WorldWideScience

Sample records for measure diagnostically important

  1. Reliability importance measures and their calculation

    International Nuclear Information System (INIS)

    Andsten, R.; Vaurio, J.K.

    1989-01-01

    The importance of a component to the system reliability or availability and to the system failure rate can be measured by a number of importance measures. Such measures can be used to guide the system design improvement actions as well as the diagnostic and repair actions. This report develops relationships between several importance measures, illustrates their meaning with interpretations and applications, and describes the computer program called IMPO that calculates importance measures when the system minimum cat sets and component parameters are given. A user's manual is included with illustrative examples

  2. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    Science.gov (United States)

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  3. Project management: importance for diagnostic laboratories.

    Science.gov (United States)

    Croxatto, A; Greub, G

    2017-07-01

    The need for diagnostic laboratories to improve both quality and productivity alongside personnel shortages incite laboratory managers to constantly optimize laboratory workflows, organization, and technology. These continuous modifications of the laboratories should be conducted using efficient project and change management approaches to maximize the opportunities for successful completion of the project. This review aims at presenting a general overview of project management with an emphasis on selected critical aspects. Conventional project management tools and models, such as HERMES, described in the literature, associated personal experience, and educational courses on management have been used to illustrate this review. This review presents general guidelines of project management and highlights their importance for microbiology diagnostic laboratories. As an example, some critical aspects of project management will be illustrated with a project of automation, as experienced at the laboratories of bacteriology and hygiene of the University Hospital of Lausanne. It is important to define clearly beforehand the objective of a project, its perimeter, its costs, and its time frame including precise duration estimates of each step. Then, a project management plan including explanations and descriptions on how to manage, execute, and control the project is necessary to continuously monitor the progression of a project to achieve its defined goals. Moreover, a thorough risk analysis with contingency and mitigation measures should be performed at each phase of a project to minimize the impact of project failures. The increasing complexities of modern laboratories mean clinical microbiologists must use several management tools including project and change management to improve the outcome of major projects and activities. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. The Importance of Conditional Probability in Diagnostic Reasoning and Clinical Decision Making: A Primer for the Eye Care Practitioner.

    Science.gov (United States)

    Sanfilippo, Paul G; Hewitt, Alex W; Mackey, David A

    2017-04-01

    To outline and detail the importance of conditional probability in clinical decision making and discuss the various diagnostic measures eye care practitioners should be aware of in order to improve the scope of their clinical practice. We conducted a review of the importance of conditional probability in diagnostic testing for the eye care practitioner. Eye care practitioners use diagnostic tests on a daily basis to assist in clinical decision making and optimizing patient care and management. These tests provide probabilistic information that can enable the clinician to increase (or decrease) their level of certainty about the presence of a particular condition. While an understanding of the characteristics of diagnostic tests are essential to facilitate proper interpretation of test results and disease risk, many practitioners either confuse or misinterpret these measures. In the interests of their patients, practitioners should be aware of the basic concepts associated with diagnostic testing and the simple mathematical rule that underpins them. Importantly, the practitioner needs to recognize that the prevalence of a disease in the population greatly determines the clinical value of a diagnostic test.

  5. Neutron measurements as fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hoek, M.

    1993-01-01

    Neutron measurements play important roles as the diagnostics of many aspects of the plasma in large tokamak devices such as JT-60U and JET. In the d-d discharges of JT-60U, the most important application of the neutron measurement is the investigation of the fusion performance using fission chambers. The ion velocity distribution function, and the triton slowing down are investigated by the neutron spectrometer and the 14 MeV neutron detector, respectively. TANSY is a combined proton-recoil and neutron time-of flight spectrometer for 14 MeV neutrons to be used during the d-t phase at JET. The detection principle is based on the measurements of the flight time of a scattered initial neutron and the energy of a corresponding recoil proton. The scattering medium is a polyethylene foil. The resolution and efficiency, using a thin foil (0.95 mg/cm 2 ), is 155 keV and 1.4x10 -5 cm 2 , respectively. (author)

  6. Measures to Improve Diagnostic Safety in Clinical Practice.

    Science.gov (United States)

    Singh, Hardeep; Graber, Mark L; Hofer, Timothy P

    2016-10-20

    Timely and accurate diagnosis is foundational to good clinical practice and an essential first step to achieving optimal patient outcomes. However, a recent Institute of Medicine report concluded that most of us will experience at least one diagnostic error in our lifetime. The report argues for efforts to improve the reliability of the diagnostic process through better measurement of diagnostic performance. The diagnostic process is a dynamic team-based activity that involves uncertainty, plays out over time, and requires effective communication and collaboration among multiple clinicians, diagnostic services, and the patient. Thus, it poses special challenges for measurement. In this paper, we discuss how the need to develop measures to improve diagnostic performance could move forward at a time when the scientific foundation needed to inform measurement is still evolving. We highlight challenges and opportunities for developing potential measures of "diagnostic safety" related to clinical diagnostic errors and associated preventable diagnostic harm. In doing so, we propose a starter set of measurement concepts for initial consideration that seem reasonably related to diagnostic safety and call for these to be studied and further refined. This would enable safe diagnosis to become an organizational priority and facilitate quality improvement. Health-care systems should consider measurement and evaluation of diagnostic performance as essential to timely and accurate diagnosis and to the reduction of preventable diagnostic harm.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  7. Beam diagnostics using an emittance measurement device

    International Nuclear Information System (INIS)

    Sarstedt, M.; Becker, R.; Klein, H.; Maaser, A.; Mueller, J.; Thomae, R.; Weber, M.

    1995-01-01

    For beam diagnostics aside from Faraday cups for current measurements and analysing magnets for the determination of beam composition and energy the most important tool is an emittance measurement device. With such a system the distribution of the beam particles in phase-space can be determined. This yields information not only on the position of the particles but also on their angle with respect to the beam axis. There are different kinds of emittance measurement devices using either circular holes or slits for separation of part of the beam. The second method (slit-slit measurement), though important for the determination of the rms-emittance, has the disadvantage of integrating over the y- and y'-coordinate (measurement in xx'-plane assumed). This leads to different emittance diagrams than point-point measurements, since in xx'-plane for each two corresponding points of rr'-plane there exists a connecting line. With regard to beam aberrations this makes xx'-emittances harder to interpret. In this paper the two kinds of emittance diagrams are discussed. Additionally the influence of the slit height on the xx'-emittance is considered. The analytical results are compared to experimental measurements in rr'-, rx'- and xx'-phase-space. (orig.)

  8. The size of the thymus: an important immunological diagnostic tool?

    DEFF Research Database (Denmark)

    Jeppesen, Dorthe Lisbeth

    2003-01-01

    of the thymus relevant to its function and could measurement of the thymus be a useful immunological diagnostic tool in the investigation of thymic function in humans with a depressed immune system? Conclusion: Studies using the size of the thymus as an immunological diagnostic tool should be encouraged....

  9. Importance measures

    International Nuclear Information System (INIS)

    Gomez Cobo, A.

    1997-01-01

    The presentation discusses the following: general concepts of importance measures; example fault tree, used to illustrate importance measures; Birnbaum's structural importance; criticality importance; Fussel-Vesely importance; upgrading function; risk achievement worth; risk reduction worth

  10. Clinical and diagnostic importance of proteinuria: A review | Oni ...

    African Journals Online (AJOL)

    Clinical and diagnostic importance of proteinuria: A review. ... shown that diabetis mellitus, cardiovascular disease and hypertension could provoke secondary ... Proteinuria is also significant in some non-pathological cases such as pregnancy

  11. Measuring methods for the TFR plasma diagnostics

    International Nuclear Information System (INIS)

    Etievant, C.

    1975-02-01

    The measuring methods in operation or still under development for the diagnostics of the TFR plasma parameters (ion and electron temperatures, electron density, current density are reviewed, the diagnostics of the electrical behavior of the discharge, the neutral gas densities, the impurities and the parameters of the plasma turbulence being also investigated. Actual works are principally devoted to: improving ion temperature measurements by the possible use of the Doppler effect or infra-red incoherent scattering; improving n(e) and T(e) measurement by Thomson scattering; measuring the poloidal field and current density; measuring impurities by X and UV spectroscopy and measuring instabilities and turbulence [fr

  12. Protease activity measurement in milk as a diagnostic test for clinical mastitis in dairy cows

    NARCIS (Netherlands)

    Koop, G.; van Werven, T.; Roffel, S.; Hogeveen, H.; Nazmi, K.; Bikker, F.J.

    2015-01-01

    Due to the increasing use of automated milking systems, automated detection of clinical mastitis is becoming more important. Various in- or on-line diagnostic tests are in use, but generally suffer from false mastitis alerts. In this study, we explored a new diagnostic approach based on measurement

  13. A gas turbine diagnostic approach with transient measurements.

    OpenAIRE

    Li, Y. G.

    2003-01-01

    Most gas turbine performance analysis based diagnostic methods use the information from steady state measurements. Unfortunately, steady state measurement may not be obtained easily in some situations, and some types of gas turbine fault contribute little to performance deviation at steady state operating conditions but significantly during transient processes. Therefore, gas turbine diagnostics with transient measurement is superior to that with steady state measurement. In this paper, an ac...

  14. Spectroscopic diagnostics and measurements at Jet

    International Nuclear Information System (INIS)

    Giannella, R.

    1994-01-01

    A concise review is presented of activity in the field spectroscopic diagnostic at JET during the latest few years. Together with a description of instruments, examples are given of the measurements conducted with these systems and some experimental result obtained with such activity are outlined. Emphasis is also given to the upgrading of existing apparatuses and the construction of new diagnostics ahead of the next experimental phase. 48 refs., 5 figs

  15. Physics measurements on WWER-440 diagnostic assemblies

    International Nuclear Information System (INIS)

    Dach, K.; Jirousek, V.; Kott, J.; Horak, J.; Teren, S.; Nemec, J.

    1980-01-01

    The aims of physics measurements using diagnostic assemblies are the development of neutron noise diagnostics methods, the improvement of knowledge of the physical properties of the WWER reactor cores, the testing of computer programs, and the specification of nuclear safety criteria and the obtaining of information allowing the optimum nuclear fuel economy. The instrumentation of diagnostic assemblies is briefly described, including miniature fission chambers, SPN detectors and calorimeters. The method of evaluating and experimental testing is shown. (M.S.)

  16. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  17. Diagnostic and Measuring Systems of the Power Transformers

    Directory of Open Access Journals (Sweden)

    Jan Michalik

    2003-01-01

    Full Text Available In the article the diagnostic and measuring systems dedicated for complex output tests of power transformers aswell as their diagnostic is dcscribcd. The aim of research in this area was to elaborate the problem of so-called open loop measuring system controlled by PC. The attribute "open" means the possibility to adapt the system for different electric equipment, different measurands and an zdaptation of the way of monitoring, evaluation and distribution of output information according to specific requirements the controlled transformer.

  18. The importance of in vitro diagnostics in respiration allergy

    International Nuclear Information System (INIS)

    Wever, A.M.J.

    1987-01-01

    Out of the 4 types of allergic reactions, in respiration allergy the anaphylactic reaction caused by IgE antibodies is the most important. Determination of IgE with radioimmunoassay: the radio-allergo-sorbent test (Rast) and the Phadiatop (pharmacie-differential atopy test) was investigated in 248 patients with pulmonal complaints. Phadiatop can be used as a screening test and for a better application of the specific Rast-diagnostic. 1 table

  19. Video integrated measurement system. [Diagnostic display devices

    Energy Technology Data Exchange (ETDEWEB)

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  20. A new diagnostic accuracy measure and cut-point selection criterion.

    Science.gov (United States)

    Dong, Tuochuan; Attwood, Kristopher; Hutson, Alan; Liu, Song; Tian, Lili

    2017-12-01

    Most diagnostic accuracy measures and criteria for selecting optimal cut-points are only applicable to diseases with binary or three stages. Currently, there exist two diagnostic measures for diseases with general k stages: the hypervolume under the manifold and the generalized Youden index. While hypervolume under the manifold cannot be used for cut-points selection, generalized Youden index is only defined upon correct classification rates. This paper proposes a new measure named maximum absolute determinant for diseases with k stages ([Formula: see text]). This comprehensive new measure utilizes all the available classification information and serves as a cut-points selection criterion as well. Both the geometric and probabilistic interpretations for the new measure are examined. Power and simulation studies are carried out to investigate its performance as a measure of diagnostic accuracy as well as cut-points selection criterion. A real data set from Alzheimer's Disease Neuroimaging Initiative is analyzed using the proposed maximum absolute determinant.

  1. Secondary prevention at 360°: the important role of diagnostic imaging.

    Science.gov (United States)

    Ciarrapico, Anna Micaela; Manenti, Guglielmo; Pistolese, Chiara; Fabiano, Sebastiano; Fiori, Roberto; Romagnoli, Andrea; Sergiacomi, Gianluigi; Stefanini, Matteo; Simonetti, Giovanni

    2015-06-01

    The aim of this paper is to underline the importance of the role of general practitioners (GPs) in distributing vital information about prevention to citizens, to highlight the importance of the so-called voluntary prevention programmes, both for conditions for which no organised screening programmes exist and for those for which they do exist but may well be obsolete or inefficient. Nowadays, voluntary prevention is made more effective thanks to the new sophisticated diagnostic technologies applied worldwide by diagnostic imaging. Epidemiological data about the incidence and causes of death among the Italian population have shown that screening programmes should be aimed first at fighting the following diseases: prostatic carcinoma, lung cancer, colorectal carcinoma, breast cancer, cardiovascular disease, cerebrovascular disease, aortic and peripheral vascular disease. GPs do not generally give good or adequate instructions concerning voluntary prevention programmes; GPs may not even be aware of this type of prevention which could represent a valuable option together with the existing mass screening programmes. Therefore, in the following analysis, we aim to outline the correct diagnostic pathway for the prevention of diseases having the highest incidence in our country and which represent the most frequent causes of death. If used correctly, these screening programmes may contribute to the success of secondary prevention, limiting the use of tertiary prevention and thus producing savings for the Italian National Health System.

  2. Correlation measurements for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Pazsit, I.

    1995-01-01

    A list of a few methods for plasma diagnostics via fluctuations (noise) analysis of random (both temporally and spatially) system parameters is reviewed. Analogy is drawn with certain noise analysis methods, used in the diagnostics of fission reactors. These methods have been applied also to fusion measurements to some extent. However, the treatment of fusion plasma fluctuations is dominated by an approach that allows for temporal randomness, but assumes periodicity in space. This approach suits well a large class of phenomena such as magnetic fluctuations (MHD effects), but is much less suited to treat localised effects such as turbulence and density fluctuations. This paper discusses the potentials of the former approach, i.e. ordinary noise analysis methods of non-periodic variables in fusion plasma diagnostics. A new recommendation is to use the crossed beam correlation analysis of soft X-ray signals for determining the local short-range correlations in the plasma and to perform a systematic exploration of the plasma spatial correlation structure with that and other methods. 16 refs, 7 figs

  3. Impact of Molecular Diagnostics for Tuberculosis on Patient-Important Outcomes: A Systematic Review of Study Methodologies.

    Directory of Open Access Journals (Sweden)

    Samuel G Schumacher

    Full Text Available Several reviews on the accuracy of Tuberculosis (TB Nucleic Acid Amplification Tests (NAATs have been performed but the evidence on their impact on patient-important outcomes has not been systematically reviewed. Given the recent increase in research evaluating such outcomes and the growing list of TB NAATs that will reach the market over the coming years, there is a need to bring together the existing evidence on impact, rather than accuracy. We aimed to assess the approaches that have been employed to measure the impact of TB NAATs on patient-important outcomes in adults with possible pulmonary TB and/or drug-resistant TB.We first develop a conceptual framework to clarify through which mechanisms the improved technical performance of a novel TB test may lead to improved patient outcomes and outline which designs may be used to measure them. We then systematically review the literature on studies attempting to assess the impact of molecular TB diagnostics on such outcomes and provide a narrative synthesis of designs used, outcomes assessed and risk of bias across different study designs.We found 25 eligible studies that assessed a wide range of outcomes and utilized a variety of experimental and observational study designs. Many potentially strong design options have never been used. We found that much of the available evidence on patient-important outcomes comes from a small number of settings with particular epidemiological and operational context and that confounding, time trends and incomplete outcome data receive insufficient attention.A broader range of designs should be considered when designing studies to assess the impact of TB diagnostics on patient outcomes and more attention needs to be paid to the analysis as concerns about confounding and selection bias become relevant in addition to those on measurement that are of greatest concern in accuracy studies.

  4. 76 FR 54193 - Fiscal Year 2012 Veterinary Import/Export, Diagnostic Services, and Export Certification for...

    Science.gov (United States)

    2011-08-31

    ...] Fiscal Year 2012 Veterinary Import/Export, Diagnostic Services, and Export Certification for Plants and.... SUMMARY: This notice pertains to user fees charged for Veterinary Services animal quarantine and other..., organisms, and vectors; for certain veterinary diagnostic services; and for export certification of plants...

  5. Measurement properties of screening and diagnostic tools for autism spectrum adults of mean normal intelligence: A systematic review.

    Science.gov (United States)

    Baghdadli, A; Russet, F; Mottron, L

    2017-07-01

    The autism spectrum (AS) is a multifaceted neurodevelopmental variant associated with lifelong challenges. Despite the relevant importance of identifying AS in adults for epidemiological, public health, and quality of life issues, the measurement properties of the tools currently used to screen and diagnose adults without intellectual disabilities (ID) have not been assessed. This systematic review addresses the accuracy, reliability, and validity of the reported AS screening and diagnostic tools used in adults without ID. Electronic databases and bibliographies were searched, and identified papers evaluated against inclusion criteria. The PRISMA statement was used for reporting the review. We evaluated the quality of the papers using the COSMIN Checklist for psychometric data, and QUADAS-2 for diagnostic data. For the COSMIN assessment, evidence was considered to be strong when several methodologically good articles, or one excellent article, reported consistent evidence for or against a measurement property. For the QUADAS ratings, evidence was considered to be "satisfactory" if at least one study was rated with a low risk of bias and low concern about applicability. We included 38 articles comprising 32 studies, five reviews, and one book chapter and assessed nine tools (three diagnostic and six screening, including eight of their short versions). Among screening tools, only AQ-50, AQ-S, and RAADS-R and RAADS-14 were found to provide satisfactory or intermediate values for their psychometric properties, supported by strong or moderate evidence. Nevertheless, risks of bias and concerns on the applicability of these tools limit the evidence on their diagnostic properties. We found that none of the gold standard diagnostic tools used for children had satisfactory measurement properties. There is limited evidence for the measurement properties of the screening and diagnostic tools used for AS adults with a mean normal range of measured intelligence. This may lessen

  6. Permutation importance: a corrected feature importance measure.

    Science.gov (United States)

    Altmann, André; Toloşi, Laura; Sander, Oliver; Lengauer, Thomas

    2010-05-15

    In life sciences, interpretability of machine learning models is as important as their prediction accuracy. Linear models are probably the most frequently used methods for assessing feature relevance, despite their relative inflexibility. However, in the past years effective estimators of feature relevance have been derived for highly complex or non-parametric models such as support vector machines and RandomForest (RF) models. Recently, it has been observed that RF models are biased in such a way that categorical variables with a large number of categories are preferred. In this work, we introduce a heuristic for normalizing feature importance measures that can correct the feature importance bias. The method is based on repeated permutations of the outcome vector for estimating the distribution of measured importance for each variable in a non-informative setting. The P-value of the observed importance provides a corrected measure of feature importance. We apply our method to simulated data and demonstrate that (i) non-informative predictors do not receive significant P-values, (ii) informative variables can successfully be recovered among non-informative variables and (iii) P-values computed with permutation importance (PIMP) are very helpful for deciding the significance of variables, and therefore improve model interpretability. Furthermore, PIMP was used to correct RF-based importance measures for two real-world case studies. We propose an improved RF model that uses the significant variables with respect to the PIMP measure and show that its prediction accuracy is superior to that of other existing models. R code for the method presented in this article is available at http://www.mpi-inf.mpg.de/ approximately altmann/download/PIMP.R CONTACT: altmann@mpi-inf.mpg.de, laura.tolosi@mpi-inf.mpg.de Supplementary data are available at Bioinformatics online.

  7. Concurrent and predictive evaluation of malnutrition diagnostic measures in hip fracture inpatients: a diagnostic accuracy study.

    Science.gov (United States)

    Bell, J J; Bauer, J D; Capra, S; Pulle, R C

    2014-03-01

    Differences in malnutrition diagnostic measures impact malnutrition prevalence and outcomes data in hip fracture. This study investigated the concurrent and predictive validity of commonly reported malnutrition diagnostic measures in patients admitted to a metropolitan hospital acute hip fracture unit. A prospective, consecutive level II diagnostic accuracy study (n=142; 8 exclusions) including the International Classification of Disease, 10th Revision, Australian Modification (ICD10-AM) protein-energy malnutrition criteria, a body mass index (BMI) Patients were predominantly elderly (median age 83.5, range 50-100 years), female (68%), multimorbid (median five comorbidities), with 15% 4-month mortality. Malnutrition prevalence was lowest when assessed by BMI (13%), followed by MNA-SF (27%), ICD10-AM (48%), albumin (53%) and geriatrician assessment (55%). Agreement between measures was highest between ICD10-AM and geriatrician assessment (κ=0.61) followed by ICD10-AM and MNA-SF measures (κ=0.34). ICD10-AM diagnosed malnutrition was the only measure associated with 48-h mobilisation (35.0 vs 55.3%; P=0.018). Reduced likelihood of home discharge was predicted by ICD-10-AM (20.6 vs 57.1%; P=0.001) and MNA-SF (18.8 vs 47.8%; P=0.035). Bivariate analysis demonstrated ICD10-AM (relative risk (RR)1.2; 1.05-1.42) and MNA-SF (RR1.2; 1.0-1.5) predicted 4-month mortality. When adjusted for age, usual place of residency, comorbidities and time to surgery only ICD-10AM criteria predicted mortality (odds ratio 3.59; 1.10-11.77). Albumin, BMI and geriatrician assessment demonstrated limited concurrent and predictive validity. Malnutrition prevalence in hip fracture varies substantially depending on the diagnostic measure applied. ICD-10AM criteria or the MNA-SF should be considered for the diagnosis of protein-energy malnutrition in frail, multi-morbid hip fracture inpatients.

  8. Methods to determine fast-ion distribution functions from multi-diagnostic measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko

    -ion diagnostic views, it is possible to infer the distribution function using a tomography approach. Several inversion methods for solving this tomography problem in velocity space are implemented and compared. It is found that the best quality it obtained when using inversion methods which penalise steep......Understanding the behaviour of fast ions in a fusion plasma is very important, since the fusion-born alpha particles are expected to be the main source of heating in a fusion power plant. Preferably, the entire fast-ion velocity-space distribution function would be measured. However, no fast...

  9. Development of time-resolved optical measurement and diagnostic system for parameters of high current and pulsed electron beam

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Wang Yuan; Yang Guojun; Xia Liansheng; Li Hong; Zhang Zhuo; Liao Shuqing; Shi Jinshui

    2013-01-01

    The beam parameters measurement is the most important work for the study of linear induction accelerator(LIA). The beam parameters are important to evaluate the character of the beam. The demands of beam parameters measurement are improving while the development of accelerator is improving. The measurement difficulty feature higher time-resolved ability, higher spatial resolution, larger dynamic range and higher intuitionistic view data. The measurement technology of beam spot, beam emittance, beam energy have been developed for the past several years. Some high performance equipment such as high speed framing camera are developed recently. Under this condition, the relative integrated optical measurement and diagnostic system for the beam parameters is developed based on several principles. The system features time-resolved ability of up to 2 ns, high sensitivity and large dynamic range. The processing program is compiled for the data process and the local real-time process is reached. The measurement and diagnostic system has provided full and accurate data for the debug work and has been put into applications. (authors)

  10. Reliability of measuring pelvic floor elevation with a diagnostic ultrasonic imaging device

    OpenAIRE

    Ubukata, Hitomi; Maruyama, Hitoshi; Huo, Ming

    2015-01-01

    [Purpose] The purpose of this study was to investigate the reliability of measuring the amount of pelvic floor elevation during pelvic and abdominal muscle contraction with a diagnostic ultrasonic imaging device. [Subjects] The study group comprised 11 healthy women without urinary incontinence or previous birth experience. [Methods] We measured the displacement elevation of the bladder base during contraction of the abdominal and pelvic floor muscles was measured using a diagnostic ultrasoni...

  11. Importance measures and resource allocation

    International Nuclear Information System (INIS)

    Guey, C.N.; Morgan, T.; Hughes, E.A.

    1987-01-01

    This paper discusses various importance measures and their practical relevance to allocating resources. The characteristics of importance measures are illustrated through simple examples. Important factors associated with effectively allocating resources to improve plant system performance or to prevent system degradation are discussed. It is concluded that importance measures are only indicative of and not equal to the risk significance of a component, system, or event. A decision framework is suggested to provide a comprehensive basis for resource allocation

  12. Uses of risk importance measures

    International Nuclear Information System (INIS)

    Mankamo, T.; Poern, K.; Holmberg, J.

    1991-05-01

    Risk importance measures provide an understandable and practical way of presenting probabilistic safety analysis results which too often tend to remain abstract numbers without real insight into the content. The report clarifies the definitions, relationships and interpretations of the three most basic measures: Risk increase factor, risk decrease factor, and fractional contribution. The above three measures already cover the main types of risk importance measures. Many other importance measures presented in literature are close variants to some of these three measures. They are related in many cases so that, for a technical system considered, the two other measures can be derived from the one calculated first. However, the practical interpretations are different, and hence each three measures have their own uses and rights to existence. The fundamental aspect of importance measures is, that they express some specific influence of a basic event on the total risk. The basic failure or error events are the elements from which the reliability and risk models are constituted. The importance measures are relative, which is an advantage compared to absolute risk numbers, due to insensitivity with respect to quantification uncertainties. Therefore they are particularly adapted to give first hand guidance where to focus main interest from the system's risk and reliability point of view and wherefrom to continue the analysis with more sophisticated methods requiring more effort

  13. Specialized beam diagnostic measurements for an ADTT accelerator funnel

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, J.D.

    1995-10-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for accelerator-driven transmutation technologies (ADTT) with beam-current densities greater than 5 mA/mm{sup 2}. The primary beam-diagnostics-instrumentation requirement for these facilities is to provide sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam diagnostics instrumentation must measure beam parameters such as the projected centroids and profiles, total integrated current, and particle loss. Because of the high specific energy loss in materials at beam energies less than 20 MeV, interceptive measurements such as wire scanners or fluors cannot be used to determine beam profiles or centroids. Therefore, noninterceptive techniques must be used for on-line diagnosis of high-intensity CW beam at low energies. The beam funnel area of these proposed accelerator facilities provide a particular interesting beam measurement challenge. In this area of the accelerator, beam measurements must also sense how well the two funnel-input-beams are matched to each other in phase space. This paper will discuss some of the measurement requirements for these proposed accelerator facilities and the various noninterceptive techniques to measure dual-beam funnel operation.

  14. Introducing new diagnostics into STI control programmes: the importance of programme science.

    Science.gov (United States)

    Peeling, Rosanna W; Mabey, David; Ballard, Ronald C

    2013-03-01

    Many innovative diagnostic technologies will become commercially available over the next 5-10 years. These tests can potentially transform the diagnosis of sexually transmitted infections but their introduction into control programmes can be hampered by health system constraints, and political, cultural, socioeconomic and behavioural factors. We used the introduction of syphilis rapid tests to illustrate the importance of programme science to address the gap between accruing evidence of acceptable test performance and the complexity of programme design, implementation and evaluation of test deployment to address public health needs and improve patient-important outcomes.

  15. High precision instrumentation for measuring the true exposure time in diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Silva, Danubia B.; Santos, Marcus A.P.; Barros, Fabio R.; Santos, Luiz A.P.

    2013-01-01

    One of the most important physical quantities to be evaluated in diagnostic radiology is the radiation exposure time experimented by the patient during the X-ray examination. IAEA and WHO organizations have suggested that any country must create a quality surveillance program to verify if each type of ionizing radiation equipment used in the hospitals and medical clinics are in conformity with the accepted uncertainties following the international standards. The purpose of this work is to present a new high precision methodology for measuring true exposure time in diagnostic X-ray examinations: pulsed, continuous or digital one. An electronic system named CronoX, which will be soon registered at the Brazilian Patent Office (INPI), is the equipment that provides such a high precision measurement. The principle of measurement is based on the electrical signal captured by a sensor that enters in a regeneration amplifier to transform it in a digital signal, which is treated by a microprocessor (uP). The signal treatment results in a two measured times: 1) T rx , the true X-ray exposure time; 2) T nx , the time in which the X-ray machine is repeatedly cut off during the pulsed irradiation and there is no delivery dose to the patient. Conventional Polymat X-ray equipment and dental X-ray machines were used to generate X-ray photons and take the measurements with the electronic systems. The results show that such a high precision instrumentation displays the true exposure time in diagnostic X-ray examinations and indicates a new method to be purposed for the quality surveillance programs in radiology. (author)

  16. The Association between Parameters of Malnutrition and Diagnostic Measures of Sarcopenia in Geriatric Outpatients

    Science.gov (United States)

    Reijnierse, Esmee M.; Trappenburg, Marijke C.; Leter, Morena J.; Blauw, Gerard Jan; de van der Schueren, Marian A. E.; Meskers, Carel G. M.; Maier, Andrea B.

    2015-01-01

    Objectives Diagnostic criteria for sarcopenia include measures of muscle mass, muscle strength and physical performance. Consensus on the definition of sarcopenia has not been reached yet. To improve insight into the most clinically valid definition of sarcopenia, this study aimed to compare the association between parameters of malnutrition, as a risk factor in sarcopenia, and diagnostic measures of sarcopenia in geriatric outpatients. Material and Methods This study is based on data from a cross-sectional study conducted in a geriatric outpatient clinic including 185 geriatric outpatients (mean age 82 years). Parameters of malnutrition included risk of malnutrition (assessed by the Short Nutritional Assessment Questionnaire), loss of appetite, unintentional weight loss and underweight (body mass index malnutrition (independent variables) and diagnostic measures of sarcopenia (dependent variables) were analysed using multivariate linear regression models adjusted for age, body mass, fat mass and height in separate models. Results None of the parameters of malnutrition was consistently associated with diagnostic measures of sarcopenia. The strongest associations were found for both relative and absolute muscle mass; less stronger associations were found for muscle strength and physical performance. Underweight (p = malnutrition relate differently to diagnostic measures of sarcopenia in geriatric outpatients. The association between parameters of malnutrition and diagnostic measures of sarcopenia was strongest for both relative and absolute muscle mass, while less strong associations were found with muscle strength and physical performance. PMID:26284368

  17. Piezo-sensor self-diagnostics using electrical impedance measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H. (Gyu Hae); Farrar, C. R. (Charles R.); Rutherford, A. C. (Amanda C.); Robertson, A. N. (Amy N.)

    2004-01-01

    This paper present the piezoelectric sensor self-diagnostic procedure that performs in-situ monitoring of the operational status of piezoelectric materials (PZT) used for sensors and actuators in structural health monitoring (SHM) applications. The use of active-sensing piezoelectric materials has received considerable attention in the SHM community. A critical aspect of the piezoelectric active-sensing technologies is that usually large numbers of distributed sensors and actuators are needed to perform the required monitoring process. The sensor/actuator self-diagnostic procedure, where the sensors/actuators are confirmed to be functioning properly during operation, is therefore a critical component to successfully complete the SHM process and to minimize the false indication regarding the structural health. The basis of this procedure is to track the changes in the capacitive value of piezoelectric materials resulting from the sensor failure, which is manifested in the imaginary part of the measured electrical admittances. Furthermore, through the analytical and experimental investigation, it is confirmed that the bonding layer between the PZT and a host structure significantly contributes to the measured capacitive values. Therefore, by monitoring the imaginary part of the admittances, one can quantitatively assess the degradation of the mechanical/electrical properties of the PZT and its attachment to a host structure. This paper concludes with an experimental example to demonstrate the feasibility of the proposed sensor-diagnostic procedure.

  18. Diagnostic strategies using myoglobin measurement in myocardial infarction.

    Science.gov (United States)

    Plebani, M; Zaninotto, M

    1998-04-06

    Myoglobin, a low molecular-weight heme protein (17800 D) present in both cardiac and skeletal muscle, is an old test with new perspectives. Advantages and disadvantages of myoglobin determination are well known. Myoglobin is the earliest known, commercially available, biochemical marker of acute myocardial infarction (AMI) and its rapid kinetics make it an early, good marker of reperfusion. However, since myoglobin is present in both skeletal and cardiac muscle, any damage to these muscle types results in its release into blood. Serum myoglobin levels are falsely elevated in conditions unrelated to AMI as skeletal muscle and neuromuscular disorders, renal failure, intramuscular injection, strenuous exercise, and after several toxins and drugs intake. New strategies for myoglobin measurement may resolve this limitation. These strategies include both the combined measurement of myoglobin and a skeletal specific marker (carbonic anhydrase III) or a cardiac specific marker (troponin I), as well as the myoglobin evaluation on serial samples. In particular, the diagnostic algorithm based on the combined measurement of myoglobin and troponin I, assuring a satisfactory analytical turnaround time, significantly improves the diagnostic efficiency of laboratory assessment of suspected AMI patients, allowing the successive monitoring of coronary reperfusion.

  19. Corpuscular plasma diagnostics

    International Nuclear Information System (INIS)

    Afrosimov, V.; Petrov, M.

    1984-01-01

    An elementary explanation is presented of the physical principles and important methods of corpuscular plasma diagnostics. The invaluable role of corpuscular methods for measuring the hot plasma ion component in thermonuclear facilities, especially hydrogen ions in tokamaks, is emphasized. All corpuscular methods employ analysis of fast neutral atoms and therefore the mechanism of their creation inside a hot plasma is explained first. The ammount of information obtainable from spectra of fast neutrals is discussed. Multichannel analyzers developed at the FTI A.F. Ioffe in Leningrad are described in detail. Classical passive corpuscular diagnostics are examined as are active methods using artifitial beams of hydrogen atoms. The method used for obtaining local values of ion temperature and density is explained. Corpuscular spectroscopic diagnostics and its application for measuring impurities is mentioned. (J.U.)

  20. Towards first principle medical diagnostics: on the importance of disease-disease and sign-sign interactions

    Science.gov (United States)

    Ramezanpour, Abolfazl; Mashaghi, Alireza

    2017-07-01

    A fundamental problem in medicine and biology is to assign states, e.g. healthy or diseased, to cells, organs or individuals. State assignment or making a diagnosis is often a nontrivial and challenging process and, with the advent of omics technologies, the diagnostic challenge is becoming more and more serious. The challenge lies not only in the increasing number of measured properties and dynamics of the system (e.g. cell or human body) but also in the co-evolution of multiple states and overlapping properties, and degeneracy of states. We develop, from first principles, a generic rational framework for state assignment in cell biology and medicine, and demonstrate its applicability with a few simple theoretical case studies from medical diagnostics. We show how disease-related statistical information can be used to build a comprehensive model that includes the relevant dependencies between clinical and laboratory findings (signs) and diseases. In particular, we include disease-disease and sign-sign interactions and study how one can infer the probability of a disease in a patient with given signs. We perform comparative analysis with simple benchmark models to check the performances of our models. We find that including interactions can significantly change the statistical importance of the signs and diseases. This first principles approach, as we show, facilitates the early diagnosis of disease by taking interactions into accounts, and enables the construction of consensus diagnostic flow charts. Additionally, we envision that our approach will find applications in systems biology, and in particular, in characterizing the phenome via the metabolome, the proteome, the transcriptome, and the genome.

  1. Diagnostics of and measures against radon concentrations in a dwelling

    International Nuclear Information System (INIS)

    Berger, H.

    1994-02-01

    Results are presented of measurements in a test-dwelling in the period april 1993 - november 1993. The purpose of the measurements was to investigate the possibilities of using a blower door (a fan in a wall of the dwelling) for specifying sources of radon in the dwelling, employing the diagnostic method developed at the KVI (Nuclear Physics Accelerator Institute in Groningen, Netherlands). Special attention is paid to the measurement of two input variables for the diagnostic method: transparency of the walls of the dwelling and the strength of static sources. Also measures aimed at reducing radon concentrations in the dwelling are discussed. The main conclusions are that (a) the pressure-variation method is a valid procedure to measure the transparency of walls and floors; (b) the blower door is a suitable technique for arriving at a correct diagnosis; and (c) over-pressurizing the crawl-space is the most effective measure in reducing the radon concentration of the crawl-space. More research on air flows in the soil is recommended. 21 figs., 28 tabs., 7 refs

  2. A preface on advances in diagnostics for infectious and parasitic diseases: detecting parasites of medical and veterinary importance.

    Science.gov (United States)

    Stothard, J Russell; Adams, Emily

    2014-12-01

    There are many reasons why detection of parasites of medical and veterinary importance is vital and where novel diagnostic and surveillance tools are required. From a medical perspective alone, these originate from a desire for better clinical management and rational use of medications. Diagnosis can be at the individual-level, at close to patient settings in testing a clinical suspicion or at the community-level, perhaps in front of a computer screen, in classification of endemic areas and devising appropriate control interventions. Thus diagnostics for parasitic diseases has a broad remit as parasites are not only tied with their definitive hosts but also in some cases with their vectors/intermediate hosts. Application of current diagnostic tools and decision algorithms in sustaining control programmes, or in elimination settings, can be problematic and even ill-fitting. For example in resource-limited settings, are current diagnostic tools sufficiently robust for operational use at scale or are they confounded by on-the-ground realities; are the diagnostic algorithms underlying public health interventions always understood and well-received within communities which are targeted for control? Within this Special Issue (SI) covering a variety of diseases and diagnostic settings some answers are forthcoming. An important theme, however, throughout the SI is to acknowledge that cross-talk and continuous feedback between development and application of diagnostic tests is crucial if they are to be used effectively and appropriately.

  3. Application of a new importance measure for parametric uncertainty in PSA

    International Nuclear Information System (INIS)

    Poern, K.

    1997-04-01

    The traditional approach to uncertainty analysis in PSA, with propagation of basic event uncertainties through the PSA model, generates as an end product the uncertainty distribution of the top event frequency. This distribution, however, is not of much value for the decision maker. Most decisions are made under uncertainty. What the decision maker needs, to enhance the decision-making quality, is an adequate uncertainty importance measure that provides the decision maker with an indication of on what basic parameters it would be most valuable - as to the quality of the decision making in the specific situation - to procure more information. This paper will describe an application of a new measure of uncertainty importance that has been developed in the ongoing joint Nordic project NKS/RAK-1:3. The measure is called ''decision oriented'' because it is defined within a decision theoretic framework. It is defined as the expected value of a certain additional information about each basic parameter, and utilizes both the system structure and the complete uncertainty distributions of the basic parameters. The measure provides the analyst and the decision maker with a diagnostic information pointing to parameters on which more information would be most valuable to procure in order to enhance the decision-making quality. This uncertainty importance measure must not be confused with the more well-known, traditional importance measures of various kinds that are used to depict the contributions of each basic event or parameter (represented by point values) to the top event frequency. In this study the new measure is practically demonstrated through a real application on the top event: Water overflow through steam generator safety valves caused by steam generator tube rupture. This application object is one of the event sequences that the fore mentioned Nordic project has analysed with an integrated approach. The project has been funded by the Swedish Nuclear Power

  4. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part I Standard Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2015-01-01

    Full Text Available The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple.

  5. Toward First Principle Medical Diagnostics: On the Importance of Disease-Disease and Sign-Sign Interactions

    Directory of Open Access Journals (Sweden)

    Abolfazl Ramezanpour

    2017-07-01

    Full Text Available A fundamental problem in medicine and biology is to assign states, e.g., healthy or diseased, to cells, organs or individuals. State assignment or making a diagnosis is often a nontrivial and challenging process and, with the advent of omics technologies, the diagnostic challenge is becoming more and more serious. The challenge lies not only in the increasing number of measured properties and dynamics of the system (e.g., cell or human body but also in the co-evolution of multiple states and overlapping properties, and degeneracy of states. We develop, from first principles, a generic rational framework for state assignment in cell biology and medicine, and demonstrate its applicability with a few simple theoretical case studies from medical diagnostics. We show how disease–related statistical information can be used to build a comprehensive model that includes the relevant dependencies between clinical and laboratory findings (signs and diseases. In particular, we include disease-disease and sign–sign interactions and study how one can infer the probability of a disease in a patient with given signs. We perform comparative analysis with simple benchmark models to check the performances of our models. We find that including interactions can significantly change the statistical importance of the signs and diseases. This first principles approach, as we show, facilitates the early diagnosis of disease by taking interactions into accounts, and enables the construction of consensus diagnostic flow charts. Additionally, we envision that our approach will find applications in systems biology, and in particular, in characterizing the phenome via the metabolome, the proteome, the transcriptome, and the genome.

  6. A comparison of RAM importance measures

    International Nuclear Information System (INIS)

    Atwood, C.L.; Wolford, A.J.; Wright, R.E.

    1989-01-01

    In this paper measures of importance of components and cut sets of a system are reviewed. The measures considered are based on reliability, availability, and maintainability, the three elements of the acronym RAM. They follow the approaches of Fussell and Vesely and of Birnbaum. A new Birnbaum-type unmaintainability importance measure is proposed. The measures are compared in a simple example, and the appropriate use of unmaintainability importance is discussed

  7. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  8. Time response measurements of LASL diagnostic detectors

    International Nuclear Information System (INIS)

    Hocker, L.P.

    1970-07-01

    The measurement and data analysis techniques developed under the Los Alamos Scientific Laboratory's detector improvement program were used to characterize the time and frequency response of selected LASL Compton, fluor-photodiode (NPD), and fluor-photomultiplier (NPM) diagnostic detectors. Data acquisition procedures and analysis methods presently in use are summarized, and detector time and frequency data obtained using the EG and G/AEC electron linear accelerator fast pulse (approximately 50 psec FWHM) as the incident radiation driving function are presented. (U.S.)

  9. Frontiers of beam diagnostics in plasma accelerators: Measuring the ultra-fast and ultra-cold

    Science.gov (United States)

    Cianchi, A.; Anania, M. P.; Bisesto, F.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Giribono, A.; Marocchino, A.; Pompili, R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Mostacci, A.; Bacci, A.; Rossi, A. R.; Serafini, L.; Zigler, A.

    2018-05-01

    Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to large energy spread and divergence of the emerging beams, and on femtosecond bunch length measurements.

  10. Far infrared fusion plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  11. Diagnostics

    DEFF Research Database (Denmark)

    Donné, A.J.H.; Costley, A.E.; Barnsley, R.

    2007-01-01

    of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems...... on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R......&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. The starting point in the development of diagnostics for ITER is to define the measurement requirements and develop their justification. It is necessary to include all...

  12. Tune-Based Halo Diagnostics

    International Nuclear Information System (INIS)

    Cameron, Peter

    2003-01-01

    Tune-based halo diagnostics can be divided into two categories -- diagnostics for halo prevention, and diagnostics for halo measurement. Diagnostics for halo prevention are standard fare in accumulators, synchrotrons, and storage rings, and again can be divided into two categories -- diagnostics to measure the tune distribution (primarily to avoid resonances), and diagnostics to identify instabilities (which will not be discussed here). These diagnostic systems include kicked (coherent) tune measurement, phase-locked loop (PLL) tune measurement, Schottky tune measurement, beam transfer function (BTF) measurements, and measurement of transverse quadrupole mode envelope oscillations. We refer briefly to tune diagnostics used at RHIC and intended for the SNS, and then present experimental results. Tune-based diagnostics for halo measurement (as opposed to prevention) are considerably more difficult. We present one brief example of tune-based halo measurement

  13. Radon diagnostics and tracer gas measurements

    International Nuclear Information System (INIS)

    Jilek, K.; Brabec, M.

    2004-01-01

    An outline is presented of the tracer gas technique, which is used for continuous measurements of air ventilation rate (generally time-varying) and for simultaneous estimation of air ventilation rate and radon entry rate, and some of its limitations are discussed. The performance of this technique in the calculation of the air ventilation rate is demonstrated on real data from routine measurements. The potential for air ventilation rate estimation based on radon measurements only is discussed. A practical application is described of the tracer gas technique to a simultaneous estimation of the air ventilation rate and radon entry rate in a real house where the effectiveness of radon remedy was tested. The following main advantages of the CO tracer gas techniques are stressed: (i) The averaging method continuous determination of the ventilation rate with good accuracy (≤ 20 %). (ii) The newly presented and verified method based on simultaneous measurements of radon concentration and CO gas concentration enables separate continuous measurements of the radon entry rate and ventilation rate. The results of comparative measurements performed with the aim to estimate the inaccuracy in determination of radon entry rate showed acceptable and good agreement up to approximately 10 %. The results of comparative measurements performed with the aim to estimate the mutual commensuration of the method to the determination of the ventilation rate confirmed the expected unreliability the two parametric non-linear regression method, which is the most frequently used method in radon diagnostic in the Czech Republic

  14. Diagnostic accuracy of language sample measures with Persian-speaking preschool children.

    Science.gov (United States)

    Kazemi, Yalda; Klee, Thomas; Stringer, Helen

    2015-04-01

    This study examined the diagnostic accuracy of selected language sample measures (LSMs) with Persian-speaking children. A pre-accuracy study followed by phase I and II studies are reported. Twenty-four Persian-speaking children, aged 42 to 54 months, with primary language impairment (PLI) were compared to 27 age-matched children without PLI on a set of measures derived from play-based, conversational language samples. Results showed that correlations between age and LSMs were not statistically significant in either group of children. However, a majority of LSMs differentiated children with and without PLI at the group level (phase I), while three of the measures exhibited good diagnostic accuracy at the level of the individual (phase II). We conclude that general LSMs are promising for distinguishing between children with and without PLI. Persian-specific measures are mainly helpful in identifying children without language impairment while their ability to identify children with PLI is poor.

  15. Studies of neutron measurement methods for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Beimer, K.H.

    1986-03-01

    This thesis comprises several studies mainly devoted to neutron measurement systems for plasma diagnostics at JET (Joint European Torus). An in situ calibration of the U-235 fission chamber detectors located at JET is presented. These detectors are used for measuring the neutron yield from the thermonuclear reactions in the plasma. The energy spectrum of the neutrons from the reactions D(d,n) 3 He has been studied by means of a 3 He spectrometer. Especially, it was found that by measuring the width of the full energy peak in the response spectrum of the 3 He-spectrometer, the deuterium distribution in the deuterium targets used can be estimated. In order to measure different neutron energies it is necessary to obtain a detailed knowledge of the response of the spectrometer. Therefore, the response function to monoenergetic neutrons in the energy range 130-3030 keV was experimentally determined. Some work has been related to a design study of a 14 MeV spectrometer for neutron diagnostics. It is a combined proton-recoil and time-of-flight spectrometer for high resolution measurements. The main parts of it are the collimator, the scattering foil, and the detectors for the recoil protons and the scattered neutrons. The influence of proton straggling in the foil on the resolution and efficiency of the spectrometer has been studied. Furthermore, a three dimensional Monte Carlo code has been written and used for the design of the collimator. (author)

  16. Routine internal- and external-quality control data in clinical laboratories for estimating measurement and diagnostic uncertainty using GUM principles.

    Science.gov (United States)

    Magnusson, Bertil; Ossowicki, Haakan; Rienitz, Olaf; Theodorsson, Elvar

    2012-05-01

    Healthcare laboratories are increasingly joining into larger laboratory organizations encompassing several physical laboratories. This caters for important new opportunities for re-defining the concept of a 'laboratory' to encompass all laboratories and measurement methods measuring the same measurand for a population of patients. In order to make measurement results, comparable bias should be minimized or eliminated and measurement uncertainty properly evaluated for all methods used for a particular patient population. The measurement as well as diagnostic uncertainty can be evaluated from internal and external quality control results using GUM principles. In this paper the uncertainty evaluations are described in detail using only two main components, within-laboratory reproducibility and uncertainty of the bias component according to a Nordtest guideline. The evaluation is exemplified for the determination of creatinine in serum for a conglomerate of laboratories both expressed in absolute units (μmol/L) and relative (%). An expanded measurement uncertainty of 12 μmol/L associated with concentrations of creatinine below 120 μmol/L and of 10% associated with concentrations above 120 μmol/L was estimated. The diagnostic uncertainty encompasses both measurement uncertainty and biological variation, and can be estimated for a single value and for a difference. This diagnostic uncertainty for the difference for two samples from the same patient was determined to be 14 μmol/L associated with concentrations of creatinine below 100 μmol/L and 14 % associated with concentrations above 100 μmol/L.

  17. Measurements of iodine uptake in thyroid after diagnostic administration of 131I

    International Nuclear Information System (INIS)

    Osko, J.; Pliszczynski, T.

    2003-01-01

    The measurements performed up to now, showed that the spectrometric measurements can be useful in selection of the patients who need special consideration during the 131 I diagnostics and treatment. The next step of the work will include the measurements of the real activity of 131 I in thyroid gland, after the therapeutic administration of radioiodine. A special collimator was designed for this purpose and the thyroid counter was calibrated using a phantom with inserts simulating different shapes of pathologically changed thyroid glands. It can be expected that the improvement of accuracy of the diagnostic measurements and better control of real activity of 131 I in thyroid gland after the therapeutic administration will contribute to the process of optimisation of radiation doses to the patients and medical personnel. (authors)

  18. 9 CFR 93.204 - Import permits for poultry and for poultry test specimens for diagnostic purposes; and...

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Import permits for poultry and for poultry test specimens for diagnostic purposes; and reservation fees for space at quarantine facilities... SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL...

  19. PWFA plasma source - interferometric diagnostics for Li vapor density measurements

    International Nuclear Information System (INIS)

    Sivakumaran, V.; Mohandas, K.K.; Singh, Sneha; Ravi Kumar, A.V.

    2015-01-01

    A prototype (40 cm long) plasma source based on Li heat pipe oven has been developed for the Plasma Wakefield Acceleration (PWFA) experiments at IPR (IPR), Gujarat as a part of the ongoing Accelerator Programme. Li vapor in the oven is produced by heating solid Li in helium buffer gas. A uniform column of Li plasma is generated by UV photo ionization (193 nm) of the Li vapor in the heat pipe oven. In these experiments, an accurate measurement of Li vapor density is important as it has got a direct consequence on the plasma electron density. In the present experiment, the vapor density is measured optically by using Hook method (spectrally resolved white light interferometry). The hook like structure formed near the vicinity of the Li 670.8 nm resonance line was recorded with a white light Mach Zehnder interferometer crossed with an imaging spectrograph to estimate the Li vapor density. The vapor density measurements have been carried out as a function of external oven temperature and the He buffer gas pressure. This technique has the advantage of being insensitive to line broadening and line shape, and its high dynamic range even with optically thick absorption line. Here, we present the line integrated Lithium vapor density measurement using Hook method and also compare the same with other optical diagnostic techniques (White light absorption and UV absorption) for Li vapor density measurements. (author)

  20. A Thomson scattering diagnostic to measure fast ion and α-particle distributions in JET

    International Nuclear Information System (INIS)

    Costley, A.E.; Hoekzema, J.A.; Stott, P.E.; Watkins, M.L.

    1988-01-01

    The paper presents the findings of a feasibility investigation into the proposed Thomson scattering diagnostic to measure fast ion and α-particle distributions in JET. A description is given of the motivation for alpha particle diagnostics on JET, followed by a brief survey of possible α-particle diagnostics for JET. The basic principles of the collective Thomson scattering technique are presented, along with its implementation on JET. The expected performance of the system, and other applications of the diagnostic system are also discussed. (U.K.)

  1. Diagnostics and structure

    International Nuclear Information System (INIS)

    Vial, J.C.

    1986-01-01

    The structure of prominences and the diagnostic techniques used to evaluate their physical parameters are discussed. These include electron temperature, various densities (n sub p, n sub e, n sub l), ionization degree, velocities, and magnetic field vector. UV and radio measurements have already evidenced the existence of different temperature regions, corresponding to different geometrical locations, e.g., the so called Prominence-Corona (P-C) interface. Velocity measurements are important for considering formation and mass balance of prominences but there are conflicting velocity measurements which have led to the basic question: what structure is actually observed at a given wavelength; what averaging is performed within the projected slit area during the exposure time? In optically thick lines, the question of the formation region of the radiation along the line of sight is also not a trivial one. The same is true for low resolution measurements of the magnetic field. Coupling diagnostics with structure is now a general preoccupation

  2. Measures of risk importance and their applications

    International Nuclear Information System (INIS)

    Vesely, W.E.; Davis, T.C.; Denning, R.S.; Saltos, N.

    1983-07-01

    This work is part of a project being conducted for the Division of Risk Analysis (DRA) of the Nuclear Regulatory Commission (NRC). The objectives of the project are to evaluate the importances of containment, the different safety functions, and other various contributers as assessed in probabilistic risk analyses and to identify generic conclusions regarding the importances. Effective display of the importances is an important part of these objectives. To address these objectives, measures of risk importance need to be first identified and then they need to be evaluated for the different risk analyses which have been performed. This report describes the risk importance measures that were defined and were applied to the risk analyses which were performed as part of the Reactor Safety Study Methodology Applications Program (RSSMAP). The risk importance measures defined in this report measure the importance of features not only with regard to risk reduction but also with regard to reliability assurance, or risk maintenance. The goal of this report is not to identify new mathematical formulas for risk importance but to show how importance measures can be interpreted and can be applied

  3. NOMEX - a universal diagnostic dosemeter, mA.s, and kV meter for acceotance test measurements and quality assurance

    International Nuclear Information System (INIS)

    Hein, G.; Pychlau, P.; Schuele, E.

    1992-01-01

    A universal diagnostic dosemeter is introduced which was designed for acceptance test measurements and quality assurance. It can also be used for periodic constancy checks. To facilitate the comprehensive tests, the NOMEX can measure all important quantities, such as dose and dose rate, mean peak voltage, exposure time, mA.s product, dose per mA.s, dose per pulse, attenuation factor, relative standard deviation and length dose product in CT. All these quantities, except the mA.s product, are measured non-invasively. The instrument's concept, its applications and technical data are described. (author)

  4. The measurement of patient doses from diagnostic x-rays

    International Nuclear Information System (INIS)

    Morris, N.D.; Solomon, S.B.

    1980-06-01

    As part of the National Health and Medical Research Council survey to determine the genetic and mean bone-marrow doses to the Australian population from the medical, dental and chiropractic uses of radiation sources, doses to patients undergoing X-ray diagnostic procedures were evaluated. The doses were measured using capsules of LiF or CaF 2 :Dy thermoluminescent dosemeters (TLD). The evaluation of the TLD measurements is described and the mean values of the skin doses for patients undergoing various radiographic examinations in Australia in 1970 are presented

  5. Development and application of group importance measures

    International Nuclear Information System (INIS)

    Haskin, F.E.; Huang, Min; Sasser, M.K.; Stack, D.W.

    1992-01-01

    As part of a complete Level I probabilistic safety analysis of the K Production Reactor, three traditional importance measures-risk reduction, partial derivative, and variance reduction-have been extended to permit analyses of the relative importance of groups of basic and initiating events. None of the group importance measures require Monte Carlo sampling for their quantification. The group importance measures are quantified for the overall fuel damage equation and for dominant accident sequences using the following event groups: initiating events, electrical failures, instrumentation failures, common-cause failures, human errors, and nonrecovery events. Additional analyses are presented using other event groups. Collectively, these applications indicate both the utility and the versatility of the group importance measures

  6. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  7. Distortion of plasma diagnostics by an ambient gas

    International Nuclear Information System (INIS)

    Pearlman, J.S.; Matzen, M.K.

    1978-03-01

    The effect of vacuum chamber background gas on the ion measurements of a laser-produced, expanding plasma is studied over a wide range of background gas pressures. Experimental measurements are compared with calculations from a coupled rate equation-hydrodynamics code. The code is then used for a parametric study of the effect of background gas pressure on plasma diagnostic measurements. Charge exchange is found to be an important process in our diagnostics above vacuum chamber pressures of 10 -5 Torr

  8. Diagnostic challenges of childhood asthma.

    Science.gov (United States)

    Bakirtas, Arzu

    2017-01-01

    Diagnosis of asthma in childhood is challenging. Both underdiagnosis and overdiagnosis of asthma are important issues. The present review gives information about challenging factors for an accurate diagnosis of childhood asthma. Although underdiagnosis of asthma in childhood has always been the most important diagnostic problem, overdiagnosis of asthma has also been increasingly recognized. This is probably due to diagnosis of asthma based on symptoms and signs alone. Demonstration of variable airflow obstruction by lung function tests is the most common asthma diagnostic tests used in practice and is therefore strongly recommended in children who can cooperate. Recently, an asthma guideline combining the clinical and economic evidences with sensitivity and specificity of diagnostic procedures was developed to improve accuracy of diagnosis and to avoid overdiagnosis. This guideline provided an algorithmic clinical and cost-effective approach and included fractional exhaled nitric oxide measurement as one of the diagnostic tests in addition to lung function. Diagnosis of asthma in children should be made by combining relevant history with at least two confirmatory diagnostic tests whenever possible. Diagnosis based on short-period treatment trials should be limited to young children who are unable to cooperate with these tests.

  9. Calibration of the charge exchange recombination spectroscopy diagnostic for core poloidal rotation velocity measurements on JET

    International Nuclear Information System (INIS)

    Crombe, K.; Andrew, Y.; Giroud, C.; Hawkes, N.C.; Murari, A.; Valisa, M.; Oost, G. van; Zastrow, K.-D.

    2004-01-01

    This article describes recent improvements in the measurement of C 6+ impurity ion poloidal rotation velocities in the core plasma of JET using charge exchange recombination spectroscopy. Two independent techniques are used to provide an accurate line calibration. The first method uses a Perkin-Elmer type 303-306 samarium hollow cathode discharge lamp, with a Sm I line at 528.291 nm close to the C VI line at 529.1 nm. The second method uses the Be II at 527.06 nm and C III at 530.47 nm in the plasma spectrum as two marker lines on either side of the C VI line. Since the viewing chords have both a toroidal and poloidal component, it is important to determine the contribution of the toroidal rotation velocity component separately. The toroidal rotation velocity in the plasma core is measured with an independent charge exchange recombination spectroscopy diagnostic, looking tangentially at the plasma core. The contribution of this velocity along the lines of sight of the poloidal rotation diagnostic has been determined experimentally in L-mode plasmas keeping the poloidal component constant (K. Crombe et al., Proc. 30th EPS Conference, St. Petersburg, Russia, 7-11 July 2003, p. 1.55). The results from these experiments are compared with calculations of the toroidal contribution that take into account the original design parameters of the diagnostic and magnetic geometry of individual shots

  10. Ion diode diagnostics to resolve beam quality issues

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, H; Buth, L; Hoppe, P [Forschungszentrum Karlsruhe (Germany). Institut fuer Neutronenphysik und Reaktortechnik; and others

    1997-12-31

    Various diagnostic methods and instruments are under development at the Forschungszentrum Karlsruhe to measure important physical quantities in the accelerating gap of high power diodes on KALIF with a high spatial and temporal resolution. The methods include optical spectroscopy, refractive index measurements, dispersion interferometry, and high resolution energy analysis. The setup of these diagnostic tools and the first results obtained for applied and self-magnetically insulated diodes are presented. (author). 6 figs., 5 refs.

  11. Ordering of diagnostic information in encoded medical images. Accuracy progression

    Science.gov (United States)

    Przelaskowski, A.; Jóźwiak, R.; Krzyżewski, T.; Wróblewska, A.

    2008-03-01

    A concept of diagnostic accuracy progression for embedded coding of medical images was presented. Implementation of JPEG2000 encoder with a modified PCRD optimization algorithm was realized and initially verified as a tool for accurate medical image streaming. Mean square error as a distortion measure was replaced by other numerical measures to revise quality progression according to diagnostic importance of successively encoded image information. A faster increment of image diagnostic importance during reconstruction of initial packets of code stream was reached. Modified Jasper code was initially tested on a set of mammograms containing clusters of microcalcifications and malignant masses, and other radiograms. Teleradiologic applications were considered as the first area of interests.

  12. Energetic ion diagnostics using neutron flux measurements during pellet injection

    International Nuclear Information System (INIS)

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs

  13. A new importance measure for sensitivity analysis

    International Nuclear Information System (INIS)

    Liu, Qiao; Homma, Toshimitsu

    2010-01-01

    Uncertainty is an integral part of risk assessment of complex engineering systems, such as nuclear power plants and space crafts. The aim of sensitivity analysis is to identify the contribution of the uncertainty in model inputs to the uncertainty in the model output. In this study, a new importance measure that characterizes the influence of the entire input distribution on the entire output distribution was proposed. It represents the expected deviation of the cumulative distribution function (CDF) of the model output that would be obtained when one input parameter of interest were known. The applicability of this importance measure was tested with two models, a nonlinear nonmonotonic mathematical model and a risk model. In addition, a comparison of this new importance measure with several other importance measures was carried out and the differences between these measures were explained. (author)

  14. Risk importance measures in the dynamic flowgraph methodology

    International Nuclear Information System (INIS)

    Tyrväinen, T.

    2013-01-01

    This paper presents new risk importance measures applicable to a dynamic reliability analysis approach with multi-state components. Dynamic reliability analysis methods are needed because traditional methods, such as fault tree analysis, can describe system's dynamical behaviour only in limited manner. Dynamic flowgraph methodology (DFM) is an approach used for analysing systems with time dependencies and feedback loops. The aim of DFM is to identify root causes of a top event, usually representing the system's failure. Components of DFM models are analysed at discrete time points and they can have multiple states. Traditional risk importance measures developed for static and binary logic are not applicable to DFM as such. Some importance measures have previously been developed for DFM but their ability to describe how components contribute to the top event is fairly limited. The paper formulates dynamic risk importance measures that measure the importances of states of components and take the time-aspect of DFM into account in a logical way that supports the interpretation of results. Dynamic risk importance measures are developed as generalisations of the Fussell-Vesely importance and the risk increase factor. -- Highlights: • New risk importance measures are developed for the dynamic flowgraph methodology. • Dynamic risk importance measures are formulated for states of components. • An approach to handle failure modes of a component in DFM is presented. • Dynamic risk importance measures take failure times into account. • Component's influence on the system's reliability can be analysed in detail

  15. High-resolution spectroscopy diagnostics for measuring impurity ion temperature and velocity on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Weinzettl, Vladimir, E-mail: vwei@ipp.cas.cz [Institute of Plasma Physics ASCR, Prague (Czech Republic); Shukla, Gaurav [Institute of Plasma Physics ASCR, Prague (Czech Republic); Department of Applied Physics, Ghent University, Ghent (Belgium); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Ghosh, Joydeep [Institute for Plasma Research, Bhat, Gandhinagar (India); Melich, Radek; Panek, Radomir [Institute of Plasma Physics ASCR, Prague (Czech Republic); Tomes, Matej; Imrisek, Martin; Naydenkova, Diana [Institute of Plasma Physics ASCR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Varju, Josef [Institute of Plasma Physics ASCR, Prague (Czech Republic); Pereira, Tiago [Instituto de Plasmas e Fusão Nuclear, Lisboa (Portugal); Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Gomes, Rui [Instituto de Plasmas e Fusão Nuclear, Lisboa (Portugal); Abramovic, Ivana; Jaspers, Roger [Eindhoven University of Technology, Eindhoven (Netherlands); Pisarik, Michael [SQS Vlaknova optika a.s., Nova Paka (Czech Republic); Department of Electromagnetic Field, Faculty of Electrical Engineering, Czech Technical University in Prague (Czech Republic); Odstrcil, Tomas [Max-Planck-Institut fur Plasmaphysik, Garching (Germany); Van Oost, Guido [Department of Applied Physics, Ghent University, Ghent (Belgium)

    2015-10-15

    Highlights: • We built a new diagnostic of poloidal plasma rotation on the COMPASS tokamak. • Improvements in throughput via toroidal integration and fiber optimizations shown. • Poloidal rotation and ion temperature measured in L- and H-mode and during RMP. • Design and parameters of a new CXRS diagnostic for COMPASS are introduced. - Abstract: High-resolution spectroscopy is a powerful tool for the measurement of plasma rotation as well as ion temperature using the Doppler shift of the emitted spectral lines and their Doppler broadening, respectively. Both passive and active diagnostic variants for the COMPASS tokamak are introduced. The passive diagnostic focused on the C III lines at about 465 nm is utilized for the observation of the poloidal plasma rotation. The current set-up of the measuring system is described, including the intended high-throughput optics upgrade. Different options to increase the fiber collection area are mentioned, including a flower-like fiber bundle, and the use of micro-lenses or tapered fibers. Recent measurements of poloidal plasma rotation of the order of 0–6 km/s are shown. The design of the new active diagnostic using a deuterium heating beam and based on charge exchange recombination spectroscopy (C VI line at 529 nm) is introduced. The tool will provide both space (0.5–5 cm) and time (10 ms) resolved toroidal plasma rotation and ion temperature profiles. The results of the Simulation of Spectra code used to examine the feasibility of charge exchange measurements on COMPASS are shown and connected with a selection of the spectrometer coupled with the CCD camera.

  16. High-resolution spectroscopy diagnostics for measuring impurity ion temperature and velocity on the COMPASS tokamak

    International Nuclear Information System (INIS)

    Weinzettl, Vladimir; Shukla, Gaurav; Ghosh, Joydeep; Melich, Radek; Panek, Radomir; Tomes, Matej; Imrisek, Martin; Naydenkova, Diana; Varju, Josef; Pereira, Tiago; Gomes, Rui; Abramovic, Ivana; Jaspers, Roger; Pisarik, Michael; Odstrcil, Tomas; Van Oost, Guido

    2015-01-01

    Highlights: • We built a new diagnostic of poloidal plasma rotation on the COMPASS tokamak. • Improvements in throughput via toroidal integration and fiber optimizations shown. • Poloidal rotation and ion temperature measured in L- and H-mode and during RMP. • Design and parameters of a new CXRS diagnostic for COMPASS are introduced. - Abstract: High-resolution spectroscopy is a powerful tool for the measurement of plasma rotation as well as ion temperature using the Doppler shift of the emitted spectral lines and their Doppler broadening, respectively. Both passive and active diagnostic variants for the COMPASS tokamak are introduced. The passive diagnostic focused on the C III lines at about 465 nm is utilized for the observation of the poloidal plasma rotation. The current set-up of the measuring system is described, including the intended high-throughput optics upgrade. Different options to increase the fiber collection area are mentioned, including a flower-like fiber bundle, and the use of micro-lenses or tapered fibers. Recent measurements of poloidal plasma rotation of the order of 0–6 km/s are shown. The design of the new active diagnostic using a deuterium heating beam and based on charge exchange recombination spectroscopy (C VI line at 529 nm) is introduced. The tool will provide both space (0.5–5 cm) and time (10 ms) resolved toroidal plasma rotation and ion temperature profiles. The results of the Simulation of Spectra code used to examine the feasibility of charge exchange measurements on COMPASS are shown and connected with a selection of the spectrometer coupled with the CCD camera.

  17. The neutron imaging diagnostic at NIF (invited).

    Science.gov (United States)

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  18. The neutron imaging diagnostic at NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Bower, D.; Dzenitis, J. M. [Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  19. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale.

    Science.gov (United States)

    Obuchowski, Nancy A

    2006-02-15

    ROC curves and summary measures of accuracy derived from them, such as the area under the ROC curve, have become the standard for describing and comparing the accuracy of diagnostic tests. Methods for estimating ROC curves rely on the existence of a gold standard which dichotomizes patients into disease present or absent. There are, however, many examples of diagnostic tests whose gold standards are not binary-scale, but rather continuous-scale. Unnatural dichotomization of these gold standards leads to bias and inconsistency in estimates of diagnostic accuracy. In this paper, we propose a non-parametric estimator of diagnostic test accuracy which does not require dichotomization of the gold standard. This estimator has an interpretation analogous to the area under the ROC curve. We propose a confidence interval for test accuracy and a statistical test for comparing accuracies of tests from paired designs. We compare the performance (i.e. CI coverage, type I error rate, power) of the proposed methods with several alternatives. An example is presented where the accuracies of two quick blood tests for measuring serum iron concentrations are estimated and compared.

  20. Wavefront Measurement for Laser-Guiding Diagnostic

    International Nuclear Information System (INIS)

    Shiraishi, S.; Gonsalves, A.J.; Lin, C.; Nakamura, K.; Osterhoff, J.; Sokollik, T.; van Tilborg, J.; Geddes, C.G.R.; Schroeder, C.B.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2010-01-01

    The wavefront of a short laser pulse after interaction in a laser-plasma accelerator (LPA) was measured to diagnose laser-guiding quality. Experiments were performed on a 100 TW class laser at the LOASIS facility of LBNL using a hydrogenfilled capillary discharge waveguide. Laser-guiding with a pre-formed plasma channel allows the laser pulse to propagate over many Rayleigh lengths at high intensity and is crucial to accelerate electrons to the highest possible energy. Efficient coupling of laser energy into the plasma is realized when the laser and the channel satisfy a matched guiding condition, in which the wavefront remains flat within the channel. Using a wavefront sensor, the laser-guiding quality was diagnosed based on the wavefront of the laser pulse exiting the plasma channel. This wavefront diagnostic will contribute to achieving controlled, matched guiding in future experiments.

  1. Measuring Diagnostic Stand for Experimental Researches in Technology Machining

    Directory of Open Access Journals (Sweden)

    A. E. Dreval'

    2014-01-01

    Full Text Available The paper reviews applied techniques, methods, and structure of the control and measuring means to conduct experimental and scientific researches of cutting processes. Existing research methods in cutting the metals are divided by features, such as essence of methods, the number of records of physical indicators, the number of studied factors, duration of tests. The groups of methods are briefly characterized.The chair "Tool Engineering and Technologies" of BMSTU developed and made a diagnostic stand of control and measurements for conducting research activities in the field of materials processing technology by cutting to define rational technological decisions, when machining, and carry out an analysis of efficiency and economic feasibility of made decisions. The diagnostic stand contains modern the electronic equipment. Record of measuring parameters is made in real time with a possibility for visual representation of read results and mathematical and statistical processing of measurement results. The stand can be used in research laboratories of machine-building enterprises, laboratories of higher education institutions, and other scientific divisions.The paper presents a justification that the stand is reasonable to use for the following: completion and choice of rational cutting modes, workability assessment of new constructional materials, technical and operational characteristics of the processed surfaces, and operational properties of the cutting tools of various producers, choice of optimum geometrical parameters of the cutting tools and brands of the lubricant cooling technological means, as well as the energy consumption for the chosen machining process. The stand allows us to make an assessment of wear resistance and tribology-technical characteristics of tool materials, as well as an accuracy, rigidity, vibration stability of machines, both new and being in operation.

  2. Development of reconfigurable analog and digital circuits for plasma diagnostics measurement systems

    International Nuclear Information System (INIS)

    Srivastava, Amit Kumar; Sharma, Atish; Raval, Tushar

    2009-01-01

    In long pulse discharge tokamak, a large number of diagnostic channels are being used to understand the complex behavior of plasma. Different diagnostics demand different types of analog and digital processing for plasma parameters measurement. This leads to variable requirements of signal processing for diagnostic measurement. For such types of requirements, we have developed hardware with reconfigurable electronic devices, which provide flexible solution for rapid development of measurement system. Here the analog processing is achieved by Field Programmable Analog Array (FPAA) integrated circuit while reconfigurable digital devices (CPLD/FPGA) achieve digital processing. FPAA's provide an ideal integrated platform for implementing low to medium complexity analog signal processing. With dynamic reconfigurability, the functionality of the FPAA can be reconfigured in-system by the designer or on the fly by a microprocessor. This feature is quite useful to manipulate the tuning or the construction of any part of the analog circuit without interrupting operation of the FPAA, thus maintaining system integrity. The hardware operation control logic circuits are configured in the reconfigurable digital devices (CPLD/FPGA) to control proper hardware functioning. These reconfigurable devices provide the design flexibility and save the component space on the board. It also provides the flexibility for various setting through software. The circuit controlling commands are either issued by computer/processor or generated by circuit itself. (author)

  3. Energetic ion diagnostics using neutron flux measurements during pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs.

  4. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D.

    Science.gov (United States)

    Chen, J; Ding, W X; Brower, D L; Finkenthal, D; Muscatello, C; Taussig, D; Boivin, R

    2016-11-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  5. Faraday-effect polarimeter diagnostic for internal magnetic field fluctuation measurements in DIII-D

    International Nuclear Information System (INIS)

    Chen, J.; Ding, W. X.; Brower, D. L.; Finkenthal, D.; Muscatello, C.; Taussig, D.; Boivin, R.

    2016-01-01

    Motivated by the need to measure fast equilibrium temporal dynamics, non-axisymmetric structures, and core magnetic fluctuations (coherent and broadband), a three-chord Faraday-effect polarimeter-interferometer system with fast time response and high phase resolution has recently been installed on the DIII-D tokamak. A novel detection scheme utilizing two probe beams and two detectors for each chord results in reduced phase noise and increased time response [δb ∼ 1G with up to 3 MHz bandwidth]. First measurement results were obtained during the recent DIII-D experimental campaign. Simultaneous Faraday and density measurements have been successfully demonstrated and high-frequency, up to 100 kHz, Faraday-effect perturbations have been observed. Preliminary comparisons with EFIT are used to validate diagnostic performance. Principle of the diagnostic and first experimental results is presented.

  6. Most important methods of the diagnostics of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Latocha, E; Cimander, B

    1976-01-01

    The paper contains a review of literature concerning the more important procedures for diagnosing air pollution. Cited results of studies from several countries indicate a relationship between the intensity of sulfur dioxide air pollution and the extent of vegetation damage. Possibility of the use of aerial photography for diagnosis of damage in forests was mentioned. Possibilities for utilization of certain plant species or plant communities as indicators of air pollution were described. It was stressed that long-lived evergreens are the best bio-indicators. Examples of increases in population density of certain insect pest sand activation of fungal pathogens caused by industrial emissions were given. Techniques used in Poland for the development and introduction of zones of forest threat by industrial air pollution were discussed. These are based on alterations in the length and shape of needles, foliage coloration, numbers of needle generations, and external appearance of tree crowns in the form of height growth inhibition or impairment of tree vigor. It was stressed that not all changes in forest environment under the impact of emissions may be considered appropriate for the diagnosis of air pollution. Diagnostic procedures ought to be relatively simple and easy to apply.

  7. Evaluation of the contribution of the importance of neuroimaging for the diagnostics of dementias - comparison to the psychological diagnostics

    International Nuclear Information System (INIS)

    Hentschel, F.; Kreis, M.; Damian, M.; Syren, M.; Krumm, B.

    2003-01-01

    Objective: While psychology is accepted as a necessary component of the dementia diagnostics, the extended clinical diagnostics with neuroimaging is differently estimated. The goal of the study is the quantification of the individual contribution of the two different methods. Methods: Of 100 patient the diagnosis of entrance, the neurological, the psychological, and the final clinical diagnosis were documented. For both imaging and psychology the sensitivity, specificity, and the positive predictive value were computed. The diagnostic of each method was determined from the change of the final in relation to the initial clinical diagnosis. The neuroradiological investigation took place with MRI, the psychological examination used both usual power and special speed tests. Results: The extended clinical diagnostics led for 26% of the patients to the change of the clinical diagnosis. Imaging and psychology supplied different own but supplementing contributions. In the case of annihilation imaging contributed with 73.3%, psychology with 54.1% to the diagnosis of a neurodegenerative dementia, whereas the contributions to the diagnosis of a vascular dementia were 83.3% and 70.8%, respectively. However psychology diagnosed and quantified the dementia. The contribution of neuroimaging consisted in the differential diagnosis of the dementias organic causes of symptomatic clementias and vascular encephalopathy without dementia but with consequences for a secondary prophylaxis were additional information also. Conclusion: Psychology improves the diagnostic accuracy of dementias. Neuroimaging improves the differential diagnosis of dementias and supplies additional clinically relevant findings. In the qualified diagnostics and differential diagnostics of the dementias both methods are indispensable. (orig.) [de

  8. Optical fluctuation measurements of turbulence using a diagnostic beam on Phaedrus-T

    International Nuclear Information System (INIS)

    Evensen, H.; Brouchous, D.; Diebold, D.; Doczy, M.; Fonck, R.J.; Nolan, D.

    1992-01-01

    Plasma density turbulence has been measured with the beam emission spectroscopy (BES) diagnostic system, using a low-power neutral beam with He 0 and H 0 as beam species. In general, He 0 (588 nm) provided the best signal-to-noise ratio due to its lower edge plasma background interference. Simultaneous measurements of edge density fluctuations have been made with BES and Langmuir probes; the spectra are seen to be essentially identical, and the fluctuation amplitudes from both diagnostics are in close agreement. A poloidal coherence length of about 2--4 cm was observed. Radial propagation of modes was not seen, but a lab-frame poloidal phase velocity at r/a=0.77 of about 7x10 5 cm/s in the electron diamagnetic direction was observed, corresponding to m=8--75 kHz

  9. Radiation protection in medicine (542) comparison of different dosimetry systems for dose measurements in diagnostic radiology

    International Nuclear Information System (INIS)

    Milkovic, D.; Ranogajec-Komor, M.; Miljanic, S.; Knezevic, Z.; Krpan, K.

    2006-01-01

    The dose measurement on patients in X-ray diagnostic is not simple, because low doses with low and various energies have to be measured. The aim of this preliminary study was to compare high sensitivity thermoluminescent dosimeter (T.L.D.) (LiF:Mg,Cu,P) and radio-photoluminescent (R.P.L.) glass dosimeters for dose measurements in routine X-ray diagnostic of chest of children. The energy dependence of the dosimeters was investigated in Secondary Standard Dosimetry Laboratory (SSDL). The energy range was 33- 65 keV mean energy, the dosimeters were placed free in air and on the water phantom. The results were compared to calculated values of Hp(10). The next step was the irradiation in a routine X-ray diagnostic unit. Irradiations were performed by the Shimadzu X-ray unit. The selected irradiation conditions were the same as that most commonly used for baby examinations. Doses were measured with dosimeters placed free-in-air and also with the dosimeters placed on the water phantom and baby phantom. The results show that the R.P.L. glass dosimeters and LiF:Mg,Cu,P based T.L.D. are suitable for low dose measurements in X-ray diagnostic. The uncertainty of dose determination is mainly caused by the energy dependence of dosimeters. (authors)

  10. Quality control in diagnostic radiology - patient dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Prlic, I; Radalj, Z; Brumen, V; Cerovac, H [Institute for Medical Research and Occupational Health, Laboratory for Radiation Protection and Dosimetry, Zagreb (Croatia); Gladic, J [Institute for Physics, Laboratory for Solid State Physics, Zagreb (Croatia); Tercek, V [Clinical Hospital Sisters of Mercy, Health Physics Department, Zagreb (Croatia)

    1997-12-31

    In order to establish the Quality Criteria for diagnostic radiographic images in the radiology departments in Republic of Croatia we have started the several Quality Control projects on the field. The measurements are performed according to some methodology recommendations in our law but the methodology, measurement principles, measurement equipment, phantoms, measurable parameters for the good use by radiographers, statistical and numerical evaluation, dosimetric philosophy etc. where first recognized as a private/or group hazard of each person involved in the procedure of evaluation of diagnostic radiology images/diagnosis. The important quality elements of the imaging process are: the diagnostic quality of the radiographic image, the radiation dose to the patient and the choice of the radiographic technique. This depends on the x-ray unit (tube) radiation quality, image processing quality and final image evaluation quality. In this paper we will show how the Quality Control measurements can be easily connected to the dose delivered to the patient for the known diagnostic procedure and how this can be used by radiographers in their daily work. The reproducibility of the x-ray generator was checked before the service calibration and after the service calibration. The table of kV dependence and output dose per mAs was calculated and the ESD (entrance surface dose) was measured/calculated for the specific diagnostic procedure. After the phantom calculation were made and the dose prediction for the given procedure was done, measurements were done on the patients (digital dosemeters, TLD and film dosemeter combinations). We are claiming that there is no need to measure each patient if the proper Quality Control measurements are done and the proper table of ESD for each particular x-ray tube in diagnostic departments is calculated for the radiographers daily use. (author). 1 example, 1 fig., 13 refs.

  11. Design of neutron diagnostic for MTX

    International Nuclear Information System (INIS)

    Ogawa, Toshihide; Oasa, Kazumi; Hoshino, Katsumichi; Odajima, Kazuo; Maeda, Hikosuke

    1990-07-01

    A neutron diagnostic system was designed for the Microwave Tokamak Experiment being carried out at the lawrence Livermore National Laboratory. High speed measurements are important to this experiment. Plastic scintillator is used for this fast response detection of neutron. Proportional counters and fission counters are used for the total neutron emission rate measurements. (author)

  12. Cold vacuum chamber for diagnostics: Analysis of the measurements at the Diamond Light Source and impedance bench measurements

    Science.gov (United States)

    Voutta, R.; Gerstl, S.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; Saez de Jauregui, D.; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Migliorati, M.; Spataro, B.

    2016-05-01

    The beam heat load is an important input parameter needed for the cryogenic design of superconducting insertion devices. Theoretical models taking into account the different heating mechanisms of an electron beam to a cold bore predict smaller values than the ones measured with several superconducting insertion devices installed in different electron storage rings. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is equipped with temperature sensors, pressure gauges, mass spectrometers as well as retarding field analyzers which allow to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. COLDDIAG was installed in a straight section of the Diamond Light Source (DLS). In a previous paper the experimental equipment as well as the installation of COLDDIAG in the DLS are described [S. Gerstl et al., Phys. Rev. ST Accel. Beams 17, 103201 (2014)]. In this paper we present an overview of all the measurements performed with COLDDIAG at the DLS and their detailed analysis, as well as impedance bench measurements of the cold beam vacuum chamber performed at the Karlsruhe Institute of Technology after removal from the DLS. Relevant conclusions for the cryogenic design of superconducting insertion devices are drawn from the obtained results.

  13. Cold vacuum chamber for diagnostics: Analysis of the measurements at the Diamond Light Source and impedance bench measurements

    Directory of Open Access Journals (Sweden)

    R. Voutta

    2016-05-01

    Full Text Available The beam heat load is an important input parameter needed for the cryogenic design of superconducting insertion devices. Theoretical models taking into account the different heating mechanisms of an electron beam to a cold bore predict smaller values than the ones measured with several superconducting insertion devices installed in different electron storage rings. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG has been built. COLDDIAG is equipped with temperature sensors, pressure gauges, mass spectrometers as well as retarding field analyzers which allow to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. COLDDIAG was installed in a straight section of the Diamond Light Source (DLS. In a previous paper the experimental equipment as well as the installation of COLDDIAG in the DLS are described [S. Gerstl et al., Phys. Rev. ST Accel. Beams 17, 103201 (2014]. In this paper we present an overview of all the measurements performed with COLDDIAG at the DLS and their detailed analysis, as well as impedance bench measurements of the cold beam vacuum chamber performed at the Karlsruhe Institute of Technology after removal from the DLS. Relevant conclusions for the cryogenic design of superconducting insertion devices are drawn from the obtained results.

  14. Real-time measurement and control at JET signal processing and physics analysis for diagnostics

    International Nuclear Information System (INIS)

    Felton, R.; Joffrin, E.; Murari, A.

    2005-01-01

    To meet the requirements of the scientific programme, the EFDA JET real-time measurement and control project has developed an integrated set of real-time plasma measurements, experiment control and communication facilities. Traditional experiments collected instrument data during the plasma pulse and calculated physics data after the pulse. The challenge for continuous tokamak operation is to calculate the physics data in real-time, keeping up with the evolution of the plasma. In JET, many plasma diagnostics have been augmented with extra data acquisition and signal-processing systems so that they can both capture instrument data for conventional post-pulse analysis and calculate calibrated, validated physics results in real-time. During the pulse, the systems send sampled data sets into a network, which distributes the data to several destinations. The receiving systems may do further analysis, integrating data from several measurements, or may control the plasma scenario by heating or fuelling. The simplest real-time diagnostic systems apply scale factors to the signals, as with the electron cyclotron emission (ECE) diagnostic's 96 tuned radiometer channels, giving the electron temperature profile. In various spectroscopy diagnostics, spectral features are least-squares-fitted to measure spectra from several lines of sight, within 50 ms. Ion temperatures and rotation speed can be calculated from the line widths and shifts. For diagnostics using modulation techniques, the systems implement digital-signal processing phase trackers, lock-in amplifiers and filters, e.g., the far infrared (FIR) interferometer samples 15 channels at 400 kHz for 30 s, i.e., six million samples per second. Diagnostics have specific lines of sight, spatial channels, and various sampling rates. The heating/fuelling systems have relatively coarse spatial localisation. Analysis systems have been developed to integrate the basic physics data into smaller sets of controllable parameters on a

  15. 9 CFR 93.304 - Import permits for horses from regions affected with CEM and for horse specimens for diagnostic...

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Import permits for horses from regions affected with CEM and for horse specimens for diagnostic purposes; reservation fees for space at quarantine... POULTRY PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Horses § 93.304 Import...

  16. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    International Nuclear Information System (INIS)

    Vachutka, J; Grec, P; Mornstein, V; Caruana, C J

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology

  17. A new uncertainty importance measure

    International Nuclear Information System (INIS)

    Borgonovo, E.

    2007-01-01

    Uncertainty in parameters is present in many risk assessment problems and leads to uncertainty in model predictions. In this work, we introduce a global sensitivity indicator which looks at the influence of input uncertainty on the entire output distribution without reference to a specific moment of the output (moment independence) and which can be defined also in the presence of correlations among the parameters. We discuss its mathematical properties and highlight the differences between the present indicator, variance-based uncertainty importance measures and a moment independent sensitivity indicator previously introduced in the literature. Numerical results are discussed with application to the probabilistic risk assessment model on which Iman [A matrix-based approach to uncertainty and sensitivity analysis for fault trees. Risk Anal 1987;7(1):22-33] first introduced uncertainty importance measures

  18. A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes.

    Science.gov (United States)

    Saqib, Najmus; Silva, Cody J; Maupin, C Mark; Porter, Jason M

    2017-07-01

    An optical diagnostic technique to determine the order and concentration of lithium polysulfides in lithium-sulfur (Li-S) battery electrolytes has been developed. One of the major challenges of lithium-sulfur batteries is the problem of polysulfide shuttling between the electrodes, which leads to self-discharge and loss of active material. Here we present an optical diagnostic for quantitative in situ measurements of lithium polysulfides using attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy. Simulated infrared spectra of lithium polysulfide molecules were generated using computational quantum chemistry routines implemented in Gaussian 09. The theoretical spectra served as a starting point for experimental characterization of lithium polysulfide solutions synthesized by the direct reaction of lithium sulfide and sulfur. Attenuated total reflection FT-IR spectroscopy was used to measure absorption spectra. The lower limit of detection with this technique is 0.05 M. Measured spectra revealed trends with respect to polysulfide order and concentration, consistent with theoretical predictions, which were used to develop a set of equations relating the order and concentration of lithium polysulfides in a sample to the position and area of a characteristic infrared absorption band. The diagnostic routine can measure the order and concentration to within 5% and 0.1 M, respectively.

  19. A quality measurement study of a diagnostic x-ray

    International Nuclear Information System (INIS)

    Nishitani, Motohiro; Fujimoto, Nobuhisa; Yamada, Katsuhiko

    1982-01-01

    It is important to check periodically the quality and quantity of the X-rays emitted, in order to obtain the best possible performance from your diagnostic X-ray apparatus. The best way of checking the exact quality of the X-ray is to measure the spectrum of the X-ray, but it is not an easy task to carry out. The second way is to plot the attenuation curve of the X-rays. We have developed a method to plot the attenuation curve by a single exposure, utilizing J.r. Greening's empirical formula. The output of the three cavity ionization chambers, one with 7 mmAl filter, another with a 3 mmAl and the third without any filter, exposed to the same X-ray, were put into a microcomputer. The programming was arranged to display the attenuation curve of the X-rays, effective energy of the X-rays, the 1st HVL and the 2nd HVL on the CRT. The attenuation curves of the X-rays, emitted at a tube voltage at between 60 and 140 kV obtained by this method, agreed with the experimental results with an error of +-4 %. The effective energy obtained by this method agreed with the experimental data with an error of +-1 %. (author)

  20. Microwave imaging for plasma diagnostics and its applications

    International Nuclear Information System (INIS)

    Mase, A.; Kogi, Y.; Ito, N.

    2007-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering, and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Important plasma parameters were measured to clarify the physics issues such as stability, wave phenomena, and fluctuation-induced transport. Recent advances in microwave and millimeter-wave technology together with computer technology have enabled the development of advanced diagnostics for visualization of 2D and 3D structures of plasmas. Microwave/millimeter-wave imaging is expected to be one of the most promising diagnostic methods for this purpose. We report here on the representative microwave diagnostics and their industrial applications as well as application to magnetically-confined plasmas. (author)

  1. Identification of real-time diagnostic measures of visual distraction with an automatic eye-tracking system.

    Science.gov (United States)

    Zhang, Harry; Smith, Matthew R H; Witt, Gerald J

    2006-01-01

    This study was conducted to identify eye glance measures that are diagnostic of visual distraction. Visual distraction degrades performance, but real-time diagnostic measures have not been identified. In a driving simulator, 14 participants responded to a lead vehicle braking at -2 or -2.7 m/s2 periodically while reading a varying number of words (6-15 words every 13 s) on peripheral displays (with diagonal eccentricities of 24 degrees, 43 degrees, and 75 degrees). As the number of words and display eccentricity increased, total glance duration and reaction time increased and driving performance suffered. Correlation coefficients between several glance measures and reaction time or performance variables were reliably high, indicating that these glance measures are diagnostic of visual distraction. It is predicted that for every 25% increase in total glance duration, reaction time is increased by 0.39 s and standard deviation of lane position is increased by 0.06 m. Potential applications of this research include assessing visual distraction in real time, delivering advisories to distracted drivers to reorient their attention to driving, and using distraction information to adapt forward collision and lane departure warning systems to enhance system effectiveness.

  2. Optical diagnostics of intermittent flows

    DEFF Research Database (Denmark)

    Okulov, V.L.; Naumov, I.V.; Sørensen, Jens Nørkær

    2007-01-01

    The efficiency of combined use of different optical techniques for flow diagnostics is demonstrated with the practically important case of intense swirling flows. It is shown that, when applied separately, commonly used optical measuring techniques, such as laser Doppler anemometry and particle...... is for the first time applied for diagnostics of the flow pattern in a closed cylinder with a rotating end face with the aim of studying the changeover from the steady axisymmetric to unsteady asymmetric flow over a wide range of flow parameters. It is found that such a transition is notable for azimuthal...

  3. A mid-infrared absorption diagnostic for acetylene detection

    KAUST Repository

    KC, Utsav

    2015-05-14

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm−1 over a wide range of temperatures (1000–2200 K) and pressures (1–5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene. © 2015 Springer-Verlag Berlin Heidelberg

  4. Diagnostics Plan for the National Compact Stellarator Experiment

    International Nuclear Information System (INIS)

    D. Johnson; T. Brown; H. Neilson; G. Schilling; H. Takahashi; M. Zarnstorff; M. Cole; E. Lazarus; and M. Fenstermacher

    2002-01-01

    The National Compact Stellarator Experiment (NCSX) is a stellarator-tokamak hybrid seeking to combine the good confinement, high beta and moderate aspect ratio of the tokamak with the quasi-steady-state operation and good stability properties of the stellarator. A preliminary list of measurement requirements, intended to satisfy the needs of the phased research plan, provides the basis for a full complement of plasma diagnostics. It is important to consider this full set, even at this early stage, to assess the adequacy of the stellarator design for diagnostic port access. The 3-D nature of the plasma is a measurement challenge, as is the necessity for high spatial resolution to assess the quality of magnetic surfaces. Other diagnostic requirements include the need for re-entrant views that penetrate the cryostat, for a convenient e-beam probe for field line mapping, and for a diagnostic neutral beam for active spectroscopy

  5. Measurement of electron density of the plasma in the Tokamak TCABR, through Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Jeronimo, Leonardo Cunha

    2013-01-01

    Over the last few years is remarkable, so increasingly evident the need for a new source of energy for mankind. One promising option is through nuclear fusion, where the plasma produced in the reactor can be converted into electrical energy. Therefore, knowing the characteristics of this plasma is very important to control it and understand it so desirable. One of the diagnostic options is called Thomson scattering . This is considered the most reliable method for the determination of important plasma parameters such as temperature and electron density, and may also help in the study and explanation of various internal mechanisms. The great advantage lies in the tact that they consist of a direct measurement and nonperturbative. But it is a diagnosis whose installation and execution is admittedly complex, limiting it only a few laboratories in the fíeld of fusion for the world. Among the main difficulties, wc can highlight the fact that the scattered signal is very small, thus requiring a large increase of the incident power. Moreover, the external physical conditions can cause mechanical vibrations that eliminate or minimize them as much as possible, is a great challenge, considering the optical micrometrically very sensitive and needs involved in the system. This work describes the entire process of installation and operation of Thomson scattering diagnostic in tokamak TCABR and through this diagnosis, we work on results of electron temperature, to finally be able to calculate the electron density of the plasma. (author)

  6. Use of importance measures in risk-informed regulatory applications

    International Nuclear Information System (INIS)

    Cheok, Michael C.; Parry, Gareth W.; Sherry, Richard R.

    1998-01-01

    The use of importance measures to analyze PRA results is discussed. Commonly used importance measures are defined. Some issues that have been identified as potentially limiting their usefulness are addressed, namely: there is no simple relationship between importance measures evaluated at the single component level and those evaluated at the level of a group of components, and, as a result, some of the commonly used importance measures are not realistic measures of the sensitivity of the overall risk to parameter value changes; and, importance measures do not typically take into account parameter uncertainties which raises the question of the robustness of conclusions drawn from importance analyses. The issues are explored in the context of both ranking and categorization of structures, systems, and components (SSCs) with respect to risk-significance and safety-significance for use in risk-informed regulatory analyses

  7. Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Zaveryaev, V [Kurchatov Institute, Moscow (Russian Federation); others, and

    2012-09-15

    The success in achieving peaceful fusion power depends on the ability to control a high temperature plasma, which is an object with unique properties, possibly the most complicated object created by humans. Over years of fusion research a new branch of science has been created, namely plasma diagnostics, which involves knowledge of almost all fields of physics, from electromagnetism to nuclear physics, and up-to-date progress in engineering and technology (materials, electronics, mathematical methods of data treatment). Historically, work on controlled fusion started with pulsed systems and accordingly the methods of plasma parameter measurement were first developed for short lived and dense plasmas. Magnetically confined hot plasmas require the creation of special experimental techniques for diagnostics. The diagnostic set is the most scientifically intensive part of a plasma device. During many years of research operation some scientific tasks have been solved while new ones arose. New tasks often require significant changes in the diagnostic system, which is thus a very flexible part of plasma machines. Diagnostic systems are designed to solve several tasks. As an example here are the diagnostic tasks for the International Thermonuclear Experimental Reactor - ITER: (1) Measurements for machine protection and basic control; (2) Measurements for advanced control; (3) Additional measurements for performance evaluation and physics. Every new plasma machine is a further step along the path to the main goal - controlled fusion - and nobody knows in advance what new phenomena will be met on the way. So in the planning of diagnostic construction we should keep in mind further system upgrading to meet possible new scientific and technical challenges. (author)

  8. Beam profile diagnostics system for SDUV-FEL

    International Nuclear Information System (INIS)

    Xu Yichao; Han Lifeng; Chen Yongzhong

    2010-01-01

    A new beam profile diagnostics system for Shanghai Deep Ultraviolet Free Electron Laser (SDUV-FEL) has been developed based on industrial Ethernet, with good versatility and scalability. The system includes three major subsystems for image acquisition,pneumatic control and stepper motor control, respectively. Virtual instrument technology is adopted to drive the devices, and to develop the measurement software. In this paper,we describe the system structure, and its hardware and software design. The results of system commissioning are given as well. As an important diagnostic tool and data acquisition method, the system has been successfully applied to the measurement and control of the SDUV-FEL.(authors)

  9. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-01-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next

  10. Diagnostic x-ray spectra measurements using a silicon surface barrier detector

    International Nuclear Information System (INIS)

    Pani, R.; Laitano, R.F.

    1987-01-01

    A silicon surface barrier detector having a low efficiency for x-ray is used to analyse diagnostic x-ray spectra. This characteristic is advantageous in overcoming experimental problems caused by high fluence rates typical of diagnostic x-ray beams. The pulse height distribution obtained with silicon surface barrier detectors is very different from the true photon spectra because of the presence of escaped Compton photons and the fact that detection efficiency falls abruptly when photon energy increases. A detailed analysis of the spurious effects involved in detection is made by a Monte Carlo method. A stripping procedure is described for implementation on a personal computer. The validity of this method is tested by comparison with experimental results obtained with a Ge detector. The spectra obtained with the Si detector are in fairly good agreement with the analogous spectra measured with a Ge detector. The advantages of using Si as opposed to Ge detectors in x-ray spectrometry are: its simplicity of use, its greater economy for use in routine diagnostic x-ray spectroscopy and the possibility that the stripping procedure can be implemented on a personal computer. (author)

  11. NaI(Tl) scintillator detectors stripping procedure for air kerma measurements of diagnostic X-ray beams

    Science.gov (United States)

    Oliveira, L. S. R.; Conti, C. C.; Amorim, A. S.; Balthar, M. C. V.

    2013-03-01

    Air kerma is an essential quantity for the calibration of national standards used in diagnostic radiology and the measurement of operating parameters used in radiation protection. Its measurement within the appropriate limits of accuracy, uncertainty and reproducibility is important for the characterization and control of the radiation field for the dosimetry of the patients submitted to diagnostic radiology and, also, for the assessment of the system which produces radiological images. Only the incident beam must be considered for the calculation of the air kerma. Therefore, for energy spectrum, counts apart the total energy deposition in the detector must be subtracted. It is necessary to establish a procedure to sort out the different contributions to the original spectrum and remove the counts representing scattered photons in the detector's materials, partial energy deposition due to the interactions in the detector active volume and, also, the escape peaks contributions. The main goal of this work is to present spectrum stripping procedure, using the MCNP Monte Carlo computer code, for NaI(Tl) scintillation detectors to calculate the air kerma due to an X-ray beam usually used in medical radiology. The comparison between the spectrum before stripping procedure against the reference value showed a discrepancy of more than 63%, while the comparison with the same spectrum after the stripping procedure showed a discrepancy of less than 0.2%.

  12. NaI(Tl) scintillator detectors stripping procedure for air kerma measurements of diagnostic X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, L.S.R. [Centro Tecnológico do Exército, CTEx (Brazilian Army Technological Center), Av. das Américas n° 28705, 23085-470 Rio de Janeiro (Brazil); Instituto de Radioprotecão e Dosimetria, CNEN/IRD (Institute for Radioprotection and Dosimetry, CNEN/IRD), Av. Salvador Allende s/no, P.O. Box 37750, 22783-127 Barra da Tijuca, Rio de Janeiro (Brazil); Conti, C.C., E-mail: ccconti@ird.gov.br [Instituto de Radioprotecão e Dosimetria, CNEN/IRD (Institute for Radioprotection and Dosimetry, CNEN/IRD), Av. Salvador Allende s/no, P.O. Box 37750, 22783-127 Barra da Tijuca, Rio de Janeiro (Brazil); Amorim, A.S.; Balthar, M.C.V. [Centro Tecnológico do Exército, CTEx (Brazilian Army Technological Center), Av. das Américas n° 28705, 23085-470 Rio de Janeiro (Brazil)

    2013-03-21

    Air kerma is an essential quantity for the calibration of national standards used in diagnostic radiology and the measurement of operating parameters used in radiation protection. Its measurement within the appropriate limits of accuracy, uncertainty and reproducibility is important for the characterization and control of the radiation field for the dosimetry of the patients submitted to diagnostic radiology and, also, for the assessment of the system which produces radiological images. Only the incident beam must be considered for the calculation of the air kerma. Therefore, for energy spectrum, counts apart the total energy deposition in the detector must be subtracted. It is necessary to establish a procedure to sort out the different contributions to the original spectrum and remove the counts representing scattered photons in the detector’s materials, partial energy deposition due to the interactions in the detector active volume and, also, the escape peaks contributions. The main goal of this work is to present spectrum stripping procedure, using the MCNP Monte Carlo computer code, for NaI(Tl) scintillation detectors to calculate the air kerma due to an X-ray beam usually used in medical radiology. The comparison between the spectrum before stripping procedure against the reference value showed a discrepancy of more than 63%, while the comparison with the same spectrum after the stripping procedure showed a discrepancy of less than 0.2%.

  13. Event group importance measures for top event frequency analyses

    International Nuclear Information System (INIS)

    1995-01-01

    Three traditional importance measures, risk reduction, partial derivative, nd variance reduction, have been extended to permit analyses of the relative importance of groups of underlying failure rates to the frequencies of resulting top events. The partial derivative importance measure was extended by assessing the contribution of a group of events to the gradient of the top event frequency. Given the moments of the distributions that characterize the uncertainties in the underlying failure rates, the expectation values of the top event frequency, its variance, and all of the new group importance measures can be quantified exactly for two familiar cases: (1) when all underlying failure rates are presumed independent, and (2) when pairs of failure rates based on common data are treated as being equal (totally correlated). In these cases, the new importance measures, which can also be applied to assess the importance of individual events, obviate the need for Monte Carlo sampling. The event group importance measures are illustrated using a small example problem and demonstrated by applications made as part of a major reactor facility risk assessment. These illustrations and applications indicate both the utility and the versatility of the event group importance measures

  14. Event group importance measures for top event frequency analyses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-31

    Three traditional importance measures, risk reduction, partial derivative, nd variance reduction, have been extended to permit analyses of the relative importance of groups of underlying failure rates to the frequencies of resulting top events. The partial derivative importance measure was extended by assessing the contribution of a group of events to the gradient of the top event frequency. Given the moments of the distributions that characterize the uncertainties in the underlying failure rates, the expectation values of the top event frequency, its variance, and all of the new group importance measures can be quantified exactly for two familiar cases: (1) when all underlying failure rates are presumed independent, and (2) when pairs of failure rates based on common data are treated as being equal (totally correlated). In these cases, the new importance measures, which can also be applied to assess the importance of individual events, obviate the need for Monte Carlo sampling. The event group importance measures are illustrated using a small example problem and demonstrated by applications made as part of a major reactor facility risk assessment. These illustrations and applications indicate both the utility and the versatility of the event group importance measures.

  15. MAST magnetic diagnostics

    Science.gov (United States)

    Edlington, T.; Martin, R.; Pinfold, T.

    2001-01-01

    The mega-ampere spherical tokamak (MAST) experiment is a new, large, low aspect ratio device (R=0.7-0.8 m, a=0.5-0.65 m, maximum BT˜0.63 T at R=0.7 m) operating its first experimental physics campaign. Designed to study a wide variety of plasma shapes with up to 2 MA of plasma current with an aspect ratio down to 1.3, the poloidal field (PF) coils used for plasma formation, equilibrium and shaping are inside the main vacuum vessel. For plasma control and to investigate a wide range of plasma phenomena, an extensive set of magnetic diagnostics have been installed inside the vacuum vessel. More than 600 vacuum compatible, bakeable diagnostic coils are configured in a number of discrete arrays close to the plasma edge with about half the coils installed behind the graphite armour tiles covering the center column. The coil arrays measure the toroidal and poloidal variation in the equilibrium field and its high frequency fluctuating components. Internal coils also measure currents in the PF coils, plasma current, stored energy and induced currents in the mechanical support structures of the coils and graphite armour tiles. The latter measurements are particularly important when halo currents are induced following a plasma termination, for example, when the plasma becomes vertically unstable. The article describes the MAST magnetic diagnostic coil set and their calibration. The way in which coil signals are used to control the plasma equilibrium is described and data from the first MAST experimental campaign presented. These coil data are used as input to the code EFIT [L. Lao et al., Nucl. Fusion 25, 1611 (1985)], for measurement of halo currents in the vacuum vessel structure and for measurements of the structure of magnetic field fluctuations near the plasma edge.

  16. Chapter 7: Diagnostics [Progress in the ITER Physics Basis (PIPB)

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Costley, A.E.; Barnsley, R.

    2007-01-01

    In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements-time and spatial resolutions, etc-will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R and D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. The starting point in the development of diagnostics for ITER is to define the measurement requirements and develop their justification. It is necessary to include all the plasma parameters needed to support the basic and advanced operation (including active control) of the device, machine protection and also those needed to support the physics programme. Once the requirements are defined, the appropriate (combination of) diagnostic techniques can be selected and their implementation onto the tokamak can be developed. The selected list of diagnostics is an important guideline for identifying dedicated research and development needs in the area of ITER diagnostics. This paper gives a comprehensive overview of recent progress in the field of ITER diagnostics with emphasis on the implementation issues. After a discussion of the measurement requirements for plasma parameters in ITER and their justifications, recent progress in the field of

  17. A complex network-based importance measure for mechatronics systems

    Science.gov (United States)

    Wang, Yanhui; Bi, Lifeng; Lin, Shuai; Li, Man; Shi, Hao

    2017-01-01

    In view of the negative impact of functional dependency, this paper attempts to provide an alternative importance measure called Improved-PageRank (IPR) for measuring the importance of components in mechatronics systems. IPR is a meaningful extension of the centrality measures in complex network, which considers usage reliability of components and functional dependency between components to increase importance measures usefulness. Our work makes two important contributions. First, this paper integrates the literature of mechatronic architecture and complex networks theory to define component network. Second, based on the notion of component network, a meaningful IPR is brought into the identifying of important components. In addition, the IPR component importance measures, and an algorithm to perform stochastic ordering of components due to the time-varying nature of usage reliability of components and functional dependency between components, are illustrated with a component network of bogie system that consists of 27 components.

  18. The diagnostic importance of the new marker KIM-1 in kidney damage

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2013-07-01

    Full Text Available In recent years, the rapid development of scientific research led to the introduction of strategies based on new markers that allow for estimation of the latent disease period before the clinical symptoms of actual kidney failure are revealed.The experimental tests carried out on animals and cell lines derived from the proximal tubule have made possible the detection of genes that are induced early after hypoxia [1].The protein products of these genes can be considered as useful markers for the diagnosis of renal failure. The induction of gene KIM-1 (called Kidney Injury Molecule-1 results in the formation of protein that can be considered as a diagnostic marker.This work describes the data on the structure, biological function and importance of determining the concentrations of KIM-1 in the diagnosis of drug-induced toxicity and kidney damage.

  19. [The diagnostic importance of the new marker KIM-1 in kidney damage].

    Science.gov (United States)

    Marchewka, Zofia; Płonka, Joanna

    2013-07-24

    In recent years, the rapid development of scientific research led to the introduction of strategies based on new markers that allow for estimation of the latent disease period before the clinical symptoms of actual kidney failure are revealed. The experimental tests carried out on animals and cell lines derived from the proximal tubule have made possible the detection of genes that are induced early after hypoxia. The protein products of these genes can be considered as useful markers for the diagnosis of renal failure. The induction of gene KIM-1 (called Kidney Injury Molecule-1) results in the formation of protein that can be considered as a diagnostic marker. This work describes the data on the structure, biological function and importance of determining the concentrations of KIM-1 in the diagnosis of drug-induced toxicity and kidney damage.

  20. Diagnostic system for measurement of particle balance in TMX-U

    International Nuclear Information System (INIS)

    Allen, S.L.; Correll, D.L.; Hill, D.N.; Wood, R.D.; Brown, M.D.

    1986-01-01

    Several diagnostics measure the particle sources and losses in the Tandem Mirror Experiment-Upgrade (TMX-U) plasma. An absolutely calibrated high-speed (0.5 ms per frame) filtered (6561 A) video camera measures the total ionization source as a function of radius. An axial view of the plasma automatically integrates the axial variations within the depth of field of the system. Another camera, viewing the plasma radially, measures the axial source variations near the deuterium fueling source. Axial ion losses are measured by an array of Faraday cups that are equipped with grids for repelling electrons and are mounted at each end of the experiment. Unequal ion and electron (nonambipolar) radial losses are inferred from net current measurements on an array of grounded plates at each end. Any differences between the measured particle losses and sources may be attributed to ambipolar radial losses and/or azimuthal asymmetries in the particle-loss profiles. Methods of system calibration, along with details of computer data acquisition and processing of this relatively large set of data, are also presented. 6 refs., 1 fig

  1. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  2. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  3. Importance measures for use in PRAs and risk management

    International Nuclear Information System (INIS)

    Schmidt, E.R.; Jamali, K.M.; Parry, G.W.; Gibbon, S.H.

    1985-01-01

    There are many quantities estimated in probabilistic risk assessments (PRAs) to index the level of plant safety. If the PRA is to be used as a risk management tool to assist in the safe operation of the plant, it is essential that those elements of the plant design and its mode of operation that have the greatest impact on plant safety be identified. These elements may be identified by performing importance calculations. There are certain decisions that must be made before the importance calculation is carried out. The first is the definition of the events for which importance is to be evaluated; that is, to what level of resolution the analysis is to be performed. The second decision that must be made--and the major subject of this paper--is the choice of importance measure. Many measures of importance have been proposed; this discussion is restricted to three: the risk achievement (or degradation) worth, the risk reduction worth, and criticality importance. In the paper these measures of importance are defined, their interrelationships are discussed, and a generalized importance measure is introduced. The use of these three measures is compared and their advantages and disadvantages are discussed

  4. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited)

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N. A. [University of California-San Diego, La Jolla, California 92093 (United States); Burrell, K. H.; Groebner, R. J.; Kaplan, D. H. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holcomb, C. T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2010-10-15

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D{sub {alpha}} emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B{sub {theta}}/B{sub T} and |B| over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0x10{sup 19} m{sup -3}, and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  5. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited).

    Science.gov (United States)

    Pablant, N A; Burrell, K H; Groebner, R J; Holcomb, C T; Kaplan, D H

    2010-10-01

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D(α) emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B(θ)/B(T) and ∣B∣ over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0×10(19) m(-3), and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  6. A new importance measure for risk-informed decision making

    International Nuclear Information System (INIS)

    Borgonovo, E.; Apostolakis, G.E.

    2000-01-01

    Recently, several authors pointed out that the traditional importance measures had limitations. In this study, the problem through an analysis at the parameter level was investigated and a new measure was introduced. The measure was based on small parameter variations and is capable of accounting for the importance of a group of components/parameters. The definition, computational steps, and an application of a new importance measure for risk-informed decision making were presented here. Unlike traditional importance measures, differential importance measure (DIM) deals with changes in the various parameters that determine the unavailability/unreliability of a component, e.g., failure rates, common-cause failure rates, individual human errors. The importance of the component unavailability/unreliability can be calculated from the importance of the parameters. DIM can be calculated for the frequency of initiating events, while risk achievement worth (RAW) is limited to binary events, e.g., component unavailability. The changes in parameters are 'small'. This is more realistic than the drastic assumption in RAW that the component is always down. DIM is additive. This allows the evaluation of the impact of changes, such as the relaxation of quality assurance requirements, which affect groups of parameters, e.g., the failure rates of a group of pumps. (M.N.)

  7. The need for national diagnostic reference levels: entrance surface dose measurement in intraoral radiography

    International Nuclear Information System (INIS)

    Mortazavi, S. M. J.; Shareghi, A.; Kavousi, A.; Ghiassi-Nejad, M.; Jafari-Zadeh, M.; Nazeri, F.; Mozdarani, H.

    2004-01-01

    Background: Intraoral radiographies are the most frequent X-ray examinations in humans. According to International Commission on Radiation Protection recommendations, the selection of a diagnostic reference level should be specific to a country or region. Critical organs such as thyroid gland are exposed to X-rays in intraoral radiography and these exposures should be kept as low as reasonably achievable. To assist the development of DRLs for intraoral radiography, a National Radiation Protection Department-sponsored pilot study was carried out. Materials and methods: thermoluminescent dosimetry is widely acknowledged to be the recommended method for measuring entrance surface doses. In this study, entrance surface doses was measured using LiF thermoluminescent dosimeters on the skin (either mandibular or maxillary arcs) of 40 patients. Three thermoluminescent dosimetry chips were placed on the skin of each patient. The doses were averaged for each radiography and mean entrance surface doses of all patients calculated. Results: the mean ±SD entrance surface dose at the center of the beam on the patient's skin in intraoral radiography was 1.173 ±0.606 mGy (ranged from 0.01 o 0.40 m Gy). The mean entrance surface doses for male and female patients were 1.380± 0.823, and 1.004± 0.258 respectively. No statistically significant difference was found between these means. Despite its necessity , in national level , there is no published data on the diagnostic reference levels for intraoral radiography. However, the results obtained in this study are lower than those reported by investigators in other countries. Conclusion: in IR Iran , due to lack of large scale studies, no diagnostic reference levels have been set for X-ray diagnostic procedures. Due to lack of national diagnostic reference levels, it is not possible to clarify whether in intraoral radiographies any dose reduction techniques are needed. We intend to perform similar nationwide studies to set the

  8. Photon acceleration versus frequency-domain interferometry for laser wakefield diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J M; Oliveira e Silva, L; Mendonca, J T [GoLP/Centro de Fisica de Plasmas, Inst. Superior Tecnico, Lisbon (Portugal)

    1998-03-01

    A detailed comparison between the photon acceleration diagnostic technique and the frequency-domain interferometric technique for laser wakefield diagnostics, by using ray-tracing equations is presented here. The dispersion effects on the probe beam and the implications of an arbitrary phase velocity of the plasma wave are discussed for both diagnostic techniques. In the presence of large amplitude plasma wave and long interaction distances significant frequency shifts can be observed. The importance of this effect on the determination of the phase and frequency shifts measurements given by each of the two diagnostic techniques, is also analyzed. The accuracy of both diagnostic techniques is discussed and some of their technical problems are reviewed. (author)

  9. Diagnostic of the temperature and differential emission measure (DEM based on Hinode/XRT data

    Directory of Open Access Journals (Sweden)

    P. Rudawy

    2008-10-01

    Full Text Available We discuss here various methodologies and an optimal strategy of the temperature and emission measure diagnostics based on Hinode X-Ray Telescope data. As an example of our results we present the determination of the temperature distribution of the X-rays emitting plasma using a filters ratio method and three various methods of the calculation of the differential emission measure (DEM. We have found that all these methods give results similar to the two filters ratio method. Additionally, all methods of the DEM calculation gave similar solutions. We can state that the majority of the pairs of the Hinode filters allows one to derive the temperature and emission measure in the isothermal plasma approximation using standard diagnostics based on the two filters ratio method. In cases of strong flares one can also expect good conformity of the results obtained using a Withbroe – Sylwester, genetic algorithm and least-squares methods of the DEM evaluation.

  10. Image quality - physical and diagnostic parameters. The radiologist's viewpoint

    International Nuclear Information System (INIS)

    Stender, H.St.

    1985-01-01

    The quality of a radiograph is determined by the diagnostic information it provides. This depends upon the visual detection of diagnostically relevant structures. The technical radiographic requirements are dependent upon the physical measurements and the physiological and optical conditions. Such physical factors as spatial resolution, contrast and noise are quantitative measurements, which must be oriented to the qualitative visual characteristics of the radiograph. The influence of subjective perception and complexity of structural noise on the detectability of details and structures particularly demands attention. Since radiographic quality depends upon the detection of diagnostically relevant structure and features, it is important to define these parameters on the basis of extensive radiographic analysis and the corresponding clinical findings. The diagnostically relevant radiographic parameters and image details and critical structures have been worked out for the examination of the lungs, colon, stomach, urinary tract and skeleton. Good image quality requires coordination of the physical-technical parameters with the visual ability of the observer, since only in this way can the diagnostic information be represented with sufficient clarity. (author)

  11. Review of the ITER diagnostics suite for erosion, deposition, dust and tritium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, R., E-mail: roger.reichle@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Andrew, P. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Bates, P. [F4E, Torres Diagonal Litoral B3, Barcelona (Spain); Bede, O.; Casal, N.; Choi, C.H.; Barnsley, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Damiani, C. [F4E, Torres Diagonal Litoral B3, Barcelona (Spain); Bertalot, L. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Dubus, G. [F4E, Torres Diagonal Litoral B3, Barcelona (Spain); Ferreol, J.; Jagannathan, G.; Kocan, M.; Leipold, F.; Lisgo, S.W.; Martin, V.; Palmer, J.; Pearce, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Philipps, V. [Institut für Energieforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Association EURATOM – Forschungszentrum Jülich, D-52425 Jülich (Germany); Pitts, R.A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); and others

    2015-08-15

    Dust and tritium inventories in the vacuum vessel have upper limits in ITER that are set by nuclear safety requirements. Erosion, migration and re-deposition of wall material together with fuel co-deposition will be largely responsible for these inventories. The diagnostic suite required to monitor these processes, along with the set of the corresponding measurement requirements is currently under review given the recent decision by the ITER Organization to eliminate the first carbon/tungsten (C/W) divertor and begin operations with a full-W variant Pitts et al. [1]. This paper presents the result of this review as well as the status of the chosen diagnostics.

  12. Plasma diagnostic reflectometry

    International Nuclear Information System (INIS)

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B.; Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S.

    1996-01-01

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements

  13. Measurement of proton-beam parameters by means of digital television diagnostic system

    International Nuclear Information System (INIS)

    Vazhenin, V.A.; Borovkov, S.D.; Evtikhiev, A.V.

    1992-01-01

    A method is described for measurement of the parameters of pulse-packet beams by means of a digital television diagnostic system. Results of tests of the system in measurement of the parameters of a proton beam with an energy of 1.35 GeV in the U-70 circular accelerator and results of measurements of the energy spectrum of the 30-MeV proton beam of the LU-30 linear accelerator are given. The possibility is shown of using the system to measure the integrated characteristics of an entire beam-pulse packet as well as the characteristics of individual pulses with a period of 60 msec. 6 refs., 4 figs., 1 tab

  14. The size of the thymus: an important immunological diagnostic tool?

    DEFF Research Database (Denmark)

    Jeppesen, Dorthe Lisbeth

    2003-01-01

    The report on the influence of seasonal factors on thymic size in early life describes a pattern of ultrasonographically measured thymic growth in Gambian infants including the finding of a smaller thymus in the hungry season. These factors raise a number of important questions: Is the size...

  15. AC power flow importance measures considering multi-element failures

    International Nuclear Information System (INIS)

    Li, Jian; Dueñas-Osorio, Leonardo; Chen, Changkun; Shi, Congling

    2017-01-01

    Quantifying the criticality of individual components of power systems is essential for overall reliability and management. This paper proposes an AC-based power flow element importance measure, while considering multi-element failures. The measure relies on a proposed AC-based cascading failure model, which captures branch overflow, bus load shedding, and branch failures, via AC power flow and optimal power flow analyses. Taking the IEEE 30, 57 and 118-bus power systems as case studies, we find that N-3 analyses are sufficient to measure the importance of a bus or branch. It is observed that for a substation bus, its importance is statistically proportional to its power demand, but this trend is not observed for power plant buses. While comparing with other reliability, functionality, and topology-based importance measures popular today, we find that a DC power flow model, although better correlated with the benchmark AC model as a whole, still fails to locate some critical elements. This is due to the focus of DC-based models on real power that ignores reactive power. The proposed importance measure is aimed to inform decision makers about key components in complex systems, while improving cascading failure prevention, system backup setting, and overall resilience. - Highlights: • We propose a novel importance measure based on joint failures and AC power flow. • A cascading failure model considers both AC power flow and optimal power flow. • We find that N-3 analyses are sufficient to measure the importance of an element. • Power demand impacts the importance of substations but less so that of generators. • DC models fail to identify some key elements, despite correlating with AC models.

  16. Overview of ion source characterization diagnostics in INTF

    Science.gov (United States)

    Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  17. Importance of nuclear medicine diagnostics in CUP syndrome

    International Nuclear Information System (INIS)

    Winter, M.C.; Haberkorn, U.; Kratochwil, C.

    2014-01-01

    The diagnostic work-up in patients with carcinoma of unknown primary (CUP) syndrome is extensive, highly time-consuming and cost-intensive and ultimately often fails to detect a primary site. In this context chest X-ray and computed tomography (CT) have been used as standard imaging modalities in CUP syndrome. Since the introduction of positron emission tomography (PET) evaluation of tumor vitality has become possible. Furthermore, PET-CT hybrid scanners allow the combination of functional and morphological imaging. Several meta-analyses have reported an additional overall detection rate between 24.5 % and 44 % by either PET or PET-CT. Metastatic localization (cervical versus extracervical) did not influence the performance. The sensitivity was usually high (> 80 %) but specificity was moderate ranging from 68 % to 88 % at best. If mentioned, the results obtained by fluorodeoxyglucose (FDG)-PET significantly changed the clinical management in approximately one third of the patients studied. In a direct comparison with PET alone, PET-CT did not depict significantly more primary tumors but was able to reduce false positive findings. To determine the real additional value of PET-CT in the diagnosis of CUP syndrome large prospective studies with more uniform inclusion criteria are needed. Despite the capabilities of FDG-PET-CT there is as yet no evidence that a potentially improved diagnostic algorithm is translated into a better patient outcome. Nevertheless, FDG-PET-CT should be performed in all CUP patients where conventional imaging failed to detect a primary site or the results are equivocal. In CUP patients with cervical lymph node metastases PET-CT should be carried out prior to panendoscopy to reduce the number of false negative biopsies. (orig.) [de

  18. Response studies of three different dosimeters for skin entrance dose measurements using diagnostic X-ray machines

    International Nuclear Information System (INIS)

    Sonawane, A.U.; Kulkarni, Arti; Shirva, V.K.; Butani, M.L.; Pradhan, A.S.

    2008-01-01

    A TLD method based on CaSO 4 :Dy Teflon discs developed at the Bhabha Atomic Research Centre, Mumbai has been extensively used for various applications in diagnostic radiology in India. This method was recently used for evaluation of radiation quality and measurement of skin entrance doses (SEDs) in various hospitals for different diagnostic examinations. The use of TLD discs for these applications involves the process of preparation of TLD discs with different combination of filters and then measurement of TL output under different combinations of filters. The measurement of SEDs in diagnostic radiology is also carried out instantaneously and accurately by using very user friendly and compact state-of-art instruments. These consist of kVp Test-O-Meter (ToM) (Model RADIFLU-9001) and the dose ToM (Model 6001) manufactured by M/s UNFORS, Sweden. The kVp meter automatically calculates kVp and updates it every second in the range from 55 to 145 kVp with the resolution of 0.1 kV. The dose ToM incorporates sealed silicon detector having lead shield under and around, which prevents backscattered radiation from influencing the measurement. The dose Test-O-Meter has excellent energy independence in the range from 50 to 150 kVp and inaccuracy not exceeding 5 % at 70 k Vp. The dose meter is capable of measuring doses up to 9999 μGy

  19. Results of evaluation of quality control measurement instrument of x-ray diagnostic equipment by non-invasive method

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Elbern, Alvin W.

    1996-01-01

    This work shows the results of the tests realized on Santa Rita Hospital (Porto Alegre), using a non invasive quality control measurement instrument, developed in this University for fast measurement of essential parameters of X-rays diagnostic equipment. In the tests we used a diagnostics Siemens X ray, model Heliofos 4E as our standard equipment. The linearity test of sensor probe and the exposure rate calibration was performed, with a Palmer Dosimeter. For the kVp and exposure time we used a RTI commercial instrument. (author)

  20. Importance of radial profiles in spectroscopic diagnostics applied to the EXTRAP-T2R reversed-field pinch

    OpenAIRE

    Gravestijn, Bob

    2003-01-01

    The determination of the plasma confinement propertiesdemand data as the electron temperature, the ionic and electrondensity profiles and the radiative emissivity profiles. Thefocus of this thesis is the importance of radial profiles inspectroscopic diagnostics applied to the EXTRAP-T2Rreversed-field pinch. EXTRAP-T2R is a resistive shell reversed-field pinch with amagnetic field shell penetration time much longer than therelaxation cycle time scale. Significant improvements inconfinement pro...

  1. Beyond Diagnostic Accuracy: The Clinical Utility of Diagnostic Tests

    NARCIS (Netherlands)

    Bossuyt, Patrick M. M.; Reitsma, Johannes B.; Linnet, Kristian; Moons, Karel G. M.

    2012-01-01

    Like any other medical technology or intervention, diagnostic tests should be thoroughly evaluated before their introduction into daily practice. Increasingly, decision makers, physicians, and other users of diagnostic tests request more than simple measures of a test's analytical or technical

  2. Mean importance measures for groups of events in fault trees

    International Nuclear Information System (INIS)

    Haskin, F.E.; Huang, Min

    1994-01-01

    The method of moments is applied to precisely determine the mean values of three importance measures: risk reduction, partial derivative, and variance reduction. Variance reduction calculations, in particular, are significantly improved by eliminating the imprecision associated with Monte Carlo estimates. The three importance measures are extended to permit analyses of the relative importance of groups of basic and initiating events. The partial derivative importance measure is extended by assessing the contribution of a group of events to the gradient of the top event frequency. The group importance measures are quantified for the overall fuel damage equation and for 14 dominant accident sequences from an independent probabilistic safety assessment of the K Production Reactor. This application demonstrates both the utility and the versatility of the group importance measures

  3. Mean importance measures for groups of events in fault trees

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E.; Huang, Min [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Sasser, M.K.; Stack, D.W. [Los Alamos National Lab., NM (United States)

    1993-10-12

    The method of moments is applied to precisely determine the mean values of three importance measures: risk reduction, partial derivative, and variance reduction. Variance reduction calculations, in particular, are significantly improved by eliminating the imprecision associated with Monte Carlo estimates. The three importance measures are extended to permit analyses of the relative importance of groups of basic and initiating events. The partial derivative importance measure is extended by assessing the contribution of a group of events to the gradient of the top event frequency. The group importance measures are quantified for the overall fuel damage equation and for 14 dominant accident sequences from an independent probabilistic safety assessment of the K Production Reactor. This application demonstrates both the utility and the versatility of the group importance measures.

  4. Mean importance measures for groups of events in fault trees

    International Nuclear Information System (INIS)

    Haskin, F.E.; Huang, Min

    1993-01-01

    The method of moments is applied to precisely determine the mean values of three importance measures: risk reduction, partial derivative, and variance reduction. Variance reduction calculations, in particular, are significantly improved by eliminating the imprecision associated with Monte Carlo estimates. The three importance measures are extended to permit analyses of the relative importance of groups of basic and initiating events. The partial derivative importance measure is extended by assessing the contribution of a group of events to the gradient of the top event frequency. The group importance measures are quantified for the overall fuel damage equation and for 14 dominant accident sequences from an independent probabilistic safety assessment of the K Production Reactor. This application demonstrates both the utility and the versatility of the group importance measures

  5. Plasma diagnostics on large tokamaks

    International Nuclear Information System (INIS)

    Orlinskij, D.V.; Magyar, G.

    1988-01-01

    The main tasks of the large tokamaks which are under construction (T-15 and Tore Supra) and of those which have already been built (TFTR, JET, JT-60 and DIII-D) together with their design features which are relevant to plasma diagnostics are briefly discussed. The structural features and principal characteristics of the diagnostic systems being developed or already being used on these devices are also examined. The different diagnostic methods are described according to the physical quantities to be measured: electric and magnetic diagnostics, measurements of electron density, electron temperature, the ion components of the plasma, radiation loss measurements, spectroscopy of impurities, edge diagnostics and study of plasma stability. The main parameters of the various diagnostic systems used on the six large tokamaks are summarized in tables. (author). 351 refs, 44 figs, 22 tabs

  6. Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiao-Shi; Liu Shen-Ye; Xu Tao; Kang Dong-Guo

    2013-01-01

    A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of ∼ 30 ps at the Shen Guang-III (SG-III) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion

  7. Measuring the cortical silent period can increase diagnostic confidence for amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Schelhaas, H.J.; Arts, I.M.P.; Overeem, S.; Houtman, C.J.; Janssen, H.; Kleine, B.U.; Munneke, M.; Zwarts, M.J.

    2007-01-01

    We evaluated a modified measurement of the cortical silent period (CSP) as a simple procedure to add further confidence in the diagnostic work-up for ALS. Thirty-seven consecutive patients with a suspicion of having ALS were included together with 25 healthy volunteers, and followed until a final

  8. The application of the PSA important measures in risk-informed administrations

    International Nuclear Information System (INIS)

    Chen Yan; Fu Zhiwei; Jing Jianping; Zhang Chunming; Liu Hongquan

    2012-01-01

    The importance measures analyses of PSA are main approaches during the risk-informed administrations. This paper reviews kinds of importance measures, mainly researches the meaning of the FV and RAW importance measures, and introduces the applications of importance measures in the in-service testing and categorization of SSCs, finally, discusses the limitations of the importance measures analyses. (authors)

  9. Optical diagnostics in the advanced test accelerator (ATA) environment

    International Nuclear Information System (INIS)

    Chong, Y.P.; Cornish, J.P.; Donnelly, D.

    1987-05-01

    The ATA is a 50-MeV, 10-kA, 70-ns pulsed electron beam accelerator that generates an extremely harsh environment for diagnostic measurements. Diagnostic targets placed in the beamline are subject to damage, frequently being destroyed by a single pulse. High radiation (x-ray, gamma, and neutron) and electromagnetic interference levels preclude placing components near the beamline that are susceptible to radiation damage. Examples of such components are integrated circuit elements, hydrocarbons such as Teflon insulation, and optical components that darken, resulting in transmission loss. Optical diagnostics play an important part in measuring experimental parameters such as the beam current density profile. A large number of optical lines of sight (LOS) are routinely deployed along the experimental beamlines that use the ATA beam. Gated TV cameras are located outside the accelerator tunnel, because the tunnel is inaccessible during operations. We will describe and discuss the difficulties, problems, and solutions encountered in making optical measurements in the ATA environment

  10. Paradigm Shifts in Ophthalmic Diagnostics.

    Science.gov (United States)

    Sebag, J; Sadun, Alfredo A; Pierce, Eric A

    2016-08-01

    Future advances in ophthalmology will see a paradigm shift in diagnostics from a focus on dysfunction and disease to better measures of psychophysical function and health. Practical methods to define genotypes will be increasingly important and non-invasive nanotechnologies are needed to detect molecular changes that predate histopathology. This is not a review nor meant to be comprehensive. Specific topics have been selected to illustrate the principles of important paradigm shifts that will influence the future of ophthalmic diagnostics. It is our impression that future evaluation of vision will go beyond visual acuity to assess ocular health in terms of psychophysical function. The definition of disease will incorporate genotype into what has historically been a phenotype-centric discipline. Non-invasive nanotechnologies will enable a paradigm shift from disease detection on a cellular level to a sub-cellular molecular level. Vision can be evaluated beyond visual acuity by measuring contrast sensitivity, color vision, and macular function, as these provide better insights into the impact of aging and disease. Distortions can be quantified and the psychophysical basis of vision can be better evaluated than in the past by designing tests that assess particular macular cell function(s). Advances in our understanding of the genetic basis of eye diseases will enable better characterization of ocular health and disease. Non-invasive nanotechnologies can assess molecular changes in the lens, vitreous, and macula that predate visible pathology. Oxygen metabolism and circulatory physiology are measurable indices of ocular health that can detect variations of physiology and early disease. This overview of paradigm shifts in ophthalmology suggests that the future will see significant improvements in ophthalmic diagnostics. The selected topics illustrate the principles of these paradigm shifts and should serve as a guide to further research and development. Indeed

  11. Use of risk importance measures in maintenance prioritization

    International Nuclear Information System (INIS)

    Dubreil Chambardel, A.; Ardorino, F.; Mauger, P.

    1997-01-01

    A RCM method has been developed at EDF since 1990 to optimize maintenance through a prioritization of resources for equipment that are important in terms of safety, availability and maintenance costs. In 1994, the Nuclear Power Plant Operations Division decided to apply this method to the most important systems of the French PWRs. About 50 systems are in the scope of the RCM. Those that have a role in safety were ranked depending on their contribution to the risk of core melt provided by PSAs. The RCM studies on the 20 most important to safety systems are performed by the Nuclear Power Plant Operations division, the other 30 systems are studied on sites. The RCM study consists first in the research of equipment and failures modes significant to safety, availability or maintenance costs and the evaluation of the performance of those equipment. Those studies lead to the distinction of equipment and failure modes that are critical or non critical to safety, availability and costs. The last part of the study consists in optimizing maintenance on those equipment. In this process, risk measures are used to help defining equipment and failure modes critical to safety. This is done by calculation of risk importance measures provided by PSAs. We explain in this paper which measures of risk have been defined, how PSAs allow calculation of those measures, and how we used those results in the RCM studies we processed. We give also extensions of the use of those measures in the process of defining optimized maintenance tasks. After having defined a RCM method for the French PWRs, the Nuclear Power plant Operations Division decided to start a generalized program of maintenance optimization for the most important systems. The three criteria on which the method relies are: safety, unit availability and maintenance costs. We present here the safety aspect of the method and more precisely these of risk importance measures in the RCM process. (author)

  12. Comparing diagnostic tests on benefit-risk.

    Science.gov (United States)

    Pennello, Gene; Pantoja-Galicia, Norberto; Evans, Scott

    2016-01-01

    Comparing diagnostic tests on accuracy alone can be inconclusive. For example, a test may have better sensitivity than another test yet worse specificity. Comparing tests on benefit risk may be more conclusive because clinical consequences of diagnostic error are considered. For benefit-risk evaluation, we propose diagnostic yield, the expected distribution of subjects with true positive, false positive, true negative, and false negative test results in a hypothetical population. We construct a table of diagnostic yield that includes the number of false positive subjects experiencing adverse consequences from unnecessary work-up. We then develop a decision theory for evaluating tests. The theory provides additional interpretation to quantities in the diagnostic yield table. It also indicates that the expected utility of a test relative to a perfect test is a weighted accuracy measure, the average of sensitivity and specificity weighted for prevalence and relative importance of false positive and false negative testing errors, also interpretable as the cost-benefit ratio of treating non-diseased and diseased subjects. We propose plots of diagnostic yield, weighted accuracy, and relative net benefit of tests as functions of prevalence or cost-benefit ratio. Concepts are illustrated with hypothetical screening tests for colorectal cancer with test positive subjects being referred to colonoscopy.

  13. Review of selected state-of-the-art applications of diagnostic measurements for radon-mitigation planning. Report for April 1986-June 1987

    International Nuclear Information System (INIS)

    Hubbard, L.M.; Harrje, D.T.; Gadsby, K.J.; Sanchez, D.C.; Turk, B.H.

    1987-09-01

    Since late-1984, EPA's AEERL has supported a program to develop and demonstrate radon-mitigation techniques for single-family detached dwellings. As part of the program, projects have been started, directed at developing and demonstrating the use of diagnostic measurements in all phases of the radon-mitigation process. Diagnostic measurements are used to assess: (1) the radon sources strengths, variability, and locations; and, (2) radon transport to the house and its entry and distribution in the house as influenced by environmental, house characteristics, and occupancy factors. The diagnostic measurements reported include: (1) soil-gas grab sampling; (2) communication (air flow or pressure-field extension) tests; (3) whole house infiltration; (4) differential pressure, (5) gamma radiation; and, (6) radon flux. The paper concludes that the above selected diagnostic measurements were especially useful in characterizing houses with indoor radon problems attributable to soil-gas-borne radon that may be amenable to mitigation through the use of subslab ventilation

  14. The Association between Parameters of Malnutrition and Diagnostic Measures of Sarcopenia in Geriatric Outpatients

    NARCIS (Netherlands)

    Reijnierse, E.M.; Trappenburg, M.C.; Leter, M.J.; Blauw, G. J.; van Bokhorst-de van der Schueren, M.A.E.; Meskers, C.G.M.; Maier, A.B.

    2015-01-01

    Objectives: Diagnostic criteria for sarcopenia include measures of muscle mass, muscle strength and physical performance. Consensus on the definition of sarcopenia has not been reached yet. To improve insight into the most clinically valid definition of sarcopenia, this study aimed to compare the

  15. Development of an instrument to measure the clinical learning environment in diagnostic radiology

    International Nuclear Information System (INIS)

    Bloomfield, L.; Subramaniam, R.

    2008-01-01

    A clinical learning environment survey instrument was developed that provided insights into diagnostic radiology trainees' perceptions of the culture and context of the hospital-based training programme. The survey was completed by trainees allocated to 37 important training hospitals in Australia, New Zealand and Singapore in 2006. The main findings were that most obvious strengths of the diagnostic radiology programme are the wide variety of work-based learning opportunities and the social atmosphere. These were well regarded in all training sites. Work overload was seen as a significant problem in most hospitals and will probably remain a challenge. The areas that are most likely to repay efforts to bring about change are supervision and feedback. The study provides baseline data against which the influence of changes to the training programme may be evaluated.

  16. Scintillator-based diagnostic for fast ion loss measurements on DIII-D

    International Nuclear Information System (INIS)

    Fisher, R. K.; Van Zeeland, M. A.; Pace, D. C.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Garcia-Munoz, M.

    2010-01-01

    A new scintillator-based fast ion loss detector has been installed on DIII-D with the time response (>100 kHz) needed to study energetic ion losses induced by Alfven eigenmodes and other MHD instabilities. Based on the design used on ASDEX Upgrade, the diagnostic measures the pitch angle and gyroradius of ion losses based on the position of the ions striking the two-dimensional scintillator. For fast time response measurements, a beam splitter and fiberoptics couple a portion of the scintillator light to a photomultiplier. Reverse orbit following techniques trace the lost ions to their possible origin within the plasma. Initial DIII-D results showing prompt losses and energetic ion loss due to MHD instabilities are discussed.

  17. The Reliability and Validity of the Panic Disorder Self-Report: A New Diagnostic Screening Measure of Panic Disorder

    Science.gov (United States)

    Newman, Michelle G.; Holmes, Marilyn; Zuellig, Andrea R.; Kachin, Kevin E.; Behar, Evelyn

    2006-01-01

    This study examined the Panic Disorder Self-Report (PDSR), a new self-report diagnostic measure of panic disorder based on the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 1994). PDSR diagnoses were compared with structured interview diagnoses of individuals with generalized anxiety…

  18. Diagnostic system for EUV radiation measurements from dense xenon plasma generated by MPC

    International Nuclear Information System (INIS)

    Petrov, Yu.V.; Garkusha, I.E.; Solyakov, D.G.; Marchenko, A.K.; Chebotarev, V.V.; Ladygina, M.S.; Staltsov, V.V.; Yelisyeyev, D.V.; Hassanein, A.

    2011-01-01

    Magnetoplasma compressor (MPC) of compact geometry has been designed and tested as a source of EUV radiation. In present paper diagnostic system for registration of EUV radiation is described. It was applied for radiation measurements in different operation modes of MPC. The registration system was designed on the base of combination of different types of AXUV photodiodes. Possibility to minimize the influence of electrons and ions flows from dense plasma stream on AXUV detector performance and results of the measurements has been discussed.

  19. Diagnostics of Pupils' Meta-Subject Competence during Lessons on Mathematics in Secondary Schools

    Science.gov (United States)

    Khuziakhmetova, Anvar N.; Naumova, Marina V.

    2016-01-01

    The relevance of diagnostic meta-subject competence measures in secondary schools is caused by the fact that the importance of a meta-subject competence formation was officially defined in educational standards, but there are still no qualitative and informative diagnostic tools for this competence development. The purpose of the article is to…

  20. Streamlining air import operations by trade facilitation measures

    Directory of Open Access Journals (Sweden)

    Yuri da Cunha Ferreira

    2017-12-01

    Full Text Available Global operations are subject to considerable uncertainties. Due to the Trade Facilitation Agreement that became effective in February 2017, the study of measures to streamline customs controls is urgent. This study aims to assess the impact of trade facilitation measures on import flows. An experimental study was performed in the largest cargo airport in South America through discrete-event simulation and design of experiments. Operation impacts of three trade facilitation measures are assessed on import flow by air. We shed light in the following trade facilitation measures: the use of X-ray equipment for physical inspection; increase of the number of qualified companies in the trade facilitation program; performance targets for customs officials. All trade facilitation measures used indicated potential to provide more predictability, cost savings, time reduction, and increase in security in international supply chain.

  1. Equipment for measuring torque and diagnostic data on control rod drive of nuclear reactor

    International Nuclear Information System (INIS)

    Simka, K.; Sneberger, J.; Tater, V.

    1991-01-01

    The equipment comprises an electric drive, a measuring unit and a device securing the movable parts of the drive. It can be used to measure the torque and diagnostic data of the control facility drive with the desired accuracy without having to dismantle the facility during decoupling or coupling the control component to the drive, during programming the movable parts in the transporting position. (Z.S.). 1 fig

  2. Measurement of neutron importance by a dynamic method

    International Nuclear Information System (INIS)

    Dmitriev, V.M.; Matusevich, E.S.; Regushevskij, V.I.; Sazonov, S.P.; Usikov, D.A.

    1977-01-01

    A procedure is proposed for measuring neutron importance spatial distribution in a critical reactor by determining the parameters of its run-up with a constant neutron source. 252 Cf quasiisotropic point source was used. The measurements were performed at a critical assembly with a highly enriched uranium core and beryllium reflector. Importance distributions in critical and subsritical assemblies were compared for various degrees of subcriticality. Absolute normalization for the importance was obtained, and some new integral reactor characteristics were determined experimentally on its basis. An experimental data acquisition and processing system was developed on the basis of the ELECTRONIKA-100 computer. An algorithm was also developed for statistical treatment of the data. The importance distributions in critical and subcritical assemblies proved to coincide up to a rather deep subcriticality

  3. Diagnostic accuracy of maternal anthropometric measurements as predictors for dystocia in nulliparous women

    Science.gov (United States)

    Alijahan, Rahele; Kordi, Masoumeh; Poorjavad, Munira; Ebrahimzadeh, Saeed

    2014-01-01

    Background: Dystocia is one of the important causes of maternal morbidity and mortality in low-income countries. This study was aimed to determine the diagnostic accuracy of maternal anthropometric measurements as predictors for dystocia in nulliparous women. Materials and Methods: This prospective cohort study was conducted on 447 nulliparous women who referred to Omolbanin hospital. Several maternal anthropometric measurements such as height, transverse and vertical diameters of Michaelis sacral rhomboid area, foot length, head circumference, vertebral and lower limb length, symphysio-fundal height, and abdominal girth were taken in cervical dilatation ≤ 5 cm. Labor progression was controlled by a researcher blind to these measurements. After delivery, the accuracy of individual and combined measurements in prediction of dystocia was analyzed. Dystocia was defined as cesarean section and vacuum or forceps delivery for abnormal progress of labor (cervical dilatation less than 1 cm/h in the active phase for 2 h, and during the second stage, beyond 2 h or fetal head descend less than 1 cm/h). Results: Among the different anthropometric measurements, transverse diameter of the Michaelis sacral rhomboid area ≤9.6 cm, maternal height ≤ 155 cm, height to symphysio-fundal height ratio ≤4.7, lower limb length ≤78 cm, and head circumference to height ratio ≥ 35.05 with accuracy of 81.2%, 68.2%, 65.5%, 63.3%, and 61.5%, respectively, were better predictors. The best predictor was obtained by combination of maternal height ≤155 cm or the transverse diameter of the Michaelis sacral rhomboid area ≤9.6 cm and Johnson's formula estimated fetal weight ≥3255 g, with an accuracy of 90.5%, sensitivity of 70%, and specificity of 93.7%. Conclusions: Combination of other anthropometric measurements and estimated fetal weight with maternal height in comparison to maternal height alone leads to a better predictor for dystocia. PMID:24554954

  4. Measurement of the performance characteristics of diagnostic X-ray systems used in medicine

    International Nuclear Information System (INIS)

    1981-01-01

    A booklet has been produced by the Diagnostic Radiology Topic Group of the Hospital Physicists' Association, providing the basis for exhaustive performance tests on X-ray image intensifier television systems. After a general introduction to the equipment, the parameters which may need to be assessed are outlined in section 1. The measurement techniques and equipment necessary to undertake the measurements are presented in section 2. Specimen data sheets are also presented which the user may find useful to record the data acquired in the field. (U.K.)

  5. Multi-attribute integrated measurement of node importance in complex networks.

    Science.gov (United States)

    Wang, Shibo; Zhao, Jinlou

    2015-11-01

    The measure of node importance in complex networks is very important to the research of networks stability and robustness; it also can ensure the security of the whole network. Most researchers have used a single indicator to measure the networks node importance, so that the obtained measurement results only reflect certain aspects of the networks with a loss of information. Meanwhile, because of the difference of networks topology, the nodes' importance should be described by combining the character of the networks topology. Most of the existing evaluation algorithms cannot completely reflect the circumstances of complex networks, so this paper takes into account the degree of centrality, the relative closeness centrality, clustering coefficient, and topology potential and raises an integrated measuring method to measure the nodes' importance. This method can reflect nodes' internal and outside attributes and eliminate the influence of network structure on the node importance. The experiments of karate network and dolphin network show that networks topology structure integrated measure has smaller range of metrical result than a single indicator and more universal. Experiments show that attacking the North American power grid and the Internet network with the method has a faster convergence speed than other methods.

  6. Radiation exposure and image quality in x-Ray diagnostic radiology physical principles and clinical applications

    CERN Document Server

    Aichinger, Horst; Joite-Barfuß, Sigrid; Säbel, Manfred

    2012-01-01

    The largest contribution to radiation exposure to the population as a whole arises from diagnostic X-rays. Protecting the patient from radiation is a major aim of modern health policy, and an understanding of the relationship between radiation dose and image quality is of pivotal importance in optimising medical diagnostic radiology. In this volume the data provided for exploring these concerns are partly based on X-ray spectra, measured on diagnostic X-ray tube assemblies, and are supplemented by the results of measurements on phantoms and simulation calculations.

  7. SU-E-I-56: Diagnostic Lead Apron Radiation Exposure Comparison Between Manufacture-Stated and Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Patel, B; Syh, J; Song, X; Freund, D; Ding, X; Wu, H [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2015-06-15

    Purpose: Several vendors of diagnostic lead apron used routinely in radiology/fluoroscopy claim to manufacture 0.5 mm lead equivalent shielding. The purpose of this investigation was to address the concern of the weight of lead aprons versus the radiation protection they provide. Methods: Seven diagnostic lead aprons were measured and compared for their radiation transmission and attenuation characteristics. The measurements were performed on a Philips Integris. Two settings were used, normal (76 kVp, 14.3 mA) and high (110 kVp, 12.3 mA) to represent typical patient and large patient thickness. Plastic water was placed on the table to represent patient scatter. A Capintec PM-500 ion chamber was placed at approximate chest height where hospital personnel would stand. An uncovered, i.e. lead-unhindered, ion chamber reading was taken to establish the baseline reading of an unprotected personnel. The ion chamber was then wrapped with 0.5mm 99.9% pure Pb material to establish the measurement reading when a diagnostic lead apron attenuates as adequately as 0.5mm Pb. The lead aprons were measured one at a time with the ion chamber fully covered and enclosed within the aprons. Results: On Normal fluoroscopy setting, the 0.5mm pure Pb showed a transmission of 0.4%. No aprons showed a transmission value as low as 0.5mm Pb. The lowest transmission value measured from the aprons was 2.0%, having a 1.5% higher transmission than pure lead. On High fluoroscopy setting, the lowest apron transmission measurement was at 2.8%, which was comparable to the 0.5mm pure Pb which gave a transmission of 3.0%. Conclusion: At Normal fluoroscopy setting, the 0.5mm Pb provided an attenuation that could not be matched by any apron measured. At High fluoroscopy setting, only one apron exhibited comparable transmission values as 0.5mm pure Pb.

  8. SU-E-I-56: Diagnostic Lead Apron Radiation Exposure Comparison Between Manufacture-Stated and Measurements

    International Nuclear Information System (INIS)

    Syh, J; Patel, B; Syh, J; Song, X; Freund, D; Ding, X; Wu, H

    2015-01-01

    Purpose: Several vendors of diagnostic lead apron used routinely in radiology/fluoroscopy claim to manufacture 0.5 mm lead equivalent shielding. The purpose of this investigation was to address the concern of the weight of lead aprons versus the radiation protection they provide. Methods: Seven diagnostic lead aprons were measured and compared for their radiation transmission and attenuation characteristics. The measurements were performed on a Philips Integris. Two settings were used, normal (76 kVp, 14.3 mA) and high (110 kVp, 12.3 mA) to represent typical patient and large patient thickness. Plastic water was placed on the table to represent patient scatter. A Capintec PM-500 ion chamber was placed at approximate chest height where hospital personnel would stand. An uncovered, i.e. lead-unhindered, ion chamber reading was taken to establish the baseline reading of an unprotected personnel. The ion chamber was then wrapped with 0.5mm 99.9% pure Pb material to establish the measurement reading when a diagnostic lead apron attenuates as adequately as 0.5mm Pb. The lead aprons were measured one at a time with the ion chamber fully covered and enclosed within the aprons. Results: On Normal fluoroscopy setting, the 0.5mm pure Pb showed a transmission of 0.4%. No aprons showed a transmission value as low as 0.5mm Pb. The lowest transmission value measured from the aprons was 2.0%, having a 1.5% higher transmission than pure lead. On High fluoroscopy setting, the lowest apron transmission measurement was at 2.8%, which was comparable to the 0.5mm pure Pb which gave a transmission of 3.0%. Conclusion: At Normal fluoroscopy setting, the 0.5mm Pb provided an attenuation that could not be matched by any apron measured. At High fluoroscopy setting, only one apron exhibited comparable transmission values as 0.5mm pure Pb

  9. Far infrared fusion plasma diagnostics. Task 3A, Progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-12-31

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer`s importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA`s CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  10. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-10-01

    In order for ITER to meet its operational and programmatic goals, it will be necessary to measure a wide range of plasma parameters. Some of the required parameters e.g., neutron yield, fusion power and power density, ion temperature profile in the core plasma, and characteristics of confined and escaping alpha particle populations are best measured by fusion product diagnostic techniques. To make these measurements, ITER will have dedicated diagnostic systems, including radial and vertical neutron cameras, neutron and gamma ray spectrometers, internal and external fission chambers, a neutron activation system, and diagnostics for confined and escaping alpha particles. Engineering integration of many of these systems is in progress, and other systems are under investigation. This paper summarizes the present state of design of fusion product diagnostic systems for ITER and discusses expected measurement capability

  11. On the extension of Importance Measures to complex components

    International Nuclear Information System (INIS)

    Dutuit, Yves; Rauzy, Antoine

    2015-01-01

    Importance Measures are indicators of the risk significance of the components of a system. They are widely used in various applications of Probabilistic Safety Analyses, off-line and on-line, in decision making for preventive and corrective purposes, as well as to rank components according to their contribution to the global risk. They are primarily defined for the case the support model is a coherent fault tree and failures of components are described by basic events of this fault tree. In this article, we study their extension to complex components, i.e. components whose failures are modeled by a gate rather than just a basic event. Although quite natural, such an extension has not received much attention in the literature. We show that it raises a number of problems. The Birnbaum Importance Measure and the notion of Critical States concentrate these difficulties. We present alternative solutions for the extension of these notions. We discuss their respective advantages and drawbacks. This article gives a new point of view on the mathematical foundations of Importance Measures and helps us to clarify their physical meaning. - Highlights: • We propose an extension of Importance Measures to complex components. • We define our extension in term minterms, i.e. states of the system. • We discuss the physical interpretation of Importance Measures in light of this interpretation

  12. Diagnostic techniques for measuring temperature transients and stress transients in the first wall of an ICF reactor

    International Nuclear Information System (INIS)

    Melamed, N.T.; Taylor, L.H.

    1983-01-01

    The primary challenge in the design of an Inertial Confinement Fusion (ICF) power reactor is to make the first wall survive the frequent explosions of the pellets. Westinghouse has proposed a dry wall design consisting of steel tubes coated with tantalum. This report describes the design of a test chamber and two diagnostic procedures for experimentally determining the reliability of the Westinghouse design. The test chamber simulates the x-ray and ion pulse irradiation of the wall due to a pellet explosion. The diagnostics consist of remote temperature sensing and surface deformation measurements. The chamber and diagnostics can also be used to test other first-wall designs

  13. Algorithms for diagnostics of the measuring channels and technological equipment at NPP with WWER-1000

    International Nuclear Information System (INIS)

    Vysotskij, V.G.

    1997-01-01

    An algorithm for diagnostics of the state of measuring channels of an information computer system with usage of analysis of statistical channel characteristics is presented. An algorithm for testing the generalized state of the NPP technological equipment is proposed

  14. Plant diagnostics in power stations

    International Nuclear Information System (INIS)

    Sturm, A.; Doering, D.

    1985-01-01

    The method of noise diagnostics is dealt with as a part of plant diagnostics in nuclear power stations. The following special applications are presented: (1) The modular noise diagnostics system is used for monitoring primary coolant circuits and detecting abnormal processes due to mechanical vibrations, loose parts or leaks. (2) The diagnostics of machines and plants with antifriction bearings is based on bearing vibration measurements. (3) The measurement of the friction moment by means of acoustic emission analysis is used for evaluating the operational state of slide bearings

  15. 'Beam-emission spectroscopy' diagnostics also measure edge fast-ion light

    International Nuclear Information System (INIS)

    Heidbrink, W W; Bortolon, A; McKee, G R; Smith, D R

    2011-01-01

    Beam-emission spectroscopy (BES) diagnostics normally detect fluctuations in the light emitted by an injected neutral beam. Under some circumstances, however, light from fast ions that charge exchange in the high neutral-density region at the edge of the plasma make appreciable contributions to the BES signals. This 'passive' fast-ion D α (FIDA) light appears in BES signals from both the DIII-D tokamak and the National Spherical Torus Experiment (NSTX). One type of passive FIDA light is associated with classical orbits that traverse the edge. Another type is caused by instabilities that expel fast ions from the core; this light can complicate measurement of the instability eigenfunction.

  16. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  17. A new thermal He-beam diagnostic for electron density and temperature measurements in the scrape-off layer of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Griener, Michael; Wolfrum, Elisabeth; Eich, Thomas; Herrmann, Albrecht; Rohde, Volker [Max Planck Institute for Plasma Physics, Garching (Germany); Schmitz, Oliver [Engineering Physics Department, University of Wisconsin-Madison (United States); Stroth, Ulrich [Max Planck Institute for Plasma Physics, Garching (Germany); Physik Department E28, Technische Universitaet Muenchen, Garching (Germany); Collaboration: the ASDEX Upgrade Team

    2015-05-01

    In a nuclear fusion device power is exhausted across the last closed flux surface into the so-called 'scrape-off layer', SOL. In order to study the transport dynamics to (a) the divertor via parallel heat flux and (b) to the wall via filaments, a diagnostic for the determination of n{sub e} and T{sub e} with high spatial and temporal resolution is required. Although the diagnostic capabilities of the ASDEX Upgrade edge plasma are excellent, there is a lack of spatially and temporally highly resolved electron temperature measurements in the SOL. Therefore a piezo valve will be installed in ASDEX Upgrade in April 2015. It allows fast chopping of a thermal He-beam which is part of the new diagnostic. In the first campaign, existing lines of sight of the CXRS diagnostic will be used to measure various He I transitions to confirm the collisional radiative model for He. The principle of the thermal He-diagnostic as well as calculations of the achievable spatial resolution of the initial set-up are presented.

  18. Quality control of conventional diagnostic radiology equipment in Serbia and Montenegro

    International Nuclear Information System (INIS)

    Ciraj, O.; Kosutic, D.; Markovic, S.

    2003-01-01

    There are more than 1500 diagnostic X-ray tubes in service in Serbia and Montenegro. Diagnostic X-ray equipment is checked on annual basis. X-ray equipment Qc protocols have been adopted from several international standards and guidelines [1,2], which have been modified according our practice and measuring equipment. According our inventory, about one half of all installed units is used for conventional X-ray diagnostics, 10% are mobile units, 2% of all in units in operation are mammographic devices an another 2% are computed tomography units. In addition there are about 600 dental X-ray units, which is 36% of all units. It is worth mentioning that almost 30 % of all installed units have single-phase generators, another 25% are tree phase (six and twelve pulse) generators and nearly 9% are high frequency units. Majority of units was installed more than 25 years ago. The Quality Control (QC) in radiography is a central part of QA programme, which deals with equipment maintenance and monitoring. QA in diagnostic radiology is a mean of maintaining standards in imaging and working towards minimizing patient and staff doses. As a part of QA programme in diagnostic radiology, the performance characteristics of 96 conventional X-ray units were measured in six months period during 2003. The diagnostic units were located in hospitals all over the country. They represent 25% of the total conventional diagnostic units of the country. About one half of measured X-ray units were new-installed. QC program has positive effect on X-ray equipment performance in a period of a few years. It is essential to perform QC tests for all installed X-ray units at least on annual basis. This would lead to production of consistent X-ray images, with minimal retake rate and hence, will contribute to decreasing of the patient dose. Patient doses are determined by multitude factors which interact in very complicated manner. It is very important to perform real patient dose measurements in

  19. Measures of component importance in repairable multistate systems—a numerical study

    International Nuclear Information System (INIS)

    Natvig, Bent; Huseby, Arne B.; Reistadbakk, Mads O.

    2011-01-01

    Dynamic and stationary measures of importance of a component in a repairable multistate system are an important part of reliability. For multistate systems little has been published until now on such measures even in the nonrepairable case. According to the Barlow–Proschan type measures a component is important if there is a high probability that a change in the component state causes a change in whether or not the system state is above a given state. On the other hand, the Natvig type measures focus on how a change in the component state affects the expected system uptime and downtime relative to the given system state. In the present paper we first review these measures which can be estimated using advanced simulation methods. Extending earlier work from the binary to the multistate case, a numerical study of these measures is then given for two three component systems, a bridge system and also applied to an offshore oil and gas production system. In the multistate case the importance of a component is calculated separately for each component state. Thus it may happen that a component is very important at one state, and less important, or even irrelevant at another. Unified measures combining the importances for all component states can be obtained by adding up the importance measures for each individual state. According to these unified measures a component can be important relative to a given system state but not to another. It can be seen that if the distributions of the total component times spent in the non-complete failure states for the multistate system and the component lifetimes for the binary system are identical, the Barlow–Proschan measure to the lowest system state simply reduces to the binary version of the measure. The extended Natvig measure, however, does not have this property. This indicates that the latter measure captures more information about the system. - Highlights: ► The paper discusses measures of component importance in

  20. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  1. Calibration of a two-color soft x-ray diagnostic for electron temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.; McGarry, M. B. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Franz, P. [Consorzio RFX, Padova (Italy); Stephens, H. D. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Pierce College Fort Steilacoom, Lakewood, Washington 98498 (United States)

    2016-11-15

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.

  2. Molecular Diagnostics

    OpenAIRE

    Choe, Hyonmin; Deirmengian, Carl A.; Hickok, Noreen J.; Morrison, Tiffany N.; Tuan, Rocky S.

    2015-01-01

    Orthopaedic infections are complex conditions that require immediate diagnosis and accurate identification of the causative organisms to facilitate appropriate management. Conventional methodologies for diagnosis of these infections sometimes lack accuracy or sufficient rapidity. Current molecular diagnostics are an emerging area of bench-to-bedside research in orthopaedic infections. Examples of promising molecular diagnostics include measurement of a specific biomarker in the synovial fluid...

  3. Target Diagnostics Supports NIF's Path to Ignition

    International Nuclear Information System (INIS)

    Shelton, R.

    2011-01-01

    The physics requirements derived from the National Ignition Facility (NIF) experimental campaigns are leading to a wide variety of target diagnostics. Software development for the control and analysis of these diagnostics is included in the NIF Integrated Computer Control System, Diagnostic Control System and Data Visualization. These projects implement the configuration, controls, data analysis and visual representation of most of these diagnostics. To date, over 40 target diagnostics have been developed to support NIF experiments. In 2011 diagnostics were developed or enhanced to measure Ignition performance in a high neutron yield environment. Performance is optimized around four key variables: Adiabat (a) which is the strength and timing of four shocks delivered to the target, Velocity (V) of the imploding target, Mix (M) is the uniformity of the burn, and the Shape (S) of the imploding Deuterium Tritium (DT) hot spot. The diagnostics used to measure each of these parameters is shown in figure 1. Adiabat is measured using the Velocity Interferometer System for Any Reflector (VISAR) diagnostic consisting of three streak cameras. To provide for more accurate adiabat measurements the VISAR streak cameras were enhanced in FY11 with a ten comb fiducial signal controller to allow for post shot correction of the streak camera sweep non-linearity. Mix is measured by the Neutron Time of Flight (NTOF) and Radiochemical Analysis of Gaseous Samples (RAGS) diagnostics. To accommodate high neutron yield shots, NTOF diagnostic controls are being modified to use Mach Zehnder interferometer signals to allow the digitizers to be moved from near the target chamber to the neutron shielded diagnostic mezzanine. In December 2011 the first phase of RAGS diagnostic commissioning will be completed. This diagnostic will analyze the tracers that are added to NIF target capsules that undergo nuclear reactions during the shot. These gases are collected and purified for nuclear counting by

  4. Component state-based integrated importance measure for multi-state systems

    International Nuclear Information System (INIS)

    Si, Shubin; Levitin, Gregory; Dui, Hongyan; Sun, Shudong

    2013-01-01

    Importance measures in reliability engineering are used to identify weak components and/or states in contributing to the reliable functioning of a system. Traditionally, importance measures do not consider the possible effect of groups of transition rates among different component states, which, however, has great effect on the component probability distribution and should therefore be taken into consideration. This paper extends the integrated importance measure (IIM) to estimate the effect of a component residing at certain states on the performance of the entire multi-state systems. This generalization of IIM describes in which state it is most worthy to keep the component to provide the desired level of system performance, and which component is the most important to keep in some state and above for improving the performance of the system. An application to an oil transportation system is presented to illustrate the use of the suggested importance measure

  5. The Validity of Attribute-Importance Measurement: A Review

    NARCIS (Netherlands)

    Ittersum, van K.; Pennings, J.M.E.; Wansink, B.; Trijp, van J.C.M.

    2007-01-01

    A critical review of the literature demonstrates a lack of validity among the ten most common methods for measuring the importance of attributes in behavioral sciences. The authors argue that one of the key determinants of this lack of validity is the multi-dimensionality of attribute importance.

  6. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Foley, E. L.; Levinton, F. M. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2013-04-15

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  7. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2013-04-01

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  8. Implementing large scale fast track diagnostics in a comprehensive cancer center, pre- and post-measurement data.

    Science.gov (United States)

    van Harten, W H; Goedbloed, N; Boekhout, A H; Heintzbergen, S

    2018-02-07

    In general, patients with a cancer suspicion visit the hospital multiple times before diagnosis is completed. Using various "operations management" techniques a few fast track diagnostic services were implemented in the Netherlands Cancer Institute (NKI) in 2006. Growing patient numbers and increasing process complexity, led to diminished service levels. To decrease the amount of patient visits and to extend these services beyond the (obvious) breast cancer services, fast track diagnostics is now implemented for all 18 cancer types that present with a frequency of minimally one per week. The throughput time (first visit to diagnosis conversation) was measured before, and after implementation of fast track diagnostics. The process was redesigned closely involving the multidisciplinary teams. In an eclectic approach elements from lean management, theory of constraints and mathematical analysis were used to organize slots per tumor type for MRI, CT, PET and echography. A post measurement was performed after 3 and 6 months. In pre measurement access time was calculated to be 10 to 15 workdays, mean throughput time was 6.0 workdays. It proved possible to design the process of 18 tumors as a fast track, of which 7 as "one stop shop" (diagnosis completed in one visit). Involvement of clinical- and board leadership, massive communication efforts and commitment of physicians to reschedule their work proved decisive. After 3 and 6 months of implementation, the mean access time was 8.2 and 8.7 workdays respectively and mean throughput time was 3.4 and 3.3 workdays respectively. Throughput- and access time were considerably shortened after implementation of fast track diagnostics for 18 cancer types. The involvement of physicians in reorganizing their work and rapid responding to their needs during the implementation phase were a crucial success factor.

  9. Report of a consultants meeting on dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Pernicka, F.

    1999-01-01

    During its biennial meeting in 1996, the Standing Advisory Committee 'SSDL Scientific Committee', recommended extending the long experience of the Agency in the field of standardization and monitoring dosimetry calibrations at radiotherapy and radiation protection level for the Secondary Standard Dosimetry Laboratory (SSDL) Network, to the field of diagnostic x-ray dosimetry. It was emphasized that 'Measurements on diagnostic x-ray machines have become increasingly important and some SSDLs are involved in such measurements. The Agency's dosimetry laboratory should, therefore, have proper radiation sources available to provide traceable calibrations to the SSDLs'. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments

  10. ECONOMIC IMPORTANCE OF THE PREVENTIVE MEASURES IN DENTISTRY.

    Science.gov (United States)

    Deljo, Emsudina; Sijercic, Zinaida; Mulaosmanovic, Amina; Musanovic, Alma; Prses, Nedim

    2016-10-01

    Previous studies have shown that the state of oral health in the area of Podrinje Canton is really poor. Taking into account that in the last five years are implemented two projects in the municipality it is necessary to examine the impact of preventive measures in dentistry on the oral health. a) To evaluate the impact of continuing education and local fluoridation on the state of oral health; b) To analyze the economic importance of preventive measures. For the purpose of the research on activities of continuing education on the importance of oral health and local fluoridation of teeth and to determine the economic aspects of the application of preventive measures is tested and reviewed 900 students from fourth to ninth grade. The children were divided into three groups of 300 students in each group: a) In the first group of children is carried out continuous education about proper tooth brushing and the importance of oral hygiene and local fluoridation twice a year during the last three years, b) In the second group children carried out local fluoridation twice a year during the last three years while in the third group, there were no continuous prevention measures; c) Used is a single questionnaire for all respondents. Data obtained in this study were analyzed by descriptive and inferential statistical methods. The importance of continuing education and local fluoridation is clearly reflected in the different values DMF-index, which was the subject of research. In the first group, in which is carried out continuous education and local fluoridation value of DMF index was 2.7, in the second group with local fluorination this value was 3.56, while in the third group, in which is not implemented preventive measures, the value DMF- index was 5.93. From an economic point the preventive measures are the cheapest, most effective and the best solution in order to maintain oral health.

  11. Challenges of ITER diagnostic electrical services

    Energy Technology Data Exchange (ETDEWEB)

    Encheva, A., E-mail: anna.encheva@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Omran, H. [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); Pérez-Lasala, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain); Alekseev, A. [Efremov Institute, Metallostroy, Doroga na Metallostroy, 3 bld., Saint-Petersburg 196641 (Russian Federation); Arshad, S. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain); Bede, O. [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); Bender, S. [Efremov Institute, Metallostroy, Doroga na Metallostroy, 3 bld., Saint-Petersburg 196641 (Russian Federation); Bertalot, L.; Direz, M.-F.; Drevon, J.-M.; Jakhar, S.; Kaschuk, Y.; Komarov, V.; Lebarbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Lucca, F. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Macklin, B.; Maquet, P. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Marin, A. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Martin, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Mills, S. [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); and others

    2013-10-15

    Highlights: • A brief description of all major components part of diagnostic electrical services has been given. • The integration challenges have been presented. • Design assumptions and requirements for the components have been described. • The design of the conduit/loom and the relevant analysis has been highlighted. -- Abstract: Diagnostic electrical services provide the electrical infrastructure to serve diagnostic components installed on the ITER tokamak. This infrastructure is composed of cables, connectors, cable tails, looms, conduits and feedthroughs. The diagnostic services offer as well a shelter for various instrumentations – vacuum vessel (VV), blanket and divertor. The diagnostic sensors are located on the inner and outer VV wall, on blanket shield modules, divertor cassettes and in port plugs. They require electrical cabling to extract the measurement and, in some cases, to supply electrical power to the sensors. These cables run from the sensors to feedthroughs on the VV and the port interspace or cryostat. The design and integration of all components that are part of diagnostic electrical services is an important engineering activity that is being challenged by the multiple requirements and constraints which have to be satisfied while at the same time delivering the required diagnostic performance. The positioning of the components must correlate not only with their functional specifications but also with the design of the major ITER components. This is a particular challenge because not all systems have reached the same level of design maturity. This paper outlines the engineering challenges of ITER diagnostics electrical services. The environmental conditions inside the VV will have an important impact. Leading risks to these components include poor electrical contact at connectors, the effects of exposure to nuclear irradiation, such as material transmutation, heating, and generation of spurious electrical signals etc., failure due to

  12. Massive pulmonary embolism: the predisposing and complicating factors, its current diagnostic approaches and critical importance of early diagnostic physical exam

    Directory of Open Access Journals (Sweden)

    Filip A. Konecny

    2006-12-01

    Full Text Available Massive pulmonary embolism (MPE often leads to circulation collapse, a form of shock. The process is set off by thrombus or multiple thrombi dislodgement followed by a rapid perfusion insufficiency of pulmonary arterial system. Patients experience severe hypotension with diastolic and systolic failure with an acute tricuspid regurgitation. On many occasions, release of an obstruction is unattainable and death is occurring frequently within one hour of presentation. A key reported source of MPE is its occurrence as a complication of deep vein thrombosis (DVT. While long-term immobilization and surgery are both directly associated with MPE, others such as previous DVT, malignancy, infectious lung and heart diseases, family thrombophilia, lower limb paralysis and pregnancy have to be considered as risk factors mainly due to its silent nature. Predisposing and complicating risks should be addressed by an early diagnostic physical exam. The clinician might offer a wide variety of diagnostic approaches, combining techniques into algorithms to better deal with the embolism severity. Multiple patient life-style changes and decisions to adhere to the proposed plan should be built up on patient-physician team effort. KEY WORDS: Massive pulmonary embolism, predisposing factors, current diagnostic approaches.

  13. Plasma diagnostics for tokamaks and stellarators

    International Nuclear Information System (INIS)

    Stott, P.E.; Sanchez, J.

    1994-01-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Sattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma

  14. Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics

    International Nuclear Information System (INIS)

    Fu Tairan; Cheng Xiaofang; Yang Zangjian

    2008-01-01

    We present a theoretical analysis of two-color pyrometry applied to optical diagnostics. A two-color pyrometer built with a single CCD is advantageous due to the simple system design. We evaluate the possibility and degree of ill-conditionness on the basis of measurement uncertainties for different measurement approaches of this two-color system. We classify measurement approaches. The corresponding ill-conditionness criterion is established. The greater the criterion value is, the worse the ill-conditioned degree of solution is. So, the optimum choice of measurement approach for the two-color system is achieved through intercomparison of the criterion values. Numerical examples are also given to illustrate this point. The theoretical analysis not only provides an effective way of evaluating different measurement approaches, but also may help us to better understand the influences that determine the choices between wavelength/waveband measurements and calibration/noncalibration modes for temperature and soot distribution

  15. Comparison of global sensitivity analysis techniques and importance measures in PSA

    International Nuclear Information System (INIS)

    Borgonovo, E.; Apostolakis, G.E.; Tarantola, S.; Saltelli, A.

    2003-01-01

    This paper discusses application and results of global sensitivity analysis techniques to probabilistic safety assessment (PSA) models, and their comparison to importance measures. This comparison allows one to understand whether PSA elements that are important to the risk, as revealed by importance measures, are also important contributors to the model uncertainty, as revealed by global sensitivity analysis. We show that, due to epistemic dependence, uncertainty and global sensitivity analysis of PSA models must be performed at the parameter level. A difficulty arises, since standard codes produce the calculations at the basic event level. We discuss both the indirect comparison through importance measures computed for basic events, and the direct comparison performed using the differential importance measure and the Fussell-Vesely importance at the parameter level. Results are discussed for the large LLOCA sequence of the advanced test reactor PSA

  16. A Framework to Debug Diagnostic Matrices

    Science.gov (United States)

    Kodal, Anuradha; Robinson, Peter; Patterson-Hine, Ann

    2013-01-01

    Diagnostics is an important concept in system health and monitoring of space operations. Many of the existing diagnostic algorithms utilize system knowledge in the form of diagnostic matrix (D-matrix, also popularly known as diagnostic dictionary, fault signature matrix or reachability matrix) gleaned from physical models. But, sometimes, this may not be coherent to obtain high diagnostic performance. In such a case, it is important to modify this D-matrix based on knowledge obtained from other sources such as time-series data stream (simulated or maintenance data) within the context of a framework that includes the diagnostic/inference algorithm. A systematic and sequential update procedure, diagnostic modeling evaluator (DME) is proposed to modify D-matrix and wrapper logic considering least expensive solution first. This iterative procedure includes conditions ranging from modifying 0s and 1s in the matrix, or adding/removing the rows (failure sources) columns (tests). We will experiment this framework on datasets from DX challenge 2009.

  17. Subassembly faults diagnostic of an LMFBR type reactor by the measurement of temperature noise

    International Nuclear Information System (INIS)

    Kokorev, B.V.; Palkin, I.I.; Turchin, N.M.; Pallagi, D.; Horanyi, S.

    1979-09-01

    The subassembly faults detection possibility by temperature noise analysis of an LMFBR is described. The paper contains the results of diagnostical examinations obtained on electrically heated NaK test rigs. On the basis of these results the measurement of temperature noise RMS value seems to be a practicable method to detect local blockages in an early phase. (author)

  18. Dose-area product measurement for patients in diagnostic radiography

    International Nuclear Information System (INIS)

    Alkhawad, Safaa Ibrahim Awad Elkarim

    2001-09-01

    There is a wide spread of the utilization of medical diagnostic x-ray in Sudan upon the last years, in private clinics as well as in public hospitals. The aim of this study was to measure the doses to patients from x-ray in radiography departments in Khartoum State. Use was made of ionization chamber that measures the product of dose times the exposed area of the patient in units of Gy cm 2 . The work was performed in 7 hospitals over 250 patients. 71.2% of the patients were males and 28.8% females. From this work, it appears that the chest radiography represent 42% of the total exposure of human body organs to radiography, there was also a clear variation in doses resulting from this exposure for different x-ray machines. The results of this study were compared with similar from Germany, Finland, New Zealand and Norway; which are recently available studies. The comparison showed those investigation of abdomen, spine and pelvis result in higher radiation doses. No data for limb exposure were obtained from these countries, in Sudan exposure of the limb carry radiation doses compared to the rest of the human body.(Author)

  19. Picosecond image-converter diagnostics

    International Nuclear Information System (INIS)

    Schelev, M.Ya.

    1975-01-01

    A brief review is presented of the improvements in picosecond image-converter diagnostics carried out since the previous Congress in 1972. The account is given under the following headings: picosecond image converter cameras for visible and x-ray radiation diagnostics; Nd:glass and ruby mode-locked laser measurements; x-ray plasma emission diagnostics; computer treatment of pictures produced by picosecond cameras. (U.K.)

  20. Diagnostic-management system and test pulse acquisition for WEST plasma measurement system

    International Nuclear Information System (INIS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K.T.; Byszuk, A.; Juszczyk, B.; Zabolotny, W.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.; Mazon, D.; Malard, P.

    2014-01-01

    This paper describes current status of electronic, firmware and software development for new plasma measurement system for use in WEST facility. The system allows to perform two dimensional plasma visualization (in time) with spectrum measurement. The analog front-end is connected to Gas Electron Multiplier detector (GEM detector). The system architecture have high data throughput due to use of PCI-Express interface, Gigabit Transceivers and sampling frequency of ADC integrated circuits. The hardware is based on several years of experience in building X-ray spectrometer system for Joint European Torus (JET) facility. Data streaming is done using Artix7 FPGA devices. The system in basic configuration can work with up to 256 channels, while the maximum number of measurement channels is 2048. Advanced firmware for the FPGA is required in order to perform high speed data streaming and analog signal sampling. Diagnostic system management has been developed in order to configure measurement system, perform necessary calibration and prepare hardware for data acquisition. (authors)

  1. Plasma diagnostics for tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Stott, P E; Sanchez, J

    1994-07-01

    A collection of papers on plasma diagnostics is presented. The papers show the state of the art developments in a series of techniques: Magnetic diagnostics, Edge diagnostics, Langmuir probes, Spectroscopy, Microwave and FIR diagnostics as well as Thomson Scattering. Special interest was focused on those diagnostics oriented to fluctuations measurements in the plasma. (Author) 451 refs.

  2. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [National Centre for Nuclear Research (NCBJ), 7 Andrzeja Soltana Str., 05-400 Otwock (Poland)

    2012-08-15

    A diagnostic technique based on the Cherenkov effect is proposed for detection and characterization of fast (super-thermal and runaway) electrons in fusion devices. The detectors of Cherenkov radiation have been specially designed for measurements in the ISTTOK tokamak. Properties of several materials have been studied to determine the most appropriate one to be used as a radiator of Cherenkov emission in the detector. This technique has enabled the detection of energetic electrons (70 keV and higher) and the determination of their spatial and temporal variations in the ISTTOK discharges. Measurement of hard x-ray emission has also been carried out in experiments for validation of the measuring capabilities of the Cherenkov-type detector and a high correlation was found between the data of both diagnostics. A reasonable agreement was found between experimental data and the results of numerical modeling of the runaway electron generation in ISTTOK.

  3. Farm animal practitioners' views on their use and expectations of veterinary diagnostic laboratories.

    Science.gov (United States)

    Robinson, P A; Epperson, W B

    2013-05-11

    Diagnostic sampling of farm animals by private veterinary practitioners can be an important contributing factor towards the discovery of emerging and exotic diseases. This focus group study of farm animal practitioners in Northern Ireland investigated their use and expectations of diagnostic veterinary laboratories, and elicited their opinions on the role of the private practitioner in veterinary surveillance and the protection of rural public health. The veterinarians were enthusiastic users of diagnostic laboratories, and regarded their own role in surveillance as pivotal. They attached great importance to their veterinary public health duties, and called for more collaboration with their medical general practitioner counterparts. The findings of this research can be used to guide future development of veterinary diagnostic services; provide further insights into the mechanics of scanning surveillance; and measure progress towards a 'One Health' approach between veterinarians and physicians in one geographical region of the UK.

  4. A hierarchical procedure for calculation of risk importance measures

    International Nuclear Information System (INIS)

    Poern, K.; Dinsmore, S.C.

    1987-01-01

    Starting with a general importance definition based on conditional probabilities, a hierarchical process for calculating risk importance measures from a PSA's numerical results is developed. By the appropriate choice of events in the general definition, measures such as the risk achievement worth and the risk reduction worth can be calculated without requantifying the PSA's models. Required approximations are clearly defined and the subsequent constraints on the applicability of the process discussed. (orig.)

  5. Vibrational spectroscopy: a clinical tool for cancer diagnostics.

    Science.gov (United States)

    Kendall, Catherine; Isabelle, Martin; Bazant-Hegemark, Florian; Hutchings, Joanne; Orr, Linda; Babrah, Jaspreet; Baker, Rebecca; Stone, Nicholas

    2009-06-01

    Vibrational spectroscopy techniques have demonstrated potential to provide non-destructive, rapid, clinically relevant diagnostic information. Early detection is the most important factor in the prevention of cancer. Raman and infrared spectroscopy enable the biochemical signatures from biological tissues to be extracted and analysed. In conjunction with advanced chemometrics such measurements can contribute to the diagnostic assessment of biological material. This paper also illustrates the complementary advantage of using Raman and FTIR spectroscopy technologies together. Clinical requirements are increasingly met by technological developments which show promise to become a clinical reality. This review summarises recent advances in vibrational spectroscopy and their impact on the diagnosis of cancer.

  6. Wandering spleen in children: a report of 3 cases and a brief literature review underlining the importance of diagnostic imaging.

    Science.gov (United States)

    Lombardi, Roberta; Menchini, Laura; Corneli, Teresa; Magistrelli, Andrea; Accinni, Antonella; Monti, Lidia; Tomà, Paolo

    2014-03-01

    Wandering spleen is a rare condition in children that is often caused by loss or weakening of the splenic ligaments. Its clinical presentation is variable; 64% of children with wandering spleen have splenic torsion as a complication. To provide up-to-date information on the diagnosis, clinical management and diagnostic imaging approaches for wandering spleen in infants and children and to underline the importance of color Doppler US and CT in providing important information for patient management. We report a series of three children with wandering spleen treated at our children's hospital over the last 6 years. All three underwent clinical evaluation, color Doppler US and CT and were surgically treated. We also reviewed 40 articles that included 55 patients younger than 18 years reported in the Medline database from 2002 to 2012. We correlated pathological data with imaging findings. Color Doppler US, the first imaging modality in investigating abdominal symptoms in children with suspected wandering spleen, yielded a diagnostic sensitivity of 54.9%, whereas CT achieved about 71.7%. Radiologic evaluation has a major role in confirming the diagnosis of a suspected wandering spleen and avoiding potentially life-threatening complications requiring immediate surgery.

  7. Wandering spleen in children: a report of 3 cases and a brief literature review underlining the importance of diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Roberta; Menchini, Laura; Corneli, Teresa; Magistrelli, Andrea; Monti, Lidia; Toma, Paolo [Bambino Gesu Pediatric Hospital, Department of Radiology, Rome (Italy); Accinni, Antonella [Bambino Gesu Pediatric Hospital, Department of General and Thoracic Surgery, Rome (Italy)

    2014-03-15

    Wandering spleen is a rare condition in children that is often caused by loss or weakening of the splenic ligaments. Its clinical presentation is variable; 64% of children with wandering spleen have splenic torsion as a complication. To provide up-to-date information on the diagnosis, clinical management and diagnostic imaging approaches for wandering spleen in infants and children and to underline the importance of color Doppler US and CT in providing important information for patient management. We report a series of three children with wandering spleen treated at our children's hospital over the last 6 years. All three underwent clinical evaluation, color Doppler US and CT and were surgically treated. We also reviewed 40 articles that included 55 patients younger than 18 years reported in the Medline database from 2002 to 2012. We correlated pathological data with imaging findings. Color Doppler US, the first imaging modality in investigating abdominal symptoms in children with suspected wandering spleen, yielded a diagnostic sensitivity of 54.9%, whereas CT achieved about 71.7%. Radiologic evaluation has a major role in confirming the diagnosis of a suspected wandering spleen and avoiding potentially life-threatening complications requiring immediate surgery. (orig.)

  8. Wandering spleen in children: a report of 3 cases and a brief literature review underlining the importance of diagnostic imaging

    International Nuclear Information System (INIS)

    Lombardi, Roberta; Menchini, Laura; Corneli, Teresa; Magistrelli, Andrea; Monti, Lidia; Toma, Paolo; Accinni, Antonella

    2014-01-01

    Wandering spleen is a rare condition in children that is often caused by loss or weakening of the splenic ligaments. Its clinical presentation is variable; 64% of children with wandering spleen have splenic torsion as a complication. To provide up-to-date information on the diagnosis, clinical management and diagnostic imaging approaches for wandering spleen in infants and children and to underline the importance of color Doppler US and CT in providing important information for patient management. We report a series of three children with wandering spleen treated at our children's hospital over the last 6 years. All three underwent clinical evaluation, color Doppler US and CT and were surgically treated. We also reviewed 40 articles that included 55 patients younger than 18 years reported in the Medline database from 2002 to 2012. We correlated pathological data with imaging findings. Color Doppler US, the first imaging modality in investigating abdominal symptoms in children with suspected wandering spleen, yielded a diagnostic sensitivity of 54.9%, whereas CT achieved about 71.7%. Radiologic evaluation has a major role in confirming the diagnosis of a suspected wandering spleen and avoiding potentially life-threatening complications requiring immediate surgery. (orig.)

  9. Mobile Phones Democratize and Cultivate Next-Generation Imaging, Diagnostics and Measurement Tools

    Science.gov (United States)

    Ozcan, Aydogan

    2014-01-01

    In this article, I discuss some of the emerging applications and the future opportunities and challenges created by the use of mobile phones and their embedded components for the development of next-generation imaging, sensing, diagnostics and measurement tools. The massive volume of mobile phone users, which has now reached ~7 billion, drives the rapid improvements of the hardware, software and high-end imaging and sensing technologies embedded in our phones, transforming the mobile phone into a cost-effective and yet extremely powerful platform to run e.g., biomedical tests and perform scientific measurements that would normally require advanced laboratory instruments. This rapidly evolving and continuing trend will help us transform how medicine, engineering and sciences are practiced and taught globally. PMID:24647550

  10. DiagTest3Grp: An R Package for Analyzing Diagnostic Tests with Three Ordinal Groups

    Directory of Open Access Journals (Sweden)

    Jingqin Luo

    2012-10-01

    Full Text Available Medical researchers endeavor to identify potentially useful biomarkers to develop marker-based screening assays for disease diagnosis and prevention. Useful summary measures which properly evaluate the discriminative ability of diagnostic markers are critical for this purpose. Literature and existing software, for example, R packages nicely cover summary measures for diagnostic markers used for the binary case (e.g., healthy vs. diseased. An intermediate population at an early disease stage usually exists between the healthy and the fully diseased population in many disease processes. Supporting utilities for three-group diagnostic tests are highly desired and important for identifying patients at the early disease stage for timely treatments. However, application packages which provide summary measures for three ordinal groups are currently lacking. This paper focuses on two summary measures of diagnostic accuracy—volume under the receiver operating characteristic surface and the extended Youden index, with three diagnostic groups. We provide the R package DiagTest3Grp to estimate, under both parametric and nonparametric assumptions, the two summary measures and the associated variances, as well as the optimal cut-points for disease diagnosis. An omnibus test for multiple markers and a Wald test for two markers, on independent or paired samples, are incorporated to compare diagnostic accuracy across biomarkers. Sample size calculation under the normality assumption can be performed in the R package to design future diagnostic studies. A real world application evaluating the diagnostic accuracy of neuropsychological markers for Alzheimer’s disease is used to guide readers through step-by-step implementation of DiagTest3Grp to demonstrate its utility.

  11. Risk Importance Measures in the Designand Operation of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Vrbanic I.; Samanta P.; Basic, I

    2017-10-31

    This monograph presents and discusses risk importance measures as quantified by the probabilistic risk assessment (PRA) models of nuclear power plants (NPPs) developed according to the current standards and practices. Usually, PRA tools calculate risk importance measures related to a single ?basic event? representing particular failure mode. This is, then, reflected in many current PRA applications. The monograph focuses on the concept of ?component-level? importance measures that take into account different failure modes of the component including common-cause failures (CCFs). In opening sections the roleof risk assessment in safety analysis of an NPP is introduced and discussion given of ?traditional?, mainly deterministic, design principles which have been established to assign a level of importance to a particular system, structure or component. This is followed by an overview of main risk importance measures for risk increase and risk decrease from current PRAs. Basic relations which exist among the measures are shown. Some of the current practical applications of risk importancemeasures from the field of NPP design, operation and regulation are discussed. The core of the monograph provides a discussion on theoreticalbackground and practical aspects of main risk importance measures at the level of ?component? as modeled in a PRA, starting from the simplest case, single basic event, and going toward more complexcases with multiple basic events and involvements in CCF groups. The intent is to express the component-level importance measures via theimportance measures and probabilities of the underlying single basic events, which are the inputs readily available from a PRA model andits results. Formulas are derived and discussed for some typical cases. The formulas and their results are demonstrated through some practicalexamples, done by means of a simplified PRA model developed in and run by RiskSpectrum? tool, which are presented in the appendices. The

  12. A decision-oriented measure of uncertainty importance for use in PSA

    International Nuclear Information System (INIS)

    Poern, Kurt

    1997-01-01

    For the interpretation of the results of probabilistic risk assessments it is important to have measures which identify the basic events that contribute most to the frequency of the top event but also to identify basic events that are the main contributors to the uncertainty in this frequency. Both types of measures, often called Importance Measure and Measure of Uncertainty Importance, respectively, have been the subject of interest for many researchers in the reliability field. The most frequent mode of uncertainty analysis in connection with probabilistic risk assessment has been to propagate the uncertainty of all model parameters up to an uncertainty distribution for the top event frequency. Various uncertainty importance measures have been proposed in order to point out the parameters that in some sense are the main contributors to the top event distribution. The new measure of uncertainty importance suggested here goes a step further in that it has been developed within a decision theory framework, thereby providing an indication of on what basic event it would be most valuable, from the decision-making point of view, to procure more information

  13. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    Science.gov (United States)

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  14. Patient dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Shrimpton, P.C.

    2000-01-01

    Full text: X-ray examinations remain an essential and widely used diagnostic tool in medicine and hence the most significant source of exposure to man-made radiation for populations. Patterns of practice in diagnostic radiology continue to evolve, with overall growth in the numbers of procedures worldwide and, particularly in developed countries, increasing importance for complex procedures such as computed tomography (CT) and interventional techniques. In order to maximise the benefits from x-rays relative to the associated radiation risks, there is a need to ensure the prior justification of all examinations and the optimisation of patient protection such that doses are as low as reasonably practicable to meet specific clinical requirements. Accordingly, patient dosimetry is a fundamental requirement in diagnostic radiology. Detailed measurements for the assessment of risks or comparison of different types of procedure require the estimation of organ and effective doses. Such comprehensive dosimetry necessarily involves the simulation of clinical practice using anthropomorphic phantoms, with either measurements in a physical phantom or calculations utilising a mathematical phantom. Simpler measurements for the routine monitoring of dose in x-ray departments can be based on practical quantities such as entrance surface dose, dose-area product and, for CT, weighted CT dose index and dose-length product. Widescale surveys reveal significant variations between departments in the typical doses for a given type of procedure and potential scope for dose reductions. In order to promote improvements in practice, the results of periodic dose surveys in departments should be compared with appropriate standards, such as diagnostic reference levels for adult and paediatric patients, that are set nationally or locally for the purposes of promoting critical review of the equipment and techniques in use. Patient dosimetry should form an essential element of routine quality

  15. Overcoming the problem of diagnostic heterogeneity in applying measurement-based care in clinical practice: the concept of psychiatric vital signs.

    Science.gov (United States)

    Zimmerman, Mark; Young, Diane; Chelminski, Iwona; Dalrymple, Kristy; Galione, Janine N

    2012-02-01

    Measurement-based care refers to the use of standardized scales to measure the outcome of psychiatric treatment. Diagnostic heterogeneity poses a challenge toward the adoption of a measurement-based care approach toward outcome evaluation in clinical practice. In the present article, we propose adopting the concept of psychiatric vital signs to facilitate measurement-based care. Medical vital signs are measures of basic physiologic functions that are routinely determined in medical settings. Vital signs are often a primary outcome measure, and they are also often adjunctive measurements. In the present report from the Rhode Island Methods to Improve Diagnostic Assessment and Services project, we examined the frequency of depression and anxiety in a diagnostically heterogeneous group of psychiatric outpatients to determine the appropriateness of considering their measurement as psychiatric vital signs. Three thousand psychiatric outpatients were interviewed with the Structured Clinical Interview for DSM-IV supplemented with items from the Schedule for Affective Disorders and Schizophrenia. We determined the frequency of depression and anxiety evaluated according to the Schedule for Affective Disorders and Schizophrenia items. In the entire sample of 3000 patients, 79.3% (n = 2378) reported clinically significant depression of at least mild severity, 64.4% (n = 1932) reported anxiety of at least mild severity, and 87.4% (n = 2621) reported either anxiety or depression. In all 10 diagnostic categories examined, most patients had clinically significant anxiety or depression of at least mild severity. These findings support the routine assessment of anxiety and depression in clinical practice because almost all patients will have these problems as part of their initial presentation. Even for those patients without depression or anxiety, the case could be made that the measurement of depression and anxiety is relevant and analogous to measuring certain physiologic

  16. The next organizational challenge: finding and addressing diagnostic error.

    Science.gov (United States)

    Graber, Mark L; Trowbridge, Robert; Myers, Jennifer S; Umscheid, Craig A; Strull, William; Kanter, Michael H

    2014-03-01

    Although health care organizations (HCOs) are intensely focused on improving the safety of health care, efforts to date have almost exclusively targeted treatment-related issues. The literature confirms that the approaches HCOs use to identify adverse medical events are not effective in finding diagnostic errors, so the initial challenge is to identify cases of diagnostic error. WHY HEALTH CARE ORGANIZATIONS NEED TO GET INVOLVED: HCOs are preoccupied with many quality- and safety-related operational and clinical issues, including performance measures. The case for paying attention to diagnostic errors, however, is based on the following four points: (1) diagnostic errors are common and harmful, (2) high-quality health care requires high-quality diagnosis, (3) diagnostic errors are costly, and (4) HCOs are well positioned to lead the way in reducing diagnostic error. FINDING DIAGNOSTIC ERRORS: Current approaches to identifying diagnostic errors, such as occurrence screens, incident reports, autopsy, and peer review, were not designed to detect diagnostic issues (or problems of omission in general) and/or rely on voluntary reporting. The realization that the existing tools are inadequate has spurred efforts to identify novel tools that could be used to discover diagnostic errors or breakdowns in the diagnostic process that are associated with errors. New approaches--Maine Medical Center's case-finding of diagnostic errors by facilitating direct reports from physicians and Kaiser Permanente's electronic health record--based reports that detect process breakdowns in the followup of abnormal findings--are described in case studies. By raising awareness and implementing targeted programs that address diagnostic error, HCOs may begin to play an important role in addressing the problem of diagnostic error.

  17. The ICF National Diagnostic Plan (NDP) 9/19/17

    Energy Technology Data Exchange (ETDEWEB)

    Kilkenny, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richau, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sangster, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Batha, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bell, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Larson, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leeper, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herrmann, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bourdon, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hilsabeck, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-02

    A major goal of the Stockpile Stewardship Program (SSP) is to deliver validated numerical models, benchmarked against experiments that address relevant and important issues and provide data that stress the codes and our understanding. DOENNSA has made significant investments in major facilities and high-performance computing to successfully execute the SSP. The more information obtained about the physical state of the plasmas produced, the more stringent the test of theories, models, and codes can be, leading to increased confidence in our predictive capability. To fully exploit the world-leading capabilities of the ICF program, a multi-year program to develop and deploy advanced diagnostics has been developed by the expert scientific community. To formalize these activities NNSA’s Acting Director for the Inertial Confinement Fusion Program directed the formation and duties of the National Diagnostics Working Group (NDWG) in a Memorandum 11/3/16 (Appendix A). The NDWG identified eight transformational diagnostics, shown in Table 1, that will provide unprecedented information from experiments in support of the SSP at NIF, Z and OMEGA. Table 1 shows how the missions of the SSP experiments including materials, complex hydrodynamics, radiation flow and effects and thermo-nuclear burn and boost will produce new observables, which will be measured using a variety of largely new diagnostic technologies used in the eight transformational diagnostics. The data provided by these diagnostics will validate and improve the physics contained within the SSP’s simulations and both uncover and quantify important phenomena that lie beyond our present understanding.

  18. Particle diagnostics for magnetic fusion experiments

    International Nuclear Information System (INIS)

    Post, D.E.

    1983-01-01

    This chapter summarizes the subset of diagnostics that relies primarily on the use of particles, and attempts to show how atomic and molecular data play a role in these diagnostics. Discusses passive charge-exchange ion temperature measurements; hydrogen beams for density, ion temperature, q and ZEFF measurements; impurity diagnostics using charge-exchange recombination; plasma electric and magnetic measurements using beams heavier than hydrogen; and alpha particle diagnostics. Points out that as fusion experiments become larger and hotter, most traditional particle diagnostics become difficult because large plasmas are difficult for neutral atoms to penetrate and the gyro-orbits of charged particles need to be larger than typically obtained with present beams to be comparable with the plasma size. Concludes that not only does the current profile affect the plasma stability, but there is a growing opinion that any serious fusion reactor will have to be steady state

  19. Intellectual property considerations for molecular diagnostic development with emphasis on companion diagnostics.

    Science.gov (United States)

    Glorikian, Harry; Warburg, Richard Jeremy; Moore, Kelly; Malinowski, Jennifer

    2018-02-01

    The development of molecular diagnostics is a complex endeavor, with multiple regulatory pathways to consider and numerous approaches to development and commercialization. Companion diagnostics, devices which are "essential for the safe and effective use of a corresponding drug or diagnostic product" (see U.S. Food & Drug Administration, In Vitro Diagnostics - Companion Diagnostics, U.S. Dept. of Health & Human Services(2016), available at https://www.fda.gov/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm407297.htm ) and complementary diagnostics, which are more broadly associated with a class of drug, are becoming increasingly important as integral components of the implementation of precision medicine. Areas covered: The following article will highlight the intellectual property ('IP') considerations pertinent to molecular diagnostics development with special emphasis on companion diagnostics. Expert opinion/commentary Summary: For all molecular diagnostics, intellectual property (IP) concerns are of paramount concern, whether the device will be marketed only in the United States or abroad. Taking steps to protect IP at each stage of product development is critical to optimize profitability of a diagnostic product. Also the legal framework around IP protection of diagnostic technologies has been changing over the previous few years and can be expected to continue to change in the foreseeable near future, thus, a comprehensive IP strategy should take into account the fact that changes in the law can be expected.

  20. The IHS diagnostic X-ray equipment radiation protection program

    International Nuclear Information System (INIS)

    Knapp, A.; Byrns, G.; Suleiman, O.

    1994-01-01

    The Indian Health Service (IHS) operates or contracts with Tribal groups to operate 50 hospitals and approximately 165 primary ambulatory care centers. These facilities contain approximately 275 medical and 800 dental diagnostic x-ray machines. IHS environmental health personnel in collaboration with the Food and Drug Administration's (FDA) Center for Devices and Radiological Health (CDRH) developed a diagnostic x-ray protection program including standard survey procedures and menu-driven calculations software. Important features of the program include the evaluation of equipment performance collection of average patient entrance skin exposure (ESE) measurements for selected procedures, and quality assurance. The ESE data, collected using the National Evaluation of X-ray Trends (NEXT) protocol, will be presented. The IHS Diagnostic X-ray Radiation Protection Program is dynamic and is adapting to changes in technology and workload

  1. Thermoluminescent dosimetry in veterinary diagnostic radiology

    International Nuclear Information System (INIS)

    Hernández-Ruiz, L.; Jimenez-Flores, Y.; Rivera-Montalvo, T.; Arias-Cisneros, L.; Méndez-Aguilar, R.E.; Uribe-Izquierdo, P.

    2012-01-01

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. - Highlights: ► Personnel dosimetry in laboratory veterinary diagnostic was determined. ► Student workplaces are safe against radiation. ► Efficiency value of apron lead was determined. ► X-ray beams distribution into veterinarian laboratory was measured.

  2. Advancing the research agenda for diagnostic error reduction.

    Science.gov (United States)

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  3. Prognostic and diagnostic value of EEG signal coupling measures in coma.

    Science.gov (United States)

    Zubler, Frederic; Koenig, Christa; Steimer, Andreas; Jakob, Stephan M; Schindler, Kaspar A; Gast, Heidemarie

    2016-08-01

    Our aim was to assess the diagnostic and predictive value of several quantitative EEG (qEEG) analysis methods in comatose patients. In 79 patients, coupling between EEG signals on the left-right (inter-hemispheric) axis and on the anterior-posterior (intra-hemispheric) axis was measured with four synchronization measures: relative delta power asymmetry, cross-correlation, symbolic mutual information and transfer entropy directionality. Results were compared with etiology of coma and clinical outcome. Using cross-validation, the predictive value of measure combinations was assessed with a Bayes classifier with mixture of Gaussians. Five of eight measures showed a statistically significant difference between patients grouped according to outcome; one measure revealed differences in patients grouped according to the etiology. Interestingly, a high level of synchrony between the left and right hemisphere was associated with mortality on intensive care unit, whereas higher synchrony between anterior and posterior brain regions was associated with survival. The combination with the best predictive value reached an area-under the curve of 0.875 (for patients with post anoxic encephalopathy: 0.946). EEG synchronization measures can contribute to clinical assessment, and provide new approaches for understanding the pathophysiology of coma. Prognostication in coma remains a challenging task. qEEG could improve current multi-modal approaches. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Diagnostic radiology dosimetry: status and trends

    International Nuclear Information System (INIS)

    Rivera M, T.

    2015-10-01

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  5. Diagnostic radiology dosimetry: status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T., E-mail: trivera@ipn.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Full text: Medical radiation is by far the largest man-made source of public exposure to ionizing radiation. Since 1970 the expression of protection standards shifted from a dose- to a risk-based approach, with dose limits established to yield risks to radiation workers comparable with those for workers in other safe industries. Another hand, worldwide interest in patient dose measurement was stimulated by the publication of Patient Dose Reduction in Diagnostic Radiology by the UK National Radiological Protection Board (NRPB). In response to heightened awareness of the importance of patient dose contributed by radiology procedures, there has been a general trend to effect control of patient doses by applying the principles of optimization coupled with an increase in regulatory enforcement. In this sense, thermoluminescent dosimetry (TLD) has been actively proposed in the last 3 decades thanks to their successful applications in diagnostic radiology. At the same time, it is emerged as the best radiation dosimetry method. The present work presents advantages of thermoluminescent dosimetry for X-ray beams measurements and its optimization. (Author)

  6. Quality Control in Diagnostic Radiology in the Netherlands (invited paper)

    International Nuclear Information System (INIS)

    Zoetelief, J.

    1998-01-01

    Application of the general principles of radiation protection to medical diagnostic radiology implies that each procedure using X rays or radionuclides is to be justified and optimised. Optimisation in diagnostic radiology implies that the radiation burden to the patient should be as low as possible, but compatible with the image quality necessary to obtain an adequate diagnosis or to guide treatment. Quality control of equipment is a prerequisite for achieving optimisation in diagnostic radiology. This was especially recognised for mammography as employed for breast cancer screening. Existing legislation in the Netherlands includes only a few criteria for equipment used in diagnostic radiology. In addition, the criteria are not all operational and measurement methods are lacking. Therefore, upon the initiative of the Dutch Ministry of Health, Welfare and Sports, the relevant professional societies, in collaboration with the former TNO Centre for Radiological Protection and Dosimetry, formulated eleven guidelines for quality control of equipment used in diagnostic radiology, including test procedures, test frequencies and limiting values. The implementation of quality control of equipment was included in the 1984 European Directive (84/466/Euratom) laying down basic measures for the radiation protection of persons undergoing medical examination or treatment. In the most recent European Directive on medical exposure (97/43/Euratom) the importance of quality control is stressed. In addition, the latter EC directive proposes the use of diagnostic reference levels for limiting the risks for patients undergoing diagnostic radiology. In the Netherlands preliminary reference levels for various procedures employed in diagnostic radiology are suggested. Finally, methods applied in the Netherlands for assessment of image quality are discussed. (author)

  7. Important hemoprotozoan diseases of livestock: Challenges in current diagnostics and therapeutics: An update

    Directory of Open Access Journals (Sweden)

    Biswa Ranjan Maharana

    2016-05-01

    Full Text Available Hemoprotozoan parasites pose a serious threat to the livestock population in terms of mortality, reduced milk yield and lowered draft power. Diagnosis of these diseases often poses a challenging task. Needless to say that impact of disease in health and productivity is huge though a fair economic assessment on the quantum of economic loss associated is yet to be worked out from India. The diagnosis of hemoprotozoan infections largely depends on various laboratory-based diagnostic methods as the clinical manifestations are often inconspicuous and non-specific. Traditional diagnostic methods rely on microscopical demonstration of infective stages in blood or tissue fluids. However, it is laborious, lesser sensitive, and cannot differentiate between morphologically similar organisms. Recent development in the technologies has opened new avenues for improvement in the accurate diagnosis of parasitic infections. Serological tests are simple, fast but lack specificity. With advent of molecular techniques, as DNA hybridization assays, polymerase chain reaction and its modifications ensure the detection of infection in the latent phase of the disease. Nucleic acid-based assays are highly sensitive, free from immunocompetence and can differentiate between morphologically similar parasites. With the advent of newer diagnostics complemented with traditional ones will be of huge help for targeted selective treatment with better chemotherapeutic agents.

  8. Diagnostic planning in JT-60 project

    International Nuclear Information System (INIS)

    Matoba, Tohru; Suzuki, Yasuo; Funahashi, Akimasa; Itagaki, Tokiyoshi

    1977-08-01

    The diagnostic plans of JT-60 were made along with design of the main machine. Basic requirements of the diagnostic program are (1) multiple measurement of respective plasma parameters, (2) efficient usage of the discharge, (3) capable data acquisition system, (4) high reliability of the diagnostic equipments, and (5) systematic development of new diagnostic techniques. Dimensions of the diagnostic ports were determined in detailed design of the vacuum vessel, anticipating the possible diagnostic methods. The proposed diagnostic systems and the plans are shown in table and figures respectively. Problems in the diagnostics are also described. (auth.)

  9. The clinical importance of radiological determination of the heart volume

    International Nuclear Information System (INIS)

    Jaedicke, W.; Ong, T.S.; Barmeyer, J.

    1982-01-01

    The size of the heart is an autonomous, important parameter of its functional state, i.e. in the radiologic heart diagnostics, the measurement of the heart volume is of equal value as the shape analysis. A size determination which must be exact enough for course controls and differentiation from the normal picture makes sense only if the measurement is carriet out in 3 dimensions and not in only one as is done when determining the heart-lung-quotient. The heart volume measurement carried out in lying or sitting position is considerably more reliable than in standing position as too many extracardiac factors influence the heart volume when the patient is standing. The echo cardiogram is a nearly ideal supplement but no competitor of radiological heart volume measurement and can be of the same value as or superior to heart volume measurement for functional diagnostics only in diseases limited to nearly exclusively to the left ventricle as in coronary diseases. (orig.) [de

  10. Development of advanced diagnostics for characterization of burning droplets in microgravity

    Science.gov (United States)

    Sankar, Subramanian; Buermann, Dale H.; Bachalo, William D.

    1995-01-01

    Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel

  11. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurements

    DEFF Research Database (Denmark)

    Moseev, D.; Meo, Fernando; Korsholm, Søren Bang

    2012-01-01

    require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic...

  12. Measurement of conversion coefficients between air Kerma and personal dose equivalent and backscatter factors for diagnostic X-ray beams

    International Nuclear Information System (INIS)

    Rosado, Paulo Henrique Goncalves

    2008-01-01

    Two sets of quantities are import in radiological protection: the protection and operational quantities. Both sets can be related to basic physical quantities such as kerma through conversion coefficients. For diagnostic x-ray beams the conversion coefficients and backscatter factors have not been determined yet, those parameters are need for calibrating dosimeters that will be used to determine the personal dose equivalent or the entrance skin dose. Conversion coefficients between air kerma and personal dose equivalent and backscatter factors were experimentally determined for the diagnostic x-ray qualities RQR and RQA recommended by the International Electrotechnical Commission (IEC). The air kerma in the phantom and the mean energy of the spectrum were measured for such purpose. Harshaw LiF-100H thermoluminescent dosemeters (TLD) were used for measurements after being calibrated against an 180 cm 3 Radcal Corporation ionization chamber traceable to a reference laboratory. A 300 mm x 300 mm x 150 mm polymethylmethacrylate (PMMA) slab phantom was used for deep-dose measurements. Tl dosemeters were placed in the central axis of the x-ray beam at 5, 10, 15, 25 and 35 mm depth in the phantom upstream the beam direction Another required parameter for determining the conversion coefficients from was the mean energy of the x-ray spectrum. The spectroscopy of x-ray beams was done with a CdTe semiconductor detector that was calibrated with 133 Ba, 241 Am and 57 Co radiation sources. Measurements of the x-ray spectra were carried out for all RQR and RQA IEC qualities. Corrections due to the detector intrinsic efficiency, total energy absorption, escape fraction of the characteristic x-rays, Compton effect and attenuation in the detector were done aiming an the accurate determination of the mean energy. Measured x-ray spectra were corrected with the stripping method by using these response functions. The typical combined standard uncertainties of conversion coefficients and

  13. Leak detection by vibrational diagnostic methods

    International Nuclear Information System (INIS)

    Siklossy, P.

    1983-01-01

    The possibilities and methods of leak detection due to mechanical failures in nuclear power plants are reviewed on the basis of the literature. Great importance is attributed to vibrational diagnostic methods for their adventageous characteristics which enable them to become final leak detecting methods. The problems of noise analysis, e.g. leak detection by impact sound measurements, probe characteristics, gain problems, probe selection, off-line analysis and correlation functions, types of leak noises etc. are summarized. Leak detection based on noise analysis can be installed additionally to power plants. Its maintenance and testing is simple. On the other hand, it requires special training and measuring methods. (Sz.J.)

  14. A thermal technique for local ultrasound intensity measurement: part 2. Application to exposimetry on a medical diagnostic device

    International Nuclear Information System (INIS)

    Wilkens, V

    2010-01-01

    Acoustic output measurements on medical ultrasound equipment are usually performed using radiation force balances to determine the output power and using hydrophones to determine pressure and intensity parameters. The local temporal-average ultrasound intensity can be measured alternatively by thermal sensors. The technique was described and prototype sensors were characterized in a preceding paper. Here, the application of such a thermal intensity sensor to the output beam characterization of a typical medical diagnostic device is described. Two transducers, a 7.5 MHz linear array and a 3.5 MHz convex array were investigated in different operating modes. For comparison, hydrophone measurements were also performed. If the spatial averaging effect is taken into account, good agreement is found between both measurement methods. The maximum deviations of the spatial-peak temporal-average intensities I SPTA obtained with the thermal sensor from the corresponding hydrophone-based results were below 12%. The simple thermal technique offers advantages for intensity measurements especially in the case of scanning and combined modes of the diagnostic device, where the synchronization between hydrophone measurements and the complex pulse emission pattern can be difficult

  15. Enhanced NIF neutron activation diagnostics.

    Science.gov (United States)

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  16. Accounting for components interactions in the differential importance measure

    International Nuclear Information System (INIS)

    Zio, Enrico; Podofillini, Luca

    2006-01-01

    A limitation of the importance measures (IMs) currently used in reliability and risk analyses is that they rank only individual components or basic events whereas they are not directly applicable to combinations or groups of components or basic events. To partially overcome this limitation, recently, the differential importance measure (DIM), has been introduced for use in risk-informed decision making. The DIM is a first-order sensitivity measure that ranks the parameters of the risk model according to the fraction of total change in the risk that is due to a small change in the parameters' values, taken one at a time. However, it does not account for the effects of interactions among components. In this paper, a second-order extension of the DIM, named DIM II , is proposed for accounting of the interactions of pairs of components when evaluating the change in system performance due to changes of the reliability parameters of the components. A numerical application is presented in which the informative contents of DIM and DIM II are compared. The results confirm that in certain cases when second-order interactions among components are accounted for, the importance ranking of the components may differ from that produced by a first-order sensitivity measure

  17. Importance measures in global sensitivity analysis of nonlinear models

    International Nuclear Information System (INIS)

    Homma, Toshimitsu; Saltelli, Andrea

    1996-01-01

    The present paper deals with a new method of global sensitivity analysis of nonlinear models. This is based on a measure of importance to calculate the fractional contribution of the input parameters to the variance of the model prediction. Measures of importance in sensitivity analysis have been suggested by several authors, whose work is reviewed in this article. More emphasis is given to the developments of sensitivity indices by the Russian mathematician I.M. Sobol'. Given that Sobol' treatment of the measure of importance is the most general, his formalism is employed throughout this paper where conceptual and computational improvements of the method are presented. The computational novelty of this study is the introduction of the 'total effect' parameter index. This index provides a measure of the total effect of a given parameter, including all the possible synergetic terms between that parameter and all the others. Rank transformation of the data is also introduced in order to increase the reproducibility of the method. These methods are tested on a few analytical and computer models. The main conclusion of this work is the identification of a sensitivity analysis methodology which is both flexible, accurate and informative, and which can be achieved at reasonable computational cost

  18. Application aspects of advanced antenna diagnostics with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Pivnenko, Sergey

    2015-01-01

    This paper focuses on two important applications of the 3D reconstruction algorithm of the commercial software DIATOOL for antenna diagnostics. The first one is the accurate and detailed identification of array malfunctioning, thanks to the available enhanced spatial resolution of the reconstruct...... fields and currents. The second one is the filtering of the scattering from support structures and feed network leakage. Representative experimental results are presented and guidelines on the recommended measurement parameters for obtaining the best diagnostics results are provided....

  19. Quality control: a measure for optimization of dose in diagnostic radiology

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli; Muhammad Jamal Md Isa; Husaini Salleh

    2002-01-01

    Patient dose should always be a factor that is taken into account when using diagnostic X-ray equipment. There is no doubt that patients receive vastly different radiation doses for same examination under different circumstances and performance as well as safety standard of X-ray generating machine is one of the possible causes for this. MINT's experience in measuring performance and safety standard of X-ray fluoroscopic equipments in the year of 2000 indicated that 70% of the irradiating apparatus tend to deliver unnecessary exposures to patients due to various causes. Improper calibration and the usage of unoptimized fluoroscopic X-ray equipment are identified as two major causes that lead to unoptimized medical exposures to patient

  20. Bayesian and maximum entropy methods for fusion diagnostic measurements with compact neutron spectrometers

    International Nuclear Information System (INIS)

    Reginatto, Marcel; Zimbal, Andreas

    2008-01-01

    In applications of neutron spectrometry to fusion diagnostics, it is advantageous to use methods of data analysis which can extract information from the spectrum that is directly related to the parameters of interest that describe the plasma. We present here methods of data analysis which were developed with this goal in mind, and which were applied to spectrometric measurements made with an organic liquid scintillation detector (type NE213). In our approach, we combine Bayesian parameter estimation methods and unfolding methods based on the maximum entropy principle. This two-step method allows us to optimize the analysis of the data depending on the type of information that we want to extract from the measurements. To illustrate these methods, we analyze neutron measurements made at the PTB accelerator under controlled conditions, using accelerator-produced neutron beams. Although the methods have been chosen with a specific application in mind, they are general enough to be useful for many other types of measurements

  1. Polarimetry and Schlieren diagnostics of underwater exploding wires

    Science.gov (United States)

    Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2009-11-01

    Nondisturbing laser-probing polarimetry (based on the Faraday and Kerr effects) and Schlieren diagnostics were used in the investigation of underwater electrical wire explosion. Measuring the polarization plane rotation angle of a probing laser beam due to the Faraday effect allows one to determine an axially resolved current flowing through the exploding wire, unlike commonly used current probes. This optical method of measuring current yields results that match those obtained using a current viewing resistor within an accuracy of 10%. The same optical setup allows simultaneous space-resolved measurement of the electric field using the Kerr effect. It was shown that the maximal amplitude of the electric field in the vicinity of the high-voltage electrode is ˜80 kV/cm and that the radial electric field is <1 MV/cm during the wire explosion. Finally, it was shown that the use of Schlieren diagnostics allows one to obtain qualitatively the density distribution behind the shock wave front, which is important for the determination of the energy transfer from the discharge channel to the generated water flow.

  2. Polarimetry and Schlieren diagnostics of underwater exploding wires

    International Nuclear Information System (INIS)

    Fedotov-Gefen, A. V.; Krasik, Ya. E.

    2009-01-01

    Nondisturbing laser-probing polarimetry (based on the Faraday and Kerr effects) and Schlieren diagnostics were used in the investigation of underwater electrical wire explosion. Measuring the polarization plane rotation angle of a probing laser beam due to the Faraday effect allows one to determine an axially resolved current flowing through the exploding wire, unlike commonly used current probes. This optical method of measuring current yields results that match those obtained using a current viewing resistor within an accuracy of 10%. The same optical setup allows simultaneous space-resolved measurement of the electric field using the Kerr effect. It was shown that the maximal amplitude of the electric field in the vicinity of the high-voltage electrode is ∼80 kV/cm and that the radial electric field is <1 MV/cm during the wire explosion. Finally, it was shown that the use of Schlieren diagnostics allows one to obtain qualitatively the density distribution behind the shock wave front, which is important for the determination of the energy transfer from the discharge channel to the generated water flow.

  3. A diagnostic methodology for refrigerating systems; Methodologie de diagnostic des installations frigorifiques

    Energy Technology Data Exchange (ETDEWEB)

    Vrinat, G. [Association Francaise du Froid (AFF), 75 - Paris (France)

    1997-12-31

    A diagnostic methodology for refrigerating machines, equipment and plants has been defined and evaluated for EDF, the French national power utility and ADEME, the French Agency for Energy Conservation, in the framework of energy conservation objectives: the diagnostic method should enable to identify malfunctions, assess the cost efficiency of the equipment, identify limiting factors, and consider corrective measures

  4. Use of normoxic polymer gel dosimeters for measuring diagnostic doses on CT scanners

    International Nuclear Information System (INIS)

    Hill, B; Venning, A J; Baldock, C

    2004-01-01

    X-ray CT has been used to evaluate polymer gel dosimeters for dose response in the therapeutic dose range. This method of polymer gel dosimeter evaluation has been shown to be useful for instance in the comparison of complex sterotactic field distributions with treatment plans. Image averaging and subtraction techniques are used for noise reduction in polymer gel dosimeters resulting in the delivery of several CT slices across the polymer gel dosimeters. It was a logical progression to evaluate normoxic polymer gel dosimeters with optimized CT scanning protocols. During these investigations it was found that unirradiated regions in irradiated normoxic polymer gel dosimetry phantoms polymerised possibly as a result of the evaluation using CT. This prompted an investigation of the CT diagnostic dose response of the normoxic polymer gel dosimeter in order to determine the dose contribution when evaluated using a CT scanner. Having established that there was an effect on the normoxic polymer gel dosimeter when evaluating with a CT scanner the suitability of these gels in the determination of CT diagnostic dose measurement was further investigated

  5. FEL diagnostics and user control

    International Nuclear Information System (INIS)

    Knippels, G.M.H.; Meer, A.F.G. van der

    1998-01-01

    The most recent upgrades and improvements to the free-electron laser (FEL) facility FELIX are presented. Special attention is paid to the improved beam-handling and diagnostic station. In this evacuated beam station a device is implemented that is capable of selecting single micropulses with measured efficiencies of more than 50% over the whole wavelength range of FELIX (5-110 μm). Furthermore, the broadband autocorrelator for micropulse length measurements and the planned continuous polarization rotator based on reflective optics are discussed. Recent additions to the ancillary equipment available to FEL users are presented briefly. The most important ones are the mirror-dispersion-controlled 10-fs Ti:sapphire laser and the 40-T magnet. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Severity of Carpal Tunnel Syndrome and Diagnostic Accuracy of Hand and Body Anthropometric Measures.

    Directory of Open Access Journals (Sweden)

    Mauro Mondelli

    Full Text Available To study the diagnostic properties of hand/wrist and body measures according to validated clinical and electrophysiological carpal tunnel syndrome (CTS severity scales.We performed a prospective case-control study. For each case, two controls were enrolled. Two five-stage clinical and electrophysiological scales were used to evaluate CTS severity. Anthropometric measurements were collected and obesity indicators and hand/wrist ratios were calculated. Area under the receiver operating characteristic curves (AUC, sensitivity, specificity, and likelihood ratios were calculated separately by gender.We consecutively enrolled 370 cases and 747 controls. The wrist-palm ratio, waist-hip-height ratio and waist-stature ratio showed the highest proportion of cases with abnormal values in the severe stages of CTS for clinical and electrophysiological severity scales in both genders. Accuracy tended to increase with CTS severity for females and males. In severe stage, most of the indexes presented moderate accuracy in both genders. Among subjects with severe CTS, the wrist-palm ratio presented the highest AUC for hand measures in the clinical and electrophysiological severity scales both in females (AUC 0.83 and 0.76, respectively and males (AUC 0.91 and 0.82, respectively. Among subjects with severe CTS, the waist-stature ratio showed the highest AUC for body measures in the clinical and electrophysiological severity scales both in females (AUC 0.78 and 0.77, respectively and males (AUC 0.84 and 0.76, respectively. The results of waist-hip-height ratio AUC were similar.Wrist-palm ratio, waist-hip-height ratio and waist-stature ratio could contribute to support the diagnostic hypothesis of severe CTS that however has to be confirmed by nerve conduction study.

  7. Team building and diagnostic training

    International Nuclear Information System (INIS)

    Bulmer, S.

    1987-01-01

    While developing a commercial training program to improve teamwork in control room crews, General Electric's Nuclear Training Services made an important discovery. Traditional training methods for developing teamwork and enhancing diagnostics capabilities are incomplete. Traditional methods generally help, but fail to fulfill the long-term needs of most teams. Teamwork has been treated as a short-term performance problem. Traditional diagnostic training suffers from a similar problem. Too often, it covers only the basic principles of decision-making, ignoring the development of expert diagnostic capabilities. In response to this discovery, they have developed comprehensive training in Team Building and Diagnostics

  8. Status of the new thermal He-beam diagnostic for electron density and temperature measurements in the scrape-off layer of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Griener, Michael; Stroth, Ulrich [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Physik Department E28, Technische Universitaet Muenchen, 85748 Garching (Germany); Wolfrum, Elisabeth; Eich, Thomas; Herrmann, Albrecht; Rohde, Volker [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Schmitz, Oliver [Engineering Physics Department, University of Wisconsin-Madison (United States); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    In a nuclear fusion device a significant fraction of power is exhausted across the last closed flux surface into the so-called ''scrape-off layer''. In order to study the transport dynamics to (a) the divertor via parallel heat flux and (b) to the wall via filaments, a diagnostic for the determination of n{sub e} and T{sub e} with high spatial and temporal resolution is required. These data should be provided by the new thermal He-beam diagnostic, where helium is injected into the plasma by a piezo valve. The principle of this diagnostic is the measurement of line resolved emission intensities of the excited helium. The calculated line intensity ratios of two singlet lines combined with a collisional radiative model then lead to n{sub e} values, whereas singlet-triplet ratios yield T{sub e} values. The principle of the He-diagnostic as well as emission profiles of several He I transitions measured during the campaign 2015/2016 will be shown. First calculated n{sub e} and T{sub e} profiles will be compared to data from the lithium beam and the Thomson scattering diagnostic.

  9. Recent developments of ECE diagnostics at JET

    Energy Technology Data Exchange (ETDEWEB)

    Luna, E. de la; Sanchez, J. [Association Euratom-Ciemat para Fusion, Ciemant (Spain); Cientoli, C.; Blanchard, P.; Joffrin, E.; Mazon, D. [Association Euratom-ENEA sulla Fusione, IFP-CNR, Milano (Italy); Riva, M.; Zerbini, M. [Association Euratom-ENEA sulla Fusione Centro Ricerche Energia Frascati (Italy); Conway, G. [IPP-Euratom Association, Garching (Germany); Felton, R.; Fessey, J.; Gowers, C. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Murari, A. [Consorzio RFX, Association Euratom-ENEA sulla Fusione, Padova (Italy)

    2004-07-01

    In JET, two types of ECE (electron cyclotron emission) instruments are routinely operated to provide electron temperature measurements: a Michelson interferometer and a heterodyne radiometer. ECE diagnostics are able to provide time-resolved electron temperature profiles with high spatial and temporal resolution, and have proven to play a fundamental role in the investigation and development of internal transport barriers (ITBs) in JET. In this paper we report on the major upgrade of the ECE diagnostics systems currently in progress at JET. Diagnostic developments include an upgrade of the multi-channel heterodyne radiometer, aimed at extending the radial region over which T{sub e} measurement can be performed, and the installation of a new Michelson interferometer with fast scanning capability, to improve the frequency and temporal resolution of the multi-harmonic ECE measurements at JET. Moreover, a future extension of the ECE system, an oblique ECE diagnostic to measure the ECE spectra at different angles with respect to the normal to the magnetic field, is being developed. This diagnostic is expected to give valuable insight into the interpretation of ECE measurements in high T{sub e}-plasmas and should be available for measurements once JET resumes operation in 2005.In this paper, the recent developments in the JET ECE diagnostic system will be described and illustrated with some recent results, with an emphasis on issues related with calibration stability, high-Te plasmas and ITB studies. Some of these issues will be discussed in the context of ITER.

  10. Importance of clinical examination in diagnostics of Osgood-Schlatter Disease in boys playing soccer or basketball

    Directory of Open Access Journals (Sweden)

    Amela Halilbasic

    2012-04-01

    Full Text Available Introduction: Osgood–Schlatter disease is an irritation of the patellar tendon at the tibial tubercle. Sports with jumps, running, and repeated contractions of knee extension apparatus are considered to be importantexternal risk-factors which could cause Osgood–Schlatter disease.Objectives of the study are to draw attention to the importance of clinical examination in diagnostics of Osgood–Schlatter disease in boys playing soccer or basketball.Methods: The research included data obtained from 120 boys, average age of 14 years. Examinees were split into two groups, one with young athletes which regularly have soccer or basketball trainings and thesecond one with boys who do not participating in sports. We performed anthropological measurements and clinical examinations of both knees and hips for both groups. For the statistical analysis we used pointbiserialcorrelation coefficient.Results: Based on clinical examination, Osgood–Schlatter disease was diagnosed in 51 examinees (42.5%. In “athletic group” Osgood–Schlatter disease had 31 boys or 52%, comparing with “non-athletic group” wherewe found 20 adolescents with disease (33%. Number of boys with Osgood–Schlatter disease was higher for 19% in “athletic group” comparing with “non-athletic group”. Comparing incidence rate for boys in both groups with diagnosed II and III level of Osgood–Schlatter disease we found that rate is higher in “athletic group” 2.25 times comparing with “non-athletic group”.Conclusions: Clinical examination is critical method in the process of diagnosing Osgood–Schlatter disease especially for identifying II and III level of this disease.

  11. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Science.gov (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  12. Thermoluminescent dosemeters characterization for patient dosimetry in diagnostic radiology preliminary results

    International Nuclear Information System (INIS)

    Castro, William J.; Squair, Peterson L.; Gonzaga, Natalia B.; Nogueira, Maria S.; Silva, Teogenes A. da

    2009-01-01

    The determination of the metrological characteristics of thermoluminescent (TL) dosimeters plays an important role in dosimetry of patients submitted to x-ray examinations for diagnostic purpose. Entrance surface doses can be measured with TL dosimeters to verify the compliance with the diagnostic reference levels. Organ doses can be estimated through TL measurements in an anthropomorphic phantom which it allows the radiation risk assessment. In this work, LiF:Mg,Ti (TLD-100) rod and chip thermoluminescent dosimeters were characterized considering their use for patient dosimetry in computerized tomography and mammography. Preliminary results showed that TL dosimeters have a response reproducibility of 7.8% and 4.8% and homogeneity of 18.4% and 6.5% for rod and chip shapes, respectively. (author)

  13. A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings

    Science.gov (United States)

    Blashenkov, N. M.; Sheshenya, E. S.; Solov'ev, S. M.; Sachenko, V. D.; Gall, L. N.; Zarutskii, I. V.; Gall, N. R.

    2013-05-01

    A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings based on the carbon-13 isotope breath test has been designed and constructed. Important stages of the work included (i) calculating a low-aberration mass analyzer, (ii) manufacturing and testing special gas inlet system, and (iii) creating a small-size collector of ions. The proposed instrument ensures 13C/12C isotopic ratio measurement to within 1.7‰ (pro mille) accuracy, which corresponds to requirements for a diagnostic tool. Preliminary medical testing showed that the mass spectrometer is applicable to practical diagnostics. The instrument is also capable of measuring isotopic ratios of other light elements, including N, O, B (for BF2+ ions), Ar, Cl, and S.

  14. A diagnostic for electron dynamics in tokamaks. Final report

    International Nuclear Information System (INIS)

    Skiff, F.; Boyd, D.

    1997-12-01

    The diagnostic was installed on TdeV and brought into operation. It was optimized to the extent that time and money permitted. A considerable quantity of data was accumulated and analyzed. Experiments ended in August 1995. The apparatus has been removed from TdeV and returned to the University of Maryland. Each of these activities is detailed here. The diagnostic worked very well. Although the distribution functions behaved in ways that were not anticipated and the refractive losses were sometimes higher than projected, the authors were able to adapt to the unexpected. In the authors' estimation, all of the effects listed above are significant, and warrant further study. The diagnostic is ready for use as a tool to study the physics of current drive and current profile modification. A mechanism for steering the launched beams is desirable to cope with the strong variations in refraction which are seen. Phased array launchers seem attractive for this purpose. Tuning of the length of the waveguide run is important to avoid troublesome reflections (return losses). It may be best to build in this capability in a future system. The perpendicular dynamics of the current driven electrons are invisible to us with the present form of the diagnostic. Simultaneous measurements at fundamental and harmonic frequencies would make perpendicular distribution function measurements possible

  15. The impact of new trends in POCTs for companion diagnostics, non-invasive testing and molecular diagnostics.

    Science.gov (United States)

    Huckle, David

    2015-06-01

    Point-of-care diagnostics have been slowly developing over several decades and have taken on a new importance in current healthcare delivery for both diagnostics and development of new drugs. Molecular diagnostics have become a key driver of technology change and opened up new areas in companion diagnostics for use alongside pharmaceuticals and in new clinical approaches such as non-invasive testing. Future areas involving smartphone and other information technology advances, together with new developments in molecular biology, microfluidics and surface chemistry are adding to advances in the market. The focus for point-of-care tests with molecular diagnostic technologies is focused on advancing effective applications.

  16. ITER diagnostics ex-vessel engineering services

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, A.P., E-mail: arun.prakash@iter.org; Walker, C.I.; Andrew, P.; Barnsley, R.; Beltran, D.; Bertalot, L.; Dammann, A.; Direz, M.F.; Drevon, J.M.; Encheva, A.; Giacomin, T.; Hourtoule, J.; Kuehn, I.; Lanza, R.; Levesy, B.; Maquet, P.; Patel, K.M.; Patisson, L.; Pitcher, C.S.; Portales, M.; and others

    2013-10-15

    Highlights: • This paper describes about the ITER diagnostics ex-vessel engineering services. • It describes various diagnostics systems, its location and its environment. • Diagnostics interfaces with other services such as the buildings, HVAC, electrical services, cooling water, vacuum, liquid and gas distribution. • All the interfaces with these services are identified and defined. • Buildings services for diagnostics, such as penetrations, local shielding, embedment and temperature control are discussed. -- Abstract: Extensive diagnostics systems will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include measurements of temperature, density, impurity concentration, and particle and energy confinement times. ITER diagnostic systems extend from the center of the Tokamak to the various diagnostic areas, where they are controlled and acquired data is processed. This mainly includes the areas such as ports, port cells, gallery, diagnostics enclosures and cubicle areas. The diagnostics port plugs encloses the front end of the diagnostic systems and the diagnostics building houses the diagnostics equipment, instrumentation and control cubicles. There are several systems providing services to diagnostics. These mainly include ITER buildings, electrical power services, cooling water services, Heating Ventilation and Air Conditioning (HVAC), vacuum services, liquid and gas distribution services, cable engineering, de-tritiation systems, control cubicles, etc. Requirements of these service systems have to be defined, even though many of the diagnostics are at an early stage of development. It is a real challenge to define and to design diagnostics systems considering the constraints imposed by these service systems. This paper summarizes the provision of these services to the individual diagnostics and diagnostics areas

  17. ITER diagnostics ex-vessel engineering services

    International Nuclear Information System (INIS)

    Arumugam, A.P.; Walker, C.I.; Andrew, P.; Barnsley, R.; Beltran, D.; Bertalot, L.; Dammann, A.; Direz, M.F.; Drevon, J.M.; Encheva, A.; Giacomin, T.; Hourtoule, J.; Kuehn, I.; Lanza, R.; Levesy, B.; Maquet, P.; Patel, K.M.; Patisson, L.; Pitcher, C.S.; Portales, M.

    2013-01-01

    Highlights: • This paper describes about the ITER diagnostics ex-vessel engineering services. • It describes various diagnostics systems, its location and its environment. • Diagnostics interfaces with other services such as the buildings, HVAC, electrical services, cooling water, vacuum, liquid and gas distribution. • All the interfaces with these services are identified and defined. • Buildings services for diagnostics, such as penetrations, local shielding, embedment and temperature control are discussed. -- Abstract: Extensive diagnostics systems will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include measurements of temperature, density, impurity concentration, and particle and energy confinement times. ITER diagnostic systems extend from the center of the Tokamak to the various diagnostic areas, where they are controlled and acquired data is processed. This mainly includes the areas such as ports, port cells, gallery, diagnostics enclosures and cubicle areas. The diagnostics port plugs encloses the front end of the diagnostic systems and the diagnostics building houses the diagnostics equipment, instrumentation and control cubicles. There are several systems providing services to diagnostics. These mainly include ITER buildings, electrical power services, cooling water services, Heating Ventilation and Air Conditioning (HVAC), vacuum services, liquid and gas distribution services, cable engineering, de-tritiation systems, control cubicles, etc. Requirements of these service systems have to be defined, even though many of the diagnostics are at an early stage of development. It is a real challenge to define and to design diagnostics systems considering the constraints imposed by these service systems. This paper summarizes the provision of these services to the individual diagnostics and diagnostics areas

  18. ICF in the U.S.: Facilities and diagnostics

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1988-08-01

    In the last few years there has been significant progress in ICF research in laboratories in the United States and elsewhere. These advances have occurred in areas that range from demonstrating an innovative laser beam smoothing techniques important for both directly and indirectly driven ICF, to achieving a more complete understanding of capsule implosions and related physics. This progress has been possible because of the capabilities provided by the ICF laser-target facilities currently in operation and the new developments in diagnostics, particularly for measurements of the implosion process and the conditions in the compressed capsule core. Both of these topics, facilities and selected new diagnostics capabilities in the US ICF Program, are summarized in this paper. 32 refs., 19 figs., 6 tabs

  19. A computational framework for converting textual clinical diagnostic criteria into the quality data model.

    Science.gov (United States)

    Hong, Na; Li, Dingcheng; Yu, Yue; Xiu, Qiongying; Liu, Hongfang; Jiang, Guoqian

    2016-10-01

    Constructing standard and computable clinical diagnostic criteria is an important but challenging research field in the clinical informatics community. The Quality Data Model (QDM) is emerging as a promising information model for standardizing clinical diagnostic criteria. To develop and evaluate automated methods for converting textual clinical diagnostic criteria in a structured format using QDM. We used a clinical Natural Language Processing (NLP) tool known as cTAKES to detect sentences and annotate events in diagnostic criteria. We developed a rule-based approach for assigning the QDM datatype(s) to an individual criterion, whereas we invoked a machine learning algorithm based on the Conditional Random Fields (CRFs) for annotating attributes belonging to each particular QDM datatype. We manually developed an annotated corpus as the gold standard and used standard measures (precision, recall and f-measure) for the performance evaluation. We harvested 267 individual criteria with the datatypes of Symptom and Laboratory Test from 63 textual diagnostic criteria. We manually annotated attributes and values in 142 individual Laboratory Test criteria. The average performance of our rule-based approach was 0.84 of precision, 0.86 of recall, and 0.85 of f-measure; the performance of CRFs-based classification was 0.95 of precision, 0.88 of recall and 0.91 of f-measure. We also implemented a web-based tool that automatically translates textual Laboratory Test criteria into the QDM XML template format. The results indicated that our approaches leveraging cTAKES and CRFs are effective in facilitating diagnostic criteria annotation and classification. Our NLP-based computational framework is a feasible and useful solution in developing diagnostic criteria representation and computerization. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Microwave reflectometry for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    1992-01-01

    This document contains a collection of 26 papers on ''Microwave Reflectometry for Fusion Plasma Diagnostics'', presented at the IAEA Technical Committee Meeting of the same name held at the JET Joint Undertaking, Abingdon, United Kingdom, March 4-6, 1992. It contains five papers on the measurement of plasma density profiles, six papers on theory and simulations in support of the development and application of this type of plasma diagnostics, eight papers on the measurement of density transients and fluctuations, and seven on new approaches to reflectometry-based plasma diagnostics. Refs, figs and tabs

  1. CO2 laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    International Nuclear Information System (INIS)

    Vyacheslavov, L.N.; Tanaka, K.; Kawahata, K.

    2001-04-01

    A CO 2 laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  2. Clinical dosimetry in diagnostic and interventional radiology

    International Nuclear Information System (INIS)

    Dimcheva, M.; Sergieva, S.; Jovanovska, A.

    2012-01-01

    Full text: Introduction: Diagnostic and interventional procedures involving x-rays are the most significant contributor to total population dose form man made sources of ionizing radiation. Purpose and aim: X-ray imaging generally covers a diverse range of examination types, many of which are increasing in frequency and technical complexity. Materials and methods: The European Directives 96/29 and 97/43 EURATOM stress the importance of accurate dosimetry and require calibration of all measuring equipment related to application of ionizing radiation in medicine. Results: The paper gives and overview of current system of dosimetry of ionizing radiations that is relevant for metrology and clinical applications. It also reflects recently achieved international harmonization in the field promoted by International Atomic Energy Agency (IAEA). Discussion: Objectives of clinical dose measurements in diagnostic and interventional radiology are multiple, as assessment of equipment performance, or assessment of risk emerging from use of ionizing radiation Conclusion: Therefore, from the clinical point of view, the requirements for dosimeters and procedures to assess dose to standard dosimetry phantoms and patients in clinical diverse modalities, as computed tomography are presented

  3. Patient doses due to a diagnostic X-ray picture

    International Nuclear Information System (INIS)

    Riet, A. van 't.

    1977-09-01

    The influence of technical parameters on patient doses in X-ray diagnostics has been investigated. During an X-ray picture (30 x 40 or 35 x 43 cm 2 ) for general survey in intraveneous pyelography (IVP), skin exposure measurements in the centre of the radiation beam were carried out at 650 adult female patients in 46 Dutch hospitals. In addition, the first half-value layer of the radiation was measured. In 15 of these hospitals, similar measurements were also carried out at a Rando phantom. Small LiF thermoluminescent dosemeters were used for all measurements. The results show a remarkable variation in the mean entrance- and exit-exposure per hospital. The variation in the mean entrance-exposure per hospital (factor 8) is mainly caused by differences in radiation quality. In some hospitals, no added filtration is used while others use a relatively heavy filtration. The variation in the mean exit-exposure per hospital could not be explained uniquely from technical parameters like grid, screen and film sensivity. From phantom measurements it was found that other parameters like adjustment of the automatic exposure timer and film density required by the radiographer are of importance. The measuring system used has shown to be an adequate and simple tool for a crude selection of those hospitals where skin exposures are relatively high. On the basis of the collected data some recommendations are given to promote dose reduction in X-ray diagnostics. The use of fast screen-film combinations is of great potential importance. However further investigation seems desirable, especially concerning patient dose during fluoroscopy 0

  4. Performance of Rapid Diagnostic Tests for Imported Malaria in Clinical Practice: Results of a National Multicenter Study

    Science.gov (United States)

    Houzé, Sandrine; Boutron, Isabelle; Marmorat, Anne; Dalichampt, Marie; Choquet, Christophe; Poilane, Isabelle; Godineau, Nadine; Le Guern, Anne-Sophie; Thellier, Marc; Broutier, Hélène; Fenneteau, Odile; Millet, Pascal; Dulucq, Stéphanie; Hubert, Véronique; Houzé, Pascal; Tubach, Florence; Le Bras, Jacques; Matheron, Sophie

    2013-01-01

    We compared the performance of four rapid diagnostic tests (RDTs) for imported malaria, and particularly Plasmodium falciparum infection, using thick and thin blood smears as the gold standard. All the tests are designed to detect at least one protein specific to P. falciparum ( Plasmodium histidine-rich protein 2 (PfHRP2) or Plasmodium LDH (PfLDH)) and one pan-Plasmodium protein (aldolase or Plasmodium LDH (pLDH)). 1,311 consecutive patients presenting to 9 French hospitals with suspected malaria were included in this prospective study between April 2006 and September 2008. Blood smears revealed malaria parasites in 374 cases (29%). For the diagnosis of P. falciparum infection, the three tests detecting PfHRP2 showed high and similar sensitivity (96%), positive predictive value (PPV) (90%) and negative predictive value (NPV) (98%). The PfLDH test showed lower sensitivity (83%) and NPV (80%), despite good PPV (98%). For the diagnosis of non-falciparum species, the PPV and NPV of tests targeting pLDH or aldolase were 94–99% and 52–64%, respectively. PfHRP2-based RDTs are thus an acceptable alternative to routine microscopy for diagnosing P. falciparum malaria. However, as malaria may be misdiagnosed with RDTs, all negative results must be confirmed by the reference diagnostic method when clinical, biological or other factors are highly suggestive of malaria. PMID:24098699

  5. Application of Thomson scattering at 1.06μm as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    International Nuclear Information System (INIS)

    Franke, S.

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs

  6. Diagnostic procedure on brake pad assembly based on Young's modulus estimation

    International Nuclear Information System (INIS)

    Chiariotti, P; Santolini, C; Tomasini, E P; Martarelli, M

    2013-01-01

    Quality control of brake pads is an important issue, since the pad is a key component of the braking system. Typical damage of a brake pad assembly is the pad–backing plate detachment that affects and modifies the mechanical properties of the whole system. The most sensitive parameter to the damage is the effective Young's modulus, since the damage induces a decrease of the pad assembly stiffness and therefore of its effective Young's modulus: indeed its variation could be used for diagnostic purposes. The effective Young's modulus can be estimated from the first bending resonance frequency identified from the frequency response function measured on the pad assembly. Two kinds of excitation methods, i.e. conventional impulse excitation and magnetic actuation, will be presented and two different measurement sensors, e.g. laser Doppler vibrometer and microphone, analyzed. The robustness of the effective Young's modulus as a diagnostic feature will be demonstrated in comparison to the first bending resonance frequency, which is more sensitive to geometrical dimensions. Variability in the sample dimension, in fact, will induce a variation of the resonance frequency which could be mistaken for damage. The diagnostic approach has been applied to a set of undamaged and damaged pad assemblies showing good performance in terms of damage identification. The environmental temperature can be an important interfering input for the diagnostic procedure, since it influences the effective Young's modulus of the assembly. For that reason, a test at different temperatures in the range between 15 °C and 30 °C has been performed, evidencing that damage identification technique is efficient at any temperature. The robustness of the Young's modulus as a diagnostic feature with respect to damping is also presented. (paper)

  7. Towards diagnostics for a fusion reactor

    International Nuclear Information System (INIS)

    Costley, A. E.

    2009-01-01

    The requirements for measurements on modern tokamak fusion plasmas are outlined, and the techniques and systems used to make the measurements, usually referred to as 'diagnostics', are introduced. The basics of three particular diagnostics - magnetics, neutron systems and a laser based optical system - are outlined as examples of modern diagnostic systems, and the implementation of these diagnostics on a current tokamak (JET) are described. The next major step in magnetic confinement fusion is the construction and operation of the International Thermonuclear Experimental Reactor (ITER), which is a joint project of China, Europe, Japan, India, Korea, the Russian Federation, and the United States. Construction has begun in Cadarache, France. It is expected that ITER will operate at the 500 MW level. Because of the harsh environment in the vacuum vessel where many diagnostic components are located, the development of diagnostics for ITER is a major challenge - arguably the most difficult challenge ever undertaken in the field of diagnostics. The main elements in the diagnostic step are outlined using the three chosen techniques as examples. Finally, the step beyond ITER to a demonstration reactor, DEMO, that is expected to produce several GWs of fusion power is considered and the impact on diagnostics outlined. It is shown that the applicability and development steps needed for the individual diagnostics techniques will differ. The challenges for DEMO diagnostics are substantial and a dedicated effort should be made to find and develop new techniques, and especially techniques appropriate to the DEMO environment. It is argued that the limitations and difficulties in diagnostics should be a consideration in the optimization and designs of DEMO. (author)

  8. Severity of Carpal Tunnel Syndrome and Diagnostic Accuracy of Hand and Body Anthropometric Measures

    Science.gov (United States)

    Mondelli, Mauro; Farioli, Andrea; Mattioli, Stefano; Aretini, Alessandro; Ginanneschi, Federica; Greco, Giuseppe; Curti, Stefania

    2016-01-01

    Objective To study the diagnostic properties of hand/wrist and body measures according to validated clinical and electrophysiological carpal tunnel syndrome (CTS) severity scales. Methods We performed a prospective case-control study. For each case, two controls were enrolled. Two five-stage clinical and electrophysiological scales were used to evaluate CTS severity. Anthropometric measurements were collected and obesity indicators and hand/wrist ratios were calculated. Area under the receiver operating characteristic curves (AUC), sensitivity, specificity, and likelihood ratios were calculated separately by gender. Results We consecutively enrolled 370 cases and 747 controls. The wrist-palm ratio, waist-hip-height ratio and waist-stature ratio showed the highest proportion of cases with abnormal values in the severe stages of CTS for clinical and electrophysiological severity scales in both genders. Accuracy tended to increase with CTS severity for females and males. In severe stage, most of the indexes presented moderate accuracy in both genders. Among subjects with severe CTS, the wrist-palm ratio presented the highest AUC for hand measures in the clinical and electrophysiological severity scales both in females (AUC 0.83 and 0.76, respectively) and males (AUC 0.91 and 0.82, respectively). Among subjects with severe CTS, the waist-stature ratio showed the highest AUC for body measures in the clinical and electrophysiological severity scales both in females (AUC 0.78 and 0.77, respectively) and males (AUC 0.84 and 0.76, respectively). The results of waist-hip-height ratio AUC were similar. Conclusions Wrist-palm ratio, waist-hip-height ratio and waist-stature ratio could contribute to support the diagnostic hypothesis of severe CTS that however has to be confirmed by nerve conduction study. PMID:27768728

  9. Cognitive aspect of diagnostic errors.

    Science.gov (United States)

    Phua, Dong Haur; Tan, Nigel C K

    2013-01-01

    Diagnostic errors can result in tangible harm to patients. Despite our advances in medicine, the mental processes required to make a diagnosis exhibits shortcomings, causing diagnostic errors. Cognitive factors are found to be an important cause of diagnostic errors. With new understanding from psychology and social sciences, clinical medicine is now beginning to appreciate that our clinical reasoning can take the form of analytical reasoning or heuristics. Different factors like cognitive biases and affective influences can also impel unwary clinicians to make diagnostic errors. Various strategies have been proposed to reduce the effect of cognitive biases and affective influences when clinicians make diagnoses; however evidence for the efficacy of these methods is still sparse. This paper aims to introduce the reader to the cognitive aspect of diagnostic errors, in the hope that clinicians can use this knowledge to improve diagnostic accuracy and patient outcomes.

  10. Current Status on Stress Diagnostic Kit and Detection Technology

    International Nuclear Information System (INIS)

    Park, Sang Hyun; Choi, Mi Hee; Ko, Kyong Cheol

    2008-06-01

    The accurate measurement of a stress level is one of the most important issues in a stress diagnosis and its measurement could be of great value in clinical medicine. Stress has a potent effect on the spirit and physical condition of an individual. There are various methods available for its measurement. Some of the commonly used techniques for the diagnosis of a stress level include analysis of the body fluids, questionnaire assessments, psychophysiological evaluations and by determining heart rate variability (HRV) of subjects. However, the existing diagnostic methods have several defects like, a low sensitivity, inaccuracy and long of operation time. In this report, we present a diagnostic technology to detect a stress level which is the origin of various diseases. This method can be of great help in providing an early diagnosis through a biosensor and might play a vital role in preventing diseases like hypochondria and hypertension. Majority of the human population is exposed to stress in one way or another and hence developing a convenient stress diagnosis kit will be of great use to all. This stress diagnostic kit and detection technology dose not involve simple a mechanical measurement or questionnaires, but is based on developing a detection kit with a high sensitivity, which will mean an easy use for common man. Individuals can undergo regular check ups and can personally diagnose their present situation of health by determining their stress levels, thus enabling them to diagnose the early onset of several stress disorders. This might help them take precautionary measures and thereby lead to a healthy life

  11. Current Status on Stress Diagnostic Kit and Detection Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hyun; Choi, Mi Hee; Ko, Kyong Cheol

    2008-06-15

    The accurate measurement of a stress level is one of the most important issues in a stress diagnosis and its measurement could be of great value in clinical medicine. Stress has a potent effect on the spirit and physical condition of an individual. There are various methods available for its measurement. Some of the commonly used techniques for the diagnosis of a stress level include analysis of the body fluids, questionnaire assessments, psychophysiological evaluations and by determining heart rate variability (HRV) of subjects. However, the existing diagnostic methods have several defects like, a low sensitivity, inaccuracy and long of operation time. In this report, we present a diagnostic technology to detect a stress level which is the origin of various diseases. This method can be of great help in providing an early diagnosis through a biosensor and might play a vital role in preventing diseases like hypochondria and hypertension. Majority of the human population is exposed to stress in one way or another and hence developing a convenient stress diagnosis kit will be of great use to all. This stress diagnostic kit and detection technology dose not involve simple a mechanical measurement or questionnaires, but is based on developing a detection kit with a high sensitivity, which will mean an easy use for common man. Individuals can undergo regular check ups and can personally diagnose their present situation of health by determining their stress levels, thus enabling them to diagnose the early onset of several stress disorders. This might help them take precautionary measures and thereby lead to a healthy life.

  12. Prostate cancer - epidemiology, etiology, diagnostics, clinical symptoms, screening

    International Nuclear Information System (INIS)

    Ondrus, D.

    2006-01-01

    Prostate cancer presents a real important medical and social problem at present. It is one of the most common malignancy in males. In global point of view it means permanent incidence increase of this disease. Despite improvement of prostate cancer diagnosis and complex treatment mortality does not decreased significantly. Knowledge of etiological factors are relatively limited. Important factors are: genetic disposition, age, life style, race, positive familial history, circulated androgens. Diagnostics is well known, based on routine clinical methods: digital rectal examination, measurement of PSA a transrectal ultrasound. Benefit of prostate cancer screening is until now unclear, controversial. (author)

  13. The Importance of Landfill Gas Policy Measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The purpose of this document is to identify and examine global policies, measures, and incentives that appear to be stimulating LFG use. As certain countries have made great advances in LFGE development through effective policies, the intention of this report is to use information from the IEA's Global Renewable Energy and Energy Efficiency Measures and Policies Databases to identify and discuss policies. By consolidating this information and categorising it according to policy type, the attributes that are most appealing or applicable to the circumstances of a particular country or area -- technology demonstration, financial incentives, awareness campaigns, etc. -- are more easily identified. The report begins with background information on LFG and sanitary landfill practices, including a discussion of regional disparities, followed by a description of LFG mitigation technologies. Barriers to LFGE projects are then outlined. An explanation of the importance and effectiveness of policy measures leads into a discussion of types and examples of measures that are being used to overcome these barriers and encourage LFGE development. The report concludes with lessons learned, recommendations for further study, and resources where more information can be found.

  14. The Autism Diagnostic Observation Schedule--Toddler Module: A New Module of a Standardized Diagnostic Measure for Autism Spectrum Disorders

    Science.gov (United States)

    Luyster, Rhiannon; Gotham, Katherine; Guthrie, Whitney; Coffing, Mia; Petrak, Rachel; Pierce, Karen; Bishop, Somer; Esler, Amy; Hus, Vanessa; Oti, Rosalind; Richler, Jennifer; Risi, Susan; Lord, Catherine

    2009-01-01

    The Autism Diagnostic Observation Schedule (ADOS; Lord et al., J Autism Dev Disord, 30(3):205-223, 2000) is widely accepted as a "gold standard" diagnostic instrument, but it is of restricted utility with very young children. The purpose of the current project was to modify the ADOS for use in children under 30 months of age. A modified ADOS, the…

  15. Nanodevices in diagnostics

    Science.gov (United States)

    Hu, Ye; Fine, Daniel H.; Tasciotti, Ennio; Bouamrani, Ali; Ferrari, Mauro

    2010-01-01

    The real-time, personalized and highly sensitive early-stage diagnosis of disease remains an important challenge in modern medicine. With the ability to interact with matter at the nanoscale, the development of nanotechnology architectures and materials could potentially extend subcellular and molecular detection beyond the limits of conventional diagnostic modalities. At the very least, nanotechnology should be able to dramatically accelerate biomarker discovery, as well as facilitate disease monitoring, especially of maladies presenting a high degree of molecular and compositional heterogeneity. This article gives an overview of several of the most promising nanodevices and nanomaterials along with their applications in clinical practice. Significant work to adapt nanoscale materials and devices to clinical applications involving large interdisciplinary collaborations is already underway with the potential for nanotechnology to become an important enabling diagnostic technology. PMID:20229595

  16. Radiation levels in nuclear diagnostic examinations

    International Nuclear Information System (INIS)

    Vermeulen, A.M.T.I.

    1987-01-01

    To estimate the risks for a pregnant radiological worker, radiation level measurements are executed for common nuclear diagnostic techniques. These measurements are combined with the time which the radiologic worker is present during the performance of the diagnostic techniques. It is concluded that a radiologic worker is receiving less than 5 mSv during pregnancy. This is the case with in vivo determination in a department of nuclear medicine with common diagnostic techniques. Reduction of radiation doses during pregnancy is possible by reduction of heart function examinations, skeletal examinations and brain scans. 1 figure; 13 tabs

  17. Radiological, sonographic and radionuclide diagnostics in headache syndrome

    International Nuclear Information System (INIS)

    Scheibler, C.; Pink, V.; Luettschwager, L.; Zur, C.

    1987-01-01

    The complex diagnostics of the headache syndrome is taken as an example for the necessity to apply imaging procedures in a purposeful way in diagnostic strategy. Cooperation of the clinical partners involved is of particular importance in control of the diagnostic process

  18. Measuring and Predicting Tag Importance for Image Retrieval.

    Science.gov (United States)

    Li, Shangwen; Purushotham, Sanjay; Chen, Chen; Ren, Yuzhuo; Kuo, C-C Jay

    2017-12-01

    Textual data such as tags, sentence descriptions are combined with visual cues to reduce the semantic gap for image retrieval applications in today's Multimodal Image Retrieval (MIR) systems. However, all tags are treated as equally important in these systems, which may result in misalignment between visual and textual modalities during MIR training. This will further lead to degenerated retrieval performance at query time. To address this issue, we investigate the problem of tag importance prediction, where the goal is to automatically predict the tag importance and use it in image retrieval. To achieve this, we first propose a method to measure the relative importance of object and scene tags from image sentence descriptions. Using this as the ground truth, we present a tag importance prediction model to jointly exploit visual, semantic and context cues. The Structural Support Vector Machine (SSVM) formulation is adopted to ensure efficient training of the prediction model. Then, the Canonical Correlation Analysis (CCA) is employed to learn the relation between the image visual feature and tag importance to obtain robust retrieval performance. Experimental results on three real-world datasets show a significant performance improvement of the proposed MIR with Tag Importance Prediction (MIR/TIP) system over other MIR systems.

  19. Three-dimensional laser pulse intensity diagnostic for photoinjectors

    Directory of Open Access Journals (Sweden)

    Heng Li

    2011-11-01

    Full Text Available Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs. Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal intensity profiles, with spatial resolution of 20  μm and temporal resolution of 130 fs. The capability is illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.

  20. Psychometric properties of the motor diagnostics in the German football talent identification and development programme.

    Science.gov (United States)

    HÖner, Oliver; Votteler, Andreas; Schmid, Markus; Schultz, Florian; Roth, Klaus

    2015-01-01

    The utilisation of motor performance tests for talent identification in youth sports is discussed intensively in talent research. This article examines the reliability, differential stability and validity of the motor diagnostics conducted nationwide by the German football talent identification and development programme and provides reference values for a standardised interpretation of the diagnostics results. Highly selected players (the top 4% of their age groups, U12-U15) took part in the diagnostics at 17 measurement points between spring 2004 and spring 2012 (N = 68,158). The heterogeneous test battery measured speed abilities and football-specific technical skills (sprint, agility, dribbling, ball control, shooting, juggling). For all measurement points, the overall score and the speed tests showed high internal consistency, high test-retest reliability and satisfying differential stability. The diagnostics demonstrated satisfying factorial-related validity with plausible and stable loadings on the two empirical factors "speed" and "technical skills". The score, and the technical skills dribbling and juggling, differentiated the most among players of different performance levels and thus showed the highest criterion-related validity. Satisfactory psychometric properties for the diagnostics are an important prerequisite for a scientifically sound rating of players' actual motor performance and for the future examination of the prognostic validity for success in adulthood.

  1. Acceptability of the Risk Importance Measures in Evaluation of a Change

    International Nuclear Information System (INIS)

    Dimitrijevic, V. B.; Chapman, J. R.

    1996-01-01

    In this paper, the authors discuss insights gained from evaluating changes to plant design and operational practices. Evaluation of a change is performed in order to provide an answer to two fundamental questions: what is the impact and is the impact acceptable? In order to determine 'the acceptability of an impact', the risk-based technologies today provide various ranking schemes. They are based on the existing IPE studies or PSA models and use of standard risk importance measures. In 'ad hoc' applications of risk importance measures, the specific nature of the analyzed change is often neglected. This paper attempts to capture the most common problems in the application of importance measures, and defines the limits of this application. The authors' position is that the use of risk importance information as the sole basis to accept or reject with ranking results, after the basis for the rank is meaningfully established. (author)

  2. Diagnostics development for E-beam excited air channels

    Science.gov (United States)

    Eckstrom, D. J.; Dickenson, J. S.

    1982-02-01

    As the tempo of development of particle beam weapons increases, more detailed diagnostics of the interaction of the particle beam with the atmosphere are being proposed and implemented. Some of these diagnostics involve probing of the excited air channel with visible wavelength laser radiation. Examples include the use of visible wavelength interferometry to measure electron density profiles in the nose of the beam Ri81 and Stark shift measurements to determine self-induced electric fields Hi81, DR81. In these diagnostics, the change in laser intensity due to the desired diagnostic effect can be quite small, leading to the possibility that other effects, such as gas phase absorption, could seriously interfere with the measurement.

  3. Diagnostics of mobile dust in scrape-off layer plasmas

    International Nuclear Information System (INIS)

    Ratynskaia, S; Castaldo, C; Bergsaaker, H; Rudakov, D

    2011-01-01

    Dust production and accumulation pose serious safety and operational implications for the next generation fusion devices. Mobile dust particles can result in core plasma contamination with impurities, and those with high velocities can significantly contribute to the wall erosion. Diagnostics for monitoring dust in tokamaks during plasma discharges are hence important as they can provide information on dust velocity and size, and-in some cases-on dust composition. Such measurements are also valuable as an input for theoretical models of dust dynamics in scrape-off layer plasmas. Existing in situ dust diagnostics, focusing on the range of dust parameters they can detect, are reviewed. Particular attention is paid to the diagnostics which allow us to detect tails of the dust velocity and size distributions, e.g. small and very fast particles. Some of the techniques discussed have been adopted from space-related research and have been shown to be feasible and useful for tokamak applications as well.

  4. Edge diagnostics for tandem mirror machines

    International Nuclear Information System (INIS)

    Allen, S.L.

    1984-01-01

    The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed

  5. Studies on WWER core diagnostics

    International Nuclear Information System (INIS)

    Lunin, G.L.; Mitin, V.I.; Bulavin, V.V.

    1987-01-01

    The reliability and safety of nuclear power plants have decisive meaning under the situation that nuclear power generation steadily increases, and among various measures aiming at ensuring the reliability and safety in the operation of nuclear power plants, the countermeasures for protecting reactor core, main process equipment and high pressure circuits from damage have the important role, and the monitoring of condition and the organization of forecast, which are carried out continuously or periodically during the operation of nuclear power stations using the diagnostic expert system specially developed for the purpose, are included in them. Such monitoring enables the early detection of mechanical damage, increase of vibration, defects caused during operation and so on in reactor cores and primary and secondary circuits, and the continuous watching of defect developments. Also boiling in a core is detected, the place of abnormality occurrence is identified, and the intensity and characteristics of boiling are determined, thus the occurrence of dangerous condition is prevented. The developments of an in-core monitoring system and noise diagnostic systems are reported. (Kako, I.)

  6. X-ray diagnostics - benefits and risks

    International Nuclear Information System (INIS)

    Bartholomaeus, Melanie

    2016-01-01

    The brochure on benefits and risks of X-ray diagnostics discusses the following issues: X radiation - a pioneering discovery and medical sensation, fundamentals of X radiation, frequency of X-ray examinations in Germany in relation to CT imaging, radiation doses resulting from X-ray diagnostics, benefits of X-ray diagnostics - indication and examples, risks - measures for radiation exposure reductions, avoidance of unnecessary examinations.

  7. First Wall and Operational Diagnostics

    International Nuclear Information System (INIS)

    Lasnier, C; Allen, S; Boedo, J; Groth, M; Brooks, N; McLean, A; LaBombard, B; Sharpe, J; Skinner, C; Whyte, D; Rudakov, D; West, W; Wong, C

    2006-01-01

    In this chapter we review numerous diagnostics capable of measurements at or near the first wall, many of which contribute information useful for safe operation of a tokamak. There are sections discussing infrared cameras, visible and VUV cameras, pressure gauges and RGAs, Langmuir probes, thermocouples, and erosion and deposition measurements by insertable probes and quartz microbalance. Also discussed are dust measurements by electrostatic detectors, laser scattering, visible and IR cameras, and manual collection of samples after machine opening. In each case the diagnostic is discussed with a view toward application to a burning plasma machine such as ITER

  8. Diagnostic development

    International Nuclear Information System (INIS)

    Barnett, C.F.; Brisson, D.A.; Greco, S.E.

    1978-01-01

    During the past year the far-infrared or submillimeter diagnostic research program resulted in three major developments: (1) an optically pumped 0.385-μm D 2 O-laser oscillator-amplifier system was operated at a power level of 1 MW with a line width of less than 50 MHz; (2) a conical Pyrex submillimeter laser beam dump with a retention efficiency greater than 10 4 was developed for the ion temperature Thompson scattering experiment; and (3) a new diagnostic technique was developed that makes use of the Faraday rotation of a modulated submillimeter laser beam to determine plasma current profile. Measurements of the asymmetric distortion of the H/sub α/ (6563 A) spectral line profile show that the effective toroidal drift velocity, dv/sub two vertical bars i/dT/sub i/, may be used as an indicator of plasma quality and as a complement to other ion temperature diagnostics

  9. Multi-complexity ensemble measures for gait time series analysis: application to diagnostics, monitoring and biometrics.

    Science.gov (United States)

    Gavrishchaka, Valeriy; Senyukova, Olga; Davis, Kristina

    2015-01-01

    Previously, we have proposed to use complementary complexity measures discovered by boosting-like ensemble learning for the enhancement of quantitative indicators dealing with necessarily short physiological time series. We have confirmed robustness of such multi-complexity measures for heart rate variability analysis with the emphasis on detection of emerging and intermittent cardiac abnormalities. Recently, we presented preliminary results suggesting that such ensemble-based approach could be also effective in discovering universal meta-indicators for early detection and convenient monitoring of neurological abnormalities using gait time series. Here, we argue and demonstrate that these multi-complexity ensemble measures for gait time series analysis could have significantly wider application scope ranging from diagnostics and early detection of physiological regime change to gait-based biometrics applications.

  10. The LIDAR Thomson scattering diagnostic on JET

    International Nuclear Information System (INIS)

    Salzmann, H.; Gadd, A.

    1989-01-01

    By combining the time-of-flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density can be measured with a single set of detectors for all spatial points. This approach considerably simplifies the collection optics required for measuring a spatial profile. The system is described and examples of measurements are given and compared with the results of other diagnostics. (author)

  11. ROLE AND IMPORTANCE OF KEY PERFORMANCE INDICATORS MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Rade Stanković

    2011-03-01

    Full Text Available Key performance indicators are financial and non financial indicators that organizations use inorder to estimate and fortify how successful they are, aiming previously established long lastinggoals. Appropriate selection of indicators that will be used for measuring is of a greatest importance.Process organization of business is necessary to be constitute in order to realize such effective andefficient system or performance measuring via KPI. Process organization also implies customerorientation and necessary flexibility in nowadays condition of global competition.Explanation of process organization, the way of KPI selection, and practical example of KPImeasuring in Toyota dealerships are presented in this paper.

  12. Fetal exposure in diagnostic radiology

    International Nuclear Information System (INIS)

    Baker, M.L.; Vandergrift, J.F.; Dalrymple, G.V.

    1979-01-01

    The problem of possible radiation damage to the fetus or embryo as a result of diagnostic radiography during pregnancy, particularly in the early stages, is discussed. Recommendations of therapeutic abortion after fetal exposure require an adequate knowledge of the doses involved. In the absence of actual dose measurements or estimates, approximate exposure levels may be determined from the literature. A summary of published values for radiography involving the lower abdomen is given. Data is also presented from a series of fetal exposures resulting mostly from routine diagnostic radiography when pregnancy was not known at the time but was established later. Results of actual dose measurements using a phantom and of dose calculations based on published values are in reasonable agreement indicating that literature values of dose provide a satisfactory alternative to measurement. These data suggest that diagnostic radiography rarely, if ever, results in fetal exposures high enough to justify therapeutic abortion. (author)

  13. Gonad shielding in diagnostic radiology

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The use of gonad shielding is an important radiation protection technique, intended to reduce unnecessary x-ray exposure of the gonads of patients from diagnostic x-ray procedures. The types of gonad shields in use are discussed as are the types of diagnostic examinations that should include gonad shielding. It was found that when properly used, most shields provided substantial gonad dose reductions

  14. Status of ITER neutron diagnostic development

    Science.gov (United States)

    Krasilnikov, A. V.; Sasao, M.; Kaschuck, Yu. A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V. S.; Popovichev, S.; Iguchi, T.; Jarvis, O. N.; Källne, J.; Fiore, C. L.; Roquemore, A. L.; Heidbrink, W. W.; Fisher, R.; Gorini, G.; Prosvirin, D. V.; Tsutskikh, A. Yu.; Donné, A. J. H.; Costley, A. E.; Walker, C. I.

    2005-12-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented.

  15. Status of ITER neutron diagnostic development

    International Nuclear Information System (INIS)

    Krasilnikov, A.V.; Sasao, M.; Kaschuck, Yu.A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V.S.; Popovichev, S.; Iguchi, T.; Jarvis, O.N.; Kaellne, J.; Fiore, C.L.; Roquemore, A.L.; Heidbrink, W.W.; Fisher, R.; Gorini, G.; Prosvirin, D.V.; Tsutskikh, A.Yu.; Donne, A.J.H.; Costley, A.E.; Walker, C.I.

    2005-01-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented

  16. Status of ITER neutron diagnostic development

    International Nuclear Information System (INIS)

    Sasao, M.; Krasilnikov, A.V.; Kaschuck, Yu.A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V.S.; Popovichev, S.; Jarvis, O.N.; Iguchi, T.; Kaellne, J.; Fiore, C.L.; Roquemore, A.L.; Heidbrink, W.W.; Fisher, R.; Gorini, G.; Donne, A.J.H.; Costley, A.E.; Walker, C.I.

    2005-01-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be well measured by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include: radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors, neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The neutron flux monitors need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented. (author)

  17. Pragmatic characteristics of patient-reported outcome measures are important for use in clinical practice.

    Science.gov (United States)

    Kroenke, Kurt; Monahan, Patrick O; Kean, Jacob

    2015-09-01

    Measures for assessing patient-reported outcomes (PROs) that may have initially been developed for research are increasingly being recommended for use in clinical practice as well. Although psychometric rigor is essential, this article focuses on pragmatic characteristics of PROs that may enhance uptake into clinical practice. Three sources were drawn on in identifying pragmatic criteria for PROs: (1) selected literature review including recommendations by other expert groups; (2) key features of several model public domain PROs; and (3) the authors' experience in developing practical PROs. Eight characteristics of a practical PRO include: (1) actionability (i.e., scores guide diagnostic or therapeutic actions/decision making); (2) appropriateness for the relevant clinical setting; (3) universality (i.e., for screening, severity assessment, and monitoring across multiple conditions); (4) self-administration; (5) item features (number of items and bundling issues); (6) response options (option number and dimensions, uniform vs. varying options, time frame, intervals between options); (7) scoring (simplicity and interpretability); and (8) accessibility (nonproprietary, downloadable, available in different languages and for vulnerable groups, and incorporated into electronic health records). Balancing psychometric and pragmatic factors in the development of PROs is important for accelerating the incorporation of PROs into clinical practice. Published by Elsevier Inc.

  18. CO{sub 2} laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Vyacheslavov, L.N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Tanaka, K.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    A CO{sub 2} laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  19. Development of new diagnostics for WEST

    International Nuclear Information System (INIS)

    Lotte, P.; Moreau, P.; Gil, C.

    2015-01-01

    WEST, the upgraded superconducting tokamak Tore Supra, will be an international experimental platform aimed to support ITER Physics program. The main objective of WEST is to provide relevant plasma conditions for validating plasma facing component (PFC) technology, in particular the actively cooled Tungsten divertor monoblocks, and also assessing high heat flux and high fluence plasma wall interactions with Tungsten in order to prepare ITER divertor operation. In parallel, WEST will also open new experimental opportunities for developing integrated H mode operation and exploring steady state scenarios in a metallic environment. In order to fulfil the Scientific Program of WEST, new diagnostics have been developed in addition to the already existing diagnostics of Tore Supra, modified and improved during the shutdown. For the PFC technology validation program, new tools have been implemented, like a full infrared survey of the PFC, a new calorimetry system, local temperature measurements (thermocouple and Bragg grating optical fiber), and several sets of Langmuir probes. For the analysis of long pulse H mode operation, new plasma diagnostics will be implemented, among which the Visible Spectroscopy diagnostic for W sources and transport studies, the Soft-Xray diagnostic based on gas electron multiplier detectors for transport and MHD studies, the X-ray imaging crystal spectroscopy diagnostic with advanced solid state detector properties for ion temperature, ion density and plasma rotation velocity measurements, and the ECE Imaging diagnostic for MHD and turbulence studies. Most of these new diagnostics are developed with the participation of French Universities or through international collaborations. This paper focuses on the description of these four plasma diagnostics. (author)

  20. Laser beam diagnostics for kilowatt power pulsed YAG laser

    International Nuclear Information System (INIS)

    Liu, Yi; Leong, Keng H.

    1992-01-01

    There is a growing need for high power YAG laser beam diagnostics with the recent introduction of such lasers in laser material processing. In this paper, we will describe the use of a commercially available laser beam analyzer (Prometec) to profile the laser beam from a 1600 W pulsed Nd:YAG laser that has a 1 mm fiber optic beam delivery system. The selection of laser pulse frequency and pulse width for the measurement is discussed. Laser beam propagation parameters by various optical components such as fibers and lenses can be determined from measurements using this device. The importance of such measurements will be discussed

  1. Acute abdomen. Diagnostic radiology according to principal signs

    International Nuclear Information System (INIS)

    Krestin, G.P.

    1994-01-01

    The acute abdomen is a frequent and very often dangerous syndrome which requires sophisticated diagnostic evaluation. A decisive factor determining the following case history is efficient and exact diagnosis, calling for experienced clinical and diagnostic experts for efficient application of available methods, and correct interpretation of findings. The book offers: 1. Practice-oriented diagnostic strategies, based on 13 principal signs and constellations derived from clinical experience, presented in each chapter as a combination of - suitable differential diagnostic procedures and methods,- exhaustive description of the clinical signs and diagnostic findings specific of the various symptoms,- algorithmic presentations. 2. A special chapter on the pediatric acute abdomen. 3. The most important findings shown in more than 250 original pictures. 4. A graphical design and presentation of the information which permits quick access to the important content. (orig./CB) [de

  2. Reasons for diagnostic delay in gynecological malignancies

    DEFF Research Database (Denmark)

    Vandborg, Mai Partridge; Christensen, René dePont Christensen; Kragstrup, Jakob

    2011-01-01

    (≤ or > 60 years), performance of gynecological examination by the GP and notification of cancer suspicion on first referral from GP’s on the diagnostic delay (short delay ≤90 days and long delay >90 days). Results Across cancer type a median total delay of 101 days was observed. The 10% of women......Aim The primary aim of this study was to identify and describe different delay types in women with gynecologic cancer, and to analyze the relationship between diagnostic delay and a number of characteristics for patients, cancers and the health care system. Setting A cohort study of women newly......) and The Danish Gynecological Cancer Database (DGCD). 161 women were included; ovarian cancer: 63, endometrial cancer: 50, cervical cancer: 34 and vulvar cancer: 14. Outcome measures were different delay types counted in days and the influence of four clinical important variables: Presence of alarm symptoms, age...

  3. Target diagnostic system for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.

    1996-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests

  4. The indication area of a diagnostic test. Part I--discounting gain and loss in diagnostic certainty

    NARCIS (Netherlands)

    Stalpers, Lukas J. A.; Nelemans, Patty J.; Geurts, Sandra M. E.; Jansen, Erik; de Boer, Peter; Verbeek, André L. M.

    2015-01-01

    Test performance is conventionally expressed by gain in diagnostic certainty. We propose net diagnostic gain and indication area as more appropriate measures of test performance; then, the loss in certainty due to misclassification and the information of "no test" would be performed are taken into

  5. The use of MR in cardiological diagnostics

    International Nuclear Information System (INIS)

    Smith, Hans-Joergen

    2004-01-01

    Image diagnostics is playing an important role in cardiology, and magnetic resonance tomography (MR) is one of many methods used in examinations of the heart. Based on studies of the literature and his own experience the author surveys the potential of MR in today's and tomorrow's diagnostics of heart diseases. Among the image diagnostic methods MR is the one that can give the most extensive information about the heart's anatomy and function. In a non-invasive way and without the use of ionizing radiation, MR can represent the anatomy in selectable planes, visualize and quantify the heart's pumping function and functioning of the cardiac valves, and give detailed information about the regional contractility, blood flow and viability of myocard. MR is capable of giving important and to some extent unique contributions to heart diseases, both congenital and contracted heart disease. Because of failing availability and competence MR is still little used in cardiological diagnostics, but the method undoubtedly has the potential to play a very important role in the future

  6. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    International Nuclear Information System (INIS)

    Zoetelief, J.; Pernicka, F.

    2002-01-01

    Full text: Main aims of patient dosimetry in diagnostic and interventional radiology are to determine dosimetric quantities for establishment and use of guidance levels or diagnostic reference levels and for comparative risk assessment. In the latter case, the average doses to the organs and tissues at risk should be assessed. Only limited number of measurements serve to potential risk assessment of the examination and intervention. An additional objective of dosimetry in diagnostic and interventional radiology is the assessment of equipment performance. Ionization chambers are the main devices used for dosimetric measurements in diagnostic and interventional radiology but other devices with special properties are also used. Important examples are thermoluminescent detectors (TLDs) and semiconductor detectors. For most dosemeters used in x-ray medical imaging the desired quantity for calibration of dosemeters is the air kerma free-in-air. Calibrations should be made at appropriate radiation qualities, for which recommendations are available for conventional radiology. It is important that the calibrations are traceable to the international measurement system. The uncertainty of dose measurements in medical x-ray imaging, for comparative risk assessments as well as for quality assurance, should not exceed about 7 per cent in terms of the expanded uncertainty using a coverage factor of 2. The dosimetric approaches in general diagnostic radiology, mammography and computed tomography are slightly different, resulting in application specific dosimetric quantities. Consequently, different protocols for patient dosimetry are available for these different purposes. In general diagnostic radiology, various quantities and terminologies have been used for the specification of dose on the central beam axis at the point where the x-ray beam enters the patient (or a phantom representing the patient). These include the exposure at skin entrance (ESE), the input radiation exposure

  7. Emittance control of a beam by shaping the transverse charge distribution, using a tomography diagnostic

    International Nuclear Information System (INIS)

    Yakimenko, V.; Babzien, M.; Ben-Zvi, I.; Malone, R.; Wang, X.J.

    1998-06-01

    A high-brightness beam is very important for many applications. A diagnostic that measures the multi-dimensional phase-space density-distribution of the electron bunch is a must for obtaining such beams. Measurement of a slice emittance has been achieved. Tomographic reconstruction of phase space was suggested and implemented using a single quadrupole scan. In the present work the authors give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This diagnostic, coupled with control of the radial charge distribution of presents an opportunity to improve the beam brightness. Combining the slice emittance and tomography diagnostics lead to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections

  8. Saliva Preservative for Diagnostic Purposes

    Science.gov (United States)

    Pierson, Duane L.; Mehta, Satish K.

    2012-01-01

    Saliva is an important body fluid for diagnostic purposes. Glycoproteins, glucose, steroids, DNA, and other molecules of diagnostic value are found in saliva. It is easier to collect as compared to blood or urine. Unfortunately, saliva also contains large numbers of bacteria that can release enzymes, which can degrade proteins and nucleic acids. These degradative enzymes destroy or reduce saliva s diagnostic value. This innovation describes the formulation of a chemical preservative that prevents microbial growth and inactivates the degradative enzymes. This extends the time that saliva can be stored or transported without losing its diagnostic value. Multiple samples of saliva can be collected if needed without causing discomfort to the subject and it does not require any special facilities to handle after it is collected.

  9. Diagnostics on Z (invited)

    International Nuclear Information System (INIS)

    Nash, T. J.; Derzon, M. S.; Chandler, G. A.; Fehl, D. L.; Leeper, R. J.; Porter, J. L.; Spielman, R. B.; Ruiz, C.; Cooper, G.; McGurn, J.

    2001-01-01

    The 100 ns, 20 MA pinch-driver Z is surrounded by an extensive set of diagnostics. There are nine radial lines of sight set at 12 o above horizontal and each of these may be equipped with up to five diagnostic ports. Instruments routinely fielded viewing the pinch from the side with these ports include x-ray diode arrays, photoconducting detector arrays, bolometers, transmission grating spectrometers, time-resolved x-ray pinhole cameras, x-ray crystal spectrometers, calorimeters, silicon photodiodes, and neutron detectors. A diagnostic package fielded on axis for viewing internal pinch radiation consists of nine lines of sight. This package accommodates virtually the same diagnostics as the radial ports. Other diagnostics not fielded on the axial or radial ports include current B-dot monitors, filtered x-ray scintillators coupled by fiber optics to streak cameras, streaked visible spectroscopy, velocity interferometric system for any reflector, bremsstrahlung cameras, and active shock breakout measurement of hohlraum temperature. The data acquisition system is capable of recording up to 500 channels and the data from each shot is available on the Internet. A major new diagnostic presently under construction is the BEAMLET backlighter. We will briefly describe each of these diagnostics and present some of the highest-quality data from them

  10. Status of TMX upgrade diagnostics construction

    International Nuclear Information System (INIS)

    Hornady, R.S.; Davis, J.C.; Simonen, T.C.

    1981-01-01

    This report describes the status of the initial TMX Upgrade diagnostics and the state of development of additional diagnostics being prepared for later TMX Upgrade experiments. The initial diagnostic instrument set has been described in the TMX Upgrade Proposal. This set is required to get TMX Upgrade operational and to evaluate its initial performance. Additional diagnostic instruments are needed to then carry out the more detailed experiments outlined by the TMX Upgrade program milestones. The relation of these new measurements to the physics program is described in The TMX Upgrade Program Plan

  11. Recent diagnostic developments on LHD

    International Nuclear Information System (INIS)

    Sudo, S.; Nagayama, Y.; Peterson, B.J.

    2003-01-01

    Standard diagnostics for fundamental plasma parameters and for plasma physics are routinely utilized for daily operation and physics study in the large helical device (LHD) with high reliability. Diagnostics for steady state plasma are intensively developed, especially for T e , n e (YAG laser Thomson, CO 2 laser polarimeter), data acquisition in steady state, heat resistant probes. To clarify the plasma property of the helical structure, 2-D or 3-D diagnostics are intensively developed: Tangential cameras (Fast SX TV, Photon counting CCD, H α TV); Tomography (Tangential SX CCD, Bolometer); Imaging (Bolometer, ECE, Reflectometer). Divertor and edge physics are one of important key issues for steady state operation. Diagnostics for neutral flux (H α array, Zeeman spectroscopy) and n e (Fast scanning probe, Li beam probe, Pulsed radar reflectometer). In addition to these, advanced diagnostics are being intensively developed with national and international collaborations in LHD. (author)

  12. A phase angle based diagnostic scheme to planetary gear faults diagnostics under non-stationary operational conditions

    Science.gov (United States)

    Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong

    2017-11-01

    Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.

  13. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    Science.gov (United States)

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  14. Design of x-ray diagnostic beam line for a synchrotron radiation source and measurement results

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Akash Deep, E-mail: akash-deep@rrcat.gov.in; Karnewar, A.K.; Ojha, A.; Shrivastava, B.B.; Holikatti, A.C.; Puntambekar, T.A.; Navathe, C.P.

    2014-08-01

    Indus-2 is a 2.5 GeV synchrotron radiation source (SRS) operational at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We have designed, developed and commissioned x-ray diagnostic beam line (X-DBL) at the Indus-2. It is based on pinhole array imaging (8–18 keV). We have derived new equations for online measurements of source position and emission angle with pinhole array optics. Measured values are compared with the measurements at an independent x-ray beam position monitor (staggered pair blade monitor) installed in the X-DBL. The measured values are close to the theoretical expected values within ±12 µm (or ±1.5 μrad) for sufficiently wide range of the beam movements. So, beside the beam size and the beam emittance, online information for the vertical position and angle is also used in the orbit steering. In this paper, the various design considerations of the X-DBL and online measurement results are presented.

  15. Diagnostics in Japan's microgravity experiments

    Science.gov (United States)

    Kadota, Toshikazu

    1995-01-01

    The achievement of the combustion research under microgravity depends substantially on the availability of diagnostic systems. The non-intrusive diagnostic systems are potentially applicable for providing the accurate, realistic and detailed information on momentum, mass and energy transport, complex gas phase chemistry, and phase change in the combustion field under microgravity. The non-intrusive nature of optical instruments is essential to the measurement of combustion process under microgravity which is very nervous to any perturbation. However, the implementation of the non-intrusive combustion diagnostic systems under microgravity is accompanied by several constraints. Usually, a very limited space is only available for constructing a highly sophisticated system which is so sensitive that it is easily affected by the magnitude of the gravitational force, vibration and heterogeneous field of temperature and density of the environments. The system should be properly adjusted prior to the experiment. Generally, it is quite difficult to tune the instruments during measurements. The programmed sequence of operation should also be provided. Extensive effort has been toward the development of non-intrusive diagnostic systems available for the combustion experiments under microgravity. This paper aims to describe the current art and the future strategy on the non-intrusive diagnostic systems potentially applicable to the combustion experiments under microgravity in Japan.

  16. Measuring systemic importance of financial institutions: An extreme value theory approach

    OpenAIRE

    Gravelle, Toni; Li, Fuchun

    2011-01-01

    In this paper, we define a financial institution's contribution to financial systemic risk as the increase in financial systemic risk conditional on the crash of the financial institution. The higher the contribution is, the more systemically important is the institution for the system. Based on relevant but different measurements of systemic risk, we propose a set of market-based measures on the systemic importance of financial institutions, each designed to capture certain aspects of system...

  17. Indications and new diagnostic techniques in micturating cystourethrographic studies

    International Nuclear Information System (INIS)

    Schuster, W.; Bruenger, J.

    1978-01-01

    Urological radiographic procedures on children are of great importance. The frequency of examinations is comparable to the number of Gl tract studies. In diagnosing chronically recurrent urinary tract infections, micturating cystourethrography is a valuable addition to excretory urography. Indications and performance of micturating cystourethrography at juvenile age are described. All measures reducing radiation exposure must be taken into consideration. New technological devices grant improved diagnostic information with a minimal radiation exposure for patients. (orig.) [de

  18. Diagnostic Accuracy of a Self-Report Measure of Patellar Tendinopathy in Youth Basketball.

    Science.gov (United States)

    Owoeye, Oluwatoyosi B A; Wiley, J Preston; Walker, Richard E A; Palacios-Derflingher, Luz; Emery, Carolyn A

    2018-04-27

    Study Design Prospective diagnostic accuracy validation study. Background Engaging clinicians for diagnosis of patellar tendinopathy in large surveillance studies is often impracticable. A self-report measure, the Oslo Sports Research Trauma Centre patellar tendinopathy (OSTRC-P) Questionnaire, an adaptation of the OSTRC Questionnaire may provide a viable alternative. Objectives To evaluate the diagnostic accuracy of the OSTRC-P Questionnaire in detecting patellar tendinopathy in youth basketball players when compared to clinical evaluation. Methods Following the Standards for Reporting of Diagnostic Accuracy Studies guidelines, 208 youth basketball players (aged 13-18 years) were recruited. Participants completed the OSTRC-P Questionnaire (index test) prior to a clinical evaluation (reference standard) by a physiotherapist blinded to OSTRC-P Questionnaire results. Sensitivity, specificity, predictive values (PVs), likelihood ratios (LRs) and posttest probabilities were calculated. Linear regression was used to examine the association between OSTRC-P Questionnaire severity score and patellar tendinopathy severity rating during single leg decline squat (SLDS). Results The final analysis included 169 players. The OSTRC-P Questionnaire had a sensitivity of 79% (95%CI: 65%, 90%), specificity of 98% (95%CI: 94%, 100%), positive PV of 95%, negative PV of 92%, positive LR of 48 and negative LR of 0.21. The posttest probabilities were 95% and 8% given positive and negative results, respectively. A positive association was found between OSTRC-P Questionnaire and SLDS rating [(β = .08 (95%CI: .03, .12) (p = .001)]. Conclusions The OSTRC-P Questionnaire is an acceptable alternative to clinical evaluation for self-reporting patellar tendinopathy and grading its severity in settings involving youth basketball players. Level of Evidence Diagnosis, level 1b. J Orthop Sports Phys Ther, Epub 27 Apr 2018. doi:10.2519/jospt.2018.8088.

  19. Tracking Progress in Improving Diagnosis: A Framework for Defining Undesirable Diagnostic Events.

    Science.gov (United States)

    Olson, Andrew P J; Graber, Mark L; Singh, Hardeep

    2018-01-29

    Diagnostic error is a prevalent, harmful, and costly phenomenon. Multiple national health care and governmental organizations have recently identified the need to improve diagnostic safety as a high priority. A major barrier, however, is the lack of standardized, reliable methods for measuring diagnostic safety. Given the absence of reliable and valid measures for diagnostic errors, we need methods to help establish some type of baseline diagnostic performance across health systems, as well as to enable researchers and health systems to determine the impact of interventions for improving the diagnostic process. Multiple approaches have been suggested but none widely adopted. We propose a new framework for identifying "undesirable diagnostic events" (UDEs) that health systems, professional organizations, and researchers could further define and develop to enable standardized measurement and reporting related to diagnostic safety. We propose an outline for UDEs that identifies both conditions prone to diagnostic error and the contexts of care in which these errors are likely to occur. Refinement and adoption of this framework across health systems can facilitate standardized measurement and reporting of diagnostic safety.

  20. Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography

    DEFF Research Database (Denmark)

    Salewski, M.; Nocente, M.; Jacobsen, A.S.

    2018-01-01

    Bayesian integrated data analysis combines measurements from different diagnostics to jointly measure plasma parameters of interest such as temperatures, densities, and drift velocities. Integrated data analysis of fast-ion measurements has long been hampered by the complexity of the strongly non...... framework. The implementation for different types of diagnostics as well as the uncertainties are discussed, and we highlight the importance of integrated data analysis of all available detectors....

  1. MOSFET dosimeter depth-dose measurements in heterogeneous tissue-equivalent phantoms at diagnostic x-ray energies

    International Nuclear Information System (INIS)

    Jones, A.K.; Pazik, F.D.; Hintenlang, D.E.; Bolch, W.E.

    2005-01-01

    The objective of the present study was to explore the use of the TN-1002RD metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter for measuring tissue depth dose at diagnostic photon energies in both homogeneous and heterogeneous tissue-equivalent materials. Three cylindrical phantoms were constructed and utilized as a prelude to more complex measurements within tomographic physical phantoms of pediatric patients. Each cylindrical phantom was constructed as a stack of seven 5-cm-diameter and 1-cm-thick discs of materials radiographically representative of either soft tissue (S), bone (B), or lung tissue (L) at diagnostic photon energies. In addition to a homogeneous phantom of soft tissue (SSSSSSS), two heterogeneous phantoms were constructed: SSBBSSS and SBLLBSS. MOSFET dosimeters were then positioned at the interface of each disc, and the phantoms were then irradiated at 66 kVp and 200 mAs. Measured values of absorbed dose at depth were then compared to predicated values of point tissue dose as determined via Monte Carlo radiation transport modeling. At depths exceeding 2 cm, experimental results matched the computed values of dose with high accuracy regardless of the dosimeter orientation (epoxy bubble facing toward or away from the x-ray beam). Discrepancies were noted, however, between measured and calculated point doses near the surface of the phantom (surface to 2 cm depth) when the dosimeters were oriented with the epoxy bubble facing the x-ray beam. These discrepancies were largely eliminated when the dosimeters were placed with the flat side facing the x-ray beam. It is therefore recommended that the MOSFET dosimeters be oriented with their flat sides facing the beam when they are used at shallow depths or on the surface of either phantoms or patients

  2. Technical diagnostics of steam turbines

    International Nuclear Information System (INIS)

    Vlckova, B.; Drahy, J.

    1987-01-01

    This paper deals with practical experience in application of technical diagnostics methods to steam turbines, in particular using pedestal and shaft vibration measurements as well as estimation of bearing metal temperature and ultrasound emission signals. An estimation of effectiveness of the diagnostics methods used is given on the basis of experimental investigations made on a 30-MW turbine. (author)

  3. The engineering of JET diagnostics

    International Nuclear Information System (INIS)

    Walker, C.I.; Dillon, S.F.; Hammond, N.P.; Hancock, C.J.; Lam, N.; McCarron, E.J.; Prior, P.C.S.; Reid, J.; Sanders, S.; Tellier, X.; Tiscornia, A.J.; Whitfield, G.A.H.; Wilson, C.H.; Wilson, D.J.

    1995-01-01

    There are some 62 identifiably different diagnostic systems on JET. 22 were installed new at the last, Pumped Divertor, shutdown and a further 22 which were modified, upgraded or repositioned. This paper describes some of the engineering aspects peculiar to the renewed diagnostic systems, reviews their construction and installation and gives an overview of the design of presently installed diagnostic equipment at the Torus. Examples are considered that illustrate the breakdown into a categorisation based on their installation method. This is useful for discussion of many of the associated engineering problems of method and quality control of manufacture, vulnerability, access for installation and maintenance and ultimately system safety and reliability. The function and measured plasma parameter of specific diagnostics is covered in other papers and is not attempted here, neither is a full catalogue of Diagnostics on JET. (orig.)

  4. Undulator A diagnostics at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Ilinski, P.

    1998-01-01

    Diagnostics of Undulator A number-sign 2 (UA2) radiation was performed during the October 1997 mn at the Advanced Photon Source (APS). The UA2 undulator is a standard 3.3-cm-period APS Undulator A, which was positioned downstream from the center of the straight section at Sector 8. The diagnostics included the angular-spectral measurements of the undulator radiation to determine the undulator radiation absolute spectral flux and the particle beam divergence. The results of the absolute spectral flux measurements are compared to the undulator spectrum calculated from measured undulator magnetic field. The particle's energy spread was determined from spectra comparison. Previously, the authors reported the first measurements made on Undulator A at the APS. The purpose of the present report is to summarize the results of the diagnostics performed on the Sector 8 undulator at the request of the IMM-CAT staff, and to present a more general discussion of undulator radiation sources at the APS and details of their diagnostics

  5. Assessing Old and New Diagnostic Tests for Gastroesophageal Reflux Disease.

    Science.gov (United States)

    Vaezi, Michael F; Sifrim, Daniel

    2018-01-01

    A detailed critique of objective measurements of gastroesophageal reflux disease (GERD) would improve management of patients suspecting of having reflux, leading to rational selection of treatment and better outcomes. Many diagnostic tests for GERD have been developed over the past decades. We analyze their development, positive- and negative-predictive values, and ability to predict response to treatment. These features are important for development of medical, surgical, and endoscopic therapies for GERD. We discuss the value of available diagnostic tests and review their role in management of patients with persistent reflux symptoms despite adequate medical or surgical treatment. This is becoming a significant health economic problem, due to the widespread use of proton pump inhibitors. GERD is believed to cause nonesophageal symptoms, such as those provoked by ear, nose, throat, or respiratory disorders. We analyze the value of GERD diagnostic tests in evaluation of these troublesome, nonesophageal symptoms. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. The Relative Importance of Job Factors: A New Measurement Approach.

    Science.gov (United States)

    Nealey, Stanley M.

    This paper reports on a new two-phase measurement technique that permits a direct comparison of the perceived relative importance of economic vs. non-economic factors in a job situation in accounting for personnel retention, the willingness to produce, and job satisfaction. The paired comparison method was used to measure the preferences of 91…

  7. Diagnostic for a high-repetition rate electron photo-gun and first measurements

    Science.gov (United States)

    Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.

    2015-05-01

    The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.

  8. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    International Nuclear Information System (INIS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-01-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k // ) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k tor ). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k // as strap phasing is moved away from the dipole configuration. This result is the opposite of the k tor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k // , as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas’ operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue

  9. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    Science.gov (United States)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  10. Infrared laser diagnostics for ITER

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Richards, R.K.; Ma, C.H.

    1995-01-01

    Two infrared laser-based diagnostics are under development at ORNL for measurements on burning plasmas such as ITER. The primary effort is the development of a CO 2 laser Thomson scattering diagnostic for the measurement of the velocity distribution of confined fusion-product alpha particles. Key components of the system include a high-power, single-mode CO 2 pulsed laser, an efficient optics system for beam transport and a multichannel low-noise infrared heterodyne receiver. A successful proof-of-principle experiment has been performed on the Advanced Toroidal Facility (ATF) stellerator at ORNL utilizing scattering from electron plasma frequency satellites. The diagnostic system is currently being installed on Alcator C-Mod at MIT for measurements of the fast ion tail produced by ICRH heating. A second diagnostic under development at ORNL is an infrared polarimeter for Faraday rotation measurements in future fusion experiments. A preliminary feasibility study of a CO 2 laser tangential viewing polarimeter for measuring electron density profiles in ITER has been completed. For ITER plasma parameters and a polarimeter wavelength of 10.6 microm, a Faraday rotation of up to 26 degree is predicted. An electro-optic polarization modulation technique has been developed at ORNL. Laboratory tests of this polarimeter demonstrated a sensitivity of ≤ 0.01 degree. Because of the similarity in the expected Faraday rotation in ITER and Alcator C-Mod, a collaboration between ORNL and the MIT Plasma Fusion Center has been undertaken to test this polarimeter system on Alcator C-Mod. A 10.6 microm polarimeter for this measurement has been constructed and integrated into the existing C-Mod multichannel two-color interferometer. With present experimental parameters for C-Mod, the predicted Faraday rotation was on the order of 0.1 degree. Significant output signals were observed during preliminary tests. Further experiment and detailed analyses are under way

  11. Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Jones, Byron

    2013-09-13

    This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

  12. Nuclear diagnostics in support of ICF experiments

    International Nuclear Information System (INIS)

    Moran, M.J.; Hall, J.

    1996-01-01

    As the yields of Inertial Confinement Fusion (ICF) experiments increase to NIF levels new diagnostic techniques for studying details of fusion burn behavior will become feasible. The new techniques will provide improved measurements of fusion burn temperature and history. Improved temperature measurements might be achieved with magnetic spectroscopy of fusion neutrons. High-bandwidth fusion reaction history will be measured with fusion-specific γ-ray diagnostics. Additional energy-resolved γ-ray might be able to study a selection of specific behaviors during fusion burn. Present ICF yields greater than 10 13 neutrons are sufficient to demonstrate the basic methods that underlie the new techniques. As ICF yields increase, the diagnostics designs adjusted accordingly in order to provide clear and specific data on fusion burn performance

  13. Spontaneous Raman Scattering Diagnostics: Applications in Practical Combustion Systems. Chapter 5

    Science.gov (United States)

    Kojima, Jun; Viet-Nguyen, Quang; Lackner, Maximilian (Editor); Winter, Franz (Editor); Agarwal, Avinash (Editor)

    2010-01-01

    In this chapter, the recent advancements and practical aspects of laser SRS diagnostics have been reviewed wi til regards to applications in practical combustion systems. Clearly, SRS represents a theoretically and experimentally mature diagnostic technology that has become an essential tool for multiscalar measurements in turbulent combustion at elevated pressures. Today, time-, space-, spectrally, and even polarization-resolved S RS diagnostics is at hand, with aid from recent innovations in theoretical and technological developments on electro-optical or electromechanical devices. Whilst a linear increase in SRS signals can be expected in high-pressure systems (this is perhaps one of the most important advantages for using SRS in high-pressure systems), there are practical (often severe) restrictions associated with pressurized vessels, due mainly to the limited degree of optical access. This narrows ti,e available choice of diagnostics that can be employed at any given time. Point-wise SRS diagnostics provides the highest accuracy on the chemical species and temperature measurements, and will continue to remain a vital approach for the study in such harsh environments. The practical design considerations and hands-on set-up guide for SRS diagnostics provided in this chapter are rarely presented elsewhere. Although the second-harmonic Nd:YAG pulsed laser (532 nm), combined with pulse-stretching optics or the recently introduced White Cell-based laser, seems to be the most favored excitation source of choice by the research community, UV excitation will undoubtedly continue to be used on many occasions, and especially in sooting flames. Detection methods may be divided into ICCD-based nanosecond-gate detection or a rotary-chopper electromechanical shutter-based CCD array detection, and the levels of background flame emission in individual cases would determine this critical design choice. Here, a process of Raman signal calibration based on ti,e crosstalk matrix

  14. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza (Italy); Panasenkov, A. [NRC, Kurchatov Institute, 1, Kurchatov Sq, Moscow 123182 (Russian Federation); Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); INFN-LNL, viale dell’Università n. 2, 35020 Legnaro (Italy); Serianni, G.; Pasqualotto, R. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-11-15

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  15. A new measure of uncertainty importance based on distributional sensitivity analysis for PSA

    International Nuclear Information System (INIS)

    Han, Seok Jung; Tak, Nam Il; Chun, Moon Hyun

    1996-01-01

    The main objective of the present study is to propose a new measure of uncertainty importance based on distributional sensitivity analysis. The new measure is developed to utilize a metric distance obtained from cumulative distribution functions (cdfs). The measure is evaluated for two cases: one is a cdf given by a known analytical distribution and the other given by an empirical distribution generated by a crude Monte Carlo simulation. To study its applicability, the present measure has been applied to two different cases. The results are compared with those of existing three methods. The present approach is a useful measure of uncertainty importance which is based on cdfs. This method is simple and easy to calculate uncertainty importance without any complex process. On the basis of the results obtained in the present work, the present method is recommended to be used as a tool for the analysis of uncertainty importance

  16. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  17. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  18. Diagnostic method for photovoltaic systems based on light I-V measurements

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2015-01-01

    , be it external, such as shading or soiling, or degradation or failure of the PV modules and balance-of-system components. This allows for performing preventive and/or reparative maintenance, thus minimizing further losses and costs. This article proposes a complete diagnostic method for detecting shading...... and analysis of the diagnostic parameters and logic was performed based on module level tests on standard crystalline silicon PV modules, and were optimized to detect even small partial shading and increase series-resistance losses. To demonstrate the practical application and operation of this method...

  19. Functional diagnostics for thyrotropin hormone receptor autoantibodies: bioassays prevail over binding assays.

    Science.gov (United States)

    Lytton, Simon David; Schluter, Anke; Banga, Paul J

    2018-06-01

    Autoantibodies to the thyrotropin hormone receptor (TSH-R) are directly responsible for the hyperthyroidism in Graves' disease and mediate orbital manifestations in Graves' orbitopathy (otherwise known as thyroid eye disease). These autoantibodies are heterogeneous in their function and collectively referred to as TRAbs. Measurement of TRAbs is clinically important for diagnosis of a variety of conditions and different commercial assays with high sensitivity and specificity are available for diagnostic purposes. This review provides overwhelming evidence that the TRAbs detected in binding assays by mainly the automated electrochemical luminescence immunoassays (ECLIA) do not distinguish TRAbs that stimulate the TSH-R (called TSIs or TSAbs) and TRAbs that just inhibit the binding of TSH without stimulating the TSH-R (called TBAbs). However, TSAbs and TBAbs have divergent pathogenic roles, and depending which fraction predominates cause different clinical symptoms and engender different therapeutic regimen. Therefore, diagnostic distinction of TSAbs and TBAbs is of paramount clinical importance. To date, only bioassays such as the Mc4 TSH-R bioassay (Thyretain TM , Quidel) and the Bridge assay (Immulite 2000, Siemens) can measure TSAbs, with only the former being able to distinguish between TSAbs and TBAbs. On this note, it is strongly recommended to only use the term TSI or TSAb when reporting the results of bioassays, whereas the results of automated TRAb binding assays should be reported as TRAbs (of undetermined functional significance). This review aims to present a technical and analytical account of leading commercial diagnostic methods of anti-TSH-R antibodies, a metaanalysis of their clinical performance and a perspective for the use of cell based TSH-R bioassays in the clinical diagnostics of Graves' disease.

  20. Bias in random forest variable importance measures: Illustrations, sources and a solution

    Directory of Open Access Journals (Sweden)

    Hothorn Torsten

    2007-01-01

    Full Text Available Abstract Background Variable importance measures for random forests have been receiving increased attention as a means of variable selection in many classification tasks in bioinformatics and related scientific fields, for instance to select a subset of genetic markers relevant for the prediction of a certain disease. We show that random forest variable importance measures are a sensible means for variable selection in many applications, but are not reliable in situations where potential predictor variables vary in their scale of measurement or their number of categories. This is particularly important in genomics and computational biology, where predictors often include variables of different types, for example when predictors include both sequence data and continuous variables such as folding energy, or when amino acid sequence data show different numbers of categories. Results Simulation studies are presented illustrating that, when random forest variable importance measures are used with data of varying types, the results are misleading because suboptimal predictor variables may be artificially preferred in variable selection. The two mechanisms underlying this deficiency are biased variable selection in the individual classification trees used to build the random forest on one hand, and effects induced by bootstrap sampling with replacement on the other hand. Conclusion We propose to employ an alternative implementation of random forests, that provides unbiased variable selection in the individual classification trees. When this method is applied using subsampling without replacement, the resulting variable importance measures can be used reliably for variable selection even in situations where the potential predictor variables vary in their scale of measurement or their number of categories. The usage of both random forest algorithms and their variable importance measures in the R system for statistical computing is illustrated and

  1. Measured parental height in Turner syndrome-a valuable but underused diagnostic tool.

    Science.gov (United States)

    Ouarezki, Yasmine; Cizmecioglu, Filiz Mine; Mansour, Chourouk; Jones, Jeremy Huw; Gault, Emma Jane; Mason, Avril; Donaldson, Malcolm D C

    2018-02-01

    Early diagnosis of Turner syndrome (TS) is necessary to facilitate appropriate management, including growth promotion. Not all girls with TS have overt short stature, and comparison with parental height (Ht) is needed for appropriate evaluation. We examined both the prevalence and diagnostic sensitivity of measured parental Ht in a dedicated TS clinic between 1989 and 2013. Lower end of parental target range (LTR) was calculated as mid-parental Ht (correction factor 12.5 cm minus 8.5 cm) and converted to standard deviation scores (SDS) using UK 1990 data, then compared with patient Ht SDS at first accurate measurement aged > 1 year. Information was available in 172 girls of whom 142 (82.6%) were short at first measurement. However, both parents had been measured in only 94 girls (54.6%). In 92 of these girls age at measurement was 6.93 ± 3.9 years, Ht SDS vs LTR SDS - 2.63 ± 0.94 vs - 1.77 ± 0.81 (p Turner syndrome are short in relation to parental heights, with untreated final height approximately 20 cm below female population mean. • Measured parental height is more accurate than reported height. What is New: • In a dedicated Turner clinic, there was 85% sensitivity when comparing patient height standard deviation score at first accurate measurement beyond 1 year of age with the lower end of the parental target range standard deviation. • However, measured height in both parents had been recorded in only 54.6% of the Turner girls attending the clinic. This indicates the need to improve the quality of growth assessment in tertiary care.

  2. Diagnostics in the hostile environments of a prototype fusion reactor

    International Nuclear Information System (INIS)

    Osher, J.E.

    1982-01-01

    Various facets of a thermonuclear type plasma that will likely require special considerations or hardening of applied diagnostic instrumentation are reviewed. The discussion will include both on-line diagnostic instrumentation requirements for satisfactory operation and considerations to reduce integrated radiation damage sufficiently for a reasonable diagnostic lifetime. Several new diagnostics aimed specifically at measurements of the plasma characteristics most appropriate to a thermonculear reactor type plasma are discussed. This will include instrumentation needed to make quantitative energy flow measurements during long term operation with the expected high input power sources, and locally very high wall power loadings. The second part of this lecture will broaden diagnostics to include materials damage measurements needed for engineering design studies. This will include needed diagnostic instrumentation to assess first wall damage, sputtering erosion at walls (and high power beam dumps), and radiation damage to components such as insulators

  3. Isotope diagnostics apparatus

    International Nuclear Information System (INIS)

    Herrschaft, H.

    1976-01-01

    The invention relates to a measuring probe for an isotope diagnostics apparatus to determine the distribution of radioactive substances in a body by measuring the radiation emanating from this body by means of a multiplicity of measuring probes directed simultaneously towards areas of measuring surfae and carried in guidances of a holding block. The measuring results of the individual probes are recorded separately, thus allowing the possibility of being evaluated separately, too. Measuring probes of this kind are used in multi-channel measuring objects and are useful particularly for determining the regional cerebral blood flow. (orig./ORU) [de

  4. Filter-fluorescer diagnostic system for the National Ignition Facility

    International Nuclear Information System (INIS)

    McDonald, J.W.; Kauffman, R.L.; Celeste, J.R.; Rhodes, M.A.; Lee, F.D.; Suter, L.J.; Lee, A.P.; Foster, J.M.; Slark, G.

    2004-01-01

    An early filter-fluorescer diagnostic system is being fielded at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) to measure the amount of hard x rays (20< hν<150 keV) generated in laser fusion experiments. From these measurements we hope to quantify the number of hot electrons produced in laser fusion experiments. The measurement of hot electron production is important for ignition experiments because these electrons can preheat the fuel capsule. Hot electrons can also be employed in experimentation by preheating hydrodynamic packages or by driving plasmas out of equilibrium. The experimental apparatus, data collection, analysis and calibration issues are discussed. Expected data signal levels are predicted and discussed

  5. Reflectometry diagnostics on TCV

    Science.gov (United States)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  6. Development of an equipment diagnostic system that evaluates sensor drift

    International Nuclear Information System (INIS)

    Kanada, Masaki; Arita, Setsuo; Tada, Nobuo; Yokota, Katsuo

    2011-01-01

    The importance of condition monitoring technology for equipment has increased with the introduction of condition-based maintenance in nuclear power plants. We are developing a diagnostic system using process signals for plant equipment, such as pumps and motors. It is important to enable the diagnostic system to distinguish sensor drift and equipment failure. We have developed a sensor drift diagnostic method that combines some highly correlative sensor signals by using the MT (Mahalanobis-Taguchi) method. Furthermore, we have developed an equipment failure diagnostic method that measures the Mahalanobis distance from the normal state of equipment by the MT method. These methods can respectively detect sensor drift and equipment failure, but there are the following problems. In the sensor drift diagnosis, there is a possibility of misjudging the sensor drift when the equipment failure occurs and the process signal changes because the behavior of the process signal is the same as that of the sensor drift. Oppositely, in the equipment failure diagnosis, there is a possibility of misjudging the equipment failure when the sensor drift occurs because the sensor drift influences the change of process signal. To solve these problems, we propose a diagnostic method combining the sensor drift diagnosis and the equipment failure diagnosis by the MT method. Firstly, the sensor drift values are estimated by the sensor drift diagnosis, and the sensor drift is removed from the process signal. It is necessary to judge the validity of the estimated sensor drift values before removing the sensor drift from the process signal. We developed a method for judging the validity of the estimated sensor drift values by using the drift distribution based on the sensor calibration data. And then, the equipment failure is diagnosed by using the process signals after removal of the sensor drifts. To verify the developed diagnostic system, several sets of simulation data based on abnormal cases

  7. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Sèguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Magoon, J.; Agliata, A.; Shoup, M.; Glebov, V. U.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Ayers, S.; Bailey, C. G.; Rygg, J. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.

  8. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited).

    Science.gov (United States)

    Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J

    2014-11-01

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

  9. Irradiation effects on plasma diagnostic components

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Iida, Toshiyuki; Ikeda, Yujiro

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m 2 and 1 MWa/m 2 , respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  10. Irradiation effects on plasma diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, Takeo [ed.] [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Iida, Toshiyuki; Ikeda, Yujiro [and others

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m{sup 2} and 1 MWa/m{sup 2}, respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  11. Internet addiction: Do two diagnostic criteria measure the same thing?

    Directory of Open Access Journals (Sweden)

    Vijay Parkash

    2015-01-01

    Full Text Available Aim and Objective: To assess the agreement or concordance between two diagnostic criteria for Internet addiction (IA and to study the relationship between IA as per these criteria and socio-demographic and Internet use profile. Methodology: A cross-sectional design was followed. Six hundred participants, aged 18-40 years, having a personal Internet connection and using Internet for at least 1 year were evaluated using a semi-structured interview, on the Young′s Diagnostic Questionnaire, and IA diagnostic criteria developed by Tao et al., (2009. Results: Prevalence of IA varied from 1.2% to 21% depending on the assessment instrument. There is good level of concordance between Young′s IA criteria and Tao et al. "2 + 1" criteria, but the level of concordance reduced with the use of course and dysfunction criteria of Tao et al. Among the different Internet variables, age at first use, age at which the person starts regular use and total duration of nonessential use were related to development of IA. Conclusion: Findings of the present study suggest that there is good level of concordance between Young′s IA criteria and Tao et al. "2 + 1" criteria but the level of concordance reduces with the use of course and dysfunction criteria. This study also suggests that chances of IA increases with regular use of Internet and for a longer duration for nonessential uses.

  12. Achieving successful evidence-based practice implementation in juvenile justice: The importance of diagnostic and evaluative capacity.

    Science.gov (United States)

    Walker, Sarah Cusworth; Bumbarger, Brian K; Phillippi, Stephen W

    2015-10-01

    Evidence-based programs (EBPs) are an increasingly visible aspect of the treatment landscape in juvenile justice. Research demonstrates that such programs yield positive returns on investment and are replacing more expensive, less effective options. However, programs are unlikely to produce expected benefits when they are not well-matched to community needs, not sustained and do not reach sufficient reach and scale. We argue that achieving these benchmarks for successful implementation will require states and county governments to invest in data-driven decision infrastructure in order to respond in a rigorous and flexible way to shifting political and funding climates. We conceptualize this infrastructure as diagnostic capacity and evaluative capacity: Diagnostic capacity is defined as the process of selecting appropriate programing and evaluative capacity is defined as the ability to monitor and evaluate progress. Policy analyses of Washington State, Pennsylvania and Louisiana's program implementation successes are used to illustrate the benefits of diagnostic and evaluate capacity as a critical element of EBP implementation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Optimization of a middle atmosphere diagnostic scheme

    Science.gov (United States)

    Akmaev, Rashid A.

    1997-06-01

    A new assimilative diagnostic scheme based on the use of a spectral model was recently tested on the CIRA-86 empirical model. It reproduced the observed climatology with an annual global rms temperature deviation of 3.2 K in the 15-110 km layer. The most important new component of the scheme is that the zonal forcing necessary to maintain the observed climatology is diagnosed from empirical data and subsequently substituted into the simulation model at the prognostic stage of the calculation in an annual cycle mode. The simulation results are then quantitatively compared with the empirical model, and the above mentioned rms temperature deviation provides an objective measure of the `distance' between the two climatologies. This quantitative criterion makes it possible to apply standard optimization procedures to the whole diagnostic scheme and/or the model itself. The estimates of the zonal drag have been improved in this study by introducing a nudging (Newtonian-cooling) term into the thermodynamic equation at the diagnostic stage. A proper optimal adjustment of the strength of this term makes it possible to further reduce the rms temperature deviation of simulations down to approximately 2.7 K. These results suggest that direct optimization can successfully be applied to atmospheric model parameter identification problems of moderate dimensionality.

  14. Technology Issues of Burning Plasma Diagnostics

    International Nuclear Information System (INIS)

    Kaye, A. S.

    2008-01-01

    The ITER Tokamak will require many diagnostics both for safe and reliable operation of the machine and for understanding of the physics underlying the performance. The design of these diagnostics raises many challenging technical issues not faced on smaller machines. These arise partly from the increase demands on established diagnostics arising from the increased size, higher magnetic field, large heating power, and in particular the dramatically longer pulse duration of ITER, which make issue such as power loading on first wall components more challenging. The demands on reliability and availability of the machine in order to achieve the objectives within the agreed time schedule also place severe additional demands on the design, quality assurance and maintainability of diagnostics. ITER will produce many orders of magnitude more neutrons than previous Tokamaks and will be a licensed nuclear facility. This has important implications for the traceability, quality assurance and availability of safety critical diagnostics, and for the control of the design and procurement of all diagnostics. The high neutron flux/fluence also constrains the design of diagnostics, which must offer shielding consistent with the allowable dose rates on critical components of the Tokamak, and themselves be tolerant of the radiation level at the diagnostic. This paper presents an overview of the more critical issues for ITER diagnostics

  15. Diagnostics for FIRE: A Status Report

    International Nuclear Information System (INIS)

    Kenneth M. Young

    2002-01-01

    The mission for the proposed FIRE (Fusion Ignition Research Experiment) device is to ''attain, explore, understand and optimize fusion-dominated plasmas.'' Operation at Q * 5, for 20 sec with a fusion power output of *150 MW is the major goal. Attaining this mission sets demands for plasma measurement that are at least as comprehensive as on present tokamaks, with the additional capabilities needed for control of the plasma and for understanding the effects of the alpha-particles. Because of the planned operation in advanced tokamak scenarios, with steep transport barriers, the diagnostic instrumentation must be able to provide fine spatial and temporal resolution. It must also be able to withstand the impact of the intense neutron and gamma irradiation. There are practical engineering issues of minimizing radiation streaming while providing essential diagnostic access to the plasma. Many components will operate close to the first wall, e.g. ceramics and mineral insulated cable for magnetic diagnostics and mirrors for optical diagnostics; these components must be selected and mounted so that they will operate and survive in fluxes which require special material selection. The measurement requirements have been assessed so that the diagnostics for the FIRE device can be defined. Clearly a better set of diagnostics of alpha-particles than that available for TFTR is essential, since the alpha-particles provide the dominant sources of heating and of instability-drive in the plasma

  16. Diagnostic reasoning strategies and diagnostic success.

    Science.gov (United States)

    Coderre, S; Mandin, H; Harasym, P H; Fick, G H

    2003-08-01

    Cognitive psychology research supports the notion that experts use mental frameworks or "schemes", both to organize knowledge in memory and to solve clinical problems. The central purpose of this study was to determine the relationship between problem-solving strategies and the likelihood of diagnostic success. Think-aloud protocols were collected to determine the diagnostic reasoning used by experts and non-experts when attempting to diagnose clinical presentations in gastroenterology. Using logistic regression analysis, the study found that there is a relationship between diagnostic reasoning strategy and the likelihood of diagnostic success. Compared to hypothetico-deductive reasoning, the odds of diagnostic success were significantly greater when subjects used the diagnostic strategies of pattern recognition and scheme-inductive reasoning. Two other factors emerged as independent determinants of diagnostic success: expertise and clinical presentation. Not surprisingly, experts outperformed novices, while the content area of the clinical cases in each of the four clinical presentations demonstrated varying degrees of difficulty and thus diagnostic success. These findings have significant implications for medical educators. It supports the introduction of "schemes" as a means of enhancing memory organization and improving diagnostic success.

  17. The prospect for fuel ion ratio measurements in ITER by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    We show that collective Thomson scattering (CTS) holds the potential to become a new diagnostic principle for measurements of the fuel ion ratio, nT/nD, in ITER. Fuel ion ratio measurements will be important for plasma control and machine protection in ITER. Measurements of ion cyclotron structures...... in CTS spectra have been suggested as the basis for a new fuel ion ratio diagnostic which would be well suited for reactor environments and capable of providing spatially resolved measurements in the plasma core. Such measurements were demonstrated in recent experiments in the TEXTOR tokamak. Here we...... conduct a sensitivity study to investigate the potential measurement accuracy of a CTS fuel ion ratio diagnostic on ITER. The study identifies regions of parameter space in which CTS can be expected to provide useful information on plasma composition, and we find that a CTS fuel ion ratio diagnostic could...

  18. Multi-method automated diagnostics of rotating machines

    Science.gov (United States)

    Kostyukov, A. V.; Boychenko, S. N.; Shchelkanov, A. V.; Burda, E. A.

    2017-08-01

    The automated machinery diagnostics and monitoring systems utilized within the petrochemical plants are an integral part of the measures taken to ensure safety and, as a consequence, the efficiency of these industrial facilities. Such systems are often limited in their functionality due to the specifics of the diagnostic techniques adopted. As the diagnostic techniques applied in each system are limited, and machinery defects can have different physical nature, it becomes necessary to combine several diagnostics and monitoring systems to control various machinery components. Such an approach is inconvenient, since it requires additional measures to bring the diagnostic results in a single view of the technical condition of production assets. In this case, we mean by a production facility a bonded complex of a process unit, a drive, a power source and lines. A failure of any of these components will cause an outage of the production asset, which is unacceptable. The purpose of the study is to test a combined use of vibration diagnostics and partial discharge techniques within the diagnostic systems of enterprises for automated control of the technical condition of rotating machinery during maintenance and at production facilities. The described solutions allow you to control the condition of mechanical and electrical components of rotating machines. It is shown that the functionality of the diagnostics systems can be expanded with minimal changes in technological chains of repair and operation of rotating machinery. Automation of such systems reduces the influence of the human factor on the quality of repair and diagnostics of the machinery.

  19. Measurement of fuel importance distribution in non-uniformly distributed fuel systems

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Izima, Kazunori; Shiroya, Seiji; Kobayashi, Keiji.

    1995-01-01

    A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem for nuclear criticality safety in a reprocessing plant. As a theory estimating this reactivity effect, the Goertzel and fuel importance theories are well known. It has been shown that the Goertzel's theory is valid in the range of our experiments based on measurements of reactivity effect and thermal neutron flux in non-uniformly distributed fuel systems. On the other hand, there have been no reports concerning systematic experimental studies on the flatness of fuel importance which is a more general index than the Goertzel's theory. It is derived from the perturbation theory that the fuel importance is proportional to the reactivity change resulting from a change of small amount of fuel mass. Using a uniform and three kinds of nonuniform fuel systems consisting of 93.2% enriched uranium plates and polyethylene plates, the fuel importance distributions were measured. As a result, it was found experimentally that the fuel importance distribution became flat, as its reactivity effect became large. Therefore it was concluded that the flatness of fuel importance distribution is the useful index for estimating reactivity effect of non-uniformly distributed fuel system. (author)

  20. Applications of laser diagnostics to thermal power plants and engines

    International Nuclear Information System (INIS)

    Deguchi, Y.; Kamimoto, T.; Wang, Z.Z.; Yan, J.J.; Liu, J.P.; Watanabe, H.; Kurose, R.

    2014-01-01

    The demands for lowering the burdens on the environment will continue to grow steadily. It is important to monitor controlling factors in order to improve the operation of industrial thermal systems. In engines, exhaust gas temperature and concentration distributions are important factors in nitrogen oxides (NO x ), total hydrocarbon (THC) and particulate matter (PM) emissions. Coal and fly ash contents are parameters which can be used for the control of coal-fired thermal power plants. Monitoring of heavy metals such as Hg is also important for pollution control. In this study, the improved laser measurement techniques using computed tomography-tunable diode laser absorption spectroscopy (CT-TDLAS), low pressure laser-induced breakdown spectroscopy (LIBS), and laser breakdown time-of-flight mass spectrometry (LB-TOFMS) have been developed and applied to measure 2D temperature and species concentrations in engine exhausts, coal and fly ash contents, and trace species measurement. The 2D temperature and NH 3 concentration distributions in engine exhausts were successfully measured using CT-TDLAS. The elemental contents of size-segregated particles were measured and the signal stability increased using LIBS with the temperature correction method. The detection limit of trace species measurement was enhanced using low pressure LIBS and LB-TOFMS. The detection limit of Hg can be enhanced to 3.5 ppb when employing N 2 as the buffer gas using low pressure LIBS. Hg detection limit was about 0.82 ppb using 35 ps LB-TOFMS. Compared to conventional measurement methods laser diagnostics has high sensitivity, high response and non-contact features for actual industrial systems. With these engineering developments, transient phenomena such as start-ups in thermal systems can be evaluated to improve the efficiency of these thermal processes. - Highlights: • Applicability of newly developed laser diagnostics was demonstrated for the improvement of thermal power plants and

  1. Magnetic diagnostics for the proto-eta Tokamak

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Aso, Y.; Ueda, M.; Ferreira, J.G.

    1991-04-01

    This work gives a general view of the magnetic diagnostics rat will be used in the Proto-Eta Tokamak. These diagnostics will be useful tools to measure currents, electric and magnetic fields involved in the plasma magnetic confinement. (author)

  2. A WAO - ARIA - GA²LEN consensus document on molecular-based allergy diagnostics.

    Science.gov (United States)

    Canonica, Giorgio Walter; Ansotegui, Ignacio J; Pawankar, Ruby; Schmid-Grendelmeier, Peter; van Hage, Marianne; Baena-Cagnani, Carlos E; Melioli, Giovanni; Nunes, Carlos; Passalacqua, Giovanni; Rosenwasser, Lanny; Sampson, Hugh; Sastre, Joaquin; Bousquet, Jean; Zuberbier, Torsten

    2013-10-03

    Molecular-based allergy (MA) diagnostics is an approach used to map the allergen sensitization of a patient at a molecular level, using purified natural or recombinant allergenic molecules (allergen components) instead of allergen extracts. Since its introduction, MA diagnostics has increasingly entered routine care, with currently more than 130 allergenic molecules commercially available for in vitro specific IgE (sIgE) testing.MA diagnostics allows for an increased accuracy in allergy diagnosis and prognosis and plays an important role in three key aspects of allergy diagnosis: (1) resolving genuine versus cross-reactive sensitization in poly-sensitized patients, thereby improving the understanding of triggering allergens; (2) assessing, in selected cases, the risk of severe, systemic versus mild, local reactions in food allergy, thereby reducing unnecessary anxiety for the patient and the need for food challenge testing; and (3) identifying patients and triggering allergens for specific immunotherapy (SIT).Singleplex and multiplex measurement platforms are available for MA diagnostics. The Immuno-Solid phase Allergen Chip (ISAC) is the most comprehensive platform currently available, which involves a biochip technology to measure sIgE antibodies against more than one hundred allergenic molecules in a single assay. As the field of MA diagnostics advances, future work needs to focus on large-scale, population-based studies involving practical applications, elucidation and expansion of additional allergenic molecules, and support for appropriate test interpretation. With the rapidly expanding evidence-base for MA diagnosis, there is a need for allergists to keep abreast of the latest information. The aim of this consensus document is to provide a practical guide for the indications, determination, and interpretation of MA diagnostics for clinicians trained in allergology.

  3. Comprehensive diagnostic set for intense lithium ion hohlraum experiments on PBFA II

    International Nuclear Information System (INIS)

    Leeper, R.J.; Bailey, J.E.; Carlson, A.L.

    1994-01-01

    A review of the comprehensive diagnostic package developed at Sandia National Laboratories for intense lithium ion hohlraum target experiments on PBFA II will be presented. This package contains an extensive suite of x-ray spectral and imaging diagnostics that enable measurements of target radiation smoothing, hydro-motion, and temperature. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved 1-D streaked imaging diagnostics that enable measurements of target radiation smoothing, hydro-motion, and temperature. The x-ray diagnostics include time-integrated and time-resolved pinhole cameras, energy-resolved 1-D streaked imaging diagnostics, time-integrated and time-resolved grazing incidence spectrographs, a transmission grating spectrography, an elliptical crystal spectrograph, a bolometer array, an eleven element x-ray diode (XRD) array, and an eleven element PIN diode detector array. A hohlraum temperature measurement technique under development is a shock breakout diagnostic that measures the radiation pressure at the hohlraum wall. The incident Li beam symmetry and an estimate of incident Li beam power density are measured from ion beam-induced characteristic x-ray line and neutron emissions. An attempt to measure the Li beam intensity directly on target used Rutherford scattered ions into an ion movie camera and a magnetic spectrograph. The philosophy used in designing all the diagnostics in the set has emphasized redundant and independent measurements of fundamental physical quantities relevant to the performance of the target. Details of each diagnostic, its integration, data reduction procedures, and recent PBFA-II data will be discussed

  4. Towards novel compact laser sources for non-invasive diagnostics and treatment

    Science.gov (United States)

    Rafailov, Edik U.; Litvinova, Karina S.; Sokolovski, Sergei G.

    2015-08-01

    An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.

  5. MONITORING DIAGNOSTIC INDICATORS DURING OPERATION OF A PRINT MACHIN

    Directory of Open Access Journals (Sweden)

    Jozef Dobránsky

    2015-11-01

    Full Text Available This article deals with monitoring diagnostic indicators during the operation of a machine used for production of packing materials with a print. It analyses low-frequency vibrations measured in individual spherical roller bearings in eight print positions. The rollers in these positions have a different pressure based on positioning these rollers in relation to the central roller. As a result, the article also deals with a correlation of pressure and level of measured low-frequency vibrations. The speed of the print machine (the speed of a line in meters per minute is a very important variable during its operation, this is why it is important to verify the values of vibrations in various speeds of the line, what can lead to revelation of one or more resonance areas. Moreover, it examines vibrations of the central roller drive and measurement of backlash of transmission cogs of this drive. Based on performed analyses recommendations for an operator of the machine have been conceived.

  6. Preparing diagnostic data for the SNAP transport code

    International Nuclear Information System (INIS)

    Murphy, J.A.; Scott, S.D.; Towner, H.H.

    1992-01-01

    This paper describes the program SNAPIN which is used to prepare data for transport analysis with the SNAP code. The data input to SNAP includes diagnostic profiles [n e (R), T e (R), T i (R), v φ (R), Z eff (R), P rad (R)] and measurements such as total plasma current, R major , beam power, gas puff rate, etc. SNAPIN reads in the necessary TFTR data, allows editing of that data, including graphical editing of profile data and the selection of physics models. SNAPIN allows comparison of profile data from all diagnostics that measure a quantity, for example, electron temperature profiles from Thomson scattering and electron cyclotron emission (ECE). A powerful user interface is important to help the user prepare input data sets quickly and consistently, because hundreds of variables must be specified for each analysis. SNAPIN facilitates this by a careful organization of menus, display of all scalar data and switch settings within the menus, the graphical editing and comparison of profiles, and step-by-step checking for consistent physics controls [J. Murphy, S. Scott, and H. Towner, The SNAP User's Guide, Technical Report PPPL-TM-393, Princeton Plasma Physics Laboratory (1992)

  7. [Tinnitus: algorithm of diagnostics and clinical management].

    Science.gov (United States)

    Boiko, N V

    Hearing of sound, or tinnitus, can be a symptom of different diseases. The differential diagnosis should be based on the identification of subgroups with confirmed causes of the disease. Subjective and objective tinnitus groups should be isolated. Objective tinnitus can be vascular or muscular. In making a diagnosis of tinnitus, it is important to know its characteristics, laterality, circumstances of onset, duration, comorbidity with other symptoms: headache, hearing decline, dizziness, depression, etc. Urgent diagnostic and treatment measures are needed after the identification of 'red flags': acute pulsatile tinnitus, in particular after the brain injury, combination of tinnitus with acute hearing loss and depression.

  8. Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning

    International Nuclear Information System (INIS)

    Nicholson, Charles D.; Barker, Kash; Ramirez-Marquez, Jose E.

    2016-01-01

    This work develops and compares several flow-based vulnerability measures to prioritize important network edges for the implementation of preparedness options. These network vulnerability measures quantify different characteristics and perspectives on enabling maximum flow, creating bottlenecks, and partitioning into cutsets, among others. The efficacy of these vulnerability measures to motivate preparedness options against experimental geographically located disruption simulations is measured. Results suggest that a weighted flow capacity rate, which accounts for both (i) the contribution of an edge to maximum network flow and (ii) the extent to which the edge is a bottleneck in the network, shows most promise across four instances of varying network sizes and densities. - Highlights: • We develop new flow-based measures of network vulnerability. • We apply these measures to determine the importance of edges after disruptions. • Networks of varying size and density are explored.

  9. In-service diagnostics of pumping facilities

    International Nuclear Information System (INIS)

    Jaros, I.

    1987-01-01

    The potential is discussed of technical diagnostics in increasing operating reliability of pumping facilities of conventional and nuclear power plants, and in rationalizing the system of their maintenance. Attention is focused on the selection of diagnostic parameters in which the so-called subjective expert methodology is applied, and on the diagnostic system design. At this stage, the construction of the respective facility and the analysis of the failure rate of its individual assemblies should be considered. The selection of diagnostic means directly depends on the selection of diagnostic parameters and is conditional on other factors, such as availability, cost, technical service, and operator's training. Briefly characterized are Czechoslovak standards assessing the mechanical condition of rotary machines from the measurement of the effective value of the rate of their oscillations. (Z.M.)

  10. Predicted precision of ion temperature and impurity fractional density measurements using the JET collective scattering diagnostic

    International Nuclear Information System (INIS)

    Orsitto, F.

    1992-11-01

    In a previous investigation the possibility of measuring the bulk ion temperature was considered in detail, in the context of the proposed Thomson scattering diagnostic for fast ions and alpha particles in the Joint European Torus project. In this report we give an affirmative answer to the question of whether good precision can be obtained in the simultaneous determination of the temperatures and densities of plasma ions from a collective scattering experiment provided some conditions are satisfied. (Author)

  11. Assessing the damage importance rank in acoustic diagnostics of technical conditions of the internal combustion engine with multi-valued logical decision trees

    Directory of Open Access Journals (Sweden)

    Deptuła Adam

    2017-01-01

    Full Text Available This paper presents possible applications of acoustic diagnostics in inspecting the technical condition of an internal combustion engine with autoignition on the example of the Fiat drive unit with the common rail system. As a result of measuring the sound pressure level for specific faults and comparing the noise generated by the motor running smoothly, the detailed maps of changes in the acoustic spectrum may be generated. These results may be helpful in future diagnostics of internal combustion engines. In the paper, we present the results from the scientific works in the area of research, design and operation of internal combustion engines, conducted at the Department of Automotive Engineering, in cooperation with the Laboratory of Hydraulic Drives & Vibroacoustics of Machines at the Wroclaw University of Technology. The broader study has so far allowed us to develop an authoritative method of identifying the type of engine damage using gametree structures. The present works assess the possibility of using multi-valued logic trees.

  12. Automated Calibration of Dosimeters for Diagnostic Radiology

    International Nuclear Information System (INIS)

    Romero Acosta, A.; Gutierrez Lores, S.

    2015-01-01

    Calibration of dosimeters for diagnostic radiology includes current and charge measurements, which are often repetitive. However, these measurements are usually done using modern electrometers, which are equipped with an RS-232 interface that enables instrument control from a computer. This paper presents an automated system aimed to the measurements for the calibration of dosimeters used in diagnostic radiology. A software application was developed, in order to achieve the acquisition of the electric charge readings, measured values of the monitor chamber, calculation of the calibration coefficient and issue of a calibration certificate. A primary data record file is filled and stored in the computer hard disk. The calibration method used was calibration by substitution. With this system, a better control over the calibration process is achieved and the need for human intervention is reduced. the automated system will be used in the calibration of dosimeters for diagnostic radiology at the Cuban Secondary Standard Dosimetry Laboratory of the Center for Radiation Protection and Hygiene. (Author)

  13. A composite peripheral blood gene expression measure as a potential diagnostic biomarker in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Peijs, L; Vinberg, M

    2015-01-01

    as a diagnostic and state biomarker in bipolar disorder. First, messenger RNA levels of 19 candidate genes were assessed in peripheral blood mononuclear cells of 37 rapid cycling bipolar disorder patients in different affective states (depression, mania and euthymia) during a 6-12-month period and in 40 age...... subjects. In patients with bipolar disorder, upregulation of NDUFV2 was observed in a depressed state compared with a euthymic state. The composite gene expression measure for discrimination between patients and healthy control subjects on the basis of 19 genes generated an area under the receiver...

  14. Importance measures in nuclear PSA: how to control their uncertainty and develop new applications

    International Nuclear Information System (INIS)

    Duflot, N.

    2007-01-01

    This PhD thesis deals with the importance measures based on nuclear probabilistic safety analyses (PSA). With these indicators, the importance towards risk of the events considered in the PSA models can be measured. The first part of this thesis sets out the framework in which they are currently used. The information extracted from importance measures evaluation is used in industrial decision-making processes that may impact the safety of nuclear plants. In the second part of the thesis, we thus try to meet the requirements of reliability and simplicity with an approach minimising the uncertainties due to modelling. We also lay out a new truncation process of the set of the minimal cut set (MCS) corresponding to the baseline case which allows a quick, automatic and precise calculation of the importance measures. As PSA are increasingly used in risk-informed decision-making approaches, we have examined the extension of importance measures to groups of basic events. The third part of the thesis therefore presents the definition of the importance of events such as the failure of a system or the loss of a function, as well as their potential applications. PSA being considered to be a useful tool to design new nuclear power plants, the fourth part of the thesis sketches out a design process based both on classical importance measures and on new ones. (author)

  15. Vibration mitigation in J-TEXT far-infrared diagnostic systems

    International Nuclear Information System (INIS)

    Li, Q.; Chen, J.; Zhuang, G.; Wang, Z. J.; Gao, L.; Chen, W.

    2012-01-01

    Optical structure stability is an important issue for far-infrared (FIR) phase measurements. To ensure good signal quality, influence of vibration should be minimized. Mechanical amelioration and optical optimization can be taken in turn to decrease vibration's influence and ensure acceptable measurement. J-TEXT (Joint Texal Experiment Tokamak, formerly TEXT-U) has two FIR diagnostic systems: a HCN interferometer system for electron density measurement and a three-wave polarimeter-interferometer system (POLARIS) for electron density and Faraday effect measurements. All use phase detection techniques. HCN interferometer system has almost eliminated the influence of vibration after mechanical amelioration and optical optimization. POLARIS also obtained first experimental results after mechanical stability improvements and is expected to further reduce vibration's influence on Faraday angle to 0.1° after optical optimization.

  16. Deposition Diagnostics for Next-step Devices

    International Nuclear Information System (INIS)

    Skinner, C.H.; Roquemore, A.L.; Bader, A.; Wampler, W.R.

    2004-01-01

    The scale-up of deposition in next-step devices such as ITER will pose new diagnostic challenges. Codeposition of hydrogen with carbon needs to be characterized and understood in the initial hydrogen phase in order to mitigate tritium retention and qualify carbon plasma facing components for DT operations. Plasma facing diagnostic mirrors will experience deposition that is expected to rapidly degrade their reflectivity, posing a new challenge to diagnostic design. Some eroded particles will collect as dust on interior surfaces and the quantity of dust will be strictly regulated for safety reasons - however diagnostics of in-vessel dust are lacking. We report results from two diagnostics that relate to these issues. Measurements of deposition on NSTX with 4 Hz time resolution have been made using a quartz microbalance in a configuration that mimics that of a typical diagnostic mirror. Often deposition was observed immediately following the discharge suggesting that diagnostic shutters should be closed as soon as possible after the time period of interest. Material loss was observed following a few discharges. A novel diagnostic to detect surface particles on remote surfaces was commissioned on NSTX

  17. Chemistry monitoring and diagnostic system at NPP Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Smiesko, Ivan; Figedy, Stefan

    2012-09-01

    This paper provides a description of water chemistry monitoring and diagnostic system installed at Slovak NPP Jaslovske Bohunice. System has complex architecture and covers laboratory data, chemistry and radiochemistry on-line monitoring data, process data acquisition and processing and diagnostics. Pre-filtered data from process computer and chemistry on-line monitors are recorded together with laboratory data in the ORACLE-based information system CHEMIS with many presentation and processing features. Brief information is given about the basic features of a newly developed diagnostic system for early detection and identification of anomalies incoming in the water chemistry regime of the primary and secondary circuit of VVER-440 type unit. This system, called SACHER (System of Analysis of Chemical Regime) has been installed within the major modernization project at the NPP Bohunice in the Slovak Republic. System SACHER has been developed fully in MATLAB environment. Diagnostic system works exclusively with available on-line data as an operation personnel support application allowing effective response to adverse chemistry events/trends. The availability of prompt information about the chemical conditions of the primary and secondary circuit is very important in order to prevent the undue corrosion and deposit build-up processes within the plant systems. The typical chemical information systems that exist and work at the NPPs give the user values of the measured quantities together with their time trends and other derived values. It is then the experienced user's role to recognize the situation the monitored process is in and make the subsequent decisions and take the measures. The SACHER system, based on the computational intelligence techniques, inserts the elements of intelligence into the overall chemical information system. It has the modular structure with the following most important modules: - normality module- its aim is to recognize that the process

  18. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    Science.gov (United States)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  19. High Power Microwave Diagnostic for the Fusion Energy Experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Gonçalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments...

  20. Development of an automated method for in situ measurement of the geometrical properties of the ITER bolometer diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Meister, H., E-mail: meister@ipp.mpg.de; Penzel, F.; Giannone, L.; Kannamueller, M.; Kling, A.; Koll, J.; Trautmann, T.

    2011-10-15

    In order to derive the local emission profile of the plasma radiation in a fusion device using the line-integrated measurements of the bolometer diagnostic, tomographic reconstruction methods have to be applied to the measurements from many lines-of-sight. A successful reconstruction needs to take the finite sizes of detectors and apertures and the resulting non-ideal measurements into account. In ITER a method for in situ measurement of the geometrical properties of the various components of the bolometer diagnostic after installation is required as the viewing cones have to pass through narrow gaps between components. The method proposed to be used for ITER uses the beam of a laser with high intensity to illuminate the bolometer assembly from many different angles {xi} and {theta}. A light-weight robot from Kuka Robotics is used to efficiently position the laser on many points covering the complete viewing cone of each line-of-sight and to direct the beam precisely into the entrance aperture of the bolometer. Measuring the response of the bolometer allows for the calculation of the transmission function t({xi}, {theta}), the angular etendue and finally the geometric function in reconstruction space, which is required for the tomography algorithms. Measuring the transmission function for a laboratory assembly demonstrates the viability of the proposed method. Results for a collimator-type camera from a prototype envisaged for ITER are presented. The implemented procedure is discussed in detail, in particular with respect to the automatisation applied which takes the achievable positioning and alignment accuracies of the robot into account. This discussion is extended towards the definition of requirements for a remote-handling tool for ITER.

  1. Screening diagnostic program breast cancer

    International Nuclear Information System (INIS)

    Portnoj, L.M.; Zhakova, I.I.; Budnikova, N.V.; Rukhlyadko, E.D.

    1995-01-01

    The authors propose their screening program for detection of breast cancer. It includes the entire complex of present-day screening diagnostic methods, starting from an original system for the formation of groups at risk of breast cancer and completed by the direct diagnostic model of detection of the condition, oriented at a differentiated approach to the use of mammographic techniques. The proposed organizational and methodologic screening measures are both economic and diagnostically effective, thus meeting the principal requirements to screening programs. Screening of 8541 risk-groups patients helped detect 867 nodular formations, 244 of which were cancer and 623 benign formations. 8 refs., 3 figs.,

  2. The Brief Introduction of Different Laser Diagnostics Methods Used in Aeroengine Combustion Research

    Directory of Open Access Journals (Sweden)

    Fei Xing

    2016-01-01

    Full Text Available Combustion test diagnosis has always been one of the most important technologies for the development of aerospace engineering. The traditional methods of measurement have been unable to meet the requirements of accurate capture of the flow field in the development process of the aeroengine combustor. Therefore, the development of high-precision measurement and diagnostic techniques to meet the needs of the aeroengine combustor design is imperative. Laser diagnostics techniques developed quickly in the past several years. They are used to measure the parameters of the combustion flow field such as velocity, temperature, and components concentration with high space and time resolution and brought no disturbance. Planar laser-induced fluorescence, coherent anti-Stokes Raman scattering, tunable diode laser absorption spectroscopy, and Raman scattering were introduced systemically in this paper. After analysis of their own advantages and disadvantages, the authors considered validated Raman scattering system and Tunable Diode Laser Absorption Tomography are more suitable for research activities on aeroengine combustion systems.

  3. Data needs for diagnostics of low pressure plasmas

    International Nuclear Information System (INIS)

    Graham, Bill

    2000-01-01

    The low pressure plasma processing environment is complex and presents many diagnostic challenges. Here the diagnostic techniques used for accurate and detailed measurement of the density and energy distributions of charged and neutral species are reviewed. Most of the techniques rely heavily on atomic and molecular data. The specific data needs of each diagnostic are outlined. It is shown that in total these data needs are vast and diverse and cannot all be met from specific measurements or calculations. The real need is for generic scaling rules for each of the significant atomic and molecular processes

  4. Aggressive osteoblastoma of the mandible: A diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Harshaminder Kaur

    2012-01-01

    Full Text Available The clinical facts and radiologic findings are very important in the diagnostic evaluation of jaw swellings, and must be considered along with histologic findings. Osteoblastoma, an uncommon primary lesion of the bone that occasionally arises in the jaws, is one such lesion causing a localized jaw swelling. Clinically, osteoblastoma can be symptomatic or even remain symptom-free, and may be diagnosed only on routine radiographic examination. Histologically and clinically, differential diagnosis for osteoblastoma ranges from a variety of benign and malignant tumors that poses a diagnostic dilemma. Stressing the importance of the correct diagnosis of such lesions, this report discusses a case of aggressive osteoblastoma of the mandible posing as a diagnostic dilemma.

  5. Reliability of measuring abductor hallucis muscle parameters using two different diagnostic ultrasound machines

    Directory of Open Access Journals (Sweden)

    Cameron Alyse FM

    2009-11-01

    Full Text Available Abstract Background Diagnostic ultrasound provides a method of analysing soft tissue structures of the musculoskeletal system effectively and reliably. The aim of this study was to evaluate within and between session reliability of measuring muscle dorso-plantar thickness, medio-lateral length and cross-sectional area, of the abductor hallucis muscle using two different ultrasound machines, a higher end Philips HD11 Ultrasound machine and clinically orientated Chison 8300 Deluxe Digital Portable Ultrasound System. Methods The abductor hallucis muscle of both the left and right feet of thirty asymptomatic participants was imaged and then measured using both ultrasound machines. Interclass correlation coefficients (ICC with 95% confidence intervals (CI were used to calculate both within and between session intra-tester reliability. Standard error of the measurement (SEM calculations were undertaken to assess difference between the actual measured score across trials and the smallest real difference (SRD was calculated from the SEM to indicate the degree of change that would exceed the expected trial to trial variability. Results The ICCs, SEM and SRD for dorso-plantar thickness and medial-lateral length were shown to have excellent to high within and between-session reliability for both ultrasound machines. The between-session reliability indices for cross-sectional area were acceptable for both ultrasound machines. Conclusion The results of the current study suggest that regardless of the type ultrasound machine, intra-tester reliability for the measurement the abductor hallucis muscle parameters is very high.

  6. Application of neural networks and neutron noise for diagnostics of reactor internals vibration

    International Nuclear Information System (INIS)

    Garis, N.S.; Pazsit, I.; Gloeckler, O.

    1995-01-01

    It has long been known that vibration of reactor internals, in particular excessive vibrations of control rods, can be detected via the neutron noise they induce. Noise measurements are actually suitable to determine important diagnostic parameters such as the location of the vibrating rod and the vibration amplitude. An algorithm was earlier elaborated for this purpose, which is based on inversion of the expression describing the neutron noise as a function of vibration parameters. This inversion procedure is nevertheless complicated and not always unique. It was investigated whether a properly trained neural network can perform the inversion more effectively. It was found that artificial neural networks can be trained effectively to perform vibration diagnostics from neutron noise data fast, effectively and reliably. The present paper gives a description of the development and use of the neural networks for purposes of vibration diagnostics

  7. Diagnostic criteria in MR neurography

    International Nuclear Information System (INIS)

    Baeumer, P.

    2017-01-01

    Peripheral neuropathies are frequent and can mostly be correctly diagnosed by clinical examination and electrophysiology; however, diagnostically difficult cases are sometimes encountered especially with respect to precise localization of nerve lesions. Imaging of the peripheral nervous system has been shown to provide additional useful diagnostic information. In addition to the more widely available nerve sonography, magnetic resonance neurography (MRN) is the method of choice in diagnostically complex cases. The most important pulse sequence is a T2-weighted fat-saturated pulse sequence with high in-plane resolution and detects increased T2-weighted signals of nerve fascicles as a highly sensitive sign for nerve lesions. Further established diagnostic criteria are nerve caliber and, less commonly used, contrast agent uptake. The spatial pattern of nerve lesions aids in the diagnostic classification of neuropathies. Functional imaging techniques, such as diffusion tensor imaging (DTI) and nerve perfusion are currently under examination with respect to the clinical potential. If all other diagnostic methods, including clinical examination, electrophysiology and nerve sonography do not arrive at an unambiguous diagnosis of a peripheral neuropathy, MRN should be used. The special value of MRN is demonstrated particularly in complex nerve lesions, such as traumatic plexopathies and in partial fascicular neuropathies and many other indications. (orig.) [de

  8. Three-dimensional Monte Carlo calculations of the neutron and γ-ray fluences in the TFTR diagnostic basement and comparisons with measurements

    International Nuclear Information System (INIS)

    Liew, S.L.; Ku, L.P.; Kolibal, J.G.

    1985-10-01

    Realistic calculations of the neutron and γ-ray fluences in the TFTR diagnostic basement have been carried out with three-dimensional Monte Carlo models. Comparisons with measurements show that the results are well within the experimental uncertainties

  9. Development of a new virtual diagnostic for V3FIT

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, G. L., E-mail: gtrevisan@igi.cnr.it; Terranova, D. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), corso Stati Uniti 4-35127 Padova (Italy); Cianciosa, M. R.; Hanson, J. D. [Auburn University, Physics Department, Auburn, Alabama 36849 (United States)

    2014-12-15

    The determination of plasma equilibria from diagnostic information is a fundamental issue. V3FIT is a fully three-dimensional reconstruction code capable of solving the inverse problem using both magnetic and kinetic measurements. It uses VMEC as core equilibrium solver and supports both free- and fixed-boundary reconstruction approaches. In fixed-boundary mode VMEC does not use explicit information about currents in external coils, even though it has important effects on the shape of the safety factor profile. Indeed, the edge safety factor influences the reversal position in RFP plasmas, which then determines the position of the m = 0 island chain and the edge transport properties. In order to exploit such information a new virtual diagnostic has been developed, that thanks to Ampère's law relates the external current through the center of the torus to the circulation of the toroidal magnetic field on the outermost flux surface. The reconstructions that exploit the new diagnostic are indeed found to better interpret the experimental data with respect to edge physics.

  10. Development of a scale to measure problem use of short message service: the SMS Problem Use Diagnostic Questionnaire.

    Science.gov (United States)

    Rutland, J Brian; Sheets, Tilman; Young, Tony

    2007-12-01

    This exploratory study examines a subset of mobile phone use, the compulsive use of short message service (SMS) text messaging. A measure of SMS use, the SMS Problem Use Diagnostic Questionnaire (SMS-PUDQ), was developed and found to possess acceptable reliability and validity when compared to other measures such as self-reports of time spent using SMS and scores on a survey of problem mobile phone use. Implications for the field of addiction research, technological and behavioral addictions in particular, are discussed, and directions for future research are suggested.

  11. Ambient diagnostics

    CERN Document Server

    Cai, Yang

    2014-01-01

    Part I. FundamentalsIntroductionWhat is Ambient Diagnostics?Diagnostic ModelsMultimedia IntelligenceCrowd SourcingSoft SensorsScience of SimplicityPersonal DiagnosesBasic AlgorithmsBasic ToolsSummaryProblemsTransformationEarly Discoveries of Heartbeat PatternsTransforms, Features, and AttributesSequential FeaturesSpatiotemporal FeaturesShape FeaturesImagery FeaturesFrequency Domain FeaturesMulti-Resolution FeaturesSummaryProblemsPattern RecognitionSimilarities and DistancesClustering MethodsClassification MethodsClassifier Accuracy MeasuresSummaryProblemsPart II. Multimedia IntelligenceSound RecognitionMicrophone AppsModern Acoustic Transducers (Microphones)Frequency Response CharacteristicsDigital Audio File FormatsHeart Sound SensingLung Sound SensingSnore MeterSpectrogram (STFT)Ambient Sound AnalysisSound RecognitionRecognizing Asthma SoundPeak ShiftFeature CompressionRegroupingNoise IssuesFuture ApplicationsSummaryProblemsColor SensorsColor SensingHuman Color VisionColor SensorsColor Matching ExperimentsC...

  12. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  13. Innovative approaches for addressing old challenges in component importance measures

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Ramirez-Marquez, Jose Emmanuel

    2012-01-01

    Importance measures (IM) are component related indices that allow assessing how a component in a system affects one or more system level performance functions. While several IM have been presented in the literature, challenges still remain with respect to the following: (1) multiple ranking—multiple perspective, (2) multi-component importance and, (3) multi-function importance. To address these challenges, this paper proposes set of innovative solutions based on several available techniques: Hasse diagram, Copeland score and Multi-objective optimization. As such, the purpose of this research is twofold: first propose solutions and second foster new research to address these challenges. Each of the proposed solutions is exemplified with a working example.

  14. Workload measurement: diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nuss, Wayne [The Prince Charles Hospital, Chermside, QLD (Australia). Dept. of Medical Imaging

    1993-06-01

    Departments of medical imaging, as with many other service departments in the health industry, are being asked to develop performance indicators. No longer are they assured that annual budget allocations will be forthcoming without justification or some output measurement indicators that will substantiate a claim for a reasonable share of resources. The human resource is the most valuable and the most expensive to any department. This paper provides a brief overview of the research and implementation of a radiographer workload measurement system that was commenced in the Brisbane North Health Region. 2 refs., 10 tabs.

  15. Exposure from diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.; Isac, R.

    2002-01-01

    According to our last national study on population exposures from natural and artificial sources of ionizing radiation, 16% of overall annual collective effective dose represent the contribution of diagnostic medical exposures. Of this value, 92% is due to diagnostic X-ray examinations and only 8% arise from diagnostic nuclear medicine procedures. This small contribution to collective dose is mainly the result of their lower frequency compared to that of the X-ray examinations, doses delivered to patients being, on average, ten times higher. The purpose of this review was to reassess the population exposure from in vivo diagnostic nuclear medicine procedures and to evaluate the temporal trends of diagnostic usage of radiopharmaceuticals in Romania. The current survey is the third one conducted in the last decade. As in the previous ones (1990 and 1995), the contribution of the Radiation Hygiene Laboratories Network of the Ministry of Health and Family in collecting data from nuclear medicine departments in hospitals was very important

  16. Laser fusion diagnostics

    International Nuclear Information System (INIS)

    Coleman, L.W.

    1978-01-01

    The current status of the capability of laser fusion diagnostics is reviewed. Optical and infrared streak cameras provide one time resolution measurement capability of less than 10 ps, while x-ray streak cameras provide 15 ps time resolution in the range of about 1--30 keV presently. Time integrated spatial resolutions of 1 μm are provided with a variety of optical techniques. Ultraviolet holographic interferometry has measured electron densities above 10 21 cm -3 with 1 μm spatial resolution and 15 ps temporal resolution. X-ray microscopes provide 3 μm time integrated resolution and the x-ray streak pinhole camera has 6 μm spatial resolution. Development of the framing camera has thus far provided 50 μm spatial resolution with 125 ps frame duration and the third order reconstruction of zone plate images has provided 3 μm resolutions for alpha particles. Time integrated measurements of x-rays span the range shown. Finally, the new Shiva neutron spectrometer increases the energy resolution capability of that technique to 25 keV for 14-MeV neutrons. These combined capabilities provide a unique set of diagnostics for the detailed measurement of the interaction of laser light with targets and a subsequent performance of those targets

  17. Delivering Diagnostic Quality Video over Mobile Wireless Networks for Telemedicine

    Directory of Open Access Journals (Sweden)

    Sira P. Rao

    2009-01-01

    Full Text Available In real-time remote diagnosis of emergency medical events, mobility can be enabled by wireless video communications. However, clinical use of this potential advance will depend on definitive and compelling demonstrations of the reliability of diagnostic quality video. Because the medical domain has its own fidelity criteria, it is important to incorporate diagnostic video quality criteria into any video compression system design. To this end, we used flexible algorithms for region-of-interest (ROI video compression and obtained feedback from medical experts to develop criteria for diagnostically lossless (DL quality. The design of the system occurred in three steps-measurement of bit rate at which DL quality is achieved through evaluation of videos by medical experts, incorporation of that information into a flexible video encoder through the notion of encoder states, and an encoder state update option based on a built-in quality criterion. Medical experts then evaluated our system for the diagnostic quality of the video, allowing us to verify that it is possible to realize DL quality in the ROI at practical communication data transfer rates, enabling mobile medical assessment over bit-rate limited wireless channels. This work lays the scientific foundation for additional validation through prototyped technology, field testing, and clinical trials.

  18. A recoverable gas-cell diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ratkiewicz, A., E-mail: ratkiewicz1@llnl.gov; Berzak Hopkins, L.; Bleuel, D. L.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B. [Lawrence Livermore National Laboratory, Livermore, California 95440 (United States); Bernstein, L. A.; Bibber, K. van; Goldblum, B. L. [University of California, Berkeley, California 94720 (United States); Siem, S. [University of Oslo, N-0316 Oslo (Norway); Wiedeking, M. [iThemba LABS, Somerset West 7129 (South Africa)

    2016-11-15

    The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of {sup nat}Xe and discuss future work to study the strength of interactions between plasma and nuclei.

  19. A recoverable gas-cell diagnostic for the National Ignition Facility.

    Science.gov (United States)

    Ratkiewicz, A; Berzak Hopkins, L; Bleuel, D L; Bernstein, L A; van Bibber, K; Cassata, W S; Goldblum, B L; Siem, S; Velsko, C A; Wiedeking, M; Yeamans, C B

    2016-11-01

    The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of nat Xe and discuss future work to study the strength of interactions between plasma and nuclei.

  20. An Artificial Intelligence Approach for Gears Diagnostics in AUVs.

    Science.gov (United States)

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-04-12

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.

  1. An Artificial Intelligence Approach for Gears Diagnostics in AUVs

    Directory of Open Access Journals (Sweden)

    Graciliano Nicolás Marichal

    2016-04-01

    Full Text Available In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles, where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.

  2. Diagnostic accuracy of organ electrodermal diagnostics | Szopinski ...

    African Journals Online (AJOL)

    Objective. To estimate the diagnostic accuracy as well as the scope of utilisation of a new bio-electronic method of organ diagnostics. Design. Double-blind comparative study of the diagnostic results obtained by means of organ electrodermal diagnostics (OED) and clinical diagnoses, as a criterion standard. Setting.

  3. Molecular diagnostics of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Megha eAgrawal

    2015-09-01

    Full Text Available Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer’s and Parkinson’s disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease, and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  4. Molecular diagnostics of neurodegenerative disorders.

    Science.gov (United States)

    Agrawal, Megha; Biswas, Abhijit

    2015-01-01

    Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  5. Diagnostic accuracy of portable instrumental devices to measure sleep bruxism: a systematic literature review of polysomnographic studies.

    Science.gov (United States)

    Manfredini, D; Ahlberg, J; Castroflorio, T; Poggio, C E; Guarda-Nardini, L; Lobbezoo, F

    2014-11-01

    This study systematically reviews the sleep bruxism (SB) literature published in the MEDLINE and Scopus databases to answer the following question: What is the validity of the different portable instrumental devices that have been proposed to measure SB if compared with polysomnographic (PSG) recordings assumed as the gold standard? Four clinical studies on humans, assessing the diagnostic accuracy of portable instrumental approaches (i.e. Bitestrip, electromyography (EMG)-telemetry recordings and Bruxoff) with respect to PSG, were included in the review. Methodological shortcomings were identified by QUADAS-2 quality assessment. Findings showed contrasting results and supported only in part the validity of the described diagnostic devices with respect to PSG. The positive predictive value (PPV) of the Bitestrip device was 59-100%, with a sensitivity of 71-84·2%, whilst EMG-telemetry recordings had an unacceptable rate of false-positive findings (76·9%), counterbalanced by an almost perfect sensitivity (98·8%). The Bruxoff device had the highest accuracy values, showing an excellent agreement with PSG for both manual (area under ROC = 0·98) and automatic scoring (0·96) options as well as for the simultaneous recording of events with respect to PSG (0·89-0·91). It can be concluded that the available information on the validity of portable instrumental diagnostic approaches with respect to PSG recordings is still scarce and not solid enough to support any non-PSG technique's employ as a stand-alone diagnostic method in the research setting, with the possible exception of the Bruxoff device that needs to be further confirmed with future investigations. © 2014 John Wiley & Sons Ltd.

  6. IMPORTANCE OF KINETIC MEASURES IN TRAJECTORY PREDICTION WITH OPTIMAL CONTROL

    Directory of Open Access Journals (Sweden)

    Ömer GÜNDOĞDU

    2001-02-01

    Full Text Available A two-dimensional sagittally symmetric human-body model was established to simulate an optimal trajectory for manual material handling tasks. Nonlinear control techniques and genetic algorithms were utilized in the optimizations to explore optimal lifting patterns. The simulation results were then compared with the experimental data. Since the kinetic measures such as joint reactions and moments are vital parameters in injury determination, the importance of comparing kinetic measures rather than kinematical ones was emphasized.

  7. Injuries of deciduous and permanent teeth in children (diagnostic measures, medical tactics

    Directory of Open Access Journals (Sweden)

    Yakovenko L.N.

    2016-12-01

    Full Text Available A retrospective analysis of 1147 patients’ records from the clinic of the department of surgical dentistry and maxillofacial surgery of childhood of NMU Bogomolets and 944 case histories of patients with traumatic injuries of maxillofacial region in the clinic of the department of pediatric dentistry of SE «Dnepropetrovsk medical academy of Health Ministry of Ukraine» has shown that traumatic damages to teeth make up 18.8% of all injuries in maxillofacial region. It was found that in most cases the cause of injury is fall of a child - 60%, punching on the face - 19%, other causes – 21%. Most often maxillary central incisors are affected - about 70-80%, lateral - 10-20% both in temporary and in shift bite. Lower incisors are injured only in 1-6% of cases. Injuries of the temporary teeth were observed in 30-45% of cases. The aim of the study was to determine the major diagnostic methods and therapeutic measures that have been used in trauma of permanent and temporary teeth in children of different ages. Diagnostic measures included clinical and instrumental studies. Of the additional survey methods of dental trauma in 90% of cases back-side X-ray, in 7-8% – orthopanto­mography, in 1-2% - CT were performed. In dislocations of temporary teeth X-ray examination was carried out only in impacted dislocation. Algorithm of treatment tactics for almost all kinds of temporary teeth dislocations was to remove it, not taking into account the degree of formation of the tooth root and functional ability of the tooth, that involves the development of the indications for their preservation. Most often, for the immobilization of the injured permanent teeth a smooth splin-clamp (85% was used, it is cheap, easy to manufacture, reliable for fixing, individual as for adaptation, but when applied it leads to injury of periodontal tissues, the development of inflammatory processes in them. Alternative methods of fixation were splint systems, splint-caps and

  8. Application of laser diagnostics to sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Tamura, Kenta; Muranaka, Ryota; Kusano, Koji; Kikuchi, Shin; Kurihara, Akikazu

    2013-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes in a steam generator. Therefore the study on sodium-water chemical reactions is of paramount importance for safety reasons. This study aims to clarify the sodium-water reaction mechanisms using laser diagnostics. The sodium-water counter-flow reactions were measured using laser diagnostics such as laser induced fluorescence, CARS, Raman scattering and photo-fragmentation. The measurement results show that the sodium-water reaction proceeds mainly by the reaction Na + H 2 O → NaOH + H and the main product is NaOH in this reaction. Its forward and backward reaction rates tend to balance with each other and the whole reaction rate reduces as temperature increases. (author)

  9. Diagnosis of asthma: diagnostic testing.

    Science.gov (United States)

    Brigham, Emily P; West, Natalie E

    2015-09-01

    Asthma is a heterogeneous disease, encompassing both atopic and non-atopic phenotypes. Diagnosis of asthma is based on the combined presence of typical symptoms and objective tests of lung function. Objective diagnostic testing consists of 2 components: (1) demonstration of airway obstruction, and (2) documentation of variability in degree of obstruction. A review of current guidelines and literature was performed regarding diagnostic testing for asthma. Spirometry with bronchodilator reversibility testing remains the mainstay of asthma diagnostic testing for children and adults. Repetition of the test over several time points may be necessary to confirm airway obstruction and variability thereof. Repeated peak flow measurement is relatively simple to implement in a clinical and home setting. Bronchial challenge testing is reserved for patients in whom the aforementioned testing has been unrevealing but clinical suspicion remains, though is associated with low specificity. Demonstration of eosinophilic inflammation, via fractional exhaled nitric oxide measurement, or atopy, may be supportive of atopic asthma, though diagnostic utility is limited particularly in nonatopic asthma. All efforts should be made to confirm the diagnosis of asthma in those who are being presumptively treated but have not had objective measurements of variability in the degree of obstruction. Multiple testing modalities are available for objective confirmation of airway obstruction and variability thereof, consistent with a diagnosis of asthma in the appropriate clinical context. Providers should be aware that both these characteristics may be present in other disease states, and may not be specific to a diagnosis of asthma. © 2015 ARS-AAOA, LLC.

  10. Recent improvements of the JET lithium beam diagnostic.

    Science.gov (United States)

    Brix, M; Dodt, D; Dunai, D; Lupelli, I; Marsen, S; Melson, T F; Meszaros, B; Morgan, P; Petravich, G; Refy, D I; Silva, C; Stamp, M; Szabolics, T; Zastrow, K-D; Zoletnik, S

    2012-10-01

    A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).

  11. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  12. Diagnostics Beamline for the SRF Gun Project

    CERN Document Server

    Kamps, T; Goldammer, K; Krämer, Dietrich; Kuske, P; Kuszynski, J; Lipka, D; Marhauser, F; Quast, T; Richter, R

    2005-01-01

    A superconducting rf photo electron injector (SRF gun) is currently under construction by a collaboration between BESSY, DESY, FZR and MBI. The project aims at the design and setup of an CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 pi mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies be...

  13. Importance of education and competence maintenance in metrology field (measurement science)

    International Nuclear Information System (INIS)

    Dobiliene, J; Meskuotiene, A

    2015-01-01

    For certain tasks in metrology field trained employers might be necessary to fulfill specific requirements. It is important to pay attention that metrologists are responsible for fluent work of devices that belong to huge variety of vide spectrum of measurements. People who perform measurements (that are related to our safety, security or everyday life) with reliable measuring instruments must be sure for trueness of their results or conclusions. So with the purpose to reach the harmony between the ordinary man and his used means it is very important to ensure competence of specialists that are responsible for mentioned harmony implementation. Usually these specialists have a university degree and perform highly specified tasks in science, industry or laboratories. Their task is quite narrow. For example, type approval of measuring instrument or calibration and verification. Due to the fact that the number of such employers and their tasks is relatively small in the field of legal metrology, this paper focuses on the significance of training and qualification of legal metrology officers

  14. Methodological issues in systematic reviews of headache trials: adapting historical diagnostic classifications and outcome measures to present-day standards.

    Science.gov (United States)

    McCrory, Douglas C; Gray, Rebecca N; Tfelt-Hansen, Peer; Steiner, Timothy J; Taylor, Frederick R

    2005-05-01

    Recent efforts to make headache diagnostic classification and clinical trial methodology more consistent provide valuable advice to trialists generating new evidence on effectiveness of treatments for headache; however, interpreting older trials that do not conform to new standards remains problematic. Systematic reviewers seeking to utilize historical data can adapt currently recommended diagnostic classification and clinical trial methodological approaches to interpret all available data relative to current standards. In evaluating study populations, systematic reviewers can: (i) use available data to attempt to map study populations to diagnoses in the new International Classification of Headache Disorders; and (ii) stratify analyses based on the extent to which study populations are precisely specified. In evaluating outcome measures, systematic reviewers can: (i) summarize prevention studies using headache frequency, incorporating headache index in a stratified analysis if headache frequency is not available; (ii) summarize acute treatment studies using pain-free response as reported in directly measured headache improvement or headache severity outcomes; and (iii) avoid analysis of recurrence or relapse data not conforming to the sustained pain-free response definition.

  15. Weighing evidence: quantitative measures of the importance of bitemark evidence.

    Science.gov (United States)

    Kittelson, J M; Kieser, J A; Buckingham, D M; Herbison, G P

    2002-12-01

    Quantitative measures of the importance of evidence such as the "likelihood ratio" have become increasingly popular in the courtroom. These measures have been used by expert witnesses formally to describe their certainty about a piece of evidence. These measures are commonly interpreted as the amount by which the evidence should revise the opinion of guilt, and thereby summarize the importance of a particular piece of evidence. Unlike DNA evidence, quantitative measures have not been widely used by forensic dentists to describe their certainty when testifying about bitemark evidence. There is, however, no inherent reason why they should not be used to evaluate bitemarks. The purpose of this paper is to describe the likelihood ratio as it might be applied to bitemark evidence. We use a simple bitemark example to define the likelihood ratio, its application, and interpretation. In particular we describe how the jury interprets the likelihood ratio from a Bayesian perspective when evaluating the impact of the evidence on the odds that the accused is guilty. We describe how the dentist would calculate the likelihood ratio based on frequentist interpretations. We also illustrate some of the limitations of the likelihood ratio, and show how those limitations apply to bitemark evidence. We conclude that the quality of bitemark evidence cannot be adequately summarized by the likelihood ratio, and argue that its application in this setting may be more misleading than helpful.

  16. X-ray diagnostics in the laser-initiated fusion program

    International Nuclear Information System (INIS)

    Godwin, R.P.

    1975-08-01

    The high-density and high-temperature plasma conditions required for successful laser-initiated fusion make x-ray diagnostics a valuable tool in this exciting field. Measurements of the hard x-ray continuum emitted from laser targets provide insight into the complex laser-plasma coupling physics and the consequent energy transport through the bremsstrahlung signature of energetic electrons. X-ray techniques are important in the selection and assay of microballoon targets for current compression experiments. X-ray imaging experiments and diffraction spectroscopy of highly stripped atoms can provide information upon the symmetry, density and temperature of laser targets. Extremely high temporal and spatial resolution may be required for definitive diagnostic information on compressed targets. While laser-produced plasmas are interesting as possible intense x-ray sources and as a possible means of achieving x-ray lasing, those topics are outside the scope of this review. (auth)

  17. Rapid diagnostics of the bacteria in air

    Energy Technology Data Exchange (ETDEWEB)

    Belov Nikolai, N. [ATECH KFT, Budapest (Hungary)

    2000-07-01

    ) Diagnostics of vital microorganisms in aerosol samples by ATF reaction. This is modification of ATF measurement of bacteria for aerosol problems. This method helps us to count quality of bacteria in air in real time of measurement. Each bacterium is opened on the transparent bottom by special chemistry reagent. Bioluminescence during ATF-reaction with content of bacterium provides us information about alive material in the aerosol sample. (3) Phase microscope for bio-aerosol diagnostics helps us to achieve the resolution of electronic microscope with optical system. It is very important that our microscope is not disturbing the alive material. So motions of the parts of bacteria will help us to find it on the bio-sampler plate. More over frequencies of these moving with provide us additional information about microorganisms. Phase microscope will show you growth of bacterial colony with resolution {approx} 100 nanometers. (4) Diagnostics of polynucleotides in samples of aerosol (airborne) may be used for full analysis of interested microorganism on the bio-sampler plate. Reproducing of the great number DNA molecules from DNA of bacterium provides us excellent material for selection of dangerous bacteria. So our results provides possibility of quasi-real time measurement of the bacteria in the air. (author)

  18. 75 FR 52505 - Fiscal Year 2011 Veterinary Import/Export Services, Veterinary Diagnostic Services, and Export...

    Science.gov (United States)

    2010-08-26

    ... plant and plant product export certification program operations, contact Mr. William E. Thomas, Director...; Birds or poultry, including zoo birds or poultry, receiving nonstandard housing, care, or handling to... diseases of livestock and poultry within the United States. Veterinary diagnostics is the work performed in...

  19. Diagnostic Methods of Helicobacter pylori Infection for Epidemiological Studies: Critical Importance of Indirect Test Validation.

    Science.gov (United States)

    Miftahussurur, Muhammad; Yamaoka, Yoshio

    2016-01-01

    Among the methods developed to detect H. pylori infection, determining the gold standard remains debatable, especially for epidemiological studies. Due to the decreasing sensitivity of direct diagnostic tests (histopathology and/or immunohistochemistry [IHC], rapid urease test [RUT], and culture), several indirect tests, including antibody-based tests (serology and urine test), urea breath test (UBT), and stool antigen test (SAT) have been developed to diagnose H. pylori infection. Among the indirect tests, UBT and SAT became the best methods to determine active infection. While antibody-based tests, especially serology, are widely available and relatively sensitive, their specificity is low. Guidelines indicated that no single test can be considered as the gold standard for the diagnosis of H. pylori infection and that one should consider the method's advantages and disadvantages. Based on four epidemiological studies, culture and RUT present a sensitivity of 74.2-90.8% and 83.3-86.9% and a specificity of 97.7-98.8% and 95.1-97.2%, respectively, when using IHC as a gold standard. The sensitivity of serology is quite high, but that of the urine test was lower compared with that of the other methods. Thus, indirect test validation is important although some commercial kits propose universal cut-off values.

  20. [The National Reference Centres and Reference Laboratories. Importance and tasks].

    Science.gov (United States)

    Laude, G; Ammon, A

    2005-09-01

    Since 1995, the German Federal Ministry for Health and Social Security funds National Reference Centres (NRC) for the laboratory surveillance of important pathogens and syndromes. Which pathogens or syndromes are selected to be covered by a NRC depends on their epidemiological relevance, the special diagnostic tools, problems with antimicrobial resistance and necessary infection control measures. Currently, there are 15 NRC, which are appointed for a period of 3 years (currently from January 2005 through December 2007). Towards the end of their appointment all NRC are evaluated by a group of specialists. The assessment of their achievements is guided by a catalogue of tasks for the NRC. In addition to the NRC, a total of 50 laboratories are appointed which provide specialist expertise for additional pathogens in order to have a broad range of pathogens for which specialist laboratories are available. Their predominant task is to give advice and support for special diagnostic problems. Both NRC and the specialist laboratories are important parts of the network for infectious disease epidemiology.

  1. Measurements of high-current electron beams from X pinches and wire array Z pinches

    International Nuclear Information System (INIS)

    Shelkovenko, T. A.; Pikuz, S. A.; Blesener, I. C.; McBride, R. D.; Bell, K. S.; Hammer, D. A.; Agafonov, A. V.; Romanova, V. M.; Mingaleev, A. R.

    2008-01-01

    Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.

  2. THE HARMONIZATION AND OPTIMIZATION OF DIAGNOSTIC METHODS FOR A BELT CONVEYOR

    Directory of Open Access Journals (Sweden)

    František HELEBRANT

    2012-04-01

    Full Text Available The final aim of the project MPO FR‐T11/537 called “The Complex Diagnostic System for the Belt Transport” is a single part custom manufacturing and sale of complex diagnostic system for belt transportation and related services. The output of the project is a prototype of a diagnostic system on a model belt conveyor with prepared and certified diagnostic services and methods including their measurements and other supportive tools. The article will introduce the present state of the solution for the given grant project, especially in the field of suggested work on the diagnostic and supportive methods and other measurements.

  3. Quality control of diagnostic x-ray units

    International Nuclear Information System (INIS)

    Marinkovic, O.; Milacic, S.; Jovicic, D.; Tanaskovic, I.

    2001-01-01

    The quality control program for diagnostic x-ray units has started at the Institute of Occupational and Radiological Health during 1990. It includes, among other measurements, reproducibility of dose, high voltage and exposure time. Dose reproducibility was less than 5% for 70% of tested x-ray units. The exposure time and high voltage reproducibility were less than 5% in 60% cases. The cassettes with amplifying foils made from components of rare earth are used in 10% of all x-ray departments. It is very important to work as much as it is possible to modernize general infrastructure as the radiological protection of patients would be better. (author)

  4. Progress in diagnostics of the COMPASS tokamak

    Science.gov (United States)

    Weinzettl, V.; Adamek, J.; Berta, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Ficker, O.; Fridrich, D.; Grover, O.; Hacek, P.; Havlicek, J.; Havranek, A.; Horacek, J.; Hron, M.; Imrisek, M.; Komm, M.; Kovarik, K.; Krbec, J.; Markovic, T.; Matveeva, E.; Mitosinkova, K.; Mlynar, J.; Naydenkova, D.; Panek, R.; Paprok, R.; Peterka, M.; Podolnik, A.; Seidl, J.; Sos, M.; Stockel, J.; Tomes, M.; Varavin, M.; Varju, J.; Vlainic, M.; Vondracek, P.; Zajac, J.; Zacek, F.; Stano, M.; Anda, G.; Dunai, D.; Krizsanoczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G. P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.

    2017-12-01

    The COMPASS tokamak at IPP Prague is a small-size device with an ITER-relevant plasma geometry and operating in both the Ohmic as well as neutral beam assisted H-modes since 2012. A basic set of diagnostics installed at the beginning of the COMPASS operation has been gradually broadened in type of diagnostics, extended in number of detectors and collected channels and improved by an increased data acquisition speed. In recent years, a significant progress in diagnostic development has been motivated by the improved COMPASS plasma performance and broadening of its scientific programme (L-H transition and pedestal scaling studies, magnetic perturbations, runaway electron control and mitigation, plasma-surface interaction and corresponding heat fluxes, Alfvenic and edge localized mode observations, disruptions, etc.). In this contribution, we describe major upgrades of a broad spectrum of the COMPASS diagnostics and discuss their potential for physical studies. In particular, scrape-off layer plasma diagnostics will be represented by a new concept for microsecond electron temperature and heat flux measurements - we introduce a new set of divertor Langmuir and ball-pen probe arrays, newly constructed probe heads for reciprocating manipulators as well as several types of standalone probes. Among optical tools, an upgraded high-resolution edge Thomson scattering diagnostic for pedestal studies and a set of new visible light and infrared (plasma-surface interaction investigations) cameras will be described. Particle and beam diagnostics will be covered by a neutral particle analyzer, diagnostics on a lithium beam, Cherenkov detectors (for a direct detection of runaway electrons) and neutron detectors. We also present new modifications of the microwave reflectometer for fast edge density profile measurements.

  5. Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements

    Directory of Open Access Journals (Sweden)

    A. Pedersen

    1995-02-01

    Full Text Available Several satellites (GEOS-1, GEOS-2, ISEE-1, Viking and CRRES carried electric field experiments on which probes were driven by a current from the satellite to be close to the plasma potential. The potential difference between an electric field probe and its spacecraft (with conductive surfaces can be used to determine the ambient electron density and/or electron flux with limited accuracy but with high time resolution, of the order of 10-100 ms. It is necessary for the development of this diagnostic method to understand the photoemission characteristics of probes and satellites. According to the electric field experiments on the above-mentioned satellites, all materials develop very similar photoemission properties when they are beyond the influence of atmospheric oxygen. The photoelectron yield steadily increases over the first few months in space and reaches values well above those measured on clean surfaces in the laboratory. The method can be used for solar radiation levels corresponding to distances from 0.4 to 5 AU from the Sun.

  6. Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models

    Science.gov (United States)

    Ceballos-Núñez, Verónika; Richardson, Andrew D.; Sierra, Carlos A.

    2018-03-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike), ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure

  7. Longitudinal Diagnostics for Short Electron Beam Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  8. ITER diagnostics: Design choices and solutions

    International Nuclear Information System (INIS)

    Costley, A.E.; Sugie, T.; Vayakis, G.; Malaquias, A.; Walker, C.

    2003-01-01

    An extensive diagnostic system will be installed on ITER to provide the measurements necessary to control, evaluate and optimise the plasma performance and to study burning plasma physics. Because of the harsh environment, diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic implementation. In this paper, we describe the key problems encountered and give examples of the solutions that have been developed. A brief description of the scheme developed for integrating multiple systems into individual ports is also included. We conclude with an assessment of overall system performance. (author)

  9. Radiation exposure in diagnostic medicine

    International Nuclear Information System (INIS)

    Haehnel, S.; Michalczak, H.; Reinoehl-Kompa, S.

    1995-01-01

    This volume includes the manuscripts of the papers read at the conference as well as a summary and assessment of its results. The scientific discussions were centred upon the following issues: - International surveys and comparisons of rdiation exposures in diagnostic radiology and nuclear medicine, frequency of the individual diagnostic procedures and age distribution of patients examined; - policies and regulations for the radiation protection of patients, charcteristic dosimetric values and practical usefulness of the effective dose concept during medical examinations; - assessments of the relative benefits and risks and measures to reduce the radiation exposure in the light of quality assurance aspects. The main objective of this conference not only was to evaluate the risks from diagnostic radiology and nuclear medicine but also to encourgage a critical analysis and adjustment of examination routines followed in everyday practice. Among the measures recommended were quality assurance, maintenace of international standards, development of guidelines, introduction of standard doses, improved training and professional education of personnel as well as surveys and analyses of certain examination procedures associated with substantial radiation exposure. (orig./MG) [de

  10. MTX [Microwave Tokamak Experiment] plasma diagnostic system

    International Nuclear Information System (INIS)

    Rice, B.W.; Hooper, E.B.; Brooksby, C.A.

    1987-01-01

    In this paper, a general overview of the MTX plasma diagnostics system is given. This includes a description of the MTX machine configuration and the overall facility layout. The data acquisition system and techniques for diagnostic signal transmission are also discussed. In addition, the diagnostic instruments planned for both an initial ohmic-heating set and a second FEL-heating set are described. The expected range of plasma parameters along with the planned plasma measurements will be reviewed. 7 refs., 5 figs

  11. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  12. Diagnostic colonoscopy: performance measurement study.

    Science.gov (United States)

    Kuznets, Naomi

    2002-07-01

    This is the fifth of a series of best practices studies undertaken by the Performance Measurement Initiative (PMI), the centerpiece of the Institute for Quality Improvement (IQI), a not-for-profit quality improvement subsidiary of the Accreditation Association for Ambulatory Health Care (AAAHC) (Performance Measurement Initiative, 1999a, 1999b, 2000a, 2000b). The IQI was created to offer clinical performance measurement and improvement opportunities to ambulatory health care organizations and others interested in quality patient care. The purpose of the study was to provide opportunities to initiate clinical performance measurement on key processes and outcomes for this procedure and use this information for clinical quality improvement. This article provides performance measurement information on how organizations that have demonstrated and validated differences in clinical practice can have similar outcomes, but at a dramatically lower cost. The intent of the article is to provide organizations with alternatives in practice to provide a better value to their patients.

  13. Development of a 2D temperature measurement technique for combustion diagnostics using 2-line atomic fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Johan

    2001-01-01

    The present thesis is concerned with the development and application of a novel planar laser-induced fluorescence (PLIF) technique for temperature measurements in a variety of combusting flows. Accurate measurement of temperature is an essential task in combustion diagnostics, since temperature is one of the most fundamental quantities for the characterization of combustion processes. The technique is based on two-line atomic fluorescence (TLAF) from small quantities of atomic indium (In) seeded into the fuel. It has been developed from small-scale experiments in laboratory flames to the point where practical combustion systems can be studied. The technique is conceptually simple and reveals temperature information in the post-flame regions. The viability of the technique has been tested in three extreme measurement situations: in spark ignition engine combustion, in ultra-lean combustion situations such as lean burning aero-engine concepts and, finally, in fuel-rich combustion. TLAF was successfully applied in an optical Sl engine using isooctane as fuel. The wide temperature sensitivity, 700 - 3000 K, of the technique using indium atoms allowed measurements over the entire combustion cycle in the engine to be performed. In applications in lean combustion a potential problem caused by the strong oxidation processes of indium atoms was encountered. This limits measurement times due to deposits of absorbing indium oxide on measurement windows. The seeding requirement is a disadvantage of the technique and can be a limitation in some applications. The results from experiments performed in sooting flames are very promising for thermometry measurements in such environments. Absorption by hydrocarbons and other native species was found to be negligible. Since low laser energies and low seeding concentrations could be used, the technique did not, unlike most other incoherent optical thermometry techniques, suffer interferences from LII of soot particles or LIF from PAH

  14. Investigation into relative temperature measurement of pulsed constrained gas flow using passive acoustic means

    OpenAIRE

    Moss, Joseph Brian

    2011-01-01

    peer-reviewed The requirement to measure the real time, dynamic temperature of exhaust system gases is becoming more and more important in the areas of aeronautics, automotive (cars, trucks, etc), marine and industrial/environmental applications, in particular on a cycleby-cycle (CBC) basis. Monitoring exhaust gas temperatures of any power-plant can give important diagnostic information for the monitoring of fuel mixture, combustion efficiency etc. This 'diagnostic' information can b...

  15. Proton storage ring (PSR) diagnostics and control system

    International Nuclear Information System (INIS)

    Clout, P.

    1983-01-01

    When any new accelerator or storage ring is built that advances the state of the art, the diagnostic system becomes extremely important in tuning the facility to full specification. This paper will discuss the various diagnostic devices planned or under construction for the PSR and their connection into the control system

  16. 41 CFR 102-117.280 - What aspects of the TSP's performance are important to measure?

    Science.gov (United States)

    2010-07-01

    ...'s performance are important to measure? 102-117.280 Section 102-117.280 Public Contracts and... § 102-117.280 What aspects of the TSP's performance are important to measure? Important TSP performance...) Percentage of customer satisfaction reports on carrier performance. ...

  17. Effects of limited spatial resolution on fluctuation measurements

    International Nuclear Information System (INIS)

    Bravenec, R.V.; Wootton, A.J.

    1994-01-01

    The finite sample volumes of fluctuation diagnostics distort the measurements not only by averaging the gross fluctuation parameters over the sample volumes, but more importantly (except for collective scattering), by attenuating the shorter wavelength components. In this work the response of various sample volume sizes and orientations to a model fluctuation power spectrum S(k,ω) are examined. The model spectrum is fashioned after observations by far-infrared scattering on TEXT. The sample-volume extent in the direction of propagation of the turbulence is shown to be the most critical - not only does it reduce the measured fluctuation amplitude and correlation length (as does an extent perpendicular to the propagation direction), but also reduces the measured mean frequency and increases the apparent average phase velocity of the fluctuations. The differing sizes, shapes, and orientations of the sample volumes among fluctuation diagnostics, as well as deliberate variations within a single diagnostic, provide information on the form of the underlying turbulence and can be exploited to refine the model

  18. Progress on the MSE diagnostic for ITER

    International Nuclear Information System (INIS)

    Lotte, Ph.; Giannella, R.; Von Hellermann, M.; Kuldkepp, M.; Rachlew, E.; Malaquias, A.; Costley, A.; Walker, C.

    2004-01-01

    The Motional Stark Effect (MSE) diagnostic is now considered as an essential diagnostic for an accurate determination of current profiles in tokamak discharges. It mainly allows a measurement of the direction of the total magnetic field, a very powerful constraint for the determination of the safety factor profile. The realisation of such a diagnostic on ITER implies to face new challenges, because of the bigger size of the machine and of its hard environment. Now, most of the foreseen difficulties have been examined, solutions envisaged, and we propose to review them in this paper. This article is divided into 3 parts: 1) principle of the MSE diagnostic and its feasibility at higher Lorentz electric fields, 2) spatial and time resolution of the diagnostic, and 3) the light collection system

  19. Importance measures in risk-informed decision making: Ranking, optimisation and configuration control

    Energy Technology Data Exchange (ETDEWEB)

    Vaurio, Jussi K., E-mail: jussi.vaurio@pp1.inet.fi [Prometh Solutions, Hiihtaejaenkuja 3K, 06100 Porvoo (Finland)

    2011-11-15

    This paper describes roles, extensions and applications of importance measures of components and configurations for making risk-informed decisions relevant to system operations, maintenance and safety. Basic importance measures and their relationships are described for independent and mutually exclusive events and for groups of events associated with common cause failures. The roles of importances are described mainly in two groups of activities: (a) ranking safety significance of systems, structures, components and human actions for preventive safety assurance activities, and (b) making decisions about permissible permanent and temporary configurations and allowed configuration times for regulation, technical specifications and for on-line risk monitoring. Criticality importance and sums of criticalities turn out to be appropriate measures for ranking and optimization. Several advantages are pointed out and consistent ranking of pipe segments for in-service inspection is provided as an example. Risk increase factor and its generalization risk gain are most appropriately used to assess corrective priorities and acceptability of a situation when components are already failed or when planning to take one or more components out of service for maintenance. Precise definitions are introduced for multi-failure configurations and it is shown how they can be assessed under uncertainties, in particular when common cause failures or success states may be involved. A general weighted average method is compared to other candidate methods in benchmark cases. It is the preferable method for prediction when a momentary configuration is known or only partially known. Potential applications and optimization of allowed outage times are described. The results show how to generalize and apply various importance measures to ranking and optimization and how to manage configurations in uncertain multi-failure situations. - Highlights: > Rigorous methods developed for using importances

  20. Importance measures in risk-informed decision making: Ranking, optimisation and configuration control

    International Nuclear Information System (INIS)

    Vaurio, Jussi K.

    2011-01-01

    This paper describes roles, extensions and applications of importance measures of components and configurations for making risk-informed decisions relevant to system operations, maintenance and safety. Basic importance measures and their relationships are described for independent and mutually exclusive events and for groups of events associated with common cause failures. The roles of importances are described mainly in two groups of activities: (a) ranking safety significance of systems, structures, components and human actions for preventive safety assurance activities, and (b) making decisions about permissible permanent and temporary configurations and allowed configuration times for regulation, technical specifications and for on-line risk monitoring. Criticality importance and sums of criticalities turn out to be appropriate measures for ranking and optimization. Several advantages are pointed out and consistent ranking of pipe segments for in-service inspection is provided as an example. Risk increase factor and its generalization risk gain are most appropriately used to assess corrective priorities and acceptability of a situation when components are already failed or when planning to take one or more components out of service for maintenance. Precise definitions are introduced for multi-failure configurations and it is shown how they can be assessed under uncertainties, in particular when common cause failures or success states may be involved. A general weighted average method is compared to other candidate methods in benchmark cases. It is the preferable method for prediction when a momentary configuration is known or only partially known. Potential applications and optimization of allowed outage times are described. The results show how to generalize and apply various importance measures to ranking and optimization and how to manage configurations in uncertain multi-failure situations. - Highlights: → Rigorous methods developed for using importances

  1. Positive predictive value of serological diagnostic measures in celiac disease

    DEFF Research Database (Denmark)

    Toftedal, Peter; Nielsen, Christian; Madsen, Jonas Trolle

    2010-01-01

    Celiac disease (CD) antibodies, immunoglobulin A (IgA) anti-tissue transglutaminase (anti-tTG), IgA endomysium antibody (EMA), IgA and IgG anti-gliadin antibodies (IgA and IgG AGA) are first-line diagnostic tools used in selecting patients for duodenal biopsy. The goal of this study was to evaluate...

  2. Theoretical modelling of experimental diagnostic procedures employed during pre-dose dosimetry of quartz

    International Nuclear Information System (INIS)

    Pagonis, V.; Chen, R.; Kitis, G.

    2006-01-01

    The pre-dose technique in thermoluminescence (TL) is used for dating archaeological ceramics and for accident dosimetry. During routine applications of this technique, the sensitisation of the quartz samples is measured as a function of the annealing temperature, yielding the so-called thermal activation characteristic (TAC). The measurement of multiple TACs and the study of the effect of UV-radiation on the TL sensitivity of quartz are important analytical and diagnostic tools. In this paper, it is shown that a modified Zimmerman model for quartz can successfully model the experimental steps undertaken during a measurement of multiple TACs. (authors)

  3. Some aspects of diagnostic systems perspective

    International Nuclear Information System (INIS)

    Korosec, D.

    1998-01-01

    The integrity and safety of all nuclear power plant systems and components is guaranteed by the high requirements to quality assurance during all phases of design, fabrication, construction and operation. Many of the countries operating nuclear facilities, introduced advanced, sophisticated diagnostic systems for continuous monitoring safety important process parameters. The licensee should perform an assessment of the existing diagnostic systems, often supplied by the original design, their reliability and the need for the introduction of the additional monitoring/diagnostic systems. The operating experience should be taken into account and the assessment of the further needs. On this field has to be made on the results of PSA studies. In addition to the cost benefit analysis the evaluation of the new diagnostic systems in the light of nuclear safety should be also made. Experience, gained from the utilities, which have already installed this kind of the equipment should be very useful. Introducing new diagnostic systems will require often a safety assessment of the necessary modifications. Licensing process should be based on the existing nuclear legislation with certain additional requirements. (author)

  4. Measurement and monitoring technologies are important SITE program component

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    An ongoing component of the Superfund Innovative Technologies Evaluation (SITE) Program, managed by the US EPA at its Hazardous Waste Engineering Research Laboratory in Cincinnati, is the development and demonstration of new and innovative measurement and monitoring technologies that will be applicable to Superfund site characterization. There are four important roles for monitoring and measurement technologies at Superfund sites: (1) to assess the extent of contamination at a site, (2) to supply data and information to determine impacts to human health and the environment, (3) to supply data to select the appropriate remedial action, and (4) to monitor the success or effectiveness of the selected remedy. The Environmental Monitoring Systems Laboratory in Las Vegas, Nevada (EMSL-LV) has been supporting the development of improved measurement and monitoring techniques in conjunction with the SITE Program with a focus on two areas: Immunoassay for toxic substances and fiber optic sensing for in-situ analysis at Superfund sites

  5. Measurement of Alpha Emitters Concentration in Imported Cigarettes

    International Nuclear Information System (INIS)

    Nasser Allah, Z.K.; Musa, W.A.; AL-Rawi, A.A.S.

    2011-01-01

    The aime of this study was to measured the alpha emitters concentration of (15) different kinds of imported cigarettes. the nuclear reaction used U-235(n, f) obtained by the bombardment of U-235 with thermal neutrons from (Am B e)neutron source with thermal flux of(5*10 3 n.cm -2 .s -1 ). The Results obtained showed the values of the Uranium concentration, and varies from (0.041 ppm) in five stares kind to (2.374ppm) in Machbeth (chocolate) 100's kind. All the result obtained are within the limit levels as given by UNSCAR data

  6. Energetic Ion Loss Diagnostic for the Wendelstein 7-AS Stellarator

    International Nuclear Information System (INIS)

    Darrow, D. S.; Werner, A.; Weller, A.

    2000-01-01

    A diagnostic to measure the loss of energetic ions from the Wendelstein 7-AS (W7-AS) stellarator has been built. It is capable of measuring losses of both neutral beam ions and energetic ions arising from ion cyclotron resonant heating. The probe can measure losses of both clockwise and counterclockwise-going energetic ions simultaneously, and accepts a wide range of pitch angles in both directions. Initial measurements by the diagnostic are reported

  7. Nonneutral plasma diagnostic commissioning for the ALPHA Antihydrogen experiment

    Science.gov (United States)

    Konewko, S.; Friesen, T.; Tharp, T. D.; Alpha Collaboration

    2017-10-01

    The ALPHA experiment at CERN creates antihydrogen by mixing antiproton and positron plasmas. Diagnostic measurements of the precursor plasmas are performed using a diagnostic suite, colloquially known as the ``stick.'' This stick has a variety of sensors and is able to move to various heights to align the desired diagnostic with the beamline. A cylindrical electrode, a faraday cup, an electron gun, and a microchannel-plate detector (MCP) are regularly used to control and diagnose plasmas in ALPHA. We have designed, built, and tested a new, upgraded stick which includes measurement capabilities in both beamline directions.

  8. Diagnostic importance of 18F-FDG PET/CT parameters and total lesion glycolysis in differentiating between benign and malignant adrenal lesions.

    Science.gov (United States)

    Ciftci, Esra; Turgut, Bulent; Cakmakcilar, Ali; Erturk, Seyit A

    2017-09-01

    Benign adrenal lesions are prevalent in oncologic imaging and make metastatic disease diagnoses difficult. This study evaluates the diagnostic importance of metabolic, volumetric, and metabolovolumetric parameters measured by fluorine-18-fluorodeoxyglucose (F-FDG) PET/CT in differentiating between benign and malignant adrenal lesions in cancer patients. In this retrospective study, we evaluated F-FDG PET/CT parameters of adrenal lesions of follow-up cancer patients referred to our clinic between January 2012 and November 2016. The diagnosis of adrenal malignant lesions was made on the basis of interval growth or reduction after chemotherapy. Patient demographics, analysis of metabolic parameters such as maximum standard uptake value (SUVmax), tumor SUVmax/liver SUVmean ratio (T/LR), morphologic parameters such as size, Hounsfield Units, and computed tomography (CT) volume, and metabolovolumetric parameters such as metabolic tumor volume and total lesion glycolysis (TLG) of adrenal lesions were calculated. PET/CT parameters were assessed using the Mann-Whitney U-test and receiving operating characteristic analysis. In total, 186 adrenal lesions in 163 cancer patients (108 men/54 women; mean±SD age: 64±10.9 years) were subjected to F-FDG PET/CT for tumor evaluation. SUVmax values (mean±SD) were 2.8±0.8 and 10.6±6; TLG were 10.8±9.2 and 124.4±347.9; and T/LR were 1±0.3 and 4.1±2.6 in benign and malignant adrenal lesions, respectively. On the basis of the area under the curve, adrenal lesion SUVmax and T/LR had similar highest diagnostic performance for predicting malignant lesions (area under the curve: 0.993 and 0.991, respectively, P<0.001). Multivariate logistic regression analysis showed that T/LR, adrenal lesion SUVmax, and Hounsfield Units were independent predictive factors for malignancy rather than TLG. Irrespective of whether TLG was statistically highly significant for differentiating benign from malignant adrenal lesions, it did not reach the

  9. ECE diagnostics for RTO/RC ITER

    International Nuclear Information System (INIS)

    Vayakis, G.; Bartlett, D.V.; Costley, A.E.

    2001-01-01

    This paper presents the current status of the Electron Cyclotron Emission (ECE) diagnostic on the Reduced Technical Objectives/Reduced Cost International Thermonuclear Experimental Reactor (RTO/RC ITER). It discusses the implications of the new machine design on the measurement requirements, the ability of the diagnostic technique to meet these, and the changes in the implementation imposed by the new layout. Finally, it outlines the physics studies, design and R and D work required prior to the detailed design and construction of the diagnostic. Key results are: (i) that the localisation of the measurement is similar to that in ITER-FDR (40-100 mm in X-mode, 60-200 mm in O-mode for the reference scenario), so that the relative spatial resolution degrades in this, smaller, machine, and (ii) the expected effect of transport barriers on the temperature profile in the high temperature region will be poorly resolved, because the effect of the temperature gradient on the outboard side is to degrade the resolution to (∼250 mm in X-mode, ∼350 mm in O-mode). Nevertheless ECE will be able to make a unique and useful contribution to the RTO/RC ITER measurement set

  10. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  11. Tokamak physics studies using x-ray diagnostic methods

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.; von Goeler, S.

    1987-03-01

    X-ray diagnostic measurements have been used in a number of experiments to improve our understanding of important tokamak physics issues. The impurity content in TFTR plasmas, its sources and control have been clarified through soft x-ray pulse-height analysis (PHA) measurements. The dependence of intrinsic impurity concentrations and Z/sub eff/ on electron density, plasma current, limiter material and conditioning, and neutral-beam power have shown that the limiter is an important source of metal impurities. Neoclassical-like impurity peaking following hydrogen pellet injection into Alcator C and a strong effect of impurities on sawtooth behavior were demonstrated by x-ray imaging (XIS) measurements. Rapid inward motion of impurities and continuation of m = 1 activity following an internal disruption were demonstrated with XIS measurements on PLT using injected aluminum to enhance the signals. Ion temperatures up to 12 keV and a toroidal plasma rotation velocity up to 6 x 10 5 m/s have been measured by an x-ray crystal spectrometer (XCS) with up to 13 MW of 85-keV neutral-beam injection in TFTR. Precise wavelengths and relative intensities of x-ray lines in several helium-like ions and neon-like ions of silver have been measured in TFTR and PLT by the XCS. The data help to identify the important excitation processes predicted in atomic physics. Wavelengths of n = 3 to 2 silver lines of interest for x-ray lasers were measured, and precise instrument calibration techniques were developed. Electron thermal conductivity and sawtooth dynamics have been studied through XIS measurements on TFTR of heat-pulse propagation and compound sawteeth. A non-Maxwellian electron distribution function has been measured, and evidence of the Parail-Pogutse instability identified by hard x-ray PHA measurements on PLT during lower-hybrid current-drive experiments

  12. [Dealing with diagnostic uncertainty in general practice].

    Science.gov (United States)

    Wübken, Magdalena; Oswald, Jana; Schneider, Antonius

    2013-01-01

    In general, the prevalence of diseases is low in primary care. Therefore, the positive predictive value of diagnostic tests is lower than in hospitals where patients are highly selected. In addition, the patients present with milder forms of disease; and many diseases might hide behind the initial symptom(s). These facts lead to diagnostic uncertainty which is somewhat inherent to general practice. This narrative review discusses different sources of and reasons for uncertainty and strategies to deal with it in the context of the current literature. Fear of uncertainty correlates with higher diagnostic activities. The attitude towards uncertainty correlates with the choice of medical speciality by vocational trainees or medical students. An intolerance of uncertainty, which still increases as medicine is making steady progress, might partly explain the growing shortage of general practitioners. The bio-psycho-social context appears to be important to diagnostic decision-making. The effect of intuition and heuristics are investigated by cognitive psychologists. It is still unclear whether these aspects are prone to bias or useful, which might depend on the context of medical decisions. Good communication is of great importance to share uncertainty with the patients in a transparent way and to alleviate shared decision-making. Dealing with uncertainty should be seen as an important core component of general practice and needs to be investigated in more detail to improve the respective medical decisions. Copyright © 2013. Published by Elsevier GmbH.

  13. Characterization and Diagnostics for Photovoltaic Modules and Arrays

    DEFF Research Database (Denmark)

    Spataru, Sergiu

    part of this work were developed based on two well-known module characterization techniques, namely current-voltage (I-V) characterization, and electroluminescence imaging. he I-V based module diagnostic methods were developed by combining the strengths of light I-V and dark I-V characterization......, characterization and diagnostic methods are increasingly important in identifying and understanding the failures and degradation modes affecting PV modules and arrays, as well as developing relevant tools and tests for assessing the reliability and lifetime of PV modules. This thesis investigates diagnostic...... methods for characterizing and detecting degradation modes in crystalline silicon photovoltaic modules and arrays, and is structured into two parts. The first part of this work is focused on developing PV module characterization and diagnostic methods for use in module diagnostics and failure...

  14. 2D imaging X-ray diagnostic for measuring the current density distribution in a wide-area electron beam produced in a multiaperture diode with plasma cathode

    Science.gov (United States)

    Kurkuchekov, V.; Kandaurov, I.; Trunev, Y.

    2018-05-01

    A simple and inexpensive X-ray diagnostic tool was designed for measuring the cross-sectional current density distribution in a low-relativistic pulsed electron beam produced in a source based on an arc-discharge plasma cathode and multiaperture diode-type electron optical system. The beam parameters were as follows: Uacc = 50–110 kV, Ibeam = 20–100 A, τbeam = 0.1–0.3 ms. The beam effective diameter was ca. 7 cm. Based on a pinhole camera, the diagnostic allows one to obtain a 2D profile of electron beam flux distribution on a flat metal target in a single shot. The linearity of the diagnostic system response to the electron flux density was established experimentally. Spatial resolution of the diagnostic was also estimated in special test experiments. The optimal choice of the main components of the diagnostic technique is discussed.

  15. Service Quality Of Diagnostic Fine Needle Aspiration Cytology In A Tertiary Care Hospital Of Lahore (Process Measure As Patient's Perspective).

    Science.gov (United States)

    Rizvi, Zainab; Usmani, Rabia Arshed; Rizvi, Amna; Wazir, Salim; Zahra, Taskeen; Rasool, Hafza

    2017-01-01

    Quality of any service is the most important aspect for the manufacturer as well as the consumer. The primary objective of any nation's health system is to provide supreme quality health care services to its patients. The objective of this study was to assess the quality of diagnostic fine needle aspiration cytology service in a tertiary care hospital. As Patient's perspectives provide valuable information on quality of process, therefore, patient's perception in terms of satisfaction with the service was measured. In this cross sectional analytical study, 291 patients undergoing fine needle aspiration cytology in Mayo Hospital were selected by systematic sampling technique. Information regarding satisfaction of patients with four dimensions of service quality process, namely "procedure, sterilization, conduct and competency of doctor" was collected through interview on questionnaire. The questionnaire was developed on SERVQUAL model, a measurement tool, for quality assessment of services provided to patients. All items were assessed on 2- point likert scale (0=dissatisfied, 1=satisfied). Frequencies and percentages of satisfied and dissatisfied patients were recorded for each item and all items in each dimension were scored. If the percentage of sum of all item scores of a dimension was ≥60, the dimension was 'good quality'. Whereas quality' dimension. Data was analysed using epi-info-3.5.1. Fisher test was applied to check statistical significance. (p-value service quality process, Procedure (48.8%), Sterilization (51.5%) and practitioner conduct (50.9%) were perceived as 'poor' by the patients. Only practitioner competency (67.4%) was perceived as 'good'. Comparison of dimensions of service quality scoring with overall level of patient satisfaction revealed that all 4 dimensions were significantly related to patient dissatisfaction (pservice quality of therapeutic and diagnostic procedures in public hospitals should be routinely monitored from the patients

  16. Predictive ability of an early diagnostic guess in patients presenting with chest pain; a longitudinal descriptive study.

    Science.gov (United States)

    Verdon, François; Junod, Michel; Herzig, Lilli; Vaucher, Paul; Burnand, Bernard; Bischoff, Thomas; Pécoud, Alain; Favrat, Bernard

    2010-02-21

    The intuitive early diagnostic guess could play an important role in reaching a final diagnosis. However, no study to date has attempted to quantify the importance of general practitioners' (GPs) ability to correctly appraise the origin of chest pain within the first minutes of an encounter. The validation study was nested in a multicentre cohort study with a one year follow-up and included 626 successive patients who presented with chest pain and were attended by 58 GPs in Western Switzerland. The early diagnostic guess was assessed prior to a patient's history being taken by a GP and was then compared to a diagnosis of chest pain observed over the next year. Using summary measures clustered at the GP's level, the early diagnostic guess was confirmed by further investigation in 51.0% (CI 95%; 49.4% to 52.5%) of patients presenting with chest pain. The early diagnostic guess was more accurate in patients with a life threatening illness (65.4%; CI 95% 64.5% to 66.3%) and in patients who did not feel anxious (62.9%; CI 95% 62.5% to 63.3%). The predictive abilities of an early diagnostic guess were consistent among GPs. The GPs early diagnostic guess was correct in one out of two patients presenting with chest pain. The probability of a correct guess was higher in patients with a life-threatening illness and in patients not feeling anxious about their pain.

  17. Predictive ability of an early diagnostic guess in patients presenting with chest pain; a longitudinal descriptive study

    Directory of Open Access Journals (Sweden)

    Bischoff Thomas

    2010-02-01

    Full Text Available Abstract Background The intuitive early diagnostic guess could play an important role in reaching a final diagnosis. However, no study to date has attempted to quantify the importance of general practitioners' (GPs ability to correctly appraise the origin of chest pain within the first minutes of an encounter. Methods The validation study was nested in a multicentre cohort study with a one year follow-up and included 626 successive patients who presented with chest pain and were attended by 58 GPs in Western Switzerland. The early diagnostic guess was assessed prior to a patient's history being taken by a GP and was then compared to a diagnosis of chest pain observed over the next year. Results Using summary measures clustered at the GP's level, the early diagnostic guess was confirmed by further investigation in 51.0% (CI 95%; 49.4% to 52.5% of patients presenting with chest pain. The early diagnostic guess was more accurate in patients with a life threatening illness (65.4%; CI 95% 64.5% to 66.3% and in patients who did not feel anxious (62.9%; CI 95% 62.5% to 63.3%. The predictive abilities of an early diagnostic guess were consistent among GPs. Conclusions The GPs early diagnostic guess was correct in one out of two patients presenting with chest pain. The probability of a correct guess was higher in patients with a life-threatening illness and in patients not feeling anxious about their pain.

  18. Slovenian experience from diagnostic angiography to interventional radiology

    International Nuclear Information System (INIS)

    Pavcnik, Dusan

    2014-01-01

    The purpose of writing this article is to document the important events and people in the first 50 years of diagnostic angiography and interventional radiology in Slovenia. During this period not only did the name of the institutions and departments change, but also its governance. This depicted the important roles different people played at various times in the cardiovascular divisions inside and outside of the diagnostic and interventional radiology. Historical data show that Slovenian radiology has relatively immediately introduced the new methods of interventional radiology in clinical practice

  19. Proposed Diagnostic Criteria for the DSM-5 of Nonsuicidal Self-Injury in Female Adolescents: Diagnostic and Clinical Correlates

    Directory of Open Access Journals (Sweden)

    Tina In-Albon

    2013-01-01

    Full Text Available Nonsuicidal self-injury (NSSI is included as conditions for further study in the DSM-5. Therefore, it is necessary to investigate the proposed diagnostic criteria and the diagnostic and clinical correlates for the validity of a diagnostic entity. The authors investigated the characteristics of NSSI disorder and the proposed diagnostic criteria. A sample of 73 female inpatient adolescents and 37 nonclinical adolescents (aged 13 to 19 years was recruited. Patients were classified into 4 groups (adolescents with NSSI disorder, adolescents with NSSI without impairment/distress, clinical controls without NSSI, and nonclinical controls. Adolescents were compared on self-reported psychopathology and diagnostic cooccurrences. Results indicate that adolescents with NSSI disorder have a higher level of impairment than adolescents with other mental disorders without NSSI. Most common comorbid diagnoses were major depression, social phobia, and PTSD. There was some overlap of adolescents with NSSI disorder and suicidal behaviour and borderline personality disorder, but there were also important differences. Results further suggest that the proposed DSM-5 diagnostic criteria for NSSI are useful and necessary. In conclusion, NSSI is a highly impairing disorder characterized by high comorbidity with various disorders, providing further evidence that NSSI should be a distinct diagnostic entity.

  20. Plasma potential formation and measurement in TMX-U and MFTF-B

    International Nuclear Information System (INIS)

    Grubb, D.P.

    1984-01-01

    Tandem mirrors control the axial variation of the plasma potential to create electrostatic plugs that improve the axial confinement of central cell ions and, in a thermal barrier tandem mirror, control the electron axial heat flow. Measurements of the spatial and temporal variations of the plasma potential are, therefore, important to the understanding of confinement in a tandem mirror. In this paper we discuss potential formation in a thermal barrier tandem mirror and examine the diagnostics and data obtained on the TMX-U device, including measurements of the thermal barrier potential profile using a diagnostic neutral beam and charged particle energy-spectroscopy. We then describe the heavy ion beam probe and other new plasma potential diagnostics that are under development for TMX-U and MFTF-B and examine problem areas where additional diagnostic development is desirable

  1. Laser and plasma diagnostics for the OMEGA Upgrade Laser System (invited) (abstract)

    International Nuclear Information System (INIS)

    Letzring, S.A.

    1995-01-01

    The upgraded OMEGA laser system will be capable of delivering up to 30 kJ of 351-nm laser light with various temporal pulse shapes onto a variety of targets for both ICF and basic plasma physics experiments. ICF experiments will cover a wide parameter space up to near-ignition conditions, and basic interaction and plasma physics experiments will cover previously unattainable parameter spaces. The laser system is the tool with which the experiments are performed; the diagnostics, both of the laser system and the interaction between the laser and the target, form the heart of the experiment. A new suite of diagnostics is now being designed and constructed. Most of these are based on diagnostics previously fielded on the OMEGA laser system very successfully over the last ten years, but there are some new diagnostics, both for the laser and the interaction experiments, which have had to be invented. Laser system diagnostics include high-energy, full-beam calorimetry for all of the 60 beams of the upgrade; a novel, multispectral energy-measuring system for assessing the tuning of the frequency-multiplying crystals; a beam-balance diagnostic that forms the heart of the energy-balance system; and a peak power diagnostic that forms the heart of the power-balance system. Target diagnostics will include the usual time-integrated x-ray imaging systems, both pinhole cameras and x-ray microscopes; x-ray spectrometers, both imaging and spatially integrating; plamsa calorimeters, including x-ray calorimetry; and time-resolved x-ray diagnostics, both nonimaging and imaging in one and two dimensions. Neutron diagnostics will include several measurements of total yield, secondary, and possibly tertiary yield and neutron spectroscopy with several time-of-flight spectrometers. Other measurements will include ''knock-on'' particle measurements and neutron activation of shell materials as a diagnostic of compressed fuel and shell density

  2. Pressure measurements in magnetic-fusion devices

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration

  3. Pressure measurements in magnetic-fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

  4. Diagnostic accuracy of manual office blood pressure measurement in ambulatory hypertensive patients in Korea.

    Science.gov (United States)

    Kim, Sehun; Park, Jin Joo; Lee, Seung-Ah; Cho, Youngjin; Yoon, Yeonyee E; Oh, Il-Young; Yoon, Chang-Hwan; Suh, Jung-Won; Cho, Young-Seok; Youn, Tae-Jin; Cho, Goo-Yeong; Chae, In-Ho; Lee, Hae-Young; Shin, Jinho; Park, Sungha; Choi, Dong-Ju

    2018-01-01

    Currently, office blood pressure (OBP) is the most widely used method of measuring blood pressure (BP) in daily clinical practice. However, data on the diagnostic accuracy of OBP in reference to ambulatory blood pressure (ABP) are scarce in Korea. In retrospective and prospective cohorts, manual OBP and ABP measurements were compared among ambulatory hypertensive patients. Hypertension was defined as systolic OBP ≥ 140 mmHg and/or diastolic OBP ≥ 90 mmHg, and systolic ABP ≥ 130 mmHg and/or diastolic ABP ≥ 80 mmHg. In the retrospective cohort (n = 903), the mean OBP1 (before ABP measurement) was higher than ABP in both systolic (138 ± 17 mmHg vs. 123 ± 13 mmHg, p ABP ( r 2 = 0.038, p ABP, which is the reference method for measuring BP, was 43.9%. The prospective cohort (n = 57) showed similar results. In a subgroup analysis, male patients had higher false negative results (masked or under-treated hypertension) than did female patients (26.1% vs. 17.8%, p = 0.003), whereas female patients had a higher false positive rate (white-coat or over-treated hypertension) than did male patients (28.7% vs. 15.2%, p ABP. Men and women have different patterns of discordance. These findings indicate that management of hypertensive patients with manual OBP measurements may be suboptimal and encourages the use of ABP in ambulatory hypertensive patients.

  5. Nucleic acid probes as a diagnostic method for tick-borne hemoparasites of veterinary importance.

    Science.gov (United States)

    Figueroa, J V; Buening, G M

    1995-03-01

    An increased number of articles on the use of nucleic acid-based hybridization techniques for diagnostic purposes have been recently published. This article reviews nucleic acid-based hybridization as an assay to detect hemoparasite infections of economic relevance in veterinary medicine. By using recombinant DNA techniques, selected clones containing inserts of Anaplasma, Babesia, Cowdria or Theileria genomic DNA sequences have been obtained, and they are now available to be utilized as specific, highly sensitive DNA or RNA probes to detect the presence of the hemoparasite DNA in an infected animal. Either in an isotopic or non-isotopic detection system, probes have allowed scientists to test for--originally in samples collected from experimentally infected animals and later in samples collected in the field--the presence of hemoparasites during the prepatent, patent, convalescent, and chronic periods of the infection in the host. Nucleic acid probes have given researchers the opportunity to carry out genomic analysis of parasite DNA to differentiate hemoparasite species and to identify genetically distinct populations among and within isolates, strains and clonal populations. Prevalence of parasite infection in the tick vector can now be accomplished more specifically with the nucleic acid probes. Lately, with the advent of the polymerase chain reaction technique, small numbers of hemoparasites can be positively identified in the vertebrate host and tick vector. These techniques can be used to assess the veterinary epidemiological situation in a particular geographical region for the planning of control measures.

  6. Sensitive Diagnostics for Chemically Reacting Flows

    KAUST Repository

    Farooq, Aamir

    2015-01-01

    This talk will feature latest diagnostic developments for sensitive detection of gas temperature and important combustion species. Advanced optical strategies, such as intrapulse chirping, wavelength modulation, and cavity ringdown are employed.

  7. Sensitive Diagnostics for Chemically Reacting Flows

    KAUST Repository

    Farooq, Aamir

    2015-11-02

    This talk will feature latest diagnostic developments for sensitive detection of gas temperature and important combustion species. Advanced optical strategies, such as intrapulse chirping, wavelength modulation, and cavity ringdown are employed.

  8. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  9. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  10. Radioactivity measurement in imported food and food related items

    International Nuclear Information System (INIS)

    Sombrito, E.Z.; Santos, F.L.; Rosa, A.M. de la; Tangonan, M.C.; Bulos, A.D.; Nuguid, Z.F.

    1989-01-01

    The Philippine Nuclear Research Institute (PNRI), formerly Philippine Atomic Energy Commission (PAEC) undertook the radioactivity monitoring of imported food and food-related products after the Chernobyl Plant accident in April 1986. Food samples were analyzed for 137 Cs and 134 Cs by gamma spectral method of analysis. This report deals with the measurement process and gives the result of the activity covering the period June 1986 to December 1987. (Auth.). 9 tabs., 7 figs., 4 refs

  11. Measuring of electric fields with laser-induced fluorescence-dip Stark spectroscopy

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2007-01-01

    The electric field is an important quantity in low-pressure gas discharges, driving many fundamental processes. Unfortunately, it is difficult to measure electric field distributions in plasmas directly. The goal of this research was to develop a diagnostic technique to measure electric fields in

  12. The psychological impact of test results following diagnostic coronary CT angiography.

    Science.gov (United States)

    Devcich, Daniel A; Ellis, Christopher J; Broadbent, Elizabeth; Gamble, Greg; Petrie, Keith J

    2012-11-01

    Coronary computed tomography (CT) angiography is an advanced cardiac imaging test commonly used for diagnosing early signs of ischemic heart disease. Despite its importance in cardiology, little is known about its psychological effect on patients. The present study sought to examine these effects in relation to illness perceptions, cardiac health behavior intentions, and subsequent health behaviors. Forty-five nonacute cardiac patients who were referred for diagnostic coronary CT angiography completed questionnaires prior to testing and following the receipt of test results, at which point illness perceptions and intentions to take cardiac medication, as well as diet and exercise intentions were measured. Exercise and dietary behaviors were measured at follow-up 6 weeks later. Changes on these variables were then compared between patients diagnosed with normal arteries and patients diagnosed with diseased arteries. Compared to positive-testing patients, patients with normal test results reported significant changes toward more positive illness perceptions following testing, with improvements in emotional effect of illness, illness concern, consequences, and personal control of illness. The illness perception of treatment control was seen as more important among positive-testing patients, whereas both groups reported increases in illness coherence. Health behavior intentions (cardiac medication intentions and exercise intentions) increased for positive-testing patients only, as did physical activity at follow-up. Diagnosis-dependent psychological effects can be detected following coronary CT angiography. These effects have important implications for patient health and health care in diagnostic contexts, and the results from this study can be used to guide further research in this area.

  13. How to appraise a diagnostic test

    Directory of Open Access Journals (Sweden)

    Ramanitharan Manikandan

    2011-01-01

    Full Text Available Urologists frequently encounter problems in making a clinical diagnosis whose resolution requires the use of diagnostic tests. With an ever increasing choice of investigations being available, the urologist often has to decide which diagnostic test(s will best resolve the patient′s diagnostic problem. In this article, we aim to help the urologist understand how to critically appraise studies on diagnostic tests and make a rational choice. This article presents the guiding principles in scientifically assessing studies on diagnostic tests by proposing a clinical scenario. The authors describe a standardized protocol to assess the validity of the test and its relevance to the clinical problem that can help the urologist in decision making. The three important issues to be considered when evaluating the validity of the study are to identify how the study population was chosen, how the test was performed and whether there is a comparison to the gold standard test so as to confirm or refute the diagnosis. Then, the urologist would need to know the probability of the test in providing the correct diagnosis in an individual patient in order to decide about its utility in solving the diagnostic dilemma. By performing the steps described in this article, the urologist would be able to critically appraise diagnostic studies and draw meaningful conclusions about the investigations in terms of validity, results and its applicability to the patient′s problem. This would provide a scientific basis for using diagnostic tests for improving patient care.

  14. Tribological diagnostics as a precondition for maintenance

    International Nuclear Information System (INIS)

    Jolevski, Tome

    1999-01-01

    The concept of maintenance in one industrial system usually represents a sum of constructions and rules that point out to several facts: 1) over which technical system the maintenance should be applied, 2) when it should be applied and 3) on which way it should be organized. In our real industrial systems the contemporary maintenance of the technical systems is not enough. Also, other contemporary measures whose basic task is to prevent unplanned stoppages as well as damages in the production process are insufficient. The equipment of the technical systems with devices for permanent monitoring of the condition, in other words with devices for technical diagnostic is unsatisfactorily, with a small exemption of the devices for vibration diagnostic monitoring of the condition in real time. The tribological diagnostics, using the procedures and methods without destroying as well as measuring and monitoring the condition of the lubrication devices, allows to find out the real status of the technical systems in operation. On that basic it is possible to undertake correct maintenance measures which would provide promising and safe operation of the technical systems. (Author)

  15. Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics

    International Nuclear Information System (INIS)

    Liu, Zhi; Hu, Jie; Zhao, Yimeng; Qu, Zhiguo; Xu, Feng

    2015-01-01

    Paper-based diagnostics have shown promising potential applications in human disease surveillance and food safety analysis at the point-of-care (POC). The liquid wicking behavior in diagnostic fibrous paper plays an important role in development of paper-based diagnostics. In the current study, we performed experimental and numerical research on the liquid wicking height and mass with three width strips into filter paper. The effective porosity could be conveniently measured in the light of the linear correlation between wicking height and mass by the experimental system. A modified model with considering evaporation effect was proposed to predict wicking height and mass. The predicted wicking height and mass using the evaporation model was much closer to the experimental data compared with the model without evaporation. The wicking speed initially decreased significantly and then maintained at a constant value at lower level. The evaporation effect tends to reduce the wicking flow speed. More wicking mass could be obtained at larger strip width but the corresponding reagent loss became significant. The proposed model with evaporation paved a way to understanding the fundamental of fluid flow in diagnostic paper and was essential to provide meaningful and useful reference for the research and development of paper-based diagnostics devices. - Highlights: • A model with considering evaporation was proposed to predict wicking height and mass. • Flow characteristics of filter paper were experimentally and theoretically studied. • Effective porosity could be conveniently measured by the experimental platform. • The evaporation effect tended to reduce the wicking flow speed

  16. 2012 HIV Diagnostics Conference: the molecular diagnostics perspective.

    Science.gov (United States)

    Branson, Bernard M; Pandori, Mark

    2013-04-01

    2012 HIV Diagnostic Conference Atlanta, GA, USA, 12-14 December 2012. This report highlights the presentations and discussions from the 2012 National HIV Diagnostic Conference held in Atlanta (GA, USA), on 12-14 December 2012. Reflecting changes in the evolving field of HIV diagnostics, the conference provided a forum for evaluating developments in molecular diagnostics and their role in HIV diagnosis. In 2010, the HIV Diagnostics Conference concluded with the proposal of a new diagnostic algorithm which included nucleic acid testing to resolve discordant screening and supplemental antibody test results. The 2012 meeting, picking up where the 2010 meeting left off, focused on scientific presentations that assessed this new algorithm and the role played by RNA testing and new developments in molecular diagnostics, including detection of total and integrated HIV-1 DNA, detection and quantification of HIV-2 RNA, and rapid formats for detection of HIV-1 RNA.

  17. Suprathermal electron studies in Tokamak plasmas by means of diagnostic measurements and modeling

    International Nuclear Information System (INIS)

    Kamleitner, J.

    2015-01-01

    To achieve reactor-relevant conditions in a tokamak plasma, auxiliary heating systems are required and can be realized by waves injected in the plasma that heat ions or electrons. Electron cyclotron resonant heating (ECRH) is a very flexible and robust technique featuring localized power deposition and current drive (CD) capabilities. Its fundamental principles are well understood and the application of ECRH is a proven and established tool; electron cyclotron current drive (ECCD) is regularly used to develop advanced scenarios and control magneto-hydrodynamics (MHD) instabilities in the plasma by tailoring the current profile. There remain important open questions, such as the phase space dynamics, the observed radial broadening of the supra-thermal electron distribution function and discrepancies in predicted and experimental CD efficiency. A main goal is to improve the understanding of wave-particle interaction in plasmas and current drive mechanisms. This was accomplished by combined experimental and numerical studies, strongly based on the conjunction of hard X-ray (HXR) Bremsstrahlung measurements and Fokker-Planck modelling, characterizing the supra-thermal electron population. The hard X-ray tomographic spectrometer (HXRS) diagnostic was developed to perform these studies by investigating spatial HXR emission asymmetries in the co- and counter-current directions and within the poloidal plane. The system uses cadmium-telluride detectors and digital acquisition to store the complete time history of incoming photon pulses. An extensive study of digital pulse processing algorithms was performed and its application allows the HXRS to handle high count rates in a noisy tokamak environment. Numerical tools were developed to improve the time resolution by conditional averaging and to obtain local information with the general tomographic inversion package. The interfaces of the LUKE code and the well-established CQL3D Fokker-Planck code to the Tokamak a

  18. Metabolomics for laboratory diagnostics.

    Science.gov (United States)

    Bujak, Renata; Struck-Lewicka, Wiktoria; Markuszewski, Michał J; Kaliszan, Roman

    2015-09-10

    Metabolomics is an emerging approach in a systems biology field. Due to continuous development in advanced analytical techniques and in bioinformatics, metabolomics has been extensively applied as a novel, holistic diagnostic tool in clinical and biomedical studies. Metabolome's measurement, as a chemical reflection of a current phenotype of a particular biological system, is nowadays frequently implemented to understand pathophysiological processes involved in disease progression as well as to search for new diagnostic or prognostic biomarkers of various organism's disorders. In this review, we discussed the research strategies and analytical platforms commonly applied in the metabolomics studies. The applications of the metabolomics in laboratory diagnostics in the last 5 years were also reviewed according to the type of biological sample used in the metabolome's analysis. We also discussed some limitations and further improvements which should be considered taking in mind potential applications of metabolomic research and practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Diagnostics of ST Plasmas in NSTX: Challenges and Opportunities

    International Nuclear Information System (INIS)

    Johnson, D.; Efthimion, P.; Foley, J.; Jones, B.; Mazzucato, E.; Park, H.; Taylor, G.; Levinton, F.; Luhmann, N.

    2001-01-01

    This paper will highlight some of the challenges and opportunities present in the diagnosis of spherical torus (ST) plasmas on the National Spherical Torus Experiment (NSTX) and discuss the corresponding diagnostic development that is presently underway. After a brief description of diagnostic systems currently installed, examples of ST-specific diagnostic challenges will be highlighted, as will another case, where the ST configuration offers opportunities for new measurements

  20. High power microwave diagnostic for the fusion energy experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Goncalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments....... The ITER CTS diagnostic will inject a 1 MW 60 GHz gyrotron beam into the ITER plasma and observe the scattering off fluctuations in the plasma — to monitor the dynamics of the fast ions generated in the fusion reactions....

  1. Beam Diagnostics Systems for the National Ignition Facility

    International Nuclear Information System (INIS)

    Demaret, R D; Boyd, R D; Bliss, E S; Gates, A J; Severyn, J R

    2001-01-01

    The National Ignition Facility (NIF) laser focuses 1.8 megajoules of ultraviolet light (wavelength 351 nanometers) from 192 beams into a 600-micrometer-diameter volume. Effective use of this output in target experiments requires that the power output from all of the beams match within 8% over their entire 20-nanosecond waveform. The scope of NIF beam diagnostics systems necessary to accomplish this task is unprecedented for laser facilities. Each beamline contains 110 major optical components distributed over a 510-meter path, and diagnostic tolerances for beam measurement are demanding. Total laser pulse energy is measured with 2.8% precision, and the interbeam temporal variation of pulse power is measured with 4% precision. These measurement goals are achieved through use of approximately 160 sensor packages that measure the energy at five locations and power at three locations along each beamline using 335 photodiodes, 215 calorimeters, and 36 digitizers. Successful operation of such a system requires a high level of automation of the widely distributed sensors. Computer control systems provide the basis for operating the shot diagnostics with repeatable accuracy, assisted by operators who oversee system activities and setup, respond to performance exceptions, and complete calibration and maintenance tasks

  2. Revising the personality disorder diagnostic criteria for the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-V): consider the later life context.

    Science.gov (United States)

    Balsis, Steve; Segal, Daniel L; Donahue, Cailin

    2009-10-01

    The categorical measurement approach implemented by the Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) personality disorder (PD) diagnostic system is theoretically and pragmatically limited. As a result, many prominent psychologists now advocate for a shift away from this approach in favor of more conceptually sound dimensional measurement. This shift is expected to improve the psychometric properties of the personality disorder (PD) diagnostic system and make it more useful for clinicians and researchers. The current article suggests that despite the probable benefits of such a change, several limitations will remain if the new diagnostic system does not closely consider the context of later life. A failure to address the unique challenges associated with the assessment of personality in older adults likely will result in the continued limited validity, reliability, and utility of the Diagnostic and Statistical Manual of Mental Disorders (DSM) system for this growing population. This article discusses these limitations and their possible implications. (c) 2009 APA, all rights reserved.

  3. Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.; Haves, Philip; Sohn, Michael D.

    2010-05-30

    Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models are imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.

  4. Novel Online Diagnostic Analysis for In-Flight Particle Properties in Cold Spraying

    Science.gov (United States)

    Koivuluoto, Heli; Matikainen, Ville; Larjo, Jussi; Vuoristo, Petri

    2018-02-01

    In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.

  5. Multi-shot analysis of the gamma reaction history diagnostic

    International Nuclear Information System (INIS)

    Sayre, D. B.; Bernstein, L. A.; Church, J. A.; Stoeffl, W.; Herrmann, H. W.

    2012-01-01

    The gamma reaction history diagnostic at the National Ignition Facility has the capability to determine a number of important performance metrics for cryogenic deuterium-tritium implosions: the fusion burn width, bang time and yield, as well as the areal density of the compressed ablator. Extracting those values from the measured γ rays of an implosion, requires accounting for a γ-ray background in addition to the impulse response function of the instrument. To address these complications, we have constructed a model of the γ-ray signal, and are developing a simultaneous multi-shot fitting routine to constrain its parameter space.

  6. Systematic development of Phytophthora species-specific mitochondrial diagnostic markers for economically important members of the genus

    Science.gov (United States)

    The genus Phytophthora contains many invasive species to the USA that have the potential to cause significant damage to agriculture and native ecosystems. A genus and species-specific diagnostic assay was previously reported based on mitochondrial gene order differences that allowed for the systemat...

  7. Design of a correlation electron cyclotron emission diagnostic for Alcator C-Moda)

    Science.gov (United States)

    Sung, C.; White, A. E.; Irby, J. H.; Leccacorvi, R.; Vieira, R.; Oi, C. Y.; Peebles, W. A.; Nguyen, X.

    2012-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been installed in Alcator C-Mod. In order to measure electron temperature fluctuations, this diagnostic uses a spectral decorrelation technique. Constraints obtained with nonlinear gyrokinetic simulations guided the design of the optical system and receiver. The CECE diagnostic is designed to measure temperature fluctuations which have kθ ≤ 4.8 cm-1 (kθρs < 0.5) using a well-focused beam pattern. Because the CECE diagnostic is a dedicated turbulence diagnostic, the optical system is also flexible, which allows for various collimating lenses and antenna to be used. The system overview and the demonstration of its operability as designed are presented in this paper.

  8. Diagnostic yield of preoperative computed tomography imaging and the importance of a clinical decision for lung cancer surgery

    International Nuclear Information System (INIS)

    Sato, Shuichi; Koike, Teruaki; Yamato, Yasushi

    2010-01-01

    This study aimed to evaluate the diagnostic yield of preoperative computed tomography (CT) imaging and the validity of surgical intervention based on the clinical decision to perform surgery for lung cancer or suspected lung cancer. We retrospectively evaluated 1755 patients who had undergone pulmonary resection for lung cancer or suspected lung cancer. CT scans were performed on all patients. Surgical intervention to diagnose and treat was based on a medical staff conference evaluation for the suspected lung cancer patients who were pathologically undiagnosed. We evaluated the relation between resected specimens and preoperative CT imaging in detail. A total of 1289 patients were diagnosed with lung cancer by preoperative pathology examination; another 466 were not pathologically diagnosed preoperatively. Among the 1289 patients preoperatively diagnosed with lung cancer, the diagnoses were confirmed postoperatively in 1282. Among the 466 patients preoperatively undiagnosed, 435 were definitively diagnosed with lung cancer, and there were 383 p-stage I disease patients. There were 38 noncancerous patients who underwent surgery with a diagnosis of confirmed or suspected lung cancer. Among the 1755 patients who underwent surgery, 1717 were pathologically confirmed with lung cancer, and the diagnostic yield of preoperative CT imaging was 97.8%. Among the 466 patients who were preoperatively undiagnosed, 435 were compatible with the predicted findings of lung cancer. Diagnostic yields of preoperative CT imaging based on clinical evaluation are sufficiently reliable. Diagnostic surgical intervention was acceptable when the clinical probability of malignancy was high and the malignancy was pathologically undiagnosed. (author)

  9. A beam diagnostic system for ELSA

    International Nuclear Information System (INIS)

    Schillo, M.; Althoff, K.H.; Drachenfels, W.; Goetz, T.; Husmann, D.; Neckenig, M.; Picard, M.; Schittko, F.J.; Schauerte, W.; Wenzel, J.

    1991-01-01

    A beam diagnostic system, which is based on capacitive beam-position monitors combined with fast electronics, has been developed for the Bonn ELectron Stretcher Accelerator ELSA. The position signal of each monitor is digitized at an adjustable sampling rate (max.: 10 MHz) and the most recent 8192 position and intensity values are buffered. This allows a wide range of different beam diagnostic measurements. The main purpose is the closed-orbit correction, which can be carried out on various time scales. To optimize the duty factor of the extracted beam, the system can also be used as a fast relative intensity monitor resolving the intensity distribution of the bunches or of the injected beam. It is designed to support betatron tune and phase measurements with very high accuracy, offering the choice to select any of the beam position monitors. This enables the measuring of many optical parameters. Furthermore any pair of suitable monitors can be used for experimental particle tracking or phase space measurements

  10. Influence diagnostics in meta-regression model.

    Science.gov (United States)

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Fear of knowledge: Clinical hypotheses in diagnostic and prognostic reasoning.

    Science.gov (United States)

    Chiffi, Daniele; Zanotti, Renzo

    2017-10-01

    Patients are interested in receiving accurate diagnostic and prognostic information. Models and reasoning about diagnoses have been extensively investigated from a foundational perspective; however, for all its importance, prognosis has yet to receive a comparable degree of philosophical and methodological attention, and this may be due to the difficulties inherent in accurate prognostics. In the light of these considerations, we discuss a considerable body of critical thinking on the topic of prognostication and its strict relations with diagnostic reasoning, pointing out the distinction between nosographic and pathophysiological types of diagnosis and prognosis, underlying the importance of the explication and explanation processes. We then distinguish between various forms of hypothetical reasoning applied to reach diagnostic and prognostic judgments, comparing them with specific forms of abductive reasoning. The main thesis is that creative abduction regarding clinical hypotheses in diagnostic process is very unlikely to occur, whereas this seems to be often the case for prognostic judgments. The reasons behind this distinction are due to the different types of uncertainty involved in diagnostic and prognostic judgments. © 2016 John Wiley & Sons, Ltd.

  12. Integrated data analysis of fusion diagnostics by means of the Bayesian probability theory

    International Nuclear Information System (INIS)

    Fischer, R.; Dinklage, A.

    2004-01-01

    Integrated data analysis (IDA) of fusion diagnostics is the combination of heterogeneous diagnostics to obtain validated physical results. Benefits from the integrated approach result from a systematic use of interdependencies; in that sense IDA optimizes the extraction of information from sets of different data. For that purpose IDA requires a systematic and formalized error analysis of all (statistical and systematic) uncertainties involved in each diagnostic. Bayesian probability theory allows for a systematic combination of all information entering the diagnostic model by considering all uncertainties of the measured data, the calibration measurements, and the physical model. Prior physics knowledge on model parameters can be included. Handling of systematic errors is provided. A central goal of the integration of redundant or complementary diagnostics is to provide information to resolve inconsistencies by exploiting interdependencies. A comparable analysis of sets of diagnostics (meta-diagnostics) is performed by combining statistical and systematical uncertainties with model parameters and model uncertainties. Diagnostics improvement and experimental optimization and design of meta-diagnostics will be discussed

  13. New developments in the surveillance and diagnostics technology for vibration, structure-borne sound and leakage monitoring systems

    International Nuclear Information System (INIS)

    Gloth, Gerrit

    2009-01-01

    Monitoring and diagnostic systems are of main importance for a safe and efficient operation of nuclear power plants. The author describes new developments with respect to vibration monitoring with a functional extension in the time domain for den secondary circuit, the development of a local system for the surveillance of rotating machines, the structure-borne sound monitoring with improvement of event analysis, esp. the loose part locating, leakage monitoring with a complete system for humidity measurement, and the development of a common platform for all monitoring and diagnostic systems, that allows an efficient access for comparison and cross references.

  14. High voltage diagnostics on electrical insulation of supersonducting magnets

    International Nuclear Information System (INIS)

    Irmisch, M.

    1995-12-01

    The high voltage (HV) performance of superconducting magnets of large dimensions, e.g. as needed in fusion reactors, is a challange in the field of high voltage technology, i.e. especially in the field of cryogenic high voltage components and with respect to questions of HV insulation diagnostics at low temperature. By using the development of POLO - a superconducting prototype coil of a tokamak poloidal field coil - as an example, this work deals with special problems of how to get use of conventional HV test techniques for diagnostics under special cryogenic boundary conditions. As a first approach to gain experience in the field of phase resolved partial discharge (PRPD) measurements during operation of a superconductive coil, the POLO coil was subject to several high voltage tests. Compared with DC insulation resistance measurements and capacitive impulse voltage discharges to the coil, the AC PD measurements have been the only way to observe special characteristics of the electrical insulation with respect to the cooling down of the coil from 300 K to 4.2 K. The PRPD measurement technique thereby has proofed as a suitable diagnostic tool. This work can serve as basic data to be comparable within further projects of electrical insulation diagnostics at cryogenic temperatures. (orig.)

  15. Depression screening in stroke: a comparison of alternative measures with the structured diagnostic interview for the diagnostic and statistical manual of mental disorders, fourth edition (major depressive episode) as criterion standard.

    Science.gov (United States)

    Turner, Alyna; Hambridge, John; White, Jennifer; Carter, Gregory; Clover, Kerrie; Nelson, Louise; Hackett, Maree

    2012-04-01

    Screening tools for depression and psychological distress commonly used in medical settings have not been well validated in stroke populations. We aimed to determine the accuracy of common screening tools for depression or distress in detecting caseness for a major depressive episode compared with a clinician-administered structured clinical interview for Diagnostic and Statistical Manual of Mental Disorders Fourth Edition as the gold standard. Seventy-two participants ≥3 weeks poststroke underwent a diagnostic interview for major depressive episode and completed the Patient Health Questionnaire-2 and -9, Hospital Anxiety and Depression Scale, Beck Depression Inventory-II, Distress Thermometer, and Kessler-10. Internal consistency, sensitivity, specificity, likelihood ratios, and posttest probabilities were calculated. Each measure was validated against the gold standard using receiver operating characteristic curves with comparison of the area under the curve for all measures. Internal consistency ranged from acceptable to excellent for all measures (Cronbach α=0.78-0.94). Areas under the curve (95% CI) for the Patient Health Questionnaire-2, Patient Health Questionnaire-9, Hospital Anxiety and Depression Scale depression and total score, Beck Depression Inventory-II, and Kessler-10 ranged from 0.80 (0.69-0.89) for the Kessler-10 to 0.89 (0.79-0.95) for the Beck Depression Inventory-II with no significant differences between measures. The Distress Thermometer had an area under the curve (95% CI) of 0.73 (0.61-0.83), significantly smaller than the Beck Depression Inventory-II (P<0.05). Apart from the Distress Thermometer, selected scales performed adequately in a stroke population with no significant difference between measures. The Patient Health Questionnaire-2 would be the most useful single screen given free availability and the shortest number of items.

  16. Diagnostic imaging in intensive care patients

    International Nuclear Information System (INIS)

    Afione, Cristina; Binda, Maria del C.

    2004-01-01

    Purpose: To determine the role of imaging diagnostic methods in the location of infection causes of unknown origin in the critical care patient. Material and methods: A comprehensive medical literature search has been done. Recommendations for the diagnostic imaging of septic focus in intensive care patients are presented for each case, with analysis based on evidence. The degree of evidence utilized has been that of Oxford Center for Evidence-based Medicine. Results: Nosocomial infection is the most frequent complication in the intensive care unit (25 to 33%) with high sepsis incidence rate. In order to locate the infection focus, imaging methods play an important role, as a diagnostic tool and to guide therapeutic procedures. The most frequent causes of infection are: ventilation associated pneumonia, sinusitis, intra-abdominal infections and an acute acalculous cholecystitis. This paper analyses the diagnostic imaging of hospital infection, with the evaluation of choice methods for each one and proposes an algorithm to assess the septic patient. Conclusion: There are evidences, with different degrees of recommendation, for the use of diagnostic imaging methods for infectious focuses in critical care patients. The studies have been selected based on their diagnostic precision, on the capacity of the medical team and on the availability of resources, considering the risk-benefit balance for the best safety of the patient. (author)

  17. Diagnostics systems for the TBR-E tokamak

    International Nuclear Information System (INIS)

    Ueda, M.; Ferreira, J.L.; Aso, Y.; Ferreira, J.G.

    1992-08-01

    A general view of the several diagnostics systems proposed for the TBR-E tokamak is given. This project is a joint undertaking of INPE, USP and UNICAMP plasma laboratories. The requirements for the measurements of the plasma produced parameters are described. Special attention is given for diagnostics used to investigate new physical issues on a low aspect ratio tokamak such as TBR-E. (author)

  18. Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hall, Elise Munz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

  19. Far-infrared polarimetry/interferometry for poloidal magnetic field measurement on ZT-40M

    International Nuclear Information System (INIS)

    Erickson, R.M.

    1986-06-01

    The measurement of internal magnetic field profiles may be a very important step in the understanding of magnetic confinement physics issues. The measurement of plasma-induced Faraday rotation is one of the more promising internal magnetic field diagnostics. This thesis describes the development of a heterodyne polarimeter/interferometer for internal poloidal magnetic field measurement on ZT-40M. Heterodyne techniques were employed because of the insensitivity to spurious signal amplitude changes that cause errors in other methods. Initial problems in polarimetric sensitivity were observed that were ultimately found to be related to discharge-induced motions of the constrained diagnostic access on ZT-40M. Grazing incidence motions of the constrained diagnostic access on ZT-40M. Grazing incidence reflections on metallic surfaces of the diagnostic ports caused polarization changes that affected the measurement accuracy. Installation of internally threaded sleeves to baffle the reflections eliminated the sensitivity problem, and allowed useful Faraday rotation measurements to be made. Simultaneous polarimetric and interferometric measurements have also been demonstrated. The ability to assemble a working heterodyne polarimeter/interferometer is no longer in question. The extension of the present system to multichord operation requires increased laser power and efficiency

  20. Diagnostic and interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, Thomas J. [Klinikum der Johann Wolfgang Goethe-Universitaet, Frankfurt am Main (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Reith, Wolfgang [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Diagnostische und Interventionelle Neuroradiologie; Rummeny, Ernst J. (ed.) [Technische Univ. Muenchen Klinikum rechts der Isar, Muenchen (Germany). Inst. fuer Radiologie

    2016-08-01

    This exceptional book covers all aspects of diagnostic and interventional radiology within one volume, at a level appropriate for the specialist. From the basics through diagnosis to intervention: the reader will find a complete overview of all areas of radiology. The clear, uniform structure, with chapters organized according to organ system, facilitates the rapid retrieval of information. Features include: Presentation of the normal radiological anatomy Classification of the different imaging procedures according to their diagnostic relevance Imaging diagnosis with many reference images Precise description of the interventional options The inclusion of many instructive aids will be of particular value to novices in decision making: Important take home messages and summaries of key radiological findings smooth the path through the jungle of facts Numerous tables on differential diagnosis and typical findings in the most common diseases offer a rapid overview and orientation Diagnostic flow charts outline the sequence of diagnostic evaluation All standard procedures within the field of interventional radiology are presented in a clinically relevant and readily understandable way, with an abundance of illustrations. This is a textbook, atlas, and reference in one: with more than 2500 images for comparison with the reader's own findings. This comprehensive and totally up-to-date book provides a superb overview of everything that the radiology specialist of today needs to know.