac, Aydin [Canakkale Onsekiz Mart University, Department of Geophysical Engineering, 17020, Canakkale (Turkey); Aydemir, Attila, E-mail: aydemir@tpao.gov.t [Turkiye Petrolleri A.O. Mustafa, Kemal Mah. 2. Cad. No: 86, 06100 Sogutozu, Ankara (Turkey); Celebi, Nilgun [Cekmece Nuclear Research and Training Centre (CNAEM), Cekmece, Istanbul (Turkey)

    2010-11-15

    Indoor and soil gas Radon ({sup 222}Rn) concentration measurements were accomplished in two stages in Sivas, a central eastern city in Turkey. In the first stage, CR-39 passive nuclear track detectors supplied by the Turkish Atomic Energy Authority (TAEA) were placed in the selected houses throughout Sivas centrum in two seasons; summer and winter. Before the setup of detectors, a detailed questionnaire form was distributed to the inhabitants of selected houses to investigate construction parameters and properties of the houses, and living conditions of inhabitants. Detectors were collected back two months later and analysed at TAEA laboratories to obtain indoor {sup 222}Rn gas concentration values. In the second stage, soil gas {sup 222}Rn measurements were performed using an alphameter near the selected houses for the indoor measurements. Although {sup 222}Rn concentrations in Sivas were quite low in relation with the allowable limits, they are higher than the average of Turkey. Indoor and soil gas {sup 222}Rn concentration distribution maps were prepared seperately and these maps were applied onto the surface geological map. In this way, both surveys were correlated with the each other and they were interpreted in comparison with the answers of questionnaire and the geological setting of the Sivas centrum and the vicinity.

  4. Comparison of predicted and measured variations of indoor radon concentration

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Maekelaeinen, I.; Castren, O.; Winqvist, K.

    1988-01-01

    Prediction of the variations of indoor radon concentration were calculated using a model relating indoor radon concentration to radon entry rate, air infiltration and meteorological factors. These calculated variations have been compared with seasonal variations of 33 houses during 1-4 years, with winter-summer concentration ratios of 300 houses and the measured diurnal variation. In houses with a slab in ground contact the measured seasonal variations are quite often in agreement with variations predicted for nearly pure pressure difference driven flow. The contribution of a diffusion source is significant in houses with large porous concrete walls against the ground. Air flow due to seasonally variable thermal convection within eskers strongly affects the seasonal variations within houses located thereon. Measured and predicted winter-summer concentration ratios demonstrate that, on average, the ratio is a function of radon concentration. The ratio increases with increasing winter concentration. According to the model the diurnal maximum caused by a pressure difference driven flow occurs in the morning, a finding which is in agreement with the measurements. The model presented can be used for differentiating between factors affecting radon entry into houses. (author)

  5. Indoor air quality in the Karns research houses: baseline measurements and impact of indoor environmental parameters on formaldehyde concentrations

    International Nuclear Information System (INIS)

    Matthews, T.G.; Fung, K.W.; Tromberg, B.J.; Hawthorne, A.R.

    1985-12-01

    Baseline indoor air quality measurements, a nine-month radon study, and an environmental parameters study examining the impact of indoor temperature (T) and relative humidity (RH) levels on formaldehyde (CH 2 O) concentrations have been performed in three unoccupied research homes located in Karns, Tennessee. Inter-house comparison measurements of (1) CH 2 O concentration, (2) CH 2 O emission rates from primary CH 2 O emission sources, (3) radon and radon daughter concentrations, and (4) air exchange rates indicate that the three homes are similar. The results of the nine-month radon study indicate indoor concentrations consistently below the EPA recommended level of 4 pCi/L. Evidence was found that crawl-space concentrations may be reduced using heat pump systems whose outdoor units circulate fresh air through the crawl-space. The modeled results of the environmental parameters study indicate approximate fourfold increases in CH 2 O concentrations from 0.07 to 0.27 ppM for seasonal T and RH conditions of 20 0 C, 30% RH and 29 0 C, 80% RH, respectively. Evaluation of these environmental parameters study data with steady-state CH 2 O concentration models developed from laboratory studies of the environmental dependence of CH 2 O emissions from particleboard underlayment indicate good correlations between the laboratory and field studies

  6. Methods and measurements of indoor levels of radon and its daughter products

    International Nuclear Information System (INIS)

    Subba Ramu, M.C.; Muraleedharan, T.S.; Ramachandran, T.V.; Shaikh, G.N.

    1988-01-01

    General population is exposed, some times, to enhanced levels of radon (Rn) and its progeny concontrations in the indoor environment of dwellings, depending on various parameters like type of construction, location and ventilation features of the dwelling as well as on the occupancy factor. The risk involved in the indoor Rn exposure is briefly discussed in this report. Several methods are available for the measurement of Rn and its daughters in dwellings. This report describes in detail some of the suitable and convenient methods for the measurements. Methods for evluating ventilation rate in dwellings is also given. Grab sampling and time integrated measurements are described. The report also gives the results of some preliminary measurements carried out in some rooms and lecture halls of the Bhabha Atomic Research Centre, Bombay. The results are discussed and conclusions drawn with particular reference to a country-wide survey of Rn exposure. (author)

  7. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    Harley, N.H.

    1992-01-01

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor 222 Rn and in 222 Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house 222 Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater 222 Rn concentration than the measured outdoor 222 Rn. Apartment dwellers generally represent a low risk group regarding 222 Rn exposure. The following sections describe the main projects in some detail

  8. Measurement of Indoor Air Quality by Means of a Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Brohus, Henrik

    When a person is located in a contaminant field with significant gradients the contaminant distribution is modified locally due to the entrainment and transport of room air in the human convective boundary layer as well as due to the effect of the person acting as an obstacle to the flow field, etc....... The local modification of the concentration distribution may affect the personal exposure significantly and, thus, the indoor air quality actually experienced. In this paper measurements of indoor air quality by means of a Breathing Thermal Manikin (BTM) are presented....

  9. Systematic indoor radon and gamma-ray measurements in Slovenian schools

    International Nuclear Information System (INIS)

    Vaupotic, J.; Sikovec, M.; Kobal, I.

    2000-01-01

    During the winter months of 1992/93 and 1993/94, instantaneous indoor radon concentrations and gamma dose rates were measured in 890 schools in Slovenia attended in total by about 280,000 pupils. Under closed conditions, the room to be surveyed was closed for more than 12 h prior to sampling, the air was sampled into alpha scintillation cells with a volume of 700 cm 3 , and alpha activity was measured. An arithmetic mean of 168 Bq m -3 and a geometric mean of 82 Bq m -3 were obtained. In 67% of schools, indoor radon concentrations were below 100 Bq m -3 , and in 8.7% (77 schools with about 16,000 pupils) they exceeded 400 Bq m -3 , which is the proposed Slovene action level. In the majority of cases, radon concentrations were high due to the geological characteristics of the ground. Approximately 70% of schools with high radon levels were found in the Karst region. Gamma dose rates were measured using a portable scintillation counter. An arithmetic mean of 102 nGy h -1 and a geometric mean of 95 nGy h -1 were obtained. No extraordinarily high values were recorded

  10. Research on the Implementation of Technological Measures for Controlling Indoor Environmental Quality in Green Residential Buildings

    Science.gov (United States)

    Wang, Ruozhu; Liu, Pengda; Qian, Yongmei

    2018-02-01

    This paper analyzes the design technology of controlling indoor quality in engineering practice, it is proposed that, in framework system of green residential building design, how to realize the design idea of controlling the indoor environment quality, and the design technology with feasibility, including the sunshine and lighting, indoor air quality and thermal environment, sound insulation and noise reduction measures, etc.. The results of all will provide a good theoretical supportting for the design of green residential building.

  11. Sublinear absorption in OCS gas

    International Nuclear Information System (INIS)

    Bogani, F.; Querzoli, R.; Ernst, K.

    1988-01-01

    Sublinear absorption in OCS gas has been experimentally studied in detail by means of an optoacustic technique and transmission measurements. The best fit of the results is obtained by a phenomenological model, that considers the process as the sum of one-and two-photon absorptions

  12. Investigations on indoor radon in Austria, Part 1: Seasonality of indoor radon concentration

    International Nuclear Information System (INIS)

    Bossew, Peter; Lettner, Herbert

    2007-01-01

    In general, indoor radon concentration is subject to seasonal variability. The reasons are to be found (1) in meteorological influence on the transport properties of soil, e.g. through temperature, frozen soil layers and soil water saturation; and (2) in living habits, e.g. the tendency to open windows in summer and keep them closed in winter, which in general leads to higher accumulation of geogenic Rn in closed rooms in winter. If one wants to standardize indoor Rn measurements originally performed at different times of the year, e.g. in order to make them comparable, some correction transform as a function of measurement time which accounts for these effects must be estimated. In this paper, the seasonality of indoor Rn concentration measured in Austria is investigated as a function of other factors that influence indoor Rn. Indoor radon concentration is clearly shown to have seasonal variability, with higher Rn levels in winter. However, it is complicated to quantify the effect because, as a consequence of the history of an Rn survey, the measurement season maybe correlated to geological regions, which may introduce a bias in the estimate of the seasonality amplitude

  13. Indoor air pollution

    International Nuclear Information System (INIS)

    Spengler, J.D.

    1985-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  14. Thermal-Conductivity Studies of Macro-porous Polymer-Derived SiOC Ceramics

    Science.gov (United States)

    Qiu, L.; Li, Y. M.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Wu, J. Q.; Xu, C. H.

    2014-01-01

    A three-dimensional reticular macro-porous SiOC ceramics structure, made of spherical agglomerates, has been thermally characterized using a freestanding sensor-based method. The effective thermal conductivity of the macro-porous SiOC ceramics, including the effects of voids, is found to be to at room temperature, comparable with that of alumina aerogel or carbon aerogel. These results suggest that SiOC ceramics hold great promise as a thermal insulation material for use at high temperatures. The measured results further reveal that the effective thermal conductivity is limited by the low solid-phase volume fraction for the SiOC series processed at the same conditions. For SiOC ceramics processed under different pyrolysis temperatures, the contact condition between neighboring particles in the SiOC networks is another key factor influencing the effective thermal conductivity.

  15. Radon measurements in indoor workplaces

    International Nuclear Information System (INIS)

    Tokonami, S.; Matsumoto, M.; Furukawa, M.; Fujimoto, K.; Fujitaka, K.; Pan, J.; Kurosawa, R.

    1996-01-01

    Radon measurements in several office buildings located in Tokyo were carried out with two types of device to study the time-dependent radon concentration in indoor workplaces. Both types of device use the electrostatic field for the collection of 218 Po onto the electrode of the detector. One provides an average radon concentration throughout the day. The other, in which a weekly timer is installed in the circuit of the electrode of the device, provides an average radon concentration during working hours (9:00-17:00, Monday-Friday). Although radon concentrations in Japanese dwellings have been found to be generally low, relatively high concentrations were observed in the office buildings. No consistent seasonal variation was recognised in this study. Little difference of average radon concentrations between working hours and the whole day was found throughout the year in two offices. On the other hand, a significant difference was observed in other offices. The operation of an air conditioner might change the radon concentration during working hours. From the results of radon measurements the average effective dose in the workplace was estimated to be 0.23 mSv for 2000 working hours in a year. (Author)

  16. Indoor radon concentration measurement in the dwellings of Al-Jauf region of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Jarallah, M. I.; Fazal ur, Rehman

    2006-01-01

    Indoor radon concentration measurement in the dwellings of Al-Jauf region of Saudi Arabia was carried out using passive radon dosemeters. The objective of this radon survey was to obtain representative indoor radon data of Al-Jauf region. The study is a continuation of radon survey in main cities of Saudi Arabia which constitutes a baseline for Saudi Arabia in the Radon World Atlas. A total of 318 passive radon dosemeters were distributed randomly in the region and placed for a period of 1 y starting from April 2004 to April 2005. The results of indoor radon concentration measurement in 136 dwellings distributed in Al-Jauf region are presented. The remaining dosemeters were lost in the dwellings or mishandled. The results showed that the average, minimum, maximum radon concentrations and standard deviation were 35, 7, 168 and 30 Bq m -3 , respectively. Geometric mean and geometric standard deviation of the radon distribution were found to be 28 and 1.83, respectively. (authors)

  17. Healthy indoors : achieving healthy indoor environments in Canada : Final report

    International Nuclear Information System (INIS)

    Anon

    2002-01-01

    A large proportion of the lives of Canadians is spent indoors, whether in vehicles, restaurants, shopping malls, offices or houses. The health of people working and living in those indoor settings might be damaged a a result, despite best efforts. Indoor pollution has been identified as one of the most serious risks to human health, according to numerous leading authorities, among them the American Lung Association, the United States Environmental Protection Agency, the Canada Mortgage and Housing Corporation (CMHC). A large number of cancer deaths are attributed to indoor pollution each year in the United States, as well as respiratory health problems. A causal link between certain indoor exposures and the development and provocation of asthma was established recently in a report on asthma and indoor air quality published by the National Academy of Sciences/Institute of Medicine. Exposure to indoor pollutants has also resulted in thousands of children experiencing elevated blood lead levels. Not enough attention is paid in Canada to pollution in buildings by government agencies, corporations and other non-governmental organizations and citizens. Not much seems to have changed in the past thirty years. An ambitious strategy by Pollution Probe was described in this document, listing the initial goals and measures required to achieve those goals. The creation of Healthy Indoors Partnership (HIP) was proposed to regroup all the stakeholders under the same umbrella. refs., tabs

  18. Indoor measurement of angle resolved light absorption by antireflective glass in solar panels

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Benatto, Gisele Alves dos Reis; Riedel, Nicholas

    2017-01-01

    measurements with trackers. The experimental results showed optical responses that are stable and suitable for indoor characterization of solar cells. We find the characteristic optical response of six different antireflective glasses, and based on such measurements, we perform PVsyst simulations and present...

  19. MEASUREMENT OF INDOOR RADON-THORON IN AIR AND EXHALATION FROM SOIL IN THE ENVIRONMENT OF WESTERN HARYANA, INDIA.

    Science.gov (United States)

    Mann, Nisha; Kumar, Amit; Kumar, Sushil; Chauhan, R P

    2016-10-01

    Measurement of indoor radon and thoron is important because the inhalation of radon-thoron and their daughters contributes more than 50 % of the total dose from natural sources. One of the important parameters to find out the contribution of soil and building materials towards indoor radon is radon exhalation rates, which can be used for estimation of indoor radon levels. The indoor radon and thoron levels from the air and radon exhalation rates from soil samples collected from two districts (Hisar and Fatehabad) of Western Haryana are measured using pin-hole-based radon-thoron dosimeter and LR-115 solid-state nuclear track detector by canister technique. The results show that the indoor radon and thoron levels from Hisar district varied from 11 to 112 and 11 to 80 Bq m -3 , while for Fatehabad district from 5 to 24 and 59 to 105 Bq m -3 , respectively, in summer season. In winter season, indoor radon and thoron levels from Hisar district varied from 15 to 43 and 32 to 102 Bq m -3 , while for Fatehabad district from 18 to 31 and 11 to 80 Bq m -3 , respectively. The indoor radon levels of 95 % locations lie well below the limit recommended by International Commission of Radiation Protection, 2011. The radon mass exhalation rate varied from 6 to 56 mBq kg -1 h -1 The radon mass exhalation rates from the soil samples were lower than the worldwide average, i.e. 56 mBq kg -1 h -1 There exists a poor correlation between indoor radon and exhalation rates. More investigations of measurement of radionuclide contents from rock and stone of study area can improve the understanding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. 15 CFR 930.73 - OCS plan.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false OCS plan. 930.73 Section 930.73...) Exploration, Development and Production Activities § 930.73 OCS plan. (a) The term “OCS plan” means any plan... described in detail in OCS plans approved by the Secretary of the Interior or designee prior to management...

  1. [Measurement of Chemical Compounds in Indoor and Outdoor Air in Chiba City Using Diffusive Sampling Devices].

    Science.gov (United States)

    Sakamoto, Hironari; Uchiyama, Shigehisa; Kihara, Akiko; Tsutake, Toyoshige; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-01-01

    Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 μg m(-3) in summer and 1,100 μg m(-3) in winter in indoor air. p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.

  2. Long term indoor radon measurements in the pelletron laboratory at the UNAM physics institute

    OpenAIRE

    Espinosa, G.; Golzarri, J.I.; Lopez, K.; Rickards, J.

    2011-01-01

    The results of six months of continuous measurement of the indoor radon concentration levels in the building where the Instituto de Física 3 MV Pelletron particle accelerator is located are presented. This study has three major objectives: (a) to know the actual values of the levels of indoor radon in this installation, where personnel spend many hours and sometimes days; (b) assess the radiological risk from radon inhalation for personnel working permanently in the laboratory, as well as inc...

  3. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  4. Energy upgrading measures improve also indoor climate

    DEFF Research Database (Denmark)

    Foldbjerg, Peter; Knudsen, Henrik Nellemose

    2014-01-01

    A new survey shows that the economy is what motivates Danish owners of single-family houses the most to start energy upgrading, and that improved indoor climate is also an important factor. After the upgrading, homeowners experience both improved economy and indoor climate. In a strategy...... to increase the number of homeowners who venture into a major energy upgrading of their house, the demonstrated positive side effects, more than energy savings, should be included in the communication to motivate homeowners. The barriers should be reduced by “taking the homeowners by the hand” and helping...... them to choose relevant energy-saving solutions as well as clarifying the financial consequences and opportunities....

  5. Measurements of environmental radon - 222 concentrations in indoors and outdoors in Egypt

    International Nuclear Information System (INIS)

    Kenawy, M.A.; Morsey, A.A.; Kotb, M.A.; Osman, A.; El-Haag, A.

    1990-01-01

    The major contribution to population exposure from natural radiation arises from the inhalation of the decay products of radon. Substantial surveys are being conducted by several investigators to estimate the indoor and outdoor exposure nationally and to discover regional variations. In this work, radon concentration in the indoors and outdoor air was determined using the can technique and employing CR-39 solid state nuclear track detector for lengthy exposures. The range of radon - 222 activity in this survey was 54 -299 PCi.m -3 in Cairo, 22 - 171 PCi.m -3 in Alexandria and 89 - 370 PCi.m -3 in Asiut. Measurements carried out in Aswan and Sinai ranged between 98 - 411 PCi.m -3 . Values of indoors and outdoors radon concentrations were found to vary with time of day, geographic location, season and height above ground. Further work is going on to study the different parameters affecting the levels of the environmental radon. The national survey and associated studies is expected to yield data that may correlate radon activity with some respiratory diseases, particularly lung cancer. (author). 7 refs, 5 figs

  6. Measurement of the size distributions of radon progeny in indoor air

    International Nuclear Information System (INIS)

    Hopke, P.K.; Ramamurthi, M.; Li, C.S.

    1990-01-01

    A major problem in evaluating the health risk posed by airborne radon progeny in indoor atmospheres is the lack of available information on the activity-weighted size distributions that occur in the domestic environment. With an automated, semicontinuous, graded screen array system, we made a series of measurements of activity-weighted size distributions in several houses in the northeastern United States. Measurements were made in an unoccupied house, in which human aerosol-generating activities were simulated. The time evolution of the aerosol size distribution was measured in each situation. Results of these measurements are presented

  7. Indoor radon concentration and outdoor/indoor pressure difference correlation

    International Nuclear Information System (INIS)

    Cechak, T.; Fronka, A.; Moucka, L.

    2004-01-01

    In the current approach to the radon issue, the radon risk for people living in a building is estimated based on the average indoor radon concentration. Short-term measurements as usually applied fail to reflect the wide range of radon variations arising from ventilation, radon supply and, in particular, human activities in the building. For this reason, efforts are made to find a new approach to the assessment of the quality of a building as a radon barrier, independent of the weather conditions and residential habits. A simple model of radon volume activity entering the building at a constant rate and simultaneously ventilated at a constant rate is applicable to this task. The rate of radon ingress can be regarded as a parameter making it possible to quantify the leakage of structures provided the barrier against the radon in a soil gas. The ventilation rate, on the other hand, characterizes the leakage of the whole building envelope at a given outdoor/indoor pressure difference. A unique measuring technique called the blower door exists whereby a defined pressure difference between the indoor and outdoor atmosphere can be established. Under such conditions both the ventilation rate and the rate of radon ingress can be measured and expressed as a function of the pressure difference. An analysis of the model of a room with a constant ventilation and constant radon supply is presented and the relationship between radon supply and ventilation rate can be assumed. Some experimental results show how the model can be utilized. The real indoor-outdoor air pressure differences, the indoor-soil air pressure differences, and some effects of different ventilation regimes are given. Other experiments, which have been done by using the blower door method, illustrate the possible effects and some restrictions for a routine application are discussed

  8. Estimation of the variations of ventilation rate and indoor radon concentration using the observed wind velocity and indoor-outdoor temperature difference

    International Nuclear Information System (INIS)

    Nagano, Katsuhiro; Inose, Yuichi; Kojima, Hiroshi

    2006-01-01

    The indoor radon concentration in the building depends on the ventilation rate. Measurement results of indoor-outdoor pressure difference showed the ventilation rate correlated closely with the indoor-outdoor pressure difference. The observation results showed that one of factor of indoor-outdoor pressure difference was the wind velocity. When the wind velocity is small, the ventilation rate is affected by the indoor-outdoor temperature difference and the effect depends on the wind velocity. The temporal variation of indoor radon concentration was predicted by the time depending indoor radon balance model and the ventilation rate estimated from the wind velocity and the indoor-outdoor temperature difference. The temporal variations of predicted radon concentration gave good agreement with the experimental values. The measurement method, indoor radon concentration and ventilation rate, factors of temporal variation of ventilation rate, and prediction of indoor radon concentration are reported. (S.Y.)

  9. Indoor air quality in cold climates: hazards and abatement measures

    National Research Council Canada - National Science Library

    Walkinshaw, D. S

    1986-01-01

    The first APCA Conference on Indoor Air Quality, held April 29, 30 and May 1, 1985 in Ottawa, featured some 67 presentations covering many aspects of indoor air quality, with the focus on cold climate...

  10. Ground-truthing predicted indoor radon concentrations by using soil-gas radon measurements

    International Nuclear Information System (INIS)

    Reimer, G.M.

    2001-01-01

    Predicting indoor radon potential has gained in importance even as the national radon programs began to wane. A cooperative study to produce radon potential maps was conducted by the Environmental Protection Agency (EPA), U.S. Geological Survey (USGS), Department of Energy (DOE), and Lawrence Berkeley Laboratory (LBL) with the latter taking the lead role. A county-wide predictive model based dominantly on the National Uranium Resource Evaluation (NURE) aerorad data and secondly on geology, both small-scale data bases was developed. However, that model breaks down in counties of complex geology and does not provide a means to evaluate the potential of an individual home or building site. Soil-gas radon measurements on a large scale are currently shown to provide information for estimating radon potential at individual sites sort out the complex geology so that the small-scale prediction index can be validated. An example from Frederick County, Maryland indicates a positive correlation between indoor measurements and soil-gas data. The method does not rely on a single measurement, but a series that incorporate seasonal and meteorological considerations. (author)

  11. Measurement of indoor and outdoor radon concentrations during Superstorm Sandy.

    Science.gov (United States)

    Kotrappa, Payasada; Paul, Prateek; Stieff, Alex; Stieff, Frederick

    2013-12-01

    Superstorm Sandy affected much of the US East Coast extending over 1800 km. It passed over the test location in the State of Maryland on 29 October 2012. Being 350 km away from the regions of highest intensity the storm was of lower intensity at the test location. Continuous radon monitors and passive radon monitors were used for the measurement. The test location was the basement of a single family home representing the indoor concentration. A partially opened garage of the same test home represented the outdoor radon concentration. In 24 h, the atmospheric pressure dropped from 990 to 960 mbar and the indoor radon concentration increased from 70 to 1500 Bq m(-3) and returned to the normal of 70 Bq m(-3) at the end of the storm. Throughout the storm, the outdoor radon concentration was not significantly affected. Probable reasons for such surprisingly large changes are discussed. However, the outdoor temperature dropped from 13°C to 7°C during the radon peak.

  12. Indoor Positioning Using GPS Revisited

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Godsk, Torben

    2010-01-01

    It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We analyze results of a measurement campaign to improve on the understanding of indoor GPS reception characteristics. The results show that using state-of-the-art receivers GPS...... low signal-to-noise ratios, multipath phenomena or bad satellite constellation geometry. We have also measured the indoor performance of embedded GPS receivers in mobile phones which provided lower availability and accuracy than state-of-the-art ones. Finally, we consider how the GPS performance...

  13. Indoor radon measurements in the Women College, Dammam, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qahtani, Mona [Women College, P. O. Box 838, Dammam 31113 (Saudi Arabia); Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    Passive radon dosimeters, based on alpha particle etched track detectors, were used in the indoor radon survey of the College of Science for Girls in Dammam, Saudi Arabia. A total of 95 dosimeters were distributed in the academic departments and the administrative building in the College. The exposure time in all the buildings was one complete lunar year in the period October 2001-October 2002 to get the average annual indoor radon concentration. All the buildings were constructed with ready-made concrete, except the administrative building which constructed with ordinary concrete bricks. A significant difference in the average indoor radon concentrations in the two types of buildings was found. The average indoor radon concentration in the ready-made concrete buildings was 6+/-2Bqm{sup -3} whereas that for the ordinary concrete brick building was 24+/-2Bqm{sup -3}. This could be due to the fact that ready-made concrete has a significantly less voids for the radon to emanate compared with ordinary concrete bricks. The indoor radon concentration in the ground floor is slightly higher than that in the first and second floors.

  14. Representativeness of shorter measurement sessions in long-term indoor air monitoring.

    Science.gov (United States)

    Maciejewska, M; Szczurek, A

    2015-02-01

    Indoor air quality (IAQ) considerably influences health, comfort and the overall performance of people who spend most of their lives in confined spaces. For this reason, there is a strong need to develop methods for IAQ assessment. The fundamental issue in the quantitative determination of IAQ is the duration of measurements. Its inadequate choice may result in providing incorrect information and this potentially leads to wrong conclusions. The most complete information may be acquired through long-term monitoring. However it is typically perceived as impractical due to time and cost load. The aim of this study was to determine whether long-term monitoring can be adequately represented by a shorter measurement session. There were considered three measurable quantities: temperature, relative humidity and carbon dioxide concentration. They are commonly recognized as indicatives for IAQ and may be readily monitored. Scaled Kullback-Leibler divergence, also called relative entropy, was applied as a measure of data representativeness. We considered long-term monitoring in a range from 1 to 9 months. Based on our work, the representative data on CO2 concentration may be acquired while performing measurements during 20% of time dedicated to long-term monitoring. In the case of temperature and relative humidity the respective time demand was 50% of long-term monitoring. From our results, in indoor air monitoring strategies, there could be considered shorter measurement sessions, while still collecting data which are representative for long-term monitoring.

  15. Indoor ionizing radiation

    International Nuclear Information System (INIS)

    Ericson, S.O.; Lindvall, T.; Maansson, L-G.

    1986-01-01

    Radiation in indoor air is discussed in the perspective of the effective dose equivalents from other sources of radiation. Estimates of effective doses equivalents from indoor radon and its contribution to lung cancer incidence are reviewed. Swedish experiences with cost effective remedial actions are presented. The authors present optimal strategies for screening measurements and remedial actions in cost-benefit perspective. (author.)

  16. Integrating measurements of indoor thoron and its progeny concentrations

    International Nuclear Information System (INIS)

    Zhuo, W.H.; Iida, T.; Hashiguchi, Y.

    2000-01-01

    In recent years, indoor surveys in Europe and Asia revealed that the dose contribution from thoron and its progeny can equal or even exceed that of radon and its progeny. For measuring thoron and its progeny, several methods had been reported. However, convenient, low-cost and time-integrating measuring methods which are suitable for large-scale surveys are still unavailable. To solve this problem, three integrating measuring methods with allyl diglycol carbonate plastic (CR-39) as detectors have recently been. The results indicated that they are suitable for estimating the indoor thoron and its progeny concentrations when the public exposure to thoron and its progeny is taken into account. Cup monitor - Former types of passive integrating 222 Rn and 220 Rn cup monitors had been reported. Recently, in order to improve the sensitivity of thoron detection, the air exchange rate between the inner and outer cup was enhanced, and the radius of the hemisphere was reduced to 37.5 mm. Furthermore, the procedure of detector exchange was made to be more convenient. Equilibrium-equivalent 222 Rn and 220 Rn concentrations monitor (EEC monitor) - The measuring system is composed of a monitor head and a diaphragm pump. The total weight of the system is less than 1.5 kg, which makes it portable. The construction of the monitor head and the measuring principle were also reported by the authors. Thoron progeny deposition rate monitor - The monitor is simply constituted a piece of CR-39 covered with thin sheets of absorbers. The thickness of the absorbers are adjusted to let only the α particles emitted from 212 Pb impinge on the detector. The concentrations of thoron progeny are estimated from the deposition rates, assuming that the deposition velocities of thoron progeny are constant in general dwellings. The improved cup monitor has higher sensitivity than former monitors, with a calibration factor of 1.59x10 -3 tracks·cm -2 (Bq·m -3 ·h) -1 for thoron. The accuracy of the ECC

  17. Assessment of external dose indoors in Lithuania

    International Nuclear Information System (INIS)

    Pilkyte, L.; Butkus, D.; Morkunas, G.

    2006-01-01

    The aim of this paper was an assessment of external exposure indoors and its dependence on construction materials and indoor radon concentrations in Lithuanian living houses. Relationship of absorbed dose rate in air indoors and activity indexes of the most commonly used construction materials (wood, concrete and bricks) have been studied using results received in measurements done in >4700 rooms in 1995-2005. Possible connections of dose rate indoors with indoor radon concentrations are also discussed. Findings of this study helped to make an assessment of the mean value of effective dose of Lithuanian population due to external exposure indoors which is equal to 0.58 mSv y -1 . The received data might also be used in improvement of quality of personal dosimetric measurements done in premises constructed of different construction materials. (authors)

  18. The measurement of the indoor absorbed dose rate in air in Beijing

    International Nuclear Information System (INIS)

    Guo Mingqiang; Pan Ziqiang; Yi Nanchang; Wei Zemin; Zhang Chao; Wang Huamin; Zhu Wencai

    1985-01-01

    This paper describes the indoor absorbed dose rate in air in Beijing. The average indoor absorbed dose rate in air is 8.29 μrad/h. The ratio of indoor to outdoor absorbed dose rate for 849 buildings is 1.51

  19. Indoor aldehydes: measurement of contamination levels and identification of their determinants in Paris dwellings

    International Nuclear Information System (INIS)

    Clarisse, B.; Laurent, A.M.; Seta, N.; Le Moullec, Y.; El Hasnaoui, A.; Momas, I.

    2003-01-01

    The recent increased prevalence of childhood asthma and atopy has brought into question the impact of outdoor pollutants and indoor air quality. The contributory role of aldehydes to this problem and the fact that they are mainly derived from the domestic environment make them of particular interest. This study therefore measures six different aldehyde levels in Paris dwellings from potentially different sources and identifies their indoor determinants. The study was carried out in the three principal rooms of 61 flats with no previous history of complaint for olfactory nuisance or specific symptoms, two-thirds of the flats having been recently refurbished. Aldehydes were sampled in these rooms using passive samplers, and a questionnaire on potential aldehyde sources was filled out at the same time. A multiple linear regression model was used to investigate indoor aldehyde determinants. Our study revealed that propionaldehyde and benzaldehyde were of minor importance compared to formaldehyde, acetaldehyde, pentanal, and hexanal. We found that levels of these last four compounds depended on the age of wall or floor coverings (renovations less than 1 year old), smoking, and ambient parameters (carbon dioxide levels, temperature). These results could help in the assessment of indoor aldehyde emissions

  20. Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios

    DEFF Research Database (Denmark)

    Fogh, C.L.; Byrne, M.A.; Roed, Jørn

    1997-01-01

    The process of aerosol deposition on indoor surfaces has implications for human exposure to particulate contaminants of both indoor and outdoor origin. In the radiological context, current accident models assume a uniform Dose Reduction Factor (DRF) of 0.5 for indoor residence during the outdoor...

  1. OCS National Compendium

    Energy Technology Data Exchange (ETDEWEB)

    Gould, G.J.; Karpas, R.M.; Slitor, D.L.

    1991-06-01

    The Minerals Management Service's (MMS) Outer Continental Shelf Information Program (OCSIP) is responsible for making available to affected coastal States, local governments, and other interested parties data and information related to the Outer Continental Shelf (OCS) Oil and Gas Program. Since its establishment through Section 26 of the OCS Lands Act (OCSLA) Amendments of 1978, OCSIP has prepared regional summary reports, updates, and indexes on leasing, exploration, development, and production activities to fulfill the mandates of the OCSLA Amendments. The OCSIP receives many requests for out-of-print summary reports, updates, and indexes. The purpose of the OCS National Compendium is to consolidate these historical data and to present the data on an OCS-wide and regional scale. The single-volume approach allows the reader access to historical information and facilitates regional comparisons. The fold-out chart in the front of this publication provides the reader with a timeline (January 1988--November 1990) of events since publication of the last Compendium. Some of the events are directly related to the 5-year Oil and Gas Program, whereas others may or may not have an effect on the program. A predominantly graphic format is used in the report so that the large accumulation of data can be more readily comprehended. In some cases, it is not possible to update information through October 21, 1990, because of the nature of the data. For example, production data normally lags 3 months. 58 figs., 37 tabs.

  2. Radon concentration as an indicator of the indoor air quality: development of an efficient measurement method

    International Nuclear Information System (INIS)

    Roessler, F.A.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Energy conservation regulation could lead to a reduction of the air exchange rate and also a degradation of the indoor air quality. Present methods for the estimating the indoor air quality can only be implemented with limitations. This paper presents a method that allows the estimation of the indoor air quality under normal conditions by using natural radon as an indicator. With mathematical models, the progression of the air exchange rate is estimated by using the radon concentration. Furthermore, the progression of individual air pollutants is estimated. Through series of experiments in a measurement chamber, the modelling could be verified. (author)

  3. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    Energy Technology Data Exchange (ETDEWEB)

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  4. Systematic measurements of the radon concentration indoor from Remetea, Harghita county

    International Nuclear Information System (INIS)

    Csegzi, Sandor

    2000-01-01

    Primary goal of the Remetea radon program was to carry out an indoor radon survey. The program can be applied too, in other places of the country. Remetea was built on volcanic rocks, where aligning of mineral water springs tells about the existence of geologic faulting. The 1992 census counted 2406 houses and 6550 residents of the village. The sample consisted of 120 houses chosen randomly from the entire stock. A hypergeometric statistical model has been used for sampling. Measurements were done in bedrooms at pillow level using etched track type Radamon radon detectors. Exposure lasted from January 1999 to July 1999. From the measurements it can be stated that the number of houses with radon concentration exceeding 200 Bq/m 3 is around 82. A high precision determination of activity has been done (errors under 3 %). Mapping indoor radon levels resembles the fault location that is indicated by springs and exhibited by geological studies. Particular points of the program were the soulful and self-aware approach the more than 30 schoolboys and girls participated, and the fact that the program met with a warm response from the public. (author)

  5. Analytical solutions to compartmental indoor air quality models with application to environmental tobacco smoke concentrations measured in a house.

    Science.gov (United States)

    Ott, Wayne R; Klepeis, Neil E; Switzer, Paul

    2003-08-01

    This paper derives the analytical solutions to multi-compartment indoor air quality models for predicting indoor air pollutant concentrations in the home and evaluates the solutions using experimental measurements in the rooms of a single-story residence. The model uses Laplace transform methods to solve the mass balance equations for two interconnected compartments, obtaining analytical solutions that can be applied without a computer. Environmental tobacco smoke (ETS) sources such as the cigarette typically emit pollutants for relatively short times (7-11 min) and are represented mathematically by a "rectangular" source emission time function, or approximated by a short-duration source called an "impulse" time function. Other time-varying indoor sources also can be represented by Laplace transforms. The two-compartment model is more complicated than the single-compartment model and has more parameters, including the cigarette or combustion source emission rate as a function of time, room volumes, compartmental air change rates, and interzonal air flow factors expressed as dimensionless ratios. This paper provides analytical solutions for the impulse, step (Heaviside), and rectangular source emission time functions. It evaluates the indoor model in an unoccupied two-bedroom home using cigars and cigarettes as sources with continuous measurements of carbon monoxide (CO), respirable suspended particles (RSP), and particulate polycyclic aromatic hydrocarbons (PPAH). Fine particle mass concentrations (RSP or PM3.5) are measured using real-time monitors. In our experiments, simultaneous measurements of concentrations at three heights in a bedroom confirm an important assumption of the model-spatial uniformity of mixing. The parameter values of the two-compartment model were obtained using a "grid search" optimization method, and the predicted solutions agreed well with the measured concentration time series in the rooms of the home. The door and window positions in

  6. Semivolatile organic compounds in indoor environments

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W.W.

    2008-01-01

    Semivolatile organic compounds (SVOCs) are ubiquitous in indoor environments, redistributing from their original sources to all indoor surfaces. Exposures resulting from their indoor presence contribute to detectable body burdens of diverse SVOCs, including pesticides, plasticizers, and flame ret...... remarkably well with levels measured in dermal hand wipes for SVOCs possessing a wide range of octanol-air partition coefficients....

  7. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    Science.gov (United States)

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  8. Radon measurements in air in waterworks and indoor swimming pools - a primary mapping project

    International Nuclear Information System (INIS)

    Marinko, J.; Mjoenes, L.; Soederman, A.-L.

    2004-01-01

    In 2001 the Swedish Work Environment Authority asked five regional offices around the country; Falun, Malmoe, Vaexjoe, Umeaa and Oerebro, to measure radon in air in workplaces where water was likely to enhance radon levels indoors. Track etch detectors were used and placed in workplaces according to the SSI measurement protocol for determining the annual average radon concentration in homes. Rooms that are frequently used by employees were measured. The detectors were exposed between 1 to 3 months. 225 detectors were used in the project and analysed at the same laboratory. The results showed that the radon concentration in waterworks often is high. Measurements were made in 60 waterworks. Levels exceeding 1000 Bq/m 3 were found in 49 of them and levels exceeding 4000 Bq/m 3 were found in 21 waterworks. The variation between waterworks may be a result of the radon concentration in the raw water, the amount of radon gas escaping to the air when water is treated, the air exchange rate in the building and where the detectors were deployed. Measurements were made in 28 indoor swimming baths. The maximum level was 290 Bq/m 3 , but most concentrations were between 30 to 70 Bq/m 3 . The conclusion is that high radon levels do not seem to be a problem in indoor swimming baths. Maybe this is due to good ventilation or the fact that water often has been treated for radon before it is used in swimming pools. The results from measurement in food industries such as breweries showed no extreme radon levels except for a fish farm where levels over 1000 Bq/m 3 were measured in the farming room and 790 Bq/m 3 in the office. The radon concentrations in laundries were relatively low, between 30 and 170 Bq/m 3

  9. In search of the comfortable indoor environment: A comparison of the utility of objective and subjective indicators of indoor comfort

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Niklas; Skoog, Jennie [Building Services Engineering, Department of Energy and Environment, Chalmers University of Technology, Gothenburg (Sweden); Vaestfjaell, Daniel [Department of Psychology, Goeteborg University (Sweden)

    2007-05-15

    Today, many procedures for assessing the indoor environment rely on both subjective and objective indicators (e.g. ANSI/ASHRAE 55-2004; ISO 10551). It is however unclear how these two types of measurements are related to perceived comfort. This article aims at assessing the relative utility of subjective (rating scale measures) and objective indicators of perceived comfort of indoor environments. In a hospital setting, physical environmental variables (e.g. temperature, relative humidity and noise level) were simultaneously measured as respondents (both patients and staff) rated their perception of the indoor environment. Regression analyses indicated that the subjective sensory ratings were significantly better than objective indicators at predicting overall rated indoor comfort. These results are discussed in relation to existing measurement procedures and standards. (author)

  10. Assessment of human body influence on exposure measurements of electric field in indoor enclosures.

    Science.gov (United States)

    de Miguel-Bilbao, Silvia; García, Jorge; Ramos, Victoria; Blas, Juan

    2015-02-01

    Personal exposure meters (PEMs) used for measuring exposure to electromagnetic fields (EMF) are typically used in epidemiological studies. As is well known, these measurement devices cause a perturbation of real EMF exposure levels due to the presence of the human body in the immediate proximity. This paper aims to model the alteration caused by the body shadow effect (BSE) in motion conditions and in indoor enclosures at the Wi-Fi frequency of 2.4 GHz. For this purpose, simulation techniques based on ray-tracing have been carried out, and their results have been verified experimentally. A good agreement exists between simulation and experimental results in terms of electric field (E-field) levels, and taking into account the cumulative distribution function (CDF) of the spatial distribution of amplitude. The Kolmogorov-Smirnov (KS) test provides a P-value greater than 0.05, in fact close to 1. It has been found that the influence of the presence of the human body can be characterized as an angle of shadow that depends on the dimensions of the indoor enclosure. The CDFs show that the E-field levels in indoor conditions follow a lognormal distribution in the absence of the human body and under the influence of BSE. In conclusion, the perturbation caused by BSE in PEMs readings cannot be compensated for by correction factors. Although the mean value is well adjusted, BSE causes changes in CDF that would require improvements in measurement protocols and in the design of measuring devices to subsequently avoid systematic errors. © 2014 Wiley Periodicals, Inc.

  11. Measurement of indoor radon Concentrations in Osaka, Nara, Wakayama and Hyogo with passive dosemeters

    International Nuclear Information System (INIS)

    Mori, Toshiaki; Hori, Yasuharu; Takeda, Atsuhiko; Iwasaki, Tamiko; Uchiyama, Masahumi; Fujimoto, Kenzo; Kankura, Takako; Kobayashi, Sadayosi.

    1989-01-01

    Indoor radon concentrations of 792 houses in Osaka, Nara, Wakayama and Hyogo were measured by the passive dosemeter which was developed in Karlsruhe Nuclear Research Center in West Germany. Each house was measured at two places for successive two periods of six months to obtain annual average exposure due to radon daughters. The arithmetic mean concentration of all houses was 45.2 Bq/m 3 with a standard deviation of 27.2; the geometric mean, 40.7 Bq/m 3 and the median, 39 Bq/m 3 . The distribution of the radon levels was approximately log-normal with 80% of houses having radon concentrations less than 60 Bq/m 3 . The seasonal variation of the mean radon concentration was evident between the former period including winter value of 45 Bq/m 3 and the latter including summer value of 32 Bq/m 3 . The indoor radon concentrations of wooden houses were found to have the widest distribution with the highest value of 371 Bq/m 3 . The highest value obtained in the ferro-concrete house was 118 Bq/m 3 . Twelve houses having indoor radon concentrations higher than 120 Bq/m 3 were all Japanese traditional wooden houses with walls made of soil. (author)

  12. Indoor air quality

    International Nuclear Information System (INIS)

    Hollowell, C.D.

    1981-06-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced ventilation in buildings may significantly increase exposure to indoor air pollution and perhaps have adverse effects on occupant health and comfort. Preliminary findings suggest that reduced ventilation may adversely affect indoor air quality unless appropriate control strategies are undertaken. The strategies used to control indoor air pollution depend on the specific pollutant or class of pollutants encountered, and differ somewhat depending on whether the application is to an existing building or a new building under design and construction. Whenever possible, the first course of action is prevention or reduction of pollutant emissions at the source. In most buildings, control measures involve a combination of prevention, removal, and suppression. Common sources of indoor air pollution in buildings, the specific pollutants emitted by each source, the potential health effects, and possible control techniques are discussed

  13. EML indoor radon workshop, 1982

    International Nuclear Information System (INIS)

    George, A.C.; Lowder, W.; Fisenne, I.; Knutson, E.O.; Hinchliffe, L.

    1983-07-01

    A workshop on indoor radon, held at the Environmental Measurements Laboratory (EML) on November 30 and December 1, 1982, covered recent developments in radon daughter research and development. Thirty papers were presented dealing with standardization and quality assurance measurement methods, surveys, measurements strategy, physical mechanisms of radon and radon daughter transport and development of guidance standards for indoor exposures. The workshop concluded with a planning session that identified the following needs: (1) national and international intercomparisons of techniques for measuring radon and radon daughter concentrations, working level and radon exhalation flux density; (2) development and refinement of practical measurement techniques for thoron and its daughter products; (3) quantitative definition of the sources of indoor radon and the mechanisms of transport into structures; (4) better knowledge of the physical properties of radon daughters; (5) more complete and accurate data on the population exposure to radon, which can only be met by broadly based surveys; and (6) more international cooperation and information exchange among countries with major research programs

  14. Development of a field measurement methodology for studying the thermal indoor environment in hybrid GEOTABS buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Khovalyg, Dolaana; Olesen, Bjarne W.

    2018-01-01

    buildings. The three demonstration buildings were an office building in Luxembourg, an elderly care home in Belgium, and an elementary school in Czech Republic. All of these buildings are equipped with hybrid GEOTABS systems; however, they vary in size and function, which requires a unique measurement...... methodology for studying them. These buildings already have advanced Building Management Systems (BMS); however, a more detailed measurement plan was needed for the purposes of the project to document the current performance of these systems regarding thermal indoor environment and energy performance......, and to be able to document the improvements after the implementation of the MPC. This study provides the details of the developed field measurement methodology for each of these buildings to study the indoor environmental quality (IEQ) in details. The developed measurement methodology can be applied to other...

  15. Measurements of Indoor Radon Concentrations in Chaiya and Tha Chana Districts, Surat Thani Province, Thailand

    International Nuclear Information System (INIS)

    Titipornpun, K.; Titipornpun, A.; Sola, P.; Bhongsuwan, T.

    2014-01-01

    Chaiya and Tha Chana districts of Surat Thani province are located in the areas with high equivalent uranium at ground surface, which have been identified as sources of radon. A survey measurement of indoor radon concentrations was carried out in 248 houses, using CR-39 detectors in closed cups. All of the detectors were exposed to radon for forty days. After the exposure, the alpha tracks were made visible by chemical etching and counted manually under an optical microscope. The indoor concentrations in Chaiya district were found to vary from the minimum to the maximum of 4 Bq.m -3 to 88 Bq.m -3 , respectively. In Tha Chana district, the concentrations of indoor radon were varied from the minimum of 4 Bq.m -3 to the maximum of 159 Bq.m -3 . The geometric mean of indoor radon concentrations in Chaya and Tha Chana districts were found to be 26±2 Bq.m -3 and 30±2 Bq.m -3 , respectively. The overall geometric mean in the surveyed areas was 28±2 Bq.m -3 . Only in two houses (1%), the concentrations (151 and 159 Bq.m -3 ) were found to be higher than the action level recommended by the US EPA (148 Bq.m -3 ). Most houses (94%) have natural ventilation by keeping doors and windows opened during the daytime. This ventilation likely causes the low level of indoor radon concentrations.

  16. Theory vs. experiment for molecular clusters: Spectra of OCS trimers and tetramers

    Energy Technology Data Exchange (ETDEWEB)

    Evangelisti, Luca [Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904 (United States); Dipartimento di Chimica “G. Ciamician,” University of Bologna, Via Selmi 2, Bologna 40126 (Italy); Perez, Cristobal; Seifert, Nathan A.; Pate, Brooks H. [Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904 (United States); Dehghany, M.; Moazzen-Ahmadi, N. [Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4 (Canada); McKellar, A. R. W. [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2015-03-14

    All singly substituted {sup 13}C, {sup 18}O, and {sup 34}S isotopomers of the previously known OCS trimer are observed in natural abundance in a broad-band spectrum measured with a chirped-pulse Fourier transform microwave spectrometer. The complete substitution structure thus obtained critically tests (and confirms) the common assumption that monomers tend to retain their free structure in a weakly bound cluster. A new OCS trimer isomer is also observed, and its structure is determined to be barrel-shaped but with the monomers all approximately aligned, in contrast to the original trimer which is barrel-shaped with two monomers aligned and one anti-aligned. An OCS tetramer spectrum is assigned for the first time, and the tetramer structure resembles an original trimer with an OCS monomer added at the end with two sulfur atoms. Infrared spectra observed in the region of the OCS ν{sub 1} fundamental (≈2060 cm{sup −1}) are assigned to the same OCS tetramer, and another infrared band is tentatively assigned to a different tetramer isomer. The experimental results are compared and contrasted with theoretical predictions from the literature and from new cluster calculations which use an accurate OCS pair potential and assume pairwise additivity.

  17. 18 CFR 284.303 - OCS blanket certificates.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false OCS blanket certificates. 284.303 Section 284.303 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Pipelines on Behalf of Others § 284.303 OCS blanket certificates. Every OCS pipeline [as that term is...

  18. Indoor radon measurements and radon prognosis for the province of Kymi, southeastern Finland

    International Nuclear Information System (INIS)

    Pennanen, M.; Maekelaeinen, I.; Voutilainen, A.

    1996-12-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m 3 . It is assumed that no protection against the entry of radon is used in construction. In this study about 5900 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined from maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurements and geological data were used to assess the radon risk from soil and bedrock in different areas. The building sites of the province of Kymi were divided into thirteen sub-areas. The radon prognosis are calculated for the most radon-prone foundation types including 1) houses with a slab-on-grade and 2) houses with a basement or hillside houses with open stairwells between basement and first floor. The radon levels are generally greater in the western part of the area. The radon risk is highest in gravel-dominated esker areas in southwestern, western (in Pyhtaa, Kotka, Anjalankoski, litti, Valkeala) and central (Taipalsaari) parts of the area. The radon risk is also high in some bedrock and till areas, also in southwestern and western parts of the area. In these areas the level of 200 Bq/m 3 will be exceeded in 80 % of new houses. About half of the future houses in these areas will have indoor radon concentrations exceeding 400 Bq/m 3 . The radon risk is lowest in the eastern part of the province of Kymi in every soil type. In this area the level of 200 Bq/m 3 will be exceeded in 30 % of new houses. Below 10 % will exceed 400 Bq/m 3 . (orig.) (14 refs.)

  19. Might generic OCs create contraceptive price war?

    Science.gov (United States)

    1987-02-01

    Genora 1/35 and 1/50, the 1st generic oral contraceptives (OCs) in the world, are now being marketed in the US. Clinicians interviewed by "Contraceptive Technology Update" (CTU) offer differing opinions as to what this new OC may mean in the marketplace. Products of Rugby Laboratories, the pills are copy products of Ortho Pharmaceutical's ON 1/35 and ON 1/50 formulations. Most clinicians believe that Genora's success or failure in the OC market depends on its eventual retail price. The price difference of $3-$4 may be sufficiently substantial for retailers to charge less for the generic OCs. If that is the case, many doctors may prescribe a pill which will save their patients $4/month. Dr. Mildred Hanson, a Minneapolis gynecologist/obstetrician, feels any cost savings from Genora will have a significant impact on the OC market. She suggests that the less expensive OCs will catch the attention of health maintenance organizations (HMOs) and the business of women who participate in such health plans. Yet James Burns, director of family planning services for the Hartford City Health Department, thinks that even a full-scale retail price war won't have much effect from a clinic standpoint. He reports that clinics are able to obtain contraceptive supplies rather inexpensively through the contracting system. Hanson also expressed doubt over the potential popularity of Genora 1/50 as clinical concerns about the effects of combined OCs on serum lipid levels and carbohydrate metabolism have resulted in a nationwide push toward OCs containing less than 50 micrograms of estrogen. He indicated concern that declines in pharmaceutical house products from pricing competition with generic pills might have a negative impact on contraceptive research and development. Dick Haskitt, director of business planning for Syntex Laboratories, Inc., who will produce the OCs for Rugby, reports that their market research shows that people are very interested in having a generic OC available

  20. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... by the exposures. The results may indicate an association between polluted indoor air and subclinical inflammation.Measurement of nitric oxide in exhaled air is a possible objective marker of subclinical inflammation in healthy adults....... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...

  1. Accurate and Integrated Localization System for Indoor Environments Based on IEEE 802.11 Round-Trip Time Measurements

    Directory of Open Access Journals (Sweden)

    Alfonso Bahillo

    2010-01-01

    Full Text Available The presence of (Non line of Sight NLOS propagation paths has been considered the main drawback for localization schemes to estimate the position of a (Mobile User MU in an indoor environment. This paper presents a comprehensive wireless localization system based on (Round-Trip Time RTT measurements in an unmodified IEEE 802.11 wireless network. It overcomes the NLOS impairment by implementing the (Prior NLOS Measurements Correction PNMC technique. At first, the RTT measurements are performed with a novel electronic circuit avoiding the need for time synchronization between wireless nodes. At second, the distance between the MU and each reference device is estimated by using a simple linear regression function that best relates the RTT to the distance in (Line of Sight LOS. Assuming that LOS in an indoor environment is a simplification of reality hence, the PNMC technique is applied to correct the NLOS effect. At third, assuming known the position of the reference devices, a multilateration technique is implemented to obtain the MU position. Finally, the localization system coupled with measurements demonstrates that the system outperforms the conventional time-based indoor localization schemes without using any tracking technique such as Kalman filters or Bayesian methods.

  2. INDOOR SUBSPACING TO IMPLEMENT INDOORGML FOR INDOOR NAVIGATION

    Directory of Open Access Journals (Sweden)

    H. Jung

    2015-10-01

    Full Text Available According to an increasing demand for indoor navigation, there are great attempts to develop applicable indoor network. Representation for a room as a node is not sufficient to apply complex and large buildings. As OGC established IndoorGML, subspacing to partition the space for constructing logical network is introduced. Concerning subspacing for indoor network, transition space like halls or corridors also have to be considered. This study presents the subspacing process for creating an indoor network in shopping mall. Furthermore, categorization of transition space is performed and subspacing of this space is considered. Hall and squares in mall is especially defined for subspacing. Finally, implementation of subspacing process for indoor network is presented.

  3. Indoor Subspacing to Implement Indoorgml for Indoor Navigation

    Science.gov (United States)

    Jung, H.; Lee, J.

    2015-10-01

    According to an increasing demand for indoor navigation, there are great attempts to develop applicable indoor network. Representation for a room as a node is not sufficient to apply complex and large buildings. As OGC established IndoorGML, subspacing to partition the space for constructing logical network is introduced. Concerning subspacing for indoor network, transition space like halls or corridors also have to be considered. This study presents the subspacing process for creating an indoor network in shopping mall. Furthermore, categorization of transition space is performed and subspacing of this space is considered. Hall and squares in mall is especially defined for subspacing. Finally, implementation of subspacing process for indoor network is presented.

  4. Indoor gamma dose measurements in Gudalore (India) using TLD

    International Nuclear Information System (INIS)

    Sivakumar, R.; Selvasekarapandian, S.; Mugunthamanikandan, N.; Raghunath, V.M.

    2002-01-01

    Indoor gamma radiation dose rates were measured inside residential buildings in Gudalore using a CaSO 4 : Dy thermoluminescent dosimeter for 1 year . Significant seasonal variations are observed. The highest dose rate is observed during summer and the lowest in winter. The dose rates observed are between 77.9 and 229.3 nGy h -1 and may be attributed to the type of building materials used in the dwellings monitored. The calculated mean annual effective dose equivalent rates range between 477.6 μSv y -1 , for the inhabitants of mud houses to 1406.3 μSv y -1 , for those living in terrace houses made of cement and brick

  5. Statistical analysis of electromagnetic radiation measurements in the vicinity of indoor microcell GSM/UMTS base stations in Serbia.

    Science.gov (United States)

    Koprivica, Mladen; Petrić, Majda; Nešković, Nataša; Nešković, Aleksandar

    2016-01-01

    To determine the level of radiofrequency radiation generated by base stations of Global System for Mobile Communications and Universal Mobile Telecommunication System, extensive electromagnetic field strength measurements were carried out in the vicinity of 664 base station locations. These were classified into three categories: indoor, masts, and locations with installations on buildings. Although microcell base stations with antennas installed indoors typically emit less power than outdoor macrocell base stations, the fact that people can be found close to antennas requires exposure originating from these base stations to be carefully considered. Measurement results showed that maximum recorded value of electric field strength exceeded International Commission on Non-Ionizing Radiation Protection reference levels at 7% of indoor base station locations. At the same time, this percentage was much lower in the case of masts and installations on buildings (0% and 2.5%, respectively). © 2015 Wiley Periodicals, Inc.

  6. Indoor thoron and radon progeny measurements

    International Nuclear Information System (INIS)

    Tu, K.W.; George, A.C.; Lowder, W.M.; Gogolak, C.V.

    1992-01-01

    Measurements of indoor thoron ( 220 Rn) and radon ( 222 Rn) progeny activities were conducted in 40 homes and six public buildings in five states. A commercial alpha spectrometer system and four portable alpha integrating sampling monitors using diffused junction silicon detectors were used for sampling and recording of radionuclide data in particular the potential alpha energy concentrations (PAEC). The data were analysed for the ratios of PAEC- 220 Rn to PAEC- 222 Rn, and the correlations between the two quantities, and their estimated annual effective dose equivalent (AEDE). The results show that the PAEC ratios were 0.09, 0.6, 0.55, and 0.47, respectively, for all homes with the PAEC- 222 Rn > 400, between 100 and 400, -3 , and the total of all homes tested; the AEDE ratios were 0.03, 0.21, 0.19 and 0.16, respectively. No strong correlations were found between PAEC- 220 Rn and PAEC- 222 Rn, and between basement and ground floor data for PAEC- 220 Rn, but the PAEC- 222 Rn data showed a strong correlation between the basement and the ground floor values. Simultaneous measurements of PAEC- 220 Rn and PAEC- 222 Rn on the ground floor and in the basement of each of the 23 single-family houses tested suggests that 220 Rn entry from building materials may be as significant as from the underlying soil. (author)

  7. Measurements of Schottky barrier at the low-k SiOC:H/Cu interface using vacuum ultraviolet photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Pei, D.; Zheng, H.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Lin, Y.-H.; Fung, H.-S.; Chen, C.-C. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-12-07

    The band alignment between copper interconnects and their low-k interlayer dielectrics is critical to understanding the fundamental mechanisms involved in electrical leakage in low-k/Cu interconnects. In this work, vacuum-ultraviolet (VUV) photoemission spectroscopy is utilized to determine the potential of the Schottky barrier present at low-k a-SiOC:H/Cu interfaces. By examining the photoemission spectra before and after VUV exposure of a low-k a-SiOC:H (k = 3.3) thin film fabricated by plasma-enhanced chemical-vapor deposition on a polished Cu substrate, it was found that photons with energies of 4.9 eV or greater can deplete accumulated charge in a-SiOC:H films, while VUV photons with energies of 4.7 eV or less, did not have this effect. These critical values were identified to relate the electric potential of the interface barrier between the a-SiOC:H and the Cu layers. Using this method, the Schottky barrier at the low-k a-SiOC:H (k = 3.3)/Cu interface was determined to be 4.8 ± 0.1 eV.

  8. Soil as a source of indoor 220Rn

    International Nuclear Information System (INIS)

    Li, Y.; Schery, S.D.; Turk, B.

    1992-01-01

    Two suggestions for sources of indoor 220Rn (thoron) have appeared in the literature: (1) building materials and outside air, and (2) soil beneath the house. Due to the difficulty of 220Rn measurement and limited data, both suggestions lack sufficient supporting evidence. We have investigated sources of indoor 220Rn in seven occupied houses in northern New Mexico, U.S. A two-filter system was used to measure indoor 220Rn levels continuously, and 220Rn progeny were measured with single filters and specialized alpha-track detectors. The amount of 220Rn entry from soil was curtailed by cutting off soil gas flow to the indoor air with subfloor depressurization mitigation systems. Four of the houses showed significant reductions in 220Rn with mitigation systems on. The average effect for these houses was to reduce indoor 220Rn levels by 70%. The other three houses had no clear reductions but in one of these houses, the mitigation system was not effective for stopping soil gas flow. Our results provide some of the most clear evidence to date supporting soil as an important source of indoor 220Rn

  9. Organic indoor air pollutants: occurrence, measurement, evaluation

    National Research Council Canada - National Science Library

    Salthammer, Tunga; Uhde, Erik

    2009-01-01

    ... hand, organic chemical pollutants emitted from materials and appliances can adversely affect human health. People in developed countries spend more than 90% of their time indoors. In the light of this fact, the cleanliness of occupied spaces such as buildings, houses, and transportation systems becomes very important. In contemporary so...

  10. Analysis of Simulated and Measured Indoor Channels for mm-Wave Beamforming Applications

    DEFF Research Database (Denmark)

    Karstensen, Anders; Fan, Wei; Zhang, Fengchun

    2018-01-01

    was investigated using both single beam and multiple beams, with two different power allocation schemes applied to multi-beamforming. Channel measurements were performed at 28-30 GHz using a vector network analyzer equipped with a Biconical antenna as the transmit antenna and a rotated horn antenna as the receive...... antenna. 3D ray tracing simulations were carried out in the same replicated propagation environments. Based on measurement and ray tracing simulation data, it is shown that RT-assisted beamforming performs well both for single and multi-beamforming in these two representative indoor propagation...

  11. Field experience of indoor thoron gas measurements in a stable rural community in Yugoslavia

    International Nuclear Information System (INIS)

    Zunic, Z.S.; Fujimoto, K.; McLaughlin, J.P.; Birovljev, A.

    2000-01-01

    Attempts were made in Yugoslavia to identify rural populations receiving an elevated natural radiation exposure that might be a potential cohort for a planned future health study. In Gornja Stubla at Kosovo in southern Yugoslavia many houses are built mainly from local rock of trachyte which has a uranium content of the order of 25g/t, Th of 61 g/t and K-40 of 5.4%. Thoron and radon gas measurements were carried out in 49 locations in 23 houses in this rural community. Taking into account the short half-life of thoron passive alpha track dual radon-thoron detectors were placed within 10-20 cm from the walls, which were considered the potential source of thoron. Thoron concentrations were found to be extremely high in Gornja Stubla with a maximum measured value of 1,156 Bq/m -3 . Using another type of passive radon detector, designed by SSI/NRPB, annual indoor radon concentrations were measured. The highest indoor radon concentration of 9,591 Bq/m -3 was found in the same house, which had the highest thoron concentration. The absorbed dose rate in air, due to external penetrating radiation was also measured and the highest value found in Gornja Stubla was 430 nGy h -1 . Although high thoron concentrations were recorded it should be pointed out that due to its short half life large differences in thoron concentrations are to be expected as a function of the distance of the measuring point to the source. In addition, with the absence of information on thoron progeny concentration it is impossible to make any estimate of doses from the thoron series since the equilibrium factor between thoron and its progeny can vary greatly with time as well as location. However, the thoron measurements that have been performed in Gornja Stubla clearly indicate that the inhabitants there receive an elevated exposure not only from indoor radon and penetrating radiation but also from thoron. (author)

  12. Variations in the OM/OC ratio of urban organic aerosol next to a major roadway.

    Science.gov (United States)

    Brown, Steven G; Lee, Taehyoung; Roberts, Paul T; Collett, Jeffrey L

    2013-12-01

    Understanding the organic matter/organic carbon (OM/OC) ratio in ambient particulate matter (PM) is critical to achieve mass closure in routine PM measurements, to assess the sources of and the degree of chemical processing organic aerosol particles have undergone, and to relate ambient pollutant concentrations to health effects. Of particular interest is how the OM/OC ratio varies in the urban environment, where strong spatial and temporal gradients in source emissions are common. We provide results of near-roadway high-time-resolution PM1 OM concentration and OM/OC ratio observations during January 2008 at Fyfe Elementary School in Las Vegas, NV, 18 m from the U.S. 95 freeway soundwall, measured with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The average OM/OC ratio was 1.54 (+/- 0.20 standard deviation), typical of environments with a low amount of secondary aerosol formation. The 2-min average OM/OC ratios varied between 1.17 and 2.67, and daily average OM/OC ratios varied between 1.44 and 1.73. The ratios were highest during periods of low OM concentrations and generally low during periods of high OM concentrations. OM/OC ratios were low (1.52 +/- 0.14, on average) during the morning rush hour (average OM = 2.4 microg/m3), when vehicular emissions dominate this near-road measurement site. The ratios were slightly lower (1.46 +/- 0.10) in the evening (average OM = 6.3 microg/m3), when a combination of vehicular and fresh residential biomass burning emissions was typically present during times with temperature inversions. The hourly averaged OM/OC ratio peaked at 1.66 at midday. OM concentrations were similar regardless of whether the monitoring site was downwind or upwind of the adjacent freeway throughout the day, though they were higher during stagnant conditions (wind speed < 0.5 m/sec). The OM/OC ratio generally varied more with time of day than with wind direction and speed.

  13. Health effects of indoor odorants.

    Science.gov (United States)

    Cone, J E; Shusterman, D

    1991-11-01

    People assess the quality of the air indoors primarily on the basis of its odors and on their perception of associated health risk. The major current contributors to indoor odorants are human occupant odors (body odor), environmental tobacco smoke, volatile building materials, bio-odorants (particularly mold and animal-derived materials), air fresheners, deodorants, and perfumes. These are most often present as complex mixtures, making measurement of the total odorant problem difficult. There is no current method of measuring human body odor, other than by human panel studies of expert judges of air quality. Human body odors have been quantitated in terms of the "olf" which is the amount of air pollution produced by the average person. Another quantitative unit of odorants is the "decipol," which is the perceived level of pollution produced by the average human ventilated by 10 L/sec of unpolluted air or its equivalent level of dissatisfaction from nonhuman air pollutants. The standard regulatory approach, focusing on individual constituents or chemicals, is not likely to be successful in adequately controlling odorants in indoor air. Besides the current approach of setting minimum ventilation standards to prevent health effects due to indoor air pollution, a standard based on the olf or decipol unit might be more efficacious as well as simpler to measure.

  14. Indoor radon measurements in Adelaide, South Australia

    International Nuclear Information System (INIS)

    Paix, D.

    1989-01-01

    In 1986 a study of radon levels in homes in Melbourne was made, using activated charcoal to adsorb the gas from indoor air. Cups containing 25g of activated charcoal were exposed for periods of nominally 7 days. The cups were sealed and the accumulated activity was measured by gamma counting. Cup activity was related to ambient radon concentration by calibrations done in the Australian Radiation Laboratory's radon reference chamber. This work was continued in Adelaide, South Australia (S.A.) between July and November 1986 using the same methods. Cups were exposed in their homes by 213 volunteers from the staff of the S.A. Institute of Technology and the S.A. Health Commission. The median concentration of radon in air was 10 Bq/m 3 , with 90% of values below 35 Bq/m 3 , and 100% below 75 Bq/m 3 . The lower bound of the distribution is poorly defined because of inadequate counting statistics. 4 refs., 6 figs

  15. Investigation of infiltration and indoor air quality

    International Nuclear Information System (INIS)

    1990-03-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During the study, the statistical distribution of radon concentrations inside 2,400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures--caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors--have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO 2 , CO, SO 2 , and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality

  16. Indoor gamma dose measurements in Gudalore (India) using TLD

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, R.; Selvasekarapandian, S. E-mail: spandian@bharathi.ernet.in; Mugunthamanikandan, N.; Raghunath, V.M

    2002-06-01

    Indoor gamma radiation dose rates were measured inside residential buildings in Gudalore using a CaSO{sub 4} : Dy thermoluminescent dosimeter for 1 year . Significant seasonal variations are observed. The highest dose rate is observed during summer and the lowest in winter. The dose rates observed are between 77.9 and 229.3 nGy h{sup -1} and may be attributed to the type of building materials used in the dwellings monitored. The calculated mean annual effective dose equivalent rates range between 477.6 {mu}Sv y{sup -1}, for the inhabitants of mud houses to 1406.3 {mu}Sv y{sup -1}, for those living in terrace houses made of cement and brick.

  17. Reducing indoor residential exposures to outdoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Matson, Nance E.

    2003-07-01

    The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts that typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.

  18. Accurate Simulation of 802.11 Indoor Links: A "Bursty" Channel Model Based on Real Measurements

    Directory of Open Access Journals (Sweden)

    Agüero Ramón

    2010-01-01

    Full Text Available We propose a novel channel model to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the "bursty" behavior which characterizes indoor wireless scenarios, having a great impact on the behavior of upper layer protocols. We compare this channel model, integrated within the Network Simulator (ns-2 platform, with other traditional approaches, showing that it is able to better reflect the real behavior which was empirically assessed.

  19. Indoor Tanning Dependence in Young Adult Women.

    Science.gov (United States)

    Mays, Darren; Atkins, Michael B; Ahn, Jaeil; Tercyak, Kenneth P

    2017-11-01

    Background: There is mounting evidence that young people can develop a dependence on indoor tanning, but research on factors associated with indoor tanning dependence remains limited. Methods: This cross-sectional study investigated factors associated with indoor tanning dependence in a community sample of 389 non-Hispanic white young adult women ages 18 to 30 who had indoor tanned ≥1 time in the past year. Participants completed measures of indoor tanning dependence, including the modified CAGE and modified Diagnostic and Statistical Manual for Mental Disorders-IV psychiatric screening assessments, indoor tanning behavior and beliefs, and behavioral and psychiatric comorbidity. Results: Overall, 22.6% of the sample screened positive for indoor tanning dependence. In multivariable analyses, indoor tanning dependence was associated with younger age of indoor tanning initiation [adjusted odds ratio (aOR) = 0.79; P = 0.017], indoor tanning ≥20 times in the past year (aOR = 3.03; P = 0.015), stronger beliefs about the benefits of tanning (aOR = 2.15; P = 0.004), greater perceived susceptibility to indoor tanning risks (aOR = 2.72; P tanning dependence among young, non-Hispanic white women is associated with behaviors that increase the risk of skin cancer, beliefs favoring the perceived benefits of tanning, and comorbid risks such as stronger beliefs about physical appearance and depressed mood. Impact: Comprehensive skin cancer prevention efforts should address indoor tanning dependence among young women and its leading risk factors. Cancer Epidemiol Biomarkers Prev; 26(11); 1636-43. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Low VHF Channel Measurements and Simulations in Indoor and Outdoor Scenarios

    Science.gov (United States)

    2015-05-01

    Transactions on. 2002;50(5):591-599. 22. Nerguizian C, Despins C, Affes S, Djadel M. Radio-channel characterization of an underground mine at 2.4 ghz...INTENTIONALLY LEFT BLANK. viii 1. Introduction Reliable wireless communication is of paramount importance for many important civilian and military...report, we study near-ground, wireless channel modeling in the lower VHF band for indoor and indoor/outdoor scenarios, drawing from extensive propagation

  1. Natural indoor gamma background in Coonoor environment of South India

    International Nuclear Information System (INIS)

    Sivakumar, R.; Selvasekarapandian, S.; Mugunthamanikand, N.; Raghunath, V.M.

    2002-01-01

    Indoor natural radiation dose existing in dwellings of Coonoor have been estimated using thermoluminescent dosimeters. TLDs are displayed in indoors and are replaced after three-month period. The seasonal averages of the dose rate and the annual effective dose equivalent are calculated from the measured results. Geographical and seasonal variations as well as the differences between indoor to outdoor dose rates have also been studied. Very good correlation exists between the indoor dose rates measured by LTD and environmental radiation dosimeter with correlation coefficient of 0.91. The annual effective dose equivalent to the Coonoor population due to indoor gamma radiation was estimated to be 970 μSv/y for the period of 1997-1998. (author)

  2. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Wargocki, Pawel; Skorek-Osikowska, A.

    2010-01-01

    The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas......, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor...... Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h(-1), 2.5 h(-1) and 6 h(-1), in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate...

  3. Indoor house pollution: appliance emissions and indoor ambient concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, T [Univ. of Santiago, Chile; Soto, H; Lissi, E; Cisternas, R

    1983-01-01

    Emissions rates for CO, NO, NO/sub 2/ adn CH/sub 2/O from several unvented gas and kerosene heaters frequently employed in domestic heating have been measured. The indoor concentrations generated by these emissions are evaluated and compared to those determined in typical houses. It is found that both the predicted and measured values exceed the short term air quality standards accepted in most countries.

  4. Methodology developed to make the Quebec indoor radon potential map

    International Nuclear Information System (INIS)

    Drolet, Jean-Philippe; Martel, Richard; Poulin, Patrick; Dessau, Jean-Claude

    2014-01-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m 3 in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for each

  5. Indoor air pollution: a public health perspective

    International Nuclear Information System (INIS)

    Spengler, J.D.; Sexton, K.

    1983-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms, and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  6. Indoor radon levels in coastal Karnataka

    International Nuclear Information System (INIS)

    Narayana, Y.; Radhakrishna, A.P.; Somashekarappa, H.M.; Karunakara, N.; Balakrishna, K.M.; Siddappa, K.

    1995-01-01

    Indoor radon levels have been measured in selected dwellings of coastal Karnataka using LR-115 type II peelable films and it is found to vary from 28.4 to 45.6 Bq m -3 with a geometric mean value of 35.7 Bq m -3 . The annual effective dose equivalent to the population of the region due to inhalation of radon was estimated from the measured data on radon level and is found to be in the range 1.9 - 3.1 mSv y -1 with a mean value 2.4 mSv y -1 . The correlation between indoor radon level and radium content in the underlying soil were studied. No definite correlation was observed to exist between indoor radon level and radium content in soil. (author). 24 refs., 2 tabs

  7. Indoor air pollution

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2001-01-01

    Indoor air pollution is a potential risk to human health. Prolonged exposure to indoor pollutants may cause various infectious, allergic and other diseases. Indoor pollutants can emanate from a broad array of internal and external sources. Internal sources include building and furnishing materials, consumer and commercial products, office equipment, micro-organisms, pesticides and human occupants activities. External sources include soil, water supplies and outside makeup air. The main indoor air pollutants of concern are inorganic gases, formaldehyde and other volatile organic compounds, pesticides, radon and its daughters, particulates and microbes. The magnitude of human exposure to indoor pollutants can be estimated or predicted with the help of mathematical models which have been developed using the data from source emission testing and field monitoring of pollutants. In order to minimize human exposure to indoor pollutants, many countries have formulated guidelines / standards for the maximum permissible levels of main pollutants. Acceptable indoor air quality can be achieved by controlling indoor pollution sources and by effective ventilation system for removal of indoor pollutants. (author)

  8. [Real-time measurement of indoor particulate matter originating from environmental tobacco smoke: a pilot study].

    Science.gov (United States)

    Invernizzi, Giovanni; Ruprecht, Ario; Mazza, Roberto; Majno, Edoardo; Rossetti, Edoardo; Paredi, Paolo; Boffi, Roberto

    2002-01-01

    Short-term measurement of suspended particulate matter has been recently made possible since the release of laser-operating portable instruments. Data of a pilot study of field evaluation of environmental tobacco smoke (ETS) with a portable instrument are reported. We analysed the concentrations of total suspended particle (TSP) and of the fine particles PM10, PM7, PM2.5 and PM1 released indoor from a single cigarette, and their levels inside smoking- and non-smoking-areas of a restaurant. The results indicate that ETS creates high level indoor particulate pollution, with concentrations of PM10 exceeding air quality standards. This kind of field evaluation could allow a more careful assessing of short-term exposure to ETS and its relevance to public health.

  9. Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp.

    Science.gov (United States)

    Malikovic, Aleksandar; Amunts, Katrin; Schleicher, Axel; Mohlberg, Hartmut; Kujovic, Milenko; Palomero-Gallagher, Nicola; Eickhoff, Simon B; Zilles, Karl

    2016-05-01

    The microstructural correlates of the functional segregation of the human lateral occipital cortex are largely unknown. Therefore, we analyzed the cytoarchitecture of this region in ten human post-mortem brains using an observer-independent and statistically testable parcellation method to define the position and extent of areas in the lateral occipital cortex. Two new cytoarchitectonic areas were found: an anterior area hOc4la and a posterior area hOc4lp. hOc4la was located behind the anterior occipital sulcus in rostral and ventral portions of this region where it occupies the anterior third of the middle and inferior lateral occipital gyri. hOc4lp was found in caudal and dorsal portions of this region where it extends along the superior and middle lateral occipital gyri. The cytoarchitectonic areas were registered to 3D reconstructions of the corresponding brains, which were subsequently spatially normalized to the Montreal Neurological Institute reference space. Continuous probabilistic maps of both areas based on the analysis of ten brains were generated to characterize their inter-subject variability in location and size. The maps of hOc4la and hOc4lp were then used as seeds for meta-analytic connectivity modeling and quantitative functional decoding to identify their co-activation patterns and assignment to functional domains. Convergent evidence from their location, topography, size, functional domains and connectivity indicates that hOc4la and hOc4lp are the potential anatomical correlates of the functionally defined lateral occipital areas LO-1 and LO-2.

  10. The Reproducibility of Indoor Air Pollution (IAP Measurement: A Test Case for the Measurement of Key Air Pollutants from the Pan Frying of Fish Samples

    Directory of Open Access Journals (Sweden)

    Ki-Hyun Kim

    2014-01-01

    Full Text Available To assess the robustness of various indoor air quality (IAQ indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP and a set of individual volatile organic compounds (VOCs with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 μg m−3 and mean total VOC (TVOC: 1400 μg m−3, resp.. Then, relative standard error (RSE was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., 10% for the remainders. Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE value of 3.2% (n=11.

  11. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    Science.gov (United States)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  12. Providing better indoor environmental quality brings economicbenefits

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Seppanen, Olli

    2007-06-01

    This paper summarizes the current scientific evidence that improved indoor environmental quality can improve work performance and health. The review indicates that work and school work performance is affected by indoor temperature and ventilation rate. Pollutant source removal can sometimes improve work performance. Based on formal statistical analyses of existing research results, quantitative relationships are provided for the linkages of work performance with indoor temperature and outdoor air ventilation rate. The review also indicates that improved health and related financial savings are obtainable from reduced indoor tobacco smoking, prevention and remediation of building dampness, and increased ventilation. Example cost-benefit analyses indicate that many measures to improve indoor temperature control and increase ventilation rates will be highly cost effective, with benefit-cost ratios as high as 80 and annual economic benefits as high as $700 per person.

  13. Indoor Chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Carslaw, Nicola

    2018-01-01

    This review aims to encapsulate the importance, ubiquity, and complexity of indoor chemistry. We discuss the many sources of indoor air pollutants and summarize their chemical reactions in the air and on surfaces. We also summarize some of the known impacts of human occupants, who act as sources...... and sinks of indoor chemicals, and whose activities (e.g., cooking, cleaning, smoking) can lead to extremely high pollutant concentrations. As we begin to use increasingly sensitive and selective instrumentation indoors, we are learning more about chemistry in this relatively understudied environment....

  14. Distribution of indoor radon levels in Mexico

    CERN Document Server

    Espinosa, G; Rickards, J; Gammage, R B

    1999-01-01

    Our laboratory has carried out a systematic monitoring and evaluation of indoor radon concentration levels in Mexico for ten years. The results of the distribution of indoor radon levels for practically the entire country are presented, together with information on geological characteristics, population density, socioeconomic levels of the population, and architectural styles of housing. The measurements of the radon levels were made using the passive method of nuclear tracks in solids with the end-cup system. CR-39 was used as the detector material in combination with a one-step chemical etching procedure and an automatic digital- image counting system. Wherever a high level was measured, a confirming measurement was made using a dynamic method. The results are important for future health studies, including the eventual establishment of patterns for indoor radon concentration, as it has been done in the USA and Europe.

  15. Indoor Environment Program

    International Nuclear Information System (INIS)

    Daisey, J.M.

    1993-06-01

    This paper reports progress during the year 1992 in the Indoor Environment Program in the Energy and Environment Division of Lawrence Berkeley Laboratory. Studies in the following areas are reported: energy performance and ventilation in buildings; physical and chemical characterization of indoor air pollutants; indoor radon; indoor air quality; exposure to indoor air pollutants and risk analysis. Pollutants of particular interest include: radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions including environmental tobacco smoke, carbon monoxide, and nitrogen oxides

  16. CFD simulation research on residential indoor air quality.

    Science.gov (United States)

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Measurements of the deposition rates of radon daughters on indoor surfaces

    International Nuclear Information System (INIS)

    Wang, H.; Essling, M.A.; Toohey, R.E.; Rundo, J.

    1982-01-01

    The deposition rates of radon daughters on indoor surfaces have been measured by exposing the window of a proportional counter to the air of a house with high concentrations of radon and its daughters. Deposition velocities for unattached 218 Po (RaA) and 214 Pb (RaB) of approximately 4 mm sec - 1 were obtained by dividing the deposition rates by the concentrations of unattached daughters in the air. These results agree with those obtained by other workers but are dependent on the assumptions made about the fractions of the daughters which are attached to the atmospheric aerosol

  18. ASSOCIATIONS BETWEEN SEASONAL SLEEP CHANGE AND INDOOR TANNING1,2

    OpenAIRE

    CULNAN, ELIZABETH; KLOSS, JACQUELINE D.; DARLOW, SUSAN; HECKMAN, CAROLYN J.

    2015-01-01

    Identification of risk factors for indoor tanning may ultimately aid the development of better indoor tanning prevention strategies, which is pertinent given the association between indoor tanning and skin cancer. This study aimed to examine the relationship between seasonal sleep change and indoor tanning. Women tanners (N= 139) completed self-report measures including items relating to seasonal sleep changes, seasonal affective disorder (SAD), reasons for tanning, tanning during the winter ...

  19. Validation of Environmental Stress Index by Measuring Infrared Radiation as a Substitute for Solar Radiation in Indoor Workplaces

    Directory of Open Access Journals (Sweden)

    Peymaneh Habibi

    2016-09-01

    Full Text Available Background The exposure of individuals to heat at different jobs warrants the use of heat stress evaluation indices. Objectives The aim of this study was to validate environmental stress index using an infrared radiation (IR measurement instrument as a substitute for pyranometer in indoor workplaces. Methods This study was conducted on 2303 indoor workstations in different industries in Isfahan, Iran, during July, August, and September in 2012. The intensity of the Infrared Radiation (IR (w/m2 was measured at five-centimeter distances in six different directions, above, opposite, right, left, behind and below the globe thermometer. Then, the dry globe temperature (Ta, wet globe temperature (Tnw, globe temperature (Tg and relative humidity (RH were also simultaneously measured. The data were analyzed using correlation and regression by the SPSS18 software. Results The study results indicate that a high correlation (r = 0.96 exists between the environmental stress index (ESI and the values of wet bulb globe temperature (P < 0.01. According to the following equation, WBGT = 1.086 × ESI - 1.846, the environmental stress index is able to explain 91% (R2 = 0.91 of the WBGT index variations (P < 0.01. Conclusions Based on the results, to study heat stress in indoor workplaces when the WBGT measurement instrument is not available and also in short-term exposures (shorter than 30 minutes when measuring the wet bulb globe temperature shows a considerable error, it is possible to calculate the environmental stress index and accordingly to the WBGT index, by measuring the parameters of dry bulb temperature (Ta, relative humidity (RH, and infrared radiation intensity that can be easily measured in a short time.

  20. Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2017-06-01

    A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.

  1. Indoor radon measurements in dwellings of Garhwal Himalaya, Northern India

    International Nuclear Information System (INIS)

    Ramola, R.C.

    1996-01-01

    Measurement of indoor radon and daughters concentration were performed in several houses in Garhwal Himalaya during 1993-95 with solid state nuclear track detector films (LR-115 Type II). The detector films were exposed for a period of three month to one year. The films basically measured total airborne alpha activity but may be calibrated in unite of EEC RN (equilibrium equivalent concentration of radon with equilibrium factor F=0.45) in an environment with known radon and daughters concentrations. A numbers of dwelling in the area exhibited radon daughters concentrations (EEC RN ) exceeding the recommended level. The abnormal values are due to typical house construction (mud house) in the area. The houses are constructed with soil and local stone with a thin paste of mud. Behaviour and abnormality of radon in mud houses are discussed in details the corresponding annual effective dose has been calculated. (author)

  2. HVAC design guidelines for effective indoor air quality

    International Nuclear Information System (INIS)

    Bladykas, M.P.

    1993-01-01

    Building owners, designers and occupants need to consider all the design measures that contribute to high indoor air quality. Building occupants, furnishings, equipment, and ambient air pollution all contribute to surmounting indoor air quality concerns. However, these can be minimized by following HVAC design guidelines which promote high indoor air quality while maintaining reasonable energy-efficiency. The possible liabilities and loss of business productivity due to air quality problems are too great to ignore

  3. Methodology developed to make the Quebec indoor radon potential map

    Energy Technology Data Exchange (ETDEWEB)

    Drolet, Jean-Philippe, E-mail: jean-philippe.drolet@ete.inrs.ca [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Martel, Richard [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Poulin, Patrick [Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, G1V 5B3 Quebec (Canada); Dessau, Jean-Claude [Agence de la santé et des services sociaux des Laurentides, 1000 rue Labelle, J7Z 5 N6 Saint-Jérome (Canada)

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m{sup 3} in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for

  4. Indoor radon II

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Because of the growing interest in and public concern about indoor radon, APCA, in April 1987, sponsored the Second International Specialty Conference on Indoor Radon. This book is the proceedings of this conference and includes discussions on: A current assessment of the nature of the problem; Issues related to health effects and risk assessment; The development of public and private sector initiatives; Research into methods of control and prevention; International perspectives; and Measurement methods and programs. The material is intended for the technically oriented and for those responsible for developing programs and initiatives to address this important public health issue. Contributors include federal, state, and provincial program officials and members of the academic and private sectors

  5. Normal and seasonally amplified indoor radon levels

    International Nuclear Information System (INIS)

    Gammage, R.B.; Dudney, C.S.; Wilson, D.L.; King, D.

    1995-01-01

    Winter and summer indoor radon measurements are reported for 121 houses in Freehold, New Jersey. When presented as winter:summer ratios of indoor radon, the data closely approximate a lognormal distribution. The geometric mean is 1.49. Freehold is located on the fairly flat coastal plain. The winter:summer ratios are believed to represent the norm for regions of the U.S. with cold winters and hot summers. The Freehold data set can be compared to corresponding data sets from other locations to suggest seasonal perturbations of indoor radon arising from unusual causes

  6. Indoor randon concentration. Temperature and wind effects; Concentrazione di radon indoor. Effetto del vento e della temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Sesana, L.; Benigni, S. [Milan Univ., Milan (Italy). Ist. di Fisica Generale Applicata

    2000-12-01

    The present study analyses and discusses the behaviour of the indoor radon concentration in a research house. Hourly measurements were carried out in the basement of the house from November 1998 up to June 1999. In many sequences of days radon concentration in the room under analysis shows strong variation all day long with accumulation in the evening and overnight and decrease in the morning and in the afternoon. Measurements of wind velocity, indoor and outdoor temperatures and outdoor-indoor pressure difference were performed and their trend is compared with the observed radon concentration. The exhalation of radon from walls, floor and ceiling and the pressure difference driven exhalation from the soil are discussed, particularly the relation with the temperature differences. The air exchange rates between the house and the outdoor air are studied. [Italian] Si analizza e si discute il comportamento della concentrazione di radon indoor nel seminterrato di una casa di ricerca. Misure orarie sono state effettuate da novembre 1998 a giugno 1999. In molte sequenze di giorni la concentrazione del radon nel locale in analisi presenta forti variazioni nel corso della giornata con un accumulo notturno e decrescita nelle ore diurne. Sono state eseguite misure della velocita' del vento, delle temperature outdoor e indoor e della differenza di pressione outdoor-indoor e il loro andamento e' stato confrontato con quello della concentrazione del radon. Vengono discusse l'esalazione del radon dalle pareti, dal pavimento e dal soffitto e l'esalazione pressure difference driven dal suolo. Il rateo dei ricambi d'aria tra il locale e l'aria outdoor e' studiato.

  7. Vitality of plants to live in the indoor environment

    Science.gov (United States)

    Shamsuri, Mohd Mahathir Suhaimi; Leman, A. M.; Hariri, Azian; Idris, Ahmad Fu'ad; Afandi, Azizi

    2017-09-01

    Indoor air quality (IAQ) is generally a public concern because 90% of people spend their time indoor. IAQ must be preserved wisely to guarantee the health of the building occupants. One of the ways to maintain the quality of air is by placing plants in the building. However, all plants come from the outdoor, and the environment is different compared to indoor. Environmental factors such as temperature and light will absolutely affect the growth of the plant. Light and temperature that are too bright or too deem can wither the plants. Nevertheless, certain plant is capable of adapting with different situation after assimilation process has been conducted. This study intends to analyze the capacity of seven selected plants (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plant, Spider Plant, and Syngonium) to live in an indoor environment. The vitality of plants is based on photosynthetic level that is measured using leaf - chamber (LI-COR 6400). Two groups of plants were located in indoor and outdoor (indigenous location) setting, and were allowed to assimilate for two months before measurement were carried out. The results for the plant located indoor shows that only Spider Plant cannot perform photosynthesis under 300 lux, where the photosynthetic value remains negative. Meanwhile, other plants such as Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plant, and Syngonium that were left indoor showed similar 300 lux in which conform the ability of the plants to perform photosynthesis with the value of 0.3, 0.15, 0.35, 0.1, 0.15, and 0.1. In comparison, all of the plants that were stationed indoor and outdoor (except Spider Plant), the light compensation point (LCP) for indoor shows smaller value than the outdoor. This is because all the indoor plants had down - regulated their photosynthesis process by becoming more sensitive to light after their assimilation. From this study, it can be concluded that all plants except Spider Plant is able to live

  8. Radon Activity measurements in Drinking Water and in Indoors of Dwellings of Dwellings, using RAD7

    International Nuclear Information System (INIS)

    Mehra, R.; Badhan, K.; Sonkawade, R.G.

    2011-01-01

    The purpose of this study is to investigate the radon levels of groundwater being used for drinking and indoor radon levels in the environs of villages/towns of Hoshiarpur district of Punjab, India, to determine the health hazards. Radon concentrations in the collected water samples were measured with RAD7 an electronic radon detector connected to a RAD- H 2 O accessory (Durridge Co., USA). In the setup, the RAD7 detector was used for measuring radon in water by connecting it with a bubbling kit which enables to degas radon from a water sample into the air in a closed loop. A sample of water was taken in a radon-tight reagent bottle of 250 ml capacity connected in a close circuit with a zinc sulphide coated detection chamber which acts as scintillator to detect alpha activity and a glass bulb containing calcium chloride to absorb the moisture. Air was then circulated in a closed circuit for a period of 5-10 min until the radon was uniformly mixed with the air and the resulting alpha activity was recorded and it directly gives the radon concentration. The measured radon concentration in drinking water ranges from 2.03 BqL -1 to 6.65 BqL -1 with an average value of 4.27 BqL -1 . The measured values of radon concentration in drinking water are well within the range (4 to 40 BqL -1 ) suggested for radon concentration in water for human consumption by the United Nations Scientific Committee on the Effects of Atomic Radiation. The measured values of indoor radon concentration in dwellings of the same area vary from 10 Bqm -3 to 28.2 Bqm -3 with an average value of 20.28 Bqm -3 . The measured values for drinking water and for indoor air for the study area suggest that the area is safe for residents and there is no significant threat to the population as per as radon concentration is concerned

  9. Relationship between indoor radon concentrations and air exchange rate

    International Nuclear Information System (INIS)

    Wang Jingshu; Liu Yuyu; Yao Xiaohua; Meng Jianfeng; Zhang Yongyi; Wang Xiaohe; Yu Xiufen.

    1995-01-01

    The indoor concentration of radon and the air exchange rate were simultaneously measured in four empty rooms, made of brick and cement, which were located in different floors of dwelling houses in Taiyuan, Shanxi, China. SF 6 tracer gas decay method was used to measure the air exchange rate. Indoor radon was collected with the dimembrane method. When the ventilation rate increased, the concentration of radon dropped rapidly. Regression analysis indicated that the indoor concentration of radon was equal to the outdoor level of radon when the air exchange rate was greater than 3-4. SF 6 decay method was an effective and convenient method for measuring the air exchange rate. There was no marked difference in measurements obtained in different locations of a room. (N.K.)

  10. High indoor radon concentrations in some Swedish waterworks

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2002-01-01

    High indoor radon concentrations in buildings used for water treatment are not uncommon. When raw water is processed in an open system radon escapes from the water to the indoor air of the premises. It is not unusual that the staff of the waterworks have their offices in the building where the water is processed. If large volumes of water are processed and the evaporated radon can reach the workplaces the indoor radon concentration can be very high even if the radon concentration of the raw water is moderate. Groundwaters from aquifers in bedrock and soil and surface water that has been infiltrated through deposits of sand or gravel have the potential to cause high indoor radon levels. In surface water emanating directly from a lake or a river the radon concentrations are normally too low to cause problems. Three waterworks in central Sweden have been studied, Ludvika, Fredriksberg and Kolbaeck. The radon concentrations in the raw water of these waterworks are from 85 Bq/l to 300 Bq/l. Average indoor radon concentrations exceeding 17,000 Bq/m 3 have been measured in Ludvika with peaks of almost 37,000 Bq/m 3 . In Kolbaeck radon concentrations up to 56,000 Bq/m 3 have been measured. It is quite possible that employees of waterworks can receive doses exceeding 20 mSv per year (calculated according to ICRP:s dose conversion convention). Measurements of radon and gamma radiation from the waterworks are reported and methods to lower the indoor radon concentrations are discussed. (author)

  11. Report. no. 20. Sensory evaluation of indoor air quality

    DEFF Research Database (Denmark)

    Berglund, Birgitta; Bluyssen, Philomena; Clausen, Geo

    Human subjects are indispensable in the measurement of perceived indoor air quality. Chemical and physical methods of characterisation often are insensitive to odorous and sensory irritating air pollutants, or do not take account of combinations of singular pollutants in a biologically meaningful...... way. Therefore, sensory methods many times are the only or the preferred tool for evaluation of perceived indoor air quality. This report presents background to and advice on methodologies for sensory evaluation of perceived indoor air quality. It proposes methods which apply to source assessments...... as well as field investigations. The methods will assist in labelling of building materials, characterising air quality in indoor spaces, controlling ventilation performance, and measuring occupant responses in questionnaire field studies of the sick building syndrome. The proposed methods will enable...

  12. Fugitive hydrocarbon emissions from pacific OCS facilities. Volume 1. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    In January 1989, the Minerals Management Service (MMS) conducted a study using the latest approved methods for emission screening and sampling solely on Outer Continental Shelf (OCS) oil and gas platforms in the Santa Barbara Channel in order to determine platform emission rates more representative of that region. The study was designed and reviewed throughout its conduct by a Quality Review Board (QRB) composed of air resource agencies and industry. Representatives from the Tri-county Air Pollution Control Districts and the MMS actively participated at these meetings. Some participants expressed concerns about some of the methods used and the study results. ABB's thorough responses to these questions and comments were submitted to all reviewers before the printing of the final report, and are contained in appendices of the study final report now available to the public. The results of the MMS study show that the average emission factors for the Pacific OCS oil and gas facilities measured in 1989 are 3.5 times lower than those Pacific OCS facilities sampled in the 1979 API/Rockwell study, and 7.8 times lower than the Gulf of Mexico OCS facilities sampled in the same 1979 study. Efforts to determine the quantitative effect of inspection and maintenance programs on controlling emissions were inconclusive

  13. Public effective doses from environmental natural gamma exposures indoors and outdoors in Iran

    International Nuclear Information System (INIS)

    Sohrabi, Mehdi; Roositalab, Jalil; Mohammadi, Jahangir

    2015-01-01

    The effective doses of public in Iran due to external gamma exposures from terrestrial radionuclides and from cosmic radiation indoors and outdoors of normal natural background radiation areas were determined by measurements and by calculations. For direct measurements, three measurement methods were used including a NaI(TI) scintillation survey meter for preliminary screening, a pressurised ionising chamber for more precise measurements and early warning measurement equipment systems. Measurements were carried out in a large number of locations indoors and outdoors ∼1000 houses selected randomly in 36 large cities of Iran. The external gamma doses of public from living indoors and outdoors were also calculated based on the radioactivity measurements of samples taken from soil and building materials by gamma spectrometry using a high-resolution HPGe system. The national mean background gamma dose rates in air indoors and outdoors based on measurements are 126.9±24.3 and 111.7±17.72 nGy h -1 , respectively. When the contribution from cosmic rays was excluded, the values indoors and outdoors are 109.2±20.2 and 70.2±20.59.4 nGy h -1 , respectively. The dose rates determined for indoors and outdoors by calculations are 101.5±9.2 and 72.2±9.4 nGy h -1 , respectively, which are in good agreement with directly measured dose rates within statistical variations. By considering a population-weighted mean for terrestrial radiation, the ratio of indoor to outdoor dose rates is 1.55. The mean annual effective dose of each individual member of the public from terrestrial radionuclides and cosmic radiation, indoors and outdoors, is 0.86±0.16 mSv y -1 by measurements and 0.8±0.2 mSv y -1 by calculations. The results of this national survey of public annual effective doses from national natural background external gamma radiation determined by measurements and calculations indoors and outdoors of 1000 houses in 36 cities of Iran are presented and discussed. (authors)

  14. Home outdoor models for traffic-related air pollutants do not represent personal exposure measurements in Southern California

    International Nuclear Information System (INIS)

    Ducret-Stich, R; Gemperli, A; Ineichen, A; Phuleria, H C; Delfino, R J; Tjoa, T; Wu, J; Liu, L-J S

    2009-01-01

    Recent studies have used measurements or estimates of traffic-related air pollutants at home or school locations to link associations between exposure and health. However, little is known about the validity of these outdoor concentrations as an estimate for personal exposure to traffic. This paper compares modelled outdoor concentrations at home with personal exposure to traffic air pollution of 63 children in two areas in Los Angeles in 2003/2004. Exposure monitoring consisted of sixteen 10-day monitoring runs, with each run monitoring 4 subjects concurrently with the active personal DataRAM for particulate matter 25 ), elemental carbon (EC) and organic carbon (OC). One child per run had concurrent indoor/outdoor home monitoring. Measurements at central sites (24-hr PM 25 , EC, OC) were taken daily and concentrations of PM 25 , EC, and OC from traffic sources were calculated using the CALINE4 model for individual residences. We modelled outdoor concentrations of PM 2 5 , EC and OC with multilinear regression including GIS and meteorological parameters and adjusted for auto-correlation between repeated measurements. The model fit (R 2 ) for home outdoor estimates was 0.94, 0.74 and 0.80 for PM 25 , EC and OC, respectively. Comparisons between these outdoor estimates and the personal measurements showed a good agreement for PM 25 (R 2 =0.65-0.70) with a mean bias of -0.7±11.8|ag for the smog receptor area, and 18.9±16.2|ag for the traffic impacted area. However the outdoor estimates were not related to personal exposure for EC (R 2 =0.01-0.29) and OC (R 2 =0.03- 0.14). Conclusions: Predictions of outdoor concentrations can be used as approximations of personal exposure to PM 25 . However, they are not appropriate for estimating personal exposure to traffic-related air pollutants including EC and OC in studies of acute exposure-response relationships.

  15. Radon and aldehyde concentrations in the indoor environment. Final report

    International Nuclear Information System (INIS)

    Moschandreas, D.J.; Rector, H.E.

    1981-04-01

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim -3 (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate

  16. Indoor radon measurement in some adobe houses in the Kassena Nankana area of the Upper East Region

    International Nuclear Information System (INIS)

    Quashie, F. K.

    2010-06-01

    Inhalation of radon and its daughter products is the major contributor to the total exposure of the population to natural radiation. The present study has measured radon gas concentration in some Adobe houses and the soil radon gas around these houses in the Kassena Nankana Area of the Upper East Region by using passive radon indoor dosimeter containing solid-state nuclear track detector (SSNTD) commercially known as LR - 115 (type II, pelliculable). Fifty (50) indoor radon dosimeters were placed in the various Adobe houses in the study area. Additionally, thirty (30) dosimeters were placed in the soil around some of the houses at a depth of 75 cm. Soil radon dosimeters were retrieved after two (2) weeks while the indoor radon dosimeters were retrieved after 78 to 82 days. The detectors were then chemically etched. The digital laser optic system and the spark counter coupled with microfiche reader were used in counting both the indoor and soil detectors respectively. Indoor radon concentration in the study area range from 35.28 Bq/m 3 to 244.22 Bq/m 3 . An active dosimeter known as the radon scout plus which gives instantaneous readings between 1 to 3 hours was also used in nineteen of the adobe houses in the study area and a total average radon concentration of 56.90 Bq/m3 was obtained. The soil radon concentration was also found to range from 2.12 kBq/m 3 to 15.03 kBq/m 3 . A good correlation was found to exist between the soil radon concentration and that of the indoor radon concentration with a correlation coefficient of about 0.61. The mean radon emanation coefficient of some fifteen (15) soil samples monitored was 0.46. The average annual effective dose was estimated to be about 1.66 mSv/y and that of the average annual effective dose using the equilibrium equivalent factor (F) was 1.00 mSv/y

  17. Investigation on Indoor Air Pollution and Childhood Allergies in Households in Six Chinese Cities by Subjective Survey and Field Measurements.

    Science.gov (United States)

    Hu, Jinhua; Li, Nianping; Lv, Yang; Liu, Jing; Xie, Jingchao; Zhang, Huibo

    2017-08-29

    Greater attention is currently being paid to the relationship between indoor environment and childhood allergies, however, the lack of reliable data and the disparity among different areas hinders reliable assessment of the relationship. This study focuses on the effect of indoor pollution on Chinese schoolchildren and the relationship between specific household and health problems suffered. The epidemiological questionnaire survey and the field measurement of the indoor thermal environment and primary air pollutants including CO₂, fine particulate matter (PM 2.5 ), chemical pollutants and fungi were performed in six Chinese cities. A total of 912 questionnaires were eligible for statistical analyses and sixty houses with schoolchildren aged 9-12 were selected for field investigation. Compared with Chinese national standards, inappropriate indoor relative humidity (70%), CO₂ concentration exceeding 1000 ppm and high PM 2.5 levels were found in some monitored houses. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most frequently detected semi-volatile organic compounds (SVOCs) in house dust. Cladosporium , Aspergillus and Penicillium were detected in both indoor air and house dust. This study indicates that a thermal environment with CO₂ exceeding 1000 ppm, DEHP and DBP exceeding 1000 μg/g, and high level of PM 2.5 , Cladosporium , Aspergillus and Penicillium increases the risk of children's allergies.

  18. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  19. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...... as idenfiying "good practices" to reduce health impact of indoor air exposure and suggest areas for future improvements....

  20. Recognition, evaluation, and control of indoor air pollution

    International Nuclear Information System (INIS)

    Chastain, B.

    1993-01-01

    Indoor air pollution is typically associated with terms sick building syndrome, tight building syndrome, building related illness, and problem building. Indoor air pollution is a relatively new public health concern (approximately 15 years old) although this issue is an age-old problem dating back to prehistoric times when humans came to live indoors. This presentation summarizes indoor air quality issues in order to provide you with usable information concerning the recognition and evaluation of indoor air quality (IAQ) problems and the subsequent control measures which can be used for maintaining or improving the indoor air environment for better occupant health and comfort control. Why has the subject become so vocalized in the last fifteen years? Why the sudden interest and awareness concerning indoor air quality issues? During the last half of the 1970's and all of the 1980's, buildings were built or remodeled to minimize air handling, heating, and cooling costs, often limiting the amount of outside air brought into the buildings to near minimums. Paralleling these developments, complaints related to modern buildings increased. The new terms tight building syndrome, sick building syndrome, and indoor air quality became widely used by health and safety professionals and subsequently by newspaper columnist and the general public

  1. Towards the use of small amounts of activated charcoal along with well-type NaI(Tl) detector for indoor radon measurements

    International Nuclear Information System (INIS)

    Al-Azmi, D.

    2006-01-01

    The feasibility of using small quantities of activated charcoal and a 7.6 cm x 7.6 cm NaI(Tl) well-type detector was investigated for indoor radon measurements. Vials, filled with 10 g of charcoal, were exposed for different indoor radon concentration levels typical of Kuwait dwellings. After exposure, the vials were sealed and kept for 3 h to allow radon to come into radioactive equilibrium with its progenies and were then analysed by gamma-ray spectrometry using the well-type NaI(Tl) detector. The variation of radon absorption by the vials filled with charcoal with exposure time was also studied. A comparative study of the present technique with the standard technique of using 70 g charcoal canisters and flat NaI detector was also performed. After establishing the suitability of the technique, the charcoal vials were then used to investigate the effect of air-ventilation on the concentration levels of the indoor radon. Results show that there is a reduction in the radon concentration level (up to 25%) when the air-ventilation system was switched on. The paper presents the results of the study on the feasibility of combining small amounts of activated charcoal with a well-type NaI(Tl) detector in the measurement of indoor radon concentrations. (authors)

  2. Measurements of indoor 222RN activity in dwellings and workplaces of Curitiba (Brazil)

    International Nuclear Information System (INIS)

    Corrêa, Janine N.; Paschuk, Sergei A.; Del Claro, Flávia; Kappke, Jaqueline; Perna, Allan F.N.; Schelin, Hugo R.; Denyak, Valeriy

    2014-01-01

    The present work describes the results of systematic measurements of radon ( 222 Rn) in residential environments and workplaces in the Metropolitan Region of Curitiba (Paraná State, Brazil) during the period 2004–2012. For radon in air activity measurements, polycarbonate Track Etch Detectors CR-39, mounted in diffusion chambers protected by borosilicate glass fiber filters, were used. After being exposed in air, the CR-39 detectors were submitted to a chemical etching in a 6.25 M NaOH solution at 70 °C for 14 h. The alpha particle tracks were identified and manually counted with an optical microscope, and with the results of previously performed calibrations, the indoor activity concentration of 222 Rn was calculated. The calibration of CR-39 and the alpha particle tracks chemical development procedures were performed in collaboration the National Institute of Radiological Sciences (NIRS, Japan). The major part of indoor 222 Rn concentration in residences was found to be below 100 Bq/m 3 . In the case of working places, all measurements of 222 Rn concentrations were below 100 Bq/m 3 . These values are considered within the limits set by international regulatory agencies, such as the US EPA and ICRP, which adopt up to 148 and 300 Bq/m 3 as upper values for the reference levels for radon gas activity in dwellings, respectively. The latest value of 300 Bq/m 3 for radon activity in air is proposed by ICRP considering the upper value for the individual dose reference level for radon exposure of 10 mSv/yr. - Highlights: • Radon activity in air of dwellings was measured. • Radon activity in air of workplaces was measured. • Obtained experimental results are compared with International Norms and Regulations

  3. Design Criteria for Achieving Acceptable Indoor Radon Concentration

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization...... in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating...... from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision...

  4. Investigation of Indoor Climate in a Naturally Ventilated Office Building

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    A measuring program in a naturally ventilated office building in Copenhagen was carried out to document the indoor climate and ventilation system performance during a year. It included a questionnaire regarding the perceived indoor environmental quality and physical measurements of thermal comfort...... to a combination of poor control of solar shading and a very high local heat load that was above the Danish recommendations for naturally ventilated office buildings. Both measured and perceived indoor air quality in the building was in general very high. The measured air flow rates was relatively high due...... to the need for cooling in the office building, while the level of infiltration was quite low indicating an airtight construction....

  5. The measurement of 222Rn and its relationship to environmental variables: Factors controlling indoor radon: Final report for the contract period June 1, 1982 to August 31, 1986

    International Nuclear Information System (INIS)

    Harley, N.H.

    1986-01-01

    The report summarizes a project in which a new detector for measuring ''radon only'' was designed and built. The units built were then used to measure hourly data indoors and outdoors in two locations to investigate the apportionment of the indoor radon source term

  6. Measurements of radon progeny activity on typical indoor surfaces

    International Nuclear Information System (INIS)

    Knutson, E.O.; Gogolak, C.V.; Klemic, G.

    1992-01-01

    A number of studies aimed at defining how well radon progeny on surfaces can be measured, information that is needed in order to test physical/mathematical models governing indoor radon progeny behaviour, are described. One experiment compared the decomposition on to different surfaces. Only relatively small differences were found among metal, filter paper, broadcloth, corduroy fabric, vinyl wallpaper, glass, and latex paint, but polyethylene film collected two to four times as much as the others, due most likely to electrostatic charge on the plastic surface. Another experiment compared the gamma and gross alpha count methods of measuring surface activity for metal, filter paper, broadcloth and corduroy surfaces. No difference for the surfaces tested was found from which it is concluded that, even for rougher surfaces, progeny atoms deposit mainly on the outer layers. A final experiment compared in situ and surrogate-surface methods for measuring surface deposition. For most tests, the two methods agreed within 30%, and the average ratio was not significantly different from unity. 210 Po is a complication in the in situ method. An unexpected location effect was found in the experiments conducted in houses with high radon concentrations: the deposition on the ceiling was higher than on the surfaces. (author)

  7. Measurements of Energy Performance and Indoor Environmental Quality in 10 Danish Passive Houses

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Jensen, Rasmus Lund

    2009-01-01

    The paper describes the first results from a large Danish project regarding measurements of energy performance and indoor environmental quality in 10 Danish Passive Houses. The project includes both qualitative and quantitative analyses. This paper describes the first results from the quantitative...... part. The house considered in this paper has an air change rate (ACR) of 0.34 h-1 and the results from the first few months of measurements show excellent results when relative humidity (RH) and CO2-levels are considered. When the temperatures are assessed problems with slight overheating are found...... used for heating domestic hot water is very similar to conventional houses....

  8. Evaluation of the Indoor Environment in the Comfort Houses

    DEFF Research Database (Denmark)

    Brunsgaard, Camilla; Heiselberg, Per; Knudstrup, Mary-Ann

    2012-01-01

    and in a process of doing so, it is important to maintain a good and healthy indoor environment and not on the expense of it. One way of saving energy is to build passive houses. This paper presents the result of a case study of some of the first certified passive houses in Denmark, called the Comfort Houses....... The paper evaluates the indoor environment through both quantitative measurements in the houses and qualitative interviews with the occupants about their experiences of the indoor environment. Two set of knowledge which together gives a more complete and holistic picture of the indoor environment. The study...

  9. Tactile/kinesthetic stimulation (TKS) increases tibial speed of sound and urinary osteocalcin (U-MidOC and unOC) in premature infants (29-32weeks PMA).

    Science.gov (United States)

    Haley, S; Beachy, J; Ivaska, K K; Slater, H; Smith, S; Moyer-Mileur, L J

    2012-10-01

    Preterm delivery (kinesthetic stimulation (TKS), a form of infant massage that incorporates kinesthetic movement, would increase bone strength and markers of bone accretion in preterm infants. Preterm, AGA infants (29-32 weeks) were randomly assigned to TKS (N=20) or Control (N=20). Twice daily TKS was provided 6 days per week for 2 weeks. Control infants received the same care without TKS treatment. Treatment was masked to parents, health care providers, and study personnel. Baseline and week two measures were collected for tibial speed of sound (tSOS, m/sec), a surrogate for bone strength, by quantitative ultrasound (Sunlight8000) and urine markers of bone metabolism, pyridinium crosslinks and osteocalcin (U-MidOC and unOC). Infant characteristics at birth and study entry as well as energy/nutrient intake were similar between TKS and Control. TKS intervention attenuated the decrease in tSOS observed in Control infants (p<0.05). Urinary pyridinium crosslinks decreased over time in both TKS and CTL (p<0.005). TKS infants experienced greater increases in urinary osteocalcin (U-MidOC, p<0.001 and unOC, p<0.05). We conclude that TKS improves bone strength in premature infants by attenuating the decrease that normally follows preterm birth. Further, biomarkers of bone metabolism suggest a modification in bone turnover in TKS infants in favor of bone accretion. Taken together, we speculate that TKS improves bone mineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Autism and ADHD Symptoms in Patients with OCD: Are They Associated with Specific OC Symptom Dimensions or OC Symptom Severity?

    Science.gov (United States)

    Anholt, Gideon E.; Cath, Danielle C.; van Oppen, Patricia; Eikelenboom, Merijn; Smit, Johannes H.; van Megen, Harold; van Balkom, Anton J. L. M.

    2010-01-01

    In obsessive-compulsive disorder (OCD), the relationship between autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) symptom, and obsessive-compulsive (OC) symptom dimensions and severity has scarcely been studied. Therefore, 109 adult outpatients with primary OCD were compared to 87 healthy controls on OC, ADHD and…

  11. Indoor multipath mitigation

    DEFF Research Database (Denmark)

    Dragünas, Kostas; Borre, Kai

    2010-01-01

    There are many applications that require continuous positioning in combined outdoor urban and indoor environments. GNSS has been used for a long time in outdoor environments, while indoor positioning is still a challenging task. One of the major degradations that GNSS receivers experience indoors...

  12. Air Quality and Indoor Environmental Exposures: Clinical ...

    Science.gov (United States)

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more polluted than ambient air, the USEPA lists poor IAQ as a major environmental concern. In the sections that follow, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. In some cases, exposure may be acute, with one or more pets (and owners) experiencing signs within a relatively short period. However, most exposures are episodic or chronic, making it difficult to definitively link poor IAQ to respiratory or other adverse health outcomes. Age or underlying immunologic, cardiac, or respiratory disease may further complicate the clinical picture, as those patients may be more sensitive to (and affected by) lower concentrations than prove problematic for healthy housemates. Because pets, like their owners, spend most of their lives indoors, we will discuss how certain home conditions can worsen indoor air quality and will briefly discuss measures to improve IAQ for owners and their pets. In this overview presentation, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. Because pets, like their owners, spend most of their lives indoo

  13. Usability analysis of indoor map application in a shopping centre

    Science.gov (United States)

    Dewi, R. S.; Hadi, R. K.

    2018-04-01

    Although indoor navigation is still new in Indonesia, its future development is very promising. Similar to the outdoor one, the indoor navigation technology provides several important functions to support route and landmark findings. Furthermore, there is also a need that indoor navigation can support the public safety especially during disaster evacuation process in a building. It is a common that the indoor navigation technologies are built as applications where users can access this technology using their smartphones, tablets, or personal computers. Therefore, a usability analysis is important to ensure the indoor navigation applications can be operated by users with highest functionality. Among several indoor map applications which were available in the market, this study chose to analyse indoor Google Maps due to its availability and popularity in Indonesia. The experiments to test indoor Google Maps was conducted in one of the biggest shopping centre building in Surabaya, Indonesia. The usability was measured by employing System Usability Scale (SUS) questionnaire. The result showed that the SUS score of indoor Google Maps was below the average score of other cellular applications to indicate the users still had high difficulty in operating and learning the features of indoor Google Maps.

  14. Assessing future trends in indoor air quality

    International Nuclear Information System (INIS)

    van de Wiel, H.J.; Lebret, E.; van der Lingen, W.K.; Eerens, H.C.; Vaas, L.H.; Leupen, M.J.

    1990-01-01

    Several national and international health organizations have derived concentration levels below which adverse effects on men are not expected or levels below which the excess risk for individuals is less than a specified value. For every priority pollutant indoor concentrations below this limit are considered healthy. The percentage of Dutch homes exceeding such a limit is taken as a measure of indoor air quality for that component. The present and future indoor air quality of the Dutch housing stock is described for fourteen air pollutants. The highest percentages are scored by radon, environmental tobacco smoke, nitrogen dioxide from unvented combustion, and the potential presence of housedust mite and mould allergen in damp houses. Although the trend for all priority pollutants is downward the most serious ones remain high in the coming decades if no additional measures will be instituted

  15. ASSOCIATIONS BETWEEN SEASONAL SLEEP CHANGE AND INDOOR TANNING1,2

    Science.gov (United States)

    CULNAN, ELIZABETH; KLOSS, JACQUELINE D.; DARLOW, SUSAN; HECKMAN, CAROLYN J.

    2015-01-01

    Summary Identification of risk factors for indoor tanning may ultimately aid the development of better indoor tanning prevention strategies, which is pertinent given the association between indoor tanning and skin cancer. This study aimed to examine the relationship between seasonal sleep change and indoor tanning. Women tanners (N= 139) completed self-report measures including items relating to seasonal sleep changes, seasonal affective disorder (SAD), reasons for tanning, tanning during the winter months, and the Tanning Pathology Scale (TAPS), which measures problematic tanning motives and symptoms of tanning dependence. It was hypothesized that seasonal sleep change and SAD would be associated with greater indoor tanning during the winter, more tanning to improve mood and to relax, and higher scores on the TAPS. Findings indicated that more seasonal sleep change was associated with tanning to improve mood and higher scores on the TAPS. Similarly, the presence of SAD was related to tanning to improve mood, tanning to relax, and more problematic tanning. PMID:25730744

  16. Dynamic tracking performance of indoor global positioning system: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2015-10-01

    Full Text Available The automation level has been improved rapidly with the introduction of large-scale measurement technologies, such as indoor global positioning system, into the production process among the fields of car, ship, and aerospace due to their excellent measurement characteristics. In fact, the objects are usually in motion during the real measurement process; however, the dynamic measurement characteristics of indoor global positioning system are much limited and still in exploration. In this research, we focused on the dynamic tracking performance of indoor global positioning system and then successfully built a mathematical model based on its measurement principles. We first built single and double station system models with the consideration of measurement objects’ movement. Using MATLAB simulation, we realized the dynamic measurement characteristics of indoor global positioning system. In the real measurement process, the experimental results also support the mathematical model that we built, which proves a great success in dynamic measurement characteristics. We envision that this dynamic tracking performance of indoor global positioning system would shed light on the dynamic measurement of a motion object and therefore make contribution to the automation production.

  17. PM2.5 pollution from household solid fuel burning practices in central India: 1. Impact on indoor air quality and associated health risks.

    Science.gov (United States)

    Matawle, Jeevan Lal; Pervez, Shamsh; Shrivastava, Anjali; Tiwari, Suresh; Pant, Pallavi; Deb, Manas Kanti; Bisht, Diwan Singh; Pervez, Yasmeen F

    2017-10-01

    PM 2.5 concentrations were measured in residential indoor environment in slums of central India during 2012-2013. In addition, a suite of chemical components including metals (Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Pb, Mo, Se, Sb, Na, Mg, K and Hg), ions (Na + , Mg 2+ , K + , Ca 2+ , F - , Cl - , NH 4 + , NO 3 - and SO 4 2- ) and carbon (OC and EC) were analyzed for all samples. Indoor PM 2.5 concentrations were found to be several folds higher than the 24-h national ambient air quality standard (60 µg/m 3 ) for PM 2.5 in India, and the concentrations were found to vary from season to season. Mass closure was attempted for PM 2.5 data, and close to 100 % mass was accounted for by organic matter, crustal material, secondary organic and inorganic aerosols and elemental carbon. Additionally, carcinogenic and non-carcinogenic health risks associated with exposure to indoor PM 2.5 (inhalation, dermal and ingestion) were estimated and while exposures associated with dermal contact and ingestion were found to be within the acceptable limits, risk associated with inhalation exposure was found to be high for children and adults. Elements including Al, Cd, Co, Cr, Mn, Ni, As and Pb were present in high concentrations and contributed to carcinogenic and non-carcinogenic risks for residents' health. Results from this study highlight the need for efforts to reduce air pollution exposure in slum areas.

  18. [Indoor volatile organic compounds: concentrations, sources, variation factors].

    Science.gov (United States)

    Palot, A; Charpin-Kadouch, C; Ercoli, J; Charpin, D

    2008-06-01

    Volatile organic compounds (V.O.C.) are part of urban air pollution and are also generated indoors from cleaning and maintenance products. VOC measurements are, on average, 10 times higher within homes than outside. Results of the national survey led by the Observatoire National de la Qualité de l'Air Intérieur demonstrated that up to 25% of French homes have very high or high concentrations of VOC. Indoor levels depend mainly on indoor sources. Aldehydes are included in many everyday life products. VOC originate from various household decorating and cleaning products. Some products are less detrimental to the environment and health and have special labelling. Indoor VOC levels also depend on the rate of air exchange and on household characteristics such as indoor temperature and humidity, age of the building, presence of smokers, and communication with a garage. The public may participate in maintaining good indoor air quality and the authorities should also improve regulations. VOC are part of everyday air pollution. Their sources and concentrations should be better monitored.

  19. 7 CFR 43.105 - Operating characteristics (OC) curves.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Operating characteristics (OC) curves. 43.105 Section 43.105 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE... CONTAINER REGULATIONS STANDARDS FOR SAMPLING PLANS Sampling Plans § 43.105 Operating characteristics (OC...

  20. A View Indoors, Indoor Environment Division's e-Article Series

    Science.gov (United States)

    The Indoor Environments Division has created partnership with public and private sector entities to help encourage the public to take action to minimize their risk and mitigate indoor air quality problems.

  1. Indoor radon pollution: update. Bibliographic series

    International Nuclear Information System (INIS)

    Richard, S.A.

    1988-12-01

    This bibliography focuses on indoor radon pollution problems and is organized according to the following major topic areas: I-Overview (covering general areas such as law and policy, popular press, communication and education, indoor air and books); II-Health Effects (epidemiology, risk estimates, and dosimetry); III-Exposure (house construction, geology, source, physical properties, and radon in water); IV-Surveys (national and international case studies); V-Mitigation; and VI-Measurement Techniques. Section VIII-Appendix, lists State Contacts

  2. Indoor radon concentration levels in Amman, Zarka and Sault

    International Nuclear Information System (INIS)

    Khatibeh, A.J.A.H.; Ahmad, N.; Matiullah, A.

    1997-01-01

    Indoor radon concentration levels in three main cities of Jordan have been measured using CR-39 polymeric nuclear track detectors. CR-39 detectors were placed in polyethylene bags and cups. These bag and cup dosimeters were installed in randomly selected houses. The average value of indoor radon concentration level in the city of Amman was found to be 41.3 Bq m -3 with cup dosimeters and 42.6 Bq m -3 with bag dosimeters. For the district of Zarka, the average value of indoor radon concentration level measured with bag dosimeters was 33.9 Bq m -3 , whereas with cup dosimeters the level was 30.7 Bq m -3 . For Sault and its suburbs, the average value of indoor radon concentration level was found to be 51.2 Bq m -3 with bag dosimeters and 49.8 Bq m -3 with cup dosimeters. (author)

  3. THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment

    International Nuclear Information System (INIS)

    Szidat, S.; Jenk, T.M.; Gaeggeler, H.W.; Synal, H.-A.; Hajdas, I.; Bonani, G.; Saurer, M.

    2004-01-01

    Measurements of 14 C in the organic carbon (OC) and elemental carbon (EC) fractions, respectively, of fine aerosol particles bear the potential to apportion anthropogenic and biogenic emission sources. For this purpose, the system THEODORE (two-step heating system for the EC/OC determination of radiocarbon in the environment) was developed. In this device, OC and EC are transformed into carbon dioxide in a stream of oxygen at 340 and 650 deg. C, respectively, and reduced to filamentous carbon. This is the target material for subsequent accelerator mass spectrometry (AMS) 14 C measurements, which were performed on sub-milligram carbon samples at the PSI/ETH compact 500 kV AMS system. Quality assurance measurements of SRM 1649a, Urban Dust, yielded a fraction of modern f M in total carbon (TC) of 0.522 ± 0.018 (n=5, 95% confidence level) in agreement with reported values. The results for OC and EC are 0.70 ± 0.05 (n=3) and 0.066 ± 0.020 (n=4), respectively

  4. Defining indoor heat thresholds for health in the UK.

    Science.gov (United States)

    Anderson, Mindy; Carmichael, Catriona; Murray, Virginia; Dengel, Andy; Swainson, Michael

    2013-05-01

    It has been recognised that as outdoor ambient temperatures increase past a particular threshold, so do mortality/morbidity rates. However, similar thresholds for indoor temperatures have not yet been identified. Due to a warming climate, the non-sustainability of air conditioning as a solution, and the desire for more energy-efficient airtight homes, thresholds for indoor temperature should be defined as a public health issue. The aim of this paper is to outline the need for indoor heat thresholds and to establish if they can be identified. Our objectives include: describing how indoor temperature is measured; highlighting threshold measurements and indices; describing adaptation to heat; summary of the risk of susceptible groups to heat; reviewing the current evidence on the link between sleep, heat and health; exploring current heat and health warning systems and thresholds; exploring the built environment and the risk of overheating; and identifying the gaps in current knowledge and research. A global literature search of key databases was conducted using a pre-defined set of keywords to retrieve peer-reviewed and grey literature. The paper will apply the findings to the context of the UK. A summary of 96 articles, reports, government documents and textbooks were analysed and a gap analysis was conducted. Evidence on the effects of indoor heat on health implies that buildings are modifiers of the effect of climate on health outcomes. Personal exposure and place-based heat studies showed the most significant correlations between indoor heat and health outcomes. However, the data are sparse and inconclusive in terms of identifying evidence-based definitions for thresholds. Further research needs to be conducted in order to provide an evidence base for threshold determination. Indoor and outdoor heat are related but are different in terms of language and measurement. Future collaboration between the health and building sectors is needed to develop a common

  5. Low-Temperature Growth of Hydrogenated Amorphous Silicon Carbide Solar Cell by Inductively Coupled Plasma Deposition Toward High Conversion Efficiency in Indoor Lighting.

    Science.gov (United States)

    Kao, Ming-Hsuan; Shen, Chang-Hong; Yu, Pei-Chen; Huang, Wen-Hsien; Chueh, Yu-Lun; Shieh, Jia-Min

    2017-10-05

    A p-a-SiC:H window layer was used in amorphous Si thin film solar cells to boost the conversion efficiency in an indoor lighting of 500 lx. The p-a-SiC:H window layer/p-a-Si:H buffer layer scheme moderates the abrupt band bending across the p/i interface for the enhancement of V OC , J SC and FF in the solar spectra of short wavelengths. The optimized thickness of i-a-Si:H absorber layer is 400 nm to achieve the conversion efficiency of ~9.58% in an AM1.5 G solar spectrum. However, the optimized thickness of the absorber layer can be changed from 400 to 600 nm in the indoor lighting of 500 lx, exhibiting the maximum output power of 25.56 μW/cm 2 . Furthermore, various durability tests with excellent performance were investigated, which are significantly beneficial to harvest the indoor lights for applications in the self-powered internet of thing (IoT).

  6. Indoor radon measurements in Finland: A status report

    International Nuclear Information System (INIS)

    Castren, O.; Makelainen, I.; Winqvist, K.; Voutilainen, A.

    1987-01-01

    Large-scale surveys indicate that the mean indoor radon concentration in Finnish dwellings is about 90 Bq/m/sup 3/. The percentages of concentrations exceeding 200, 400, 800 and 2,000 Bq/m/sup 3/ are 11, 3.9, 1.4 and 0.5 per cent, respectively. An updated version of the geographical distribution is presented. Sampling and data processing methods as well as the reasons for high concentrations are discussed

  7. Laser-induced field-free alignment of the OCS molecule

    International Nuclear Information System (INIS)

    Loriot, V; Tzallas, P; Benis, E P; Hertz, E; Lavorel, B; Charalambidis, D; Faucher, O

    2007-01-01

    We investigate the dynamical alignment of jet-cooled OCS molecules induced by a short laser pulse. The alignment is measured through the orientational contribution of the optical Kerr effect using a second weak laser pulse as a probe. Maximum alignment is observed at conditions close to saturation of ionization. The results are analysed with a quantum mechanical model solving for the rotational dynamics

  8. Quantification of amine functional groups and their influence on OM/OC in the IMPROVE network

    Science.gov (United States)

    Kamruzzaman, Mohammed; Takahama, Satoshi; Dillner, Ann M.

    2018-01-01

    Recently, we developed a method using FT-IR spectroscopy coupled with partial least squares (PLS) regression to measure the four most abundant organic functional groups, aliphatic C-H, alcohol OH, carboxylic acid OH and carbonyl C=O, in atmospheric particulate matter. These functional groups are summed to estimate organic matter (OM) while the carbon from the functional groups is summed to estimate organic carbon (OC). With this method, OM and OM/OC can be estimated for each sample rather than relying on one assumed value to convert OC measurements to OM. This study continues the development of the FT-IR and PLS method for estimating OM and OM/OC by including the amine functional group. Amines are ubiquitous in the atmosphere and come from motor vehicle exhaust, animal husbandry, biomass burning, and vegetation among other sources. In this study, calibration standards for amines are produced by aerosolizing individual amine compounds and collecting them on PTFE filters using an IMPROVE sampler, thereby mimicking the filter media and collection geometry of ambient standards. The moles of amine functional group on each standard and a narrow range of amine-specific wavenumbers in the FT-IR spectra (wavenumber range 1 550-1 500 cm-1) are used to develop a PLS calibration model. The PLS model is validated using three methods: prediction of a set of laboratory standards not included in the model, a peak height analysis and a PLS model with a broader wavenumber range. The model is then applied to the ambient samples collected throughout 2013 from 16 IMPROVE sites in the USA. Urban sites have higher amine concentrations than most rural sites, but amine functional groups account for a lower fraction of OM at urban sites. Amine concentrations, contributions to OM and seasonality vary by site and sample. Amine has a small impact on the annual average OM/OC for urban sites, but for some rural sites including amine in the OM/OC calculations increased OM/OC by 0.1 or more.

  9. Indoor air quality

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Indoor Air Quality is rapidly becoming a major environmental concern because a significant amount of people spend a substantial amount of time in a variety of different indoor environments. Health effects from indoor pollutants fall into two categories: those that are experienced immediately after exposure and those that do not show up until years later. They are: radon, formaldehyde, asbestos, lead and household organic chemicals. The authors presented a source-by-source look at the most common indoor air pollutants, their potential health effects, and ways to reduce their levels in the home. There are three basic strategies to improve indoor air quality: one method is source control, another is through ventilation improvements, and the third is the utilization of some sort of mechanical device such as air cleaners

  10. Measurment of radon, thoron and their progeny in indoor environment of Mohali, Punjab, Northern India, using pinhole dosimeters

    Directory of Open Access Journals (Sweden)

    Mehta Vimal

    2016-01-01

    Full Text Available The health hazards of radon and its decay products above certain levels are well known. However, for any preventive measures to be taken, we have to be aware of radon levels of that particular area. Measurement of radon and its decay products in indoor environments is an important aspect of assessing indoor air quality and health conditions associated with it. Keeping this in mind, measurements of radon, thoron and their progeny concentrations were carried out in Mohali, Northern India, using pinhole-based twin cup dosimeters. Radon exhalation rates of soil samples in the dwellings/areas were measured via an active technique of a continuous radon monitor. The indoor radon concentration in Mohali varied from 15.03 ± 0.61 Bq/m3 to 39.21 ± 1.46 Bq/m3 with an average of 26.95 Bq/m3 ,while thoron concentration in the same dwellings varied from 9.62 ± 0.54 Bq/m3 to 52.84 ± 2.77 Bq/m3 with an average of 31.09 Bq/m3. Radon progeny levels in dwellings under study varied from 1.63 to 4.24 mWL, with an average of 2.94 mWL, while thoron progeny levels varied from 0.26 to 1.43 mWL , with an average of 0.84 mWL. The annual dose received by the inhabitants of dwellings under study varied from 0.78 to 2.36 mSv, with an average of 1.61 mSv. The in situ gamma dose rate varied from 0.12 to 0.32 mSv/h.

  11. Accurate measurement of indoor radon concentration using a low-effective volume radon monitor

    International Nuclear Information System (INIS)

    Tanaka, Aya; Minami, Nodoka; Mukai, Takahiro; Yasuoka, Yumi; Iimoto, Takeshi; Omori, Yasutaka; Nagahama, Hiroyuki; Muto, Jun

    2017-01-01

    AlphaGUARD is a low-effective volume detector and one of the most popular portable radon monitors which is currently available. This study investigated whether AlphaGUARD can accurately measure the variable indoor radon levels. The consistency of the radon-concentration data obtained by AlphaGUARD is evaluated against simultaneous measurements by two other monitors (each ∼10 times more sensitive than AlphaGUARD). When accurately measuring radon concentration with AlphaGUARD, we found that the net counts of the AlphaGUARD were required of at least 500 counts, <25% of the relative percent difference. AlphaGUARD can provide accurate measurements of radon concentration for the world average level (∼50 Bq m -3 ) and the reference level of workplace (1000 Bq m -3 ), using integrated data over at least 3 h and 10 min, respectively. (authors)

  12. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    Science.gov (United States)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  13. The Comfort Houses : measurements and analysis of the indoor environment and energy consumption in 8 passive houses 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Steen Larsen, T.; Lund Jensen, R.; Daniels, O.

    2012-01-15

    The report is prepared in relation to the project ''demonstration of energy consumption and indoor climate in 10 Danish passive houses'' which was carried out from 2008 to 2012 in the Comfort Houses. The report presents the achieved results based on measurements of indoor climate and energy consumption, and it also suggests viable solutions for the future low-energy buildings. The Comfort House project was started in 2007 as a development project at the company Saint Gobain Isover A/S, who wanted to disseminate knowledge about low-energy buildings and the principles behind them. The present report mainly focuses on the results from the Comfort Houses, but it also includes references to other Danish experimental buildings and development projects. Furthermore, the analyses are supplemented with experiences from Swedish low-energy buildings found through literature reviews. The indoor climate analyses deal with the different physical parameters that impact the residents. The evaluation includes both thermal, atmospheric, daylight and acoustic climate. The energy consumption is evaluated together with some of the key parameters from the houses that are related to the energy consumption. Finally, the residents' behaviour impacting both energy consumption and indoor climate are analysed. (LN)

  14. Indoor ran don concentration. Temperature and wind effects

    International Nuclear Information System (INIS)

    Sesana, L.; Benigni, S.

    2000-01-01

    The present study analyses and discusses the behaviour of the indoor radon concentration in a research house. Hourly measurements were carried out in the basement of the house from November 1998 up to June 1999. In many sequences of days radon concentration in the room under analysis shows strong variation all day long with accumulation in the evening and overnight and decrease in the morning and in the afternoon. Measurements of wind velocity, indoor and outdoor temperatures and outdoor-indoor pressure difference were performed and their trend is compared with the observed radon concentration. The exhalation of radon from walls, floor and ceiling and the pressure difference driven exhalation from the soil are discussed, particularly the relation with the temperature differences. The air exchange rates between the house and the outdoor air are studied [it

  15. Climate change and health: Indoor heat exposure in vulnerable populations

    International Nuclear Information System (INIS)

    White-Newsome, Jalonne L.; Sánchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Timothy Dvonch, J.; O'Neill, Marie S.

    2012-01-01

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 °C, 13.8 °C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  16. Indoor radon measurements and radon prognosis for eastern Uusimaa. Askola, Lapinjaervi, Liljendal, Loviisa, Myrskylae, Maentsaelae, Maentsaelae, Pernaja, Pornainen, Porvoo, Porvoon mlk, Pukkila, Ruotsinpyhtaeae and Sipoo

    International Nuclear Information System (INIS)

    Voutilainen, A.; Maekelaeinen, I.

    1995-02-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m 3 . It is assumed that no protection against the entry of radon is used in construction. In the study about 2400 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined form maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurement and geological data were used to assess the radon risk form soil and bedrock in different areas. (15 refs., 19 figs., 9 tabs.)

  17. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  18. Prediction of indoor concentration of 0.5-4 µm particles of outdoor origin in an uninhabited apartment

    DEFF Research Database (Denmark)

    Schneider, T.; Jensen, K.A.; Clausen, P.A.

    2004-01-01

    Indoor and outdoor particle size distributions, indoor-outdoor pressure difference, indoor air-exchange rate, and meteorological conditions were measured at an uninhabited apartment located in a busy street in Copenhagen during 1-month long fall, winter and spring campaigns. Particle penetration...... was estimated from concentration rebound measurements following HEPA filtering of the indoor air by fitting a simple deterministic model. The model included measured air exchange rates and published surface deposition loss rates. This model was then used to predict indoor particle concentration. The model...

  19. Study of a Greek area with enhanced indoor radon concentrations

    International Nuclear Information System (INIS)

    Louizi, A.; Nikolopoulos, D.; Koukouliou, V.; Kehagia, K.

    2003-01-01

    In this paper the focus is on Arnea Chalkidikis, an area in Greece with granitic geological background and indications of possible elevated radon concentration indoors. Data are reported of indoor radon measurements with etched track detectors and those used for dosimetric estimations. Moreover, data are reported on soil gas and soil radon concentrations in Arnea, as well as radon and uranium concentrations in water samples. From the measured radon concentrations in water samples the contribution to the overall dose has been calculated. For a period of 1 month, indoor radon and progeny activity has also been monitored in the dwelling that has the maximum indoor radon concentration in Greece. This dwelling is in Arnea and the dose delivered to the inhabitants has been calculated. Mean annual effective dose due to indoor radon was 4.5 mSv and about 11% of this was due to the use of water. Mean soil gas concentration and soil radon concentration were (90 ± 30) kBq m -3 (P -3 (P -1 (P<0.05). (author)

  20. Coping with Indoor Air Pollution

    Science.gov (United States)

    ... Pollution > Coping with Indoor Air Pollution Font: Outdoor Pollution Indoor Air Pollution Asthma Triggers For Kids and Teachers Coping with Indoor Air Pollution Indoor air pollution is irritating to everyone: But people who ...

  1. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-06-02

    This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.

  2. Measured winter and spring-time indoor temperatures in UK homes over the period 1969–2010: A review and synthesis

    International Nuclear Information System (INIS)

    Vadodaria, K.; Loveday, D.L.; Haines, V.

    2014-01-01

    This paper presents a review and synthesis of average winter and spring-time indoor temperatures in UK homes measured over the period 1969–2010. Analysis of measured temperatures in a sample of solid wall dwellings in the UK, conducted as part of the CALEBRE research project, is included. The review suggests that, for periods when occupation was likely, there has been little or no increase in winter and spring-time average living room temperatures over the last 40 years, with average recorded living room temperatures having been historically lower than the WHO-recommended value of 21 °C. Correspondingly, for periods of likely occupation, average bedroom temperatures appear to have increased. Compared with non-domestic buildings, there have been fewer investigations of domestic thermal comfort, either in the UK or elsewhere, and hence the paper also calls for further detailed investigations of domestic indoor temperatures during occupied hours together with thermal comfort evaluations in order to better understand domestic thermal environments. Based on suggestions from the limited range of studies available to date, living room temperatures may need to be maintained within the range 20–22 °C for thermal satisfaction, though this requires confirmation through further research. The study also emphasises that improving the energy efficiency of homes should be the primary means to effect any increases in indoor temperatures that are deemed essential. Considerations for future policy are discussed. - Highlights: • We review indoor temperatures measured in UK homes during 1960-2010. • We present analysis of temperature recorded by our study in 20 UK homes. • Little or no increase observed in living room temperatures for the last 40 years. • Occupied bedroom temperatures appear to have increased. • Living room temperatures have been historically lower than the WHO guidelines

  3. Indoor Tanning

    Science.gov (United States)

    ... proof that indoor tanning is safer than tanning outdoors. Indoor tanning systems give concentrated UV exposure regardless ... For example, it’s essential for promoting good bone health. While UV ... a tan to get that benefit. According to the Surgeon General, fair and light- ...

  4. A survey of indoor radon and particular concentration

    International Nuclear Information System (INIS)

    Ohta, Yukiko

    1993-01-01

    Lung disease risk from inhalation of radon can be enhanced by the presence of particular pollutants in indoor air. The indoor concentration of radon and particulates were measured in homes, a department store, and offices in a high building in Tokyo metropolis, as well as in homes in both northern and western Japan. Passive radon monitors were located in living rooms and offices for more than three months at 99 sites during the winter of 1988 and 1989. Indoor radon concentration ranged from 11.1 Bq/m 3 to 148 Bq/m 3 (n=99) and averaged value S.D. was 36.5±14.2 Bq/m 3 . However, the average concentration in air conditional buildings was 21.8±9.51 Bq/m 3 (n=17). Simultaneously at 65 of the radon sites, indoor particulates were collected using personal dust samplers by impaction methods. Deposited particulate concentrations on the sampler were measured and calculated in a unit of μm/m 3 . Concentrations were determined for particle sizes above and below 2.5 μm, for both smoking or non smoking sites. Consequently, concentration of particle size below 2.5 μm was high in smoking rooms. Finally, it was considered that smoking was a complex indoor pollutant as adherence of radon daughter to aerosols. (author)

  5. A Study on Public Opinion Poll and Policy on Indoor Air Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.S.; Lee, H.S.; Kong, S.Y.; Ku, H.J. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    The purpose of this study is to review previous studies on indoor air pollution and to propose national strategies and policy measures for protecting public health from indoor air pollution based on the results of public survey research. Indoor air has the potential to be polluted by hazardous materials that might lead to serious health problems. It is well known that the indoor spaces are more polluted than outdoor ones, which can be a major health problem for those that live in urban areas who spend most of their time indoors. In Korea, studies on indoor air pollution are usually conducted under the auspices of academic research, which only focus on particular types of indoor spaces and certain concepts of indoor air quality. Thus, at present, the studies on the policies or policy measures concerning indoor air quality management are difficult to find in the country. The governmental agencies that are presently involved in the management of indoor air quality include: the Ministry of Health and Welfare, Ministry of Construction and Transportation, Ministry of Education and Human Resources Development, and Ministry of Environment. However, due to differing regulatory standards between the concerned agencies, the national management of indoor air quality has so far proven to be ineffective. Although the Ministry of Environment recently proposed a law to manage indoor air quality, it is only focuses on managing particular types of indoor spaces not regulated by other governmental bodies and is not effective in the effort towards a national managing system for indoor air pollution. According to a survey conducted by the Korea Environment Institute (KEI), the residents of the Seoul metropolitan area have been felt that environmental pollution negatively affects their health, and especially consider outdoor air pollution to be the most harmful type of pollution. Although these urban residents spend more than 20 hours a day indoors, the survey shows that they do not

  6. Empirical Analysis and Characterization of Indoor GPS Signal Fading and Multipath Conditions

    DEFF Research Database (Denmark)

    Blunck, Henrik; Kjærgaard, Mikkel Baun; Godsk, Torben

    2009-01-01

    of earlier measurement campaigns to characterize GNSS signal conditions in indoor environments have been published prominently in the GNSS research literature, see, e.g. [1,2,3]. To allow for in-depth signal analysis, these campaigns use a variety of measuring machinery such as channel sounders, mobile...... signal generators and spectrum analyzers. Furthermore, the use-case-specific usability of GPS as an indoor positioning technology as been evaluated empirically on a higher level, see, e.g. [4]. In this paper we present results of a measurement campaign, designed to characterize indoor GNSS signal...... conditions. The work presented can therefore be seen as an effort to the campaigns mentioned above. As the focus of our work lies on the real-world usability of current GNSS technology for indoor use, we employ in our measurement campaign foremost commercial receivers with features, typical for the use cases...

  7. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    Science.gov (United States)

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  8. Immediate impact of smoke-free laws on indoor air quality.

    Science.gov (United States)

    Lee, Kiyoung; Hahn, Ellen J; Riker, Carol; Head, Sara; Seithers, Peggy

    2007-09-01

    Smoke-free laws significantly impact indoor air quality. However, the temporal effects of these laws on indoor air pollution have not been determined. This paper assesses the temporal impact of one smoke-free law on indoor air quality. This quasi-experimental study compared the indoor air quality of nine hospitality venues and one bingo hall in Georgetown, Kentucky, before and after implementation of a 100% smoke-free workplace law. We made real-time measurements of particulate matter with 2.5 microm aerodynamic diameter or smaller (PM2.5). Among the nine Georgetown hospitality venues, the average indoor PM2.5 concentration was 84 microg/m3 before the law took effect. The average indoor PM2.5 concentrations in nine compliant venues significantly decreased to 18 microg/m3 one week after the law took effect. Three venues having 82 microg/m3 before the law had significantly lower levels from the first day the law was implemented, and the low level was maintained. Compliance with the law is critical to achieving clean indoor air. Indoor air pollution in the bingo hall was not reduced until the establishment decided to comply with the law. The smoke-free law showed immediate impact on indoor air quality.

  9. Enabling Indoor Location-Based Services

    DEFF Research Database (Denmark)

    Radaelli, Laura

    Indoor spaces have always attracted interest from different scientific disciplines. Relatively recent interest in indoor settings by computer scientists is driven in part by the increasing use of smartphones, which serve as a platform for service delivery and can generate extensive volumes...... of trajectory data that can be used to study how people actually use indoor spaces. In this dissertation, we contribute partial solutions that address challenges in indoor positioning and indoor trajectory management and analysis. The key enabler of indoor location-based services and indoor movement analysis...... is a well-functioning positioning system that can be easily deployed in most public places. Different technologies are able to provide indoor positioning with different accuracy and coverage, but it is difficult to find a technology that by itself can provide good positioning in the many different layouts...

  10. Addiction to indoor tanning: relation to anxiety, depression, and substance use.

    Science.gov (United States)

    Mosher, Catherine E; Danoff-Burg, Sharon

    2010-04-01

    To assess the prevalence of addiction to indoor tanning among college students and its association with substance use and symptoms of anxiety and depression. Two written measures, the CAGE (Cut down, Annoyed, Guilty, Eye-opener) Questionnaire, used to screen for alcoholism, and the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) (DSM-IV-TR) criteria for substance-related disorders, were modified to evaluate study participants for addiction to indoor tanning. Standardized self-report measures of anxiety, depression, and substance use also were administered. A large university (approximately 18 000 students) in the northeastern United States. A total of 421 college students were recruited from September through December 2006. Self-reported addiction to indoor tanning, substance use, and symptoms of anxiety and depression. Among 229 study participants who had used indoor tanning facilities, 90 (39.3%) met DSM-IV-TR criteria and 70 (30.6%) met CAGE criteria for addiction to indoor tanning. Students who met DSM-IV-TR and CAGE criteria for addiction to indoor tanning reported greater symptoms of anxiety and greater use of alcohol, marijuana, and other substances than those who did not meet these criteria. Depressive symptoms did not significantly vary by indoor tanning addiction status. Findings suggest that interventions to reduce skin cancer risk should address the addictive qualities of indoor tanning for a minority of individuals and the relationship of this behavior to other addictions and affective disturbance.

  11. Behaviors of radon in indoor environment

    International Nuclear Information System (INIS)

    Mochizuki, Sadamu; Shimo, Michikuni.

    1987-01-01

    The source of radon ( 222 Rn) in the atmosphere is radioactive nuclide, uranium ( 238 U), which exists fairly common throughout the earth's crust. Radium ( 226 Ra) descended from uranium produce radon ( 222 Rn) of noble gas by decay. After formation in the ground, radon diffuses into the atmosphere. Without exception radon decay products are heavy metals which soon become attached to natural aerosols. Therefore, radon and its daughters (decay products) appear also in indoor environment, and generally, their concentration levels become higher than that of outdoor air due to build-up effects in the closed indoor environments. With the progress of the study on the influence of radon and its daughers on human health, it has become clear that they act effectively as an exciting cause of lung cancer. So, the study on the risk evaluation of them in room air has become to be very important. Concequently, the behaviors of radon and its daughters in indoor environment, first of all, should be studied in detail for the accurate estimation of the risk caused by them. In this special edition, fundamental characteristics of radon and its daughters, some measuring methods, theoretical considerations and some observational evidences obtained from various circumstances of indoor environment are described inorder to grasp and understand the behaviors of radon and its daughters in the indoor environment. (author)

  12. Indoor environmental quality in French dwellings and building characteristics

    Science.gov (United States)

    Langer, Sarka; Ramalho, Olivier; Derbez, Mickaël; Ribéron, Jacques; Kirchner, Severine; Mandin, Corinne

    2016-03-01

    A national survey on indoor environmental quality covering 567 residences in mainland France was performed during 2003-2005. The measured parameters were temperature, relative humidity, CO2, and the indoor air pollutants: fourteen individual volatile organic compounds (VOC), four aldehydes and particulate matter PM10 and PM2.5. The measured indoor concentrations were analyzed for correlations with the building characteristics: type of dwelling, period of construction, dwelling location, type of ventilation system, building material, attached garage and retrofitting. The median night time air exchange rate (AER) for all dwellings was 0.44 h-1. The night time AER was higher in apartments (median = 0.49 h-1) than in single-family houses (median = 0.41 h-1). Concentration of formaldehyde was approximately 30% higher in dwellings built after 1990 compared with older ones; it was higher in dwellings with mechanical ventilation and in concrete buildings. The VOC concentrations depended on the building characteristics to various extents. The sampling season influenced the majority of the indoor climate parameters and the concentrations of the air pollutants to a higher degree than the building characteristics. Multivariate linear regression models revealed that the indoor-outdoor difference in specific humidity, a proxy for number of occupants and their indoor activities, remained a significant predictor for most gaseous and particulate air pollutants. The other strong predictors were outdoor concentration, smoking, attached garage and AER (in descending order).

  13. Development and evaluation of oral Cancer quality-of-life questionnaire (QOL-OC).

    Science.gov (United States)

    Nie, Min; Liu, Chang; Pan, Yi-Chen; Jiang, Chen-Xi; Li, Bao-Ru; Yu, Xi-Jie; Wu, Xin-Yu; Zheng, Shu-Ning

    2018-05-03

    In this study scales and items for the Oral Cancer Quality-of-life Questionnaire (QOL-OC) were designed and the instrument was evaluated. The QOL-OC was developed and modified using the international definition of quality of life (QOL) promulgated by the European Organization for Research and Treatment of Cancer (EORTC) and analysis of the precedent measuring instruments. The contents of each item were determined in the context of the specific characteristics of oral cancer. Two hundred thirteen oral cancer patients were asked to complete both the EORTC core quality of life questionnaire (EORTC QLC-C30) and the QOL-OC. Data collected was used to conduct factor analysis, test-retest reliability, internal consistency, and construct validity. Questionnaire compliance was relatively high. Fourteen of the 213 subjects accepted the same tests after 24 to 48 h demonstrating a high test-retest reliability for all five scales. Overall internal consistency surpasses 0.8. The outcome of the factor analysis coincides substantially with our theoretical conception. Each item shows a higher correlation coefficient within its own scale than the others which indicates high construct validity. QOL-OC demonstrates fairly good statistical reliability, validity, and feasibility. However, further tests and modification are needed to ensure its applicability to the quality-of-life assessment of Chinese oral cancer patients.

  14. Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Adyati Pradini Yudison

    2015-07-01

    Full Text Available People living near busy roads are potentially exposed to traffic-induced air pollutants. The pollutants may intrude into the indoor environment, causing health risks to the occupants. Prediction of pollutant exposure therefore is of great importance for impact assessment and policy making related to environmentally sustainable transport. This study involved the selection of spatial interpolation methods that can be used for prediction of indoor air quality based on outdoor pollutant mapping without indoor measurement data. The research was undertaken in the densely populated area of Karees, Bandung, Indonesia. The air pollutant NO2 was monitored in this area as a preliminary study. Nitrogen dioxide concentrations were measured by passive diffusion tube. Outdoor NO2 concentrations were measured at 94 locations, consisting of 30 roadside and 64 outdoor locations. Residential indoor NO2 concentrations were measured at 64 locations. To obtain a spatially continuous air quality map, the spatial interpolation methods of inverse distance weighting (IDW and Kriging were applied. Selection of interpolation method was done based on the smallest root mean square error (RMSE and standard deviation (SD. The most appropriate interpolation method for outdoor NO2 concentration mapping was Kriging with an SD value of 5.45 µg/m3 and an RMSE value of 5.45 µg/m3, while for indoor NO2 concentration mapping the IDW was best fitted with an RMSE value of 5.92 µg/m3 and an SD value of 5.92 µg/m3.

  15. Indoor environment and pupils' health in primary schools

    DEFF Research Database (Denmark)

    van Dijken, F.; van Bronswijk, J.E.M.H.; Sundell, Jan

    2006-01-01

    the associations between indoor environmental quality in Dutch schools and pupils' health, also taking into account the children's home environment and personal factors. A cross-sectional study was performed in 11 classrooms in 11 different schools in the Netherlands. The study included exposure measurements......Dutch children are legally bound to spend 15% of their time in a school setting. The indoor environment in Dutch primary schools is known to be substandard. However, it is unclear to what extent the health of pupils is affected by the indoor school environment. The paper aims to assess......, building inspections, and a questionnaire survey on pupils' health and domestic exposure. Principal Component Analysis (PCA) and non-parametric tests were performed to assess relationships. None of the schools complied with all indoor environmental quality standards. The importance of both the school...

  16. Design Criteria for Achieving Low Radon Concentration Indoors

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2016-01-01

    Design criteria for achieving low radon concentration indoors are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most...... countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. Three criteria when used can prevent radon infiltration and lower...... the radon concentration in the indoor air. In addition, a cheap and reliable method for measuring the radon concentration in the air indoors is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause...

  17. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses.

    Science.gov (United States)

    Weisel, Clifford P; Zhang, Junfeng; Turpin, Barbara J; Morandi, Maria T; Colome, Steven; Stock, Thomas H; Spektor, Dalia M; Korn, Leo; Winer, Arthur M; Kwon, Jaymin; Meng, Qing Yu; Zhang, Lin; Harrington, Robert; Liu, Weili; Reff, Adam; Lee, Jong Hoon; Alimokhtari, Shahnaz; Mohan, Kishan; Shendell, Derek; Jones, Jennifer; Farrar, L; Maberti, Slivia; Fan, Tina

    2005-11-01

    This study on the relationships of indoor, outdoor, and personal air (RIOPA) was undertaken to collect data for use in evaluating the contribution of outdoor sources of air toxics and particulate matter (PM) to personal exposure. The study was not designed to obtain a population-based sample, but rather to provide matched indoor, outdoor, and personal concentrations in homes that varied in their proximity to outdoor pollution sources and had a wide range of air exchange rates (AERs). This design allowed examination of relations among indoor, outdoor, and personal concentrations of air toxics and PM across a wide range of environmental conditions; the resulting data set obtained for a wide range of environmental pollutants and AERs can be used to evaluate exposure models. Approximately 100 households with residents who do not smoke participated in each of three cities in distinct locations expected to have different climates and housing characteristics: Elizabeth, New Jersey; Houston, Texas; and Los Angeles County, California. Questionnaires were administered to characterize homes, neighborhoods, and personal activities that might affect exposures. The concentrations of a suite of volatile organic compounds (VOCs) and carbonyl compounds, as well as the fraction of airborne particulate matter with a mass median aerodynamic diameter personal air samples were collected simultaneously. During the same 48-hour period, the AER (exchanges/hr; x hr(-1)) was determined in each home, and carbonyl compounds were measured inside vehicle cabins driven by a subset of the participants. In most of the homes, measurements were made twice, during two different seasons, to obtain a wide distribution of AERs. This report presents in detail the data collection methods, quality control measures, and initial analyses of data distributions and relations among indoor, outdoor, and personal concentrations. The results show that indoor sources dominated personal and indoor air concentrations

  18. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    Science.gov (United States)

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  19. Updated O-C Diagrams for Several Bright HW Vir Binaries Observed with the Evryscope

    Science.gov (United States)

    Corcoran, Kyle A.; Barlow, Brad; Corbett, Hank; Fors, Octavi; Howard, Ward S.; Law, Nicholas; Ratzloff, Jeff

    2018-01-01

    HW Vir systems are eclipsing, post-common-envelope binaries consisting of a hot subdwarf star and a cooler M dwarf or brown dwarf companion. They show a strong reflection effect and have characteristically short orbital periods of only a few hours, allowing observers to detect multiple eclipses per night. Observed minus calculated (O-C) studies allow one to measure miniscule variations in the orbital periods of these systems by comparing observed eclipse timings to a calculated ephemeris. This technique is useful for detecting period changes due to secular evolution of the binary, gravitational wave emission, or reflex motion from an orbiting circumbinary object. Numerous eclipse timings obtained over several years are vital to the proper interpretation and analysis of O-C diagrams. The Evryscope – an array of twenty-four individual telescopes built by UNC and deployed on Cerro Tololo – images the entire Southern sky once every two minutes, producing an insurmountable amount of data for objects brighter than 16th magnitude. The cadence with which Evryscope exposes makes it an unparalleled tool for O-C analyses of HW Vir binaries; it will catalogue thousands of eclipses over the next several years. Here we present updated O-C diagrams for several HW Vir binaries using recent measurements from the Evryscope. We also use observations of AA Dor, an incredibly stable astrophysical clock, to characterize the accuracy of the Evryscope’s timestamps.

  20. Menstrual cyclicity post OC withdrawal in PCOS: Use of non-hormonal options.

    Science.gov (United States)

    Kulshreshtha, Bindu; Arora, Arpita; Pahuja, Isha; Sharma, Neera; Pant, Shubhi

    2016-08-01

    There is no data on menstrual cyclicity post oral contraceptive (OC) withdrawal with nonhormonal options in PCOS patients. OC could affect obesity, insulin and gonadotropins factors integral to pathogenesis of PCOS, thereby adversely affecting the HPG axis. Menstrual cycles of PCOS patients were retrospectively studied post OCP. Patients developing regular versus irregular cycles post OC were compared. Forty-eight PCOS patients were followed for an average of 1.9 years post OC. Thirty-six (75%) achieved regular cycles over a period of one year with other nonhormonal options like spironolactone and metformin. Seven patients required no treatment. Patients who continued to have irregular cycles had a longer pre OC cycle length (p PCOS may not require any treatment post OC.

  1. Towards Mobile Information Systems for Indoor Space

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Zhang

    2016-01-01

    Full Text Available With the rapid development of Internet of things (IOT and indoor positioning technologies such as Wi-Fi and RFID, indoor mobile information systems have become a new research hotspot. Based on the unique features of indoor space and urgent needs on indoor mobile applications, in this paper we analyze some key issues in indoor mobile information systems, including positioning technologies in indoor environments, representation models for indoor spaces, query processing techniques for indoor moving objects, and index structures for indoor mobile applications. Then, we present an indoor mobile information management system named IndoorDB. Finally, we give some future research topics about indoor mobile information systems.

  2. Novel Received Signal Strength-Based Indoor Location System: Development and Testing

    Directory of Open Access Journals (Sweden)

    Álvarez Yuri

    2010-01-01

    Full Text Available A received signal strength- (RSS-based indoor location method (ILS for person/assets location in indoor scenarios is presented in this paper. Theoretical bases of the method are the integral equations relating the electromagnetic (EM fields with their sources, establishing a cost function relating the measured field at the receivers and the unknown position of the transmitter. The aim is to improve the EM characterization of the scenario yielding in a more accurate indoor location method. Regarding network infrastructure implementation, a set of receivers are deployed through the coverage area, measuring the RSS value from a transmitter node which is attached to the asset to be located. The location method is evaluated in several indoor scenarios using portable measurement equipment. The next step has been the network hardware implementation using a wireless sensor network: for this purpose, ZigBee nodes have been selected. Finally, RSS measurements variability due to multipath effects and nonline-of-sight between transmitter and receiver nodes is mitigated using calibration and a correction based on the difference between the free space field decay law and the measured RSS.

  3. Evolution of the indoor biome.

    Science.gov (United States)

    Martin, Laura J; Adams, Rachel I; Bateman, Ashley; Bik, Holly M; Hawks, John; Hird, Sarah M; Hughes, David; Kembel, Steven W; Kinney, Kerry; Kolokotronis, Sergios-Orestis; Levy, Gabriel; McClain, Craig; Meadow, James F; Medina, Raul F; Mhuireach, Gwynne; Moreau, Corrie S; Munshi-South, Jason; Nichols, Lauren M; Palmer, Clare; Popova, Laura; Schal, Coby; Täubel, Martin; Trautwein, Michelle; Ugalde, Juan A; Dunn, Robert R

    2015-04-01

    Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Indoor air: Reference bibliography

    International Nuclear Information System (INIS)

    Campbell, D.; Staves, D.; McDonald, S.

    1989-07-01

    The U. S. Environmental Protection Agency initially established the indoor air Reference Bibliography in 1987 as an appendix to the Indoor Air Quality Implementation Plan. The document was submitted to Congress as required under Title IV--Radon Gas and Indoor Air Quality Research of the Superfund Amendments and Reauthorization Act of 1986. The Reference Bibliography is an extensive bibliography of reference materials on indoor air pollution. The Bibliography contains over 4500 citations and continues to increase as new articles appear

  5. The effect of proximity to major roads on indoor air quality in typical Australian dwellings

    Science.gov (United States)

    Lawson, Sarah J.; Galbally, Ian E.; Powell, Jennifer C.; Keywood, Melita D.; Molloy, Suzie B.; Cheng, Min; Selleck, Paul W.

    2011-04-01

    An Indoor Air Quality Study of residential dwellings was carried out in Melbourne, Australia, and a subset of the data was analysed to investigate the effect of proximity to major roads on indoor air quality (IAQ). Seven-day measurements of PM 10, NO 2, benzene, toluene, ethylbenzene and xylenes, along with continuous CO and PM 2.5 measurements were utilised. The measurements were made indoors and outdoors in 27 dwellings; 15 Near Road (300 m from a major road). Dwellings were sampled for one week each in Winter/Spring 2008 and Summer/Autumn 2009, over an eight month period. Analysis of 7-day measurements showed that NO 2 and toluene were elevated at the 5% significance level both indoors and outdoors at Near Road Dwellings compared to Far Road Dwellings. Indoor/Outdoor (I/O) ratios of NO 2 and toluene were not significantly different between Near and Far Road dwellings giving no evidence of any anomalous dominant indoor source for NO 2 and toluene in Near Road dwellings. Indoor NO 2 was significantly correlated to gas stovetop and oven use in both Near and Far Road dwellings. In the absence of gas cooking, indoor NO 2 was elevated in Near Road dwellings relative to Far Road dwellings by approximately 4 ppb and this can be attributed to infiltration of outdoor air. I/O ratios for NO 2 were 2 indicating that indoor sources dominate with minor contribution from outdoors. Hence the relative contribution of roadways to indoor NO 2 is potentially greater than the relative contribution of roadways to indoor toluene. Findings elsewhere suggest that a similar outdoor enhancement of traffic related NO 2 (˜5 ppb) increases risk of lung cancer and childhood asthma ( Brauer et al., 2000; Nyberg et al., 2000). A simple conceptual model indicated spatial and temporal variance in the concentrations was the biggest limitation in detecting roadway influence outside Near Road dwellings for PM 10, PM 2.5 and NO 2 while measurement uncertainty was also important for CO.

  6. Effect of home construction on indoor radon in Virginia and Maryland

    International Nuclear Information System (INIS)

    Mushrush, G.W.; Mose, D.G.

    1988-01-01

    The levels of indoor radon in approximately 500 homes located in two contiguous counties of northern Virginia and southern Maryland have been measured during four consecutive, three month seasonal intervals using alpha-track detectors. These two counties represent an area of about 700 square miles. Results from the winter period show that the indoor radon levels were about twice as high as anticipated. In some areas, more than 50% of the homes had winter indoor radon levels above 4 pCi/liter, the EPA's recommended action level. For the spring and fall periods, indoor radon levels showed a considerable drop with approximately 35% of the homes above 4 pCi/L. Summer values were even lower with approximately 25% of the homes above 4 pCi/L.Indoor radon can be related to the weather, but home construction demonstrably determines indoor radon levels

  7. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  8. Impact of indoor surface material on perceived air quality.

    Science.gov (United States)

    Senitkova, I

    2014-03-01

    The material combination impact on perceived indoor air quality for various surface interior materials is presented in this paper. The chemical analysis and sensory assessments identifies health adverse of indoor air pollutants (TVOCs). In this study, emissions and odors from different common indoor surface materials were investigated in glass test chamber under standardized conditions. Chemical measurements (TVOC concentration) and sensory assessments (odor intensity, air acceptability) were done after building materials exposure to standardized conditions. The results of the chemical and sensory assessment of individual materials and their combinations are compared and discussed within the paper. The using possibility of individual material surface sorption ability was investigated. The knowledge of targeted sorption effects can be used in the interior design phase. The results demonstrate the various sorption abilities of various indoor materials as well as the various sorption abilities of the same indoor material in various combinations. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Exposure to unusually high indoor radon levels

    International Nuclear Information System (INIS)

    Rasheed, F.N.

    1993-01-01

    Unusually high indoor radon concentrations were reported in a small village in western Tyrol, Austria. The authors have measured the seasonal course of indoor radon concentrations in 390 houses of this village. 71% of houses in winter and 33% in summer, showed radon values on the ground floor above the Austrian action level of 400 Bq/cm 3 . This proportion results in an unusually high indoor radon exposure of the population. The radon source was an 8,700-year-old rock slide of granite gneiss, the largest of the alpine crystalline rocks. It has a strong emanating power because its rocks are heavily fractured and show a slightly increased uranium content. Previous reports show increased lung cancer mortality, myeloid leukemia, kidney cancer, melanoma, and prostate cancer resulting from indoor radon exposure. However, many studies fail to provide accurate information on indoor radon concentrations, classifying them merely as low, intermediate, and high, or they record only minor increases in indoor radon concentrations. Mortality data for 1970-91 were used to calculate age and sex standardized mortality rates (SMR) for 51 sites of carcinoma. The total population of Tyrol were controls. A significantly higher risk was recorded for lung cancer. The high SMR for lung cancer in female subjects is especially striking. Because the numbers were low for the other cancer sites, these were combined in one group to calculate the SMR. No significant increase in SMR was found for this group

  10. Player Monitoring in Indoor Team Sports: Concurrent Validity of Inertial Measurement Units to Quantify Average and Peak Acceleration Values

    Directory of Open Access Journals (Sweden)

    Mareike Roell

    2018-02-01

    Full Text Available The increasing interest in assessing physical demands in team sports has led to the development of multiple sports related monitoring systems. Due to technical limitations, these systems primarily could be applied to outdoor sports, whereas an equivalent indoor locomotion analysis is not established yet. Technological development of inertial measurement units (IMU broadens the possibilities for player monitoring and enables the quantification of locomotor movements in indoor environments. The aim of the current study was to validate an IMU measuring by determining average and peak human acceleration under indoor conditions in team sport specific movements. Data of a single wearable tracking device including an IMU (Optimeye S5, Catapult Sports, Melbourne, Australia were compared to the results of a 3D motion analysis (MA system (Vicon Motion Systems, Oxford, UK during selected standardized movement simulations in an indoor laboratory (n = 56. A low-pass filtering method for gravity correction (LF and two sensor fusion algorithms for orientation estimation [Complementary Filter (CF, Kalman-Filter (KF] were implemented and compared with MA system data. Significant differences (p < 0.05 were found between LF and MA data but not between sensor fusion algorithms and MA. Higher precision and lower relative errors were found for CF (RMSE = 0.05; CV = 2.6% and KF (RMSE = 0.15; CV = 3.8% both compared to the LF method (RMSE = 1.14; CV = 47.6% regarding the magnitude of the resulting vector and strongly emphasize the implementation of orientation estimation to accurately describe human acceleration. Comparing both sensor fusion algorithms, CF revealed slightly lower errors than KF and additionally provided valuable information about positive and negative acceleration values in all three movement planes with moderate to good validity (CV = 3.9 – 17.8%. Compared to x- and y-axis superior results were found for the z-axis. These findings demonstrate that

  11. Indoor radon and environmental gamma radiation in Hong Kong

    International Nuclear Information System (INIS)

    Yu, K.N.; Young, E.C.M.; Stokes, M.J.; Luo, D.L.; Zhang, C.X.

    1992-01-01

    Activated charcoal canisters have been used to measured the indoor radon concentrations of 160 sites in different buildings in Hong Kong during the period from July to October 1990. The average value is 40.0 Bq.m -3 . Furthermore, CR-39 nuclear track detectors and two kinds of LiF TLDs have been used to measure the average indoor radon concentrations and the absorbed gamma dose rates in air of 71 sites over the period from January to April 1991. The results all show log-normal distribution. The indoor radon concentrations are respectively 72.2 Bq.m -3 and 155.4 Bq.m -3 for dwellings and offices, while the absorbed gamma dose rates in air are respectively 213.0 nGy.h -1 and 198.3 nGy.h -1 . (author)

  12. Indoor Environmental Quality Benefits of Apartment Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Noris, Federico [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Adamkiewicz, Gary [Harvard School of Public Health, Boston MA (United States); Delp, William W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spears, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vermeer, Kimberly [Urban Habitate Initiatives Inc., Boston, MA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-06-01

    Sixteen apartments serving low-income populations in three buildings were retrofit with the goal of simultaneously reducing energy consumption and improving indoor environmental quality (IEQ). Retrofit measures varied among apartments and included, among others, envelope sealing, installation of continuous mechanical ventilation systems, upgrading bathroom fans and range hoods, attic insulation, replacement of heating and cooling systems, and adding wall-mounted particle air cleaners. IEQ parameters were measured, generally for two one-week periods before and after the retrofits. The measurements indicate an overall improvement in IEQ conditions after the retrofits. Comfort conditions, bathroom humidity, and concentrations of carbon dioxide, acetaldehyde, volatile organic compounds, and particles generally improved. Formaldehyde and nitrogen dioxide levels decreased in the building with the highest concentrations, were unchanged in a second building, and increased in a third building. IEQ parameters other than particles improved more in apartments with continuous mechanical ventilation systems installed. In general, but not consistently, larger percent increases in air exchange rates were associated with larger percent decreases in indoor levels of the pollutants that primarily come from indoor sources.

  13. Indoor climate design for a monumental building with incidental high indoor moisture loads

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2005-01-01

    The paper presents a study of the indoor climate of a monumental building with periodic high indoor moisture loads. Several scenarios of the past performance and new control classes are simulated and evaluated. The results include the influence of hygric inertia on the indoor climate and

  14. Uncertainty Analysis of OC5-DeepCwind Floating Semisubmersible Offshore Wind Test Campaign: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-26

    This paper examines how to assess the uncertainty levels for test measurements of the Offshore Code Comparison, Continued, with Correlation (OC5)-DeepCwind floating offshore wind system, examined within the OC5 project. The goal of the OC5 project was to validate the accuracy of ultimate and fatigue load estimates from a numerical model of the floating semisubmersible using data measured during scaled tank testing of the system under wind and wave loading. The examination of uncertainty was done after the test, and it was found that the limited amount of data available did not allow for an acceptable uncertainty assessment. Therefore, this paper instead qualitatively examines the sources of uncertainty associated with this test to start a discussion of how to assess uncertainty for these types of experiments and to summarize what should be done during future testing to acquire the information needed for a proper uncertainty assessment. Foremost, future validation campaigns should initiate numerical modeling before testing to guide the test campaign, which should include a rigorous assessment of uncertainty, and perform validation during testing to ensure that the tests address all of the validation needs.

  15. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    Science.gov (United States)

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  16. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  17. Effect of fresh air ventilation on indoor radon concentration

    International Nuclear Information System (INIS)

    Sun Hao; Wu Jianhua; Fu Shi

    2012-01-01

    The radon concentration of laboratory for radon simulation (LRS) was measured by the RAD7 radon monitor, and the effect of the different fresh air ventilations on indoor radon concentration was studied and analyzed. The indoor radon concentration of LRS can be accumulated up to 2000 Bq/m 3 and the average radon exhalation rate of the LRS is 14.5 Bq · m -2 . h -1 . Furthermore, when the fresh air enters into the LRS continuously, the indoor radon concentration decreases exponentially with the increase of time. The equilibrium radon concentration and equilibrium time of LRS decrease exponentially with the increase of the rate of fresh air ventilation. In addition, the indoor radon concentration increases by accumulation with the decrease of the rate of fresh air ventilation. (authors)

  18. Indoor radon measurements in the dwellings of Kangra District of Himachal Pradesh, India, using LR-115 nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dhiman, M. [Punjab Technical University (India); Mehra, R. [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology (India); Tyagi, A.K. [Department of Applied Sciences, Shaheed Bhagat Singh College of Engineering and Technology (India)

    2014-07-01

    Study of indoor radon was carried out in the domestic environment of 15 villages of Kangra district of Himachal Pradesh, India. Time integrated track etch technique has been used for the measurement of indoor radon levels. Bare cellulose nitrate LR-115 type II films have been used as detectors in the survey of indoor radon for four seasons of three months each covering a period of one year from March 2012 to March 2013. The houses were chosen randomly in such a way that the dwellings constructed with different types of building materials such as soil, bricks, cement, marble, concrete, wood in different localities of the village are covered. It has been found that indoor radon concentration depends upon the type of house, ventilation condition etc. The calibration constant of 1 track cm{sup -2} day{sup -1} which is equal to 50 Bqm{sup -3} has been used to express radon concentration in Bqm{sup -3}. The conversion factors have been used to calculate the exposure (an exposure of an individual to radon progeny of 1 WLM is equivalent to 3.54 mJ h m{sup -3}), the annual effective dose (1 WLM=3.88 mSv) and the lifetime fatality risk (3 x 10{sup -4} WLM). Indoor radon concentrations were found to vary from 132.25 Bqm{sup -3} to 449.75 Bqm{sup -3} with an average value of 261.40 Bqm{sup -3}. Annual effective dose in these dwellings were found to vary form 2.78 mSv to 7.68 mSv with an average value of 4.5 mSv. The average radon concentration in dwellings in most of the villages falls in the action level (200-600 Bqm{sup -3}) recommended by International Commission on Radiological Protection. Document available in abstract form only. (authors)

  19. FDA Proposes New Safety Measures for Indoor Tanning Devices: The Facts

    Science.gov (United States)

    ... Related Consumer Updates Indoor Tanning: The Risks of Ultraviolet Rays 5 Tips for a Healthy Vacation More in Consumer Updates Animal & Veterinary Children's Health Cosmetics Dietary Supplements Drugs Food Medical Devices Nutrition Radiation-Emitting Products Tobacco Products ...

  20. Impact of intentionally introduced sources on indoor VOC levels

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.S. [BOVAR Environmental, Downsview, Ontario (Canada); Otson, R. [Health Canada, Ottawa, Ontario (Canada). Environmental Health Centre

    1997-12-31

    The concentrations of 33 target volatile organic compounds (VOC) were measured in outdoor air and in indoor air before and after the introduction of dry-cleaned clothes, and consumer products into two suburban homes. Emissions from the household products (air fresheners, furniture polishes, mothballs, and dry-cleaned clothes), showering, and two paints were analyzed to obtain source profiles. There were measurable increases in the 24 h average concentrations for 10 compounds in one house and 8 compounds in the second house after introduction of the sources. A contribution by showering to indoor VOC was not evident although the impact of the other sources and outdoor air could be discerned, based on results for the major constituents of source emissions. Also, contributions by paints, applied three to six weeks prior to the monitoring, to indoor VOC concentrations were evident. The pattern of concentrations indicated that sink effects need to be considered in explaining the indoor concentrations that result when sources are introduced into homes. Quantitative estimates of the relative contributions of the sources to indoor VOC levels were not feasible through the use of chemical mass balance since the number of tracer species detected (up to 6) and that could be used for source apportionment was similar to the number of sources to be apportioned (up to 7).

  1. Unobtrusive measurement of indoor energy expenditure using an infrared sensor-based activity monitoring system.

    Science.gov (United States)

    Hwang, Bosun; Han, Jonghee; Choi, Jong Min; Park, Kwang Suk

    2008-11-01

    The purpose of this study was to develop an unobtrusive energy expenditure (EE) measurement system using an infrared (IR) sensor-based activity monitoring system to measure indoor activities and to estimate individual quantitative EE. IR-sensor activation counts were measured with a Bluetooth-based monitoring system and the standard EE was calculated using an established regression equation. Ten male subjects participated in the experiment and three different EE measurement systems (gas analyzer, accelerometer, IR sensor) were used simultaneously in order to determine the regression equation and evaluate the performance. As a standard measurement, oxygen consumption was simultaneously measured by a portable metabolic system (Metamax 3X, Cortex, Germany). A single room experiment was performed to develop a regression model of the standard EE measurement from the proposed IR sensor-based measurement system. In addition, correlation and regression analyses were done to compare the performance of the IR system with that of the Actigraph system. We determined that our proposed IR-based EE measurement system shows a similar correlation to the Actigraph system with the standard measurement system.

  2. Relationships in indoor/outdoor air pollution

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    Beryllium-7 and sulphurhexaflourid has been used as tracers in measurements designed to enable an estimate of the ratio of the outdoor to indoor time-integrated concentration for aerosols and non-reactive gasses of outdoor origin with a special reference to the reduction in inhalation dose that can be achieved by staying indoors during a pollution episode, especially a reactor accident. The effect of operating a vacuum cleaner during the pollution episode and airing shortly after is also investigated. Earlier relevant literature is reviewed and shows goos agreement with the results in this study. Protection factor from 1-12 has been found. (author)

  3. Health effects from indoor air pollution: case studies.

    Science.gov (United States)

    White, L E; Clarkson, J R; Chang, S N

    1987-01-01

    In recent years there has been a growing awareness of the health effects associated with the presence of contaminants in indoor air. Numerous agents can accumulate in public buildings, homes and automobiles as a result of ongoing activities that normally occur in these closed spaces. Ventilation is a major factor in the control of indoor air pollutants since proper movement of air can prevent or minimize the build up of compounds in buildings. The recent emphasis on energy conservation has lead to measures which economize on energy for heating and air conditioning, but which also trap pollutants within a building. Three cases of indoor air pollution were investigated. A typical investigation of indoor air pollutant problems includes the following: interviews with building occupants; history of the building with regard to maintenance, pesticide treatment, etc.; a survey of the building and ventilation; and when warranted, sampling and analysis of air. Each case presented is unique in that atypical situations caused agents to accumulate in a building or section of a building. The indoor air problems in these cases were solved by identifying and removing the source of the offending agent and/or improving the ventilation in the building.

  4. Characterization of indoor and outdoor pool fires with active calorimetry

    International Nuclear Information System (INIS)

    Koski, J.A.; Gill, W.; Gritzo, L.A.; Kent, L.A.; Wix, S.D.

    1994-01-01

    A water cooled, 1 m x 1 m, vertical calorimeter panel has been used in conjunction with other fire diagnostics to characterize a 6 m x 6 m outdoor and three 3 m x 3 m indoor JP-4 pool fires. Measurements reported include calorimeter surface heat flux and surface temperatures, flame temperatures, and gas flow velocities in the fire. From the data, effective radiative absorption coefficients for various zones in the fires have been estimated. The outdoor test was conducted at Sandia's Coyote Canyon test facility, while indoor tests were conducted at the indoor SMokE Reduction Facility (SMERF) at the same location. The measurements provide data useful in calibrating simple analytic fire models intended for the analysis of packages containing hazardous materials

  5. Current Indoor Air Quality in Japan.

    Science.gov (United States)

    Jinno, Hideto

    2016-01-01

    People spend more than two thirds of their daily time indoors. Hence, maintaining a healthy indoor environment is indispensable for the prevention of building related illness. In Japan, guidelines for indoor air quality have been established for 13 volatile/semi-volatile organic compounds (VOCs/SVOCs). These guidelines are now under revision by the Committee on Sick House Syndrome: Indoor Air Pollution. In order to gain information on the current indoor air pollutants and their levels, we carried out a nation-wide survey of VOCs and aldehydes in indoor residential air during 2012-2013. In this review, I concisely summarized the current indoor air quality of Japan.

  6. Quantitative assessments of indoor air pollution and the risk of childhood acute leukemia in Shanghai

    International Nuclear Information System (INIS)

    Gao, Yu; Zhang, Yan; Kamijima, Michihiro; Sakai, Kiyoshi; Khalequzzaman, Md; Nakajima, Tamie; Shi, Rong; Wang, Xiaojin; Chen, Didi; Ji, Xiaofan; Han, Kaiyi; Tian, Ying

    2014-01-01

    We investigated the association between indoor air pollutants and childhood acute leukemia (AL). A total of 105 newly diagnosed cases and 105 1:1 gender-, age-, and hospital-matched controls were included. Measurements of indoor pollutants (including nitrogen dioxide (NO 2 ) and 17 types of volatile organic compounds (VOCs)) were taken with diffusive samplers for 64 pairs of cases and controls. Higher concentrations of NO 2 and almost half of VOCs were observed in the cases than in the controls and were associated with the increased risk of childhood AL. The use of synthetic materials for wall decoration and furniture in bedroom was related to the risk of childhood AL. Renovating the house in the last 5 years, changing furniture in the last 5 years, closing the doors and windows overnight in the winter and/or summer, paternal smoking history and outdoor pollutants affected VOC concentrations. Our results support the association between childhood AL and indoor air pollution. - Highlights: • We firstly assessed the effects of indoor air pollution on childhood AL in China. • Indoor air pollutants were assessed by questionnaire and quantitative measurements. • NO 2 and 17 types of VOCs were measured in bedrooms of both cases and controls. • Higher concentrations of indoor air pollutants increased the risk of childhood AL. • Indoor behavioral factors and outdoor pollution might affect indoor air pollution. - Higher concentrations of indoor air pollutants were related to an elevated risk of childhood AL

  7. Impact of operating wood-burning stoves on indoor air quality

    DEFF Research Database (Denmark)

    Afshari, Alireza; Jensen, Ole Michael; Bergsøe, Niels Christian

    2011-01-01

    A field study on the impact of operating and reloading wood-burning stoves on the indoor air quality was carried out during two consecutive winters. In contrast to the majority of recent studies, which focussed on the ambient air quality and the penetration of particles to the indoor air......, this study aims to understand to what extent the operation of a stove contributes to the generation of concentration of ultrafine particles in the indoor air. Therefore, different stoves were ignited in one session by the owner of the stove and in a subsequent session by an expert on wood-burning stoves....... The study was conducted in seven typical Danish detached houses without other indoor activities taking place. In each house the average air change rate during one week was measured (using passive tracer gas technique) and the indoor and outdoor temperature and relative humidity were recorded continuously...

  8. Strength of smoke-free air laws and indoor air quality.

    Science.gov (United States)

    Lee, Kiyoung; Hahn, Ellen J; Robertson, Heather E; Lee, Seongjik; Vogel, Suzann L; Travers, Mark J

    2009-04-01

    Smoke-free air laws have been implemented in many Kentucky communities to protect the public from the harmful effects of secondhand smoke exposure. The impact of different strengths of smoke-free air laws on indoor air quality was assessed. Indoor air quality in hospitality venues was assessed in seven communities before and after comprehensive smoke-free air laws and in two communities only after partial smoke-free air laws. One community was measured three times: before any smoke-free air law, after the initial partial law, and after the law was strengthened to cover all workplaces and public places with few exemptions. Real-time measurements of particulate matters with 2.5 mum aerodynamic diameter or smaller (PM(2.5)) were obtained. When comprehensive smoke-free air laws were implemented, indoor PM(2.5) concentrations decreased significantly from 161 to 20 microg/m3. In one community that implemented a comprehensive smoke-free law after initially passing a partial law, indoor PM(2.5) concentrations were 304 microg/m3 before the law, 338 microg/m3 after the partial law, and 9 microg/m3 after the comprehensive law. The study clearly demonstrated that partial smoke-free air laws do not improve indoor air quality. A significant linear trend indicated that PM(2.5) levels in the establishments decreased with fewer numbers of burning cigarettes. Only comprehensive smoke-free air laws are effective in reducing indoor air pollution from secondhand tobacco smoke.

  9. Optimal training sequences for indoor wireless optical communications

    International Nuclear Information System (INIS)

    Wang, Jun-Bo; Jiao, Yuan; Song, Xiaoyu; Chen, Ming

    2012-01-01

    Since indoor wireless optical communication (WOC) systems can offer several potential advantages over their radio frequency counterparts, there has been a growing interest in indoor WOC systems. Influenced by the complicated optical propagation environment, there exist multipath propagation phenomena. In order to eliminate the effect of multipath propagation, much attention should be concentrated on the channel estimation in indoor WOC systems. This paper investigates optimal training sequences (TSs) for estimating a channel impulse response in indoor WOC systems. Based on the Cramer–Rao bound (CRB) theorem, an explicit form of search criterion is found. Optimum TSs are obtained and tabulated by computer search for different channel responses and TS lengths. Measured by mean square error (MSE) performance, channel estimation errors are also investigated. Simulation results show that the MSE of the channel estimator at the receiver can be reduced significantly by using the optimized TS set. Moreover, the longer the TS, the better the MSE performance that can be obtained when the channel order is fixed. (paper)

  10. Continuous weeklong measurements of indoor particle levels in a Minnesota Tribal Casino Resort.

    Science.gov (United States)

    Zhou, Zheng; Bohac, David; Boyle, Raymond G

    2016-08-24

    Secondhand smoke (SHS) exposure for workers and patrons in hospitality venues is a persistent and significant public health concern. We designed this study to provide a comprehensive assessment of SHS exposure inside an Indian Tribal Casino in Minnesota. Real-time fine particulate matter (PM2.5) concentrations were measured at multiple locations for up to 7 days. The field monitoring provided information on the day of week and time of day variation of SHS exposure, as well as comparisons between smoking and non-smoking areas. Indoor PM2.5 level was nearly 13 times the concurrent outdoor PM2.5 level. Gaming floor hourly PM2.5 level was highest on Saturday night, averaged at 62.9 μg/m(3). Highest PM2.5 concentration was observed in smoking-permitted employee break room, reaching 600 μg/m(3). PM2.5 readings in non-smoking sections exhibited same temporal pattern as the readings in smoking sections. The results show that indoor concentration of PM2.5 is substantially higher than the outdoor level, posing health risks to casino workers and patrons. SHS can migrate into adjacent non-smoking areas very quickly. The casino's ventilation system did not fully eliminate SHS. A completely smoke-free casino would be the only way to fully protect non-smoking patrons and employees from the dangers of tobacco smoke.

  11. Indoor air pollution

    International Nuclear Information System (INIS)

    Anwar, J.; Hussain, F.

    2005-01-01

    Indoor air pollution after being a neglected subject for a number of years, is attracting attention recently because it is a side effect of energy crisis. About 50% of world's 6 billion population, mostly in developing countries, depend on biomass and coal in the form of wood, dung and crop residues for domestic energy because of poverty. These materials are burnt in simple stoves with incomplete combustion and infants, children and women are exposed to high levels of indoor air pollution for a considerable period, approximately between 2-4 hours daily. Current worldwide trade in wood fuel is over US $7 billion and about 2 million people are employed full time in production and marketing it. One of the most annoying and common indoor pollutant in both, developing and developed countries, is cigarette smoke. Children in gas-equipped homes had higher incidences of respiratory disease. Babies' DNA can be damaged even before they are born if their mothers breathe polluted air. Exposure to indoor air pollution may be responsible for nearly 2 million excess deaths in developing countries and for 4% of the global burden of the disease. Only a few indoor pollutants have been studied in detail. Indoor air pollution is a major health threat on which further research is needed to define the extent of the problem more precisely and to determine solutions by the policy-makers instead of neglecting it because sufferers mostly belong to Third World countries. (author)

  12. Field-free molecular orientation of nonadiabatically aligned OCS

    Science.gov (United States)

    Sonoda, Kotaro; Iwasaki, Atsushi; Yamanouchi, Kaoru; Hasegawa, Hirokazu

    2018-02-01

    We investigate an enhancement of the orientation of OCS molecules by irradiating them with a near IR (ω) ultrashort laser pulse for alignment followed by another ultrashort laser pulse for orientation, which is synthesized by a phase-locked coherent superposition of the near IR laser pulse and its second harmonic (2ω). On the basis of the asymmetry in the ejection direction of S3+ fragment ions generated by the Coulomb explosion of multiply charged OCS, we show that the extent of the orientation of OCS is significantly enhanced when the delay between the alignment pulse and the orientation pulse is a quarter or three quarters of the rotational period. The recorded enhanced orientation was interpreted well by a numerical simulation of the temporal evolution of a rotational wave packet prepared by the alignment and orientation pulses.

  13. Indoor particle levels in small- and medium-sized commercial buildings in California.

    Science.gov (United States)

    Wu, Xiangmei May; Apte, Michael G; Bennett, Deborah H

    2012-11-20

    This study monitored indoor and outdoor particle concentrations in 37 small and medium commercial buildings (SMCBs) in California with three buildings sampled on two occasions, resulting in 40 sampling days. Sampled buildings included offices, retail establishments, restaurants, dental offices, and hair salons, among others. Continuous measurements were made for both ultrafine and fine particulate matter as well as black carbon inside and outside of the building. Integrated PM(2.5), PM(2.5-10), and PM(10) samples were also collected inside and outside the building. The majority of the buildings had indoor/outdoor (I/O) particle concentration ratios less than 1.0, indicating that contributions from indoor sources are less than removal of outdoor particles. However, some of the buildings had I/O ratios greater than 1, indicating significant indoor particle sources. This was particularly true of restaurants, hair salons, and dental offices. The infiltration factor was estimated from a regression analysis of indoor and outdoor concentrations for each particle size fraction, finding lower values for ultrafine and coarse particles than for submicrometer particles, as expected. The I/O ratio of black carbon was used as a relative measure of the infiltration factor of particles among buildings, with a geometric mean of 0.62. The contribution of indoor sources to indoor particle levels was estimated for each building.

  14. Impacts of Outer Continental Shelf (OCS) development on recreation and tourism. Volume 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    The study was intended to provide the Mineral Management Service (MMS) with an analytical tool to evaluate possible economic impacts from Outer Continental Shelf (OCS) development. In particular, the study was designed to provide MMS staff who work on lease sale Energy Impact Statements with an objective technique for estimating the impacts to coastal communities from events that might occur as a result of lease sales: oil spills, onshore construction, and construction of platforms offshore. The project had several specific objectives: (1) provide profiles of 1982 socio-economic conditions in coastal communities, including an analysis of the relative importance of the tourist industry in each coastal county; (2) develop a methodology for determining the effects of OCS development on coastal recreation; and recommend mitigation measure that may reduce the negative effect of OCS development on coastal recreation using gravity and economic effects models.

  15. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Reda, Ibrahim; Robinson, Justin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibrated indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.

  16. Current implications of past DDT indoor spraying in Oman.

    Science.gov (United States)

    Booij, Petra; Holoubek, Ivan; Klánová, Jana; Kohoutek, Jiří; Dvorská, Alice; Magulová, Katarína; Al-Zadjali, Said; Čupr, Pavel

    2016-04-15

    In Oman, DDT was sprayed indoors during an intensive malaria eradication program between 1976 and 1992. DDT can remain for years after spraying and is associated with potential health risk. This raises the concern for human exposure in areas where DDT was used for indoor spraying. Twelve houses in three regions with a different history of DDT indoor spraying were chosen for a sampling campaign in 2005 to determine p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and p,p'-dichlorodiphenyldichloroethane (p,p'-DDD) levels in indoor air, dust, and outdoor soil. Although DDT was only sprayed indoor, p,p'-DDT, p,p'-DDE and p,p'-DDD were also found in outdoor soil. The results indicate that release and exposure continue for years after cessation of spraying. The predicted cancer risk based on concentrations determined in 2005, indicate that there was still a significant cancer risk up to 13 to 16years after indoor DDT spraying. A novel approach, based on region-specific half-lives, was used to predict concentrations in 2015 and showed that more than 21years after spraying, cancer risk for exposure to indoor air, dust, and outdoor soil are acceptable in Oman for adults and young children. The model can be used for other locations and countries to predict prospective exposure of contaminants based on indoor experimental measurements and knowledge about the spraying time-schedule to extrapolate region-specific half-lives and predict effects on the human population years after spraying. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Indoor air quality: The hidden side of the indoor environment

    NARCIS (Netherlands)

    Oliveira Fernandes, E. de; Bluyssen, P.M.; Clausen, G.H.

    1996-01-01

    The physical environment can be defined and understood in manv different ways, both from its nature, e.g., thermal, accoustic, etc., or its dimension, e.g., global, local, urban, indoors. The indoor environment is much more than the space or the light effects; it is the result of a complex

  18. Radon concentration in indoor occupational environments in Aomori Prefecture, Japan

    International Nuclear Information System (INIS)

    Iyogi, T.; Ueda, S.; Hisamatsu, S.; Kondo, K.; Sakurai, N.; Inaba, J.

    2003-01-01

    The 222 Rn concentrations in indoor workplaces were measured in Aomori Prefecture, Japan, and the results are reported here. This survey was part of a program to measure background natural radiation dose rate in the prefecture where the first Japanese nuclear fuel cycling facilities are now under construction. The survey of the 222 Rn concentrations in indoor workplaces was carried out at 107 locations from 1996 to 1998. The 222 Rn concentrations were measured for approximately one year at each site with passive Rn detectors, which used a polycarbonate film for counting α-rays and could separate concentrations of 222 Rn from 220 Rn. Weeklong measurements of 222 Rn concentration and working level were carried out with active detectors to get the ratio of 222 Rn concentration during working hours to non-working hours as well as equilibrium factors in selected locations. Diurnal variation of 222 Rn concentration depended on building structure, air-conditioning, time of day and day of the week (week days or weekend). The 222 Rn concentration during working hours was generally lower than that in non-working hours. Although the annual average 222 Rn concentration in indoor occupational environments was higher than that in dwellings, radiation dose for Aomori Prefecture residents from Rn in the former was 14% of the total indoor dose by Rn because of the lower concentration in working hours and lower occupancy factor

  19. Ultrasensitive Analyzer for Realtime, In-Situ Airborne and Terrestrial Measurements of OCS, CO2, and CO, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR effort, Los Gatos Research (LGR) will employ its patented mid-infrared Off-Axis ICOS technique to develop a compact carbonyl sulfide (OCS), carbon...

  20. Long-term exposure to indoor air pollution and wheezing symptoms in infants

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O.; Hermansen, M.N.; Loland, L.

    2010-01-01

    Long-term exposure to air pollution is suspected to cause recurrent wheeze in infants. The few previous studies have had ambiguous results. The objective of this study was to estimate the impact of measured long-term exposure to indoor air pollution on wheezing symptoms in infants. We monitored......-point 'any symptom-day' (yes/no) and by standard linear regression with the end-point 'number of symptom-days'. The results showed no systematic association between risk for wheezing symptoms and the levels of these air pollutants with various indoor and outdoor sources. In conclusion, we found no evidence...... of an association between long-term exposure to indoor air pollution and wheezing symptoms in infants, suggesting that indoor air pollution is not causally related to the underlying disease. Practical Implications Nitrogen oxides, formaldehyde and fine particles were measured in the air in infants' bedrooms...

  1. Sample design considerations of indoor air exposure surveys

    International Nuclear Information System (INIS)

    Cox, B.G.; Mage, D.T.; Immerman, F.W.

    1988-01-01

    Concern about the potential for indoor air pollution has prompted recent surveys of radon and NO 2 concentrations in homes and personal exposure studies of volatile organics, carbon monoxide and pesticides, to name a few. The statistical problems in designing sample surveys that measure the physical environment are diverse and more complicated than those encountered in traditional surveys of human attitudes and attributes. This paper addresses issues encountered when designing indoor air quality (IAQ) studies. General statistical concepts related to target population definition, frame creation, and sample selection for area household surveys and telephone surveys are presented. The implications of different measurement approaches are discussed, and response rate considerations are described

  2. Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting.

    Science.gov (United States)

    Chen, Chia-Yuan; Jian, Zih-Hong; Huang, Shih-Han; Lee, Kun-Mu; Kao, Ming-Hsuan; Shen, Chang-Hong; Shieh, Jia-Min; Wang, Chin-Li; Chang, Chiung-Wen; Lin, Bo-Zhi; Lin, Ching-Yao; Chang, Ting-Kuang; Chi, Yun; Chi, Cheng-Yu; Wang, Wei-Ting; Tai, Yian; Lu, Ming-De; Tung, Yung-Liang; Chou, Po-Ting; Wu, Wen-Ti; Chow, Tahsin J; Chen, Peter; Luo, Xiang-Hao; Lee, Yuh-Lang; Wu, Chih-Chung; Chen, Chih-Ming; Yeh, Chen-Yu; Fan, Miao-Syuan; Peng, Jia-De; Ho, Kuo-Chuan; Liu, Yu-Nan; Lee, Hsiao-Yi; Chen, Chien-Yu; Lin, Hao-Wu; Yen, Chia-Te; Huang, Yu-Ching; Tsao, Cheng-Si; Ting, Yu-Chien; Wei, Tzu-Chien; Wu, Chun-Guey

    2017-04-20

    Indoor utilization of emerging photovoltaics is promising; however, efficiency characterization under room lighting is challenging. We report the first round-robin interlaboratory study of performance measurement for dye-sensitized photovoltaics (cells and mini-modules) and one silicon solar cell under a fluorescent dim light. Among 15 research groups, the relative deviation in power conversion efficiency (PCE) of the samples reaches an unprecedented 152%. On the basis of the comprehensive results, the gap between photometry and radiometry measurements and the response of devices to the dim illumination are identified as critical obstacles to the correct PCE. Therefore, we use an illuminometer as a prime standard with a spectroradiometer to quantify the intensity of indoor lighting and adopt the reverse-biased current-voltage (I-V) characteristics as an indicator to qualify the I-V sampling time for dye-sensitized photovoltaics. The recommendations can brighten the prospects of emerging photovoltaics for indoor applications.

  3. Tunneling Characteristics Depending on Schottky Barriers and Diffusion Current in SiOC.

    Science.gov (United States)

    Oh, Teresa; Kim, Chy Hyung

    2016-02-01

    To obtain a diffusion current in SiOC, the aluminum doped zinc oxide films were deposited on SiOC/Si wafer by a RF magnetron sputtering. All the X-ray patterns of the SiOC films showed amorphous phases. The level of binding energy of Si atoms will lead to an additional potential modulation by long range Coulombic and covalent interactions with oxygen ions. The growth of the AZO film was affected by the characteristics of SiOC, resulting in similar trends in XPS spectra and a shift to higher AZO lattice d values than the original AZO d values in XRD analyses. The charges trapped by the defects at the interlayer between AZO and SiOC films induced the decreased mobility of carriers. In the absence of trap charges, AZO grown on SiOC film such as the sample prepared at O2 = 25 or 30 sccm, which has low charge carrier concentration and high mobility, showed high mobility in an ambipolar characteristic of oxide semiconductor due to the tunneling effect and diffusion current. The structural matching of an interface between AZO and amorphous SiOC enhanced the height of Schottky Barrier (SB), and then the mobility was increased by the tunneling effect from band to band through the high SB.

  4. The measurement of thoron (220Rn) concentration in indoor air continuously using pylon model WLx

    International Nuclear Information System (INIS)

    Hasnel Sofyan

    2011-01-01

    The concentration of thoron ( 220 Rn) in particular location can be higher than radon ( 220 Rn), however, its presence is always neglected. This might be due to the difficulties in calibration and discrimination between radon and thoron. From biokinetic and dosimetric model, it has been known that the dominant contribution of thoron to the effective dose is in the lungs. UNSCEAR estimates the doses contribution of thoron and its progenies is between 5-10% of the annual dose received by the general public and the risk level is 4.4 times greater than radon and progenies. Therefore, it is necessary to study the thoron concentration in indoor air and workplaces. Radon-thoron concentration in indoor air can be determined by direct methods using Pylon Model WLx device and passive methods using Solid State Nuclear Track Detector (SSNTDs). In this research the measurement of thoron was carried out continuously using Pylon Model WLx equipment that is sensitive to radon for 24, 65, 72, 116 and 154 hours in different rooms. The measurement result showed that the mean value of thoron working level (WL) concentration obtained in room-1 was 2.53 ± 0.67 Bq/m 3 with maximum and minimum of thoron concentrations were 3.37 and 2.22 Bq/m 3 respectively. From the measurement in different locations, it was obtained that the largest and smallest average concentrations of thoron progenies were 0.83 ± 0.23 Bq/m 3 and 0.29 ± 0.64 Bq/m 3 , while the maximum and minimum concentration values were 7.80 Bq/m 3 and 0.01 Bq/m 3 respectively. Pylon Model WLx device is not enables to be used for longer and large scale survey area concurrently, so the SSNTDs which is sensitive to the emission of alpha particles and can measure cumulative thoron concentrations is required. (author)

  5. Indoor measurement of photovoltaic device characteristics at varying irradiance, temperature and spectrum for energy rating

    International Nuclear Information System (INIS)

    Bliss, M; Betts, T R; Gottschalg, R

    2010-01-01

    The first three-dimensional performance matrix for use in photovoltaic (PV) energy rating is reported utilizing a novel energy rating solar simulator based on LEDs. Device characteristics are measured indoors at varying irradiance (G), temperature (T) and spectrum (E). This opens the possibility for a more accurate measurement system for energy yield prediction of PV devices, especially for devices with high spectral dependence such as wide bandgap solar cells as they take into account spectral changes in the light. The main aspects of the LED-based solar simulator used are briefly described. A measurement method is developed and detailed in the paper, which takes into account the current imperfections in the achievable spectrum. Measurement results for a crystalline silicon solar cell are used to demonstrate the measurement approach. An uncertainty analysis of the measurement system is given, resulting in an overall absolute uncertainty of 4.3% (coverage factor k = 2) in maximum power measurements at 765 W m −2 irradiance with scope for further improvements

  6. Indoor Air Quality and Thermal Comfort in School Buildings

    Science.gov (United States)

    Juhásová Šenitková, Ingrid

    2017-12-01

    This paper presents results to thermal comfort and environment quality questions in 21 school building rooms. Results show that about 80% of the occupants expressed satisfaction with their thermal comfort in only 11% of the buildings surveyed. Air quality scores were somewhat higher, with 26% of buildings having 80% or occupant satisfaction. With respect to thermal comfort and air quality performance goals set out by standards, most buildings appear to be falling far short. Occupant surveys offer a means to systematically measure this performance, and also to provide diagnostic information for building designers and operators. The odours from building materials as well as human odours were studied by field measurement. The odour intensity and indoor air acceptability were assessed by a sensory panel. The concentrations of total volatile organic compounds and carbon dioxide were measured. The odours from occupancy and building materials were studied under different air change rate. The case study of indoor air acceptability concerning to indoor odours and its effect on perceived air quality are also presented in this paper.

  7. Polluted air--outdoors and indoors.

    Science.gov (United States)

    Myers, I; Maynard, R L

    2005-09-01

    Many air pollutants which are considered important in ambient (outdoor) air are also found, sometimes at higher levels, in indoor air. With demanding standards having been set for many of these pollutants, both in the workplace and ambient air, consideration of the problems posed by indoor pollution is gaining pace. Studies on exposure to pollutants found in the indoor domestic environment are increasing and are contributing to an already significant compilation of datasets. Improvement in monitoring techniques has helped this process. Documented reports of fatalities from carbon monoxide poisonings are still worrying. However, studies on health effects of non-fatal, long term, low dose, indoor exposure to carbon monoxide and other pollutants, are still inconclusive and too infrequently documented. Of particular concern are the levels of air pollutants found in the domestic indoor environment in developing countries, despite simple interventions such as vented stoves having shown their value. Exposure to biomass smoke is still a level that would be considered unacceptable on health grounds in developed countries. As in the occupational environment, steps need to be taken to control the risks from exposure to the harmful constituents of indoor air in the home. However, the difficulty regarding regulation of the domestic indoor environment is its inherent privacy. Monitoring levels of pollutants in the home and ensuring regulations are adhered to, would likely prove difficult, especially when individual behaviour patterns and activities have the greatest influence on pollutant levels in indoor air. To this end, the Department of Health is developing guidance on indoor air pollution to encourage the reduction of pollutant levels in indoor domestic air. The importance of the effects of domestic indoor air on health and its contribution to the health of the worker are increasingly appreciated. Occupational physicians, by training and interest, are well placed to extend

  8. Indoor navigation by image recognition

    Science.gov (United States)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  9. Development of a model for radon concentration in indoor air

    International Nuclear Information System (INIS)

    Jelle, Bjørn Petter

    2012-01-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities. - Highlights: ► Model development for calculation of radon concentration in indoor air. ► Radon model accounting for various important parameters. ► Characteristic case studies depicted in 2D and 3D graphical plots. ► May be utilized for examining radon preventive measures.

  10. Indoor radon problem in energy efficient multi-storey buildings.

    Science.gov (United States)

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Indoor Air Quality in the Metro System in North Taiwan

    Directory of Open Access Journals (Sweden)

    Ying-Yi Chen

    2016-12-01

    Full Text Available Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS in Taiwan, including humidity, temperature, carbon monoxide (CO, carbon dioxide (CO2, formaldehyde (HCHO, total volatile organic compounds (TVOCs, ozone (O3, airborne particulate matter (PM10 and PM2.5, bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA. However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.

  12. Indoor Air Quality in the Metro System in North Taiwan.

    Science.gov (United States)

    Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen

    2016-12-02

    Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO₂), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O₃), airborne particulate matter (PM 10 and PM 2.5 ), bacteria and fungi. Results showed that the CO₂, CO and HCHO levels met the stipulated standards as regulated by Taiwan's Indoor Air Quality Management Act (TIAQMA). However, elevated PM 10 and PM 2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan's Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.

  13. Indoor Air Quality of Residential Building Before and After Renovation

    Science.gov (United States)

    Sánka, Imrich; Földváry, Veronika

    2017-06-01

    This study investigates the impact of energy renovation on the indoor air quality of an apartment building during the heating season. The study was performed in one residential building before and after its renovation. An evaluation of the indoor air quality was performed using objective measurements and a subjective survey. The concentration of CO2 was measured in the bedrooms, and a sampling of the total volatile compounds (TVOC) was performed in the living rooms of the selected apartments. Higher concentrations of CO2 and TVOC were observed in the residential building after its renovation. The concentrations of CO2, and TVOC in some of the cases exceeded the recommended maximum limits, especially after implementing energy-saving measures on the building. The average air exchange rate was visibly higher before the renovation of the building. The current study indicates that large-scale renovations may reduce the quality of an indoor environment in many apartments, especially in the winter season.

  14. Continuous Indoor Positioning Fusing WiFi, Smartphone Sensors and Landmarks.

    Science.gov (United States)

    Deng, Zhi-An; Wang, Guofeng; Qin, Danyang; Na, Zhenyu; Cui, Yang; Chen, Juan

    2016-09-05

    To exploit the complementary strengths of WiFi positioning, pedestrian dead reckoning (PDR), and landmarks, we propose a novel fusion approach based on an extended Kalman filter (EKF). For WiFi positioning, unlike previous fusion approaches setting measurement noise parameters empirically, we deploy a kernel density estimation-based model to adaptively measure the related measurement noise statistics. Furthermore, a trusted area of WiFi positioning defined by fusion results of previous step and WiFi signal outlier detection are exploited to reduce computational cost and improve WiFi positioning accuracy. For PDR, we integrate a gyroscope, an accelerometer, and a magnetometer to determine the user heading based on another EKF model. To reduce accumulation error of PDR and enable continuous indoor positioning, not only the positioning results but also the heading estimations are recalibrated by indoor landmarks. Experimental results in a realistic indoor environment show that the proposed fusion approach achieves substantial positioning accuracy improvement than individual positioning approaches including PDR and WiFi positioning.

  15. Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Butterweck, G.; Reineking, A.

    1994-01-01

    Series of continuous radon measurements in the open atmosphere and in a dwelling, including the parallel measurement of meteorological parameters, were performed over a period of several weeks. The radon concentration in indoor and outdoor air depends on meteorological conditions. In the open atmosphere the radon concentration varies between 1 and 100 Bq m -3 , depending on weather conditions and time of day. During time periods of low turbulent air exchange (high pressure weather with clear night sky), especially in the night and early morning hours (night inversion layer), the diurnal variation of the radon concentration showed a pronounced maximum. Cloudy and windy weather conditions yield a small diurnal variation of the radon concentration. Indoors, the average level and the diurnal variation of the indoor radon concentration is also influenced by meteorological conditions. The measurements are consistent with a dependence of indoor radon concentrations on indoor-outdoor pressure differences. 11 refs., 4 figs

  16. Occurrence, dynamics and reactions of organic pollutants in the indoor environment

    Energy Technology Data Exchange (ETDEWEB)

    Salthammer, Tunga [Material Analysis and Indoor Chemistry, Fraunhofer Wilhelm-Klauditz Institut (WKI), Braunschweig (Germany); Bahadir, Muefit [Institut fuer Oekologische Chemie und Abfallanalytik, Technische Universitaet Braunschweig, Braunschweig (Germany)

    2009-06-15

    The indoor environment is a multidisciplinary scientific field involving chemistry, physics, biology, health sciences, architecture, building sciences and civil engineering. The need for reliable assessment of human exposure to indoor pollutants is attracting increasing attention. This, however, requires a detailed understanding of the relevant compounds, their sources, physical and chemical properties, dynamics, reactions, their distribution among the gas phase, airborne particles and settled dust as well as the availability of modern measurement techniques. Building products, furnishings and other indoor materials often emit volatile and semi-volatile organic compounds. With respect to a healthy indoor environment, only low emitting products, which do not influence indoor air quality in a negative way, should be used in a building. Therefore, materials and products for indoor use need to be evaluated for their chemical emissions. This is routinely done in test chambers and cells. Many studies have shown that the types of sources in occupational and residential indoor environments, the spectrum of emitting compounds and the duration of emission cover a wide range. The demand for standardized test methods under laboratory conditions has resulted in several guidelines for determination of emission rates. Furthermore, it has now been recognized that both primary and secondary emissions may affect indoor air quality. The problem may become more dominant when components of different materials can react with each other or when catalytic materials are applied. Such products derived from indoor related reactions may have a negative impact on indoor air quality due to their low odor threshold, health related properties or the formation of ultrafine particles. Several factors can influence the emission characteristics and numerous investigations have shown that indoor chemistry is of particular importance for the indoor related characterization of building product emissions

  17. Dermal Uptake of Organic Vapors Commonly Found in Indoor Air

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, William W

    2014-01-01

    Transdermal uptake directly from air is a potentially important yet largely overlooked pathway for human exposure to organic vapors indoors. We recently reported (Indoor Air 2012, 22, 356) that transdermal uptake directly from air could be comparable to or larger than intake via inhalation for many......, formaldehyde, and acrolein. Analysis of published experimental data for human subjects for twenty different organic compounds substantiates these model predictions. However, transdermal uptake rates from air have not been measured for the indoor organics that have the largest modeled ratios of dermal......-to-inhalation uptake; for such compounds, the estimates reported here require experimental verification. In accounting for total exposure to indoor organic pollutants and in assessing potential health consequences of such exposures, it is important to consider direct transdermal absorption from air....

  18. Indoor air quality in the Greater Beirut area: a characterization and modeling assessment

    International Nuclear Information System (INIS)

    El-Fadel, Mutasem; El-Hougeiri, Nisrine; Oulabi, Mawiya

    2003-01-01

    This report presents the assessment of IAQ at various environments selected from different geographic categories from the Greater Beirut area (GBA) in Lebanon. For this purpose, background information about indoor air quality was reviewed, existing conditions were characterized, an air-sampling program was implemented and mathematical modeling was conducted. Twenty-eight indoor buildings were selected from various geographic categories representing different environments (commercial and residential...). Indoor and outdoor air samples were collected and analyzed using carbon monoxide (CO), particulate matter (TSP), nitrogen dioxide (NO 2 ) and total volatile organic compounds (TVOC) as indicators of indoor air pollution (IAP).Samples were further analyzed using the energy dispersive x-ray fluorescence technique (EDXRF) for the presence of major priority metals including iron (Fe), calcium (Ca), zinc (Zn), lead (Pb), manganese (Mn), copper (Cu) and bromine (Br). Indoor and outdoor measured levels were compared to the American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE) and health-based National Ambient Air Quality standards (NAAQS), respectively. For the priority metals, on the other hand, indoor measured values were compared to occupational standards recommended by the National Institute of Occupational Safety and Health (NIOSH) and Occupational Safety and Health Administration (OSHA)

  19. Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments.

    Science.gov (United States)

    Kornartit, C; Sokhi, R S; Burton, M A; Ravindra, Khaiwal

    2010-01-01

    People are exposed to air pollution from a range of indoor and outdoor sources. Concentrations of nitrogen dioxide (NO(2)), which is hazardous to health, can be significant in both types of environments. This paper reports on the measurement and analysis of indoor and outdoor NO(2) concentrations and their comparison with measured personal exposure in various microenvironments during winter and summer seasons. Furthermore, the relationship between NO(2) personal exposure in various microenvironments and including activities patterns were also studied. Personal, indoor microenvironments and outdoor measurements of NO(2) levels were conducted using Palmes tubes for 60 subjects. The results showed significant differences in indoor and outdoor NO(2) concentrations in winter but not for summer. In winter, indoor NO(2) concentrations were found to be strongly correlated with personal exposure levels. NO(2) concentration in houses using a gas cooker was higher in all rooms than those with an electric cooker during the winter campaign, whereas there was no significant difference noticed in summer. The average NO(2) levels in kitchens with a gas cooker were twice as high as those with an electric cooker, with no significant difference in the summer period. A time-weighted average personal exposure was calculated and compared with measured personal exposures in various indoor microenvironments (e.g. front doors, bedroom, living room and kitchen); including non-smokers, passive smokers and smoker. The estimated results were closely correlated, but showed some underestimation of the measured personal exposures to NO(2) concentrations. Interestingly, for our particular study higher NO(2) personal exposure levels were found during summer (14.0+/-1.5) than winter (9.5+/-2.4).

  20. CARBON ADSORPTION FOR INDOOR AIR CLEANING

    Science.gov (United States)

    The paper discusses the use of carbon adsorption for indoor air cleaning, focusing on the removal of volatile organic compounds (VOCs) using granular activated carbon (GAC). It addresses GAC performance in two directions. Initially, it presents performance measurements for GAC at...

  1. Application of a radon model to explain indoor radon levels in a Swedish house

    CERN Document Server

    Font, L; Jönsson, G; Enge, W; Ghose, R

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75+-30 and 200+-80 Bq m sup - sup 3...

  2. Health Effects of Indoor Air Pollutants and their Mitigation and Control (invited paper)

    International Nuclear Information System (INIS)

    Maroni, M.

    1998-01-01

    The nature of chemical, biological and physical contaminants present in indoor air, their sources, and the health effects they cause are reviewed. Among the physical agents, the interaction between tobacco smoke and radon is discussed. Control and improvement of indoor air quality can be achieved combining the use of two main strategies: proper design and construction of buildings, and control of indoor air pollution through source control, ventilation, air cleaning, exposure control, or a combination of them. A number of control measures primarily targeted to pollutants other than radon can also be particularly effective for radon. On the other hand, measures primarily targeted to radon containment can also be beneficial for other pollutants. Effective programmes on indoor air improvement are urgently needed to benefit the health, comfort and productivity of our communities. (author)

  3. Assement on level of indoor air quality at kindergartens in Ampang ...

    African Journals Online (AJOL)

    This study identify the air pollutant that occurs in the kindergartens, to measure the level of indoor air quality and also to analyze the association between indoor air quality patterns with respiratory health symptoms. Three kindergartens were selected based on types of building (single house, terraced 2 floors and refurbished ...

  4. Indoor air quality in a multifamily apartment building before and after energy renovation

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Földváry, Veronika; Langer, Sarka

    2016-01-01

    Buildings are responsible for a substantial portion of global energy consumption. Most of the multifamily residential buildings in central Europe built in the 20th century do not satisfy the current requirements on energy efficiency. Nationwide remedial measures are taken to improve the energy ef...... exchange rates and acceptable and healthy IAQ. Without these considerations, energy reconstruction can adversely affect the quality of the indoor environment....... efficiency of these buildings and reduce their energy consumption. Since the impact of these measures on the indoor air quality is rarely considered, they often compromise indoor air quality due to decreased ventilation and infiltration rate. We compared the indoor air quality in a multifamily apartment...... building in Slovakia before and after energy renovation, during two subsequent winters. Measurements of temperature, relative humidity, concentrations of CO2, formaldehyde, NO2, and volatile organic compounds were performed during one week in January 2015 in 20 apartments in one multifamily building...

  5. Predicting personal exposure of Windsor, Ontario residents to volatile organic compounds using indoor measurements and survey data

    Science.gov (United States)

    Stocco, Corinne; MacNeill, Morgan; Wang, Daniel; Xu, Xiaohong; Guay, Mireille; Brook, Jeff; Wheeler, Amanda J.

    As part of a multi-year personal exposure monitoring campaign, we collected personal, indoor, and outdoor levels of 188 volatile organic compounds (VOCs). In 2005, data were obtained for 48 non-smoking adults from Windsor, Ontario in order to assess their exposure to VOCs based on their daily routines and characteristics of their homes. During the 8-week winter and summer sampling sessions, five repeated 24-h measurements were obtained for each home. This paper focuses on the analysis of 18 VOCs: 11 have been declared toxic as defined under the Canadian Environmental Protection Act, [1999. Statutes of Canada. Act assented to September 14, 1999. Ottawa: Queen's Printer. Available at Canada Gazette (Part III) 22(3): (Chapter 33). http://canadagazette.gc.ca/partIII/1999/g3-02203.pdf], and seven are commonly found in household and personal care products. Results of mixed effects models indicate that personal exposure to these VOCs can be largely predicted by indoor concentrations, with models including indoor concentrations found to have an r2 value for the fixed effects ranging from 58.4% to 87.2% for the CEPA toxic VOCs and from 41.7% to 90.1% for the commonly found VOCs. Given that people spend the majority of their time inside their home, characteristics of the home such as air exchange rates, type of garage, and type of stove have a greater potential to impact personal exposures.

  6. Variance of indoor radon concentration: Major influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, I., E-mail: ivy@ecko.uran.ru [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Vasilyev, A.; Malinovsky, G. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Bossew, P. [German Federal Office for Radiation Protection (BfS), Berlin (Germany); Žunić, Z.S. [Institute of Nuclear Sciences “Vinca”, University of Belgrade (Serbia); Onischenko, A.; Zhukovsky, M. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation)

    2016-01-15

    Variance of radon concentration in dwelling atmosphere is analysed with regard to geogenic and anthropogenic influencing factors. Analysis includes review of 81 national and regional indoor radon surveys with varying sampling pattern, sample size and duration of measurements and detailed consideration of two regional surveys (Sverdlovsk oblast, Russia and Niška Banja, Serbia). The analysis of the geometric standard deviation revealed that main factors influencing the dispersion of indoor radon concentration over the territory are as follows: area of territory, sample size, characteristics of measurements technique, the radon geogenic potential, building construction characteristics and living habits. As shown for Sverdlovsk oblast and Niška Banja town the dispersion as quantified by GSD is reduced by restricting to certain levels of control factors. Application of the developed approach to characterization of the world population radon exposure is discussed. - Highlights: • Influence of lithosphere and anthroposphere on variance of indoor radon is found. • Level-by-level analysis reduces GSD by a factor of 1.9. • Worldwide GSD is underestimated.

  7. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  8. Electro-physical properties of a Si-based MIS structure with a low-k SiOC(-H) film

    Energy Technology Data Exchange (ETDEWEB)

    Zakirov, Anvar Sagatovich; Navamathavan, Rangaswamy; Kim, Seung Hyun; Jang, Yong Jun; Jung, An Soo; Choi, Chi Kyu [Cheju National University, Jeju (Korea, Republic of)

    2006-09-15

    SiOC(-H) films with low dielectric constants have been prepared by using plasma enhanced chemical vapor deposition with a mixture of methyltriethoxysilane and oxygen precursors. The C-V characteristics of the structures, Al/SiOC(-H)/p-Si(100), were studied in the forward and the reverse directions by applying a polarizing potential. We found that the ratio of the maximum to the minimum capacitance (C{sub ma}x{sub /}C{sub min}) depended on the [MTES/(MTES+O{sub 2})] flow rate ratio. Annealed samples exhibited even greater reductions of the maximum capacitance and the dielectric constant of the SiOC(-H) samples. After annealing at 400 .deg. C, the measurement in the reverse direction revealed an interesting behavior in the form of strongly pronounced 'steps'. The bonds between Si-O and the -CH{sub 3} group reduced the surface charge density, and the distribution of the surface charge density depended on [MTES/(MTES+O{sub 2})] flow rate ratio and the annealing temperature because the fixed positive (Si-CH{sub 3}){sup +} and negative (Si-O){sup -} changed the configuration at the SiOC(-H)/p-Si(100) interface. The SiOC(-H) film had donor (O{sub 2}) and acceptor (Si-CH{sub 3} -groups) levels, and the electronic process at the SiOC(-H)/p-Si(100) interface was defined by the (Si-CH{sub 3}){sup +} and the (Si-O){sup -} bonds.

  9. Continuous weeklong measurements of indoor particle levels in a Minnesota Tribal Casino Resort

    Directory of Open Access Journals (Sweden)

    Zheng Zhou

    2016-08-01

    Full Text Available Abstract Background Secondhand smoke (SHS exposure for workers and patrons in hospitality venues is a persistent and significant public health concern. We designed this study to provide a comprehensive assessment of SHS exposure inside an Indian Tribal Casino in Minnesota. Methods Real-time fine particulate matter (PM2.5 concentrations were measured at multiple locations for up to 7 days. The field monitoring provided information on the day of week and time of day variation of SHS exposure, as well as comparisons between smoking and non-smoking areas. Results Indoor PM2.5 level was nearly 13 times the concurrent outdoor PM2.5 level. Gaming floor hourly PM2.5 level was highest on Saturday night, averaged at 62.9 μg/m3. Highest PM2.5 concentration was observed in smoking-permitted employee break room, reaching 600 μg/m3. PM2.5 readings in non-smoking sections exhibited same temporal pattern as the readings in smoking sections. Conclusions The results show that indoor concentration of PM2.5 is substantially higher than the outdoor level, posing health risks to casino workers and patrons. SHS can migrate into adjacent non-smoking areas very quickly. The casino’s ventilation system did not fully eliminate SHS. A completely smoke-free casino would be the only way to fully protect non-smoking patrons and employees from the dangers of tobacco smoke.

  10. Spatial subdivision of complex indoor environments for 3D indoor navigation

    NARCIS (Netherlands)

    Diakite, A.A.; Zlatanova, S.

    2018-01-01

    As we realize that we spend most of our time in increasingly complex indoor environments, applications to assist indoor activities (e.g. guidance) have gained a lot of attention in the recent years. The advances in ubiquitous computing made possible the development of several spatial models

  11. Feasibility study on mental healthcare using indoor plants for office workers

    Science.gov (United States)

    Kubota, Tsuyoshi; Matsumoto, Hiroshi; Genjo, Kaori; Nakano, Takaoki

    2017-10-01

    In recent years, it has become a problem that office workers' stresses affect their intellectual productivity. As one of strategies mitigating the stress while working, many studies on the effect of indoor plants introduced into the office have been conducted. The psychological and physiological effects of indoor plants have been expected to mitigate the office workers' stresses. Also, the effects of green amenities such as improvement of productivity, control of the indoor thermal environment, relaxation and recovery of visual fatigue, and improvement of air quality have been expected. In this study, a field investigation on the green amenity effects of indoor plants on office workers' psychological and physiological responses in an actual office was conducted and discussed. This paper describes the measurement results of the physical environment and workers' psychological and physiological responses under the condition with shelves installed with indoor plants in an office room. It was suggested that indoor plants such as mint, basil and begonia, and a combination of red and green plants were effective for mitigating worker's stresses.

  12. Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria

    Science.gov (United States)

    Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.

    2018-05-01

    It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.

  13. Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong

    Science.gov (United States)

    Lee, Shun-Cheng; Guo, Hai; Li, Wai-Ming; Chan, Lo-Yin

    Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO 2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO 2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM 10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM 10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.

  14. The O.C.: Our Guide to ALA in Anaheim

    Science.gov (United States)

    Hardstark, Georgia

    2008-01-01

    For those who grew up in Orange County (O.C.), Disneyland is the metaphoric morsel of food that gets stuck between the teeth of someone one does not like. While D-land is a must-see for millions of visitors each year, there is much more to Anaheim. Although O.C. is portrayed on numerous reality TV shows as a mecca for rich white people with…

  15. Indoor Environment Program - 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Indoor Environment Program

    1996-11-01

    The forty-five chemists, physicists, biologists, architects, engineers, staff, and students of the Indoor Environment Program are all working to solve the problems of indoor air quality, health, comfort, and energy use associated with the indoor environment. A common thread throughout this work is the importance of ventilation--both for its role in supporting human health and comfort as well as for its liability in requiring large amounts of energy to heat and cool it. The importance of understanding these interactions can be illustrated by two examples: the health and productivity of workers (Fisk and Rosenfeld, 1996) and the performance of sensitive equipment in clean room environments (Faulkner, et d., 1996). During the past year, we estimated the magnitudes of health and productivity gains that may be obtained by providing better indoor environments. The ratio of the potential financial benefits of improving indoor environments to the costs of the improvements ranges between 20 and 50. A second example is from our Clean Room Energy Efficiency Study: Clean rooms utilize large amounts of electricity to operate fans that recirculate air at very high flow rates through particle filters. Usually, the fans operate continuously at full speed, even when the clean room is unused. To reduce the energy use in a research clean room, the rate of air recirculation was controlled in response to real-time measurements of particle concentration. With this new control system, fan energy use decreased by 65% to 85% while maintaining particle concentrations below the allowable limits except during occasional one-minute periods. The estimated payback period for this technology is one to four years.

  16. The effects of an energy efficiency retrofit on indoor air quality.

    Science.gov (United States)

    Frey, S E; Destaillats, H; Cohn, S; Ahrentzen, S; Fraser, M P

    2015-04-01

    To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low-income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long-term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long-term follow-up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Contribution from indoor sources to particle number and mass concentrations in residential houses

    Science.gov (United States)

    He, Congrong; Morawska, Lidia; Hitchins, Jane; Gilbert, Dale

    As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify emission characteristics of indoor particle sources in 15 houses. Submicrometer particle number and approximation of PM 2.5 concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak), respectively. In addition, characterizations of particles resulting from cooking conducted in an identical way in all the houses were measured by using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and a DustTrak. All the events of elevated particle concentrations were linked to indoor activities using house occupants diary entries, and catalogued into 21 different types of indoor activities. This enabled quantification of the effect of indoor sources on indoor particle concentrations as well as quantification of emission rates from the sources. For example, the study found that frying, grilling, stove use, toasting, cooking pizza, cooking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor submicrometer particle number concentration levels by more than five times, while PM 2.5 concentrations could be up to 3, 30 and 90 times higher than the background levels during smoking, frying and grilling, respectively.

  18. Assessment of indoor air quality at an electronic cigarette (Vaping) convention.

    Science.gov (United States)

    Chen, Rui; Aherrera, Angela; Isichei, Chineye; Olmedo, Pablo; Jarmul, Stephanie; Cohen, Joanna E; Navas-Acien, Ana; Rule, Ana M

    2017-12-29

    E-cigarette (vaping) conventions are public events promoting electronic cigarettes, in which indoor use of e-cigarettes is allowed. The large concentration of people using e-cigarettes and poor air ventilation can result in indoor air pollution. In order to estimate this worst-case exposure to e-cigarettes, we evaluated indoor air quality in a vaping convention in Maryland (MD), USA. Real-time concentrations of particulate matter (PM 10 ) and real-time total volatile organic compounds (TVOCs), CO 2 and NO 2 concentrations were measured. Integrated samples of air nicotine and PM 10 concentrations were also collected. The number of attendees was estimated to range from 75 to 600 at any single observation time. The estimated 24-h time-weighted average (TWA) PM 10 was 1800 μg/m 3 , 12-fold higher than the EPA 24-h regulation (150 μg/m 3 ). Median (range) indoor TVOCs concentration was 0.13 (0.04-0.3) ppm. PM 10 and TVOC concentrations were highly correlated with CO 2 concentrations, indicating the high number of people using e-cigarettes and poor indoor air quality. Air nicotine concentration was 125 μg/m 3 , equivalent to concentrations measured in bars and nightclubs. E-cigarette aerosol in a vaping convention that congregates many e-cigarette users is a major source of PM 10 , air nicotine and VOCs, impairing indoor air quality. These findings also raise occupational concerns for e-cigarette vendors and other venue staff workers.

  19. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...

  20. Indoor organic and inorganic pollutants: In-situ formation and dry deposition in Southeastern Brazil

    Science.gov (United States)

    Allen, Andrew G.; Miguel, Antonio H.

    We have measured indoor and outdoor levels of particle- and gas-phase pollutants, collected in offices, restaurants and a hotel at six different sites in and around the cities of São Paulo and Campinas, Brazil, during summer 1993. Gas-phase species included acetic acid, formic acid, nitrous acid, hydrochloric acid, sulfur dioxide, nitric acid, oxalic acid, and pyruvic acid. Fine mode ( 3 μm dp) species measured included chloride, potassium, acetate, nitrate, magnesium, formate, sodium, pyruvate, nitrite, calcium, sulfate, oxalate, and ammonium. One sample (˜ 6 h) was simultaneously collected indoors and outdoors at each site during regular working hours. Indoor samplers were located ca. 1.5 m from the floor, and the outdoors immediately outside the window. Indoor/outdoor concentration ratios suggest that fine potassium chloride was produced indoors in appreciable amounts at both restaurants studied and, to a lesser extent, in the three offices as well. Indoor fine nitrate particles found in restaurants appear to have been produced by fuel combustion; a small fraction may have resulted from dry deposition of nitric acid onto existing fine particles. Indoor and outdoor concentrations of fine- and coarse-mode acetate suggest their production at all sites. The average concentration of gas-phase acetic acid was 42 μg m -3 indoors compared to 9.0 μg m -3 outdoors. In-situ formation of nitrous acid and acetic acid appears to have occurred at all indoor sites. High levels of formic and acetic acids were produced indoors at a pizzeria that used wood for cooking. Nitrous acid average concentrations for all sites were 8.4 μm m -3 indoors and 3.2 μm m -3 outdoors. Indoor/outdoor ratios at all sites suggest that dry deposition indoors may have occurred for hydrochloric acid, nitric acid and sulfur dioxide and that fine-mode sulfate infiltrate buildings from outside at most sites.

  1. Design and evaluation of representative indoor radon surveys

    International Nuclear Information System (INIS)

    Csige, I.; Csegzi, S.

    2004-01-01

    We have developed a procedure to design and evaluate representative indoor radon surveys. The procedure is based on random sampling of a population of houses and careful statistical analysis of measured indoor radon concentrations. The method is designed to estimate the fraction of houses in which annual average 222 Rn activity concentration may exceed a certain reference level. Measurements of annual average indoor 222 Rn activity concentration were done in sleeping rooms at pillow level using etched track type radon detectors. We applied the above procedure in an old fashioned village and in a fast developing small city in Transylvania, Romania. In the village almost all houses were single floor wooden made houses without cellar built with traditional technology on a geologically uniform area. The distribution of indoor 222 Rn activity concentration in a sample of 115 houses can almost perfectly be fitted with log-normal probability density function. The correlation coefficient of linear fitting on linearized scales was k = -0.9980. The percentages of houses expected to have annual average 222 Rn activity concentration higher than 400 Bq m -3 is less than 1 %, and of those higher than 600 Bq m -3 can be estimated to be around 0.1 %. The small city, on the other hand lies on a geologically inhomogeneous area, and house construction technology has also changed dramatically in past decades. The resulting distribution of measured indoor 222 Rn activity concentration in a sample of 116 houses cannot be fitted with any simple probability density function. Therefore the prediction of the fraction of houses in which the annual average 222 Rn activity concentration may exceed a certain reference level could not be done adequately. With certain assumptions we estimated that the percentages of houses expected to have annual average 222 Rn activity concentration higher than 400 Bq m -3 is between 3 and 7 %, and of those higher than 600 Bq m -3 can be estimated to be between

  2. Effect of ventilation rate on concentrations of indoor radon and its progenies

    International Nuclear Information System (INIS)

    Wang Chunhong; Liu Yanyang; Liu Fudong; Liu Senlin; Chen Ling

    2012-01-01

    To study concentrations of indoor radon and its progenies, ventilation rates and their corresponding concentrations of indoor radon and its progenies were measured using tracer-gas dilution method. Results show that both ventilation rates and concentrations of indoor radon varied insignificantly and radon concentration were higher than the outdoor environment while doors and windows were all closed with air-conditioner on and off respectively; the concentrations declined and close to the outdoor level when doors and windows were all open with ventilators in operation. Accordingly, in modern life, especially in summer, people's preference for air-conditioners but natural ventilation would result in an increase of indoor radon concentration. (authors)

  3. Indoor Location Fingerprinting with Heterogeneous Clients

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2011-01-01

    Heterogeneous wireless clients measure signal strength differently. This is a fundamental problem for indoor location fingerprinting, and it has a high impact on the positioning accuracy. Mapping-based solutions have been presented that require manual and error-prone calibration for each new clie...

  4. The Health Risks of Belgian Illicit Indoor Cannabis Plantations.

    Science.gov (United States)

    Vanhove, Wouter; Cuypers, Eva; Bonneure, Arne-Jan; Gotink, Joachim; Stassen, Mirna; Tytgat, Jan; Van Damme, Patrick

    2018-04-10

    We assessed the prevalence of potential health hazards to intervention staff and cannabis growers in Belgian indoor cannabis plantations. Surface mold swab samples were taken at 16 Belgian indoor plantations contained mostly Penicillium sp. and Aspergillus sp. However, their precise health impact on intervention staff and illicit growers is unclear as no molds spore concentrations were measured. Atmospheric gas monitoring in the studied cannabis plantations did not reveal dangerous toxic substances. Health symptoms were reported by 60% of 221 surveyed police, but could not be linked to specific plantation characteristics. We conclude that Belgian indoor cannabis plantations pose a potential health threat to growers and intervention staff. AS there are currently no clear safety guidelines for seizure and dismantling of Belgian indoor cannabis plantations, we recommend first responders to follow strict safety rules when entering the growth rooms, which include wearing appropriate personal protective equipment. © 2018 American Academy of Forensic Sciences.

  5. Indoor air pollution caused by geothermal gases

    International Nuclear Information System (INIS)

    Durand, Michael

    2006-01-01

    This paper discusses the little-known but potentially serious indoor air quality problems that may occur where buildings are constructed on geothermal ground. The main problems are related to seepage of carbon dioxide, hydrogen sulphide, radon and other gases from soil cavities directly into indoor air through perforations in the structure. These gases present a health hazard, and hydrogen sulphide, which is particularly corrosive, may cause problems electrical and electronic systems. Counter-measures are not always effective, so developments in such areas should only be undertaken with a clear understanding of site-specific issues and their possible solutions. (author)

  6. Application of a radon model to explain indoor radon levels in a Swedish house

    International Nuclear Information System (INIS)

    Font, LL.; Baixeras, C.; Joensson, G.; Enge, W.; Ghose, R.

    1999-01-01

    Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75±30 and 200±80 Bq m -3 . Results of the model adaptation to the house indicate that soil constitutes the most relevant radon source in both parts of the house. The radon concentration values predicted by the model indoors fall into the same range as the experimental results

  7. Contribution to the relation between volume activity of soil and indoor radon

    International Nuclear Information System (INIS)

    Mojzes, A.

    1999-01-01

    There were carried out some repeated manual measurements of volume activity of radon-222 (VAR) in both soil air of subsoil and also indoor air of buildings in two different areas in Bratislava. All measurements were done with a portable scintillation detector based on exchangeable Lucas cells. The measurements were repeated in different day and year intervals. There were repeated 259 measurements of volume activity of radon-222 in soil air with the average valuer 11.95 kBq/m 3 and the standard deviation 1.53 kBq/m 3 in the subsoil of the one-story house and 597 measurements of VAR in soil air of the subsoil of the second study building with the average 9.44 kBq/m 3 and the standard deviation 3.08 kBq/m 3 . Presented results of measurement of radon-222 volume activity in both soil and indoor air demonstrate that also in case of low radon concentrations in soil air of geological basement the level of radon in indoor air could be considerably high. It depends mainly on used technology of laying building foundations, on the distance from subsoil and on regime of ventilation. In case of older buildings the ventilation is very effective way to reduce the presence of radon in indoor air. (author)

  8. Measuring variation of indoor radon concentration using bare nuclear tracks detectors, scintillation counters and surface barrier detectors

    International Nuclear Information System (INIS)

    Ishak, I.; Mahat, R.H.; Amin, Y.M.

    1996-01-01

    Bare LRI 15 nuclear track detectors , scintillators counter and surface barrier detectors were used to measured the indoor radon concentration in various location within two rooms. Spatial variation of the radon concentration is caused by positioning of the door, windows, furniture, cracks in the building and also distances from floor, wall and ceiling. It is found that the change in temperature are causing radon concentration to increase at certain time of the day

  9. High indoor radon variations and the thermal behavior of eskers

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Honkamaa, T.; Rosenberg, A.

    1994-01-01

    Measurements of indoor radon concentrations in houses built on the Pispala esker in the city of Tampere were taken. The objective was to find connections between indoor radon concentrations, esker topography, and meteorological factors. The results show that not only the permeable soil but also subterranean air-flows in the esker strongly affect the indoor radon concentrations. The difference in temperature between the soil air inside the esker and the outdoor air compels the subterranean air to stream between the upper and lower esker areas. In winter, the radon concentrations are amplified in the upper esker areas where air flows out from the esker. In summer, concentrations are amplified in certain slope zones. In addition, wind direction affects the soil air and indoor radon concentrations when hitting the slopes at right angles. Winter-summer concentration ratios are typically in the range of 3-20 in areas with amplified winter concentration, and 0.1-0.5 in areas with amplified summer concentrations. A combination of winter and summer measurements provides the best basis for making mitigation decisions. On eskers special attention must be paid to building technology because of radon. 9 refs., 7 figs., 1 tab

  10. Impact of whole-building hygrothermal modelling on the assessment of indoor climate in a library building

    Energy Technology Data Exchange (ETDEWEB)

    Steeman, M.; Janssens, A. [Ghent University, Department of Architecture and Urban Planning, Jozef Plateaustraat 22, B-9000 Gent (Belgium); De Paepe, M. [Ghent University, Department of Flow, Heat and Combustion Mechanics, Sint-Pietersnieuwstraat 41, B-9000 Gent (Belgium)

    2010-07-15

    This paper focuses on the importance of accurately modelling the hygrothermal interaction between the building and its hygroscopic content for the assessment of the indoor climate. Libraries contain a large amount of stored books which require a stable relative humidity to guarantee their preservation. On the other hand, visitors and staff must be comfortable with the indoor climate. The indoor climate of a new library building is evaluated by means of measurements and simulations. Complaints of the staff are confirmed by measured data during the winter and summer of 2007-2008. For the evaluation of the indoor climate, a building simulation model is used in which the porous books are either described by a HAM model or by a simplified isothermal model. Calculations demonstrate that the HAM model predicts a more stable indoor climate regarding both temperature and relative humidity variations in comparison to the estimations by the simplified model. This is attributed to the ability of the HAM model to account for the effect of temperature variations on moisture storage. Moreover, by applying the HAM model, a good agreement with the measured indoor climate is found. As expected, a larger exposed book surface ameliorates the indoor climate because a more stable indoor relative humidity is obtained. Finally, the building simulation model is used to improve the indoor climate with respect to the preservation of valuable books. Results demonstrate that more stringent interventions on the air handling unit are expected when a simplified approach is used to model the hygroscopic books. (author)

  11. The Use of Tracer Gas Measurements in Detection and Solution of Indoor Air Quality Problems in a Danish Town Hall

    DEFF Research Database (Denmark)

    Brohus, Henrik; Hyldgård, Carl-Erik

    A Danish town hall with substantial complaints of poor indoor air quality is examined. This paper describes ·the use of traGer gas measurements which form an important part in the detection and solution of the problems. Investigations are carried out both in the field and in the laboratory using...

  12. Indoor microclimate in a South African school: impact of indoor environmental factors

    CSIR Research Space (South Africa)

    Essah, EA

    2016-07-01

    Full Text Available Demand for good indoor air quality is increasing as people recorgnise the risks to their health and productivity from indoor pollutants. There is a tendency to reduce ventilation rates to ensure energy conservation in buildings; in this instance...

  13. The O-C2 angle established at occipito-cervical fusion dictates the patient's destiny in terms of postoperative dyspnea and/or dysphagia.

    Science.gov (United States)

    Izeki, Masanori; Neo, Masashi; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Ito, Hiromu; Nagai, Koutatsu; Matsuda, Shuichi

    2014-02-01

    We have revealed that the cause of postoperative dyspnea and/or dysphagia after occipito-cervical (O-C) fusion is mechanical stenosis of the oropharyngeal space and the O-C2 alignment, rather than total or subaxial alignment, is the key to the development of dyspnea and/or dysphagia. The purpose of this study was to confirm the impact of occipito-C2 angle (O-C2A) on the oropharyngeal space and to investigate the chronological impact of a fixed O-C2A on the oropharyngeal space and dyspnea and/or dysphagia after O-C fusion. We reviewed 13 patients who had undergone O-C2 fusion, while retaining subaxial segmental motion (OC2 group) and 20 who had subaxial fusion without O-C2 fusion (SA group). The O-C2A, C2-C6 angle and the narrowest oropharyngeal airway space were measured on lateral dynamic X-rays preoperatively, when dynamic X-rays were taken for the first time postoperatively, and at the final follow-up. We also recorded the current dyspnea and/or dysphagia status at the final follow-up of patients who presented with it immediately after the O-C2 fusion. There was no significant difference in the mean preoperative values of the O-C2A (13.0 ± 7.5 in group OC2 and 20.1 ± 10.5 in group SA, Unpaired t test, P = 0.051) and the narrowest oropharyngeal airway space (17.8 ± 6.0 in group OC2 and 14.9 ± 3.9 in group SA, Unpaired t test, P = 0.105). In the OC2 group, the narrowest oropharyngeal airway space changed according to the cervical position preoperatively, but became constant postoperatively. In contrast, in the SA group, the narrowest oropharyngeal airway space changed according to the cervical position at any time point. Three patients who presented with dyspnea and/or dysphagia immediately after O-C2 fusion had not resolved completely at the final follow-up. The narrowest oropharyngeal airway space and postoperative dyspnea and/or dysphagia did not change with time once the O-C2A had been established at O-C fusion. The O-C2A established at O-C

  14. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    Science.gov (United States)

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  15. Impact of operating wood-burning fireplace ovens on indoor air quality.

    Science.gov (United States)

    Salthammer, Tunga; Schripp, Tobias; Wientzek, Sebastian; Wensing, Michael

    2014-05-01

    The use of combustion heat sources like wood-burning fireplaces has regained popularity in the past years due to increasing energy costs. While the outdoor emissions from wood ovens are strictly regulated in Germany, the indoor release of combustion products is rarely considered. Seven wood burning fireplaces were tested in private homes between November 2012 and March 2013. The indoor air quality was monitored before, during and after operation. The following parameters were measured: ultra-fine particles (5.6-560 nm), fine particles (0.3-20 μm), PM2.5, NOx, CO, CO2, formaldehyde, acetaldehyde, volatile organic compounds (VOCs) and benzo[a]pyrene (BaP). Most ovens were significant sources of particulate matter. In some cases, an increase of benzene and BaP concentrations was observed in the indoor air. The results illustrate that wood-burning fireplaces are potential sources of indoor air contaminants, especially ultra-fine particles. Under the aspect of lowering indoor air exchange rates and increasing the use of fuels with a net zero-carbon footprint, indoor combustion sources are an important topic for the future. With regards to consumer safety, product development and inspection should consider indoor air quality in addition to the present fire protection requirements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Performance Indicators of Indoor Environmental Quality (IEQ ...

    African Journals Online (AJOL)

    Sultan

    environmental framework for the promotion of a healthy and comfortable ... (n.d.) consists of six metrics namely: Indoor air quality (IAQ) ..... Quality. Thermal quality measurement in the hospital ...... article/pii/S036013231300142X. Jensen, K.

  17. Effectiveness of Indoor Plant to Reduce CO2 in Indoor Environment

    Directory of Open Access Journals (Sweden)

    Suhaimi Mohd Mahathir

    2017-01-01

    Full Text Available Modern country strongly emphasizes on indoor air quality (IAQ because it can effect on human health and productivity. Numerous efforts were performed to make sure that sustainability of IAQ is guaranteed. In the last 4th decade, researchers discover that indoor plants have abilities to reduce indoor air pollution. Generally, plants, carbon dioxide (CO2, light, and temperature involve in the photosynthesis process. This paper intends to study the effectiveness of seven indoor plants (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plant, Spider Plant, and Syngonium to reduce CO2 with different light level. This study was conducted in one cubic meter of chamber, and each plant was put into the chamber individually with CO2 concentration in the chamber is set at 1000±50ppm, and light intensities is set at 300 and 700 lux, while temperature were fixed at 25±1°C. Based on the results, only the Spider Plant was not able to absorb CO2 during the test at 300 lux of light intensity. Meanwhile, Prayer Plant performed well when tested at 300 or 700 lux of light intensity compare to other investigates plants. This study can conclude that light intensity play an important role for the plant to absorb CO2 effectively. All the indoor plants absorbed more CO2, when the light intensity is increased.

  18. Investigation of the relationship between earthquakes and indoor radon concentrations at a building in Gyeongju, Korea

    Directory of Open Access Journals (Sweden)

    Jae Wook Kim

    2018-04-01

    Full Text Available This article measured and analyzed the indoor radon concentrations at one university building in Gyeongju, Republic of Korea, to investigate if there is any relationship between earthquakes and indoor radon concentration. Since 12 September 2016, when two 5.1 and 5.8 magnitude earthquakes occurred, hundreds of aftershocks affected Gyeongju until January 2017. The measurements were made at the ground floor of the Energy Engineering Hall of Dongguk University in Gyeongju over a period between February 2016 and January 2017. The measurements were made with an RAD7 detector on the basis of the US Environmental Protection Agency measurement protocol. Each measurement was continuously made every 30 minutes over the measurement period every month. Among earthquakes with 2.0 or greater magnitude, the earthquakes whose occurrence timings fell into the measurement periods were screened for further analysis. We observed similar spike-like patterns between the indoor radon concentration distributions and earthquakes: a sudden increase in the peak indoor radon concentration 1–4 days before an earthquake, gradual decrease before the earthquake, and sudden drop on the day of the earthquake if the interval between successive earthquakes was moderately longer, for example, 3 days in this article. Keywords: Earthquakes, Gyeongju, Indoor Radon Concentration, RAD7, Radon Anomaly

  19. Correlation between indoor radon and soil gas availability: Results of field studies

    International Nuclear Information System (INIS)

    Kothari, B.K.; Kunz, C.; Lilley, W.

    1990-01-01

    To correlate indoor radon concentrations with soil gas, the authors have carried out a field survey of surficial material in selected regions of New York State. The survey consisted of measurements of gamma radiation, Ra-226, Rn-222 and the permeability for gas flow in surficial material. Based on the data, three areas with a potential for above average indoor radon concentrations have been identified: (1) a black shale region in Onondaga County; (2) a granitic region in Orange County; and (3) a black shale region in Erie County. For an area with potential for below-average indoor radon concentrations, sandy deposits on Long Island with an average concentration of 0.7 pCi Ra-226/g and 160 pCi Rn-222/L at 2-feet depth, have been selected. Fifteen homes from each of these four areas are under test for indoor radon. Measurements of air infiltration rates and soil gas availability parameters are planned for all 60 homes

  20. INDOOR AIR POLLUTION

    Directory of Open Access Journals (Sweden)

    Ahmet Soysal

    2007-06-01

    Full Text Available The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas and people in the cities have spending approximetely 90% of their time in the closed enviroments, health problems could increased due to indoor air pollution. Moreover, currently there is no specific regulation on this area. [TAF Prev Med Bull 2007; 6(3.000: 221-226

  1. INDOOR AIR POLLUTION

    Directory of Open Access Journals (Sweden)

    Ahmet Soysal

    2007-06-01

    Full Text Available The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas and people in the cities have spending approximetely 90% of their time in the closed enviroments, health problems could increased due to indoor air pollution. Moreover, currently there is no specific regulation on this area. [TAF Prev Med Bull. 2007; 6(3: 221-226

  2. Indoor air quality investigation and health risk assessment at correctional institutions.

    Science.gov (United States)

    Ofungwu, Joseph

    2005-04-01

    A comprehensive indoor air-quality (IAQ) investigation was conducted at a state correctional facility in New Jersey, USA with a lengthy history of IAQ problems. The IAQ investigation comprised preliminary indoor air screening using direct readout instrumentation, indoor air/surface wipe sampling and laboratory analysis, as well as a heating, ventilation, and air-conditioning system evaluation, and a building envelope survey. In addition to air sampling, a human health risk assessment was performed to evaluate the potential for exposure to site-related air contaminants with respect to the inmate and worker populations. The risk assessment results for the prison facility indicated the potential for significant health risks for the inmate population, possibly reflecting the effects of their confinement and extended exposure to indoor air contaminants, as compared to the prison guard and worker population. Based on the results of the risk assessment, several mitigation measures are recommended to minimize prison population health risks and improve indoor air quality at prison facilities.

  3. Very volatile organic compounds: an understudied class of indoor air pollutants.

    Science.gov (United States)

    Salthammer, T

    2016-02-01

    Very volatile organic compounds (VVOCs), as categorized by the WHO, are an important subgroup of indoor pollutants and cover a wide spectrum of chemical substances. Some VVOCs are components of products commonly used indoors, some result from chemical reactions and some are reactive precursors of secondary products. Nevertheless, there is still no clear and internationally accepted definition of VVOCs. Current approaches are based on the boiling point, and the saturation vapor pressure or refer to analytical procedures. A significant problem is that many airborne VVOCs cannot be routinely analyzed by the usually applied technique of sampling on Tenax TA® followed by thermal desorption GC/MS or by DNPH-sampling/HPLC/UV. Some VVOCs are therefore often neglected in indoor-related studies. However, VVOCs are of high significance for indoor air quality assessment and there is need for their broader consideration in measurement campaigns and material emission testing. © 2014 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  4. Three-dimensional reconstruction of indoor whole elements based on mobile LiDAR point cloud data

    Science.gov (United States)

    Gong, Yuejian; Mao, Wenbo; Bi, Jiantao; Ji, Wei; He, Zhanjun

    2014-11-01

    Ground-based LiDAR is one of the most effective city modeling tools at present, which has been widely used for three-dimensional reconstruction of outdoor objects. However, as for indoor objects, there are some technical bottlenecks due to lack of GPS signal. In this paper, based on the high-precision indoor point cloud data which was obtained by LiDAR, an international advanced indoor mobile measuring equipment, high -precision model was fulfilled for all indoor ancillary facilities. The point cloud data we employed also contain color feature, which is extracted by fusion with CCD images. Thus, it has both space geometric feature and spectral information which can be used for constructing objects' surface and restoring color and texture of the geometric model. Based on Autodesk CAD platform and with help of PointSence plug, three-dimensional reconstruction of indoor whole elements was realized. Specifically, Pointools Edit Pro was adopted to edit the point cloud, then different types of indoor point cloud data was processed, including data format conversion, outline extracting and texture mapping of the point cloud model. Finally, three-dimensional visualization of the real-world indoor was completed. Experiment results showed that high-precision 3D point cloud data obtained by indoor mobile measuring equipment can be used for indoor whole elements' 3-d reconstruction and that methods proposed in this paper can efficiently realize the 3 -d construction of indoor whole elements. Moreover, the modeling precision could be controlled within 5 cm, which was proved to be a satisfactory result.

  5. Indoor radon in Tunisian spas

    International Nuclear Information System (INIS)

    Labidi, S.; Al-Azmi, Darwish; Ben Salah, R.

    2012-01-01

    Indoor radon concentrations were measured in four well-known spas of Tunisia using nuclear track detectors. The radon concentrations in these spas were found to be in the range of 19 - 870 Bq.m -3 . The equilibrium factor F between radon and its progeny was found to vary in the range of 0.2 - 0.5, depending upon the ventilation rates within the buildings of the spas. Using the exposure-dose conversion factor, the effective doses to patients and workers were estimated and the dose was found to vary in the range 3.7 x 10 -3 - 12.5 x 10 -3 mSv.y -1 and 0.45 - 1.5 mSv.y -1 for patients and workers, respectively. These values are well inside the limit recommended for the annual dose limit of 20 mSv.y -1 for an occupational worker. The radium content in the groundwater of all four spas was measured and the results showed no correlation between the 226 Ra concentration in water and radon concentration in indoor air of the investigated spas. (authors)

  6. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    International Nuclear Information System (INIS)

    Merat, S.

    2008-01-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  7. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Merat, S. [Wardrop Engineering Inc., Toronto, Ontario (Canada)

    2008-07-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  8. Oil-Spill Analysis: Gulf of Mexico Outer Continental Shelf (OCS) Lease Sales, Eastern Planning Area, 2003-2007 and Gulfwide OCS Program, 2003-2042

    Science.gov (United States)

    2002-09-01

    The Federal Government plans to offer U.S. Outer Continental Shelf (OCS) lands in the Eastern Planning Area of the Gulf of Mexico (GOM) for oil and gas leasing. This report summarizes results of that analysis, the objective of which was to estimate the risk of oil-spill contact to sensitive offshore and onshore environmental resources and socioeconomic features from oil spills accidentally occurring from the OCS activities.

  9. Indoor radon level in schools of Shillong, Meghalaya

    International Nuclear Information System (INIS)

    Saxena, A.; Sharma, Y.; Maibam, D.; Walia, D.; Diengdoh, E.

    2010-01-01

    Radon ( 222 Rn) in the atmosphere is the most important contributor to human exposure from natural sources. Radon is a noble inert gas; and it decays to radionuclides that are chemically active and relatively short lived. Inhalation of the short lived radon progeny imparts a radiation dose to the lung, to which an increased risk of lung cancer is attributed due to the alpha particle irradiation of the secretory and basal cells of the respiratory tract. The indoor radon concentration is dependent on the texture, porosity, permeability, water content of the soil underlying the structure and the radon behaviour in soils on aspects of geology and climate. The direct cause of high radon entry rates into structures exhibiting high indoor radon concentrations are fractures in bedrock formations, cracks in the soil, and similar inhomogeneities in the materials of the foundation of the structures. Other factors influencing indoor radon concentration includes exhalations from the walls and ceilings, building design and material, cracks and openings in the foundation of the buildings. The geological factors in the study area promote radon accumulation especially in buildings and dwellings. The world average annual effective dose in the indoor environments is 1.01 mSv.y -1 . The importance of radon level measurements in school buildings is of interest as children are more sensitive to radon exposure than adults. Hence, radon measurements in 10 schools have been undertaken in the present study

  10. The Hydraulic Project Włocławek: Design, Studies, Construction and Operation

    Directory of Open Access Journals (Sweden)

    Wojciech Majewski

    2015-03-01

    Full Text Available The Hydraulic Project Włocławek was commissioned in 1970 as the first barrage of the Lower Vistula Cascade (LVC. The purpose of the LVC was to create an important source of hydro-energy and inland navigation route connecting central Poland with the port city of Gdańsk. Along the Lower Vistula (LV important cities and industrial centres are located. The Włocławek project still remains the only barrage on the LV thus creating a number of problems. The paper presents the basic hydrological and hydraulic data for the Vistula river, and describes the Włocławek project, hydraulic model investigations conducted in the design phase, the construction of the project and the main problems, attendant on its use, including the winter flood of 1982 in the upper part of the Włocławek reservoir. The paper ends with conclusions on project construction and exploitation. The next barrage downstream from Włocławek is proposed.

  11. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland.

    Science.gov (United States)

    Meier, Reto; Schindler, Christian; Eeftens, Marloes; Aguilera, Inmaculada; Ducret-Stich, Regina E; Ineichen, Alex; Davey, Mark; Phuleria, Harish C; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino

    2015-09-01

    Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-07-01

    Full Text Available Indoor airborne culturable bacteria are sometimes harmful to human health. Therefore, a quick estimation of their concentration is particularly necessary. However, measuring the indoor microorganism concentration (e.g., bacteria usually requires a large amount of time, economic cost, and manpower. In this paper, we aim to provide a quick solution: using knowledge-based machine learning to provide quick estimation of the concentration of indoor airborne culturable bacteria only with the inputs of several measurable indoor environmental indicators, including: indoor particulate matter (PM2.5 and PM10, temperature, relative humidity, and CO2 concentration. Our results show that a general regression neural network (GRNN model can sufficiently provide a quick and decent estimation based on the model training and testing using an experimental database with 249 data groups.

  13. Residential indoor air quality guideline : ozone

    International Nuclear Information System (INIS)

    2010-01-01

    Ozone (O 3 ) is a colourless gas that reacts rapidly on surfaces and with other constituents in the air. Sources of indoor O 3 include devices sold as home air cleaners, and some types of office equipment. Outdoor O 3 is also an important contributor to indoor levels of O 3 , depending on the air exchange rate with indoor environments. This residential indoor air quality guideline examined factors that affect the introduction, dispersion and removal of O 3 indoors. The health effects of prolonged exposure to O 3 were discussed, and studies conducted to evaluate the population health impacts of O 3 were reviewed. The studies demonstrated that there is a significant association between ambient O 3 and adverse health impacts. Exposure guidelines for residential indoor air quality were discussed. 14 refs.

  14. Application of a combined indoor climate and HVAC model for the indoor climate performance of a museum

    NARCIS (Netherlands)

    Schijndel, van A.W.M.; Schellen, H.L.

    2006-01-01

    A famous museum in the Netherlands has reported possible damage to important preserved wall paper fragments. The purpose of this paper is to evaluate the current indoor climate performance by measurements and to evaluate possible solutions by modeling and simulation. The modeling methodology was as

  15. 3D Indoor Building Environment Reconstruction using calibration of Range finder Data

    DEFF Research Database (Denmark)

    Jamali, Ali; Anton, François; Rahman, Alias Abdul

    2015-01-01

    Measurement (EDM) and Terrestrial Laser Scanner (TLS) are mostly used. In this paper, several techniques for indoor 3D building data acquisition have been investigated. For reducing the time and cost of indoor building data acquisition process, the Trimble LaserAce 1000 range finder is used. The accuracy...

  16. A nationwide survey of radon concentration in Japan. Indoor, outdoor and workplace

    International Nuclear Information System (INIS)

    Sanada, Tetsuya; Oikawa, Shinji; Kanno, Nobuyuki; Abukawa, Johji; Higuchi, Hideo

    2004-01-01

    The nationwide indoor, outdoor and workplace radon concentrations were surveyed in Japan. These surveys were conducted to estimate the natural radiation dose due to radon and its progeny for the general public. The radon concentration was measured using passive type radon monitor. The number of radon monitors were installed at indoor, outdoor and workplace for 940 houses, 705 points and 705 sites, respectively. The radon concentration was measured for one year at each measurement site. Annual mean radon concentration was obtained from four quarters measurements of 47 prefectures in Japan. The nationwide indoor, outdoor and workplace annual mean radon concentration were 15.5 Bq m -3 , 6.1 Bq m -3 and 20.8 Bq m -3 , respectively. Their radon concentration shows approximately a logarithmic normal distribution. Workplace showed relatively high radon concentration compared with other environments, may be due to construction materials and low ventilation rate. The indoor radon concentration found to be seasonal variation and architectural dependences. Seasonal variation and regional distribution of outdoor radon concentration was also observed. From the results of these radon surveys, the annual effective dose to the general public due to radon and its progeny was estimated to be 0.49 mSv y -1 in Japan. (author)

  17. Location Fingerprint Extraction for Magnetic Field Magnitude Based Indoor Positioning

    Directory of Open Access Journals (Sweden)

    Wenhua Shao

    2016-01-01

    Full Text Available Smartphone based indoor positioning has greatly helped people in finding their positions in complex and unfamiliar buildings. One popular positioning method is by utilizing indoor magnetic field, because this feature is stable and infrastructure-free. In this method, the magnetometer embedded on the smartphone measures indoor magnetic field and queries its position. However, the environments of the magnetometer are rather harsh. This harshness mainly consists of coarse-grained hard/soft-iron calibrations and sensor electronic noise. The two kinds of interferences decrease the position distinguishability of the magnetic field. Therefore, it is important to extract location features from magnetic fields to reduce these interferences. This paper analyzes the main interference sources of the magnetometer embedded on the smartphone. In addition, we present a feature distinguishability measurement technique to evaluate the performance of different feature extraction methods. Experiments revealed that selected fingerprints will improve position distinguishability.

  18. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    OpenAIRE

    Owens, Charles; Ferguson, Gretta; Hermenau, Martin; Voroshazi, Eszter; Galagan, Yulia; Zimmermann, Birger; Rösch, Roland; Angmo, Dechan; Teran-Escobar, Gerardo; Uhrich, Christian; Andriessen, Ronn; Hoppe, Harald; Würfel, Uli; Lira-Cantu, Monica; Krebs, Frederik

    2015-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better ...

  19. Indoor radon in a Spanish region with different gamma exposure levels

    International Nuclear Information System (INIS)

    Quindos, L.S.; Fernandez, P.L.; Sainz, C.; Fuente, I.; Nicolas, J.; Quindos, L.; Arteche, J.

    2008-01-01

    In the beginning of 1990s within the framework of a national radon survey of more than 1500 points, radon measurements were performed in more than 100 houses located in Galicia region, in the Northwest area of Spain. The houses were randomly selected only bearing in mind general geological aspects of the region. Subsequently, a nationwide project called MARNA dealt with external gamma radiation measurements in order to draw a Spanish natural radiation map. The comparison in Galicia between these estimations and the indoor radon levels previously obtained showed good agreement. With the purpose of getting a confirmation of this relationship and also of creating a radon map of the zone, a new set of measurements were carried out in 2005. A total of 300 external gamma radiation measurements were carried out as well as 300 measurements of 226 Ra, 232 Th and 40 K content in soil. Concerning radon, 300 1-m-depth radon measurements in soil were performed, and indoor radon concentration was determined in a total of 600 dwellings. Radon content in soil gave more accurate indoor radon predictions than external gamma radiation or 226 Ra concentration in soil

  20. Indoor external dose rates due to decorative sheet stone

    Energy Technology Data Exchange (ETDEWEB)

    Lu, C.H.; Sheu, R.D.; Jiang, S.H. [Dept. of Engineering and System Science, National Tsing Hua Univ., Hsinchu (Taiwan)

    2002-03-01

    The specific activities in decorative sheet stone made of granite or marble were measured, whereby the absolute peak efficiency of the HPGe detectors employed in the measurements for the sheet-stone sample was determined using the semi-empirical method. The spatial distribution for the indoor external dose rates due to the radionuclides present in the decorative sheet stone used to clad the floor and the four walls of a standard room was calculated using a three-dimensional point kernel computer code. It was found that the spatial distribution for the indoor dose rates was complex and non-uniform, which represents a difference in relation to the results of earlier studies. (orig.)

  1. Indoor external dose rates due to decorative sheet stone

    International Nuclear Information System (INIS)

    Lu, C.H.; Sheu, R.D.; Jiang, S.H.

    2002-01-01

    The specific activities in decorative sheet stone made of granite or marble were measured, whereby the absolute peak efficiency of the HPGe detectors employed in the measurements for the sheet-stone sample was determined using the semi-empirical method. The spatial distribution for the indoor external dose rates due to the radionuclides present in the decorative sheet stone used to clad the floor and the four walls of a standard room was calculated using a three-dimensional point kernel computer code. It was found that the spatial distribution for the indoor dose rates was complex and non-uniform, which represents a difference in relation to the results of earlier studies. (orig.)

  2. D Modelling of AN Indoor Space Using a Rotating Stereo Frame Camera System

    Science.gov (United States)

    Kang, J.; Lee, I.

    2016-06-01

    Sophisticated indoor design and growing development in urban architecture make indoor spaces more complex. And the indoor spaces are easily connected to public transportations such as subway and train stations. These phenomena allow to transfer outdoor activities to the indoor spaces. Constant development of technology has a significant impact on people knowledge about services such as location awareness services in the indoor spaces. Thus, it is required to develop the low-cost system to create the 3D model of the indoor spaces for services based on the indoor models. In this paper, we thus introduce the rotating stereo frame camera system that has two cameras and generate the indoor 3D model using the system. First, select a test site and acquired images eight times during one day with different positions and heights of the system. Measurements were complemented by object control points obtained from a total station. As the data were obtained from the different positions and heights of the system, it was possible to make various combinations of data and choose several suitable combinations for input data. Next, we generated the 3D model of the test site using commercial software with previously chosen input data. The last part of the processes will be to evaluate the accuracy of the generated indoor model from selected input data. In summary, this paper introduces the low-cost system to acquire indoor spatial data and generate the 3D model using images acquired by the system. Through this experiments, we ensure that the introduced system is suitable for generating indoor spatial information. The proposed low-cost system will be applied to indoor services based on the indoor spatial information.

  3. Continuous Indoor Positioning Fusing WiFi, Smartphone Sensors and Landmarks

    Directory of Open Access Journals (Sweden)

    Zhi-An Deng

    2016-09-01

    Full Text Available To exploit the complementary strengths of WiFi positioning, pedestrian dead reckoning (PDR, and landmarks, we propose a novel fusion approach based on an extended Kalman filter (EKF. For WiFi positioning, unlike previous fusion approaches setting measurement noise parameters empirically, we deploy a kernel density estimation-based model to adaptively measure the related measurement noise statistics. Furthermore, a trusted area of WiFi positioning defined by fusion results of previous step and WiFi signal outlier detection are exploited to reduce computational cost and improve WiFi positioning accuracy. For PDR, we integrate a gyroscope, an accelerometer, and a magnetometer to determine the user heading based on another EKF model. To reduce accumulation error of PDR and enable continuous indoor positioning, not only the positioning results but also the heading estimations are recalibrated by indoor landmarks. Experimental results in a realistic indoor environment show that the proposed fusion approach achieves substantial positioning accuracy improvement than individual positioning approaches including PDR and WiFi positioning.

  4. California's program: Indoor air problems aren't amenable to regulation

    International Nuclear Information System (INIS)

    Wesolowski, J.

    1993-01-01

    In 1982, California's legislature established an Indoor Air Quality Program (CIAQP) in the Department of Health Services to carry out research on the nature and extent of the indoor air problem (excluding industrial worksites), to find appropriate mitigation measures, and to promote and coordinate the efforts of other state agencies. Since indoor air problems usually are not amenable to regulatory solutions, regulatory authority was not included in the mandate. The program conducts research into a wide range of contaminants--radon, asbestos, formaldehyde, carbon monoxide, volatile organic compounds, environmental tobacco smoke (ETS), as well as into biological aerosols that cause such diseases as Legionnaires disease, tuberculosis, allergies, and asthma. Studies are also carried out to better understand the Sick Building Syndrome. The research includes field surveys to determine the exposure of the population to specific contaminants and experiments in the laboratory to develop protocols for reducing exposures. The research emphasizes measurement of exposure--concentration multiplied by the time a person is exposed--as opposed to measurement of concentration only

  5. Indoor environment in Swedish passive houses

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Langer, Sarka; Bloom, Erica Bloom

    2014-01-01

    The purpose of this study was to evaluate the indoor air quality (IAQ) in newly built low energy houses. Measurements were performed in 22 passive houses and 21 conventional buildings during 2012-2013 and 2013-2014 heating seasons. The measured parameters were temperature, relative humidity......, concentration of CO2, NO2, formaldehyde, volatile organic compounds, and live microbiological flora. Air exchange rates (AER) were determined from the concentration-time profiles of CO2. The median AER was slightly higher in the passive houses than in conventional buildings (0.66 h-1 vs. 0.60 h-1). The median...... concentrations in passive houses and conventional buildings were 9.7 and 11 μg/m3, respectively, for NO2, 12 and 16 μg/m3 for formaldehyde, and 230 and 145 μg/m3 for TVOC. The indoor microbiological flora did not differ, with a few exceptions, from outdoors. The IAQ in the passive buildings was judged...

  6. Predicted and actual indoor environmental quality: Verification of occupants' behaviour models in residential buildings

    DEFF Research Database (Denmark)

    Andersen, Rune Korsholm; Fabi, Valentina; Corgnati, Stefano P.

    2016-01-01

    with the building controls (windows, thermostats, solar shading etc.). During the last decade, studies about stochastic models of occupants' behaviour in relation to control of the indoor environment have been published. Often the overall aim of these models is to enable more reliable predictions of building...... performance using building energy performance simulations (BEPS). However, the validity of these models has only been sparsely tested. In this paper, stochastic models of occupants' behaviour from literature were tested against measurements in five apartments. In a monitoring campaign, measurements of indoor....... However, comparisons of the average stochastic predictions with the measured temperatures, relative humidity and CO2 concentrations revealed that the models did not predict the actual indoor environmental conditions well....

  7. Indoor air quality – buildings design

    Directory of Open Access Journals (Sweden)

    Juhásová Šenitková Ingrid

    2017-01-01

    Full Text Available Growing attention is being paid to indoor air quality as one of the main health and well-being factors. The indoor research is concerned mostly to indoor air chemicals within indoor engineering related to building design. The providing good indoor air quality can be achieved effectively by avoiding or reducing indoor air pollution sources and by selecting low-polluting building materials, both being low-cost and energyefficient solutions. On the base of the last large experimental monitoring results, it was possible to know the level of selected indoor chemicals occurrence, rank them as well as to predict the tendencies of occurrence and establish the priorities for the future. There has been very limited attention to rigorous analysis of buildings actual environmental impacts to date. Healthy/green/sustainable building practices are typically applied in unsystematic and inconsistent ways often without resolution of inherent conflicts between and among such practices. Designers, products manufacturers, constructors, and owners declare their buildings and the applied technologies to be beneficial to the environment without validating those claims.

  8. State Indoor Tanning Laws and Prevalence of Indoor Tanning Among US High School Students, 2009-2015.

    Science.gov (United States)

    Qin, Jin; Holman, Dawn M; Jones, Sherry Everett; Berkowitz, Zahava; Guy, Gery P

    2018-07-01

    To examine the association between state indoor tanning laws and indoor tanning behavior using nationally representative samples of US high school students younger than 18 years. We combined data from the 2009, 2011, 2013, and 2015 national Youth Risk Behavior Surveys (n = 41 313) to analyze the association between 2 types of state indoor tanning laws (age restriction and parental permission) and the prevalence of indoor tanning during the 12 months before the survey, adjusting for age, race/ethnicity, and survey year, and stratified by gender. Age restriction laws were associated with a 47% (P tanning prevalence among female high school students. Parental permission laws were not found to be associated with indoor tanning prevalence among either female or male high school students. Age restriction laws could contribute to less indoor tanning, particularly among female high school students. Such reductions may reduce the health and economic burden of skin cancer.

  9. Workshop on indoor air quality research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  10. Workshop on indoor air quality research needs

    International Nuclear Information System (INIS)

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized

  11. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  12. Accurate estimation of indoor travel times

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Blunck, Henrik; Stisen, Allan

    2014-01-01

    The ability to accurately estimate indoor travel times is crucial for enabling improvements within application areas such as indoor navigation, logistics for mobile workers, and facility management. In this paper, we study the challenges inherent in indoor travel time estimation, and we propose...... the InTraTime method for accurately estimating indoor travel times via mining of historical and real-time indoor position traces. The method learns during operation both travel routes, travel times and their respective likelihood---both for routes traveled as well as for sub-routes thereof. InTraTime...... allows to specify temporal and other query parameters, such as time-of-day, day-of-week or the identity of the traveling individual. As input the method is designed to take generic position traces and is thus interoperable with a variety of indoor positioning systems. The method's advantages include...

  13. Indoor air quality in Brazilian universities.

    Science.gov (United States)

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  14. Indoor and Outdoor Surface-Growing Fungi Contamination at Higher Institutional Buildings in a Malaysian University

    Science.gov (United States)

    Er, C. M.; Sunar, N. M.; Leman, A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Surface-growing indoor and outdoor fungi were assessed using swabbing method to investigate the indoor contamination. The painted wall surface samples were collected from two institutional buildings (B1 and B2) of a university in southern Peninsular Malaysia; indoors and outdoors. The mould concentrations varied widely between indoor and outdoor surface samples of both buildings. The total indoor surface-growing mould concentration (8776.49 CFU/cm2) is significantly higher (pair quality parameters (relative humidity, temperature and air velocity) were also measured indoors and outdoors during the study and violation of the guideline provided by ICOP-IAQ 2010 were proven in indoor environment in both buildings. The results of this assessment showed that the indoor environments of both institutional buildings were contaminated by the surface-growing mould. It also suggested the faulty designs and/or usages of building material in these institutional buildings contributed toward the contamination. An innovative solution is needed to correct the problems.

  15. Mapping corrections for radon indoor data suggested by simulated data distributions

    International Nuclear Information System (INIS)

    Majerus, J.; Kies, A.; Tondeur, F.

    2004-01-01

    Indoor radon measurements may be considered as a stochastic function of spatial or spatio-temporal coordinates. This is characterized by a combination of deterministic and stochastic factors, including an important local 'noise' due to special indoor conditions. Radon mapping always consists in trying to smooth out the noise and possible outliers, to identify risk zones of high radon concentrations. To explore the spatial variation of radon we used indoor concentration data, obtained in Luxembourg and Belgium. These indoor radon databases have medium sampling density of 1 to 2 data per km 2 , respectively 0,3 data per km 2 . Furthermore we tried to investigate the relationship between geologic conditions and indoor radon concentrations. For indoor radon data, the best data sampling is restricted to all given house locations, thus we first investigated the ability to recover geological information with respect to the restricted indoor sampling distribution. To do so, we used simulated radon data with different sampling density and local clustering, generated by assuming specified average values depending on the coordinates, broadened by a typical log-normal noise and outliers of varying magnitude. Data clustering inside of villages and under-representation of the far field data locations leads to the well-known bull-eyes effects in mapping. Because the underlying deterministic structure of the simulated data is known, these data can be used to test different pre-treatments to apply before running a given gridding method. Adequate corrections for the non-uniform sampling distribution of radon indoor data can thus be explored. Furthermore, it is shown how simulated data can help to find good smoothing criteria. With smoothing needed, it may be difficult to find a good compromise between showing only significant features and showing more details at the risk of pointing out irrelevant details or even artifacts. Simulated data proved to be very useful in this context. In

  16. A Pedestrian Approach to Indoor Temperature Distribution Prediction of a Passive Solar Energy Efficient House

    Directory of Open Access Journals (Sweden)

    Golden Makaka

    2015-01-01

    Full Text Available With the increase in energy consumption by buildings in keeping the indoor environment within the comfort levels and the ever increase of energy price there is need to design buildings that require minimal energy to keep the indoor environment within the comfort levels. There is need to predict the indoor temperature during the design stage. In this paper a statistical indoor temperature prediction model was developed. A passive solar house was constructed; thermal behaviour was simulated using ECOTECT and DOE computer software. The thermal behaviour of the house was monitored for a year. The indoor temperature was observed to be in the comfort level for 85% of the total time monitored. The simulation results were compared with the measured results and those from the prediction model. The statistical prediction model was found to agree (95% with the measured results. Simulation results were observed to agree (96% with the statistical prediction model. Modeled indoor temperature was most sensitive to the outdoor temperatures variations. The daily mean peak ones were found to be more pronounced in summer (5% than in winter (4%. The developed model can be used to predict the instantaneous indoor temperature for a specific house design.

  17. Measurement and health risk assessment of PM2.5, flame retardants, carbonyls and black carbon in indoor and outdoor air in kindergartens in Hong Kong.

    Science.gov (United States)

    Deng, Wen-Jing; Zheng, Hai-Long; Tsui, Anita K Y; Chen, Xun-Wen

    2016-11-01

    schools showed distinct pollution levels, so indoor air quality might be improved through artificial measures. The data will be useful to developing a feasible management protocol for indoor environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Indoor Positioning with Radio Location Fingerprinting

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    . A promising indoor positioning technique is radio-based location ngerprinting, having the major advantage of exploiting already existing radio infrastructures, like IEEE 802.11 or GSM, which avoids extra deployment costs and eort. The research goal of this thesis is to address the limitations of current...... indoor location ngerprinting systems. In particular the aim is to advance location ngerprinting techniques for the challenges of handling heterogeneous clients, scalability to many clients, and interference between communication and positioning. The wireless clients used for location ngerprinting...... are heterogeneous even when only considering clients for the same technology. The heterogeneity is due to dierent radios, antennas, and rmwares causing measurements for location ngerprinting not to be directly comparable among clients. Heterogeneity is a challenge for location ngerprinting because it severely...

  19. Internet-Based Indoor Navigation Services

    OpenAIRE

    Zeinalipour-Yazti, Demetrios; Laoudias, Christos; Georgiou, Kyriakos

    2017-01-01

    Smartphone advances are leading to a class of Internet-based Indoor Navigation services. IIN services rely on geolocation databases that store indoor models, comprising floor maps and points of interest, along with wireless, light, and magnetic signals for localizing users. Developing IIN services creates new information management challenges - such as crowdsourcing indoor models, acquiring and fusing big data velocity signals, localization algorithms, and custodians' location privacy. Here, ...

  20. Contributions to indoor gamma dose rate from building materials

    International Nuclear Information System (INIS)

    Liu Xionghua; Li Guangming; Yang Xiangdong

    1990-01-01

    In the coures of construction of a building structured with bricks and concrets, the indoor gamma air absorbed dose rates were seperately measured from the floors, brick walls and prefabricated plates of concrets, etc.. It suggested that the indoor gamma dose rates from building materials are mainly attributed to the brick walls and the floors. A little contribution comes from other brilding materials. The dose rates can be calculated through a 4π-infinite thick model with a correction factor of 0.52

  1. A study of diurnal variations of radon and thoron concentrations in different indoor environmental conditions

    International Nuclear Information System (INIS)

    Pant, Preeti; Prasad, Mukesh; Ramola, R.C.

    2015-01-01

    The measurements for diurnal variations in radon ( 222 Rn) and thoron ( 220 Rn) concentrations were performed in the different indoor conditions of Tehri Garhwal, Uttarakhand, India by using AlphaGUARD, Portable Radon Monitor and RAD7. While selecting the dwellings, the ventilation conditions, building materials, life style of the inhabitants and their exposure time indoors were also considered. The behavior of indoor radon and thoron concentrations was observed for different type of dwellings with different environmental conditions. The measurement techniques, results obtained and comparison of the results are discussed in details. (author)

  2. An overview of thoron and its progeny in the indoor environment

    International Nuclear Information System (INIS)

    McLaughlin, J.

    2010-01-01

    An account is given of the behaviour of thoron and its progeny in the indoor environment. Emphasis is placed on the spatial distribution of these radionuclides in room air and on their interactions with indoor aerosols. How these aspects of thoron and progeny behaviour give rise to special problems for measuring them and assessing their radiological impact are described. Descriptions and comparisons are given of a range of thoron and progeny measurement techniques both passive and active. Recent progress in thoron dosimetry is described as well as compared with radon dosimetry. The results of some indoor thoron and progeny surveys carried out in different countries in recent years are given. As an example of this a summary account is presented of a recently concluded survey of thoron and its airborne progeny in over 200 houses in Ireland. (authors)

  3. The Isprs Benchmark on Indoor Modelling

    Science.gov (United States)

    Khoshelham, K.; Díaz Vilariño, L.; Peter, M.; Kang, Z.; Acharya, D.

    2017-09-01

    Automated generation of 3D indoor models from point cloud data has been a topic of intensive research in recent years. While results on various datasets have been reported in literature, a comparison of the performance of different methods has not been possible due to the lack of benchmark datasets and a common evaluation framework. The ISPRS benchmark on indoor modelling aims to address this issue by providing a public benchmark dataset and an evaluation framework for performance comparison of indoor modelling methods. In this paper, we present the benchmark dataset comprising several point clouds of indoor environments captured by different sensors. We also discuss the evaluation and comparison of indoor modelling methods based on manually created reference models and appropriate quality evaluation criteria. The benchmark dataset is available for download at: html"target="_blank">http://www2.isprs.org/commissions/comm4/wg5/benchmark-on-indoor-modelling.html.

  4. Fipronil and its degradates in indoor and outdoor dust

    Science.gov (United States)

    Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Musgrove, M.; Zaugg, S.D.; Burkhardt, M.R.

    2009-01-01

    Fipronil is a potent insecticide used for control of termites, fleas, roaches, ants, and other pests. We measured fipronil, fipronil sulfide, and desulfinyl fipronil concentrations in indoor and outdoor dust from 24 residences in Austin, Texas. At least one of these three fipronil compounds was detected in every sample. Fipronil accounted for most of the total fipronil (T-fipronil; fipronil+desulfinyl fipronil+fipronil sulfide), followed by desulfinyl fipronil and fipronil sulfide. Nineteen of 24 samples of indoor dust had T-fipronil concentrations less than 270 ??g/kg; the remaining five had concentrations from 1320 to 14,200 ??g/kg. All three of the residences with a dog on which a flea-control product containing fipronil was used were among the five residences with elevated fipronil concentrations. In outdoor dust, all concentrations of T-fipronil were less than 70??g/kg with one exception (430??g/kg). For every residence, the concentration of T-fipronil in indoor dust exceeded that in outdoor dust, and the median concentration of T-fipronil was 15 times higher indoors than outdoors.

  5. Controlling Indoor Air Pollution from Moxibustion

    Directory of Open Access Journals (Sweden)

    Chung-Yen Lu

    2016-06-01

    Full Text Available Indoor air quality (IAQ control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs of traditional Chinese medicine (TCM may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2, carbon monoxide (CO, formaldehyde (HCHO, total volatile organic compounds (TVOCs, airborne particulate matter with a diameter of ≤10 µm (PM10 and ≤2.5 µm (PM2.5 during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  6. Perceived indoor air quality and its relationship to air pollutants in French dwellings.

    Science.gov (United States)

    Langer, S; Ramalho, O; Le Ponner, E; Derbez, M; Kirchner, S; Mandin, C

    2017-11-01

    Perception of indoor air quality (PIAQ) was evaluated in a nationwide survey of 567 French dwellings, and this survey was combined with measurements of gaseous and particulate matter (PM 10 and PM 2.5 ) indoor air pollutants and indoor climate parameters. The perception was assessed on a nine-grade scale by both the occupants of the dwellings and the inspectors who performed the measurements. The occupants perceived the air quality in their homes as more pleasant than the inspectors. The inspectors perceived the air quality as more unpleasant in dwellings in which the residents smoked indoors. Significant associations between PIAQ and indoor air pollutant concentrations were observed for both the inspectors and, to a lesser extent, the occupants. Introducing confounding parameters, such as building and personal characteristics, into a multivariate model suppressed most of the observed bivariate correlations and identified the tenure status of the occupants and their occupation as the parameters that most influenced their PIAQ. For the inspectors, perceived air quality was affected by the presence of smokers, the season, the type of ventilation, retrofitting, and the concentrations of acetaldehyde and acrolein. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Lead and cadmium in indoor air and the urban environment

    International Nuclear Information System (INIS)

    Komarnicki, Guenter J.K.

    2005-01-01

    The present study was conducted to find potential terrestrial biomonitors for heavy metals in indoor air in an urban environment. TSP, PM 10 , and PM 2.5 were collected in three retirement facilities in the urban area of Vienna. In addition, particulate matter and soil, vegetation, and isopods (Porcellio scaber L.) were collected in the adjacent garden areas. Aerosols were sampled with a low-volume air sampler. The sampled materials were wet ashed and total lead and cadmium contents were determined. Water-soluble heavy metal concentrations were measured in aqueous extracts from air exposed filters, soil, and vegetation. Lead and cadmium were analyzed by graphite furnace AAS. Lead contents in the vegetation were inferred from water-soluble lead in soils. Lead in isopods generally reflected the contents in vegetation. Cadmium in plants probably derived from soil solutions as well as from atmospheric input. Isopods reflected the total cadmium contents in soils. Particulate matter was dominated by PM 2.5 , both with respect to mass concentrations and to heavy metal contents. The indoor aerosol was found to be influenced by human activity, indoor sources, and outdoor particles. Relationships between indoor airborne heavy metals and the contents in vegetation (lead and cadmium: positive) and isopods (lead: negative) were identified to have the potential for biomonitoring indoor air quality. - Urban vegetation and isopods are potential indicators for indoor aerial heavy metals

  8. Indoor/outdoor elemental concentration relationships at a nursery school

    International Nuclear Information System (INIS)

    Lannefors, H.; Hansson, H.C.

    1981-01-01

    Indoor and outdoor concentrations of lead and bromine have been measured at a nursery school, using streaker samplers with 2.4 h resolution. The observed variations in concentration were well-correlated with traffic intensity variations. In addition to their closely related time-variation curves, the bromine to lead ratios pointed to the emissions from leaded gasoline-powered vehicles as the main source of these elements both in and outdoors. Time-variation patterns on weekdays and during weekends indicated that the lead and bromine containing particles entered the nursery school mainly by leaking. Only a minor fraction seemed to be brought in and resuspended by the staff and children. The indoor concentrations of the elements studied were about 5 times lower than the outdoor levels thus considerably reducing the indoor exposure. (orig.)

  9. Indoor Modelling Benchmark for 3D Geometry Extraction

    Science.gov (United States)

    Thomson, C.; Boehm, J.

    2014-06-01

    A combination of faster, cheaper and more accurate hardware, more sophisticated software, and greater industry acceptance have all laid the foundations for an increased desire for accurate 3D parametric models of buildings. Pointclouds are the data source of choice currently with static terrestrial laser scanning the predominant tool for large, dense volume measurement. The current importance of pointclouds as the primary source of real world representation is endorsed by CAD software vendor acquisitions of pointcloud engines in 2011. Both the capture and modelling of indoor environments require great effort in time by the operator (and therefore cost). Automation is seen as a way to aid this by reducing the workload of the user and some commercial packages have appeared that provide automation to some degree. In the data capture phase, advances in indoor mobile mapping systems are speeding up the process, albeit currently with a reduction in accuracy. As a result this paper presents freely accessible pointcloud datasets of two typical areas of a building each captured with two different capture methods and each with an accurate wholly manually created model. These datasets are provided as a benchmark for the research community to gauge the performance and improvements of various techniques for indoor geometry extraction. With this in mind, non-proprietary, interoperable formats are provided such as E57 for the scans and IFC for the reference model. The datasets can be found at: http://indoor-bench.github.io/indoor-bench.

  10. Multi-dimensional indoor location information model

    NARCIS (Netherlands)

    Xiong, Q.; Zhu, Q.; Zlatanova, S.; Huang, L.; Zhou, Y.; Du, Z.

    2013-01-01

    Aiming at the increasing requirements of seamless indoor and outdoor navigation and location service, a Chinese standard of Multidimensional Indoor Location Information Model is being developed, which defines ontology of indoor location. The model is complementary to 3D concepts like CityGML and

  11. Psychotropic substances in indoor environments.

    Science.gov (United States)

    Cecinato, Angelo; Romagnoli, Paola; Perilli, Mattia; Patriarca, Claudia; Balducci, Catia

    2014-10-01

    The presence of drugs in outdoor air has been established, but few investigations have been conducted indoors. This study focused on psychotropic substances (PSs) at three schools, four homes and one office in Rome, Italy. The indoor drug concentrations and the relationships with the outdoor atmosphere were investigated. The optimised monitoring procedure allowed for the determination of cocaine, cannabinoids and particulate fractions of nicotine and caffeine. In-field experiments were performed during the winter, spring and summer seasons. Psychotropic substances were observed in all indoor locations. The indoor concentrations often exceeded those recorded both outdoors at the same sites and at the atmospheric pollution control network stations, indicating that the drugs were released into the air at the inside sites or were more persistent. During winter, the relative concentrations of cannabinol, cannabidiol and tetrahydrocannabinol depended on site and indoor/outdoor location at the site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Building Entry Loss and Delay Spread Measurements on a Simulated HAP-to-Indoor Link at S-Band

    Directory of Open Access Journals (Sweden)

    Delgado-Penín JA

    2008-01-01

    Full Text Available Results from a measurement campaign emulating the high altitude platform (HAP-to-indoor communication channel at S-band are presented in this paper. A link was established between a transmitter carried by a helicopter, representing the HAP, and a receiver placed at several locations in different building types including an airport, an office building, a shopping mall, a residential house, and a skyscraper. A wideband, directive channel sounder was used to measure building entry loss and time delay spread. Results of the building entry loss are presented as a function of building type, elevation, and building entry angle. Results of delay spread for each building are also provided.

  13. Building Entry Loss and Delay Spread Measurements on a Simulated HAP-to-Indoor Link at S-Band

    Directory of Open Access Journals (Sweden)

    P. Valtr

    2008-07-01

    Full Text Available Results from a measurement campaign emulating the high altitude platform (HAP-to-indoor communication channel at S-band are presented in this paper. A link was established between a transmitter carried by a helicopter, representing the HAP, and a receiver placed at several locations in different building types including an airport, an office building, a shopping mall, a residential house, and a skyscraper. A wideband, directive channel sounder was used to measure building entry loss and time delay spread. Results of the building entry loss are presented as a function of building type, elevation, and building entry angle. Results of delay spread for each building are also provided.

  14. Radon in the indoor environment

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    1998-01-01

    The objectives of R and D on radon in the indoor environment at SCK-CEN is to (1) to investigate the deposition of radon progeny in the human respiratory tract by means of direct measurements as a function of aerosol conditions; to assess the radon concentrations in buildings retrospectively with volume traps. Progress and main achievements in 1997 are reported on

  15. Indoor Tanning Among High School Students in the United States, 2009 and 2011

    Science.gov (United States)

    Guy, Gery P.; Berkowitz, Zahava; Tai, Eric; Holman, Dawn M.; Jones, Sherry Everett; Richardson, Lisa C.

    2015-01-01

    IMPORTANCE Indoor tanning is associated with an increased risk of skin cancer, including melanoma, and is particularly dangerous for younger and more frequent indoor tanners. OBJECTIVE To examine the prevalence of indoor tanning and frequent indoor tanning (≥10 times during the 12 months before each survey) and their association with health-related behaviors. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional study examined data from the 2009 and 2011 national Youth Risk Behavior Surveys, which used nationally representative samples of US high school students representing approximately 15.5 million students each survey year. The study included 25 861 students who answered the indoor tanning question. MAIN OUTCOMES AND MEASURES The prevalence of indoor tanning and frequent indoor tanning were examined as well as their association with demographic characteristics and health-related behaviors using multivariable logistic regression modeling. RESULTS The prevalence of indoor tanning was greater among female, older, and non-Hispanic white students. Indoor tanning was highest among female students aged 18 years or older, with 31.5% engaging in indoor tanning in 2011, and among non-Hispanic white female students, with 29.3% engaging in indoor tanning in 2011. Among female students, the adjusted prevalence of indoor tanning decreased from 26.4% in 2009 to 20.7% in 2011. Among female and male students, indoor tanning was associated with other risk-taking behaviors, such as binge drinking (P < .001 and P = .006, respectively), unhealthy weight control practices (P < .001, for both), and having sexual intercourse (P < .001, for both). Additionally, indoor tanning among female students was associated with using illegal drugs (P < .001) and having sexual intercourse with 4 or more persons (P = .03); use among male students was associated with taking steroids without a physician’s prescription (P < .001), smoking cigarettes daily (P = .03), and attempting suicide (P = .006

  16. Two studies on the effects of small exhaust fans on indoor air quality: Field study of exhaust fans for mitigating indoor air quality problems; Indoor air quality, exhaust fan mitigation

    International Nuclear Information System (INIS)

    1987-07-01

    Overall, the findings show that exhaust fans basically provide small amounts of ventilation compensation. By monitoring the common indoor air pollutants (radon, formaldehyde, carbon monoxide, nitrogen dioxide, and water vapor), it was found that the quality of the indoor air was not adversely affected by the use of exhaust fans. Nor did their use provide any measurable or significant benefits since no improvement in air quality was ascertained. While exhaust fans of this small size did not increase radon, which is the contaminant of most concern, the researchers caution that operation of a larger fan or installation in a very tight home could result in higher levels because depressurization is greater. The daily energy consumption for use of these appliances during the heating season was calculated to be 1.5 kilowatt hours or approximately 3% of the energy consumption in the study homes. The information collected in this collaborative field study indicates that the use of these particular ventilation systems has no significant effect on indoor air quality

  17. Source specific risk assessment of indoor aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, A.J.

    2013-05-15

    In the urban environment, atmospheric aerosols consist mainly of pollutants from anthropogenic sources. The majority of these originate from traffic and other combustion processes. A fraction of these pollutants will penetrate indoors via ventilation. However, indoor air concentrations are usually predominated by indoor sources due to the small amount of dilution air. In modern societies, people spend most of their time indoors. Thus, their exposure is controlled mainly by indoor concentrations from indoor sources. During the last decades, engineering of nanosized structures has created a new field of material science. Some of these materials have been shown to be potentially toxic to human health. The greatest potential for exposure to engineered nanomaterials (ENMs) occurs in the workplace during production and handling of ENMs. In an exposure assessment, both gaseous and particulate matter pollutants need to be considered. The toxicities of the particles usually depend on the source and age. With time, particle morphology and composition changes due to their tendency to undergo coagulation, condensation and evaporation. The PM exposure risk is related to source specific emissions, and thus, in risk assessment one needs to define source specific exposures. This thesis describes methods for source specific risk assessment of airborne particulate matter. It consists of studies related to workers' ENM exposures during the synthesis of nanoparticles, packing of agglomerated TiO{sub 2} nanoparticles, and handling of nanodiamonds. Background particles were distinguished from the ENM concentrations by using different measurement techniques and indoor aerosol modelings. Risk characterization was performed by using a source specific exposure and calculated dose levels in units of particle number and mass. The exposure risk was estimated by using non-health based occupational exposure limits for ENMs. For the nanosized TiO{sub 2}, the risk was also assessed from dose

  18. NFC Internal: An Indoor Navigation System

    Science.gov (United States)

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  19. Introduction to Indoor Air Quality

    Science.gov (United States)

    ... Offices Regional Offices Labs and Research Centers Indoor Air Quality (IAQ) Contact Us Share Introduction to Indoor Air Quality Health Effects Primary Causes Identifying Problems Improving IAQ ...

  20. National survey of indoor radon levels in Croatia

    International Nuclear Information System (INIS)

    Radolic, V.; Vukovic, B.; Stanic, D.; Katic, M.; Faj, Z.; Lukacevic, I.; Planinic, J.; Suveljak, B.; Faj, D.; Lukic, M.

    2006-01-01

    National survey of indoor radon was performed by a random sampling of thousand (782 realized) dwellings in Croatia. Radon concentrations were measured for one year with LR-115 SSNT detectors and arithmetic and geometric means of 68 and 50 Bq/m 3 were obtained, respectively. The arithmetic means of radon concentrations on 20 counties were from 33 to 198 Bq/m 3 . The percentage of dwellings with radon concentrations above 200 and 400 Bq/m 3 was 5.4% and 1.8%, respectively. The average annual effective dose of the indoor radon was estimated as 2.2 mSv. (author)

  1. Extended sorption partitioning models for pesticide leaching risk assessments: Can we improve upon the k{sub oc} concept?

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Nicholas, E-mail: nicholas.jarvis@slu.se

    2016-01-01

    Models used to assess leaching of pesticides to groundwater still rely on the sorption k{sub oc} value, even though its limitations have been known for several decades, especially for soils of low organic carbon content (i.e. subsoils). This is mainly because the general applicability of any improved model approach that is also simple enough to use for regulatory purposes has not been demonstrated. The objective of this study was to test and compare alternative models of sorption that could be useful in pesticide risk assessment and management. To this end, a database containing the results of batch sorption experiments for pesticides was compiled from published studies in the literature, which placed at least as much emphasis on measurements in subsoil horizons as in topsoil. The database includes 785 data entries from 34 different published studies and for 21 different active substances. Overall, the apparent k{sub oc} value, k{sub oc(app)}, roughly doubled as the soil organic carbon content decreased by a factor of ten. Nevertheless, in nearly half of the individual datasets, a constant k{sub oc} value proved to be an adequate model. Further analysis showed that significant increases in k{sub oc(app)} in subsoil were found primarily for the more weakly adsorbing compounds (k{sub oc} values < ca. 100–200 L kg{sup −1}) and that sorption to clay in loamy and clayey-textured subsoil horizons was the main cause. Tests with the MACRO model demonstrated that sorption to clay minerals may significantly affect the outcome of regulatory exposure and risk assessments for leaching to groundwater. The k{sub oc} concept currently used in leaching models should therefore be replaced by an alternative approach that gives a more realistic representation of pesticide sorption in subsoil. The two alternative models tested in this study appear to have widespread applicability and are also simple enough to parameterize for this purpose. - Highlights: • A database was collated

  2. Indoor Air Quality in Schools

    Science.gov (United States)

    This web site will educate the public about indoor environmental issues specific to educational facilities and the importance of developing and sustaining comprehensive indoor air quality management programs.

  3. 9 CFR 3.102 - Facilities, indoor.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, indoor. 3.102 Section 3... Marine Mammals Facilities and Operating Standards § 3.102 Facilities, indoor. (a) Ambient temperature. The air and water temperatures in indoor facilities shall be sufficiently regulated by heating or...

  4. INDOOR AIR POLLUTION

    OpenAIRE

    Ahmet Soysal; Yucel Demiral

    2007-01-01

    The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas...

  5. Indoor Multi-Dimensional Location GML and Its Application for Ubiquitous Indoor Location Services

    NARCIS (Netherlands)

    Zhu, Qing; Li, Yun; Xiong, Qing; Zlatanova, S.; Ding, Yulin; Zhang, Yeting; Zhou, Yan

    2016-01-01

    The Open Geospatial Consortium (OGC) Geography Markup Language (GML) standard provides basic types and a framework for defining geo-informational data models such as CityGML and IndoorGML, which provide standard information models for 3D city modelling and lightweight indoor network navigation.

  6. Capturing Hotspots For Constrained Indoor Movement

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2013-01-01

    Finding the hotspots in large indoor spaces is very important for getting overloaded locations, security, crowd management, indoor navigation and guidance. The tracking data coming from indoor tracking are huge in volume and not readily available for finding hotspots. This paper presents a graph......-based model for constrained indoor movement that can map the tracking records into mapping records which represent the entry and exit times of an object in a particular location. Then it discusses the hotspots extraction technique from the mapping records....

  7. Indoor air quality and infiltration in multifamily naval housing

    International Nuclear Information System (INIS)

    Parker, G.B.; Wilfert, G.L.; Dennis, G.W.

    1984-11-01

    Measurements of indoor air quality and air infiltration were taken in three units of a multifamily housing complex at the Naval Submarine base in Bangor, Washington, over 5 consecutive days during the heating season of 1983. Three dwelling units of identical size constructed in 1978 were monitored, each in a separate two-story four-unit complex. One unit was a downstairs unit and the other two units were upstairs units. Two of the units were occupied by smokers (one downstairs and one upstairs). None of the units had combustion appliances. Pollutants monitored indoors included radon, formaldehyde, carbon monoxide, particulate matter, and nitrogen dioxide. Indoor and outdoor temperature and windspeed were also recorded. Outdoor formaldehyde and nitrogen dioxide were also measured. Air exchange was measured about three times during each 24-h period, using a perfluorocarbon tracer with automatic tracer sampling. The daily average air exchange rate ranged from 0.22 to 0.91 air changes per hour (ACH). Pollutant concentrations were generally low except for particulate matter in the units with smokers, which were two to four times higher than in the unit with nonsmokers. Levels of carbon monoxide were also slightly elevated in one of the units with a smoker compared to the unit with nonsmokers. 5 references, 4 figures, 4 tables

  8. Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: implications for inter-protocol data conversion

    Science.gov (United States)

    Wu, Cheng; Huang, X. H. Hilda; Ng, Wai Man; Griffith, Stephen M.; Zhen Yu, Jian

    2016-09-01

    Organic carbon (OC) and elemental carbon (EC) are operationally defined by analytical methods. As a result, OC and EC measurements are protocol dependent, leading to uncertainties in their quantification. In this study, more than 1300 Hong Kong samples were analyzed using both National Institute for Occupational Safety and Health (NIOSH) thermal optical transmittance (TOT) and Interagency Monitoring of Protected Visual Environment (IMPROVE) thermal optical reflectance (TOR) protocols to explore the cause of EC disagreement between the two protocols. EC discrepancy mainly (83 %) arises from a difference in peak inert mode temperature, which determines the allocation of OC4NSH, while the rest (17 %) is attributed to a difference in the optical method (transmittance vs. reflectance) applied for the charring correction. Evidence shows that the magnitude of the EC discrepancy is positively correlated with the intensity of the biomass burning signal, whereby biomass burning increases the fraction of OC4NSH and widens the disagreement in the inter-protocol EC determination. It is also found that the EC discrepancy is positively correlated with the abundance of metal oxide in the samples. Two approaches (M1 and M2) that translate NIOSH TOT OC and EC data into IMPROVE TOR OC and EC data are proposed. M1 uses direct relationship between ECNSH_TOT and ECIMP_TOR for reconstruction: M1 : ECIMP_TOR = a × ECNSH_TOT + b; while M2 deconstructs ECIMP_TOR into several terms based on analysis principles and applies regression only on the unknown terms: M2 : ECIMP_TOR = AECNSH + OC4NSH - (a × PCNSH_TOR + b), where AECNSH, apparent EC by the NIOSH protocol, is the carbon that evolves in the He-O2 analysis stage, OC4NSH is the carbon that evolves at the fourth temperature step of the pure helium analysis stage of NIOSH, and PCNSH_TOR is the pyrolyzed carbon as determined by the NIOSH protocol. The implementation of M1 to all urban site data (without considering seasonal specificity

  9. Indoor air quality inspection and analysis system based on gas sensor array

    Science.gov (United States)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  10. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances

    International Nuclear Information System (INIS)

    Pornnumpa, C.; Tokonami, S.; Sorimachi, A.; Kranrod, C.

    2015-01-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. (authors)

  11. Predictors of Indoor Radon Concentrations in Pennsylvania, 1989-2013.

    Science.gov (United States)

    Casey, Joan A; Ogburn, Elizabeth L; Rasmussen, Sara G; Irving, Jennifer K; Pollak, Jonathan; Locke, Paul A; Schwartz, Brian S

    2015-11-01

    Radon is the second-leading cause of lung cancer worldwide. Most indoor exposure occurs by diffusion of soil gas. Radon is also found in well water, natural gas, and ambient air. Pennsylvania has high indoor radon concentrations; buildings are often tested during real estate transactions, with results reported to the Department of Environmental Protection (PADEP). We evaluated predictors of indoor radon concentrations. Using first-floor and basement indoor radon results reported to the PADEP between 1987 and 2013, we evaluated associations of radon concentrations (natural log transformed) with geology, water source, building characteristics, season, weather, community socioeconomic status, community type, and unconventional natural gas development measures based on drilled and producing wells. Primary analysis included 866,735 first measurements by building, with the large majority from homes. The geologic rock layer on which the building sat was strongly associated with radon concentration (e.g., Axemann Formation, median = 365 Bq/m3, IQR = 167-679 vs. Stockton Formation, median = 93 Bq/m3, IQR = 52-178). In adjusted analysis, buildings using well water had 21% higher concentrations (β = 0.191, 95% CI: 0.184, 0.198). Buildings in cities (vs. townships) had lower concentrations (β = -0.323, 95% CI: -0.333, -0.314). When we included multiple tests per building, concentrations declined with repeated measurements over time. Between 2005 and 2013, 7,469 unconventional wells were drilled in Pennsylvania. Basement radon concentrations fluctuated between 1987 and 2003, but began an upward trend from 2004 to 2012 in all county categories (p Pennsylvania, 1989-2013. Environ Health Perspect 123:1130-1137; http://dx.doi.org/10.1289/ehp.1409014.

  12. Ventilation influence upon indoor air radon level

    International Nuclear Information System (INIS)

    Tian Deyuan

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level. Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition, although using household conditioner requires a sealed room which should lead to a higher radon level. Turning on air conditioner helps lower indoor radon level. Therefore, the total indoor air Rn levels are normal > ventilation > exhaust or in-draft > exhaust plus in-draft

  13. Managing Indoor Air Quality in Schools.

    Science.gov (United States)

    Woolums, Jennifer

    This publication examines the causes and effects of poor indoor air quality and provides information for reducing exposure to indoor contaminants in schools. It discusses the various indoor pollutants found in schools, including dust, chemical agents, gases, and volatile organic compounds; where they are found in schools; and their health effects…

  14. Surface-deposition and distribution of the radon-decay products indoors

    International Nuclear Information System (INIS)

    Espinosa, G.; Tommasino, L.

    2015-01-01

    The exposure to radon-decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure; little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper. - Highlights: • Distribution of Radon and Thoron decay indoor products. • Indoor radon measurements complexity. • Short and long term measurements of surface deposit of Radon and Thoron decay products. • Microclimate controlled conditions room. • Nuclear Tracks Detectors

  15. Indoor radon concentrations in kindergartens from different regions of Yugoslavia

    International Nuclear Information System (INIS)

    Vaupotic, J.; Krizman, M.; Sutej, T.

    1992-01-01

    In the winter period of 1990-1991 instantaneous radon concentrations in air were measured in around 450 kindergartens from different regions from Yugoslavia. Alpha scintillation counting was used as a screening method, and the measurements were carried out in rooms where the children spent the majority of their time. All of the air grab samples were taken under the same conditions which excluded ventilation of the interior 12 h prior to sampling. In addition to indoor radon concentrations, gamma dose rate was measured using portable equipment. The indoor radon concentrations were generally low, in the range from 10 to 180 Bq.m -3 of air, with an overall average of about 100 Bq.m -3 . There were a few exceptions where indoor radon levels exceeded 150 Bq.m -3 ; mainly in old buildings containing higher contents of natural radionuclides in the building materials, and in the cellars or basements of the buildings. In all rooms with a level exceeding 150 Bq of 222 Rn per m 3 , solid-state nuclear track detectors were applied for long-term measurements. In order to investigate the equilibrium between radon and its short-lived daughters, mainly with respect to their contribution to the effective dose, alpha spectrometry is also being introduced in selected kindergartens with elevated radon concentrations. (author)

  16. A groundwater mass flux model for screening the groundwater-to-indoor-air exposure pathway

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, T.; Blanc, P.C. de; Connor, J. [Groundwater Services Inc, Houston, TX (United States)

    2003-07-01

    The potential for human exposure via volatilisation of groundwater contaminants into indoor air has been a focus of increasing concern in recent years. At a small number of sites, elevated indoor vapour concentrations have been measured within buildings overlying shallow groundwater contaminated with chlorinated solvents, causing public concern over the potential for similar problems at other corrective action sites. In addition, use of the screening-levelmodel developed by Johnson and Ettinger (1991) for the groundwater-to-indoor-air exposure pathway has suggested that low microgram per litre (ug/L)-range concentrations of either chlorinated or non-chlorinated volatile organic compounds dissolved in groundwater could result in indoor vapour concentrations in excess of applicable risk-based exposure limits. As an alternative screening tool, this paper presents a groundwater mass flux model for evaluation of transport to indoor air. The mass flux model is intended to serve as a highly conservative screening tool that over-predicts groundwater-to-indoor-air mass flux, yet still provides sufficient sensitivity to identify sites for which the groundwater-to-indoor air exposure pathway is not a concern. (orig.)

  17. Indoor climate design for a monumental building with periodic high indoor moisture loads

    NARCIS (Netherlands)

    Schijndel, van A.W.M.; Lony, R.J.M.; Schellen, H.L.

    2008-01-01

    The paper presents a case study on the performance based design for the indoor climate of a monumental building with periodic high indoor moisture loads. Several scenarios of the past performance and new control classes are simulated and evaluated. The results include the influence of hygric inertia

  18. Indoor air quality: a UK perspective

    International Nuclear Information System (INIS)

    Wadge, A.

    1995-01-01

    Outdoor air quality has generally improved in the UK over the last 2 decades but during this period changing conditions within the home have tended to reduce ventilation and increase the opportunity for accumulation of undesirable levels of indoor air pollutants. Information obtained from laboratory and epidemiological studies suggest that indoor air pollutants are an important cause of avoidable morbidity and mortality in the UK. This paper reviews the major indoor air pollutants of concern in the UK and considers some of the special issues relevant to indoor environment. (author) 3 figs., 37 refs

  19. Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange.

    Science.gov (United States)

    Zhu, Yue-Shan; Yang, Wan-Dong; Li, Xiu-Wen; Ni, Hong-Gang; Zeng, Hui

    2018-02-01

    The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC

    International Nuclear Information System (INIS)

    Oh, Teresa

    2014-01-01

    The electron behavior in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) depends on the polar characteristics of SiOC, which is used as a gate dielectric. The properties of the interface between the semiconductor and SiOC were defined by using a Schottky contact with a low potential barrier and Poole-Frenkel contacts with a high potential barrier. The leakage current of SiOC, which was used as a gate insulator, decreased at the Poole-Frenkel contacts because of the high potential barrier. The ambipolar properties in the field effect transistor were observed to depend on the various characteristics of SiOC, which ranged from its behaving as an ideal insulator or as a material with a high dielectric constant. The resistance of the a-IGZO channel changed from positive to negative at SiOC, which had the lowest polarity. As to the conduction due to the diffusion current, the mobility increased with increasing carrier concentrations. However, the drift carrier conduction was related to the reduced mobility at higher carrier concentrations. The performance of the transistors was enhanced by the tunneling and the diffusion currents Rather than by the drift current caused by trapping. The Schottky contact and the Poole-Frenkel (PF) contacts at an interface between the IGZO channel and the SiOC were defined according to the heights of potential barriers caused by the depletion layer. The leakage current was very low about 10 -12 A at SiOC with PF contacts because of the height of potential barrier was double that with a Schottky contact because the tunneling conductance due to the diffusion current originated from the PF contacts of non-polar SiOC.

  1. Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Teresa [Cheongju University, Cheongju (Korea, Republic of)

    2014-05-15

    The electron behavior in amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) depends on the polar characteristics of SiOC, which is used as a gate dielectric. The properties of the interface between the semiconductor and SiOC were defined by using a Schottky contact with a low potential barrier and Poole-Frenkel contacts with a high potential barrier. The leakage current of SiOC, which was used as a gate insulator, decreased at the Poole-Frenkel contacts because of the high potential barrier. The ambipolar properties in the field effect transistor were observed to depend on the various characteristics of SiOC, which ranged from its behaving as an ideal insulator or as a material with a high dielectric constant. The resistance of the a-IGZO channel changed from positive to negative at SiOC, which had the lowest polarity. As to the conduction due to the diffusion current, the mobility increased with increasing carrier concentrations. However, the drift carrier conduction was related to the reduced mobility at higher carrier concentrations. The performance of the transistors was enhanced by the tunneling and the diffusion currents Rather than by the drift current caused by trapping. The Schottky contact and the Poole-Frenkel (PF) contacts at an interface between the IGZO channel and the SiOC were defined according to the heights of potential barriers caused by the depletion layer. The leakage current was very low about 10{sup -12} A at SiOC with PF contacts because of the height of potential barrier was double that with a Schottky contact because the tunneling conductance due to the diffusion current originated from the PF contacts of non-polar SiOC.

  2. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    Harley, N.H.

    1990-01-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters

  3. Indoor Radon and Lung Cancer Risk in Osijek

    International Nuclear Information System (INIS)

    Planinic, J.; Vukovic, B.; Faj, Z.; Radolic, V.; Culo, D.; Smit, G.; Suveljak, B.; Stanic, D.; Faj, D.

    2001-01-01

    Full text: Although studies of radon exposure have established that Rn decay products are a cause of lung cancer among miners, the lung cancer risk to the general population from indoor radon remains unclear. Our investigation of indoor radon influence on lung cancer incidence was carried out for 188 cases of the disease appeared in Osijek town during last five years. Radon concentration was measured in homes of the patients as well as for a control group. An ecologic method was applied by using the town map with square fields of 1,1km2 and the town was divided into 24 fields. For indoor radon level in the fields and belonging number of the diseases, a positive correlation coefficient was obtained, that was statistically significant, and a linear regression equation of cancer mortality rates was determined. In the mentioned population of the patients, subgroups of smokers and nonsmokers, males and females were also particularly investigated. (author)

  4. An assessment of indoor radon exposure in Ireland

    International Nuclear Information System (INIS)

    McLaughlin, J.P.

    1987-01-01

    The results of measurements of indoor radon in over 700 dwellings chosen at ''random'' throughout the Republic of Ireland are presented. The median value of radon in these dwellings was found to be 37 Bq/m 3 (1 pCi/1). The distribution of indoor radon concentration appears to be approximately log-normal with about 2% of the dwellings surveyed having concentrations greater than 400 Bq/m 3 . High radon values were generally found to be more common in western and southern regions of the country than in the more densely populated eastern seabord. Using dose conversion factors in keeping with recent developments in lung dosimetry the median effective dose equivalent to occupants arising from the inhalation of radon daughters in the dwellings surveyed is estimated to be about 1.8 mSv per year. On the same basis for dwellings with indoor radon above 400 Bq/m 3 the continuous effective dose equivalent is estimated to be in excess of 20 mSv per year

  5. Received Signal Strength Database Interpolation by Kriging for a Wi-Fi Indoor Positioning System.

    Science.gov (United States)

    Jan, Shau-Shiun; Yeh, Shuo-Ju; Liu, Ya-Wen

    2015-08-28

    The main approach for a Wi-Fi indoor positioning system is based on the received signal strength (RSS) measurements, and the fingerprinting method is utilized to determine the user position by matching the RSS values with the pre-surveyed RSS database. To build a RSS fingerprint database is essential for an RSS based indoor positioning system, and building such a RSS fingerprint database requires lots of time and effort. As the range of the indoor environment becomes larger, labor is increased. To provide better indoor positioning services and to reduce the labor required for the establishment of the positioning system at the same time, an indoor positioning system with an appropriate spatial interpolation method is needed. In addition, the advantage of the RSS approach is that the signal strength decays as the transmission distance increases, and this signal propagation characteristic is applied to an interpolated database with the Kriging algorithm in this paper. Using the distribution of reference points (RPs) at measured points, the signal propagation model of the Wi-Fi access point (AP) in the building can be built and expressed as a function. The function, as the spatial structure of the environment, can create the RSS database quickly in different indoor environments. Thus, in this paper, a Wi-Fi indoor positioning system based on the Kriging fingerprinting method is developed. As shown in the experiment results, with a 72.2% probability, the error of the extended RSS database with Kriging is less than 3 dBm compared to the surveyed RSS database. Importantly, the positioning error of the developed Wi-Fi indoor positioning system with Kriging is reduced by 17.9% in average than that without Kriging.

  6. An indoor chemical cocktail

    Science.gov (United States)

    Gligorovski, Sasho; Abbatt, Jonathan P. D.

    2018-02-01

    In the past 50 years, many of the contaminants and chemical transformations that occur in outdoor waters, soils, and air have been elucidated. However, the chemistry of the indoor environment in which we live most of the time—up to 90% in some societies—is not nearly as well studied. Recent work has highlighted the wealth of chemical transformations that occur indoors. This chemistry is associated with 3 of the top 10 risk factors for negative health outcomes globally: household air pollution from solid fuels, tobacco smoking, and ambient particulate matter pollution (1). Assessments of human exposure to indoor pollutants must take these reactive processes into consideration.

  7. Ozone and limonene in indoor air: a source of submicron particle exposure.

    Science.gov (United States)

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-12-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to

  8. Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization

    Science.gov (United States)

    Liu, Zexi

    2018-01-01

    Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.

  9. [Health evaluation of fine particulate matter in indoor air].

    Science.gov (United States)

    2008-11-01

    When evaluating the health effects of indoor air fine particulate matter, the indoor dynamics as well as the physical, chemical and biological properties of fine particles have to be considered. The indoor air fraction PM2.5 largely stems from outdoor air. Accordingly, the German Working Group on Indoor Guideline Values of the Federal Environmental Agency and the States' Health Authorities also recommends WHO's (2006) 24-hour mean guideline value of 25 microg PM2,5 per cubic meter for indoor air evaluation. In contrast to PM2.5, coarse particles (PM10) in schools, kindergartens and dwellings show much higher indoor air concentrations. Additional sources indoors have to be assumed. Because of the different composition of indoor air compared to outdoor air and due to the lack of dose-response relationships of coarse particles in indoor air, the health effects of indoor air PM10 can not be evaluated yet. Sufficient and consistent ventilation is an indispensable basis to reduce PM concentrations in indoor spaces. Furthermore, known sources of PM indoors should be detected consequently and subsequently minimized.

  10. Reducing Indoor Noise Levels Using People's Perception on Greenery

    Science.gov (United States)

    Mediastika, Christina E.; Binarti, Floriberta

    2013-12-01

    Employees working in cubicles of open-plan offices in Indonesia were studied in regard to their perception on the ability of indoor greenery to reduce noise levels. Sansevieria trifasciata and Scindapsus sp were used. Each was placed in the cubicle and noise levels were measured without plants, with Sansevieria, and with Scindapsus in place. The meters showed very insignificant difference. However, responses to surveys indicated a perception of lower noise in the presence of greenery. This seemed to be supported by prior knowledge and preconception and may be useful in creating a "quieter" indoor environment.

  11. Spatial and Temporal Variations of EC and OC Aerosol Combustion Sources in a Polluted Metropolitan Area

    Science.gov (United States)

    Mouteva, G.; Randerson, J. T.; Fahrni, S.; Santos, G.; Bush, S. E.; Ehleringer, J. R.; Czimczik, C. I.

    2015-12-01

    Anthropogenic emissions of carbonaceous aerosols are a major component of fine air particulate matter (PM2.5) in polluted metropolitan areas and in the global atmosphere. Elemental (EC) and organic carbon (OC) aerosols influence Earth's energy balance by means of direct and indirect pathways and EC has been suggested as a better indicator of public health impacts from combustion-related sources than PM mass. Quantifying the contribution of fossil fuel and biomass combustion to the EC and OC emissions and their temporal and spatial variations is critical for developing efficient legislative air pollution control measures and successful climate mitigation strategies. In this study, we used radiocarbon (14C) to separate and quantify fossil and biomass contributions to a time series of EC and OC collected at 3 locations in Salt Lake City (SLC). Aerosol samples were collected on quartz fiber filters and a modified OC/EC analyzer was used with the Swiss_4S protocol to isolate and trap the EC fraction. Together with the total carbon (TC) content of the samples, the EC was analyzed for its 14C content with accelerator mass spectrometry. The 14C of OC was derived as a mass balance difference between TC and EC. EC had an annual average fraction modern of 0.13±0.06 and did not vary significantly across seasons. OC had an annual average FM of 0.49±0.13, with the winter mean (0.43±0.11) lower than the summer mean (0.64±0.13) at the 5% significance level. While the 3 stations were chosen to represent a variety of environmental conditions within SLC, no major differences in this source partitioning were observed between stations. During winter, the major sources of air pollutants in SLC are motor vehicles and wood stove combustion and determining their relative contributions has been the subject of debate. Our results indicated that fossil fuels were the dominant source of carbonaceous aerosols during winter, contributing 87% or more of the total EC mass and 40-75% of the OC

  12. Synthesis and Electrochemical Performance of SiOC-Carbon Nanotube Composite Coatings

    Science.gov (United States)

    Bhandavat, Romil; Cologna, Marco; Raj, Rishi; Singh, Gurpreet

    2012-02-01

    Rechargeable battery anodes made from crystalline Si-based nanostructures have been shown to possess high experimental first cycle capacities (3000 mAh/g), but face challenges in sustaining these capacities beyond initial cycles mainly due to large volume expansion (400 percent) and chemical degradation (pulverization). Polymer-derived ceramic SiOC due to its high thermodynamic stability and nano domain structure could present a viable alternative. Additionally, functionalization of SiOC with carbon nanotubes could result in increased electronic and ionic conductivities in the ceramic. Here, we demonstrate synthesis and electrochemical characterization of SiOC-CNT composite coatings for use in Li-ion battery anode. Materials characterization performed using electron microscopy, Infrared (FT-IR), and X-ray photoelectron spectroscopy suggests non-covalent functionalization of CNT with oxygen moieties in SiOC. Sustained battery capacities of over 700 mAh/g and first cycle columbic efficiencies of about 75 percent were achieved. Future work will involve determination of lithium ion intercalation sites characterized by electron microscopy whereas cyclic voltammetry analysis will access the sequential change in anode chemistry.

  13. NFC Internal: An Indoor Navigation System

    Directory of Open Access Journals (Sweden)

    Busra Ozdenizci

    2015-03-01

    Full Text Available Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability.

  14. Possible signatures of nuclear-molecular formation in O+C systems

    International Nuclear Information System (INIS)

    Tighe, R.J.; Kolata, J.J.; Belbot, M.; Aguilera, E.F.

    1993-01-01

    The interplay between the elastic, quasielastic, and fusion reaction channels at energies from just above to well below the Coulomb barrier is investigated for O+C systems. Elastic-scattering and quasielastic-scattering angular distributions were measured using the kinematic coincidence technique. Fusion yields were obtained by direct detection of the evaporation residues using a time-of-flight energy spectrometer, at energies from just above to well below the Coulomb barrier. The fusion yields differ significantly from previous work, but the present measurements give barrier parameters consistent with systematics. Comparisons with two-center shell model and coupled-channels predictions show possible indications of nuclear-molecular formation in the elastic, inelastic, and single-neutron transfer channels

  15. Indoor air pollution and cognitive function among older Mexican adults.

    Science.gov (United States)

    Saenz, Joseph L; Wong, Rebeca; Ailshire, Jennifer A

    2018-01-01

    A growing body of research suggests exposure to high levels of outdoor air pollution may negatively affect cognitive functioning in older adults, but less is known about the link between indoor sources of air pollution and cognitive functioning. We examine the association between exposure to indoor air pollution and cognitive function among older adults in Mexico, a developing country where combustion of biomass for domestic energy remains common. Data come from the 2012 Wave of the Mexican Health and Aging Study. The analytic sample consists of 13 023 Mexican adults over age 50. Indoor air pollution is assessed by the reported use of wood or coal as the household's primary cooking fuel. Cognitive function is measured with assessments of verbal learning, verbal recall, attention, orientation and verbal fluency. Ordinary least squares regression is used to examine cross-sectional differences in cognitive function according to indoor air pollution exposure while accounting for demographic, household, health and economic characteristics. Approximately 16% of the sample reported using wood or coal as their primary cooking fuel, but this was far more common among those residing in the most rural areas (53%). Exposure to indoor air pollution was associated with poorer cognitive performance across all assessments, with the exception of verbal recall, even in fully adjusted models. Indoor air pollution may be an important factor for the cognitive health of older Mexican adults. Public health efforts should continue to develop interventions to reduce exposure to indoor air pollution in rural Mexico. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Investigation of indoor air quality at residential homes in Hong Kong - case study

    International Nuclear Information System (INIS)

    Shun Cheng Lee; Waiming Li; Chiohang Ao

    2002-01-01

    Indoor air quality (IAQ) has been a matter of public concern in Hong Kong. Recently, the Hong Kong Government has recognized the potential risk and problems related to indoor air pollution, and it is striving to establish IAQ objectives for different types of indoor environments. This study attempts to provide more information about the present IAQ of local resident flats. Air pollutants measured in this study included carbon dioxide (CO 2 ), respirable suspended particulate matter (PM 10 ), formaldehyde (HCHO), volatile organic compounds (VOCs) and airborne bacteria. The results of this study indicate that the 8-h average concentrations of CO 2 and PM 10 in the domestic kitchens investigated were 14% and 67% higher than those measured in the living rooms. The indoor air pollution caused by PM 10 was more serious in domestic kitchens than in living rooms as almost all of the kitchens investigated had higher indoor levels of PM 10 . The majority of the domestic living rooms and kitchens studied had average concentrations of airborne bacteria higher than 500CFU/m 3 . The mean total bacteria count recorded in kitchens was greater than that obtained in living rooms by 23%. In homes where occupants smoke, the negative impact of benzene, toluene and m,p-xylene on the IAQ was greatly enhanced. The use of liquefied petroleum gas (LPG) stove has more significant impact on indoor VOCs than the use of cooking stoves with natural gas as cooking fuel. (Author)

  17. Indoor and outdoor poly- and perfluoroalkyl substances (PFASs) in Korea determined by passive air sampler

    International Nuclear Information System (INIS)

    Kim, Seung-Kyu; Shoeib, Mahiba; Kim, Kyeong-Soo; Park, Jong-Eun

    2012-01-01

    Despite concerns to their increasing contribution to ecological and human exposure, the atmospheric levels of poly- and perfluoroalkyl substances (PFASs) have been determined mainly in Europe and North America. This study presents the indoor and outdoor air concentrations of volatile PFASs [fluorotelomer alcohols (FTOHs), and perfluoroalkyl sulfonamides/sulfonamidoethanols/sulfonamide ethyl acetate (FOSAs/FOSEs/FOSEA)] for the first time in Korean cities. In contrast to the good agreement observed for indoor FTOHs levels in Korea and Europea/North America, FOSAs/FOSEs levels were 10–100-fold lower in Korean indoor air, representing a cultural difference of indoor source. Korean outdoor air contained higher PFAS levels than indoor air, and additionally showed different PFAS composition profile from indoor air. Thus, indoor air would not likely be a main contributor to atmospheric PFAS contamination in Korea, in contrast to western countries. Inhalation exposure of volatile PFASs was estimated to be a minor contributor to PFOA and PFOS exposure in Korea. - Highlights: ► Volatile PFASs were measured in indoor and outdoor airs of Korea, for the first time. ► Cultural difference in indoor source was observed for Korea v.s. western countries. ► Furthermore, PFASs concentrations were higher in indoor air than outdoor air. ► Indoor air was not a major contributor to atmospheric PFASs contamination in Korea. ► Release from industrial activities was considered a possible source. - Korean outdoor air showed not only different PFAS composition profile but higher PFAS levels than indoor airs, indicating indoor air would not be a main source to Korean atmospheric PFASs.

  18. Residential indoor air quality guideline : carbon monoxide

    International Nuclear Information System (INIS)

    2010-01-01

    Carbon monoxide (CO) is a tasteless, odourless, and colourless gas that can be produced by both natural and anthropogenic processes, but is most often formed during the incomplete combustion of organic materials. In the indoor environment, CO occurs directly as a result of emissions from indoor sources or as a result of infiltration from outdoor air containing CO. Studies have shown that the use of specific sources can lead to increased concentrations of CO indoors. This residential indoor air quality guideline examined the factors influencing the introduction, dispersion and removal of CO indoors. The health effects of exposure to low and higher concentrations of CO were discussed. Residential maximum exposure limits for CO were presented. Sources and concentrations in indoor environments were also examined. 17 refs., 2 tabs.

  19. The transmission characteristics of indoor particles under different ventilation conditions

    Directory of Open Access Journals (Sweden)

    Lv Yang

    2017-01-01

    Full Text Available In modern society, ventilation is an important method for removing indoor particles. This study applies the parameter of attenuation index to analyze the effect of the removal of indoor particles in the two typical ventilation strategies called ceiling exhaust and slit exhaust strategy. Experiment was conducted in a chamber and riboflavin particles were used as the indoor particles source, instantaneous microbial detection (IMD used to measure the particulate concentration. Conclusions can be found that air exchange rate is an important factor affecting the indoor particle concentration distribution. In the process of indoor free settling(air exchange rate is 0 h-1, the deposition rate were 0.086 h-1, 0.122 h-1, 0.173 h-1 for the particles of 0.5–1.0 μm, 1.0–3.0μm and 3.0–5.0 μm. When the air exchange rate increased to 2.5 h-1, the differences in the attenuation index is significant. There was also a significant linear relationship between air exchange rate and attenuation index. Furthermore, the effect of the slit exhaust strategy on the removal of coarse particles is more remarkable as the increasing air exchange rate.

  20. [European community guidelines and standards in indoor air quality: what proposals for Italy].

    Science.gov (United States)

    Settimo, Gaetano; D'Alessandro, Daniela

    2014-01-01

    Indoor air quality is an issue on which to focus because of the increasing number of exposed population and in view of the strong public feeling on this issue. This paper reports the rules of EU and several European countries about indoor air quality, focusing on the initiatives performed in Italy to respond to WHO recommendations. Several EU countries have introduced in their legislation rules relating to indoor air quality. At the moment, in Italy, a reference rule has not been issued. For this reason, up to date main informations concerning some guidelines or reference values in indoor air, to be used for a first comparison, are those obtained by the scientific literature, or by the guidelines issued by other European countries or, for analogy, by other standard values such as limit or reference values regarding outdoor air. Even the EU, while reaffirming the priority of energy efficiency measures, recommends healthier indoor environments and the development of a specific European strategy on the issue of indoor air quality. The National Study Group on indoor pollution of the Italian National Health Institute (ISS), is working for the development of shared technical and scientific documents, in order to provide greater uniformity of actions at national level, waiting for a legal framework for indoor air quality, in the light of the indication already produced by the WHO.

  1. Airborne contamination in the indoor environment and its implications for dose

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.G.; Roed, J.; Byrne, M.A.; Hession, H.; Clark, P.; Elahi, E.; Buskov, A.; Hou, X.L.; Prip, H.; Olsen, S.K.; Roed, T

    2004-04-01

    Previous work has indicated that radiation doses from deposition on human skin, hair and clothing may contribute significantly to the dose received after a major nuclear accident, such as that, which happened at Chernobyl in 1986. The available data was, however, sparse and associated with considerable variation, clearly showing a need for further investigations to verify preliminary conclusions, examine processes in greater detail and identify important factors causing the observed parameter variation. For instance, the impacts of thermophoresis, electrophoresis, skin moisture and wind speed on the deposition of contaminant aerosol were examined, and since the previous measurements had indicated that elemental iodine could be a particularly problematic contaminant, experimental work was additionally undertaken to examine the process of deposition of this species to skin. Since both clearance and percutaneous penetration of deposited contaminants could play important roles in determining doses, experimental programmes were dedicated to the identification of parameters of interest in these contexts. Also doses from contamination on different surfaces in the indoor environment have in the past traditionally been neglected, and a theoretical approach, based on measurements, was developed for accurate prediction of these doses under different conditions. Also resuspension of deposited matter and its role in dose formation, by subsequent deposition or inhalation, was investigated through experiments. Contact transfer of contaminants from an indoor surface to human skin may give yet another contribution to dose and also the relevant parameters in this direction were examined experimentally. The ultimate goal of the investigations was to enable the determination of the various contributions to dose in a contaminated indoor environment. A model methodology was developed and an example of its use was given. It was found that after a major nuclear accident, doses from indoor

  2. A MIMO-OFDM Testbed, Channel Measurements, and System Considerations for Outdoor-Indoor WiMAX

    Directory of Open Access Journals (Sweden)

    Torres

    2010-01-01

    Full Text Available The design, implementation, and test of a real-time flexible (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing MIMO-OFDM IEEE 802.16 prototype are presented. For the design, a channel measurement campaign on the 3.5 GHz band has been carried out, focusing on outdoor-indoor scenarios. The analysis of measured channels showed that higher capacity can be achieved in case of obstructed scenarios and that (Channel Distribution Information at the Transmitter CDIT capacity is close to (Channel State Information at the Transmitter CSIT with much lower complexity and requirements in terms of channel estimation and feedback. The baseband prototype used an (Field Programmable Gate Array FPGA where enhanced signal processing algorithms are implemented in order to improve system performance. We have shown that for MIMO-OFDM systems, extra signal processing such as enhanced joint channel and frequency offset estimation is needed to obtain a good performance and approach in practice the theoretical capacity improvements.

  3. A MIMO-OFDM Testbed, Channel Measurements, and System Considerations for Outdoor-Indoor WiMAX

    Directory of Open Access Journals (Sweden)

    Víctor P. Gil Jiménez

    2010-01-01

    Full Text Available The design, implementation, and test of a real-time flexible 2×2 (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing MIMO-OFDM IEEE 802.16 prototype are presented. For the design, a channel measurement campaign on the 3.5 GHz band has been carried out, focusing on outdoor-indoor scenarios. The analysis of measured channels showed that higher capacity can be achieved in case of obstructed scenarios and that (Channel Distribution Information at the Transmitter CDIT capacity is close to (Channel State Information at the Transmitter CSIT with much lower complexity and requirements in terms of channel estimation and feedback. The baseband prototype used an (Field Programmable Gate Array FPGA where enhanced signal processing algorithms are implemented in order to improve system performance. We have shown that for MIMO-OFDM systems, extra signal processing such as enhanced joint channel and frequency offset estimation is needed to obtain a good performance and approach in practice the theoretical capacity improvements.

  4. 3D MODELLING OF AN INDOOR SPACE USING A ROTATING STEREO FRAME CAMERA SYSTEM

    Directory of Open Access Journals (Sweden)

    J. Kang

    2016-06-01

    Full Text Available Sophisticated indoor design and growing development in urban architecture make indoor spaces more complex. And the indoor spaces are easily connected to public transportations such as subway and train stations. These phenomena allow to transfer outdoor activities to the indoor spaces. Constant development of technology has a significant impact on people knowledge about services such as location awareness services in the indoor spaces. Thus, it is required to develop the low-cost system to create the 3D model of the indoor spaces for services based on the indoor models. In this paper, we thus introduce the rotating stereo frame camera system that has two cameras and generate the indoor 3D model using the system. First, select a test site and acquired images eight times during one day with different positions and heights of the system. Measurements were complemented by object control points obtained from a total station. As the data were obtained from the different positions and heights of the system, it was possible to make various combinations of data and choose several suitable combinations for input data. Next, we generated the 3D model of the test site using commercial software with previously chosen input data. The last part of the processes will be to evaluate the accuracy of the generated indoor model from selected input data. In summary, this paper introduces the low-cost system to acquire indoor spatial data and generate the 3D model using images acquired by the system. Through this experiments, we ensure that the introduced system is suitable for generating indoor spatial information. The proposed low-cost system will be applied to indoor services based on the indoor spatial information.

  5. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  6. Combining a survey approach and energy and indoor environment auditing in historic buildings

    DEFF Research Database (Denmark)

    Rohdin, Patrik; Dalewski, Mariusz; Moshfegh, Bahram

    2016-01-01

    Purpose – This paper presents an approach where a survey study is combined with energy and indoor environment auditing in the built environment. The combination of methods presented in this paper is one way to obtain a wider perspective on the indoor environment and energy use and also let...... this research project. Design/methodology/approach – A combination of energy and indoor environment auditing and standardized occupant surveys. Findings – The main findings in the paper are related to the good agreement between results from standardized occupant surveys and physical measurements...

  7. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    DEFF Research Database (Denmark)

    Owens, Charles; Ferguson, Gretta Mae; Hermenau, Martin

    2016-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected...... at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better than outdoors due to the lack of temperature and humidity extremes. Encapsulated cells performed better due...

  8. A Semantic-Based Indexing for Indoor Moving Objects

    OpenAIRE

    Tingting Ben; Xiaolin Qin; Ning Wang

    2014-01-01

    The increasing availability of indoor positioning, driven by techniques like RFID, Bluetooth, and smart phones, enables a variety of indoor location-based services (LBSs). Efficient queries based on semantic-constraint in indoor spaces play an important role in supporting and boosting LBSs. However, the existing indoor index techniques cannot support these semantic constraints-based queries. To solve this problem, this paper addresses the challenge of indexing moving objects in indoor spaces,...

  9. Indoor Positioning using Wi-Fi

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Krarup, Mads Vering; Stisen, Allan

    The past decade has witnessed substantial research on methods for indoor Wi-Fi positioning. While much effort has gone into achieving high positioning accuracy and easing fingerprint collection, it is our contention that the general problem is not sufficiently well understood, thus preventing...... deployments and their usage by applications to become more widespread. Based on our own and published experiences on indoor Wi-Fi positioning deployments, we hypothesize the following: Current indoor Wi-Fi positioning systems and their utilization in applications are hampered by the lack of understanding...... of the requirements present in the real-world deployments. In this paper, we report findings from qualitatively studying organisational requirements for indoor Wi-Fi positioning. The studied cases and deployments cover both company and public-sector settings and the deployment and evaluation of several types...

  10. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    ... Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ... Pollution Indoor Air Pollution Print this Page Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ...

  11. Carbonyl sulfide (OCS) as a proxy for GPP: Complications derived from studies on the impact of CO2, soil humidity and sterilization on the OCS exchange between soils and atmosphere

    Science.gov (United States)

    Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide is discussed to be used as a proxy for gross primary productivity (GPP) of forest ecosystems. However, soils may interfere. Soils play an important role in budgeting global and local carbonyl sulfide (OCS) fluxes, yet the available data on the uptake and emission behavior of soils in conjunction with environmental factors is limited. The work of many authors has shown that the OCS exchange of soils depends on various factors, such as soil type, atmospheric OCS concentrations, temperature or soil water content (Kesselmeier et al., J. Geophys. Res., 104, No. D9, 11577-11584, 1999; Van Diest & Kesselmeier, Biogeosciences, 5, 475-483, 2008; Masyek et al., PNAS, 111, No 25, 9064-9069, doi: 10.1073/pnas.1319132111, 2014; Whelan and Rhew, J. Geophys. Res. Biogeosciences., 120, 54-62, doi: 10.1002/2014JG002661, 2015) and the light dependent and obviously abiotic OCS production as reported by Whelan and Rhew (2015). To get a better constraint on the impact of some environmental factors on the OCS exchange of soils we used a new laser based integrated cavity output spectroscopy instrument (LGR COS/CO Analyzer Model 907-0028, Los Gatos, Mountain View, California, USA) in conjunction with an automated soil chamber system (as described in Behrendt et al, Biogeosciences, 11, 5463-5492, doi: 10.5194/bg-11-5463-2014, 2014). The OCS exchange of various soils under the full range of possible soil humidity and various CO2 mixing ratios was examined. Additionally OCS exchange of chloroform sterilized subsamples was compared to their live counterparts to illuminate the influence of microorganisms. Results were quite heterogeneous between different soils. With few exceptions, all examined soils show dependence between OCS exchange and soil humidity, usually with strongest uptake at a certain humidity range and less uptake or even emission at higher and lower humidity. Differences in CO2 mixing ratio also clearly impacts on OCS exchange, but trends for different soils

  12. Energy-efficient Building in Greenland: Investigation of the Energy Consumption and Indoor Climate

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Kotol, Martin; Lading, Tove

    2016-01-01

    Recently, a brand new single family home was built in Sisimiut, Greenland. The building was constructed as a wooden house typical for Greenland. However, some non-traditional measures were implemented in order to reduce the energy consumption and improve indoor air quality. Assessment...... was installed in the house. It enables the evaluation of the indoor air quality, as well as building's energy performance. The aim of this investigation was to evaluate the performance of the newly constructed house by and compare it with the performance of identical house built in a traditional way by using...... a computer model. The data obtained from the measurements in the new house were used to verify the model. Significant energy savings and improvements of indoor air quality were found in the new house when compared to the traditional one. Moreover, all the extra measures have a feasible payback time despite...

  13. Indoor Air Quality Manual.

    Science.gov (United States)

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  14. Indoor Climate of Large Glazed Spaces

    DEFF Research Database (Denmark)

    Hendriksen, Ole Juhl; Madsen, Christina E.; Heiselberg, Per

    In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate it is crui...... it is cruicial at the design stage to be able to predict the performance regarding thermal comfort and energy consumption. This paper focus on the practical implementation of Computational Fluid Dynamics (CFD) and the relation to other simulation tools regarding indoor climate.......In recent years large glazed spaces has found increased use both in connection with renovation of buildings and as part of new buildings. One of the objectives is to add an architectural element, which combines indoor- and outdoor climate. In order to obtain a satisfying indoor climate...

  15. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chamness, Michele A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maddalena, Randy L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, M. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-01

    To improve the indoor air quality in new, high performance homes, a variety of standards and rating programs have been introduced to identify building materials that are designed to have lower emission rates of key contaminants of concern and a number of building materials are being introduced that are certified to these standards. For example, the U.S. Department of Energy (DOE) Zero Energy Ready Home program requires certification under the U.S. Environmental Protection Agency (EPA) Indoor airPLUS (IaP) label, which requires the use of PS1 or PS2 certified plywood and OSB; low-formaldehyde emitting wood products; low- or no-VOC paints and coatings as certified by Green Seal Standard GS-11, GreenGuard, SCS Indoor Advantage Gold Standard, MPI Green Performance Standard, or another third party rating program; and Green Label-certified carpet and carpet cushions. However, little is known regarding the efficacy of the IAP requirements in measurably reducing contaminant exposures in homes. The goal of this project is to develop a robust experimental approach and collect preliminary data to support the evaluation of indoor air quality (IAQ) measures linked to IAP-approved low-emitting materials and finishes in new residential homes. To this end, the research team of Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) developed a detailed experimental plan to measure IAQ constituents and other parameters, over time, in new homes constructed with materials compliant with IAP’s low-emitting material and ventilation requirements (i.e., section 6.1, 6.2, 6.3, and 7.2) and similar homes constructed to the state building code with conventional materials. The IAQ in IAP and conventional homes of similar age, location, and construction style is quantified as the differences in the speciated VOC and aldehyde concentrations, normalized to dilution rates. The experimental plan consists of methods to evaluate the difference between low

  16. Indoor radon survey in Eastern Sicily

    International Nuclear Information System (INIS)

    Catalano, R.; Immè, G.; Mangano, G.; Morelli, D.; Tazzer, A. Rosselli

    2012-01-01

    Inhalation of radon (Rn-222) and its progeny is one of the most significant sources of natural radiation exposure of the population. Nowadays, high radon exposures have been shown to cause lung cancer and many governments all over the world have therefore recommended that radon exposures in dwellings and indoor workplaces should be limited. Radon levels in buildings vary widely from area to area depending on local geology. This paper presents the results of a long-term survey of radon concentrations carried out from 2005 till 2010 in schools and dwellings of Eastern Sicily, using the solid-state nuclear track detector (SSNTD) technique. The investigated area shows medium-high indoor radon concentrations, higher than the Italian average of about 70 Bq/m 3 , with peaks of 500 Bq/m 3 or more in buildings near active faults. Fortunately, only a small fraction of the measurements, about 1.5% of total, was found greater than EU and Italian action limits for indoor and workplaces. - Highlights: ► In this paper we report radon monitoring survey carried out in the east Sicily in schools and dwellings. ► The detection methodology was the solid-state nuclear track detector one. ► The work was supported by a national projects financed by the National Institute of Nuclear Physics.

  17. Indoor PM2.5 in an urban zone with heavy wood smoke pollution: The case of Temuco, Chile.

    Science.gov (United States)

    Jorquera, Héctor; Barraza, Francisco; Heyer, Johanna; Valdivia, Gonzalo; Schiappacasse, Luis N; Montoya, Lupita D

    2018-05-01

    Temuco is a mid-size city representative of severe wood smoke pollution in southern Chile; however, little is known about the indoor air quality in this region. A field measurement campaign at 63 households in the Temuco urban area was conducted in winter 2014 and is reported here. In this study, indoor and outdoor (24-hr) PM 2.5 and its elemental composition were measured and compared. Infiltration parameters and outdoor/indoor contributions to indoor PM 2.5 were also determined. A statistical evaluation of how various air quality interventions and household features influence indoor PM 2.5 was also performed. This study determined median indoor and outdoor PM 2.5 concentrations of 44.4 and 41.8 μg/m 3 , respectively. An average infiltration factor (0.62 ± 0.06) was estimated using sulfur as a tracer species. Using a simple mass balance approach, median indoor and outdoor contributions to indoor PM 2.5 concentrations were then estimated as 12.5 and 26.5 μg/m 3 , respectively; therefore, 68% of indoor PM 2.5 comes from outdoor infiltration. This high percentage is due to high outdoor pollution and relatively high household air exchange rates (median: 1.06 h -1 ). This study found that S, Br and Rb were dominated by outdoor contributions, while Si, Ca, Ti, Fe and As originated from indoor sources. Using continuous indoor and outdoor PM 2.5 measurements, a median indoor source strength of 75 μg PM 2.5 /min was estimated for the diurnal period, similar to literature results. For the evening period, the median estimate rose to 135 μg PM 2.5 /min, reflecting a more intense wood burning associated to cooking and space heating at night. Statistical test results (at the 90% confidence level) support the ongoing woodstove replacement program (reducing emissions) and household weatherization subsidies (reducing heating demand) for improving indoor air quality in southern Chile, and suggest that a cookstove improvement program might be helpful as well

  18. Measured 21.5 GHz Indoor Channels With User-Held Handset Antenna Array

    DEFF Research Database (Denmark)

    Hejselbæk, Johannes; Nielsen, Jesper Ødum; Fan, Wei

    2017-01-01

    networks is still to be investigated. This work investigates how the user affects the performance of a 5G handset mock-up. The user impact is studied by channel sounding in an indoor scenario, with and without the presence of different users. The mock-up handset has a uniform linear array of receive (Rx...

  19. COMPARISON OF INDOOR AIR QUALITY IN RESTAURANT KITCHENS IN TEHRAN WITH AMBIENT AIR QUALITY

    Directory of Open Access Journals (Sweden)

    M. Ghasemkhani, F. Naseri

    2008-01-01

    Full Text Available The indoor air quality of 131 restaurant kitchens in Tehran was investigated from May to September 2006. Gas stoves use in restaurant kitchens is a major source of indoor combustion, product carbon monoxide and nitrogen dioxide. The study focused on one of the busy zones located in the southwest and central part of the city. Measurements were done for indoor and outdoor air pollutants, carbon monoxide and nitrogen dioxide; ambient temperature and relative humidity were also measured. Result indicated that the mean levels of CO and NO2 in restaurant kitchens were below the recommended limit of 25 and 3ppm, respectively. Correlations between indoor and outdoor air quality were performed consequently. Results of the mean ambient temperature and relative humidity were above the guideline. In this study the mean levels of CO and NO2 gas cooking in restaurant kitchens were found to be lower compared with the similar studies.

  20. Monitoring trends in civil engineering and their effect on indoor radon.

    Science.gov (United States)

    Ringer, W

    2014-07-01

    In this paper, the importance of monitoring new building concepts is discussed. The effect of energy-efficient construction technologies on indoor radon is presented in more detail. Comparing the radon levels of about 100 low-energy and passive houses in Austria with radon levels in conventional new houses show that, in energy-efficient new houses, the radon level is about one-third lower than in conventional new houses. Nevertheless, certain features or bad practice may cause high radon levels in energy-efficient new houses. Recommendations to avoid adverse effects were set up. Furthermore, the paper deals with the effect of thermal retrofitting on indoor radon. Results from a Swiss study where 163 dwellings were measured before and after thermal retrofit yield an increase of the radon level of 26% in average. Among the various retrofit measures, replacing windows has the greatest impact on the indoor radon level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Measurements of indoor radon concentration in italian red cross workplaces: preliminary results

    International Nuclear Information System (INIS)

    Fontana, C.; Musumeci, R.G.; Valeriani, F.; Tonnarini, S.; Trevisi, R.

    2002-01-01

    In August 2000 in Italy the D.Lgs.241/00 law was passed to implement the 96/29 Euratom Directive (BSS Directive, EC 1996). D.Lgs.241/00 states that workers cannot be exposed to decay products of radon, thoron and gamma radiation at a level higher than action level. The law became effective January 1, 2001. Italian action level of 500 Bq/m3 is the annual average indoor radon concentration. Work activities in zones with greater probability of high indoor radon concentration have to be identified. According to the law, a Commission must establish criteria for clarifying areas at risk. The actual work of classification is then done by the regions. A three year time period was given to define areas at risk. As the normative still must be completed, the Italian Red Cross and the Italian National Institute for Occupational Prevention and Safety initiated this study both because the Red Cross has always been sensitive to health problems and also to offer the Commission further experimental data regarding radon in Italy

  2. Size Effect Studies of the Creep Behaviour of 20MnMoNi55 at Temperatures from 700 {sup o}C to 900 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Krompholz, K.; Groth, E.; Kalkhof, D

    2000-11-01

    One of the objectives of the REVISA project (REactor Vessel Integrity in Severe Accidents) is to assess size and scale effects in plastic flow and failure. This includes an experimental programme devoted to characterising the influence of specimen size, strain rate, and strain gradients at various temperatures. One of the materials selected was the forged reactor pressure vessel material 20 MnMoNi 55, material number 1.6310 (heat number 69906). Among others, a size effect study of the creep response of this material was performed, using geometrically similar smooth specimens with 5 mm and 20 mm diameter. The tests were done under constant load in an inert atmosphere at 700 {sup o}C, 800 {sup o}C, and 900 {sup o}C, close to and within the phase transformation regime. The mechanical stresses varied from 10 MPa to 30 MPa, depending on temperature. Prior to creep testing the temperature and time dependence of scale oxidation as well as the temperature regime of the phase transformation was determined. The creep tests were supplemented by metallographical investigations.The test results are presented in form of creep curves strain versus time from which characteristic creep data were determined as a function of the stress level at given temperatures. The characteristic data are the times to 5% and 15% strain and to rupture, the secondary (minimum) creep rate, the elongation at fracture within the gauge length, the type of fracture and the area reduction after fracture. From metallographical investigations the austenitic phase contents at different temperatures could be estimated. From these data also the parameters of the regression calculation (e.g. Norton's creep law) were obtained. The evaluation revealed that the creep curves and characteristic data are size dependent of varying degree, depending on the stress and temperature level, but the size influence cannot be related to corrosion or orientation effects or to macroscopic heterogeneity (position effect) of

  3. Indoor air quality in a restaurant kitchen using margarine for deep-frying.

    Science.gov (United States)

    Sofuoglu, Sait C; Toprak, Melis; Inal, Fikret; Cimrin, Arif H

    2015-10-01

    Indoor air quality has a great impact on human health. Cooking, in particular frying, is one of the most important sources of indoor air pollution. Indoor air CO, CO2, particulate matter (PM), and volatile organic compound (VOC) concentrations, including aldehydes, were measured in the kitchen of a small establishment where a special deep-frying margarine was used. The objective was to assess occupational exposure concentrations for cooks of such restaurants. While individual VOC and PM2.5 concentrations were measured before, during, and after frying events using active sampling, TVOC, PM10, CO, CO2, temperature, and relative humidity were continuously monitored through the whole period. VOC and aldehyde concentrations did not increase to considerable levels with deep-frying compared to the background and public indoor environment levels, whereas PM10 increased significantly (1.85 to 6.6 folds). The average PM2.5 concentration of the whole period ranged between 76 and 249 μg/m(3). Hence, considerable PM exposures could occur during deep-frying with the special margarine, which might be sufficiently high to cause health effects on cooks considering their chronic occupational exposures.

  4. Indoor versus outdoor time in preschoolers at child care.

    Science.gov (United States)

    Tandon, Pooja S; Saelens, Brian E; Zhou, Chuan; Kerr, Jacqueline; Christakis, Dimitri A

    2013-01-01

    Being outdoors may have health benefits including being more physically active. Understanding the relationship between outdoor time and health is hampered by the difficulty of measuring outdoor time. To examine the accuracy and validity of light-sensor and GPS methods for quantifying outdoor time among those aged 3-5 years at child care. A total of 45 children (mean age 4.5 years, 64% boys) from five child care centers wore portable accelerometers with built-in light sensors and a separate GPS device around their waists during child care, providing 80,648 episodes (15 seconds each) for analysis. Direct observation (gold standard) of children being outdoors versus indoors was conducted for 2 days at each center. GPS signal-to-noise ratios, processed through the Personal Activity and Location Measurement System were used to define indoor versus outdoor locations. Receiver operating characteristic (ROC) analyses were used to determine thresholds for defining being indoors versus outdoors. Data were collected in Fall 2011, analyzed in 2012. Mean observed outdoor time was 63 [±44; range: 18-152] minutes/day. Mean light-sensor levels were significantly higher outdoors. The area under the ROC curve for location based on light sensor for all weather conditions was 0.82 (range: 0.70 on partly cloudy days to 0.97 on sunny days); for GPS, it was 0.89. The light sensor had a sensitivity of 74% and specificity of 86%. GPS had a sensitivity of 82% and specificity of 88%. A light sensor and a GPS device both distinguish indoor from outdoor time for preschoolers with moderate to high levels of accuracy. These devices can increase the feasibility and lower the cost of measuring outdoor time in studies of preschool children. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Risk of Lung Cancer and Indoor Radon Exposure in France

    International Nuclear Information System (INIS)

    Baysson, H.; Tirmarche, M.; Tymen, G.; Ducloy, F.; Laurier, D.

    2004-01-01

    It is well established that radon exposure increases risks of lung cancer among underground miners. to estimate the lung cancer risk linked to indoor radon exposure, a hospital based case-control study was carried out in France, With a focus on precise reconstruction of past indoor radon exposure over the 30 years preceding the lung cancer diagnosis. The investigation rook place from 1992 to 1998 in four regions of France: Auvergne, Brittany, Languedoc and Limousin. During face-to-face interviews a standardized questionnaire was used to ascertain demographic characteristics, information on active and passive smoking, occupational exposure, medical history as well as extensive details on residential history. Radon concentrations were measured in the dwellings where subjects had lived at least one year during the 5-30 year period before interview. Measurements of radon concentrations were performed during a 6-month period, using two Kodalpha LR 115 detectors, one in the living room and one in the bedroom. The time-weighted average (TWA) radon concentration for a subject during the 5-30 year period before interview was based on radon concentrations over all addresses occupied by the subject weighted by the number of years spent at each address. For the time intervals without available measurements, we imputed the region-specific arithmetic average of radon concentrations for measured addresses of control subjects. Lung cancer risk was examined in relation to indoor radon exposure after adjustment for age, sex, region, cigarette smoking and occupational exposure. The estimated relative a risk per 100 Bq/m''3 was 1.04, at the borderline of statistical significance (95 percent Confidence Interval: 0.99, 1..1). These results are in agreement with results from other indoor radon case-control studies and with extrapolations from underground miners studies. (Author) 31 refs

  6. Channel Models for Capacity Evaluation of MIMO Handsets in Data Mode

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Yanakiev, Boyan; Barrio, Samantha Caporal Del

    2017-01-01

    This work investigates different correlation based models useful for evaluation of outage capacity (OC) of mobile multiple-input multiple-output (MIMO) handsets. The work is based on a large measurement campaign in a micro-cellular setup involving two dual-band base stations, 10 different handsets...... in an indoor environment for different use cases and test users. Several models are evaluated statistically, comparing the OC values estimated from the model and measurement data, respectively, for about 2,700 measurement routes. The models are based on either estimates of the full correlation matrices...... or simplifications. Among other results, it is shown that the OC can be predicted accurately (median error typically within 2.6%) with a model assuming knowledge only of the Tx-correlation coefficient and the mean power gain....

  7. Study on water evaporation rate from indoor swimming pools

    Directory of Open Access Journals (Sweden)

    Rzeźnik Ilona

    2017-01-01

    Full Text Available The air relative humidity in closed spaces of indoor swimming pools influences significantly on users thermal comfort and the stability of the building structure, so its preservation on suitable level is very important. For this purpose, buildings are equipped with HVAC systems which provide adequate level of humidity. The selection of devices and their technical parameters is made using the mathematical models of water evaporation rate in the unoccupied and occupied indoor swimming pool. In the literature, there are many papers describing this phenomena but the results differ from each other. The aim of the study was the experimental verification of published models of evaporation rate in the pool. The tests carried out on a laboratory scale, using model of indoor swimming pool, measuring 99cm/68cm/22cm. The model was equipped with water spray installation with six nozzles to simulate conditions during the use of the swimming pool. The measurements were made for conditions of sports pools (water temperature 24°C and recreational swimming pool (water temperature 34°C. According to the recommendations the air temperature was about 2°C higher than water temperature, and the relative humidity ranged from 40% to 55%. Models Shah and Biasin & Krumm were characterized by the best fit to the results of measurements on a laboratory scale.

  8. Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils

    Science.gov (United States)

    Huang, Zhang-Ting; Li, Yong-Fu; Jiang, Pei-Kun; Chang, Scott X.; Song, Zhao-Liang; Liu, Juan; Zhou, Guo-Mo

    2014-01-01

    Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0-40 cm soil layer in bamboo plantations increased by 217 Mg C ha-1, 20 years after being converted from paddy fields. The PhytOC accumulated at 79 kg C ha-1 yr-1, a rate far exceeding the global mean long-term soil C accumulation rate of 24 kg C ha-1 yr-1 reported in the literature. Approximately 86% of the increased PhytOC came from the large amount of mulch applied. Our data clearly demonstrate the decadal scale management effect on PhytOC accumulation, suggesting that heavy mulching is a potential method for increasing long-term organic C storage in soils for mitigating global climate change.

  9. Indoor Semantic Modelling for Routing: The Two-Level Routing Approach for Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2017-11-01

    Full Text Available Humans perform many activities indoors and they show a growing need for indoor navigation, especially in unfamiliar buildings such as airports, museums and hospitals. Complexity of such buildings poses many challenges for building managers and visitors. Indoor navigation services play an important role in supporting these indoor activities. Indoor navigation covers extensive topics such as: 1 indoor positioning and localization; 2 indoor space representation for navigation model generation; 3 indoor routing computation; 4 human wayfinding behaviours; and 5 indoor guidance (e.g., textual directories. So far, a large number of studies of pedestrian indoor navigation have presented diverse navigation models and routing algorithms/methods. However, the major challenge is rarely referred to: how to represent the complex indoor environment for pedestrians and conduct routing according to the different roles and sizes of users. Such complex buildings contain irregular shapes, large open spaces, complicated obstacles and different types of passages. A navigation model can be very complicated if the indoors are accurately represented. Although most research demonstrates feasible indoor navigation models and related routing methods in regular buildings, the focus is still on a general navigation model for pedestrians who are simplified as circles. In fact, pedestrians represent different sizes, motion abilities and preferences (e.g., described in user profiles, which should be reflected in navigation models and be considered for indoor routing (e.g., relevant Spaces of Interest and Points of Interest. In order to address this challenge, this thesis proposes an innovative indoor modelling and routing approach – two-level routing. It specially targets the case of routing in complex buildings for distinct users. The conceptual (first level uses general free indoor spaces: this is represented by the logical network whose nodes represent the spaces and edges

  10. Characteristics of indoor radon and its progeny in a Japanese dwelling while using air appliances.

    Science.gov (United States)

    Pornnumpa, C; Tokonami, S; Sorimachi, A; Kranrod, C

    2015-11-01

    Characteristics of radon and its progeny were investigated in different air conditions by turning four types of indoor air appliances on and off in a two-story concrete Japanese dwelling. The four appliances were air conditioner, air cleaner, gas heater and cooker hood. The measurements were done using two devices: (1) a Si-based semiconductor detector for continuous measurement of indoor radon concentration and (2) a ZnS(Ag) scintillation counting system for equilibrium-equivalent radon concentration. Throughout the entire experiment, the cooker hood was the most effective in decreasing indoor radon concentration over a long period of time and the less effective was the air conditioner, while the air cleaner and gas heater did not affect the concentration of radon. However, the results measured in each air condition will differ according to the lifestyles and activities of the inhabitants. In this study, indoor radon and its progeny in a Japanese dwelling will be characterised by the different air conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Indoor radon measurements in south west England explained by topsoil and stream sediment geochemistry, airborne gamma-ray spectroscopy and geology.

    Science.gov (United States)

    Ferreira, Antonio; Daraktchieva, Zornitza; Beamish, David; Kirkwood, Charles; Lister, T Robert; Cave, Mark; Wragg, Joanna; Lee, Kathryn

    2018-01-01

    Predictive mapping of indoor radon potential often requires the use of additional datasets. A range of geological, geochemical and geophysical data may be considered, either individually or in combination. The present work is an evaluation of how much of the indoor radon variation in south west England can be explained by four different datasets: a) the geology (G), b) the airborne gamma-ray spectroscopy (AGR), c) the geochemistry of topsoil (TSG) and d) the geochemistry of stream sediments (SSG). The study area was chosen since it provides a large (197,464) indoor radon dataset in association with the above information. Geology provides information on the distribution of the materials that may contribute to radon release while the latter three items provide more direct observations on the distributions of the radionuclide elements uranium (U), thorium (Th) and potassium (K). In addition, (c) and (d) provide multi-element assessments of geochemistry which are also included in this study. The effectiveness of datasets for predicting the existing indoor radon data is assessed through the level (the higher the better) of explained variation (% of variance or ANOVA) obtained from the tested models. A multiple linear regression using a compositional data (CODA) approach is carried out to obtain the required measure of determination for each analysis. Results show that, amongst the four tested datasets, the soil geochemistry (TSG, i.e. including all the available 41 elements, 10 major - Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti - plus 31 trace) provides the highest explained variation of indoor radon (about 40%); more than double the value provided by U alone (ca. 15%), or the sub composition U, Th, K (ca. 16%) from the same TSG data. The remaining three datasets provide values ranging from about 27% to 32.5%. The enhanced prediction of the AGR model relative to the U, Th, K in soils suggests that the AGR signal captures more than just the U, Th and K content in the soil. The

  12. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  13. The influence of photocatalytic interior paints on indoor air quality

    Science.gov (United States)

    Auvinen, Joonas; Wirtanen, Leif

    2008-06-01

    A clean indoor air is important for the well-being and health of people. Lately, new photocatalytic paints have been launched on the market, which are claimed to have air-purifying effects. Photocatalysis initiates radical reactions. Radicals are formed when a photocatalyst (e.g. TiO2) is subjected to radiation. Typical radicals are the hydroxyl radical (radOH) and the superoxide radical (radO2-). Radicals cause chain reactions, which degrade and decompose organic compounds. The end products of these chain reactions are water and carbon dioxide, if the reactions are fully completed (mineralization). If mineralization does not take place, then a great number of side products can be formed, whose properties are not well understood. The side products of photocatalytic reactions can be permanent and stabile. The decomposition of indoor air impurities on the surface of photocatalytic paints is not obvious. The ability of photocatalytic indoor paints to reduce chemical indoor air impurities is the key issue of this study. Six different paints with different binder systems, such as lime, polyorganic siloxane, silica sol-gel and organic binders, were examined. The experiments were divided into three topics: degradation of an organic binder, photocatalytic decomposition of formaldehyde, and a volatile organic compound (VOC) mixture consisting of five different indoor air VOCs. All tests were carried out in an environmental test chamber under dynamic conditions. The test results indicate that many indoor pollutants are generated under normal- and UVA-light. Typical compounds formed include formaldehyde, acetone, acetaldehyde, etc. A clear decrease of formaldehyde or the VOC mixture concentration was not observed. All possibly generated compounds could not be collected or analyzed in this research project, but the measurements show that photocatalytic reactions do not generate only carbon dioxide and water. Photocatalytic decomposition of indoor air impurities can, however

  14. A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications.

    Science.gov (United States)

    Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser

    2017-06-02

    In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service.

  15. Fighting against indoor pollution; Comment lutter contre la pollution interieure des locaux?

    Energy Technology Data Exchange (ETDEWEB)

    Pauli, G.; Blay, F. de; Krieger, P.; Bessot, J.C. [Hopitaux Universitaires de Strasbourg, 67 (France)

    1998-06-01

    Two types of indoor pollution have been identified: chemical pollution and biological pollution. The principal chemical pollutants are NO{sub 2}, VOCs (volatile organic compounds and formaldehyde), ozone and SO{sub 2}. Indoor NO{sub 2} is essentially produced by gas-heaters, stoves and fire-places, at levels that can be higher than those reached outdoors. Epidemiologic studies and NO{sub 2} provocation tests in asthmatics show that indoor NO{sub 2} is capable of triggering asthma either by direct effect or by potentiating bronchial reactivity to allergens. VOCs and formaldehyde are liberated by urea-formol foams and will only have bronchial effects at levels rarely found in domestic environment. Ozone is an outdoor pollutant essentially, and the concentrations found indoors do not exceed 50% of those measured outdoors. Concentration of SO{sub 2} can reach significant levels with the use of coal heaters, yet bronchial response will only be induced at levels rarely found indoors. The first way to fight against those pollutants is to eliminate their sources (gas, coal or kerosene heaters), and to increase ventilation. In contrast, as far as ozone is concerned, it is recommended to keep windows shot during summer pollution peaks, in order to prevent it from entering the home. Biological pollution -if we except endotoxins- is mainly represented by allergenic pollution: allergens of mites, pets, cockroaches, moulds... As far as mites are concerned, the different measures suggested should often be combined: they are methods to reduce relative humidity by increasing ventilation, physical methods consisting in eliminating textiles, vacuum cleaning, using anti-mite bed covers, and chemical methods (acaricides, tannic acid..). Palliative measures are possible. For example for cat allergen: humidification of fur, limiting secondary textile reservoirs, use of vacuum cleaners and air purifiers fitted with HEPA filters. As far as cockroaches are concerned, their eviction is

  16. Endotoxins in indoor air and settled dust in primary schools in a subtropical climate.

    Science.gov (United States)

    Salonen, Heidi; Duchaine, Caroline; Létourneau, Valérie; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2013-09-03

    Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins, and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the "baseline" range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (EU/m(3) and EU/m(2), respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations.

  17. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure.

    Science.gov (United States)

    Schlummer, Martin; Gruber, Ludwig; Fiedler, Dominik; Kizlauskas, Markus; Müller, Josef

    2013-07-01

    Fluorotelomer alcohols (FTOH) are important precursors of perfluorinated carboxylic acids (PFCA). These neutral and volatile compounds are frequently found in indoor air and may contribute to the overall human exposure to per- and polyfluorinated alkyl substances (PFAS). In this study air samples of ten workplace environments and a car interior were analysed. In addition, extracts and emissions from selected outdoor textiles were analysed in order to establish their potential contribution to the indoor levels of the above-mentioned compounds. Concentrations of FTOHs measured in air ranged from 0.15 to 46.8, 0.25 to 286, and 0.11 to 57.5ng/m(3) for 6:2, 8:2 and 10:2 FTOHs, respectively. The highest concentrations in air were identified in shops selling outdoor clothing, indicating outdoor textiles to be a relevant source of FTOH in indoor workplace environments. Total amounts of FTOH in materials of outdoor textiles accounted for selling outdoor textiles contains the highest levels of FTOH. Exposure of humans to perfluorooctanoic acid (PFOA) through absorption of FTOH and subsequent degradation is discussed on the basis of indoor air levels. Calculation of indoor air-related exposure using the median of the measured air levels revealed that exposure is on the same order of magnitude as the recently reported dietary intakes for a background-exposed population. On the basis of the 95th percentile, indoor air exposure to PFOA was estimated to exceed dietary exposure. However, indoor air-related intakes of FTOH are far below the tolerable daily intake (TDI) of PFOA, indicating that there is no risk to health, even when assuming an unrealistic complete degradation of FTOH into PFOA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems.

    Science.gov (United States)

    Huh, Jun-Ho; Seo, Kyungryong

    2017-12-19

    The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a "Smart Living". An indoor location-based control system that provides services by estimating user's indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields.

  19. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems

    Directory of Open Access Journals (Sweden)

    Jun-Ho Huh

    2017-12-01

    Full Text Available The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s. These technologies are fundamental in achieving a “Smart Living”. An indoor location-based control system that provides services by estimating user’s indoor locations has been implemented in this study (First scenario. The algorithm introduced in this study (Second scenario is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields.

  20. Indoor Tanning Is Not Safe

    Science.gov (United States)

    ... the sun is by using these tips for skin cancer prevention. Indoor tanning is not a safe way to get vitamin ... to previous findings on the association between indoor tanning and skin cancer. Only a small number of people reported ...

  1. Estimation of indoor and outdoor ratios of selected volatile organic compounds in Canada

    Science.gov (United States)

    Xu, Jing; Szyszkowicz, Mieczyslaw; Jovic, Branka; Cakmak, Sabit; Austin, Claire C.; Zhu, Jiping

    2016-09-01

    Indoor air and outdoor air concentration (I/O) ratio can be used to identify the origins of volatile organic compounds (VOCs). I/O ratios of 25 VOCs in Canada were estimated based on the data collected in various areas in Canada between September 2009 and December 2011. The indoor VOC data were extracted from the Canadian Health Measures Survey (CHMS). Outdoor VOC data were obtained from Canada's National Air Pollution Surveillance (NAPS) Network. The sampling locations covered nine areas in six provinces in Canada. Indoor air concentrations were found higher than outdoor air for all studied VOCs, except for carbon tetrachloride. Two different approaches were employed to estimate the I/O ratios; both approaches produced similar I/O values. The I/O ratios obtained from this study were similar to two other Canadian studies where indoor air and outdoor air of individual dwellings were measured. However, the I/O ratios found in Canada were higher than those in European cities and in two large USA cities, possibly due to the fact that the outdoor air concentrations recorded in the Canadian studies were lower. Possible source origins identified for the studied VOCs based on their I/O ratios were similar to those reported by others. In general, chlorinated hydrocarbons, short-chain (C5, C6) n-alkanes and benzene had significant outdoor sources, while long-chain (C10sbnd C12) n-alkanes, terpenes, naphthalene and styrene had significant indoor sources. The remaining VOCs had mixed indoor and outdoor sources.

  2. Climate change consequences for the indoor environment

    NARCIS (Netherlands)

    Ariës, M.B.C.; Bluyssen, P.M.

    2009-01-01

    Scientists warn us about climate change and its effects on the outdoor environment. These effects can have significant consequences for the indoor environment, also in the Netherlands. Climate changes will affect different aspects of the indoor environment as well as the stakeholders of that indoor

  3. a Preliminary Work on Layout Slam for Reconstruction of Indoor Corridor Environments

    Science.gov (United States)

    Baligh Jahromi, A.; Sohn, G.; Shahbazi, M.; Kang, J.

    2017-09-01

    We propose a real time indoor corridor layout estimation method based on visual Simultaneous Localization and Mapping (SLAM). The proposed method adopts the Manhattan World Assumption at indoor spaces and uses the detected single image straight line segments and their corresponding orthogonal vanishing points to improve the feature matching scheme in the adopted visual SLAM system. Using the proposed real time indoor corridor layout estimation method, the system is able to build an online sparse map of structural corner point features. The challenges presented by abrupt camera rotation in the 3D space are successfully handled through matching vanishing directions of consecutive video frames on the Gaussian sphere. Using the single image based indoor layout features for initializing the system, permitted the proposed method to perform real time layout estimation and camera localization in indoor corridor areas. For layout structural corner points matching, we adopted features which are invariant under scale, translation, and rotation. We proposed a new feature matching cost function which considers both local and global context information. The cost function consists of a unary term, which measures pixel to pixel orientation differences of the matched corners, and a binary term, which measures the amount of angle differences between directly connected layout corner features. We have performed the experiments on real scenes at York University campus buildings and the available RAWSEEDS dataset. The incoming results depict that the proposed method robustly performs along with producing very limited position and orientation errors.

  4. Indoor combustion and asthma.

    Science.gov (United States)

    Belanger, Kathleen; Triche, Elizabeth W

    2008-08-01

    Indoor combustion produces both gases (eg, nitrogen dioxide, carbon monoxide) and particulate matter that may affect the development or exacerbation of asthma. Sources in the home include both heating devices (eg, fireplaces, woodstoves, kerosene heaters, flued [ie, vented] or nonflued gas heaters) and gas stoves for cooking. This article highlights the recent literature examining associations between exposure to indoor combustion and asthma development and severity. Since asthma is a chronic condition affecting both children and adults, both age groups are included in this article. Overall, there is some evidence of an association between exposure to indoor combustion and asthma, particularly asthma symptoms in children. Some sources of combustion such as coal stoves have been more consistently associated with these outcomes than other sources such as woodstoves.

  5. Passive sampling of polychlorinated biphenyls (PCB) in indoor air

    DEFF Research Database (Denmark)

    Vorkamp, Katrin; Mayer, Philipp

    PCBs were widely used in construction materials in the 1906s and 1970s, a period of high building activity in Denmark. The objective of this study was therefore to use passive sampling techniques to develop a simple and cost-effective screening tool for PCBs in indoor air. The study proceeded...... in three phases combining a literature review, laboratory experiments and measurements in buildings potentially containing PCBs in indoor air. The laboratory experiments showed a strong influence of air velocity on the PCB partitioning between air and the passive sampler. Based on the results of the first...

  6. SVOC partitioning between the gas phase and settled dust indoors

    Science.gov (United States)

    Weschler, Charles J.; Nazaroff, William W.

    2010-09-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps in crafting measurement programs for epidemiological studies designed to probe potential associations between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in more than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients ( Koa) span more than five orders of magnitude. We use these data to test a simple equilibrium model for estimating the partitioning of an SVOC between the gas phase and settled dust indoors. The results demonstrate, in central tendency, that a compound's octanol-air partition coefficient is a strong predictor of its abundance in settled dust relative to its gas phase concentration. Using median measured results for each SVOC in each study, dustborne mass fractions predicted using Koa and gas-phase concentrations correlate reasonably well with measured dustborne mass fractions ( R2 = 0.76). Combined with theoretical understanding of SVOC partitioning kinetics, the empirical evidence also suggests that for SVOCs with high Koa values, the mass fraction in settled dust may not have sufficient time to equilibrate with the gas phase concentration.

  7. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments

    Directory of Open Access Journals (Sweden)

    Wen Liu

    2016-12-01

    Full Text Available Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS. Due to the absence of satellite signal in Global Navigation Satellite System (GNSS, various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP, which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC, is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1 and the XiDan Joy City (Floors 1 and 2, as Test-bed 2, and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.

  8. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments.

    Science.gov (United States)

    Liu, Wen; Fu, Xiao; Deng, Zhongliang

    2016-12-02

    Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.

  9. Plants for Sustainable Improvement of Indoor Air Quality.

    Science.gov (United States)

    Brilli, Federico; Fares, Silvano; Ghirardo, Andrea; de Visser, Pieter; Calatayud, Vicent; Muñoz, Amalia; Annesi-Maesano, Isabella; Sebastiani, Federico; Alivernini, Alessandro; Varriale, Vincenzo; Menghini, Flavio

    2018-04-10

    Indoor pollution poses a serious threat to human health. Plants represent a sustainable but underexploited solution to enhance indoor air quality. However, the current selection of plants suitable for indoors fails to consider the physiological processes and mechanisms involved in phytoremediation. Therefore, the capacity of plants to remove indoor air pollutants through stomatal uptake (absorption) and non-stomatal deposition (adsorption) remains largely unknown. Moreover, the effects of the indoor plant-associated microbiome still need to be fully analyzed. Here, we discuss how a combination of the enhanced phytoremediation capacity of plants together with cutting-edge air-cleaning and smart sensor technologies can improve indoor life while reducing energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Indoor radon concentration measurements in Tarqumia Girl Schools at Western Hebron Region, Palestine

    International Nuclear Information System (INIS)

    Dabyneh, K.M.

    2006-01-01

    In this study, radon-222 in indoor air was surveyed in 62 rooms located in four governmental schools, for girls, in Tarqumia town that lies in the north western part of Hebron city in Palestine. The annual effective dose equivalents resulting from the inhalation of radon and its daughters by 2318 pupils and 102 staff members occupying the surveyed rooms were also measured. TASTRAK, a solid state nuclear track detector, has been used to measure the indoor radon concentrations at those schools thus, 124 radon detectors were distributed in the four school buildings. The radon detectors stayed for 70 days between February 2006 and April 2006. The results showed that the radon concentration and the annual effective dose equivalent in these schools were varied from 12 to 232.5 Bq/m 3 with an average of 34.1 Bq/m 3 and 0.62 to 12.0 mSv/y with an average of 1.76 mSv/y, respectively. The mean values of radon concentrations in Tarqumia secondary girls school, Al-aqsa elementary girls school, Umsalama elementary girls school and Tarqumia elementary girls school were 35.8, 26.7, 25.9 and 47.8 Bq/m 3 , respectively, and the mean values of the annual effective dose equivalent for the above mentioned were 1.85, 1.38, 1.34 and 2.47 mSv/y, respectively. It has been found from these results that, most of the values were of nominal state values (that is less than the allowed global values) and in few places, the concentration was higher than the allowed global values, therefore, the annual effective dose higher than annual global level values (1.3 mSv/y) was resulted. Poor ventilation and old buildings were, most mobility, the main cause of these high radon concentrations. Improving ventilation of these places will increase air exchange rates with the out side, thereby resulting in reduced concentration. In general, the results showed that protection against radiological hazards would not be necessary for pupils and staff members occupying the rooms of the investigated schools

  11. Characterizing the source of radon indoors

    International Nuclear Information System (INIS)

    Nero, A.V.; Nazaroff, W.W.

    1983-09-01

    Average indoor radon concentrations range over more than two orders of magnitude, largely because of variability in the rate at which radon enters from building materials, soil, and water supplies. Determining the indoor source magnitude requires knowledge of the generation of radon in source materials, its movement within materials by diffusion and convection, and the means of its entry into buildings. This paper reviews the state of understanding of indoor radon sources and transport. Our understanding of generation rates in and movement through building materials is relatively complete and indicates that, except for materials with unusually high radionuclide contents, these sources can account for observed indoor radon concentrations only at the low end of the range observed. Our understanding of how radon enters buildings from surrounding soil is poorer, however recent experimental and theoretical studies suggest that soil may be the predominant source in many cases where the indoor radon concentration is high. 73 references, 3 figures, 1 table

  12. Indoor Air Quality in Brazilian Universities

    Directory of Open Access Journals (Sweden)

    Sonia R. Jurado

    2014-07-01

    Full Text Available This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC (n = 15 and naturally ventilated (NV (n = 15 classrooms. The parameters of interest were indoor carbon dioxide (CO2, temperature, relative humidity (RH, wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively. The average indoor airborne dust concentration exceeded the Brazilian standards (<80 µg/m3 in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively. The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  13. Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway.

    Science.gov (United States)

    Lazaridis, Mihalis; Aleksandropoulou, Victoria; Hanssen, Jan Erik; Dye, Christian; Eleftheriadis, Kostantinos; Katsivela, Eleftheria

    2008-03-01

    A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.

  14. Research review: Indoor air quality control techniques

    International Nuclear Information System (INIS)

    Fisk, W.J.

    1986-10-01

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs

  15. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols.

    Science.gov (United States)

    Rösch, Carolin; Wissenbach, Dirk K; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2017-07-01

    In indoor air, terpene-ozone reactions can form secondary organic aerosols (SOA) in a transient process. 'Real world' measurements conducted in a furnished room without air conditioning were modelled involving the indoor background of airborne particulate matter, outdoor ozone infiltrated by natural ventilation, repeated transient limonene evaporations, and different subsequent ventilation regimes. For the given setup, we disentangled the development of nucleated, coagulated, and condensed SOA fractions in the indoor air and calculated the time dependence of the aerosol mass fraction (AMF) by means of a process model. The AMF varied significantly between 0.3 and 5.0 and was influenced by the ozone limonene ratio and the background particles which existed prior to SOA formation. Both influencing factors determine whether nucleation or adsorption processes are preferred; condensation is strongly intensified by particulate background. The results provide evidence that SOA levels in natural indoor environments can surpass those known from chamber measurements. An indicator for the SOA forming potential of limonene was found to be limona ketone. Multiplying its concentration (in μg/m 3 ) by 450(±100) provides an estimate of the concentration of the reacted limonene. This can be used to detect a high particle formation potential due to limonene pollution, e.g. in epidemiological studies considering adverse health effects of indoor air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Workload comparison between hiking and indoor physical activity.

    Science.gov (United States)

    Fattorini, Luigi; Pittiglio, Giancarlo; Federico, Bruno; Pallicca, Anastasia; Bernardi, Marco; Rodio, Angelo

    2012-10-01

    Walking is a physical activity able to maintain and improve aerobic fitness. This activity can easily be performed in all seasons both outdoors and indoors, but when it is performed in its natural environment, the use of specific equipment is required. In particular, it has been demonstrated that the use of trekking boots (TBs) induces a larger workload than those used indoors. Because an adequate fitness level is needed to practice hiking in safety, it is useful to know the energy demand of such an activity. This research aims at defining the metabolic engagement of hiking on natural paths with specific equipment at several speeds and comparing this with indoor ones (on a treadmill). This can thence be used to define the load that better reflects the one required to walk on natural paths. The walking energy cost (joules per kilogram per meter) at several speeds (0.28, 0.56, 0.84, 1.11, and 1.39 m·s(-1))-on level natural terrain while wearing suitable footwear (TBs) and on a treadmill at various raising slopes (0, 1, 2, 3, 4%) while wearing running shoes-was measured in 14 healthy young men (age 23.9 ± 2.9 years, stature 1.75 ± 0.04 m, and body mass 72.9 ± 6.3 kg). A physiological evaluation of all the subjects was performed before energy cost measurements. The results showed that outdoors, the oxygen uptake was consistently less than the ventilatory threshold at all speeds tested and that a 3% slope on the treadmill best reflects the outdoor walking energy expenditure. These findings will prove useful to plan proper training for hiking activity or mixed (outdoors and indoors) training program.

  17. Framing Indoor Tanning Warning Messages to Reduce Skin Cancer Risks Among Young Women: Implications for Research and Policy.

    Science.gov (United States)

    Mays, Darren; Tercyak, Kenneth P

    2015-08-01

    We investigated the impact of indoor tanning device warnings that communicate the risks associated with indoor tanning (i.e., loss framed) or the benefits of avoiding indoor tanning (i.e., gain framed). A convenience sample of non-Hispanic White women aged 18 to 30 years who tanned indoors at least once in the past year (n = 682) participated in a within-subjects experiment. Participants completed baseline measures and reported indoor tanning intentions and intentions to quit indoor tanning in response to 5 warning messages in random order. A text-only control warning was based on Food and Drug Administration-required warnings for indoor tanning devices. Experimental warnings included graphic content and were either gain or loss framed. In multivariable analyses, gain-framed warnings did not differ from the control warning on women's intentions to tan indoors, but they prompted stronger intentions to quit than the control message. Loss-framed warnings significantly reduced intentions to tan indoors and increased intentions to quit indoor tanning compared with control and gain-framed warnings. The public health impact of indoor tanning device warnings can be enhanced by incorporating graphic content and leveraging gain- and loss-framed messaging.

  18. Coordinated indoor radon surveys in some Arab countries

    International Nuclear Information System (INIS)

    Al-Azmi, D.; Al-Abed, T.; Alnasari, M.S.; Borham, E.E.; Chekir, Z.; Khalifa, M.S.; Shweikani, R.

    2012-01-01

    Indoor radon surveys were carried out in some of the Arab countries through a Coordination Research Program (CRP) organized by the Arab Atomic Energy Agency (AAEA). The objectives of the program aim at establishing a database on indoor radon concentration levels in the region and investigating any anomalies, where they exist. The approach adopted by the survey teams to achieve public participation in accepting the radon detectors in dwellings is presented and discussed. Most of the participants in the CRP used the passive method (CR-39 plastic detectors) for long-term radon measurements, while others used charcoal detectors and E-Perm systems for short-term measurements. The results of the surveys showed that radon concentration levels in most of the dwellings were low, whilst in some old cities and in an area close to a phosphate mine the levels were found to be relatively high. (authors)

  19. Wireless Sensor Network for Indoor Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-06-01

    Full Text Available Indoor air quality monitoring system consists of wireless sensor device, nRF24L01 wireless transceiver modules, C8051MCU, STM32103 remote monitoring platform, alarm device and data server. Distributed in the interior space of wireless sensors measure parameters of the local air quality, wireless transceiver module of the MCU to transmit data to the remote monitoring platform for analysis which displayed and stored field environment data or charts. The data collecting from wireless sensors to be send by wireless Access Point to the remote data server based on B/S architecture, intelligent terminals such as mobile phone, laptop, tablet PC on the Internet monitor indoor air quality in real-time. When site environment air quality index data exceeds the threshold in the monitoring device, the remote monitoring platform sends out the alarm SMS signal to inform user by GSM module. Indoor air quality monitoring system uses modular design method, has the portability and scalability has the low manufacture cost, real-time monitoring data and man-machine interaction.

  20. Indoor 222Rn measurements in the region of Beijing, People's Republic of China

    International Nuclear Information System (INIS)

    Ren, T.S.; Lin, L.Q.; Chen, Z.P.; Li, G.Y.; Chen, A.M.

    1987-01-01

    Passive integrating activated C detectors were used to study the regional distribution and temporal variation of 222 Rn in indoor air in dwellings in the Beijing region. Measurements were made in 537 dwellings, which were either detached houses or multi-family apartments. The city-wide study was completed in 1985. The distributions are approximately log-normal with 90% of the dwellings having 222 Rn levels less than 60 Bq m-3. The weighted average 222 Rn concentration has been found to be 22.4 Bq m-3. Averages for detached houses and multi-family dwellings are 25.9 and 15.2 Bq m-3, respectively. Assuming an equilibrium factor of 0.5 and an occupancy factor of 0.8, the average equilibrium equivalent concentration of 222 Rn progeny is 11.2 Bq m-3 and the annual average effective dose equivalent is 1.1 mSv