WorldWideScience

Sample records for mean-field dynamo models

  1. Mean-field theory and self-consistent dynamo modeling

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  2. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    Energy Technology Data Exchange (ETDEWEB)

    Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter of anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.

  3. Mean-field magnetohydrodynamics and dynamo theory

    CERN Document Server

    Krause, F

    2013-01-01

    Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen

  4. DOUBLE DYNAMO SIGNATURES IN A GLOBAL MHD SIMULATION AND MEAN-FIELD DYNAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François; Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7 (Canada)

    2016-08-01

    The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p -mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field produced by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α {sup 2}Ω dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.

  5. THE MEAN-FIELD SOLAR DYNAMO WITH A DOUBLE CELL MERIDIONAL CIRCULATION PATTERN

    Energy Technology Data Exchange (ETDEWEB)

    Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2013-10-10

    Recent helioseismology findings, as well as advances in direct numerical simulations of global dynamics of the Sun, have indicated that in each solar hemisphere meridional circulation may form more than one cell along the radius in the convection zone. In particular, recent helioseismology results revealed a double-cell structure of the meridional circulation. We investigate properties of a mean-field solar dynamo with such double-cell meridional circulation. The dynamo model also includes the realistic profile of solar differential rotation (including the tachocline and subsurface shear layer) and takes into account effects of turbulent pumping, anisotropic turbulent diffusivity, and conservation of magnetic helicity. Contrary to previous flux-transport dynamo models, we find that the dynamo model can robustly reproduce the basic properties of the solar magnetic cycles for a wide range of model parameters and circulation speeds. The best agreement with observations is achieved when the surface meridional circulation speed is about 12 m s{sup –1}. For this circulation speed, the simulated sunspot activity shows good synchronization with the polar magnetic fields. Such synchronization was indeed observed during previous sunspot Cycles 21 and 22. We compare theoretical and observed phase diagrams of the sunspot number and the polar field strength and discuss the peculiar properties of Cycle 23.

  6. Mean-field dynamos: The old concept and some recent developments. Karl Schwarzschild Award Lecture 2013

    Science.gov (United States)

    Rädler, K.-H.

    This article elucidates the basic ideas of electrodynamics and magnetohydrodynamics of mean fields in turbulently moving conducting fluids. It is stressed that the connection of the mean electromotive force with the mean magnetic field and its first spatial derivatives is in general neither local nor instantaneous and that quite a few claims concerning pretended failures of the mean-field concept result from ignoring this aspect. In addition to the mean-field dynamo mechanisms of α2 and α Ω type several others are considered. Much progress in mean-field electrodynamics and magnetohydrodynamics results from the test-field method for calculating the coefficients that determine the connection of the mean electromotive force with the mean magnetic field. As an important example the memory effect in homogeneous isotropic turbulence is explained. In magnetohydrodynamic turbulence there is the possibility of a mean electromotive force that is primarily independent of the mean magnetic field and labeled as Yoshizawa effect. Despite of many efforts there is so far no convincing comprehensive theory of α quenching, that is, the reduction of the α effect with growing mean magnetic field, and of the saturation of mean-field dynamos. Steps toward such a theory are explained. Finally, some remarks on laboratory experiments with dynamos are made.

  7. Bipolar Jets Launched by a Mean-field Accretion Disk Dynamo

    Science.gov (United States)

    Fendt, Christian; Gaßmann, Dennis

    2018-03-01

    By applying magnetohydrodynamic simulations, we investigate the launching of jets driven by a disk magnetic field generated by a mean-field disk dynamo. Extending our earlier studies, we explore the bipolar evolution of the disk α 2Ω-dynamo and the outflow. We confirm that a negative dynamo-α leads to a dipolar field geometry, whereas positive values generate quadrupolar fields. The latter remain mainly confined to the disk and cannot launch outflows. We investigate a parameter range for the dynamo-α ranging from a critical value below which field generation is negligible, {α }0,{crit}=-0.0005, to α 0 = ‑1.0. For weak | {α }0| ≤slant 0.07, two magnetic loop structures with opposite polarity may arise, which leads to reconnection and disturbs the field evolution and accretion-ejection process. For a strong dynamo-α, a higher poloidal magnetic energy is reached, roughly scaling with {E}mag}∼ | {α }0| , which also leads to higher accretion and ejection rates. The terminal jet speed is governed by the available magnetic energy and increases with the dynamo-α. We find jet velocities on the order of the inner disk Keplerian velocity. For a strong dynamo-α, oscillating dynamo modes may occur that can lead to a pulsed ejection. This is triggered by an oscillating mode in the toroidal field component. The oscillation period is comparable to the Keplerian timescale in the launching region, thus too short to be associated with the knots in observed jets. We find a hemispherically asymmetric evolution for the jet and counter-jet in the mass flux and field structure.

  8. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  9. Mean-field models and exotic nuclei

    International Nuclear Information System (INIS)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.

    1998-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  10. Mean-field models and superheavy elements

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Bender, M.; Maruhn, J.A.; Frankfurt Univ.

    2001-03-01

    We discuss the performance of two widely used nuclear mean-field models, the relativistic mean-field theory (RMF) and the non-relativistic Skyrme-Hartree-Fock approach (SHF), with particular emphasis on the description of superheavy elements (SHE). We provide a short introduction to the SHF and RMF, the relations between these two approaches and the relations to other nuclear structure models, briefly review the basic properties with respect to normal nuclear observables, and finally present and discuss recent results on the binding properties of SHE computed with a broad selection of SHF and RMF parametrisations. (orig.)

  11. Saturn Dynamo Model (Invited)

    Science.gov (United States)

    Glatzmaier, G. A.

    2010-12-01

    There has been considerable interest during the past few years about the banded zonal winds and global magnetic field on Saturn (and Jupiter). Questions regarding the depth to which the intense winds extend below the surface and the role they play in maintaining the dynamo continue to be debated. The types of computer models employed to address these questions fall into two main classes: general circulation models (GCMs) based on hydrostatic shallow-water assumptions from the atmospheric and ocean modeling communities and global non-hydrostatic deep convection models from the geodynamo and solar dynamo communities. The latter class can be further divided into Boussinesq models, which do not account for density stratification, and anelastic models, which do. Recent efforts to convert GCMs to deep circulation anelastic models have succeeded in producing fluid flows similar to those obtained from the original deep convection anelastic models. We describe results from one of the original anelastic convective dynamo simulations and compare them to a recent anelastic dynamo benchmark for giant gas planets. This benchmark is based on a polytropic reference state that spans five density scale heights with a radius and rotation rate similar to those of our solar system gas giants. The resulting magnetic Reynolds number is about 3000. Better spatial resolution will be required to produce more realistic predictions that capture the effects of both the density and electrical conductivity stratifications and include enough of the turbulent kinetic energy spectrum. Important additional physics may also be needed in the models. However, the basic models used in all simulation studies of the global dynamics of giant planets will hopefully first be validated by doing these simpler benchmarks.

  12. Relativistic mean-field mass models

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-10-15

    We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)

  13. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.

    1992-01-01

    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  14. Mean field models for spin glasses

    CERN Document Server

    Talagrand, Michel

    2011-01-01

    This is a new, completely revised, updated and enlarged edition of the author's Ergebnisse vol. 46: "Spin Glasses: A Challenge for Mathematicians". This new edition will appear in two volumes, the present first volume presents the basic results and methods, the second volume is expected to appear in 2011. In the eighties, a group of theoretical physicists introduced several models for certain disordered systems, called "spin glasses". These models are simple and rather canonical random structures, of considerable interest for several branches of science (statistical physics, neural networks and computer science). The physicists studied them by non-rigorous methods and predicted spectacular behaviors. This book introduces in a rigorous manner this exciting new area to the mathematically minded reader. It requires no knowledge whatsoever of any physics. The first volume of this new and completely rewritten edition presents six fundamental models and the basic techniques to study them.

  15. Chains of mean-field models

    International Nuclear Information System (INIS)

    Hamed Hassani, S; Macris, Nicolas; Urbanke, Ruediger

    2012-01-01

    We consider a collection of Curie–Weiss (CW) spin systems, possibly with a random field, each of which is placed along the positions of a one-dimensional chain. The CW systems are coupled together by a Kac-type interaction in the longitudinal direction of the chain and by an infinite-range interaction in the direction transverse to the chain. Our motivations for studying this model come from recent findings in the theory of error-correcting codes based on spatially coupled graphs. We find that, although much simpler than the codes, the model studied here already displays similar behavior. We are interested in the van der Waals curve in a regime where the size of each Curie–Weiss model tends to infinity, and the length of the chain and range of the Kac interaction are large but finite. Below the critical temperature, and with appropriate boundary conditions, there appears a series of equilibrium states representing kink-like interfaces between the two equilibrium states of the individual system. The van der Waals curve oscillates periodically around the Maxwell plateau. These oscillations have a period inversely proportional to the chain length and an amplitude exponentially small in the range of the interaction; in other words, the spinodal points of the chain model lie exponentially close to the phase transition threshold. The amplitude of the oscillations is closely related to a Peierls–Nabarro free energy barrier for the motion of the kink along the chain. Analogies to similar phenomena and their possible algorithmic significance for graphical models of interest in coding theory and theoretical computer science are pointed out

  16. Exotic nuclei in self-consistent mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Buervenich, T.; Reinhard, P.-G.; Maruhn, J. A.; Greiner, W.

    1999-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei with emphasis on neutron-rich tin isotopes and superheavy nuclei. (c) 1999 American Institute of Physics

  17. Two Populations Mean-Field Monomer-Dimer Model

    Science.gov (United States)

    Alberici, Diego; Mingione, Emanuele

    2018-04-01

    A two populations mean-field monomer-dimer model including both hard-core and attractive interactions between dimers is considered. The pressure density in the thermodynamic limit is proved to satisfy a variational principle. A detailed analysis is made in the limit of one population is much smaller than the other and a ferromagnetic mean-field phase transition is found.

  18. Mean Field Games Models-A Brief Survey

    KAUST Repository

    Gomes, Diogo A.; Saú de, Joã o

    2013-01-01

    The mean-field framework was developed to study systems with an infinite number of rational agents in competition, which arise naturally in many applications. The systematic study of these problems was started, in the mathematical community by Lasry and Lions, and independently around the same time in the engineering community by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal contributions, the research in mean-field games has grown exponentially, and in this paper we present a brief survey of mean-field models as well as recent results and techniques. In the first part of this paper, we study reduced mean-field games, that is, mean-field games, which are written as a system of a Hamilton-Jacobi equation and a transport or Fokker-Planck equation. We start by the derivation of the models and by describing some of the existence results available in the literature. Then we discuss the uniqueness of a solution and propose a definition of relaxed solution for mean-field games that allows to establish uniqueness under minimal regularity hypothesis. A special class of mean-field games that we discuss in some detail is equivalent to the Euler-Lagrange equation of suitable functionals. We present in detail various additional examples, including extensions to population dynamics models. This section ends with a brief overview of the random variables point of view as well as some applications to extended mean-field games models. These extended models arise in problems where the costs incurred by the agents depend not only on the distribution of the other agents, but also on their actions. The second part of the paper concerns mean-field games in master form. These mean-field games can be modeled as a partial differential equation in an infinite dimensional space. We discuss both deterministic models as well as problems where the agents are correlated. We end the paper with a mean-field model for price impact. © 2013 Springer Science+Business Media New York.

  19. Mean Field Games Models-A Brief Survey

    KAUST Repository

    Gomes, Diogo A.

    2013-11-20

    The mean-field framework was developed to study systems with an infinite number of rational agents in competition, which arise naturally in many applications. The systematic study of these problems was started, in the mathematical community by Lasry and Lions, and independently around the same time in the engineering community by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal contributions, the research in mean-field games has grown exponentially, and in this paper we present a brief survey of mean-field models as well as recent results and techniques. In the first part of this paper, we study reduced mean-field games, that is, mean-field games, which are written as a system of a Hamilton-Jacobi equation and a transport or Fokker-Planck equation. We start by the derivation of the models and by describing some of the existence results available in the literature. Then we discuss the uniqueness of a solution and propose a definition of relaxed solution for mean-field games that allows to establish uniqueness under minimal regularity hypothesis. A special class of mean-field games that we discuss in some detail is equivalent to the Euler-Lagrange equation of suitable functionals. We present in detail various additional examples, including extensions to population dynamics models. This section ends with a brief overview of the random variables point of view as well as some applications to extended mean-field games models. These extended models arise in problems where the costs incurred by the agents depend not only on the distribution of the other agents, but also on their actions. The second part of the paper concerns mean-field games in master form. These mean-field games can be modeled as a partial differential equation in an infinite dimensional space. We discuss both deterministic models as well as problems where the agents are correlated. We end the paper with a mean-field model for price impact. © 2013 Springer Science+Business Media New York.

  20. Self-consistent mean-field models for nuclear structure

    International Nuclear Information System (INIS)

    Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard

    2003-01-01

    The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications

  1. A mean-field game economic growth model

    KAUST Repository

    Gomes, Diogo A.; Lafleche, Laurent; Nurbekyan, Levon

    2016-01-01

    Here, we examine a mean-field game (MFG) that models the economic growth of a population of non-cooperative, rational agents. In this MFG, agents are described by two state variables - the capital and consumer goods they own. Each agent seeks

  2. Heavy-ion interactions in relativistic mean-field models

    International Nuclear Information System (INIS)

    Rashdan, M.

    1996-01-01

    The interaction potential between spherical nuclei and the elastic scattering cross section are calculated within relativistic mean-field (linear and non-linear) models, using a generalized relativistic local density approximation. The nuclear densities are calculated self-consistently from the solution of the relativistic mean-field equations. It is found that both the linear and non-linear models predict the characteristic switching-over phenomenon of the heavy-ion nuclear potential, where the potential gets attraction with increasing energy up to some value where it reverses this behaviour. The non-linear NLC model predicts a deeper potential than the linear LW model. The elastic scattering cross section calculated within the non-linear NLC model is in better agreement with experiments than that calculated within the linear LW model. (orig.)

  3. A mean-field game economic growth model

    KAUST Repository

    Gomes, Diogo A.

    2016-08-05

    Here, we examine a mean-field game (MFG) that models the economic growth of a population of non-cooperative, rational agents. In this MFG, agents are described by two state variables - the capital and consumer goods they own. Each agent seeks to maximize his/her utility by taking into account statistical data about the whole population. The individual actions drive the evolution of the players, and a market-clearing condition determines the relative price of capital and consumer goods. We study the existence and uniqueness of optimal strategies of the agents and develop numerical methods to compute these strategies and the equilibrium price.

  4. Relativistic Chiral Mean Field Model for Finite Nuclei

    Science.gov (United States)

    Ogawa, Y.; Toki, H.; Tamenaga, S.; Haga, A.

    2009-08-01

    We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{π}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{π} = 0^{-} (spherical ansatz). We extend the CPPRMF model by taking 2p-2h states with higher spin quantum numbers, J^{π} = 1^{+}, 2^{-}, 3^{+}, ... to describe the full strength of the pionic correlation in the intermediate range (r > 0.5 fm). We apply the RCMF model to the ^{4}He nucleus as a pilot calculation for the study of medium and heavy nuclei. We study the behavior of energy convergence with the pionic quantum number, J^{π}, and find convergence around J^{π}_{max} = 6^{-}. We include further the effect of the short-range repulsion in terms of the unitary correlation operator method (UCOM) for the central part of the pion-exchange interaction. The energy contribution of about 50% of the net two-body interaction comes from the tensor part and 20% comes from the spin-spin central part of the pion-exchange interaction.}

  5. Pairing gaps from nuclear mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Maruhn, J.A.

    2000-01-01

    We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei. (orig.)

  6. Coalescing colony model: Mean-field, scaling, and geometry

    Science.gov (United States)

    Carra, Giulia; Mallick, Kirone; Barthelemy, Marc

    2017-12-01

    We analyze the coalescing model where a `primary' colony grows and randomly emits secondary colonies that spread and eventually coalesce with it. This model describes population proliferation in theoretical ecology, tumor growth, and is also of great interest for modeling urban sprawl. Assuming the primary colony to be always circular of radius r (t ) and the emission rate proportional to r (t) θ , where θ >0 , we derive the mean-field equations governing the dynamics of the primary colony, calculate the scaling exponents versus θ , and compare our results with numerical simulations. We then critically test the validity of the circular approximation for the colony shape and show that it is sound for a constant emission rate (θ =0 ). However, when the emission rate is proportional to the perimeter, the circular approximation breaks down and the roughness of the primary colony cannot be discarded, thus modifying the scaling exponents.

  7. Individual based and mean-field modeling of direct aggregation

    KAUST Repository

    Burger, Martin

    2013-10-01

    We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.

  8. Individual based and mean-field modeling of direct aggregation

    KAUST Repository

    Burger, Martin; Haskovec, Jan; Wolfram, Marie-Therese

    2013-01-01

    We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.

  9. Phase diagram of the mean field model of simplicial gravity

    International Nuclear Information System (INIS)

    Bialas, P.; Burda, Z.; Johnston, D.

    1999-01-01

    We discuss the phase diagram of the balls in boxes model, with a varying number of boxes. The model can be regarded as a mean-field model of simplicial gravity. We analyse in detail the case of weights of the form p(q) = q -β , which correspond to the measure term introduced in the simplicial quantum gravity simulations. The system has two phases: elongated (fluid) and crumpled. For β ε (2, ∞) the transition between these two phases is first-order, while for β ε (1, 2) it is continuous. The transition becomes softer when β approaches unity and eventually disappears at β = 1. We then generalise the discussion to an arbitrary set of weights. Finally, we show that if one introduces an additional kinematic bound on the average density of balls per box then a new condensed phase appears in the phase diagram. It bears some similarity to the crinkled phase of simplicial gravity discussed recently in models of gravity interacting with matter fields

  10. Multiagent model and mean field theory of complex auction dynamics

    Science.gov (United States)

    Chen, Qinghua; Huang, Zi-Gang; Wang, Yougui; Lai, Ying-Cheng

    2015-09-01

    Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena.

  11. Multiagent model and mean field theory of complex auction dynamics

    International Nuclear Information System (INIS)

    Chen, Qinghua; Wang, Yougui; Huang, Zi-Gang; Lai, Ying-Cheng

    2015-01-01

    Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena. (paper)

  12. A NEW SIMPLE DYNAMO MODEL FOR STELLAR ACTIVITY CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, N.; Hamba, F. [Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan); Schmitt, D. [Max-Planck Institut für Sonnensystemforschung, Göttingen D-37077 (Germany); Pipin, V., E-mail: nobyokoi@iis.u-tokyo.ac.jp [Institute of Solar–Terrestrial Physics, Russian Academy of Science, Irkutsk 664033 (Russian Federation)

    2016-06-20

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α –Ω-type models in two main ways. First, in addition to the usual helicity ( α ) and turbulent magnetic diffusivity ( β ) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solved simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.

  13. Lyapunov exponent and criticality in the Hamiltonian mean field model

    Science.gov (United States)

    Filho, L. H. Miranda; Amato, M. A.; Rocha Filho, T. M.

    2018-03-01

    We investigate the dependence of the largest Lyapunov exponent (LLE) of an N-particle self-gravitating ring model at equilibrium with respect to the number of particles and its dependence on energy. This model has a continuous phase-transition from a ferromagnetic to homogeneous phase, and we numerically confirm with large scale simulations the existence of a critical exponent associated to the LLE, although at variance with the theoretical estimate. The existence of strong chaos in the magnetized state evidenced by a positive Lyapunov exponent is explained by the coupling of individual particle oscillations to the diffusive motion of the center of mass of the system and also results in a change of the scaling of the LLE with the number of particles. We also discuss thoroughly for the model the validity and limits of the approximations made by a geometrical model for their analytic estimate.

  14. An update of Leighton's solar dynamo model

    Science.gov (United States)

    Cameron, R. H.; Schüssler, M.

    2017-03-01

    In 1969, Leighton developed a quasi-1D mathematical model of the solar dynamo, building upon the phenomenological scenario of Babcock published in 1961. Here we present a modification and extension of Leighton's model. Using the axisymmetric component (longitudinal average) of the magnetic field, we consider the radial field component at the solar surface and the radially integrated toroidal magnetic flux in the convection zone, both as functions of latitude. No assumptions are made with regard to the radial location of the toroidal flux. The model includes the effects of (I) turbulent diffusion at the surface and in the convection zone; (II) poleward meridional flow at the surface and an equatorward return flow affecting the toroidal flux; (III) latitudinal differential rotation and the near-surface layer of radial rotational shear; (iv) downward convective pumping of magnetic flux in the shear layer; and (v) flux emergence in the form of tilted bipolar magnetic regions treated as a source term for the radial surface field. While the parameters relevant for the transport of the surface field are taken from observations, the model condenses the unknown properties of magnetic field and flow in the convection zone into a few free parameters (turbulent diffusivity, effective return flow, amplitude of the source term, and a parameter describing the effective radial shear). Comparison with the results of 2D flux transport dynamo codes shows that the model captures the essential features of these simulations. We make use of the computational efficiency of the model to carry out an extended parameter study. We cover an extended domain of the 4D parameter space and identify the parameter ranges that provide solar-like solutions. Dipole parity is always preferred and solutions with periods around 22 yr and a correct phase difference between flux emergence in low latitudes and the strength of the polar fields are found for a return flow speed around 2 m s-1, turbulent

  15. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Sterner, G.; Hertz, J.

    2006-01-01

    We present a complete mean field theory for a balanced state of a simple model of an orientation hypercolumn, with a numerical procedure for solving the mean-field equations quantitatively. With our treatment, one can determine self-consistently both the firing rates and the firing correlations...

  16. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean-field models

    OpenAIRE

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-01-01

    Using various relativistic mean-field models, including the nonlinear ones with meson field self-interactions, those with density-dependent meson-nucleon couplings, and the point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compare the results with the constra...

  17. Mean field theory of nuclei and shell model. Present status and future outlook

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    2003-01-01

    Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave

  18. A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL

    International Nuclear Information System (INIS)

    Miesch, Mark S.; Dikpati, Mausumi

    2014-01-01

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans

  19. Constitutive modeling of two phase materials using the Mean Field method for homogenization

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.

    2010-01-01

    A Mean-Field homogenization framework for constitutive modeling of materials involving two distinct elastic-plastic phases is presented. With this approach it is possible to compute the macroscopic mechanical behavior of this type of materials based on the constitutive models of the constituent

  20. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex

    CERN Document Server

    Lerchner, A; Hertz, J; Ahmadi, M

    2004-01-01

    We present a complete mean field theory for a balanced state of a simple model of an orientation hypercolumn. The theory is complemented by a description of a numerical procedure for solving the mean-field equations quantitatively. With our treatment, we can determine self-consistently both the firing rates and the firing correlations, without being restricted to specific neuron models. Here, we solve the analytically derived mean-field equations numerically for integrate-and-fire neurons. Several known key properties of orientation selective cortical neurons emerge naturally from the description: Irregular firing with statistics close to -- but not restricted to -- Poisson statistics; an almost linear gain function (firing frequency as a function of stimulus contrast) of the neurons within the network; and a contrast-invariant tuning width of the neuronal firing. We find that the irregularity in firing depends sensitively on synaptic strengths. If Fano factors are bigger than 1, then they are so for all stim...

  1. Mean field theories and dual variation mathematical structures of the mesoscopic model

    CERN Document Server

    Suzuki, Takashi

    2015-01-01

    Mean field approximation has been adopted to describe macroscopic phenomena from microscopic overviews. It is still in progress; fluid mechanics, gauge theory, plasma physics, quantum chemistry, mathematical oncology, non-equilibirum thermodynamics.  spite of such a wide range of scientific areas that are concerned with the mean field theory, a unified study of its mathematical structure has not been discussed explicitly in the open literature.  The benefit of this point of view on nonlinear problems should have significant impact on future research, as will be seen from the underlying features of self-assembly or bottom-up self-organization which is to be illustrated in a unified way. The aim of this book is to formulate the variational and hierarchical aspects of the equations that arise in the mean field theory from macroscopic profiles to microscopic principles, from dynamics to equilibrium, and from biological models to models that arise from chemistry and physics.

  2. Noisy mean field game model for malware propagation in opportunistic networks

    KAUST Repository

    Tembine, Hamidou

    2012-01-01

    In this paper we present analytical mean field techniques that can be used to better understand the behavior of malware propagation in opportunistic large networks. We develop a modeling methodology based on stochastic mean field optimal control that is able to capture many aspects of the problem, especially the impact of the control and heterogeneity of the system on the spreading characteristics of malware. The stochastic large process characterizing the evolution of the total number of infected nodes is examined with a noisy mean field limit and compared to a deterministic one. The stochastic nature of the wireless environment make stochastic approaches more realistic for such types of networks. By introducing control strategies, we show that the fraction of infected nodes can be maintained below some threshold. In contrast to most of the existing results on mean field propagation models which focus on deterministic equations, we show that the mean field limit is stochastic if the second moment of the number of object transitions per time slot is unbounded with the size of the system. This allows us to compare one path of the fraction of infected nodes with the stochastic trajectory of its mean field limit. In order to take into account the heterogeneity of opportunistic networks, the analysis is extended to multiple types of nodes. Our numerical results show that the heterogeneity can help to stabilize the system. We verify the results through simulation showing how to obtain useful approximations in the case of very large systems. © 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering.

  3. Should the coupling constants be mass dependent in the relativistic mean field models

    International Nuclear Information System (INIS)

    Levai, P.; Lukacs, B.

    1986-05-01

    Mass dependent coupling constants are proposed for baryonic resonances in the relativistic mean field model, according to the mass splitting of the SU-6 multiplet. With this choice the negative effective masses are avoided and the system remains nucleon dominated with moderate antidelta abundance. (author)

  4. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R.

    2010-01-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed α-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  5. Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan; Chen Liewen

    2007-01-01

    We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supranormal densities and of asymmetric matter at subsaturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in 208 Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ meson required by the partial restoration of chiral symmetry

  6. Skyrme-Hartree-Fock in the realm of nuclear mean field models

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Reiss, C.; Maruhn, J.; Bender, M.; Buervenich, T.; Greiner, W.

    2000-01-01

    We discuss and compare two brands of nuclear mean field models, the Skyrme-Hartree-Fock scheme (SHF) and the relativistic mean field model (RMF). Similarities and differences are worked out on a formal basis and with respect to the models performance in describing nuclear data. The bulk observables of stable nuclei are all described very well. Differences come up when extrapolating to exotic nuclei. The typically larger asymmetry energy in RMF leads to a larger neutron skin. Superheavy nuclei are found to be very sensitive on the single particle levels particularly on the spin orbit splitting. Ground state correlations from collective surface vibrations can have a significant effect on difference observables, as two-nucleon separation energy and two-nucleon shell gap. (author)

  7. MAGNETIC QUENCHING OF TURBULENT DIFFUSIVITY: RECONCILING MIXING-LENGTH THEORY ESTIMATES WITH KINEMATIC DYNAMO MODELS OF THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    2011-01-01

    The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double-step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory, which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work, we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main features of this solution can be reproduced by a dynamo simulation using a prescribed (kinematic) diffusivity profile that is based on the spatiotemporal geometric average of the dynamically quenched diffusivity. This bridges the gap between dynamically quenched and kinematic dynamo models, supporting their usage as viable tools for understanding the solar magnetic cycle.

  8. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models

    Science.gov (United States)

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-11-01

    Using various relativistic mean-field models, including nonlinear ones with meson field self-interactions, models with density-dependent meson-nucleon couplings, and point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compared the results with the constraints recently extracted from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions as well as from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes. Among the 23 parameter sets in the relativistic mean-field model that are commonly used for nuclear structure studies, only a few are found to give symmetry energies that are consistent with the empirical constraints. We have also studied the nuclear symmetry potential and the isospin splitting of the nucleon effective mass in isospin asymmetric nuclear matter. We find that both the momentum dependence of the nuclear symmetry potential at fixed baryon density and the isospin splitting of the nucleon effective mass in neutron-rich nuclear matter depend not only on the nuclear interactions but also on the definition of the nucleon optical potential.

  9. Neutron fraction and neutrino mean free path predictions in relativistic mean field models

    International Nuclear Information System (INIS)

    Hutauruk, P.T.P.; Williams, C.K.; Sulaksono, A.; Mart, T.

    2004-01-01

    The equation of state (EOS) of dense matter and neutrino mean free path (NMFP) in a neutron star have been studied by using relativistic mean field models motivated by effective field theory. It is found that the models predict too large proton fractions, although one of the models (G2) predicts an acceptable EOS. This is caused by the isovector terms. Except G2, the other two models predict anomalous NMFP's. In order to minimize the anomaly, besides an acceptable EOS, a large M* is favorable. A model with large M* retains the regularity in the NMFP even for a small neutron fraction

  10. Higgs and confinement phases in the fundamental SU(2) Higgs model: Mean field analysis

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1985-01-01

    The phase diagram of the four-dimensional SU(2) gauge-Higgs model with Higgs field in the fundamental representation is derived by mean field techniques. When the Higgs field is allowed to fluctuate in. Magnitude, the analytic connection between Higgs and confinement phases breaks down for sufficiently small values of the quark Higgs coupling, indicating that the Higgs and confinement phases for these couplings are strictly distinct phases. (orig.)

  11. Statistical thermodynamics and mean-field theory for the alloy under irradiation model

    International Nuclear Information System (INIS)

    Kamyshendo, V.

    1993-01-01

    A generalization of statistical thermodynamics to the open systems case, is discussed, using as an example the alloy-under-irradiation model. The statistical properties of stationary states are described with the use of generalized thermodynamic potentials and 'quasi-interactions' determined from the master equation for micro-configuration probabilities. Methods for resolving this equation are illustrated by the mean-field type calculations of correlators, thermodynamic potentials and phase diagrams for disordered alloys

  12. A new nonlinear mean-field model of neutron star matter

    CERN Document Server

    Miyazaki, K

    2005-01-01

    A new relativistic mean-field model of neutron star matter is developed. It is a generalization of the Zimanyi-Moszkowski (ZM) model based on the constituent quark picture of baryons. The renormalized meson-hyperon coupling constants in medium are uniquely determined in contrast to the naive extention of ZM model and so the application of the model to high-density neutron star (NS) matter is possible. Our results of the particle composition and the mass-radius relation of NSs agree well with those obtained from the phenomenologically-determined realistic equation-of-state.

  13. Giant halos in medium nuclei within modified relativistic mean field (MRMF) model

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, A. M., E-mail: alpi.mahisha@gmail.com; Sulaksono, A. [Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Sumaryada, T. [Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia)

    2016-04-19

    The large number of neutrons in a region beyond a closed shell core indicates the presence of giant halos in nuclei. In this work, by using the Rotival method within a modified relativistic mean field (MRMF) model, we predict theoretically the formation of giant halos in Cr and Zr isotopes. The MRMF model is a modification of standard RMF model augmented with isoscalar and isovector tensor terms, isovector-isoscalar vector cross coupling term and electromagnetic exchange term for Coulomb interaction in local density approximation (LDA).

  14. Physical conditions for Jupiter-like dynamo models

    Science.gov (United States)

    Duarte, Lúcia D. V.; Wicht, Johannes; Gastine, Thomas

    2018-01-01

    The Juno mission will measure Jupiter's magnetic field with unprecedented precision and provide a wealth of additional data that will allow us to constrain the planet's interior structure and dynamics. Here we analyse 66 different numerical simulations in order to explore the sensitivity of the dynamo-generated magnetic field to the planets interior properties. Jupiter field models based on pre-Juno data and up-to-date interior models based on ab initio simulations serve as benchmarks. Our results suggest that Jupiter-like magnetic fields can be found for a number of different models. These complement the steep density gradients in the outer part of the simulated shell with an electrical conductivity profile that mimics the low conductivity in the molecular hydrogen layer and thus renders the dynamo action in this region largely unimportant. We find that whether we assume an ideal gas or use the more realistic interior model based on ab initio simulations makes no difference. However, two other factors are important. A low Rayleigh number leads to a too strong axial dipole contribution while the axial dipole dominance is lost altogether when the convective driving is too strong. The required intermediate range that yields Jupiter-like magnetic fields depends on the other system properties. The second important factor is the convective magnetic Reynolds number radial profile Rmc(r), basically a product of the non-axisymmetric flow velocity and electrical conductivity. We find that the depth where Rmc exceeds about 50 is a good proxy for the top of the dynamo region. When the dynamo region sits too deep, the axial dipole is once more too dominant due to geometric reasons. Extrapolating our results to Jupiter and the result suggests that the Jovian dynamo extends to 95% of the planetary radius. The zonal flow system in our simulations is dominated by an equatorial jet which remains largely confined to the molecular layer. Where the jet reaches down to higher

  15. Statistical theory of dynamo

    Science.gov (United States)

    Kim, E.; Newton, A. P.

    2012-04-01

    One major problem in dynamo theory is the multi-scale nature of the MHD turbulence, which requires statistical theory in terms of probability distribution functions. In this contribution, we present the statistical theory of magnetic fields in a simplified mean field α-Ω dynamo model by varying the statistical property of alpha, including marginal stability and intermittency, and then utilize observational data of solar activity to fine-tune the mean field dynamo model. Specifically, we first present a comprehensive investigation into the effect of the stochastic parameters in a simplified α-Ω dynamo model. Through considering the manifold of marginal stability (the region of parameter space where the mean growth rate is zero), we show that stochastic fluctuations are conductive to dynamo. Furthermore, by considering the cases of fluctuating alpha that are periodic and Gaussian coloured random noise with identical characteristic time-scales and fluctuating amplitudes, we show that the transition to dynamo is significantly facilitated for stochastic alpha with random noise. Furthermore, we show that probability density functions (PDFs) of the growth-rate, magnetic field and magnetic energy can provide a wealth of useful information regarding the dynamo behaviour/intermittency. Finally, the precise statistical property of the dynamo such as temporal correlation and fluctuating amplitude is found to be dependent on the distribution the fluctuations of stochastic parameters. We then use observations of solar activity to constrain parameters relating to the effect in stochastic α-Ω nonlinear dynamo models. This is achieved through performing a comprehensive statistical comparison by computing PDFs of solar activity from observations and from our simulation of mean field dynamo model. The observational data that are used are the time history of solar activity inferred for C14 data in the past 11000 years on a long time scale and direct observations of the sun spot

  16. A dynamic mean-field glass model with reversible mode coupling and a trivial Hamiltonian

    International Nuclear Information System (INIS)

    Kawasaki, Kyozi; Kim, Bongsoo

    2002-01-01

    Often the current mode coupling theory (MCT) of glass transitions is compared with mean field theories. We explore this possible correspondence. After showing a simple-minded derivation of MCT with some difficulties we give a concise account of our toy model developed to gain more insight into MCT. We then reduce this toy model by adiabatically eliminating rapidly varying velocity-like variables to obtain a Fokker-Planck equation for the slowly varying density-like variables where the diffusion matrix can be singular. This gives room for non-ergodic stationary solutions of the above equation. (author)

  17. A Fractional Micro-Macro Model for Crowds of Pedestrians Based on Fractional Mean Field Games

    Institute of Scientific and Technical Information of China (English)

    Kecai Cao; Yang Quan Chen; Daniel Stuart

    2016-01-01

    Modeling a crowd of pedestrians has been considered in this paper from different aspects. Based on fractional microscopic model that may be much more close to reality, a fractional macroscopic model has been proposed using conservation law of mass. Then in order to characterize the competitive and cooperative interactions among pedestrians, fractional mean field games are utilized in the modeling problem when the number of pedestrians goes to infinity and fractional dynamic model composed of fractional backward and fractional forward equations are constructed in macro scale. Fractional micromacro model for crowds of pedestrians are obtained in the end.Simulation results are also included to illustrate the proposed fractional microscopic model and fractional macroscopic model,respectively.

  18. Inverse problem for the mean-field monomer-dimer model with attractive interaction

    International Nuclear Information System (INIS)

    Contucci, Pierluigi; Luzi, Rachele; Vernia, Cecilia

    2017-01-01

    The inverse problem method is tested for a class of monomer-dimer statistical mechanics models that contain also an attractive potential and display a mean-field critical point at a boundary of a coexistence line. The inversion is obtained by analytically identifying the parameters in terms of the correlation functions and via the maximum-likelihood method. The precision is tested in the whole phase space and, when close to the coexistence line, the algorithm is used together with a clustering method to take care of the underlying possible ambiguity of the inversion. (paper)

  19. High-conductance states in a mean-field cortical network model

    CERN Document Server

    Lerchner, A; Hertz, J

    2004-01-01

    Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1 due to the tendency of spikes being clustered into bursts. We show that this behavior emerges naturally in a balanced cortical network model with random connectivity and conductance-based synapses. We employ mean field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high conductance states of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1.

  20. Solution of the hyperon puzzle within a relativistic mean-field model

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, K.A. [National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Kolomeitsev, E.E., E-mail: E.Kolomeitsev@gsi.de [Matej Bel University, SK-97401 Banska Bystrica (Slovakia); Voskresensky, D.N. [National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation)

    2015-09-02

    The equation of state of cold baryonic matter is studied within a relativistic mean-field model with hadron masses and coupling constants depending on the scalar field. All hadron masses undergo a universal scaling, whereas the couplings are scaled differently. The appearance of hyperons in dense neutron star interiors is accounted for, however the equation of state remains sufficiently stiff if the reduction of the ϕ meson mass is included. Our equation of state matches well the constraints known from analyses of the astrophysical data and particle production in heavy-ion collisions.

  1. Solution of the hyperon puzzle within a relativistic mean-field model

    Directory of Open Access Journals (Sweden)

    K.A. Maslov

    2015-09-01

    Full Text Available The equation of state of cold baryonic matter is studied within a relativistic mean-field model with hadron masses and coupling constants depending on the scalar field. All hadron masses undergo a universal scaling, whereas the couplings are scaled differently. The appearance of hyperons in dense neutron star interiors is accounted for, however the equation of state remains sufficiently stiff if the reduction of the ϕ meson mass is included. Our equation of state matches well the constraints known from analyses of the astrophysical data and particle production in heavy-ion collisions.

  2. New mean-field calculations for the phase diagram of the Annni model

    International Nuclear Information System (INIS)

    Tome, T.; Salinas, S.R.A.

    1987-01-01

    A variational procedure, with the inclusion of some spin fluctuations, to go beyond the standard layer-by-layer mean-field calculations for the T-p phase diagram of the ANNNI model is used. The high temperature region is studied analytically. The transition lines meet smoothly at the Lifshitz point, which is an inflection point of the second-order paramagnetic border. At low temperature, these numerical resuls confirm the stability of the main commensurate phases and show a quantitative trend towards the preductions f the Monte Carlo analyses. (author) [pt

  3. A mean field study of the quasi-one-dimensional antiferromagnetic anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and the dimer anisotropies on the ground state energy and the energy gap of the spin-1/2 quasi-one-dimensional antiferromagnetic Heisenberg model is investigated using a mean field theory. The dependence of the magnetization and the effective hopping parameters on the anisotropy α xy (=J xy perpendicular /J xy parallel ) are presented for several values of the chain anisotropy. However, such a system exhibits a transition from antiferromagnetic ordered to disordered phases for arbitrary chain anisotropy and dimer anisotropy. (author). 22 refs, 11 figs

  4. Mean-field thalamocortical modeling of longitudinal EEG acquired during intensive meditation training.

    Science.gov (United States)

    Saggar, Manish; Zanesco, Anthony P; King, Brandon G; Bridwell, David A; MacLean, Katherine A; Aichele, Stephen R; Jacobs, Tonya L; Wallace, B Alan; Saron, Clifford D; Miikkulainen, Risto

    2015-07-01

    Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and

  5. Critical behavior of mean-field hadronic models for warm nuclear matter

    International Nuclear Information System (INIS)

    Silva, J.B.; Lourenco, O.; Delfino, A.; Martins, J.S. Sa; Dutra, M.

    2008-01-01

    We study a set of hadronic mean-field models in the liquid-gas phase transition regime and calculate their critical parameters. The discussion is unified by scaling the coexistence curves in terms of these critical parameters. We study the models close to spinodal points, where they also present critical behavior. Inspired by signals of criticality shown in fragmentation experiments, we analyze two different scenarios in which such behavior would be expected: (i) the stability limits of a metastable system with vanishing external pressure; and (ii) the critical point of a gas-liquid phase equilibrium system for which the Maxwell construction applies. Spinodal and coexistence curves show the regions in which model dependence arises. Unexpectedly, this model dependence does not manifest if one calculates the thermal incompressibility of the models

  6. Economic dynamics with financial fragility and mean-field interaction: A model

    Science.gov (United States)

    Di Guilmi, C.; Gallegati, M.; Landini, S.

    2008-06-01

    Following Aoki’s statistical mechanics methodology [Masanao Aoki, New Approaches to Macroeconomic Modeling, Cambridge University Press, 1996; Masanao Aoki, Modeling Aggregate Behaviour and Fluctuations in Economics, Cambridge University Press, 2002; Masanao Aoki, and Hiroshi Yoshikawa, Reconstructing Macroeconomics, Cambridge University Press, 2006], we provide some insights into the well-known works of [Bruce Greenwald, Joseph Stiglitz, Macroeconomic models with equity and credit rationing, in: R. Hubbard (Ed.), Information, Capital Markets and Investment, Chicago University Press, Chicago, 1990; Bruce Greenwald, Joseph Stiglitz, Financial markets imperfections and business cycles, Quarterly journal of Economics (1993)]. Specifically, we reach analytically a closed form solution of their models overcoming the aggregation problem. The key idea is to represent the economy as an evolving complex system, composed by heterogeneous interacting agents, that can be partitioned into a space of macroscopic states. This meso level of aggregation permits to adopt mean-field interaction modeling and master equation techniques.

  7. On a mean field game optimal control approach modeling fast exit scenarios in human crowds

    KAUST Repository

    Burger, Martin; Di Francesco, Marco; Markowich, Peter A.; Wolfram, Marie Therese

    2013-01-01

    The understanding of fast exit and evacuation situations in crowd motion research has received a lot of scientific interest in the last decades. Security issues in larger facilities, like shopping malls, sports centers, or festivals necessitate a better understanding of the major driving forces in crowd dynamics. In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. The model is formulated in the framework of mean field games and based on a parabolic optimal control problem. We consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position and velocity, the overall density of people, and the time to exit. This microscopic setup leads in a mean-field formulation to a nonlinear macroscopic optimal control problem, which raises challenging questions for the analysis and numerical simulations.We discuss different aspects of the mathematical modeling and illustrate them with various computational results. ©2013 IEEE.

  8. On a mean field game optimal control approach modeling fast exit scenarios in human crowds

    KAUST Repository

    Burger, Martin

    2013-12-01

    The understanding of fast exit and evacuation situations in crowd motion research has received a lot of scientific interest in the last decades. Security issues in larger facilities, like shopping malls, sports centers, or festivals necessitate a better understanding of the major driving forces in crowd dynamics. In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. The model is formulated in the framework of mean field games and based on a parabolic optimal control problem. We consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position and velocity, the overall density of people, and the time to exit. This microscopic setup leads in a mean-field formulation to a nonlinear macroscopic optimal control problem, which raises challenging questions for the analysis and numerical simulations.We discuss different aspects of the mathematical modeling and illustrate them with various computational results. ©2013 IEEE.

  9. Antikaon condensation in neutron stars by a new nonlinear mean-field model

    CERN Document Server

    Miyazaki, K

    2005-01-01

    We have investigated both the K^- and \\bar{K}^0 condensations in beta-equilibrated neutron star (NS) matter using the relativistic mean-field model with the renormalized meson-baryon coupling constants. Adopting the antikaon optical potential of -120MeV, our model predicts the K^- condensation as the second-order phase transition inside the neutron star of maximum mass, while the deeper potential than -160MeV is ruled out. This is in contrast to the result of the density-dependent hadron field theory. Our model also predicts remarkable softening of the equation of state by the \\bar{K}^0 condensation at high densities. Although this is contrasted with the result of the nonlinear Walecka model, only the K^- condensation can be formed in NSs.

  10. Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully coordinated exist at a high rate in nanomaterials with their impact overlooked. A quantum theory was proposed to calculate electronic structure of nanomaterials by incorporating bond order-length-strength (BOLS correlation to mean-field Hubbard model, i.e., BOLS-HM. Consistency between the BOLS-HM calculation and density functional theory (DFT calculation on 2D materials verified that (i bond contractions and potential well depression occur at the edge of graphene, phosphorene, and antimonene nanoribbons; (ii the physical origin of the band gap opening of graphene, phosphorene, and antimonene nanoribbons lays in the enhancement of edge potentials and hopping integrals due to the shorter and stronger bonds between undercoordinated atoms; (iii the band gap of 2D material nanoribbons expand as the width decreases due to the increasing under-coordination effects of edges which modulates the conductive behaviors; and (iv non-bond electrons at the edges and atomic vacancies of 2D material accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP with a local magnetic moment.

  11. Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for probabilistic modeling

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop a generalization of the Thouless-Anderson-Palmer (TAP) mean-field approach of disorder physics. which makes the method applicable to the computation of approximate averages in probabilistic models for real data. In contrast to the conventional TAP approach, where the knowledge...... of the distribution of couplings between the random variables is required, our method adapts to the concrete set of couplings. We show the significance of the approach in two ways: Our approach reproduces replica symmetric results for a wide class of toy models (assuming a nonglassy phase) with given disorder...... distributions in the thermodynamic limit. On the other hand, simulations on a real data model demonstrate that the method achieves more accurate predictions as compared to conventional TAP approaches....

  12. Quantum correlated cluster mean-field theory applied to the transverse Ising model.

    Science.gov (United States)

    Zimmer, F M; Schmidt, M; Maziero, Jonas

    2016-06-01

    Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.

  13. Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth

    KAUST Repository

    Burger, Martin

    2016-11-18

    In this paper we study balanced growth path solutions of a Boltzmann mean field game model proposed by Lucas and Moll [15] to model knowledge growth in an economy. Agents can either increase their knowledge level by exchanging ideas in learning events or by producing goods with the knowledge they already have. The existence of balanced growth path solutions implies exponential growth of the overall production in time. We prove existence of balanced growth path solutions if the initial distribution of individuals with respect to their knowledge level satisfies a Pareto-tail condition. Furthermore we give first insights into the existence of such solutions if in addition to production and knowledge exchange the knowledge level evolves by geometric Brownian motion.

  14. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    Science.gov (United States)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical

  15. High-conductance states in a mean-field cortical network model

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Ahmadi, Mandana; Hertz, John

    2004-01-01

    cortical network model with random connectivity and conductance-based synapses. We employ mean-field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high-conductance states......Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1, indicating a tendency toward spikes being clustered. We show that this behavior emerges naturally in a balanced...... of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1. (C) 2004 Elsevier B.V. All rights reserved....

  16. Simple Theory for the Dynamics of Mean-Field-Like Models of Glass-Forming Fluids

    Science.gov (United States)

    Szamel, Grzegorz

    2017-10-01

    We propose a simple theory for the dynamics of model glass-forming fluids, which should be solvable using a mean-field-like approach. The theory is based on transparent physical assumptions, which can be tested in computer simulations. The theory predicts an ergodicity-breaking transition that is identical to the so-called dynamic transition predicted within the replica approach. Thus, it can provide the missing dynamic component of the random first order transition framework. In the large-dimensional limit the theory reproduces the result of a recent exact calculation of Maimbourg et al. [Phys. Rev. Lett. 116, 015902 (2016), 10.1103/PhysRevLett.116.015902]. Our approach provides an alternative, physically motivated derivation of this result.

  17. Small traveling clusters in attractive and repulsive Hamiltonian mean-field models.

    Science.gov (United States)

    Barré, Julien; Yamaguchi, Yoshiyuki Y

    2009-03-01

    Long-lasting small traveling clusters are studied in the Hamiltonian mean-field model by comparing between attractive and repulsive interactions. Nonlinear Landau damping theory predicts that a Gaussian momentum distribution on a spatially homogeneous background permits the existence of traveling clusters in the repulsive case, as in plasma systems, but not in the attractive case. Nevertheless, extending the analysis to a two-parameter family of momentum distributions of Fermi-Dirac type, we theoretically predict the existence of traveling clusters in the attractive case; these findings are confirmed by direct N -body numerical simulations. The parameter region with the traveling clusters is much reduced in the attractive case with respect to the repulsive case.

  18. Mean-Field-Game Model for Botnet Defense in Cyber-Security

    Energy Technology Data Exchange (ETDEWEB)

    Kolokoltsov, V. N., E-mail: v.kolokoltsov@warwick.ac.uk [University of Warwick, Department of Statistics (United Kingdom); Bensoussan, A. [The University of Texas at Dallas, School of Management (United States)

    2016-12-15

    We initiate the analysis of the response of computer owners to various offers of defence systems against a cyber-hacker (for instance, a botnet attack), as a stochastic game of a large number of interacting agents. We introduce a simple mean-field game that models their behavior. It takes into account both the random process of the propagation of the infection (controlled by the botner herder) and the decision making process of customers. Its stationary version turns out to be exactly solvable (but not at all trivial) under an additional natural assumption that the execution time of the decisions of the customers (say, switch on or out the defence system) is much faster that the infection rates.

  19. Mean-Field-Game Model for Botnet Defense in Cyber-Security

    International Nuclear Information System (INIS)

    Kolokoltsov, V. N.; Bensoussan, A.

    2016-01-01

    We initiate the analysis of the response of computer owners to various offers of defence systems against a cyber-hacker (for instance, a botnet attack), as a stochastic game of a large number of interacting agents. We introduce a simple mean-field game that models their behavior. It takes into account both the random process of the propagation of the infection (controlled by the botner herder) and the decision making process of customers. Its stationary version turns out to be exactly solvable (but not at all trivial) under an additional natural assumption that the execution time of the decisions of the customers (say, switch on or out the defence system) is much faster that the infection rates.

  20. Continuous spin mean-field models : Limiting kernels and Gibbs properties of local transforms

    NARCIS (Netherlands)

    Kulske, Christof; Opoku, Alex A.

    2008-01-01

    We extend the notion of Gibbsianness for mean-field systems to the setup of general (possibly continuous) local state spaces. We investigate the Gibbs properties of systems arising from an initial mean-field Gibbs measure by application of given local transition kernels. This generalizes previous

  1. Dispersive versus constant-geometry models of the neutron-208Pb mean field

    International Nuclear Information System (INIS)

    Mahaux, C.; Sartor, R.

    1990-01-01

    Phenomenological optical-model analyses of differential elastic scattering cross sections of neutrons by 208 Pb indicate that the radius of the real part of the potential decreases with increasing energy in the domain 4< E<40 MeV. On the other hand, the experimental total cross section is compatible with a real potential whose radial shape is energy independent. In order to clarify this situation, we compare a 'constant geometry' model whose real part has an energy-independent radial shape with a 'dispersive model' whose real part has an energy-dependent radial shape calculated from the dispersion relation which connects the real and imaginary parts of the field. The following three main features are considered. (i) The junction of the optical-model potential with the shell-model potential at negative energy. (ii) The agreement between the calculated total and differential cross sections and their experimental values. (iii) The extent to which the real part of the optical-model potential can be accurately determined by analyzing the total cross section only. It is concluded that the presently available experimental data support the existence of an energy dependence of the radial shape of the real potential, in keeping with the dispersion relation. A new parametrization of a 'dispersive' mean field is also presented. It does not involve more parameters than the previously published one but takes better account of the physical properties of the spectral functions; it is shown to improve the agreement between predicted and experimental scattering data. (orig.)

  2. Predictive power of theoretical modelling of the nuclear mean field: examples of improving predictive capacities

    Science.gov (United States)

    Dedes, I.; Dudek, J.

    2018-03-01

    We examine the effects of the parametric correlations on the predictive capacities of the theoretical modelling keeping in mind the nuclear structure applications. The main purpose of this work is to illustrate the method of establishing the presence and determining the form of parametric correlations within a model as well as an algorithm of elimination by substitution (see text) of parametric correlations. We examine the effects of the elimination of the parametric correlations on the stabilisation of the model predictions further and further away from the fitting zone. It follows that the choice of the physics case and the selection of the associated model are of secondary importance in this case. Under these circumstances we give priority to the relative simplicity of the underlying mathematical algorithm, provided the model is realistic. Following such criteria, we focus specifically on an important but relatively simple case of doubly magic spherical nuclei. To profit from the algorithmic simplicity we chose working with the phenomenological spherically symmetric Woods–Saxon mean-field. We employ two variants of the underlying Hamiltonian, the traditional one involving both the central and the spin orbit potential in the Woods–Saxon form and the more advanced version with the self-consistent density-dependent spin–orbit interaction. We compare the effects of eliminating of various types of correlations and discuss the improvement of the quality of predictions (‘predictive power’) under realistic parameter adjustment conditions.

  3. Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy*

    Directory of Open Access Journals (Sweden)

    Kostyantyn Kechedzhi

    2016-05-01

    Full Text Available Real-life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an open-system quantum annealing algorithm optimized for such a realistic analog quantum device which takes advantage of noise-induced thermalization and relies on incoherent quantum tunneling at finite temperature. We theoretically analyze the performance of this algorithm considering a p-spin model that allows for a mean-field quasiclassical solution and, at the same time, demonstrates the first-order phase transition and exponential degeneracy of states, typical characteristics of spin glasses. We demonstrate that finite-temperature effects introduced by the noise are particularly important for the dynamics in the presence of the exponential degeneracy of metastable states. We determine the optimal regime of the open-system quantum annealing algorithm for this model and find that it can outperform simulated annealing in a range of parameters. Large-scale multiqubit quantum tunneling is instrumental for the quantum speedup in this model, which is possible because of the unusual nonmonotonous temperature dependence of the quantum-tunneling action in this model, where the most efficient transition rate corresponds to zero temperature. This model calculation is the first analytically tractable example where open-system quantum annealing algorithm outperforms simulated annealing, which can, in principle, be realized using an analog quantum computer.

  4. A simple stochastic model for dipole moment fluctuations in numerical dynamo simulations

    Directory of Open Access Journals (Sweden)

    Domenico G. eMeduri

    2016-04-01

    Full Text Available Earth's axial dipole field changes in a complex fashion on many differenttime scales ranging from less than a year to tens of million years.Documenting, analysing, and replicating this intricate signalis a challenge for data acquisition, theoretical interpretation,and dynamo modelling alike. Here we explore whether axial dipole variationscan be described by the superposition of a slow deterministic driftand fast stochastic fluctuations, i.e. by a Langevin-type system.The drift term describes the time averaged behaviour of the axial dipole variations,whereas the stochastic part mimics complex flow interactions over convective time scales.The statistical behaviour of the system is described by a Fokker-Planck equation whichallows useful predictions, including the average rates of dipole reversals and excursions.We analyse several numerical dynamo simulations, most of which havebeen integrated particularly long in time, and also the palaeomagneticmodel PADM2M which covers the past 2 Myr.The results show that the Langevin description provides a viable statistical modelof the axial dipole variations on time scales longer than about 1 kyr.For example, the axial dipole probability distribution and the average reversalrate are successfully predicted.The exception is PADM2M where the stochastic model reversal rate seems too low.The dependence of the drift on the axial dipolemoment reveals the nonlinear interactions that establish thedynamo balance. A separate analysis of inductive and diffusive magnetic effectsin three dynamo simulations suggests that the classical quadraticquenching of induction predicted by mean-field theory seems at work.

  5. Higgs-Yukawa model with higher dimension operators via extended mean field theory

    CERN Document Server

    Akerlund, Oscar

    2016-01-01

    Using Extended Mean Field Theory (EMFT) on the lattice, we study properties of the Higgs-Yukawa model as an approximation of the Standard Model Higgs sector, and the effect of higher dimension operators. We note that the discussion of vacuum stability is completely modified in the presence of a $\\phi^6$ term, and that the Higgs mass no longer appears fine tuned. We also study the finite temperature transition. Without higher dimension operators the transition is found to be second order (crossover with gauge fields) for the experimental value of the Higgs mass $M_h=125$ GeV. By taking a $\\phi^6$ interaction in the Higgs potential as a proxy for a UV completion of the Standard Model, the transition becomes stronger and turns first order if the scale of new physics, i.e. the mass of the lightest mediator particle, is around $1.5$ TeV. This implies that electroweak baryogenesis may be viable in models which introduce new particles around that scale.

  6. Noisy mean field game model for malware propagation in opportunistic networks

    KAUST Repository

    Tembine, Hamidou; Vilanova, Pedro; Debbah, Mé roú ane

    2012-01-01

    nodes is examined with a noisy mean field limit and compared to a deterministic one. The stochastic nature of the wireless environment make stochastic approaches more realistic for such types of networks. By introducing control strategies, we show

  7. Mean-field modeling approach for understanding epidemic dynamics in interconnected networks

    International Nuclear Information System (INIS)

    Zhu, Guanghu; Fu, Xinchu; Tang, Qinggan; Li, Kezan

    2015-01-01

    Modern systems (e.g., social, communicant, biological networks) are increasingly interconnected each other formed as ‘networks of networks’. Such complex systems usually possess inconsistent topologies and permit agents distributed in different subnetworks to interact directly/indirectly. Corresponding dynamics phenomena, such as the transmission of information, power, computer virus and disease, would exhibit complicated and heterogeneous tempo-spatial patterns. In this paper, we focus on the scenario of epidemic spreading in interconnected networks. We intend to provide a typical mean-field modeling framework to describe the time-evolution dynamics, and offer some mathematical skills to study the spreading threshold and the global stability of the model. Integrating the research with numerical analysis, we are able to quantify the effects of networks structure and epidemiology parameters on the transmission dynamics. Interestingly, we find that the diffusion transition in the whole network is governed by a unique threshold, which mainly depends on the most heterogenous connection patterns of network substructures. Further, the dynamics is highly sensitive to the critical values of cross infectivity with switchable phases.

  8. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  9. Cluster radioactive decay within the preformed cluster model using relativistic mean-field theory densities

    International Nuclear Information System (INIS)

    Singh, BirBikram; Patra, S. K.; Gupta, Raj K.

    2010-01-01

    We have studied the (ground-state) cluster radioactive decays within the preformed cluster model (PCM) of Gupta and collaborators [R. K. Gupta, in Proceedings of the 5th International Conference on Nuclear Reaction Mechanisms, Varenna, edited by E. Gadioli (Ricerca Scientifica ed Educazione Permanente, Milano, 1988), p. 416; S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989)]. The relativistic mean-field (RMF) theory is used to obtain the nuclear matter densities for the double folding procedure used to construct the cluster-daughter potential with M3Y nucleon-nucleon interaction including exchange effects. Following the PCM approach, we have deduced empirically the preformation probability P 0 emp from the experimental data on both the α- and exotic cluster-decays, specifically of parents in the trans-lead region having doubly magic 208 Pb or its neighboring nuclei as daughters. Interestingly, the RMF-densities-based nuclear potential supports the concept of preformation for both the α and heavier clusters in radioactive nuclei. P 0 α(emp) for α decays is almost constant (∼10 -2 -10 -3 ) for all the parent nuclei considered here, and P 0 c(emp) for cluster decays of the same parents decrease with the size of clusters emitted from different parents. The results obtained for P 0 c(emp) are reasonable and are within two to three orders of magnitude of the well-accepted phenomenological model of Blendowske-Walliser for light clusters.

  10. A two-site mean field model of discontinuous dynamic recrystallization

    International Nuclear Information System (INIS)

    Bernard, P.; Bag, S.; Huang, K.; Loge, R.E.

    2011-01-01

    Highlights: → Discontinuous dynamic recrystallization (DDRX) is modelled at the grain scale. → The two-site mean field approach allows introducing topological information. → DDRX kinetics, flow stress curves and recrystallized grain size are well predicted. → Temperature, strain rate and initial grain size effects are successfully described. → Grain size dependence naturally emerges from the model and agrees with experiment. - Abstract: The paper describes a new model of discontinuous dynamic recrystallization (DDRX) which can operate in constant or variable thermomechanical conditions. The model considers the elementary physical phenomena at the grain scale such as strain hardening, recovery, grain boundary migration, and nucleation. The microstructure is represented through a set of representative grains defined by their size and dislocation density. It is linked to a constitutive law giving access to the polycrystal flow stress. Interaction between representative grains and the surrounding material is idealized using a two-site approach whereby two homogeneous equivalent media with different dislocation densities are considered. Topological information is incorporated into the model by prescribing the relative weight of these two equivalent media as a function of their volume fractions. This procedure allows accounting for the well-known necklace structures. The model is applied to the prediction of DDRX in 304 L stainless steel, with parameters identified using an inverse methodology based on a genetic algorithm. Results show good agreement with experimental data at different temperatures and strain rates, predicting recrystallization kinetics, recrystallized grain size and stress-strain curve. Parameters identified with one initial grain size lead to accurate results for another initial grain size without introducing any additional parameter.

  11. Analysis of a Stochastic Chemical System Close to a SNIPER Bifurcation of Its Mean-Field Model

    KAUST Repository

    Erban, Radek; Chapman, S. Jonathan; Kevrekidis, Ioannis G.; Vejchodský , Tomá š

    2009-01-01

    A framework for the analysis of stochastic models of chemical systems for which the deterministic mean-field description is undergoing a saddle-node infinite period (SNIPER) bifurcation is presented. Such a bifurcation occurs, for example

  12. General model of phospholipid bilayers in fluid phase within the single chain mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yachong; Baulin, Vladimir A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain); Pogodin, Sergey [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)

    2014-05-07

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  13. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.

    Science.gov (United States)

    Edison, J R; Monson, P A

    2013-11-12

    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.

  14. The metastable dynamo model of stellar rotational evolution

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2014-01-01

    This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived 'C-sequence' of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating 'I-sequence' stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.

  15. Stochastic modeling of catalytic processes in nanoporous materials: Beyond mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Andres [Iowa State Univ., Ames, IA (United States)

    2017-08-05

    Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems can be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use

  16. Mean-field modeling of the basal ganglia-thalamocortical system. II Dynamics of parkinsonian oscillations.

    Science.gov (United States)

    van Albada, S J; Gray, R T; Drysdale, P M; Robinson, P A

    2009-04-21

    Neuronal correlates of Parkinson's disease (PD) include a shift to lower frequencies in the electroencephalogram (EEG) and enhanced synchronized oscillations at 3-7 and 7-30 Hz in the basal ganglia, thalamus, and cortex. This study describes the dynamics of a recent physiologically based mean-field model of the basal ganglia-thalamocortical system, and shows how it accounts for many key electrophysiological correlates of PD. Its detailed functional connectivity comprises partially segregated direct and indirect pathways through two populations of striatal neurons, a hyperdirect pathway involving a corticosubthalamic projection, thalamostriatal feedback, and local inhibition in striatum and external pallidum (GPe). In a companion paper, realistic steady-state firing rates were obtained for the healthy state, and after dopamine loss modeled by weaker direct and stronger indirect pathways, reduced intrapallidal inhibition, lower firing thresholds of the GPe and subthalamic nucleus (STN), a stronger projection from striatum to GPe, and weaker cortical interactions. Here it is shown that oscillations around 5 and 20 Hz can arise with a strong indirect pathway, which also causes increased synchronization throughout the basal ganglia. Furthermore, increased theta power with progressive nigrostriatal degeneration is correlated with reduced alpha power and peak frequency, in agreement with empirical results. Unlike the hyperdirect pathway, the indirect pathway sustains oscillations with phase relationships that coincide with those found experimentally. Alterations in the responses of basal ganglia to transient stimuli accord with experimental observations. Reduced cortical gains due to both nigrostriatal and mesocortical dopamine loss lead to slower changes in cortical activity and may be related to bradykinesia. Finally, increased EEG power found in some studies may be partly explained by a lower effective GPe firing threshold, reduced GPe-GPe inhibition, and/or weaker

  17. Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification

    Science.gov (United States)

    Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.

    2017-12-01

    Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.

  18. The symmetry energy {\\boldsymbol{\\gamma }} parameter of relativistic mean-field models

    Science.gov (United States)

    Dutra, Mariana; Lourenço, Odilon; Hen, Or; Piasetzky, Eliezer; Menezes, Débora P.

    2018-05-01

    The relativistic mean-field models tested in previous works against nuclear matter experimental values, critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energy γ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate the γ values, a trend of linear correlation is observed between γ and the symmetry energy ({{\\mathscr{S}}}0) and a more clear linear relationship is established between γ and the slope of the symmetry energy (L 0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of {R}1.0 and {R}1.4, in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely, IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤slant {M}{{\\max }}/{M}ȯ ≤slant 2.05 and with the overlap band for the {L}0× {{\\mathscr{S}}}0 region, to present γ in the range of γ =0.25+/- 0.05. This work is a part of the project INCT-FNA Proc. No. 464898/2014-5 and was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil under grants 300602/2009-0 and 306786/2014-1. E. P. acknowledges support from the Israel Science Foundation. O. H. acknowledges the U.S. Department of Energy Office of Science, Office of Nuclear Physics program under award number DE-FG02-94ER40818

  19. On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics

    International Nuclear Information System (INIS)

    Rodrigues, Serafim; Terry, John R.; Breakspear, Michael

    2006-01-01

    In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling

  20. An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model

    Energy Technology Data Exchange (ETDEWEB)

    Roberto Viana, J.; Salmon, Octávio R. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A.; Padilha, Igor T. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil)

    2014-11-15

    We developed a new treatment for mean-field theory applied in spins systems, denominated effective correlated mean-field (ECMF). We apply this theory to study the spin-1/2 Ising ferromagnetic model with nearest-neighbor interactions on a square lattice. We use clusters of finite sizes and study the criticality of the ferromagnetic system, where we obtain a convergence of critical temperature for the value k{sub B}T{sub c}/J≃2.27905±0.00141. Also the behavior of magnetic and thermodynamic properties, using the condition of minimum energy of the physical system is obtained. - Highlights: • We developed spin models to study real magnetic systems. • We study the thermodynamic and magnetic properties of the ferromagnetism. • We enhanced a mean-field theory applied in spins models.

  1. SpF: Enabling Petascale Performance for Pseudospectral Dynamo Models

    Science.gov (United States)

    Jiang, W.; Clune, T.; Vriesema, J.; Gutmann, G.

    2013-12-01

    Pseudospectral (PS) methods possess a number of characteristics (e.g., efficiency, accuracy, natural boundary conditions) that are extremely desirable for dynamo models. Unfortunately, dynamo models based upon PS methods face a number of daunting challenges, which include exposing additional parallelism, leveraging hardware accelerators, exploiting hybrid parallelism, and improving the scalability of global memory transposes. Although these issues are a concern for most models, solutions for PS methods tend to require far more pervasive changes to underlying data and control structures. Further, improvements in performance in one model are difficult to transfer to other models, resulting in significant duplication of effort across the research community. We have developed an extensible software framework for pseudospectral methods called SpF that is intended to enable extreme scalability and optimal performance. High-level abstractions provided by SpF unburden applications of the responsibility of managing domain decomposition and load balance while reducing the changes in code required to adapt to new computing architectures. The key design concept in SpF is that each phase of the numerical calculation is partitioned into disjoint numerical 'kernels' that can be performed entirely in-processor. The granularity of domain-decomposition provided by SpF is only constrained by the data-locality requirements of these kernels. SpF builds on top of optimized vendor libraries for common numerical operations such as transforms, matrix solvers, etc., but can also be configured to use open source alternatives for portability. SpF includes several alternative schemes for global data redistribution and is expected to serve as an ideal testbed for further research into optimal approaches for different network architectures. In this presentation, we will describe the basic architecture of SpF as well as preliminary performance data and experience with adapting legacy dynamo codes

  2. Beyond mean-field approximations for accurate and computationally efficient models of on-lattice chemical kinetics

    Science.gov (United States)

    Pineda, M.; Stamatakis, M.

    2017-07-01

    Modeling the kinetics of surface catalyzed reactions is essential for the design of reactors and chemical processes. The majority of microkinetic models employ mean-field approximations, which lead to an approximate description of catalytic kinetics by assuming spatially uncorrelated adsorbates. On the other hand, kinetic Monte Carlo (KMC) methods provide a discrete-space continuous-time stochastic formulation that enables an accurate treatment of spatial correlations in the adlayer, but at a significant computation cost. In this work, we use the so-called cluster mean-field approach to develop higher order approximations that systematically increase the accuracy of kinetic models by treating spatial correlations at a progressively higher level of detail. We further demonstrate our approach on a reduced model for NO oxidation incorporating first nearest-neighbor lateral interactions and construct a sequence of approximations of increasingly higher accuracy, which we compare with KMC and mean-field. The latter is found to perform rather poorly, overestimating the turnover frequency by several orders of magnitude for this system. On the other hand, our approximations, while more computationally intense than the traditional mean-field treatment, still achieve tremendous computational savings compared to KMC simulations, thereby opening the way for employing them in multiscale modeling frameworks.

  3. Consequences of the center-of-mass correction in nuclear mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Reinhard, P.G.; Maruhn, J.A.

    2000-01-01

    We study the influence of the scheme for the correction for spurious center-of-mass motion on the fit of effective interactions for self-consistent nuclear mean-field calculations. We find that interactions with very simple center-of-mass correction have significantly larger surface coefficients than interactions for which the center-of-mass correction was calculated for the actual many-body state during the fit. The reason for that is that the effective interaction has to counteract the wrong trends with nucleon number of all simplified schemes for center-of-mass correction which puts a wrong trend with mass number into the effective interaction itself. The effect becomes clearly visible when looking at the deformation energy of largely deformed systems, e.g. superdeformed states or fission barriers of heavy nuclei. (orig.)

  4. Spin peierls instability against S-like anisotropic superconductivity in framework of the mean field RVB-Hubbard model

    International Nuclear Information System (INIS)

    Wrobel, P.; Jacak, L.

    1988-01-01

    It is shown theoretically that the superconducting transition in the framework of RVB mean field treatment in nearly half-filled band Hubbard model is substantially influenced by spin density wave instability. The reasonable SDW and SC ordering phase diagram for doped La 2 CuO 4 compounds is found

  5. Pairing in a two-dimensional two-band very anisotropic model in the mean field approximation

    International Nuclear Information System (INIS)

    Fazakas, A.B.; Pitis, R.

    1993-09-01

    A two-dimensional model is proposed: there are two kinds of sites, with one electronic state per site; tunneling takes place only in one direction; the interaction involves only electrons on different sites. The existence of a phase transition involving interband pairing of electrons is discussed in the mean field approximation. (author)

  6. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    International Nuclear Information System (INIS)

    Backes, Steffen

    2017-04-01

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  7. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Backes, Steffen

    2017-04-15

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  8. Systems with N correlated fermions. Mean-field models for nuclear structures and other N-body systems

    International Nuclear Information System (INIS)

    Grasso, M.

    2009-10-01

    This document is a summary of the author's research activities whose common topic is the N-body problem. The first chapter introduces the N-body issue through models based on the mean-field theory and on the Hartree-Fock-Bogoliubov equations. The second chapter presents the understanding of exotic nuclei features within the mean-field approach. Exotic phenomena like nuclear bubble structure, pairing correlations and pairing violations, giant neutron halos, non-standard terms in the Skyrme interactions are reviewed. The chapter 3 is dedicated to some extensions of the RPA (random phase approximation). For instance the computation of the shell structure far from the stability valley requires a more accurate assessment of the energy of the individual states through the introduction of a particle-vibration coupling. Different RPA extensions are described: first the self-consistent extension enlarged beyond particle-hole configurations, then the boson-mapping-based extension in a 3-level Lipkin model and also the second random-phase approximation. The chapter 4 gathers some studies concerning ultra-cold gases of trapped atoms. These systems are the only structures that allow the study of the correlations associated to superfluidity in terms of interaction intensity, temperature or system size. The mean-field approach is adequate for these studies. The last chapter draws a perspective for the mean-field-based models, their limits are assessed and ways of improvement are proposed. (A.C.)

  9. Out-of-equilibrium dynamical mean-field equations for the perceptron model

    Science.gov (United States)

    Agoritsas, Elisabeth; Biroli, Giulio; Urbani, Pierfrancesco; Zamponi, Francesco

    2018-02-01

    Perceptrons are the building blocks of many theoretical approaches to a wide range of complex systems, ranging from neural networks and deep learning machines, to constraint satisfaction problems, glasses and ecosystems. Despite their applicability and importance, a detailed study of their Langevin dynamics has never been performed yet. Here we derive the mean-field dynamical equations that describe the continuous random perceptron in the thermodynamic limit, in a very general setting with arbitrary noise and friction kernels, not necessarily related by equilibrium relations. We derive the equations in two ways: via a dynamical cavity method, and via a path-integral approach in its supersymmetric formulation. The end point of both approaches is the reduction of the dynamics of the system to an effective stochastic process for a representative dynamical variable. Because the perceptron is formally very close to a system of interacting particles in a high dimensional space, the methods we develop here can be transferred to the study of liquid and glasses in high dimensions. Potentially interesting applications are thus the study of the glass transition in active matter, the study of the dynamics around the jamming transition, and the calculation of rheological properties in driven systems.

  10. Quest of halo in 31Ne using Glauber model formalism with deformed relativistic mean field density

    International Nuclear Information System (INIS)

    Sharma, Mahesh K.; Patra, S.K.

    2012-01-01

    The advancement of radio active ion beam (RIB) explored the structure of exotic nuclei, which are away from the β stability line. Such nuclei with weak binding lie at the limit of stability and exhibit some fascinating phenomena. One of them is the formation of one or more nucleon halo structure. It is well established that the interaction cross section of halo nuclei like 11 Li, 11 Be and 19 C show anomalously large interaction cross sections and matter radius than that of their neighboring nuclei. Some recent investigations for 31 Ne predict that has a halo nature. The first experimental evidence also suggests 31 Ne as a halo candidate. The isotope 31 Ne having N=21, which breaks the shell closer structure as a consequence of deformation associated with the strong intruder configuration and having special interest, because it lie at island of inversion. Here we apply the well known Glauber approach with conjunction of deformed relativistic mean field densities of projectile and target nuclei. It is to be noted that Panda et al has done the similar calculation using a spherical density

  11. Mean-field lattice trees

    NARCIS (Netherlands)

    Borgs, C.; Chayes, J.T.; Hofstad, van der R.W.; Slade, G.

    1999-01-01

    We introduce a mean-field model of lattice trees based on embeddings into d of abstract trees having a critical Poisson offspring distribution. This model provides a combinatorial interpretation for the self-consistent mean-field model introduced previously by Derbez and Slade [9], and provides an

  12. Simulations of intermediate-energy heavy-ion collisions within relativistic mean-field two-fluid model

    International Nuclear Information System (INIS)

    Ivanov, Y.B.; Russkikh, V.N.; Pokrovsky, Y.E. Kurchatov; Ivanov, Y.B.; Russkikh, V.N.; Polrovsky, Y.E.; Henning, P.A.; Henning, P.A.

    1995-01-01

    A three-dimensional realization of the relativistic mean-field 2-fluid model is described. The first results of analyzing the inclusive data on the yield of nuclear fragments and pions, as well as the Plastic-Ball rapidity distributions of nuclear fragments are presented. For comparison, the calculations within the conventional relativistic hydrodynamical model with the same mean fields are also performed. It is found that all the analysed observables, except the pion spectra, appeared to be fairly insensitive to the nuclear EOS. The sensitivity to the nuclear stopping power is slightly higher. The original sensitivity of the rapidity distributions to the stopping power is smeared out by the Plastic-Ball filter and selection criterion. Nevertheless, one can conclude that the stopping power induced by the Cugnon cross-sections is not quite sufficient for a more adequate reproduction of the experimental data. (authors)

  13. Finite temperature magnon spectra in yttrium iron garnet from a mean field approach in a tight-binding model

    Science.gov (United States)

    Shen, Ka

    2018-04-01

    We study magnon spectra at finite temperature in yttrium iron garnet using a tight-binding model with nearest-neighbor exchange interaction. The spin reduction due to thermal magnon excitation is taken into account via the mean field approximation to the local spin and is found to be different at two sets of iron atoms. The resulting temperature dependence of the spin wave gap shows good agreement with experiment. We find that only two magnon modes are relevant to the ferromagnetic resonance.

  14. Weak disorder asymptotics in the stochastic mean-field model of distance

    NARCIS (Netherlands)

    Bhamidi, S.; Hofstad, van der R.W.

    2010-01-01

    In the recent past, there has been a concerted effort to develop mathematical models for real-world networks and analyze various dynamics on these models. One particular problem of significant importance is to understand the effect of random edge lengths or costs on the geometry and flow

  15. Weak disorder asymptotics in the stochastic mean-field model of distance

    NARCIS (Netherlands)

    Bhamidi, S.; Hofstad, van der R.W.

    2012-01-01

    In the recent past, there has been a concerted effort to develop mathematical models for real-world networks and to analyze various dynamics on these models. One particular problem of significant importance is to understand the effect of random edge lengths or costs on the geometry and flow

  16. Differential rotation and the solar dynamo

    International Nuclear Information System (INIS)

    Stix, M.

    1976-01-01

    A number of numerical models for the generation of mean magnetic fields is examined and the fields are compared with the mean field of the Sun. In particular, αω-dynamos, which are based on differential rotation and cyclonic turbulence, are studied in the case of cylindrical surfaces of isorotation. Such dynamos have an oscillatory antisymmetric field as the most easily excited mode. Only models with an angular velocity which increases with increasing depth appear to be compatible with observations. A search for oscillatory ω x j-dynamos, where the α-effect is replaced by a different mean electric field perpendicular to the rotation vector ω and the mean current density j is also made. Oscillatory modes do exist for models with radial shear. Their migration is equatorwards for inwards increasing angular velocity. (orig./BJ) [de

  17. Study of the tensor correlation in oxygen isotopes using mean-field-type and shell model methods

    International Nuclear Information System (INIS)

    Sugimoto, Satoru

    2007-01-01

    The tensor force plays important roles in nuclear structure. Recently, we have developed a mean-field-type model which can treat the two-particle-two-hole correlation induced by the tensor force. We applied the model to sub-closed-shell oxygen isotopes and found that an sizable attractive energy comes from the tensor force. We also studied the tensor correlation in 16O using a shell model including two-particle-two-hole configurations. In this case, quite a large attractive energy is obtained for the correlation energy from the tensor force

  18. Tractable approximations for probabilistic models: The adaptive Thouless-Anderson-Palmer mean field approach

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop an advanced mean held method for approximating averages in probabilistic data models that is based on the Thouless-Anderson-Palmer (TAP) approach of disorder physics. In contrast to conventional TAP. where the knowledge of the distribution of couplings between the random variables...... is required. our method adapts to the concrete couplings. We demonstrate the validity of our approach, which is so far restricted to models with nonglassy behavior? by replica calculations for a wide class of models as well as by simulations for a real data set....

  19. UNDERSTANDING SOLAR TORSIONAL OSCILLATIONS FROM GLOBAL DYNAMO MODELS

    International Nuclear Information System (INIS)

    Guerrero, G.; Smolarkiewicz, P. K.; Pino, E. M. de Gouveia Dal; Kosovichev, A. G.; Mansour, N. N.

    2016-01-01

    The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT at the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.

  20. Simple algorithm to estimate mean-field effects from minor differential permeability curves based on the Preisach model

    International Nuclear Information System (INIS)

    Perevertov, Oleksiy

    2003-01-01

    The classical Preisach model (PM) of magnetic hysteresis requires that any minor differential permeability curve lies under minor curves with larger field amplitude. Measurements of ferromagnetic materials show that very often this is not true. By applying the classical PM formalism to measured minor curves one can discover that it leads to an oval-shaped region on each half of the Preisach plane where the calculations produce negative values in the Preisach function. Introducing an effective field, which differs from the applied one by a mean-field term proportional to the magnetization, usually solves this problem. Complex techniques exist to estimate the minimum necessary proportionality constant (the moving parameter). In this paper we propose a simpler way to estimate the mean-field effects for use in nondestructive testing, which is based on experience from the measurements of industrial steels. A new parameter (parameter of shift) is introduced, which monitors the mean-field effects. The relation between the shift parameter and the moving one was studied for a number of steels. From preliminary experiments no correlation was found between the shift parameter and the classical magnetic ones such as the coercive field, maximum differential permeability and remanent magnetization

  1. Waldmeier's Rules in the Solar and Stellar Dynamos

    Science.gov (United States)

    Pipin, Valery; Kosovichev, Alexander

    2015-08-01

    The Waldmeier's rules [1] establish important empirical relations between the general parameters of magnetic cycles (such as the amplitude, period, growth rate and time profile) on the Sun and solar-type stars [2]. Variations of the magnetic cycle parameters depend on properties of the global dynamo processes operating in the stellar convection zones. We employ nonlinear mean-field axisymmetric dynamo models [3] and calculate of the magnetic cycle parameters, such as the dynamo cycle period, total magnetic and Poynting fluxes for the Sun and solar-type stars with rotational periods from 15 to 30 days. We consider two types of the dynamo models: 1) distributed (D-type) models employing the standard α - effect distributed in the whole convection zone, and 2) Babcock-Leighton (BL-type) models with a non-local α - effect. The dynamo models take into account the principal mechanisms of the nonlinear dynamo generation and saturation, including the magnetic helicity conservation, magnetic buoyancy effects, and the feedback on the angular momentum balance inside the convection zones. Both types of models show that the dynamo generated magnetic flux increases with the increase of the rotation rate. This corresponds to stronger brightness variations. The distributed dynamo model reproduces the observed dependence of the cycle period on the rotation rate for the Sun analogs better than the BL-type model. For the solar-type stars rotating more rapidly than the Sun we find dynamo regimes with multiple periods. Such stars with multiple cycles form a separate branch in the variability-rotation diagram.1. Waldmeier, M., Prognose für das nächste Sonnenfleckenmaximum, 1936, Astron. Nachrichten, 259,262. Soon,W.H., Baliunas,S.L., Zhang,Q.,An interpretation of cycle periods of stellar chromospheric activity, 1993, ApJ, 414,333. Pipin,V.V., Dependence of magnetic cycle parameters on period of rotation in nonlinear solar-type dynamos, 2015, astro-ph: 14125284

  2. An analytical calculation of neighbourhood order probabilities for high dimensional Poissonian processes and mean field models

    International Nuclear Information System (INIS)

    Tercariol, Cesar Augusto Sangaletti; Kiipper, Felipe de Moura; Martinez, Alexandre Souto

    2007-01-01

    Consider that the coordinates of N points are randomly generated along the edges of a d-dimensional hypercube (random point problem). The probability P (d,N) m,n that an arbitrary point is the mth nearest neighbour to its own nth nearest neighbour (Cox probabilities) plays an important role in spatial statistics. Also, it has been useful in the description of physical processes in disordered media. Here we propose a simpler derivation of Cox probabilities, where we stress the role played by the system dimensionality d. In the limit d → ∞, the distances between pair of points become independent (random link model) and closed analytical forms for the neighbourhood probabilities are obtained both for the thermodynamic limit and finite-size system. Breaking the distance symmetry constraint drives us to the random map model, for which the Cox probabilities are obtained for two cases: whether a point is its own nearest neighbour or not

  3. Nonlinear cloudy bag model in the meson mean-field approximation

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    1989-01-01

    We investigate the cloudy bag model for the nucleon, including the essentially nonlinear interaction of the quarks with the meson field. From the boundary conditions, which guarantee the stability of the bag, we obtain equations for the size R of the bag, for the momentum p of the quarks, and for the mean pion field var-phi. We obtain an expression for the total energy E of the bag nucleon. By taking the appropriate averages of all the relations the calculations reduce to the case of a spherically symmetric bag. We show that in the general nonlinear cloudy bag model in question the equations for R, p, and var-phi have a simultaneous solution which corresponds to the absolute minimum of the bag energy E and, consequently, that there exists a stable equilibrium state of the bag nucleon

  4. Phase diagram of 2D Hubbard model by simulated annealing mean field approximation

    International Nuclear Information System (INIS)

    Kato, Masaru; Kitagaki, Takashi

    1991-01-01

    In order to investigate the stable magnetic structure of the Hubbard model on a square lattice, we utilize the dynamical simulated annealing method which proposed by R. Car and M. Parrinello. Results of simulations on a 10 x 10 lattice system with 80 electrons under assumption of collinear magnetic structure that the most stable state is incommensurate spin density wave state with periodic domain wall. (orig.)

  5. Analytic properties of the Ruelle ζ-function for mean field models of phase transition

    International Nuclear Information System (INIS)

    Hallerberg, Sarah; Just, Wolfram; Radons, Guenter

    2005-01-01

    We evaluate by analytical means the Ruelle ζ-function for a spin model with global coupling. The implications of the ferromagnetic phase transitions for the analytical properties of the ζ-function are discussed in detail. In the paramagnetic phase the ζ-function develops a single branch point. In the low-temperature regime two branch points appear which correspond to the ferromagnetic state and the metastable state. The results are typical for any Ginsburg-Landau-type phase transition

  6. Application of a multi-component mean field model to the coarsening behaviour of a nickel-based superalloy

    International Nuclear Information System (INIS)

    Anderson, M.J.; Rowe, A.; Wells, J.; Basoalto, H.C.

    2016-01-01

    A multi-component mean field model has been applied to predict the particle evolution of the γ′ particles in the nickel based superalloy IN738LC, capturing the transition from an initial multimodal particle distribution towards a unimodal distribution. Experiments have been performed to measure the coarsening behaviour during isothermal heat treatments using quantitative analysis of micrographs. The three dimensional size of the γ′ particles has been approximated for use in simulation. A coupled thermodynamic/mean field modelling framework is presented and applied to describe the particle size evolution. A robust numerical implementation of the model is detailed that makes use of surrogate models to capture the thermodynamics. Different descriptions of the particle growth rate of non-dilute particle systems have been explored. A numerical investigation of the influence of scatter in chemical composition upon the particle size distribution evolution has been carried out. It is shown how the tolerance in chemical composition of a given alloy can impact particle coarsening behaviour. Such predictive capability is of interest in understanding variation in component performance and the refinement of chemical composition tolerances. It has been found that the inclusion of misfit strain within the current model formulation does not have a significant affect upon predicted long term particle coarsening behaviour. Model predictions show good agreement with experimental data. In particular, the model predicts a reduced growth rate of the mean particle size during the transition from bimodal to unimodal distributions.

  7. Neutron-/sup 90/Zr mean field from a dispersive optical model analysis

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Wang, Y.; Rapaport, J.

    1989-01-01

    Elastic scattering cross sections have been measured for 8, 10, and 24 MeV neutrons incident on /sup 90/Zr. These measurements, together with other neutron elastic scattering and total cross section data available up to 29 MeV, are used in grid searches to obtain an optical model potential which contains a dispersion relation term. This potential is then extrapolated toward negative energies to predict bound single-particle state properties. An overall good description of the data at positive and negative energies is achieved

  8. Core flow inversion tested with numerical dynamo models

    Science.gov (United States)

    Rau, Steffen; Christensen, Ulrich; Jackson, Andrew; Wicht, Johannes

    2000-05-01

    We test inversion methods of geomagnetic secular variation data for the pattern of fluid flow near the surface of the core with synthetic data. These are taken from self-consistent 3-D models of convection-driven magnetohydrodynamic dynamos in rotating spherical shells, which generate dipole-dominated magnetic fields with an Earth-like morphology. We find that the frozen-flux approximation, which is fundamental to all inversion schemes, is satisfied to a fair degree in the models. In order to alleviate the non-uniqueness of the inversion, usually a priori conditions are imposed on the flow; for example, it is required to be purely toroidal or geostrophic. Either condition is nearly satisfied by our model flows near the outer surface. However, most of the surface velocity field lies in the nullspace of the inversion problem. Nonetheless, the a priori constraints reduce the nullspace, and by inverting the magnetic data with either one of them we recover a significant part of the flow. With the geostrophic condition the correlation coefficient between the inverted and the true velocity field can reach values of up to 0.65, depending on the choice of the damping parameter. The correlation is significant at the 95 per cent level for most spherical harmonic degrees up to l=26. However, it degrades substantially, even at long wavelengths, when we truncate the magnetic data sets to l currents, similar to those seen in core-flow models derived from geomagnetic data, occur in the equatorial region. However, the true flow does not contain this flow component. The results suggest that some meaningful information on the core-flow pattern can be retrieved from secular variation data, but also that the limited resolution of the magnetic core field could produce serious artefacts.

  9. Advantage of nonlinear relativistic mean-field model in studying neutron star matter

    CERN Document Server

    Miyazaki, K

    2006-01-01

    We test the extended Zimanyi-Moszkowski model of relativistic nuclear matter for reproducing the density dependence of the symmetry energy, the direct URCA constraint M_{G}^{DU} \\geq 1.5M_{\\odot} on the gravitational mass of neutron star (NS), the large radii of NSs in RX J1856.5-3754 and qLMXB X7, the massive NSs in PSR J0751+1807 and 4U1700-37, and the baryonic mass of J0737-3039B. The two sets of NN\\rho coupling constant are considered. The first (EZM1) is the same as the Bonn A potential. The second (EZM2) is chosen so as to reproduce the symmetry energy E_s=32MeV of nuclear matter. The EZM1 can pass 6 tests among 7, while the EZM2 passes 5 tests. We can therefore conclude that the EZM model has unique and excellent features and is the most prospective one for studying the dense baryonic matter.

  10. Mean field diffusion models for precipitation in crystalline GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Kimmerle, Sven-Joachim [Humboldt-Univ. Berlin (Germany). Dept. of Mathematics

    2009-07-01

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first class of models treats the diffusion-controlled regime of interface motion, while the second class is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. We consider homogenised models, where different length scales of the experimental situation have been exploited in order to simplify the equations. These homogenised models generalise the well-known Lifshitz-Slyozov-Wagner model for Ostwald ripening. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  11. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS

    International Nuclear Information System (INIS)

    Lemerle, Alexandre; Charbonneau, Paul

    2017-01-01

    In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.

  12. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lemerle, Alexandre; Charbonneau, Paul, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de physique, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC, H3T 1J4 (Canada)

    2017-01-10

    In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.

  13. Dynamical mean field study of the Mott transition in the half-filled Hubbard model on a triangular lattice

    OpenAIRE

    Aryanpour, K.; Pickett, W. E.; Scalettar, R. T.

    2006-01-01

    We employ dynamical mean field theory (DMFT) with a Quantum Monte Carlo (QMC) atomic solver to investigate the finite temperature Mott transition in the Hubbard model with the nearest neighbor hopping on a triangular lattice at half-filling. We estimate the value of the critical interaction to be $U_c=12.0 \\pm 0.5$ in units of the hopping amplitude $t$ through the evolution of the magnetic moment, spectral function, internal energy and specific heat as the interaction $U$ and temperature $T$ ...

  14. Effect of coupling asymmetry on mean-field solutions of the direct and inverse Sherrington-Kirkpatrick model

    DEFF Research Database (Denmark)

    Sakellariou, Jason; Roudi, Yasser; Mezard, Marc

    2012-01-01

    We study how the degree of symmetry in the couplings influences the performance of three mean field methods used for solving the direct and inverse problems for generalized Sherrington-Kirkpatrick models. In this context, the direct problem is predicting the potentially time-varying magnetizations...... than the other two approximations, TAP outperforms MF when the coupling matrix is nearly symmetric, while MF works better when it is strongly asymmetric. For the inverse problem, MF performs better than both TAP and nMF, although an ad hoc adjustment of TAP can make it comparable to MF. For high...

  15. A Model of the Turbulent Electric Dynamo in Multi-Phase Media

    Science.gov (United States)

    Dementyeva, Svetlana; Mareev, Evgeny

    2016-04-01

    Many terrestrial and astrophysical phenomena witness the conversion of kinetic energy into electric energy (the energy of the quasi-stationary electric field) in conducting media, which is natural to treat as manifestations of electric dynamo by analogy with well-known theory of magnetic dynamo. Such phenomena include thunderstorms and lightning in the Earth's atmosphere and atmospheres of other planets, electric activity caused by dust storms in terrestrial and Martian atmospheres, snow storms, electrical discharges occurring in technological setups, connected with intense mixing of aerosol particles like in the milling industry. We have developed a model of the large-scale turbulent electric dynamo in a weakly conducting medium, containing two heavy-particle components. We have distinguished two main classes of charging mechanisms (inductive and non-inductive) in accordance with the dependence or independence of the electric charge, transferred during a particle collision, on the electric field intensity and considered the simplified models which demonstrate the possibility of dynamo realization and its specific peculiarities for these mechanisms. Dynamo (the large-scale electric field growth) appears due to the charge separation between the colliding and rebounding particles. This process is may be greatly intensified by the turbulent mixing of particles with different masses and, consequently, different inertia. The particle charge fluctuations themselves (small-scale dynamo), however, do not automatically mean growth of the large-scale electric field without a large-scale asymmetry. Such an asymmetry arises due to the dependence of the transferred charge magnitude on the electric field intensity in the case of the inductive mechanism of charge separation, or due to the gravity and convection for non-inductive mechanisms. We have found that in the case of the inductive mechanism the large-scale dynamo occurs if the medium conductivity is small enough while the

  16. Analysis of a Stochastic Chemical System Close to a SNIPER Bifurcation of Its Mean-Field Model

    KAUST Repository

    Erban, Radek

    2009-01-01

    A framework for the analysis of stochastic models of chemical systems for which the deterministic mean-field description is undergoing a saddle-node infinite period (SNIPER) bifurcation is presented. Such a bifurcation occurs, for example, in the modeling of cell-cycle regulation. It is shown that the stochastic system possesses oscillatory solutions even for parameter values for which the mean-field model does not oscillate. The dependence of the mean period of these oscillations on the parameters of the model (kinetic rate constants) and the size of the system (number of molecules present) are studied. Our approach is based on the chemical Fokker-Planck equation. To gain some insight into the advantages and disadvantages of the method, a simple one-dimensional chemical switch is first analyzed, and then the chemical SNIPER problem is studied in detail. First, results obtained by solving the Fokker-Planck equation numerically are presented. Then an asymptotic analysis of the Fokker-Planck equation is used to derive explicit formulae for the period of oscillation as a function of the rate constants and as a function of the system size. © 2009 Society for Industrial and Applied Mathematics.

  17. Influence of the mode of deformation on recrystallisation behaviour of titanium through experiments, mean field theory and phase field model

    Science.gov (United States)

    Athreya, C. N.; Mukilventhan, A.; Suwas, Satyam; Vedantam, Srikanth; Subramanya Sarma, V.

    2018-04-01

    The influence of the mode of deformation on recrystallisation behaviour of Ti was studied by experiments and modelling. Ti samples were deformed through torsion and rolling to the same equivalent strain of 0.5. The deformed samples were annealed at different temperatures for different time durations and the recrystallisation kinetics were compared. Recrystallisation is found to be faster in the rolled samples compared to the torsion deformed samples. This is attributed to the differences in stored energy and number of nuclei per unit area in the two modes of deformation. Considering decay in stored energy during recrystallisation, the grain boundary mobility was estimated through a mean field model. The activation energy for recrystallisation obtained from experiments matched with the activation energy for grain boundary migration obtained from mobility calculation. A multi-phase field model (with mobility estimated from the mean field model as a constitutive input) was used to simulate the kinetics, microstructure and texture evolution. The recrystallisation kinetics and grain size distributions obtained from experiments matched reasonably well with the phase field simulations. The recrystallisation texture predicted through phase field simulations compares well with experiments though few additional texture components are present in simulations. This is attributed to the anisotropy in grain boundary mobility, which is not accounted for in the present study.

  18. Mean field games

    KAUST Repository

    Gomes, Diogo A.

    2014-01-06

    In this talk we will report on new results concerning the existence of smooth solutions for time dependent mean-field games. This new result is established through a combination of various tools including several a-priori estimates for time-dependent mean-field games combined with new techniques for the regularity of Hamilton-Jacobi equations.

  19. Mean field games

    KAUST Repository

    Gomes, Diogo A.

    2014-01-01

    In this talk we will report on new results concerning the existence of smooth solutions for time dependent mean-field games. This new result is established through a combination of various tools including several a-priori estimates for time-dependent mean-field games combined with new techniques for the regularity of Hamilton-Jacobi equations.

  20. Mean-Field Critical Behavior and Ergodicity Break in a Nonequilibrium One-Dimensional Rsos Growth Model

    Science.gov (United States)

    Mendonça, J. Ricardo G.

    We investigate the nonequilibrium roughening transition of a one-dimensional restricted solid-on-solid model by directly sampling the stationary probability density of a suitable order parameter as the surface adsorption rate varies. The shapes of the probability density histograms suggest a typical Ginzburg-Landau scenario for the phase transition of the model, and estimates of the "magnetic" exponent seem to confirm its mean-field critical behavior. We also found that the flipping times between the metastable phases of the model scale exponentially with the system size, signaling the breaking of ergodicity in the thermodynamic limit. Incidentally, we discovered that a closely related model not considered before also displays a phase transition with the same critical behavior as the original model. Our results support the usefulness of off-critical histogram techniques in the investigation of nonequilibrium phase transitions. We also briefly discuss in the appendix a good and simple pseudo-random number generator used in our simulations.

  1. Order-disorder transitions in time-discrete mean field systems with memory: a novel approach via nonlinear autoregressive models

    International Nuclear Information System (INIS)

    Frank, T D; Mongkolsakulvong, S

    2015-01-01

    In a previous study strongly nonlinear autoregressive (SNAR) models have been introduced as a generalization of the widely-used time-discrete autoregressive models that are known to apply both to Markov and non-Markovian systems. In contrast to conventional autoregressive models, SNAR models depend on process mean values. So far, only linear dependences have been studied. We consider the case in which process mean values can have a nonlinear impact on the processes under consideration. It is shown that such models describe Markov and non-Markovian many-body systems with mean field forces that exhibit a nonlinear impact on single subsystems. We exemplify that such nonlinear dependences can describe order-disorder phase transitions of time-discrete Markovian and non-Markovian many-body systems. The relevant order parameter equations are derived and issues of stability and stationarity are studied. (paper)

  2. Massive neutron star with strangeness in a relativistic mean-field model with a high-density cutoff

    Science.gov (United States)

    Zhang, Ying; Hu, Jinniu; Liu, Peng

    2018-01-01

    The properties of neutron stars with the strangeness degree of freedom are studied in the relativistic mean-field (RMF) model via including a logarithmic interaction as a function of the scalar meson field. This interaction, named the σ -cut potential, can largely reduce the attractive contributions of the scalar meson field at high density without any influence on the properties of nuclear structure around the normal saturation density. In this work, the TM1 parameter set is chosen as the RMF interaction, while the strengths of σ -cut potential are constrained by the properties of finite nuclei so that we can obtain a reasonable effective nucleon-nucleon interaction. The hyperons Λ ,Σ , and Ξ are considered in neutron stars within this framework, whose coupling constants with mesons are determined by the latest hyperon-nucleon and Λ -Λ potentials extracted from the available experimental data of hypernuclei. The maximum mass of neutron star can be larger than 2 M⊙ with these hyperons in the present framework. Furthermore, the nucleon mass at high density will be saturated due to this additional σ -cut potential, which is consistent with the conclusions obtained by other calculations such as Brueckner-Hartree-Fock theory and quark mean-field model.

  3. Modeling premartensitic effects in Ni2MnGa: A mean-field and Monte Carlo simulation study

    DEFF Research Database (Denmark)

    Castan, T.; Vives, E.; Lindgård, Per-Anker

    1999-01-01

    is constructed and justified based on the analysis of the experimentally observed strain variables and precursor phenomena. The description includes the (local) tetragonal distortion, the amplitude of the plane-modulating strain, and the magnetization. The model is solved by means of mean-field theory and Monte......The degenerate Blume-Emery-Griffiths model for martensitic transformations is extended by including both structural and magnetic degrees of freedom in order to elucidate premartensitic effects. Special attention is paid to the effect of the magnetoelastic coupling in Ni2MnGa. The microscopic model...... heat, not always associated with a true phase transition. The main conclusion is that premartensitic effects result from the interplay between the softness of the anomalous phonon driving the modulation and the magnetoelastic coupling. In particular, the premartensitic transition occurs when...

  4. Towards the geophysical regime in numerical dynamo models: studies of rapidly-rotating convection driven dynamos with low Pm and constant heat flux boundary conditions

    DEFF Research Database (Denmark)

    Sheyko, A.A.; Finlay, Chris; Marti, P.

    We present a set of numerical dynamo models with the convection strength varied by a factor of 30 and the ratio of magnetic to viscous diffusivities by a factor of 20 at rapid rotation rates (E =nu/(2 Omega d^2 ) = 10-6 and 10-7 ) using a heat flux outer BC. This regime has been little explored...... on the structure of the dynamos and how this changes in relation to the selection of control parameters, a comparison with the proposed rotating convection and dynamo scaling laws, energy spectra of steady solutions and inner core rotation rates. Magnetic field on the CMB. E=2.959*10-7, Ra=6591.0, Pm=0.05, Pr=1....

  5. Integral equation approach to time-dependent kinematic dynamos in finite domains

    International Nuclear Information System (INIS)

    Xu Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-01-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α 2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples - the α 2 dynamo model with radially varying α and the Bullard-Gellman model - illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α 2 dynamo in rectangular domains

  6. Effect of deformation on structure and reaction of Al isotopes using relativistic mean field densities in Glauber model

    Science.gov (United States)

    Panda, R. N.; Sharma, Mahesh K.; Panigrahi, M.; Patra, S. K.

    2018-06-01

    We have examined the ground state properties of Al isotopes towards the proton rich side from A = 22 to 28 using the well known relativistic mean field (RMF) formalism with NLSH parameter set. The calculated results are compared with the predictions of finite range droplet model and experimental data. The calculation is extended to estimate the reaction cross section for ^{22-28}Al as projectiles with ^{12}C as target. The incident energy of the projectiles are taken as 950 MeV/nucleon, for both spherical and deformed RMF densities as inputs in the Glauber model approximation. Further investigation of enhanced values of total reaction cross section for ^{23}Al and ^{24}Al in comparison to rest of the isotopes indicates the proton skin structure of these isotopes. Specifically, the large value of root mean square radius and total reaction cross section of ^{23}Al could not be ruled out the formation of proton halo.

  7. Rigorous derivation of the mean-field green functions of the two-band Hubbard model of superconductivity

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.

    2007-01-01

    The Green function (GF) equation of motion technique for solving the effective two-band Hubbard model of high-T c superconductivity in cuprates rests on the Hubbard operator (HO) algebra. We show that, if we take into account the invariance to translations and spin reversal, the HO algebra results in invariance properties of several specific correlation functions. The use of these properties allows rigorous derivation and simplification of the expressions of the frequency matrix (FM) and of the generalized mean-field approximation (GMFA) Green functions (GFs) of the model. For the normal singlet hopping and anomalous exchange pairing correlation functions which enter the FM and GMFA-GFs, the use of spectral representations allows the identification and elimination of exponentially small quantities. This procedure secures the reduction of the correlation order to the GMFA-GF expressions

  8. Modeling the Solar Convective Dynamo and Emerging Flux

    Science.gov (United States)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  9. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model.

    Science.gov (United States)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-07

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  10. Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA

    International Nuclear Information System (INIS)

    Sheshadri, K.; Pandit, R.; Krishnamurthy, H.R.; Ramakrishnan, T.V.

    1993-01-01

    The bosonic Hubbard model is studied via a simple mean-field theory. At zero temperature, in addition to yielding a phase diagram that is qualitatively correct, namely a superfluid phase for non-integer fillings and a Mott transition from a superfluid to an insulating phase for integer fillings, this theory gives results that are in good agreement with Monte Carlo simulations. In particular, the superfluid fraction obtained as a function of the interaction strength U for both integer and non-integer fillings is close to the simulation results. In all phases the excitation spectra are obtained by using the random phase approximation (RPA): the spectrum has a gap in the insulating phase and is gapless (and linear at small wave vectors) in the superfluid phase. Analytic results are presented in the limits of large U and small superfluid density. Finite-temperature phase diagrams and the Mott-insulator-normal-phase crossover are also described. (orig.)

  11. Irreversible mean-field model of the critical behavior of charge-density waves below the threshold for sliding

    Science.gov (United States)

    Sornette, Didier

    1993-05-01

    A mean-field (MF) model of the critical behavior of charge-density waves below the threshold for sliding is proposed, which replaces the combined effect of the pinning force and of the forces exerted by the neighbors on a given particle n by an effective force threshold Xn. It allows one to rationalize the numerical results of Middleton and Fisher [Phys. Rev. Lett. 66 (1991) 92] on the divergence of the polarization and of the largest correlation length and of Pla and Nori [Phys. Rev. Lett. 67 (1991) 919] on the distribution D( d) of sliding bursts of size d, measured in narrow intervals of driving fields E at a finite distance below the threshold Ec.

  12. DYNAMO-HIA--a Dynamic Modeling tool for generic Health Impact Assessments.

    Directory of Open Access Journals (Sweden)

    Stefan K Lhachimi

    Full Text Available BACKGROUND: Currently, no standard tool is publicly available that allows researchers or policy-makers to quantify the impact of policies using epidemiological evidence within the causal framework of Health Impact Assessment (HIA. A standard tool should comply with three technical criteria (real-life population, dynamic projection, explicit risk-factor states and three usability criteria (modest data requirements, rich model output, generally accessible to be useful in the applied setting of HIA. With DYNAMO-HIA (Dynamic Modeling for Health Impact Assessment, we introduce such a generic software tool specifically designed to facilitate quantification in the assessment of the health impacts of policies. METHODS AND RESULTS: DYNAMO-HIA quantifies the impact of user-specified risk-factor changes on multiple diseases and in turn on overall population health, comparing one reference scenario with one or more intervention scenarios. The Markov-based modeling approach allows for explicit risk-factor states and simulation of a real-life population. A built-in parameter estimation module ensures that only standard population-level epidemiological evidence is required, i.e. data on incidence, prevalence, relative risks, and mortality. DYNAMO-HIA provides a rich output of summary measures--e.g. life expectancy and disease-free life expectancy--and detailed data--e.g. prevalences and mortality/survival rates--by age, sex, and risk-factor status over time. DYNAMO-HIA is controlled via a graphical user interface and is publicly available from the internet, ensuring general accessibility. We illustrate the use of DYNAMO-HIA with two example applications: a policy causing an overall increase in alcohol consumption and quantifying the disease-burden of smoking. CONCLUSION: By combining modest data needs with general accessibility and user friendliness within the causal framework of HIA, DYNAMO-HIA is a potential standard tool for health impact assessment based

  13. Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions

    KAUST Repository

    Haskovec, Jan

    2013-10-01

    We introduce a Cucker-Smale-type model for flocking, where the strength of interaction between two agents depends on their relative separation (called "topological distance" in previous works), which is the number of intermediate individuals separating them. This makes the model scale-free and is motivated by recent extensive observations of starling flocks, suggesting that the interaction ruling animal collective behavior depends on topological rather than the metric distance. We study the conditions leading to asymptotic flocking in the topological model, defined as the convergence of the agents\\' velocities to a common vector. The shift from metric to topological interactions requires development of new analytical methods, taking into account the graph-theoretical nature of the problem. Moreover, we provide a rigorous derivation of the mean-field limit of large populations, recovering kinetic and hydrodynamic descriptions. In particular, we introduce the novel concept of relative separation in continuum descriptions, which is applicable to a broad variety of models of collective behavior. As an example, we shortly discuss a topological modification of the attraction-repulsion model and illustrate with numerical simulations that the modified model produces interesting new pattern dynamics. © 2013 Elsevier B.V. All rights reserved.

  14. Universal avalanche statistics and triggering close to failure in a mean-field model of rheological fracture

    Science.gov (United States)

    Baró, Jordi; Davidsen, Jörn

    2018-03-01

    The hypothesis of critical failure relates the presence of an ultimate stability point in the structural constitutive equation of materials to a divergence of characteristic scales in the microscopic dynamics responsible for deformation. Avalanche models involving critical failure have determined common universality classes for stick-slip processes and fracture. However, not all empirical failure processes exhibit the trademarks of criticality. The rheological properties of materials introduce dissipation, usually reproduced in conceptual models as a hardening of the coarse grained elements of the system. Here, we investigate the effects of transient hardening on (i) the activity rate and (ii) the statistical properties of avalanches. We find the explicit representation of transient hardening in the presence of generalized viscoelasticity and solve the corresponding mean-field model of fracture. In the quasistatic limit, the accelerated energy release is invariant with respect to rheology and the avalanche propagation can be reinterpreted in terms of a stochastic counting process. A single universality class can be defined from such analogy, and all statistical properties depend only on the distance to criticality. We also prove that interevent correlations emerge due to the hardening—even in the quasistatic limit—that can be interpreted as "aftershocks" and "foreshocks."

  15. Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models

    International Nuclear Information System (INIS)

    Steenbakkers, Rudi J A; Schieber, Jay D; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin

    2014-01-01

    We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi–Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated. (paper)

  16. A Single Mode Study of a Quasi-Geostrophic Convection-Driven Dynamo Model

    Science.gov (United States)

    Plumley, M.; Calkins, M. A.; Julien, K. A.; Tobias, S.

    2017-12-01

    Planetary magnetic fields are thought to be the product of hydromagnetic dynamo action. For Earth, this process occurs within the convecting, turbulent and rapidly rotating outer core, where the dynamics are characterized by low Rossby, low magnetic Prandtl and high Rayleigh numbers. Progress in studying dynamos has been limited by current computing capabilities and the difficulties in replicating the extreme values that define this setting. Asymptotic models that embrace these extreme parameter values and enforce the dominant balance of geostrophy provide an option for the study of convective flows with actual relevance to geophysics. The quasi-geostrophic dynamo model (QGDM) is a multiscale, fully-nonlinear Cartesian dynamo model that is valid in the asymptotic limit of low Rossby number. We investigate the QGDM using a simplified class of solutions that consist of a single horizontal wavenumber which enforces a horizontal structure on the solutions. This single mode study is used to explore multiscale time stepping techniques and analyze the influence of the magnetic field on convection.

  17. Static quadrupolar susceptibility for a Blume–Emery–Griffiths model based on the mean-field approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, A., E-mail: pawlak@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614 Poznań (Poland); Gülpınar, G. [Department of Physics, Dokuz Eylül University, 35160 İzmir (Turkey); Erdem, R. [Department of Physics, Akdeniz University, 07058 Antalya (Turkey); Ağartıoğlu, M. [Institute of Science, Dokuz Eylül University, 35160 İzmir (Turkey)

    2015-12-01

    The expressions for the dipolar and quadrupolar susceptibilities are obtained within the mean-field approximation in the Blume–Emery–Griffiths model. Temperature as well as crystal field dependences of the susceptibilities are investigated for two different phase diagram topologies which take place for K/J=3 and K/J=5.0.Their behavior near the second and first order transition points as well as multi-critical points such as tricritical, triple and critical endpoint is presented. It is found that in addition to the jumps connected with the phase transitions there are broad peaks in the quadrupolar susceptibility. It is indicated that these broad peaks lie on a prolongation of the first-order line from a triple point to a critical point ending the line of first-order transitions between two distinct paramagnetic phases. It is argued that the broad peaks are a reminiscence of very strong quadrupolar fluctuations at the critical point. The results reveal the fact that near ferromagnetic–paramagnetic phase transitions the quadrupolar susceptibility generally shows a jump whereas near the phase transition between two distinct paramagnetic phases it is an edge-like. - Highlights: • MFA calculation of the quadrupolar and dipolar susceptibility in BEG model is given • The crystal-field variation of susceptibilities near the multi-critical points is examined • There are broad peaks in the quadrupolar susceptibility in the vicinity of CP • These maxima are remembrances of the very strong quadrupolar Fluctuations.

  18. Analysis of the anomalous mean-field like properties of Gaussian core model in terms of entropy

    Science.gov (United States)

    Nandi, Manoj Kumar; Maitra Bhattacharyya, Sarika

    2018-01-01

    Studies of the Gaussian core model (GCM) have shown that it behaves like a mean-field model and the properties are quite different from standard glass former. In this work, we investigate the entropies, namely, the excess entropy (Sex) and the configurational entropy (Sc) and their different components to address these anomalies. Our study corroborates most of the earlier observations and also sheds new light on the high and low temperature dynamics. We find that unlike in standard glass former where high temperature dynamics is dominated by two-body correlation and low temperature by many-body correlations, in the GCM both high and low temperature dynamics are dominated by many-body correlations. We also find that the many-body entropy which is usually positive at low temperatures and is associated with activated dynamics is negative in the GCM suggesting suppression of activation. Interestingly despite the suppression of activation, the Adam-Gibbs (AG) relation that describes activated dynamics holds in the GCM, thus suggesting a non-activated contribution in AG relation. We also find an overlap between the AG relation and mode coupling power law regime leading to a power law behavior of Sc. From our analysis of this power law behavior, we predict that in the GCM the high temperature dynamics will disappear at dynamical transition temperature and below that there will be a transition to the activated regime. Our study further reveals that the activated regime in the GCM is quite narrow.

  19. Tuning critical failure with viscoelasticity: How aftershocks inhibit criticality in an analytical mean field model of fracture.

    Science.gov (United States)

    Baro Urbea, J.; Davidsen, J.

    2017-12-01

    The hypothesis of critical failure relates the presence of an ultimate stability point in the structural constitutive equation of materials to a divergence of characteristic scales in the microscopic dynamics responsible of deformation. Avalanche models involving critical failure have determined universality classes in different systems: from slip events in crystalline and amorphous materials to the jamming of granular media or the fracture of brittle materials. However, not all empirical failure processes exhibit the trademarks of critical failure. As an example, the statistical properties of ultrasonic acoustic events recorded during the failure of porous brittle materials are stationary, except for variations in the activity rate that can be interpreted in terms of aftershock and foreshock activity (J. Baró et al., PRL 2013).The rheological properties of materials introduce dissipation, usually reproduced in atomistic models as a hardening of the coarse-grained elements of the system. If the hardening is associated to a relaxation process the same mechanism is able to generate temporal correlations. We report the analytic solution of a mean field fracture model exemplifying how criticality and temporal correlations are tuned by transient hardening. We provide a physical meaning to the conceptual model by deriving the constitutive equation from the explicit representation of the transient hardening in terms of a generalized viscoelasticity model. The rate of 'aftershocks' is controlled by the temporal evolution of the viscoelastic creep. At the quasistatic limit, the moment release is invariant to rheology. Therefore, the lack of criticality is explained by the increase of the activity rate close to failure, i.e. 'foreshocks'. Finally, the avalanche propagation can be reinterpreted as a pure mathematical problem in terms of a stochastic counting process. The statistical properties depend only on the distance to a critical point, which is universal for any

  20. Stability of 4-dimensional space-time from the IIB matrix model via the improved mean field approximation

    International Nuclear Information System (INIS)

    Aoyama, Tatsumi; Kawai, Hikaru; Shibusa, Yuuichiro

    2006-01-01

    We investigate the origin of our four-dimensional space-time by considering dynamical aspects of the IIB matrix model using the improved mean field approximation. Previous works have focused on the specific choices of configurations as ansatz which preserve SO(d) rotational symmetry. In this report, an extended ansatz is proposed and examined up to a third-order approximation which includes both the SO(4) ansatz and the SO(7) ansatz in their respective limits. From the solutions of the self-consistency condition represented by the extrema of the free energy of the system, it is found that some of the solutions found in the SO(4) or SO(7) ansatz disappear in the extended ansatz. This implies that the extension of ansatz can be used to distinguish stable solutions from unstable solutions. It is also found that there is a non-trivial accumulation of extrema including the SO(4)-preserving solution, which may lead to the formation of a plateau. (author)

  1. Equation of state of isospin-asymmetric nuclear matter in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baozn; Chen Liewen

    2007-01-01

    Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, while the resulting density dependence of the symmetry energy at sub-saturation densities agrees with that extracted from the recent isospin diffusion data from intermediate energy heavy-ion reactions. The resulting equations of state have the special feature of being soft at intermediate densities but stiff at high densities naturally. With these constrained equations of state, it is found that the radius of a 1.4M o canonical neutron star is in the range of 11.9 km≤R≤13.1 km, and the maximum neutron star mass is around 2.0M o close to the recent observations

  2. Dynamical mean-field theory of noisy spiking neuron ensembles: Application to the Hodgkin-Huxley model

    International Nuclear Information System (INIS)

    Hasegawa, Hideo

    2003-01-01

    A dynamical mean-field approximation (DMA) previously proposed by the present author [H. Hasegawa, Phys. Rev E 67, 041903 (2003)] has been extended to ensembles described by a general noisy spiking neuron model. Ensembles of N-unit neurons, each of which is expressed by coupled K-dimensional differential equations (DEs), are assumed to be subject to spatially correlated white noises. The original KN-dimensional stochastic DEs have been replaced by K(K+2)-dimensional deterministic DEs expressed in terms of means and the second-order moments of local and global variables: the fourth-order contributions are taken into account by the Gaussian decoupling approximation. Our DMA has been applied to an ensemble of Hodgkin-Huxley (HH) neurons (K=4), for which effects of the noise, the coupling strength, and the ensemble size on the response to a single-spike input have been investigated. Numerical results calculated by the DMA theory are in good agreement with those obtained by direct simulations, although the former computation is about a thousand times faster than the latter for a typical HH neuron ensemble with N=100

  3. Perturbation Theory versus Thermodynamic Integration. Beyond a Mean-Field Treatment of Pair Correlations in a Nematic Model Liquid Crystal.

    Science.gov (United States)

    Schoen, Martin; Haslam, Andrew J; Jackson, George

    2017-10-24

    The phase behavior and structure of a simple square-well bulk fluid with anisotropic interactions is described in detail. The orientation dependence of the intermolecular interactions allows for the formation of a nematic liquid-crystalline phase in addition to the more conventional isotropic gas and liquid phases. A version of classical density functional theory (DFT) is employed to determine the properties of the model, and comparisons are made with the corresponding data from Monte Carlo (MC) computer simulations in both the grand canonical and canonical ensembles, providing a benchmark to assess the adequacy of the DFT results. A novel element of the DFT approach is the assumption that the structure of the fluid is dominated by intermolecular interactions in the isotropic fluid. A so-called augmented modified mean-field (AMMF) approximation is employed accounting for the influence of anisotropic interactions. The AMMF approximation becomes exact in the limit of vanishing density. We discuss advantages and disadvantages of the AMMF approximation with respect to an accurate description of isotropic and nematic branches of the phase diagram, the degree of orientational order, and orientation-dependent pair correlations. The performance of the AMMF approximations is found to be good in comparison with the MC data; the AMMF approximation has clear advantages with respect to an accurate and more detailed description of the fluid structure. Possible strategies to improve the DFT are discussed.

  4. Mean-field study of correlation-induced antisymmetric spin-orbit coupling in a two-orbital honeycomb model

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2018-05-01

    We investigate a two-orbital Hubbard model on a honeycomb structure, with a special focus on the antisymmetric spin-orbit coupling (ASOC) induced by symmetry breaking in the electronic degrees of freedom. By investigating the ground-state phase diagram by the mean-field approximation in addition to the analysis in the strong correlation limit, we obtain a variety of symmetry-broken phases that induce different types of effective ASOCs by breaking of spatial inversion symmetry. We find several unusual properties emergent from the ASOCs, such as a linear magnetoelectric effect in a spin-orbital ordered phase at 1/4 filling and a spin splitting in the band structure in charge ordered phases at 1/4 and 1/2 fillings. We also show that a staggered potential on the honeycomb structure leads to another type of ASOC, which gives rise to a valley splitting in the band structure at 1/2 filling. We discuss the experimental relevance of our results to candidate materials including transition metal dichalcogenides and trichalcogenides.

  5. Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and Mean-Field Properties

    Science.gov (United States)

    Klaiman, S.; Streltsov, A. I.; Alon, O. E.

    2018-04-01

    A solvable model of a generic trapped bosonic mixture, N 1 bosons of mass m 1 and N 2 bosons of mass m 2 trapped in an harmonic potential of frequency ω and interacting by harmonic inter-particle interactions of strengths λ 1, λ 2, and λ 12, is discussed. It has recently been shown for the ground state [J. Phys. A 50, 295002 (2017)] that in the infinite-particle limit, when the interaction parameters λ 1(N 1 ‑ 1), λ 2(N 2 ‑ 1), λ 12 N 1, λ 12 N 2 are held fixed, each of the species is 100% condensed and its density per particle as well as the total energy per particle are given by the solution of the coupled Gross-Pitaevskii equations of the mixture. In the present work we investigate properties of the trapped generic mixture at the infinite-particle limit, and find differences between the many-body and mean-field descriptions of the mixture, despite each species being 100%. We compute analytically and analyze, both for the mixture and for each species, the center-of-mass position and momentum variances, their uncertainty product, the angular-momentum variance, as well as the overlap of the exact and Gross-Pitaevskii wavefunctions of the mixture. The results obtained in this work can be considered as a step forward in characterizing how important are many-body effects in a fully condensed trapped bosonic mixture at the infinite-particle limit.

  6. An MHD Dynamo Experiment.

    Science.gov (United States)

    O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.

    1997-11-01

    A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.

  7. Stochastic disk dynamo as a model of reversals of the Earth's magnetic field

    International Nuclear Information System (INIS)

    Ito, H.M.

    1988-01-01

    A stochastic model is given of a system composed of N similar disk dynamos interacting with one another. The time evolution of the system is governed by a master equation of the class introduced by van Kampen as relevant to stochastic macrosystems. In the model, reversals of the Earth's magnetic field are regarded as large deviations caused by a small random force of O(N/sup -1/2/) from one of the field polarities to the other. Reversal processes are studied by simulation, which shows that the model explains well the activities of the paleomagnetic field inclusive of statistical laws of the reversal sequence and the intensity distribution. Comparison are made between the model and dynamical disk dynamo models

  8. Derivation and precision of mean field electrodynamics with mesoscale fluctuations

    Science.gov (United States)

    Zhou, Hongzhe; Blackman, Eric G.

    2018-06-01

    Mean field electrodynamics (MFE) facilitates practical modelling of secular, large scale properties of astrophysical or laboratory systems with fluctuations. Practitioners commonly assume wide scale separation between mean and fluctuating quantities, to justify equality of ensemble and spatial or temporal averages. Often however, real systems do not exhibit such scale separation. This raises two questions: (I) What are the appropriate generalized equations of MFE in the presence of mesoscale fluctuations? (II) How precise are theoretical predictions from MFE? We address both by first deriving the equations of MFE for different types of averaging, along with mesoscale correction terms that depend on the ratio of averaging scale to variation scale of the mean. We then show that even if these terms are small, predictions of MFE can still have a significant precision error. This error has an intrinsic contribution from the dynamo input parameters and a filtering contribution from differences in the way observations and theory are projected through the measurement kernel. Minimizing the sum of these contributions can produce an optimal scale of averaging that makes the theory maximally precise. The precision error is important to quantify when comparing to observations because it quantifies the resolution of predictive power. We exemplify these principles for galactic dynamos, comment on broader implications, and identify possibilities for further work.

  9. Nonasymptotic mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-12-01

    Mean-field games have been studied under the assumption of very large number of players. For such large systems, the basic idea consists to approximate large games by a stylized game model with a continuum of players. The approach has been shown to be useful in some applications. However, the stylized game model with continuum of decision-makers is rarely observed in practice and the approximation proposed in the asymptotic regime is meaningless for networked systems with few entities. In this paper we propose a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through a dynamic auction with asymmetric valuation distributions.

  10. Nonasymptotic mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-12-01

    Mean-field games have been studied under the assumption of very large number of players. For such large systems, the basic idea consists of approximating large games by a stylized game model with a continuum of players. The approach has been shown to be useful in some applications. However, the stylized game model with continuum of decision-makers is rarely observed in practice and the approximation proposed in the asymptotic regime is meaningless for networks with few entities. In this paper, we propose a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through various examples including dynamic auction with asymmetric valuation distributions, and spiteful bidders.

  11. Recovery from Maunder-like Grand Minima in a Babcock–Leighton Solar Dynamo Model

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark

    2018-06-01

    The Sun occasionally goes through Maunder-like extended grand minima when its magnetic activity drops considerably from the normal activity level for several decades. Many possible theories have been proposed to explain the origin of these minima. However, how the Sun managed to recover from such inactive phases every time is even more enigmatic. The Babcock–Leighton type dynamos, which are successful in explaining many features of the solar cycle remarkably well, are not expected to operate during grand minima due to the lack of a sufficient number of sunspots. In this Letter, we explore the question of how the Sun could recover from grand minima through the Babcock–Leighton dynamo. In our three-dimensional dynamo model, grand minima are produced spontaneously as a result of random variations in the tilt angle of emerging active regions. We find that the Babcock–Leighton process can still operate during grand minima with only a minimal number of sunspots, and that the model can emerge from such phases without the need for an additional generation mechanism for the poloidal field. The essential ingredient in our model is a downward magnetic pumping, which inhibits the diffusion of the magnetic flux across the solar surface.

  12. Continuous time finite state mean field games

    KAUST Repository

    Gomes, Diogo A.; Mohr, Joana; Souza, Rafael Rigã o

    2013-01-01

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N→∞ of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games. © 2013 Springer Science+Business Media New York.

  13. Continuous time finite state mean field games

    KAUST Repository

    Gomes, Diogo A.

    2013-04-23

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N→∞ of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games. © 2013 Springer Science+Business Media New York.

  14. Continuous Time Finite State Mean Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diogo A., E-mail: dgomes@math.ist.utl.pt [Instituto Superior Tecnico, Center for Mathematical Analysis, Geometry, and Dynamical Systems, Departamento de Matematica (Portugal); Mohr, Joana, E-mail: joana.mohr@ufrgs.br; Souza, Rafael Rigao, E-mail: rafars@mat.ufrgs.br [UFRGS, Instituto de Matematica (Brazil)

    2013-08-01

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N{yields}{infinity} of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games.

  15. Continuous Time Finite State Mean Field Games

    International Nuclear Information System (INIS)

    Gomes, Diogo A.; Mohr, Joana; Souza, Rafael Rigão

    2013-01-01

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N→∞ of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games

  16. Mean-field model for the interference of matter-waves from a three-dimensional optical trap

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K.; Muruganandam, Paulsamy

    2003-01-01

    Using the mean-field time-dependent Gross-Pitaevskii equation we study the formation of a repulsive Bose-Einstein condensate on a combined optical and harmonic traps in two and three dimensions and subsequent generation of the interference pattern upon the removal of the combined traps as in the experiment by Greiner et al. [Nature (London) 415 (2002) 39]. For optical traps of moderate strength, interference pattern of 27 (9) prominent bright spots is found to be formed in three (two) dimensions on a cubic (square) lattice in agreement with experiment. Similar interference pattern can also be formed upon removal of the optical lattice trap only. The pattern so formed can oscillate for a long time in the harmonic trap which can be observed experimentally

  17. Application of the relativistic mean-field mass model to the r-process and the influence of mass uncertainties

    International Nuclear Information System (INIS)

    Sun, B.; Montes, F.; Geng, L. S.; Geissel, H.; Litvinov, Yu. A.; Meng, J.

    2008-01-01

    A new mass table calculated by the relativistic mean-field approach with the state-dependent BCS method for the pairing correlation is applied for the first time to study r-process nucleosynthesis. The solar r-process abundance is well reproduced within a waiting-point approximation approach. Using an exponential fitting procedure to find the required astrophysical conditions, the influence of mass uncertainty is investigated. The r-process calculations using the FRDM, ETFSI-Q, and HFB-13 mass tables have been used for that purpose. It is found that the nuclear physical uncertainty can significantly influence the deduced astrophysical conditions for the r-process site. In addition, the influence of the shell closure and shape transition have been examined in detail in the r-process simulations

  18. Transitions in rapidly rotating convection dynamos

    Science.gov (United States)

    Tilgner, A.

    2013-12-01

    It is commonly assumed that buoyancy in the fluid core powers the geodynamo. We study here the minimal model of a convection driven dynamo, which is a horizontal plane layer in a gravity field, filled with electrically conducting fluid, heated from below and cooled from above, and rotating about a vertical axis. Such a plane layer may be viewed as a local approximation to the geophysically more relevant spherical geometry. The numerical simulations have been run on graphics processing units with at least 960 cores. If the convection is driven stronger and stronger at fixed rotation rate, the flow behaves at some point as if it was not rotating. This transition shows in the scaling of the heat transport which can be used to distinguish slow from rapid rotation. One expects dynamos to behave differently in these two flow regimes. But even within the convection flows which are rapidly rotating according to this criterion, it will be shown that different types of dynamos exist. In one state, the magnetic field strength obeys a scaling indicative of a magnetostrophic balance, in which the Lorentz force is in equilibrium with the Coriolis force. The flow in this case is helical. A different state exists at higher magnetic Reynolds numbers, in which the magnetic energy obeys a different scaling law and the helicity of the flow is much reduced. As one increases the Rayleigh number, all other parameters kept constant, one may find both types of dynamos separated by an interval of Rayleigh numbers in which there are no dynamos at all. The effect of these transitions on energy dissipation and mean field generation have also been studied.

  19. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark

    2017-09-01

    We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

  20. Helicity of Solar Active Regions from a Dynamo Model Piyali ...

    Indian Academy of Sciences (India)

    - tions with positive and negative helicities are denoted by '+' and 'o' respectively. A flux eruption takes place in our model whenever the toroidal field at the bottom of the SCZ exceeds a critical value. Whenever an eruption takes place in our ...

  1. Infinite number of pure equilibrium states, Parisi order parameter and the ultrametric topology: a simple mean field model

    International Nuclear Information System (INIS)

    Cassandro, M.; Olivieri, E.; Picco, P.

    1984-10-01

    We discuss and solve by standard method a simple model with long range random interaction. In this model we can rigorously define and explicitly work out many peculiar features already found in the Sherrington-Kirpatrick model only by means of replica symmetry breaking and/or via numerical simulations

  2. Calculation of the Dielectric Constant as a Function of Temperature Close to the Smectic A-Smectic B Transition in B5 Using the Mean Field Model

    Directory of Open Access Journals (Sweden)

    Hamit Yurtseven

    2012-01-01

    Full Text Available The temperature dependence of the static dielectric constant ( is calculated close to the smectic A-smectic B ( transition ( = 71.3°C for the liquid crystal compound B5. By expanding the free energy in terms of the order parameter in the mean field theory, the expression for the dielectric susceptibility (dielectric constant is derived and is fitted to the experimental data for which was obtained at the field strengths of 0 and 67 kV/cm from literature. Coefficients in the free energy expansion are determined from our fit for the transition of B5. Our results show that the observed behaviour of the dielectric constant close to the transition in B5 can be described satisfactorily by our mean field model.

  3. ESTIMATING THE DEEP SOLAR MERIDIONAL CIRCULATION USING MAGNETIC OBSERVATIONS AND A DYNAMO MODEL: A VARIATIONAL APPROACH

    International Nuclear Information System (INIS)

    Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha; Fournier, Alexandre; Talagrand, Olivier

    2015-01-01

    We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales

  4. ESTIMATING THE DEEP SOLAR MERIDIONAL CIRCULATION USING MAGNETIC OBSERVATIONS AND A DYNAMO MODEL: A VARIATIONAL APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/IRFU Université Paris-Diderot CNRS/INSU, F-91191 Gif-Sur-Yvette (France); Fournier, Alexandre [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot UMR 7154 CNRS, F-75005 Paris (France); Talagrand, Olivier [Laboratoire de météorologie dynamique, UMR 8539, Ecole Normale Supérieure, Paris Cedex 05 (France)

    2015-12-01

    We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales.

  5. Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions

    KAUST Repository

    Haskovec, Jan

    2013-01-01

    separating them. This makes the model scale-free and is motivated by recent extensive observations of starling flocks, suggesting that the interaction ruling animal collective behavior depends on topological rather than the metric distance. We study

  6. Numerical calculation of spectral functions of the Bose-Hubbard model using bosonic dynamical mean-field theory

    Czech Academy of Sciences Publication Activity Database

    Panas, J.; Kauch, Anna; Kuneš, Jan; Vollhardt, D.; Byczuk, K.

    2015-01-01

    Roč. 92, č. 4 (2015), "045102-1"-"045102-9" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : Bose-Hubbard model * Bose-Einstein condensation * superfluidity Subject RIV: BE - Theoretical Physics Impact factor: 3.736, year: 2014

  7. Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics

    Science.gov (United States)

    Lubashevsky, I.; Kanemoto, S.

    2010-07-01

    A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as “altruism self-organization”. For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.

  8. Nonasymptotic mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-01-01

    a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through various examples including dynamic auction with asymmetric

  9. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    International Nuclear Information System (INIS)

    Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi

    2015-01-01

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed

  10. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Belucz, Bernadett; Forgács-Dajka, Emese [Eötvös University, Department of Astronomy, 1518 Budapest, Pf. 32 (Hungary); Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2015-06-20

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  11. The solar dynamo

    International Nuclear Information System (INIS)

    Brandenburg, A.; Helsinki Univ.; Tuominen, I.

    1991-01-01

    The traditional αΩ-dynamo as a model for the solar cycle has been successful in explaining the butterfly diagram, phase relations between poloidal and toroidal field, and polar branch migration features. Observational and theoretical achievements in recent years have however shaken this picture. The current trend is towards dynamos operating in the overshoot region of the convection zone. Nevertheless, there are many open questions and a consistent picture has not been established. In this paper we compare recent approaches and discuss remaining problems. (orig.)

  12. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  13. Mean-field results of the multiple-band extended Hubbard model for the square-planar CuO2 lattice

    International Nuclear Information System (INIS)

    Nimkar, S.; Sarma, D.D.; Krishnamurthy, H.R.; Ramasesha, S.

    1993-01-01

    We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO 2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J eff , the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T c materials arising from photoemission and neutron-scattering experiments

  14. Anomalous diffusion in the evolution of soccer championship scores: Real data, mean-field analysis, and an agent-based model

    Science.gov (United States)

    da Silva, Roberto; Vainstein, Mendeli H.; Gonçalves, Sebastián; Paula, Felipe S. F.

    2013-08-01

    Statistics of soccer tournament scores based on the double round robin system of several countries are studied. Exploring the dynamics of team scoring during tournament seasons from recent years we find evidences of superdiffusion. A mean-field analysis results in a drift velocity equal to that of real data but in a different diffusion coefficient. Along with the analysis of real data we present the results of simulations of soccer tournaments obtained by an agent-based model which successfully describes the final scoring distribution [da Silva , Comput. Phys. Commun.CPHCBZ0010-465510.1016/j.cpc.2012.10.030 184, 661 (2013)]. Such model yields random walks of scores over time with the same anomalous diffusion as observed in real data.

  15. Nonasymptotic mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-01-01

    propose a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through a dynamic auction with asymmetric valuation distributions.

  16. Transition to Δ matter from hot, dense nuclear matter within a relativistic mean field formulation of the nonlinear σ and ω model

    International Nuclear Information System (INIS)

    Li, Z.; Zhuo, Y.; Li, Z.; Mao, G.; Zhuo, Y.; Mao, G.; Greiner, W.

    1997-01-01

    An investigation of the transition to Δ matter is performed based on a relativistic mean field formulation of the nonlinear σ and ω model. We demonstrate that in addition to the Δ-meson coupling, the occurrence of the baryon resonance isomer also depends on the nucleon-meson coupling. Our results show that for the favored phenomenological value of m * and K, the Δ isomer exists at baryon density ∼2 3ρ 0 if β=1.31 is adopted. For universal coupling of the nucleon and Δ, the Δ density at baryon density ∼2 3ρ 0 and temperature ∼0.4 0.5 fm -1 is about normal nuclear matter density, which is in accord with a recent experimental finding. copyright 1997 The American Physical Society

  17. Band mixing effects in mean field theories

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1989-01-01

    The 1/N expansion method, which is an angular momentum projected mean field theory, is used to investigate the nature of electromagnetic transitions in the interacting boson model (IBM). Conversely, comparison with the exact IBM results sheds light on the range of validity of the mean field theory. It is shown that the projected mean field results for the E2 transitions among the ground, β and γ bands are incomplete for the spin dependent terms and it is essential to include band mixing effect for a correct (Mikhailov) analysis of E2 data. The algebraic expressions derived are general and will be useful in the analysis of experimental data in terms of both the sd and sdg boson models. 17 refs., 7 figs., 8 tabs

  18. Mean Field Game for Marriage

    KAUST Repository

    Bauso, Dario; Dia, Ben Mansour; Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul

    2014-01-01

    The myth of marriage has been and is still a fascinating historical societal phenomenon. Paradoxically, the empirical divorce rates are at an all-time high. This work describes a unique paradigm for preserving relationships and marital stability from mean-field game theory. We show that optimizing the long-term well-being via effort and society feeling state distribution will help in stabilizing relationships.

  19. Mean Field Game for Marriage

    KAUST Repository

    Bauso, Dario

    2014-01-06

    The myth of marriage has been and is still a fascinating historical societal phenomenon. Paradoxically, the empirical divorce rates are at an all-time high. This work describes a unique paradigm for preserving relationships and marital stability from mean-field game theory. We show that optimizing the long-term well-being via effort and society feeling state distribution will help in stabilizing relationships.

  20. Accurate mean-field modeling of the Barkhausen noise power in ferromagnetic materials, using a positive-feedback theory of ferromagnetism

    Science.gov (United States)

    Harrison, R. G.

    2015-07-01

    A mean-field positive-feedback (PFB) theory of ferromagnetism is used to explain the origin of Barkhausen noise (BN) and to show why it is most pronounced in the irreversible regions of the hysteresis loop. By incorporating the ABBM-Sablik model of BN into the PFB theory, we obtain analytical solutions that simultaneously describe both the major hysteresis loop and, by calculating separate expressions for the differential susceptibility in the irreversible and reversible regions, the BN power response at all points of the loop. The PFB theory depends on summing components of the applied field, in particular, the non-monotonic field-magnetization relationship characterizing hysteresis, associated with physical processes occurring in the material. The resulting physical model is then validated by detailed comparisons with measured single-peak BN data in three different steels. It also agrees with the well-known influence of a demagnetizing field on the position and shape of these peaks. The results could form the basis of a physics-based method for modeling and understanding the significance of the observed single-peak (and in multi-constituent materials, multi-peak) BN envelope responses seen in contemporary applications of BN, such as quality control in manufacturing, non-destructive testing, and monitoring the microstructural state of ferromagnetic materials.

  1. Mean-field theory and solitonic matter

    International Nuclear Information System (INIS)

    Cohen, T.D.

    1989-01-01

    Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)

  2. Mean-field Ensemble Kalman Filter

    KAUST Repository

    Law, Kody; Tembine, Hamidou; Tempone, Raul

    2015-01-01

    A proof of convergence of the standard EnKF generalized to non-Gaussian state space models is provided. A density-based deterministic approximation of the mean-field limiting EnKF (MFEnKF) is proposed, consisting of a PDE solver and a quadrature

  3. Configuration mixing of mean-field states

    International Nuclear Information System (INIS)

    Bender, M; Heenen, P-H

    2005-01-01

    Starting from self-consistent mean-field models, we discuss how to include correlations from fluctuations in collective degrees of freedom through symmetry restoration and configuration mixing, which give access to ground-state correlations and collective excitations. As an example for the method, we discuss the spectroscopy of neutron-deficient Pb isotopes

  4. Dynamos and MHD theory of turbulence suppression

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu; Itoh, Sanae-I; Itoh, Kimitaka

    2003-12-01

    Characteristics of electrically-conducting media are reviewed from the macroscopic viewpoint based on the mean-field magnetohydrodynamics, while being compared with the methodology and knowledge in fluid mechanics. The themes covered in this review range from the generation mechanism of stellar magnetic fields (dynamo) to transport properties in fusion. The primary concern here is to see the characteristics common to these apparently different phenomena, within the framework of the mean-field theory. Owing to the intrinsic limitation of the approach, the present discussions are limited more or less to specific aspects of phenomena. They are supplemented with the reference to theoretical, numerical, and observational approaches intrinsic to each theme. In the description of dynamo phenomena, an emphasis is put on the cross-helicity dynamo. Features common to the stellar magnetic-field generation and the rotational-motion drive in toroidal plasmas are illustrated on this basis. (author)

  5. Dynamics of a quantum spin liquid beyond integrability: The Kitaev-Heisenberg-Γ model in an augmented parton mean-field theory

    Science.gov (United States)

    Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich

    2018-04-01

    We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.

  6. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  7. Stochastic mean-field theory: Method and application to the disordered Bose-Hubbard model at finite temperature and speckle disorder

    International Nuclear Information System (INIS)

    Bissbort, Ulf; Hofstetter, Walter; Thomale, Ronny

    2010-01-01

    We discuss the stochastic mean-field theory (SMFT) method, which is a new approach for describing disordered Bose systems in the thermodynamic limit including localization and dimensional effects. We explicate the method in detail and apply it to the disordered Bose-Hubbard model at finite temperature, with on-site box disorder, as well as experimentally relevant unbounded speckle disorder. We find that disorder-induced condensation and re-entrant behavior at constant filling are only possible at low temperatures, beyond the reach of current experiments [M. Pasienski, D. McKay, M. White, and B. DeMarco, e-print arXiv:0908.1182]. Including off-diagonal hopping disorder as well, we investigate its effect on the phase diagram in addition to pure on-site disorder. To make connection to present experiments on a quantitative level, we also combine SMFT with an LDA approach and obtain the condensate fraction in the presence of an external trapping potential.

  8. Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    Science.gov (United States)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Sleigh, J. W.

    2013-04-01

    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the

  9. Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    Directory of Open Access Journals (Sweden)

    Moira L. Steyn-Ross

    2013-05-01

    Full Text Available Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1  Hz similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial symmetry-breaking bifurcation that is modulated by a Hopf (temporal instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural

  10. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro

    2011-01-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits

  11. GRAND MINIMA AND EQUATORWARD PROPAGATION IN A CYCLING STELLAR CONVECTIVE DYNAMO

    Energy Technology Data Exchange (ETDEWEB)

    Augustson, Kyle; Miesch, Mark [High Altitude Observatory, Center Green 1, Boulder, CO 80301 (United States); Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/DSM–CNRS–Université Paris Diderot, IRFU/SAp, Gif-sur-Yvette (France); Toomre, Juri [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2015-08-20

    The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.

  12. Dynamo: A Model Transition Framework for Dynamic Stability Control and Body Mass Manipulation

    Science.gov (United States)

    2011-11-01

    driving at high speed, and you turn the steering wheel hard to the right and slam on the brakes, then you will end up in the oversteer regime. At the...sensors (GPS, IMU, LIDAR ) for vehicle control. Figure 17: Dynamo high-speed small UGV hardware platform We will perform experiments to measure the MTC

  13. A Coupled 2 × 2D Babcock-Leighton Solar Dynamo Model. I. Surface Magnetic Flux Evolution

    Science.gov (United States)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud

    2015-09-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.

  14. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. I. SURFACE MAGNETIC FLUX EVOLUTION

    International Nuclear Information System (INIS)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud

    2015-01-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics

  15. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. I. SURFACE MAGNETIC FLUX EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de physique, Université de Montréal, 2900 boul. Édouard-Montpetit, Montréal, QC, H3T 1J4 (Canada)

    2015-09-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.

  16. Solar and Stellar Dynamos Saas-Fee Advanced Course 39 Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    2013-01-01

    Astrophysical dynamos are at the heart of cosmic magnetic fields of a wide range of scales, from planets and stars to entire galaxies. This book presents a thorough, step-by-step introduction to solar and stellar dynamos. Looking first at the ultimate origin of cosmic seed magnetic fields, the antagonists of field amplification are next considered: resistive decay, flux expulsion, and flows ruled out by anti-dynamo theorems. Two kinematic flows that can act as dynamos are then studied: the Roberts cell and the CP-flow. Mean-field electrodynamics and derivation of the mean-field dynamo equations lead to the alpha Omega-dynamo, the flux transport dynamo, and dynamos based on the Babcock-Leighton mechanism. Alternatives to the mean-field theory are also presented, as are global MHD dynamo simulations. Fluctuations and grand minima in the solar cycle are discussed in terms of dynamo modulations through stochastic forcing and nonlinear effects. The book concludes with an overview of the major challenges in underst...

  17. Stable Alfven wave dynamo action in the reversed field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.

    1984-01-01

    Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. Static quasi-linear Alfven wave calculations have shown that dynamo emfs on the order of eta vector J are possible. This suggested a possible explanation of RFP behavior and a new (externally driven) mechanism for extending operation and controlling field profiles (possibly reducing plasma transport). This thesis demonstrates that the dynamo emf can quickly induce plasma currents whose emf cancels the dynamo effect. This thesis also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  18. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...

  19. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou

    2011-09-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits and illustrate them with numerical examples. © 2011 IEEE.

  20. Pedestrian Flow in the Mean Field Limit

    KAUST Repository

    Haji Ali, Abdul Lateef

    2012-11-01

    We study the mean-field limit of a particle-based system modeling the behavior of many indistinguishable pedestrians as their number increases. The base model is a modified version of Helbing\\'s social force model. In the mean-field limit, the time-dependent density of two-dimensional pedestrians satisfies a four-dimensional integro-differential Fokker-Planck equation. To approximate the solution of the Fokker-Planck equation we use a time-splitting approach and solve the diffusion part using a Crank-Nicholson method. The advection part is solved using a Lax-Wendroff-Leveque method or an upwind Backward Euler method depending on the advection speed. Moreover, we use multilevel Monte Carlo to estimate observables from the particle-based system. We discuss these numerical methods, and present numerical results showing the convergence of observables that were calculated using the particle-based model as the number of pedestrians increases to those calculated using the probability density function satisfying the Fokker-Planck equation.

  1. Dynamics of capillary condensation in lattice gas models of confined fluids: a comparison of dynamic mean field theory with dynamic Monte Carlo simulations.

    Science.gov (United States)

    Edison, John R; Monson, Peter A

    2013-06-21

    This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)]. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.

  2. Stable Alfven-wave dynamo action in the reversed-field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.

    1984-01-01

    Previous theoretical work has suggested that Alfven waves may be related to the anomalous toroidal magnetic flux generation and extended (over classical expectations) discharge times observed in the reversed-field pinch. This thesis examines the dynamo action of stable Alfven waves as a means of generating toroidal flux. Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. This technique is readily extendable to other plasmas in which dynamic stable model action is of interest. Such plasmas include Alfven wave current-drive and plasma heating for fusion devices, as well as astrophysical and geophysical dynamo systems. This study also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  3. Single-Column Modeling of Convection During the CINDY2011/DYNAMO Field Campaign With the CNRM Climate Model Version 6

    Science.gov (United States)

    Abdel-Lathif, Ahmat Younous; Roehrig, Romain; Beau, Isabelle; Douville, Hervé

    2018-03-01

    A single-column model (SCM) approach is used to assess the CNRM climate model (CNRM-CM) version 6 ability to represent the properties of the apparent heat source (Q1) and moisture sink (Q2) as observed during the 3 month CINDY2011/DYNAMO field campaign, over its Northern Sounding Array (NSA). The performance of the CNRM SCM is evaluated in a constrained configuration in which the latent and sensible heat surface fluxes are prescribed, as, when forced by observed sea surface temperature, the model is strongly limited by the underestimate of the surface fluxes, most probably related to the SCM forcing itself. The model exhibits a significant cold bias in the upper troposphere, near 200 hPa, and strong wet biases close to the surface and above 700 hPa. The analysis of the Q1 and Q2 profile distributions emphasizes the properties of the convective parameterization of the CNRM-CM physics. The distribution of the Q2 profile is particularly challenging. The model strongly underestimates the frequency of occurrence of the deep moistening profiles, which likely involve misrepresentation of the shallow and congestus convection. Finally, a statistical approach is used to objectively define atmospheric regimes and construct a typical convection life cycle. A composite analysis shows that the CNRM SCM captures the general transition from bottom-heavy to mid-heavy to top-heavy convective heating. Some model errors are shown to be related to the stratiform regimes. The moistening observed during the shallow and congestus convection regimes also requires further improvements of this CNRM-CM physics.

  4. Risk-sensitive mean-field games

    KAUST Repository

    Tembine, Hamidou

    2014-04-01

    In this paper, we study a class of risk-sensitive mean-field stochastic differential games. We show that under appropriate regularity conditions, the mean-field value of the stochastic differential game with exponentiated integral cost functional coincides with the value function satisfying a Hamilton -Jacobi- Bellman (HJB) equation with an additional quadratic term. We provide an explicit solution of the mean-field best response when the instantaneous cost functions are log-quadratic and the state dynamics are affine in the control. An equivalent mean-field risk-neutral problem is formulated and the corresponding mean-field equilibria are characterized in terms of backward-forward macroscopic McKean-Vlasov equations, Fokker-Planck-Kolmogorov equations, and HJB equations. We provide numerical examples on the mean field behavior to illustrate both linear and McKean-Vlasov dynamics. © 1963-2012 IEEE.

  5. Risk-sensitive mean-field games

    KAUST Repository

    Tembine, Hamidou; Zhu, Quanyan; Başar, Tamer

    2014-01-01

    In this paper, we study a class of risk-sensitive mean-field stochastic differential games. We show that under appropriate regularity conditions, the mean-field value of the stochastic differential game with exponentiated integral cost functional coincides with the value function satisfying a Hamilton -Jacobi- Bellman (HJB) equation with an additional quadratic term. We provide an explicit solution of the mean-field best response when the instantaneous cost functions are log-quadratic and the state dynamics are affine in the control. An equivalent mean-field risk-neutral problem is formulated and the corresponding mean-field equilibria are characterized in terms of backward-forward macroscopic McKean-Vlasov equations, Fokker-Planck-Kolmogorov equations, and HJB equations. We provide numerical examples on the mean field behavior to illustrate both linear and McKean-Vlasov dynamics. © 1963-2012 IEEE.

  6. Mean-field Ensemble Kalman Filter

    KAUST Repository

    Law, Kody

    2015-01-07

    A proof of convergence of the standard EnKF generalized to non-Gaussian state space models is provided. A density-based deterministic approximation of the mean-field limiting EnKF (MFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for d < 2 . The fidelity of approximation of the true distribution is also established using an extension of total variation metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  7. Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation

    International Nuclear Information System (INIS)

    Hegna, C.C.

    1997-08-01

    The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted

  8. Extended Deterministic Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2016-04-21

    In this paper, we consider mean-field games where the interaction of each player with the mean field takes into account not only the states of the players but also their collective behavior. To do so, we develop a random variable framework that is particularly convenient for these problems. We prove an existence result for extended mean-field games and establish uniqueness conditions. In the last section, we consider the Master Equation and discuss properties of its solutions.

  9. Extended Deterministic Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Voskanyan, Vardan K.

    2016-01-01

    In this paper, we consider mean-field games where the interaction of each player with the mean field takes into account not only the states of the players but also their collective behavior. To do so, we develop a random variable framework that is particularly convenient for these problems. We prove an existence result for extended mean-field games and establish uniqueness conditions. In the last section, we consider the Master Equation and discuss properties of its solutions.

  10. Effective masses and the nuclear mean field

    International Nuclear Information System (INIS)

    Mahaux, C.; Sartor, R.

    1985-01-01

    The effective mass characterizes the energy dependence of the empirical average nuclear potential. This energy dependence has two different sources, namely the nonlocality in space of the microscopic mean field on the one hand, and its true energy dependence on the other hand. Correspondingly it is convenient to divide the effective mass into two components, the k-mass and the ω-mass. The latter is responsible for the existence of a peak in the energy dependence of the effective mass. This peak is located near the Fermi energy in nuclear matter and in nuclei, as well as in the electron gas, the hard sphere Fermi gas and liquid helium 3. A related phenomenon is the existence of a low energy anomaly in the energy dependence of the optical model potential between two heavy ions. (orig.)

  11. Nonequilibrium dynamical mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Martin

    2009-12-21

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  12. Nonequilibrium dynamical mean-field theory

    International Nuclear Information System (INIS)

    Eckstein, Martin

    2009-01-01

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  13. Mean Field Analysis of Quantum Annealing Correction.

    Science.gov (United States)

    Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A

    2016-06-03

    Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.

  14. Time independent mean-field theory

    International Nuclear Information System (INIS)

    Negele, J.W.

    1980-02-01

    The physical and theoretical motivations for the time-dependent mean-field theory are presented, and the successes and limitations of the time-dependent Hartree-Fock initial-vaue problem are reviewed. New theoretical developments are described in the treatment of two-body correlations and the formulation of a quantum mean-field theory of large-amplitude collective motion and tunneling decay. Finally, the mean-field theory is used to obtain new insights into the phenomenon of pion condensation in finite nuclei. 18 figures

  15. Dynamo generated by the centrifugal instability

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-10-01

    We present a scenario for magnetic field amplification where an electrically conducting fluid is confined in a differentially rotating, spherical shell with thin aspect ratio. When the angular momentum sufficiently decreases outwards, a hydrodynamic instability develops in the equatorial region, characterized by pairs of counter-rotating toroidal vortices similar to those observed in cylindrical Couette flow. These spherical Taylor-Couette vortices generate a subcritical dynamo magnetic field dominated by nonaxisymmetric components. We show that the critical magnetic Reynolds number seems to reach a constant value at large Reynolds number and that the global rotation can strongly decrease the dynamo onset. Our numerical results are understood within the framework of a simple dynamical system, and we propose a low-dimensional model for subcritical dynamo bifurcations. Implications for both laboratory dynamos and astrophysical magnetic fields are finally discussed.

  16. Mean field games for cognitive radio networks

    KAUST Repository

    Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro

    2012-01-01

    In this paper we study mobility effect and power saving in cognitive radio networks using mean field games. We consider two types of users: primary and secondary users. When active, each secondary transmitter-receiver uses carrier sensing

  17. Mean-field games for marriage

    KAUST Repository

    Bauso, Dario

    2014-05-07

    This article examines mean-field games for marriage. The results support the argument that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize marriage. However, if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean-field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. We illustrate numerically the influence of the couple\\'s network on their feeling states and their well-being. © 2014 Bauso et al.

  18. Mean field approach to nuclear structure

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Several examples of mean-field calculations, relevant to the recent and planned low-spin experimental works, are presented. The perspectives for future studies (mainly related to spectroscopy of exotic nuclei) are reviewd

  19. Weakly coupled mean-field game systems

    KAUST Repository

    Gomes, Diogo A.; Patrizi, Stefania

    2016-01-01

    Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem

  20. Mean-Field Games for Marriage

    Science.gov (United States)

    Bauso, Dario; Dia, Ben Mansour; Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul

    2014-01-01

    This article examines mean-field games for marriage. The results support the argument that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize marriage. However, if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean-field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. We illustrate numerically the influence of the couple’s network on their feeling states and their well-being. PMID:24804835

  1. Mean-field games for marriage

    KAUST Repository

    Bauso, Dario; Dia, Ben Mansour; Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul

    2014-01-01

    This article examines mean-field games for marriage. The results support the argument that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize marriage. However, if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean-field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. We illustrate numerically the influence of the couple's network on their feeling states and their well-being. © 2014 Bauso et al.

  2. Mean-field games for marriage.

    Directory of Open Access Journals (Sweden)

    Dario Bauso

    Full Text Available This article examines mean-field games for marriage. The results support the argument that optimizing the long-term well-being through effort and social feeling state distribution (mean-field will help to stabilize marriage. However, if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean-field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. We illustrate numerically the influence of the couple's network on their feeling states and their well-being.

  3. Mean-field approximation minimizes relative entropy

    International Nuclear Information System (INIS)

    Bilbro, G.L.; Snyder, W.E.; Mann, R.C.

    1991-01-01

    The authors derive the mean-field approximation from the information-theoretic principle of minimum relative entropy instead of by minimizing Peierls's inequality for the Weiss free energy of statistical physics theory. They show that information theory leads to the statistical mechanics procedure. As an example, they consider a problem in binary image restoration. They find that mean-field annealing compares favorably with the stochastic approach

  4. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody

    2016-05-03

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  5. Mean-field approach to unconventional superconductivity

    International Nuclear Information System (INIS)

    Sacks, William; Mauger, Alain; Noat, Yves

    2014-01-01

    Highlights: • A model Hamiltonian for unconventional superconductivity (SC) is proposed. • The pseudogap (PG) state is described in terms of pair fluctuations. • SC coherence is restored by a new pair–pair interaction, which counteracts fluctuations. • Given the temperature dependence of the parameters, the SC to PG transition is examined. • The theory fits the ‘peak–dip–hump’ features of cuprate and pnictide excitation spectra. - Abstract: We propose a model that connects the quasiparticle spectral function of high-T c superconductors to the condensation energy. Given the evidence for pair correlations above T c , we consider a coarse-grain Hamiltonian of fluctuating pairs describing the incoherent pseudogap (PG) state, together with a novel pair–pair interaction term that restores long-range superconducting (SC) coherence below T c . A mean-field solution then leads to a self-consistent gap equation containing the new pair–pair coupling. The corresponding spectral function A(k,E) reveals the characteristic peak–dip–hump features of cuprates, now observed on iron pnictides (LiFeAs). The continuous transition from SC to PG states is discussed

  6. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody; Tembine, Hamidou; Tempone, Raul

    2016-01-01

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  7. Mean field for the p + 90Zr system in the energy range -60 MeV 90Zr from a dispersive optical-model analysis

    International Nuclear Information System (INIS)

    Romanovsky, E.A.; Bespalova, O.V.; Goncharov, S.A.; Pleshkov, D.V.; Spasskaya, T.I.

    2000-01-01

    Data on the scattering of protons with energies 5 MeV 90 Zr nuclei and data on the energies of proton particle and hole levels in the A + 1 and A - 1 systems with A = 90 are analyzed within the dispersive optical model. The parameters of the mean proton field for 90 Zr are determined in the energy range -60 MeV 3 He), ( 3 He, d), (n, d), and (d, n) reactions for levels near the Fermi surface and in (e, e'p) and (p, 2p) reactions for deep levels

  8. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    Science.gov (United States)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  9. Instabilities constraint and relativistic mean field parametrization

    International Nuclear Information System (INIS)

    Sulaksono, A.; Kasmudin; Buervenich, T.J.; Reinhard, P.-G.; Maruhn, J.A.

    2011-01-01

    Two parameter sets (Set 1 and Set 2) of the standard relativistic mean field (RMF) model plus additional vector isoscalar nonlinear term, which are constrained by a set of criteria 20 determined by symmetric nuclear matter stabilities at high densities due to longitudinal and transversal particle–hole excitation modes are investigated. In the latter parameter set, δ meson and isoscalar as well as isovector tensor contributions are included. The effects in selected finite nuclei and nuclear matter properties predicted by both parameter sets are systematically studied and compared with the ones predicted by well-known RMF parameter sets. The vector isoscalar nonlinear term addition and instability constraints have reasonably good effects in the high-density properties of the isoscalar sector of nuclear matter and certain finite nuclei properties. However, even though the δ meson and isovector tensor are included, the incompatibility with the constraints from some experimental data in certain nuclear properties at saturation point and the excessive stiffness of the isovector nuclear matter equation of state at high densities as well as the incorrect isotonic trend in binding the energies of finite nuclei are still encountered. It is shown that the problem may be remedied if we introduce additional nonlinear terms not only in the isovector but also in the isoscalar vectors. (author)

  10. Mean fields and self consistent normal ordering of lattice spin and gauge field theories

    International Nuclear Information System (INIS)

    Ruehl, W.

    1986-01-01

    Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)

  11. Linear Quadratic Mean Field Type Control and Mean Field Games with Common Noise, with Application to Production of an Exhaustible Resource

    Energy Technology Data Exchange (ETDEWEB)

    Graber, P. Jameson, E-mail: jameson-graber@baylor.edu [Baylor University, Department of Mathematics (United States)

    2016-12-15

    We study a general linear quadratic mean field type control problem and connect it to mean field games of a similar type. The solution is given both in terms of a forward/backward system of stochastic differential equations and by a pair of Riccati equations. In certain cases, the solution to the mean field type control is also the equilibrium strategy for a class of mean field games. We use this fact to study an economic model of production of exhaustible resources.

  12. An Experimental MHD Dynamo

    International Nuclear Information System (INIS)

    Forest, C. B.

    2002-01-01

    The project is designed to understand current and magnetic field generation in plasmas and other magnetohydrodynamic systems. The experiments will investigate the generation of a dynamo using liquid Na

  13. Mean Field Games with a Dominating Player

    Energy Technology Data Exchange (ETDEWEB)

    Bensoussan, A., E-mail: axb046100@utdallas.edu [The University of Texas at Dallas, International Center for Decision and Risk Analysis, Jindal School of Management (United States); Chau, M. H. M., E-mail: michaelchaumanho@gmail.com; Yam, S. C. P., E-mail: scpyam@sta.cuhk.edu.hk [The Chinese University of Hong Kong, Department of Statistics (Hong Kong, People’s Republic of China) (China)

    2016-08-15

    In this article, we consider mean field games between a dominating player and a group of representative agents, each of which acts similarly and also interacts with each other through a mean field term being substantially influenced by the dominating player. We first provide the general theory and discuss the necessary condition for the optimal controls and equilibrium condition by adopting adjoint equation approach. We then present a special case in the context of linear-quadratic framework, in which a necessary and sufficient condition can be asserted by stochastic maximum principle; we finally establish the sufficient condition that guarantees the unique existence of the equilibrium control. The proof of the convergence result of finite player game to mean field counterpart is provided in Appendix.

  14. Mean field games for cognitive radio networks

    KAUST Repository

    Tembine, Hamidou

    2012-06-01

    In this paper we study mobility effect and power saving in cognitive radio networks using mean field games. We consider two types of users: primary and secondary users. When active, each secondary transmitter-receiver uses carrier sensing and is subject to long-term energy constraint. We formulate the interaction between primary user and large number of secondary users as an hierarchical mean field game. In contrast to the classical large-scale approaches based on stochastic geometry, percolation theory and large random matrices, the proposed mean field framework allows one to describe the evolution of the density distribution and the associated performance metrics using coupled partial differential equations. We provide explicit formulas and algorithmic power management for both primary and secondary users. A complete characterization of the optimal distribution of energy and probability of success is given.

  15. Turbulent Liquid Metal Dynamo Experiments

    International Nuclear Information System (INIS)

    Forest, Cary

    2007-01-01

    The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.

  16. Obstacle mean-field game problem

    KAUST Repository

    Gomes, Diogo A.; Patrizi, Stefania

    2015-01-01

    In this paper, we introduce and study a first-order mean-field game obstacle problem. We examine the case of local dependence on the measure under assumptions that include both the logarithmic case and power-like nonlinearities. Since the obstacle operator is not differentiable, the equations for first-order mean field game problems have to be discussed carefully. Hence, we begin by considering a penalized problem. We prove this problem admits a unique solution satisfying uniform bounds. These bounds serve to pass to the limit in the penalized problem and to characterize the limiting equations. Finally, we prove uniqueness of solutions. © European Mathematical Society 2015.

  17. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  18. A regularized stationary mean-field game

    KAUST Repository

    Yang, Xianjin

    2016-01-01

    In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.

  19. A regularized stationary mean-field game

    KAUST Repository

    Yang, Xianjin

    2016-04-19

    In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.

  20. Weakly coupled mean-field game systems

    KAUST Repository

    Gomes, Diogo A.

    2016-07-14

    Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem. Finally, by a limiting procedure, we obtain solutions to the MFG problem. © 2016 Elsevier Ltd

  1. The limits of the mean field

    International Nuclear Information System (INIS)

    Guerra, E.M. de

    2001-01-01

    In these talks, we review non relativistic selfconsistent mean field theories, their scope and limitations. We first discuss static and time dependent mean field approaches for particles and quasiparticles, together with applications. We then discuss extensions that go beyond the non-relativistic independent particle limit. On the one hand, we consider extensions concerned with restoration of symmetries and with the treatment of collective modes, particularly by means of quantized ATDHF. On the other hand, we consider extensions concerned with the relativistic dynamics of bound nucleons. We present data on nucleon momentum distributions that show the need for relativistic mean field approach and probe the limits of the mean field concept. Illustrative applications of various methods are presented stressing the role that selfconsistency plays in providing a unifying reliable framework to study all sorts of properties and phenomena. From global properties such as size, mass, lifetime,.., to detailed structure in excitation spectra (high spin, RPA modes,..), as well as charge, magnetization and velocity distributions. (orig.)

  2. Mean Field Type Control with Congestion

    Energy Technology Data Exchange (ETDEWEB)

    Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Laurière, Mathieu [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS (France)

    2016-06-15

    We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.

  3. Mean field strategies induce unrealistic nonlinearities in calcium puffs

    Directory of Open Access Journals (Sweden)

    Guillermo eSolovey

    2011-08-01

    Full Text Available Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs. To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic nonlinear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.

  4. Effects of mean-field and softening of equation of state on elliptic flow in Au+Au collisions at \\sqrt{{s}_{\\rm{NN}}}=5\\,{GeV} from the JAM model

    Science.gov (United States)

    Chen, Jiamin; Luo, Xiaofeng; Liu, Feng; Nara, Yasushi

    2018-01-01

    We perform a systematic study of elliptic flow (v 2) in Au+Au collisions at \\sqrt{{s}NN}}=5 {GeV} by using a microscopic transport model, JAM. The centrality, pseudorapidity, transverse momentum and beam energy dependence of v 2 for charged as well as identified hadrons are studied. We investigate the effects of both the hadronic mean-field and the softening of equation of state (EoS) on elliptic flow. The softening of the EoS is realized by imposing attractive orbits in two body scattering, which can reduce the pressure of the system. We found that the softening of the EoS leads to the enhancement of v 2, while the hadronic mean-field suppresses v 2 relative to the cascade mode. It indicates that elliptic flow at high baryon density regions is highly sensitive to the EoS and the enhancement of v 2 may probe the signature of a first-order phase transition in heavy-ion collisions at beam energies of a strong baryon stopping region. Supported by the MoST of China 973-Project (2015CB856901), NSFC (11575069, 11221504). Y. N. is supported by the Grants-in-Aid for Scientific Research from JSPS (15K05079, 15K05098)

  5. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  6. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    ... large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years.

  7. Mean-field learning for satisfactory solutions

    KAUST Repository

    Tembine, Hamidou

    2013-12-01

    One of the fundamental challenges in distributed interactive systems is to design efficient, accurate, and fair solutions. In such systems, a satisfactory solution is an innovative approach that aims to provide all players with a satisfactory payoff anytime and anywhere. In this paper we study fully distributed learning schemes for satisfactory solutions in games with continuous action space. Considering games where the payoff function depends only on own-action and an aggregate term, we show that the complexity of learning systems can be significantly reduced, leading to the so-called mean-field learning. We provide sufficient conditions for convergence to a satisfactory solution and we give explicit convergence time bounds. Then, several acceleration techniques are used in order to improve the convergence rate. We illustrate numerically the proposed mean-field learning schemes for quality-of-service management in communication networks. © 2013 IEEE.

  8. Stochastic quantization and mean field approximation

    International Nuclear Information System (INIS)

    Jengo, R.; Parga, N.

    1983-09-01

    In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and Zsub(N) spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→infinity the mean field or, in the more general case, the Bethe-Peierls approximation. (author)

  9. Regularity theory for mean-field game systems

    CERN Document Server

    Gomes, Diogo A; Voskanyan, Vardan

    2016-01-01

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  10. Regularity Theory for Mean-Field Game Systems

    KAUST Repository

    Gomes, Diogo A.

    2016-09-14

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  11. Momentum and density dependence of the nuclear mean field

    International Nuclear Information System (INIS)

    Behera, B.; Routray, T.R.

    1999-01-01

    The purpose of this is to analyse the momentum, density and temperature dependence of the mean field in nuclear matter derived from finite range effective interactions and to examine the influence of the functional form of the interaction on the high momentum behaviour of the mean field. Emphasis will be given to use very simple parametrizations of the effective interaction with a minimum number of adjustable parameters and yet capable of giving a good description of the mean field in nuclear matter over a wide range of momentum, density and temperature. As an application of the calculated equation of state of nuclear matter, phase transitions to quark-gluon plasma is studied where the quark phase is described by a zeroth order bag model equation of state

  12. Regularity Theory for Mean-Field Game Systems

    KAUST Repository

    Gomes, Diogo A.; Pimentel, Edgard A.; Voskanyan, Vardan K.

    2016-01-01

    Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.

  13. Shapes and dynamics from the time-dependent mean field

    International Nuclear Information System (INIS)

    Stevenson, P.D.; Goddard, P.M.; Rios, A.

    2015-01-01

    Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case

  14. Socio-economic applications of finite state mean field games

    KAUST Repository

    Gomes, Diogo A.

    2014-10-06

    In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments,which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems.

  15. Socio-economic applications of finite state mean field games.

    Science.gov (United States)

    Gomes, Diogo; Velho, Roberto M; Wolfram, Marie-Therese

    2014-11-13

    In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite state mean field game models are hyperbolic systems of partial differential equations, for which we present and validate different numerical methods. We illustrate the behaviour of solutions with various numerical experiments, which show interesting phenomena such as shock formation. Hence, we conclude with an investigation of the shock structure in the case of two-state problems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. The Global Solar Dynamo

    Science.gov (United States)

    Cameron, R. H.; Dikpati, M.; Brandenburg, A.

    2017-09-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  17. Applying Mean-Field Approximation to Continuous Time Markov Chains

    NARCIS (Netherlands)

    Kolesnichenko, A.V.; Senni, Valerio; Pourranjabar, Alireza; Remke, A.K.I.; Stoelinga, M.I.A.

    2014-01-01

    The mean-field analysis technique is used to perform analysis of a system with a large number of components to determine the emergent deterministic behaviour and how this behaviour modifies when its parameters are perturbed. The computer science performance modelling and analysis community has found

  18. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-09

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  19. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  20. Two Numerical Approaches to Stationary Mean-Field Games

    KAUST Repository

    Almulla, Noha; Ferreira, Rita; Gomes, Diogo A.

    2016-01-01

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  1. Two Numerical Approaches to Stationary Mean-Field Games

    KAUST Repository

    Almulla, Noha

    2016-10-04

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  2. A theory of ionospheric dynamo for complete model of terrestrial space at high and medium latitudes

    International Nuclear Information System (INIS)

    Vardanyan, Yu.S.

    1992-01-01

    A multi-layer model of terrestrial cosmic space at high and medium latitudes is considered in the approximation of infinite conductivity of the Earth taking into account the ambipolar diffusion processes in upper layers of ionosphere. 14 refs

  3. Condition monitoring with Mean field independent components analysis

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Sigurdsson, Sigurdur; Larsen, Jan

    2005-01-01

    We discuss condition monitoring based on mean field independent components analysis of acoustic emission energy signals. Within this framework it is possible to formulate a generative model that explains the sources, their mixing and also the noise statistics of the observed signals. By using...... a novelty approach we may detect unseen faulty signals as indeed faulty with high precision, even though the model learns only from normal signals. This is done by evaluating the likelihood that the model generated the signals and adapting a simple threshold for decision. Acoustic emission energy signals...... from a large diesel engine is used to demonstrate this approach. The results show that mean field independent components analysis gives a better detection of fault compared to principal components analysis, while at the same time selecting a more compact model...

  4. Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman adiabatic passage

    International Nuclear Information System (INIS)

    Graefe, E. M.; Korsch, H. J.; Witthaut, D.

    2006-01-01

    We investigate the dynamics of a Bose-Einstein condensate in a triple-well trap in a three-level approximation. The interatomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. Additional eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three-level Landau-Zener model and the stimulated Raman adiabatic passage (STIRAP) scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning

  5. Prospect of Using Numerical Dynamo Model for Prediction of Geomagnetic Secular Variation

    Science.gov (United States)

    Kuang, Weijia; Tangborn, Andrew

    2003-01-01

    Modeling of the Earth's core has reached a level of maturity to where the incorporation of observations into the simulations through data assimilation has become feasible. Data assimilation is a method by which observations of a system are combined with a model output (or forecast) to obtain a best guess of the state of the system, called the analysis. The analysis is then used as an initial condition for the next forecast. By doing assimilation, not only we shall be able to predict partially secular variation of the core field, we could also use observations to further our understanding of dynamical states in the Earth's core. One of the first steps in the development of an assimilation system is a comparison between the observations and the model solution. The highly turbulent nature of core dynamics, along with the absence of any regular external forcing and constraint (which occurs in atmospheric dynamics, for example) means that short time comparisons (approx. 1000 years) cannot be made between model and observations. In order to make sensible comparisons, a direct insertion assimilation method has been implemented. In this approach, magnetic field observations at the Earth's surface have been substituted into the numerical model, such that the ratio of the multiple components and the dipole component from observation is adjusted at the core-mantle boundary and extended to the interior of the core, while the total magnetic energy remains unchanged. This adjusted magnetic field is then used as the initial field for a new simulation. In this way, a time tugged simulation is created which can then be compared directly with observations. We present numerical solutions with and without data insertion and discuss their implications for the development of a more rigorous assimilation system.

  6. Superheavy nuclei: a relativistic mean field outlook

    International Nuclear Information System (INIS)

    Afanasjev, A.V.

    2006-01-01

    The analysis of quasi-particle spectra in the heaviest A∼250 nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggests that only the parametrizations which predict Z = 120 and N = 172 as shell closures are reliable for superheavy nuclei within the relativistic mean field theory. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. A large central depression produces large shell gaps at Z = 120 and N = 172. The shell gaps at Z = 126 and N = 184 are favoured by a flat density distribution in the central part of the nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami (LN) method removes pairing collapse seen at these gaps in the calculations without PNP

  7. MHD turbulent dynamo in astrophysics: Theory and numerical simulation

    Science.gov (United States)

    Chou, Hongsong

    2001-10-01

    This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).

  8. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    Science.gov (United States)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  9. Role of asymmetric meridional circulation in producing north-south asymmetry in a solar cycle dynamo model

    International Nuclear Information System (INIS)

    Belucz, Bernadett; Dikpati, Mausumi

    2013-01-01

    Solar cycles in the north and south hemispheres differ in cycle length, amplitude, profile, polar fields, and coronal structure. To show what role differences in meridional flow could play in producing these differences, we present the results of three sets of numerical simulations from a flux transport dynamo in which one property of meridional circulation has been changed in the south only. The changes are in amplitude and the presence of a second cell in latitude or in depth. An ascending phase speedup causes weakening of polar and toroidal fields; a speed decrease in a late descending phase does not change amplitudes. A long-duration speed increase leads to lower toroidal field peaks but unchanged polar field peaks. A second high-latitude circulation cell in an ascending phase weakens the next polar and toroidal field peaks, and the ascending phase is lengthened. A second cell in a late descending phase speeds up the cycle. A long-duration second cell leads to a poleward branch of the butterfly diagram and weaker polar fields. A second cell in depth reverses the tilt of the butterfly wing, decreasing polar fields when added during an ascending phase and increasing them during a late descending phase. A long-duration presence of a second cell in radius evolves the butterfly diagram far away from the observed one, with different dynamo periods in low and high latitudes. Thus, a second cell in depth is unlikely to persist more than a few years if the solar dynamo is advection-dominated. Our results show the importance of time variation and north-south asymmetry in meridional circulation in producing differing cycles in the north and south.

  10. Role of asymmetric meridional circulation in producing north-south asymmetry in a solar cycle dynamo model

    Energy Technology Data Exchange (ETDEWEB)

    Belucz, Bernadett [Eötvös University, Department of Astronomy, 1518 Budapest, Pf. 32 (Hungary); Dikpati, Mausumi [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2013-12-10

    Solar cycles in the north and south hemispheres differ in cycle length, amplitude, profile, polar fields, and coronal structure. To show what role differences in meridional flow could play in producing these differences, we present the results of three sets of numerical simulations from a flux transport dynamo in which one property of meridional circulation has been changed in the south only. The changes are in amplitude and the presence of a second cell in latitude or in depth. An ascending phase speedup causes weakening of polar and toroidal fields; a speed decrease in a late descending phase does not change amplitudes. A long-duration speed increase leads to lower toroidal field peaks but unchanged polar field peaks. A second high-latitude circulation cell in an ascending phase weakens the next polar and toroidal field peaks, and the ascending phase is lengthened. A second cell in a late descending phase speeds up the cycle. A long-duration second cell leads to a poleward branch of the butterfly diagram and weaker polar fields. A second cell in depth reverses the tilt of the butterfly wing, decreasing polar fields when added during an ascending phase and increasing them during a late descending phase. A long-duration presence of a second cell in radius evolves the butterfly diagram far away from the observed one, with different dynamo periods in low and high latitudes. Thus, a second cell in depth is unlikely to persist more than a few years if the solar dynamo is advection-dominated. Our results show the importance of time variation and north-south asymmetry in meridional circulation in producing differing cycles in the north and south.

  11. Mean-field theory for a ferroelectric transition

    International Nuclear Information System (INIS)

    Dobry, A.; Greco, A.; Stachiotti, M.

    1990-01-01

    For the treatment of anharmonic models of solids presenting structural transitions, a commonly used approximation is that of self-consistent phonons. Rather than the usual site decoupling, this mean-field theory is based on decoupling of modes in reciprocal space. A self-consistent phonon approximation for the non-linear polarizability model is developed in this work. The model describes the dynamical properties of ferroelectric materials. Phase diagrams as a function of relevant model parameters are presented. An analysis is made of critical behaviour and it is shown that the approximation leads to the same anomalies found in other models. (Author). 9 refs., 3 figs

  12. Instability in relativistic mean-field theories of nuclear matter

    International Nuclear Information System (INIS)

    Friman, B.L.; Henning, P.A.

    1988-01-01

    We investigate the stability of the nuclear matter ground state with respect to small-perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion-collisions are discussed briefly. (orig.)

  13. Instability in relativistic mean-field theories of nuclear matter

    International Nuclear Information System (INIS)

    Friman, B.L.; Henning, P.A.

    1988-01-01

    We investigate the stability of the nuclear matter ground state with respect to small perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion collisions are discussed briefly. (orig.)

  14. Time dependent mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2014-01-06

    We consider time dependent mean-field games (MFG) with a local power-like dependence on the measure and Hamiltonians satisfying both sub and superquadratic growth conditions. We establish existence of smooth solutions under a certain set of conditions depending both on the growth of the Hamiltonian as well as on the dimension. In the subquadratic case this is done by combining a Gagliardo-Nirenberg type of argument with a new class of polynomial estimates for solutions of the Fokker-Planck equation in terms of LrLp- norms of DpH. These techniques do not apply to the superquadratic case. In this setting we recur to a delicate argument that combines the non-linear adjoint method with polynomial estimates for solutions of the Fokker-Planck equation in terms of L1L1-norms of DpH. Concerning the subquadratic case, we substantially improve and extend the results previously obtained. Furthermore, to the best of our knowledge, the superquadratic case has not been addressed in the literature yet. In fact, it is likely that our estimates may also add to the current understanding of Hamilton-Jacobi equations with superquadratic Hamiltonians.

  15. Relativistic mean field theory for unstable nuclei

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2000-01-01

    We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)

  16. Magnetic reversals from planetary dynamo waves.

    Science.gov (United States)

    Sheyko, Andrey; Finlay, Christopher C; Jackson, Andrew

    2016-11-24

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines by columnar convection. Here we present an example of another class of reversing-geodynamo model, which operates in a regime of comparatively low viscosity and high magnetic diffusivity. This class does not fit into the paradigm of reversal regimes that are dictated by the value of the local Rossby number (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.

  17. Retardation and dispersive effects in the nuclear mean field

    International Nuclear Information System (INIS)

    Mahaux, C.; Davies, K.T.R.; Satchler, G.R.

    1993-01-01

    We consider several parametrizations of the energy dependence of the imaginary part of the mean field, for nucleons as well as heavy ions. These parametrizations specify the energy dependence of the corresponding real part, because the real and imaginary parts are connected by a dispersion relation. The latter can be viewed as equivalent to the causality property. Since Hilbert transforms appear in the dispersion relation and since Fourier transforms give the correspondence between energy dependence and temporal nonlocality, we derive several properties of these transforms which are of particular interest in the present context. The most useful one is that the Fourier transform of a function F(E) which is analytic in the upper half of the complex E-plane can be expressed in terms of the Fourier transform of the imaginary part of F(E) alone. We investigate several schematic models for the mean field. They fall into two main categories. These correspond to the two main definitions which have been proposed for the mean field, namely the self-energy and Feshbach's potential. Both of these definitions can be used for the nucleon-nucleus system, in which case they correspond to two different ways of handling the combined influence of ground state correlations and antisymmetrization. The resulting two mean fields have different energy dependences and, correspondingly, temporal nonlocalities. Feshbach's approach can also be applied to the nucleus-nucleus system. Our schematic models are semi-realistic, in the sense that they all take account of the 'Fermi surface anomaly' for the nucleon-nucleus system or of the 'threshold anomaly' for the nucleus-nucleus case. The temporal nonlocality is investigated for each model. A physical interpretation of this nonlocality is given in terms delay of the response of the medium, in which an incident wave is partially trapped in nonelastic channels and subsequently reemitted. (orig./HSI)

  18. Ionospheric disturbance dynamo

    International Nuclear Information System (INIS)

    Blanc, M.; Richmond, A.D.

    1980-01-01

    A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbanc dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the midlatitude thermosphere, or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E x B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an 'anti-Sq' type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of distrubance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E x B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes

  19. DIPOLE COLLAPSE AND DYNAMO WAVES IN GLOBAL DIRECT NUMERICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Schrinner, Martin; Dormy, Emmanuel [MAG (ENS/IPGP), LRA, Ecole Normale Superieure, 24 Rue Lhomond, 75252 Paris Cedex 05 (France); Petitdemange, Ludovic, E-mail: martin@schrinner.eu [Previously at Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg, Germany. (Germany)

    2012-06-20

    Magnetic fields of low-mass stars and planets are thought to originate from self-excited dynamo action in their convective interiors. Observations reveal a variety of field topologies ranging from large-scale, axial dipoles to more structured magnetic fields. In this article, we investigate more than 70 three-dimensional, self-consistent dynamo models in the Boussinesq approximation obtained by direct numerical simulations. The control parameters, the aspect ratio, and the mechanical boundary conditions have been varied to build up this sample of models. Both strongly dipolar and multipolar models have been obtained. We show that these dynamo regimes in general can be distinguished by the ratio of a typical convective length scale to the Rossby radius. Models with a predominantly dipolar magnetic field were obtained, if the convective length scale is at least an order of magnitude larger than the Rossby radius. Moreover, we highlight the role of the strong shear associated with the geostrophic zonal flow for models with stress-free boundary conditions. In this case the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. We interpret our results in terms of dynamo eigenmodes using the so-called test-field method. We can thus show that models in the dipolar regime are characterized by an isolated 'single mode'. Competing overtones become significant as the boundary to multipolar dynamos is approached. We discuss how these findings relate to previous models and to observations.

  20. Probabilistic theory of mean field games with applications

    CERN Document Server

    Carmona, René

    2018-01-01

    This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic...

  1. Fictive impurity approach to dynamical mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann, A.

    2006-10-15

    A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)

  2. Mean field dynamics of some open quantum systems.

    Science.gov (United States)

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of [Formula: see text]. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit [Formula: see text], of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  3. Mean field dynamics of some open quantum systems

    Science.gov (United States)

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of √{N }. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit N →∞ , of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  4. Fictive impurity approach to dynamical mean field theory

    International Nuclear Information System (INIS)

    Fuhrmann, A.

    2006-10-01

    A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)

  5. Time independent mean field for collisions

    International Nuclear Information System (INIS)

    Giraud, B.G.

    1990-01-01

    In this lecture, we will use three kinds of shell models, namely i) the traditionnal (static) shell model, which may be either spherical or deformed, ii) the boosted shell model, which differs from the latter by just boost operations, and iii) a completely new shell model, which accounts for intermediate states during transitions

  6. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1975-01-01

    The dynamo equation which represents the longitudinally averaged magnetohydrodynamical action of the global convection influenced by the rotation in the solar convection zone is solved numerically to simulate the solar cycle as an initial boundary-value problem. The radial and latitudinal structure of the dynamo action is parametrized in accordance with the structure of the rotation, and of the global convection especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. A nonlinear process is included by assuming that part of the magnetic field energy is dissipated when the magnetic field strength exceeds some critical value; the formation of active regions and subsequent dissipations are thus simulated. By adjusting the parameters within a reasonable range, oscillatory solutions are obtained to simulate the solar cycle with the period of the right order of magnitude and with the patterns of evolution of the latitudinal distribution of the toroidal component of the magnetic field similar to the observed Butterfly Diagram of sunspots. The evolution of the latitudinal distribution of the radial component of the magnetic field shows patterns similar to the Butterfly Diagram, but having two branches of different polarity in each hemisphere. The development of the radial structure of the magnetic field associated with the solar cycle is presented. The importance of the poleward migrating branch of the Butterfly Diagram is emphasized in relation to the relative importance of the role of the latitudinal and radial shears of the differential rotation

  7. Solar activity simulation and forecast with a flux-transport dynamo

    Science.gov (United States)

    Macario-Rojas, Alejandro; Smith, Katharine L.; Roberts, Peter C. E.

    2018-06-01

    We present the assessment of a diffusion-dominated mean field axisymmetric dynamo model in reproducing historical solar activity and forecast for solar cycle 25. Previous studies point to the Sun's polar magnetic field as an important proxy for solar activity prediction. Extended research using this proxy has been impeded by reduced observational data record only available from 1976. However, there is a recognised need for a solar dynamo model with ample verification over various activity scenarios to improve theoretical standards. The present study aims to explore the use of helioseismology data and reconstructed solar polar magnetic field, to foster the development of robust solar activity forecasts. The research is based on observationally inferred differential rotation morphology, as well as observed and reconstructed polar field using artificial neural network methods via the hemispheric sunspot areas record. Results show consistent reproduction of historical solar activity trends with enhanced results by introducing a precursor rise time coefficient. A weak solar cycle 25, with slow rise time and maximum activity -14.4% (±19.5%) with respect to the current cycle 24 is predicted.

  8. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations

    Science.gov (United States)

    Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan

    2018-05-01

    Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.

  9. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  10. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  11. Time-resolved observation of discrete and continuous MHD dynamo in the reversed-field pinch edge

    International Nuclear Information System (INIS)

    Ji, H.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.

    1994-01-01

    We report the first experimental verification of the MHD dynamo in the RFP. A burst of magnetohydrodynamic (MHD) dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the MST RFP edge. By measuring each term, the parallel MHD mean-field Ohm's law is observed to hold within experimental error bars both between and during sawtooth crashes

  12. Mean field approximation versus exact treatment of collisions in few-body systems

    International Nuclear Information System (INIS)

    Lemm, J.; Weiguny, A.; Giraud, B.G.

    1990-01-01

    A variational principle for calculating matrix elements of the full resolvent operator for a many-body system is studied. Its mean field approximation results in non-linear equations of Hartree (-Fock) type, with initial and final channel wave functions as driving terms. The mean field equations will in general have many solutions whereas the exact problem being linear, has a unique solution. In a schematic model with separable forces the mean field equations are analytically soluble, and for the exact problem the resulting integral equations are solved numerically. Comparing exact and mean field results over a wide range of system parameters, the mean field approach proves to be a very reliable approximation, which is not plagued by the notorious problem of defining asymptotic channels in the time-dependent mean field method. (orig.)

  13. Virtual-site correlation mean field approach to criticality in spin systems

    International Nuclear Information System (INIS)

    Sen, Aditi; Sen, Ujjwal

    2013-01-01

    We propose a virtual-site correlation mean field theory for dealing with interacting many-body systems. It involves a coarse-graining technique that terminates a step before the mean field theory: While mean field theory deals with only single-body physical parameters, the virtual-site correlation mean field theory deals with single- as well as two-body ones, and involves a virtual site for every interaction term in the Hamiltonian. We generalize the theory to a cluster virtual-site correlation mean field, that works with a fundamental unit of the lattice of the many-body system. We apply these methods to interacting Ising spin systems in several lattice geometries and dimensions, and show that the predictions of the onset of criticality of these models are generally much better in the proposed theories as compared to the corresponding ones in mean field theories

  14. First-order, stationary mean-field games with congestion

    KAUST Repository

    Evangelista, David

    2018-04-30

    Mean-field games (MFGs) are models for large populations of competing rational agents that seek to optimize a suitable functional. In the case of congestion, this functional takes into account the difficulty of moving in high-density areas. Here, we study stationary MFGs with congestion with quadratic or power-like Hamiltonians. First, using explicit examples, we illustrate two main difficulties: the lack of classical solutions and the existence of areas with vanishing densities. Our main contribution is a new variational formulation for MFGs with congestion. With this formulation, we prove the existence and uniqueness of solutions. Finally, we consider applications to numerical methods.

  15. Mean-field level analysis of epidemics in directed networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiazeng [School of Mathematical Sciences, Peking University, Beijing 100871 (China); Liu, Zengrong [Mathematics Department, Shanghai University, Shanghai 200444 (China)], E-mail: wangjiazen@yahoo.com.cn, E-mail: zrongliu@online.sh.cn

    2009-09-04

    The susceptible-infected-removed spreading model in a directed graph is studied. The mean-field level rate equations are built with the degree-degree connectivity correlation element and the (in, out)-degree distribution. And the outbreak threshold is obtained analytically-it is determined by the combination of connectivity probability and the degree distribution. Furthermore, the methods of calculating the degree-degree correlations in directed networks are presented. The numerical results of the discrete epidemic processes in networks verify our analyses.

  16. Mean-field level analysis of epidemics in directed networks

    International Nuclear Information System (INIS)

    Wang, Jiazeng; Liu, Zengrong

    2009-01-01

    The susceptible-infected-removed spreading model in a directed graph is studied. The mean-field level rate equations are built with the degree-degree connectivity correlation element and the (in, out)-degree distribution. And the outbreak threshold is obtained analytically-it is determined by the combination of connectivity probability and the degree distribution. Furthermore, the methods of calculating the degree-degree correlations in directed networks are presented. The numerical results of the discrete epidemic processes in networks verify our analyses.

  17. First-order, stationary mean-field games with congestion

    KAUST Repository

    Evangelista, David; Ferreira, Rita; Gomes, Diogo A.; Nurbekyan, Levon; Voskanyan, Vardan K.

    2018-01-01

    Mean-field games (MFGs) are models for large populations of competing rational agents that seek to optimize a suitable functional. In the case of congestion, this functional takes into account the difficulty of moving in high-density areas. Here, we study stationary MFGs with congestion with quadratic or power-like Hamiltonians. First, using explicit examples, we illustrate two main difficulties: the lack of classical solutions and the existence of areas with vanishing densities. Our main contribution is a new variational formulation for MFGs with congestion. With this formulation, we prove the existence and uniqueness of solutions. Finally, we consider applications to numerical methods.

  18. Classification of networks of automata by dynamical mean field theory

    International Nuclear Information System (INIS)

    Burda, Z.; Jurkiewicz, J.; Flyvbjerg, H.

    1990-01-01

    Dynamical mean field theory is used to classify the 2 24 =65,536 different networks of binary automata on a square lattice with nearest neighbour interactions. Application of mean field theory gives 700 different mean field classes, which fall in seven classes of different asymptotic dynamics characterized by fixed points and two-cycles. (orig.)

  19. Nonlinear dynamo in the intracluster medium

    Science.gov (United States)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  20. Mean field simulation for Monte Carlo integration

    CERN Document Server

    Del Moral, Pierre

    2013-01-01

    In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko

  1. Small-scale kinematic dynamo and non-dynamo in inertial-range turbulence

    International Nuclear Information System (INIS)

    Eyink, Gregory L; Neto, Antonio F

    2010-01-01

    We investigate the Lagrangian mechanism of the kinematic 'fluctuation' magnetic dynamo in a turbulent plasma flow at small magnetic Prandtl numbers. The combined effect of turbulent advection and plasma resistivity is to carry infinitely many field lines to each space point, with the resultant magnetic field at that point given by the average over all the individual line vectors. As a consequence of the roughness of the advecting velocity, this remains true even in the limit of zero resistivity. We show that the presence of the dynamo effect requires sufficient angular correlation of the passive line vectors that arrive simultaneously at the same space point. We illustrate this in detail for the Kazantsev-Kraichnan model of the kinematic dynamo with a Gaussian advecting velocity that is spatially rough and white noise in time. In the regime where dynamo action fails, we also obtain the precise rate of decay of the magnetic energy. These exact results for the model are obtained by a generalization of the 'slow-mode expansion' of Bernard, Gawedzki and Kupiainen to non-Hermitian evolution. Much of our analysis applies also to magnetohydrodynamic turbulence.

  2. New computation results for the solar dynamo

    International Nuclear Information System (INIS)

    Csada, I.K.

    1983-01-01

    The analytical solution to the solar dynamo equation leads to a relatively simple algorythm for the computation in terms of kinematic models. The internal and external velocities taken to be in the form of axisymmetric meridional circulation and differential rotation, respectively. Pure radial expanding motions in the corona are also taken into consideration. Numerical results are presented in terms of the velocity parameters for the period of field reversal, decay time, magnitudes and phases of the first four multipoles. (author)

  3. Magnetohydrodynamic dynamos in the presence of fossil magnetic fields

    International Nuclear Information System (INIS)

    Boyer, D.W.

    1982-01-01

    A fossil magnetic field embedded in the radiative core of the Sun has been thought possible for some time now. However, such a fossil magnetic field has, a priori, not been considered a visible phenomenon due to the effects of turbulence in the solar convection zone. Since a well developed theory (referred to herein as magnetohydrodynamic dynamo theory) exists for describing the regeneration of magnetic fields in astrophysical objects like the Sun, it is possible to quantitatively evaluate the interaction of a fossil magnetic field with the magnetohydrodynamic dynamo operating in the solar convection zone. In this work, after a brief description of the basic dynamo equations, a spherical model calculation of the solar dynamo is introduced. First, the interaction of a fossil magnetic field with a dynamo in which the regeneration mechanisms of cyclonic convection and large-scale, nonuniform rotation are confined to spherical shells is calculated. It is argued that the amount of amplification or suppression of a fossil magnetic field will be smallest for a uniform distribution of cyclonic convection and nonuniform rotation, as expected in the Sun. Secondly, the interaction of a fossil magnetic field with a dynamo having a uniform distribution of cyclonic convection and large-scale, nonuniform rotation is calculated. It is found that the dipole or quadrupole moments of a fossil magnetic field are suppressed by factors of -0.35 and -0.37, respectively

  4. Mean field games with nonlinear mobilities in pedestrian dynamics

    KAUST Repository

    Burger, Martin

    2014-04-01

    In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. In particular we consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position, velocity, exit time and the overall density of people. This microscopic setup leads in the mean-field limit to a parabolic optimal control problem. We discuss the modeling of the macroscopic optimal control approach and show how the optimal conditions relate to the Hughes model for pedestrian flow. Furthermore we provide results on the existence and uniqueness of minimizers and illustrate the behavior of the model with various numerical results.

  5. Mean field games with nonlinear mobilities in pedestrian dynamics

    KAUST Repository

    Burger, Martin; Di Francesco, Marco; Markowich, Peter A.; Wolfram, Marie Therese

    2014-01-01

    In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. In particular we consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position, velocity, exit time and the overall density of people. This microscopic setup leads in the mean-field limit to a parabolic optimal control problem. We discuss the modeling of the macroscopic optimal control approach and show how the optimal conditions relate to the Hughes model for pedestrian flow. Furthermore we provide results on the existence and uniqueness of minimizers and illustrate the behavior of the model with various numerical results.

  6. The application of mean field theory to image motion estimation.

    Science.gov (United States)

    Zhang, J; Hanauer, G G

    1995-01-01

    Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

  7. Bubble nuclei in relativistic mean field theory

    International Nuclear Information System (INIS)

    Shukla, A.; Aberg, S.; Patra, S.K.

    2011-01-01

    Bubble nuclei are characterized by a depletion of their central density, i.e. the formation of the proton or neutron void and subsequently forming proton or neutron bubble nuclei. Possibility of the formation of bubble nuclei has been explored through different nuclear models and in different mass regions. Advancements in experimental nuclear physics has led our experimental access to many new shapes and structures, which were inaccessible hitherto. In the present paper, the possibility of observing nuclear bubble in oxygen isotopes, particularly for 22 O has been studied

  8. Mean-field games with logistic population dynamics

    KAUST Repository

    Gomes, Diogo A.

    2013-12-01

    In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.

  9. Mean-field games with logistic population dynamics

    KAUST Repository

    Gomes, Diogo A.; De Lima Ribeiro, Ricardo

    2013-01-01

    In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.

  10. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2016-02-15

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.

  11. Quantum Critical Point revisited by the Dynamical Mean Field Theory

    Science.gov (United States)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei

    Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.

  12. Quantum critical point revisited by dynamical mean-field theory

    Science.gov (United States)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-01

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.

  13. Quantum critical point revisited by dynamical mean-field theory

    International Nuclear Information System (INIS)

    Xu, Wenhu; Kotliar, Gabriel; Rutgers University, Piscataway, NJ; Tsvelik, Alexei M.

    2017-01-01

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.

  14. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  15. A THEORETICAL STUDY OF THE BUILD-UP OF THE SUN’S POLAR MAGNETIC FIELD BY USING A 3D KINEMATIC DYNAMO MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Gopal; Choudhuri, Arnab Rai [Department of Physics, Indian Institute of Science, Bangalore, 560012 (India); Miesch, Mark S., E-mail: ghazra@physics.iisc.ernet.in, E-mail: arnab@physics.iisc.ernet.in, E-mail: miesch@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301 (United States)

    2017-01-20

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.

  16. Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars

    Science.gov (United States)

    Warnecke, J.; Rheinhardt, M.; Tuomisto, S.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.

    2018-01-01

    Aims: We investigate dynamo action in global compressible solar-like convective dynamos in the framework of mean-field theory. Methods: We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consistently drives a large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally (φ) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which six are related to the α tensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and is applied here for the first time to fully compressible simulations of solar-like dynamos. Results: We find that the φφ-component of the α tensor does not follow the profile expected from that of kinetic helicity. The turbulent pumping velocities significantly alter the effective mean flows acting on the magnetic field and therefore challenge the flux transport dynamo concept. All coefficients are significantly affected by dynamically important magnetic fields. Quenching as well as enhancement are being observed. This leads to a modulation of the coefficients with the activity cycle. The temporal variations are found to be comparable to the time-averaged values and seem to be responsible for a nonlinear feedback on the magnetic field generation. Furthermore, we quantify the validity of the Parker-Yoshimura rule for the equatorward propagation of the mean magnetic field in the present case.

  17. Mean field theory of dynamic phase transitions in ferromagnets

    International Nuclear Information System (INIS)

    Idigoras, O.; Vavassori, P.; Berger, A.

    2012-01-01

    We have studied the second order dynamic phase transition (DPT) of the two-dimensional kinetic Ising model by means of numerical calculations. While it is well established that the order parameter Q of the DPT is the average magnetization per external field oscillation cycle, the possible identity of the conjugate field has been addressed only recently. In this work, we demonstrate that our entire set of numerical data is fully consistent with the applied bias field H b being the conjugate field of order parameter Q. For this purpose, we have analyzed the Q(H b )-dependence and we have found that it follows the expected power law behavior with the same critical exponent as the mean field equilibrium case.

  18. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory

    Science.gov (United States)

    Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.

    2018-04-01

    Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.

  19. Evolution of Precipitation Structure During the November DYNAMO MJO Event: Cloud-Resolving Model Intercomparison and Cross Validation Using Radar Observations

    Science.gov (United States)

    Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong

    2018-04-01

    Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.

  20. Modification of linear response theory for mean-field approximations

    NARCIS (Netherlands)

    Hütter, M.; Öttinger, H.C.

    1996-01-01

    In the framework of statistical descriptions of many particle systems, the influence of mean-field approximations on the linear response theory is studied. A procedure, analogous to one where no mean-field approximation is involved, is used in order to determine the first order response of the

  1. Finite-State Mean-Field Games, Crowd Motion Problems, and its Numerical Methods

    KAUST Repository

    Machado Velho, Roberto

    2017-01-01

    -economic sciences. Examples include paradigm shifts in the scientific community and the consumer choice behavior in a free market. The corresponding finite-state mean-field game models are hyperbolic systems of partial differential equations, for which we propose

  2. Faraday's first dynamo: A retrospective

    Science.gov (United States)

    Smith, Glenn S.

    2013-12-01

    In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.

  3. On Social Optima of Non-Cooperative Mean Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sen; Zhang, Wei; Zhao, Lin; Lian, Jianming; Kalsi, Karanjit

    2016-12-12

    This paper studies the social optima in noncooperative mean-field games for a large population of agents with heterogeneous stochastic dynamic systems. Each agent seeks to maximize an individual utility functional, and utility functionals of different agents are coupled through a mean field term that depends on the mean of the population states/controls. The paper has the following contributions. First, we derive a set of control strategies for the agents that possess *-Nash equilibrium property, and converge to the mean-field Nash equilibrium as the population size goes to infinity. Second, we study the social optimal in the mean field game. We derive the conditions, termed the socially optimal conditions, under which the *-Nash equilibrium of the mean field game maximizes the social welfare. Third, a primal-dual algorithm is proposed to compute the *-Nash equilibrium of the mean field game. Since the *-Nash equilibrium of the mean field game is socially optimal, we can compute the equilibrium by solving the social welfare maximization problem, which can be addressed by a decentralized primal-dual algorithm. Numerical simulations are presented to demonstrate the effectiveness of the proposed approach.

  4. Measurement of the dynamo effect in a plasma

    International Nuclear Information System (INIS)

    Ji, H.; Prager, S.C.; Almagri, A.F.; Sarff, J.S.; Hirano, Y.; Toyama, H.

    1995-11-01

    A series of the detailed experiments has been conducted in three laboratory plasma devices to measure the dynamo electric field along the equilibrium field line (the α effect) arising from the correlation between the fluctuating flow velocity and magnetic field. The fluctuating flow velocity is obtained from probe measurement of the fluctuating E x B drift and electron diamagnetic drift. The three major findings are (1) the α effect accounts for the dynamo current generation, even in the time dependence through a ''sawtooth'' cycle; (2) at low collisionality the dynamo is explained primarily by the widely studied pressureless Magnetohydrodynamic (MHD) model, i.e., the fluctuating velocity is dominated by the E x B drift; (3) at high collisionality, a new ''electron diamagnetic dynamo'' is observed, in which the fluctuating velocity is dominated by the diamagnetic drift. In addition, direct measurements of the helicity flux indicate that the dynamo activity transports magnetic helicity from one part of the plasma to another, but the total helicity is roughly conserved, verifying J.B. Taylor's conjecture

  5. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  6. Stellar rotation, dynamo, electromagnetic braking, age an lithium burning

    International Nuclear Information System (INIS)

    Schatzmann, E.

    1989-01-01

    After an introduction describing the problem and the observational tests of the theory a consistant model of the dynamo mechanism in rotating star is presented. This provides for the electromagnetic braking a law Ω ∼ (1.t/t c har) -3 / 4 , in good agreement with the observations. This rests on the hypothesis that the main contribution to the EM braking is due to the magnetic field present in bipolar magnetic spots at the surface of the stellar disk. The premain sequence EM braking provides an initial angular velocity on arrival on the main sequence which is slightly smaller than the angular velocity when the dynamo turns on. Starting the dynamo takes place when the level at which the (αΩ) dynamo number becomes larger than one drops below the ionization level of hydrogen. Before that time, the surface dynamo mechanism would take place in a region of low ionization, where the magnetic Reynods number is so small that dissipation overtakes the building of the magnetic field. Turbulent mixing with a turbulent diffusion coefficient proportional to Ω 2 provides a consistant picture of the time and mass dependance of the surface abundance of Lithium. When the level of Li-burning is sufficiently far from the bottom of the convective zone an asymptotic value of lithium abundance is reached. This can explain the anomalous Li abundance of pop.II stars. (author). 40 refs

  7. Mean Field Games for Stochastic Growth with Relative Utility

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Minyi, E-mail: mhuang@math.carleton.ca [Carleton University, School of Mathematics and Statistics (Canada); Nguyen, Son Luu, E-mail: sonluu.nguyen@upr.edu [University of Puerto Rico, Department of Mathematics (United States)

    2016-12-15

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation error estimate.

  8. Mean Field Games for Stochastic Growth with Relative Utility

    International Nuclear Information System (INIS)

    Huang, Minyi; Nguyen, Son Luu

    2016-01-01

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation error estimate.

  9. Model-Checking Mean-Field Models: Algorithms & Applications

    NARCIS (Netherlands)

    Kolesnichenko, A.V.

    2014-01-01

    Large systems of interacting objects are highly prevalent in today's world. Such system usually consist of a large number of relatively simple identical objects, and can be observed in many different field as, e.g., physics (interactions of molecules in gas), chemistry (chemical reactions),

  10. Some approximate calculations in SU2 lattice mean field theory

    International Nuclear Information System (INIS)

    Hari Dass, N.D.; Lauwers, P.G.

    1981-12-01

    Approximate calculations are performed for small Wilson loops of SU 2 lattice gauge theory in mean field approximation. Reasonable agreement is found with Monte Carlo data. Ways of improving these calculations are discussed. (Auth.)

  11. Socio-economic applications of finite state mean field games

    KAUST Repository

    Gomes, Diogo A.; Machado Velho, Roberto; Wolfram, Marie Therese

    2014-01-01

    In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite

  12. Explicit Solutions for One-Dimensional Mean-Field Games

    KAUST Repository

    Prazeres, Mariana

    2017-01-01

    In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested

  13. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Rogachevskii, Igor; Kleeorin, Nathan [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Ruchayskiy, Oleg [Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Boyarsky, Alexey [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Fröhlich, Jürg [Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich (Switzerland); Brandenburg, Axel; Schober, Jennifer, E-mail: gary@bgu.ac.il [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  14. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    International Nuclear Information System (INIS)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Brandenburg, Axel; Schober, Jennifer

    2017-01-01

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  15. Mean-field theory of nuclear structure and dynamics

    International Nuclear Information System (INIS)

    Negele, J.W.

    1982-01-01

    The physical and theoretical foundations are presented for the mean-field theory of nuclear structure and dynamics. Salient features of the many-body theory of stationary states are reviewed to motivate the time-dependent mean-field approximation. The time-dependent Hartree-Fock approximation and its limitations are discussed and general theoretical formulations are presented which yield time-dependent mean-field equations in lowest approximation and provide suitable frameworks for overcoming various conceptual and practical limitations of the mean-field theory. Particular emphasis is placed on recent developments utilizing functional integral techniques to obtain a quantum mean-field theory applicable to quantized eigenstates, spontaneous fission, the nuclear partition function, and scattering problems. Applications to a number of simple, idealized systems are presented to verify the approximations for solvable problems and to elucidate the essential features of mean-field dynamics. Finally, calculations utilizing moderately realistic geometries and interactions are reviewed which address heavy-ion collisions, fusion, strongly damped collisions, and fission

  16. Spectral Gap Estimates in Mean Field Spin Glasses

    Science.gov (United States)

    Ben Arous, Gérard; Jagannath, Aukosh

    2018-05-01

    We show that mixing for local, reversible dynamics of mean field spin glasses is exponentially slow in the low temperature regime. We introduce a notion of free energy barriers for the overlap, and prove that their existence imply that the spectral gap is exponentially small, and thus that mixing is exponentially slow. We then exhibit sufficient conditions on the equilibrium Gibbs measure which guarantee the existence of these barriers, using the notion of replicon eigenvalue and 2D Guerra Talagrand bounds. We show how these sufficient conditions cover large classes of Ising spin models for reversible nearest-neighbor dynamics and spherical models for Langevin dynamics. Finally, in the case of Ising spins, Panchenko's recent rigorous calculation (Panchenko in Ann Probab 46(2):865-896, 2018) of the free energy for a system of "two real replica" enables us to prove a quenched LDP for the overlap distribution, which gives us a wider criterion for slow mixing directly related to the Franz-Parisi-Virasoro approach (Franz et al. in J Phys I 2(10):1869-1880, 1992; Kurchan et al. J Phys I 3(8):1819-1838, 1993). This condition holds in a wider range of temperatures.

  17. Mean-field theory of meta-learning

    International Nuclear Information System (INIS)

    Plewczynski, Dariusz

    2009-01-01

    We discuss here the mean-field theory for a cellular automata model of meta-learning. Meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents that acquire and process incoming information using various types, or different versions, of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share the opposite classification outcome can be observed in the system. Therefore, the probability of selecting a proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are built from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents

  18. Feasible homopolar dynamo with sliding liquid-metal contacts

    OpenAIRE

    Priede, Jānis; Avalos-Zúñiga, Raúl

    2013-01-01

    We present a feasible homopolar dynamo design consisting of a flat, multi-arm spiral coil, which is placed above a fast-spinning metal ring and connected to the latter by sliding liquid-metal electrical contacts. Using a simple, analytically solvable axisymmetric model, we determine the optimal design of such a setup. For small contact resistance, the lowest magnetic Reynolds number, Rm~34.6, at which the dynamo can work, is attained at the optimal ratio of the outer and inner radii of the ri...

  19. Systematic parameter study of dynamo bifurcations in geodynamo simulations

    Science.gov (United States)

    Petitdemange, Ludovic

    2018-04-01

    We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core, i.e. in a rotating spherical shell with thermally driven motions with no-slip boundaries. Unlike in previous studies on dynamo bifurcations, the control parameters have been varied significantly in order to deduce general tendencies. Numerical studies on the stability domain of dipolar magnetic fields found a dichotomy between non-reversing dipole-dominated dynamos and the reversing non-dipole-dominated multipolar solutions. We show that, by considering weak initial fields, the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. Such a result was also observed in models with free-slip boundaries in which the geostrophic zonal flow can develop and participate to the dynamo mechanism for non-dipolar fields. We show that a similar process develops in no-slip models when viscous effects are reduced sufficiently. The following three regimes are distinguished: (i) Close to the onset of convection (Rac) with only the most critical convective mode (wave number) being present, dynamos set in supercritically in the Ekman number regime explored here and are dipole-dominated. Larger critical magnetic Reynolds numbers indicate that they are particularly inefficient. (ii) in the range 3 10) , the relative importance of zonal flows increases with Ra in non-magnetic models. The field topology depends on the magnitude of the initial magnetic field. The dipolar branch has a subcritical behavior whereas the multipolar branch has a supercritical behavior. By approaching more realistic parameters, the extension of this bistable regime increases. A hysteretic behavior questions the common interpretation for geomagnetic reversals. Far above the dynamo threshold (by increasing the magnetic Prandtl number), Lorentz forces contribute to the first order force balance, as predicted for planetary dynamos. When

  20. One-Dimensional Forward–Forward Mean-Field Games

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diogo A., E-mail: diogo.gomes@kaust.edu.sa; Nurbekyan, Levon; Sedjro, Marc [King Abdullah University of Science and Technology (KAUST), CEMSE Division (Saudi Arabia)

    2016-12-15

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  1. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc

    2016-01-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  2. Antiferromagnetic and topological states in silicene: A mean field study

    Science.gov (United States)

    Liu, Feng; Liu, Cheng-Cheng; Yao, Yu-Gui

    2015-08-01

    It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron-electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling (SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K‧ for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state. Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB920903, 2013CB921903, 2011CBA00108, and 2012CB937500), the National Natural Science Foundation of China (Grant Nos. 11021262, 11172303, 11404022, 11225418, and 11174337), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121101110046), the Excellent Young Scholars Research Fund of Beijing Institute of Technology (Grant No. 2014CX04028), and the Basic Research Funds of Beijing Institute of Technology (Grant No. 20141842001).

  3. One-Dimensional Forward–Forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2016-11-01

    While the general theory for the terminal-initial value problem for mean-field games (MFGs) has achieved a substantial progress, the corresponding forward–forward problem is still poorly understood—even in the one-dimensional setting. Here, we consider one-dimensional forward–forward MFGs, study the existence of solutions and their long-time convergence. First, we discuss the relation between these models and systems of conservation laws. In particular, we identify new conserved quantities and study some qualitative properties of these systems. Next, we introduce a class of wave-like equations that are equivalent to forward–forward MFGs, and we derive a novel formulation as a system of conservation laws. For first-order logarithmic forward–forward MFG, we establish the existence of a global solution. Then, we consider a class of explicit solutions and show the existence of shocks. Finally, we examine parabolic forward–forward MFGs and establish the long-time convergence of the solutions.

  4. Development of mean field theories in nuclear physics and in desordered media

    International Nuclear Information System (INIS)

    Orland, Henri.

    1981-04-01

    This work, in two parts, deals with the development of mean field theories in nuclear physics (nuclei in balance and collisions of heavy ions) as well as in disordered media. In the first part, two different ways of tackling the problem of developments around mean field theories are explained. Possessing an approach wave function for the system, the natural idea for including the correlations is to develop the exact wave function of the system around the mean field wave function. The first two chapters show two different ways of dealing with this problem: the perturbative approach - Hartree-Fock equations with two body collisions and functional methods. In the second part: mean field theory for spin glasses. The problem for spin glasses is to construct a physically acceptable mean field theory. The importance of this problem in statistical mechanics is linked to the fact that the mean field theory provides a qualitative description of the low temperature phase and is the starting point needed for using more sophisticated methods (renormalization group). Two approaches to this problem are presented, one based on the Sherrington-Kirkpatrick model and the other based on a model of spins with purely local disorder and competitive interaction between the spins [fr

  5. Uncertainty quantification for mean field games in social interactions

    KAUST Repository

    Dia, Ben Mansour

    2016-01-09

    We present an overview of mean field games formulation. A comparative analysis of the optimality for a stochastic McKean-Vlasov process with time-dependent probability is presented. Then we examine mean-field games for social interactions and we show that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize couple (marriage). However , if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. Finally we introduce the Wiener chaos expansion for the construction of solution of stochastic differential equations of Mckean-Vlasov type. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and allow to quantify the uncertainty in the optimality system.

  6. Uncertainty quantification for mean field games in social interactions

    KAUST Repository

    Dia, Ben Mansour

    2016-01-01

    We present an overview of mean field games formulation. A comparative analysis of the optimality for a stochastic McKean-Vlasov process with time-dependent probability is presented. Then we examine mean-field games for social interactions and we show that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize couple (marriage). However , if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. Finally we introduce the Wiener chaos expansion for the construction of solution of stochastic differential equations of Mckean-Vlasov type. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and allow to quantify the uncertainty in the optimality system.

  7. A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control

    KAUST Repository

    Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul

    2015-01-01

    In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) needs not be satisfied. For a general action space a Peng's type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.

  8. A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control

    KAUST Repository

    Djehiche, Boualem

    2015-02-24

    In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) needs not be satisfied. For a general action space a Peng\\'s type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.

  9. Dynamical Mean Field Approximation Applied to Quantum Field Theory

    CERN Document Server

    Akerlund, Oscar; Georges, Antoine; Werner, Philipp

    2013-12-04

    We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...

  10. Back-reaction beyond the mean field approximation

    International Nuclear Information System (INIS)

    Kluger, Y.

    1993-01-01

    A method for solving an initial value problem of a closed system consisting of an electromagnetic mean field and its quantum fluctuations coupled to fermions is presented. By tailoring the large N f expansion method to the Schwinger-Keldysh closed time path (CTP) formulation of the quantum effective action, causality of the resulting equations of motion is ensured, and a systematic energy conserving and gauge invariant expansion about the electromagnetic mean field in powers of 1/N f is developed. The resulting equations may be used to study the quantum nonequilibrium effects of pair creation in strong electric fields and the scattering and transport processes of a relativistic e + e - plasma. Using the Bjorken ansatz of boost invariance initial conditions in which the initial electric mean field depends on the proper time only, we show numerical results for the case in which the N f expansion is truncated in the lowest order, and compare them with those of a phenomenological transport equation

  11. A Maximum Principle for SDEs of Mean-Field Type

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Daniel, E-mail: danieand@math.kth.se; Djehiche, Boualem, E-mail: boualem@math.kth.se [Royal Institute of Technology, Department of Mathematics (Sweden)

    2011-06-15

    We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.

  12. A Maximum Principle for SDEs of Mean-Field Type

    International Nuclear Information System (INIS)

    Andersson, Daniel; Djehiche, Boualem

    2011-01-01

    We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.

  13. Sine-Gordon mean field theory of a Coulomb gas

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan

    1997-12-31

    Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)

  14. Symplectic manifolds, coadjoint orbits, and Mean Field Theory

    International Nuclear Information System (INIS)

    Rosensteel, G.

    1986-01-01

    Mean field theory is given a geometrical interpretation as a Hamiltonian dynamical system. The Hartree-Fock phase space is the Grassmann manifold, a symplectic submanifold of the projective space of the full many-fermion Hilbert space. The integral curves of the Hartree-Fock vector field are the time-dependent Hartree-Fock solutions, while the critical points of the energy function are the time-independent states. The mean field theory is generalized beyond determinants to coadjoint orbit spaces of the unitary group; the Grassmann variety is the minimal coadjoint orbit

  15. A mean field theory of coded CDMA systems

    International Nuclear Information System (INIS)

    Yano, Toru; Tanaka, Toshiyuki; Saad, David

    2008-01-01

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems

  16. A mean field theory of coded CDMA systems

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp

    2008-08-15

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.

  17. Many-Body Mean-Field Equations: Parallel implementation

    International Nuclear Information System (INIS)

    Vallieres, M.; Umar, S.; Chinn, C.; Strayer, M.

    1993-01-01

    We describe the implementation of Hartree-Fock Many-Body Mean-Field Equations on a Parallel Intel iPSC/860 hypercube. We first discuss the Nuclear Mean-Field approach in physical terms. Then we describe our parallel implementation of this approach on the Intel iPSC/860 hypercube. We discuss and compare the advantages and disadvantages of the domain partition versus the Hilbert space partition for this problem. We conclude by discussing some timing experiments on various computing platforms

  18. Mean field with corrections in lattice gauge theory

    International Nuclear Information System (INIS)

    Flyvbjerg, H.; Zuber, J.B.; Lautrup, B.

    1981-12-01

    A systematic expansion of the path integral for lattice gauge theory is performed around the mean field solution. In this letter the authors present the results for the pure gauge groups Z(2), SU(2) and SO(3). The agreement with Monte Carlo calculations is excellent. For the discrete group the calculation is performed with and without gauge fixing, whereas for the continuous groups gauge fixing is mandatory. In the case of SU(2) the absence of a phase transition is correctly signalled by mean field theory. (Auth.)

  19. Conservation laws arising in the study of forward-forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc

    2017-01-01

    We consider forward-forward Mean Field Game (MFG) models that arise in numerical approximations of stationary MFGs. First, we establish a link between these models and a class of hyperbolic conservation laws as well as certain nonlinear wave equations. Second, we investigate existence and long-time behavior of solutions for such models.

  20. New a priori estimates for mean-field games with congestion

    KAUST Repository

    Evangelista, David; Gomes, Diogo A.

    2016-01-01

    We present recent developments in crowd dynamics models (e.g. pedestrian flow problems). Our formulation is given by a mean-field game (MFG) with congestion. We start by reviewing earlier models and results. Next, we develop our model. We establish new a priori estimates that give partial regularity of the solutions. Finally, we discuss numerical results.

  1. New a priori estimates for mean-field games with congestion

    KAUST Repository

    Evangelista, David

    2016-01-06

    We present recent developments in crowd dynamics models (e.g. pedestrian flow problems). Our formulation is given by a mean-field game (MFG) with congestion. We start by reviewing earlier models and results. Next, we develop our model. We establish new a priori estimates that give partial regularity of the solutions. Finally, we discuss numerical results.

  2. Conservation laws arising in the study of forward-forward Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2017-04-24

    We consider forward-forward Mean Field Game (MFG) models that arise in numerical approximations of stationary MFGs. First, we establish a link between these models and a class of hyperbolic conservation laws as well as certain nonlinear wave equations. Second, we investigate existence and long-time behavior of solutions for such models.

  3. A long-lived lunar dynamo driven by continuous mechanical stirring.

    Science.gov (United States)

    Dwyer, C A; Stevenson, D J; Nimmo, F

    2011-11-09

    Lunar rocks contain a record of an ancient magnetic field that seems to have persisted for more than 400 million years and which has been attributed to a lunar dynamo. Models of conventional dynamos driven by thermal or compositional convection have had difficulty reproducing the existence and apparently long duration of the lunar dynamo. Here we investigate an alternative mechanism of dynamo generation: continuous mechanical stirring arising from the differential motion, due to Earth-driven precession of the lunar spin axis, between the solid silicate mantle and the liquid core beneath. We show that the fluid motions and the power required to drive a dynamo operating continuously for more than one billion years and generating a magnetic field that had an intensity of more than one microtesla 4.2 billion years ago are readily obtained by mechanical stirring. The magnetic field is predicted to decrease with time and to shut off naturally when the Moon recedes far enough from Earth that the dissipated power is insufficient to drive a dynamo; in our nominal model, this occurred at about 48 Earth radii (2.7 billion years ago). Thus, lunar palaeomagnetic measurements may be able to constrain the poorly known early orbital evolution of the Moon. This mechanism may also be applicable to dynamos in other bodies, such as large asteroids.

  4. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  5. Quantum mean-field theory of collective dynamics and tunneling

    International Nuclear Information System (INIS)

    Negele, J.W.; Massachusetts Inst. of Tech., Cambridge

    1981-01-01

    In collaboration with Shimon Levit and Zvi Paltiel, significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples will be summarized here. (orig./HSI)

  6. Mean-field theory of anyons near Bose statistics

    International Nuclear Information System (INIS)

    McCabe, J.; MacKenzie, R.

    1992-01-01

    The validity of a mean-field approximation for a boson-based free anyon gas near Bose statistics is shown. The magnetic properties of the system is discussed in the approximation that the statistical magnetic field is uniform. It is proved that the anyon gas does not exhibit a Meissner effect in the domain of validity the approximation. (K.A.) 7 refs

  7. Constrained deterministic leader-follower mean field control

    NARCIS (Netherlands)

    Möller, L.; Gentile, B.; Parise, F.; Grammatico, S.; Lygeros, J.

    2016-01-01

    We consider a mean field game among a large population of noncooperative agents divided into two categories: leaders and followers. Each agent is subject to heterogeneous convex constraints and minimizes a quadratic cost function; the cost of each leader is affected by the leaders' aggregate

  8. Halo nuclei studied by relativistic mean-field approach

    International Nuclear Information System (INIS)

    Gmuca, S.

    1997-01-01

    Density distributions of light neutron-rich nuclei are studied by using the relativistic mean-field approach. The effective interaction which parameterizes the recent Dirac-Brueckner-Hartree-Fock calculations of nuclear matter is used. The results are discussed and compared with the experimental observations with special reference to the neutron halo in the drip-line nuclei. (author)

  9. Antiferromagnetism, charge density wave, and d-wave superconductivity in the extended t-J-U model: role of intersite Coulomb interaction and a critical overview of renormalized mean field theory.

    Science.gov (United States)

    Abram, M; Zegrodnik, M; Spałek, J

    2017-09-13

    In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.

  10. Mean-field Ohm's law and coaxial helicity injection in force-free plasmas

    International Nuclear Information System (INIS)

    Weening, R. H.

    2011-01-01

    A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity η and hyper-resistivity Λ terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.

  11. New results on an equipartition dynamo

    DEFF Research Database (Denmark)

    Dorch, S. B. F.; Archontis, V.

    2006-01-01

    This contribution presents results from numerical computer experiments with a 3-d steady sine flow (with zero mean helicity) that drives fast dynamo action. The mode of operation of this so-called ``no-cosines" dynamo (recently dubbed ``the Archontis dynamo"" by David Galloway) was studied during...... significantly higher that intermittent turbulent dynamos: Namely very close to energy equipartition for high Reynolds numbers. The equipartition solution however is not turbulent but a laminar solution that acts as an attractor to other modes. Similarities and differences, in the way the magnetic field...

  12. Quark number density and susceptibility calculation with one correction in mean field potential

    International Nuclear Information System (INIS)

    Singh, S. Somorendro

    2016-01-01

    We calculate quark number density and susceptibility of a model which has one loop correction in mean field potential. The calculation shows continuous increasing in the number density and susceptibility up to the temperature T = 0.4 GeV. Then the value of number density and susceptibility approach to the lattice result for higher value of temperature. The result indicates that the calculated values of the model fit well and the result increase the temperature to reach the lattice data with the one loop correction in the mean field potential. (author)

  13. Mean-Field Scenario for the Athermal Creep Dynamics of Yield-Stress Fluids

    Science.gov (United States)

    Liu, Chen; Martens, Kirsten; Barrat, Jean-Louis

    2018-01-01

    We develop a theoretical description based on an existent mean-field model for the transient dynamics prior to the steady flow of yielding materials. The mean-field model not only reproduces the experimentally observed nonlinear time dependence of the shear-rate response to an external stress, but also allows for the determination of the different physical processes involved in the onset of the reacceleration phase after the initial slowing down and a distinct fluidization phase. The fluidization time displays a power-law dependence on the distance of the applied stress to an age-dependent yield stress, which is not universal but strongly dependent on initial conditions.

  14. Dynamical Regimes and the Dynamo Bifurcation in Geodynamo Simulations

    Science.gov (United States)

    Petitdemange, L.

    2017-12-01

    We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core : in a rotating spherical shell with thermally driven motions with no-slip boundaries. Unlike previous studies on dynamo bifurcations, the control parameters have been varied significantly in order to deduce general tendencies. Numerical studies on the stability domain of dipolar magnetic fields found a dichotomy between non-reversing dipole-dominated dynamos and the reversing non-dipole-dominated multipolar solutions. We show that, by considering weak initial fields, the above transition is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. Such a result was also observed in models with free-slip boundaries in which the strong shear of geostrophic zonal flows can develop and gives rise to non-dipolar fields. We show that a similar process develops in no-slip models when viscous effects are reduced sufficiently.Close to the onset of convection (Rac), the axial dipole grows exponentially in the kinematic phase and saturation occurs by marginally changing the flow structure close to the dynamo threshold Rmc. The resulting bifurcation is then supercritical.In the range 3RacIf (Ra/Ra_c>10), important zonal flows develop in non-magnetic models with low viscosity. The field topology depends on the initial magnetic field. The dipolar branch has a subcritical behaviour whereas the multipolar branch is supercritical. By approaching more realistic parameters, the extension of this bistable regime increases (lower Rossby numbers). An hysteretic behaviour questions the common interpretation for geomagnetic reversals. Far above Rm_c$, the Lorentz force becomes dominant, as it is expected in planetary cores.

  15. Existence for stationary mean-field games with congestion and quadratic Hamiltonians

    KAUST Repository

    Gomes, Diogo A.; Mitake, Hiroyoshi

    2015-01-01

    Here, we investigate the existence of solutions to a stationary mean-field game model introduced by J.-M. Lasry and P.-L. Lions. This model features a quadratic Hamiltonian and congestion effects. The fundamental difficulty of potential singular

  16. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    Science.gov (United States)

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  17. Merging Belief Propagation and the Mean Field Approximation

    DEFF Research Database (Denmark)

    Riegler, Erwin; Kirkelund, Gunvor Elisabeth; Manchón, Carles Navarro

    2010-01-01

    We present a joint message passing approach that combines belief propagation and the mean field approximation. Our analysis is based on the region-based free energy approximation method proposed by Yedidia et al., which allows to use the same objective function (Kullback-Leibler divergence......) as a starting point. In this method message passing fixed point equations (which correspond to the update rules in a message passing algorithm) are then obtained by imposing different region-based approximations and constraints on the mean field and belief propagation parts of the corresponding factor graph....... Our results can be applied, for example, to algorithms that perform joint channel estimation and decoding in iterative receivers. This is demonstrated in a simple example....

  18. Nuclear collective vibrations in extended mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D. [Lab. de Physique Corpusculaire/ ENSICAEN, 14 - Caen (France); Ayik, S. [Tennessee Technological Univ., Cookeville, TN (United States); Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2003-07-01

    The extended mean-field theory, which includes both the incoherent dissipation mechanism due to nucleon-nucleon collisions and the coherent dissipation mechanism due to coupling to low-lying surface vibrations, is briefly reviewed. Expressions of the strength functions for the collective excitations are presented in the small amplitude limit of this approach. This fully microscopic theory is applied by employing effective Skyrme forces to various giant resonance excitations at zero and finite temperature. The theory is able to describe the gross properties of giant resonance excitations, the fragmentation of the strength distributions as well as their fine structure. At finite temperature, the success and limitations of this extended mean-field description are discussed. (authors)

  19. RPA correlations and nuclear densities in relativistic mean field approach

    International Nuclear Information System (INIS)

    Van Giai, N.; Liang, H.Z.; Meng, J.

    2007-02-01

    The relativistic mean field approach (RMF) is well known for describing accurately binding energies and nucleon distributions in atomic nuclei throughout the nuclear chart. The random phase approximation (RPA) built on top of the RMF is also a good framework for the study of nuclear excitations. Here, we examine the consequences of long range correlations brought about by the RPA on the neutron and proton densities as given by the RMF approach. (authors)

  20. Hubbard interaction in the arbitrary Chern number insulator: A mean-field study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Cao, Jie [College of Science, Hohai University, Nanjing 210098 (China)

    2017-05-10

    The low-dimensional electron gas owing topological property has attracted many interests recently. In this work, we study the influence of the electron-electron interaction on the arbitrary Chern number insulator. Using the mean-field method, we approximately solve the Hubbard model in the half-filling case and obtain the phase diagrams in different parametric spaces. We further verify the results by calculating the entanglement spectrum, which contains C chiral modes and corresponds to a real space partitioning. - Highlights: • In this work, we made a mean-field study of the Hubbard interaction in the arbitrary Chern number insulator. • We point out that how the Zeeman splitting, the local magnetization and the Hubbard interaction are intimately related. • The mean-field phase diagrams are obtained in different parametric spaces. • The Chern number phase is demonstrated by calculating the entanglement spectrum.

  1. Non-equilibrium mean-field theories on scale-free networks

    International Nuclear Information System (INIS)

    Caccioli, Fabio; Dall'Asta, Luca

    2009-01-01

    Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks

  2. Epidemic spreading in weighted networks: an edge-based mean-field solution.

    Science.gov (United States)

    Yang, Zimo; Zhou, Tao

    2012-05-01

    Weight distribution greatly impacts the epidemic spreading taking place on top of networks. This paper presents a study of a susceptible-infected-susceptible model on regular random networks with different kinds of weight distributions. Simulation results show that the more homogeneous weight distribution leads to higher epidemic prevalence, which, unfortunately, could not be captured by the traditional mean-field approximation. This paper gives an edge-based mean-field solution for general weight distribution, which can quantitatively reproduce the simulation results. This method could be applied to characterize the nonequilibrium steady states of dynamical processes on weighted networks.

  3. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...

  4. Short-time existence of solutions for mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.; Voskanyan, Vardan K.

    2015-01-01

    We consider time-dependent mean-field games with congestion that are given by a Hamilton–Jacobi equation coupled with a Fokker–Planck equation. These models are motivated by crowd dynamics in which agents have difficulty moving in high-density areas

  5. Low Complexity Sparse Bayesian Learning for Channel Estimation Using Generalized Mean Field

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Fleury, Bernard Henri

    2014-01-01

    We derive low complexity versions of a wide range of algorithms for sparse Bayesian learning (SBL) in underdetermined linear systems. The proposed algorithms are obtained by applying the generalized mean field (GMF) inference framework to a generic SBL probabilistic model. In the GMF framework, we...

  6. Mean field dynamics of networks of delay-coupled noisy excitable units

    Energy Technology Data Exchange (ETDEWEB)

    Franović, Igor, E-mail: franovic@ipb.ac.rs [Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Todorović, Kristina; Burić, Nikola [Department of Physics and Mathematics, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade (Serbia); Vasović, Nebojša [Department of Applied Mathematics, Faculty of Mining and Geology, University of Belgrade, PO Box 162, Belgrade (Serbia)

    2016-06-08

    We use the mean-field approach to analyze the collective dynamics in macroscopic networks of stochastic Fitzhugh-Nagumo units with delayed couplings. The conditions for validity of the two main approximations behind the model, called the Gaussian approximation and the Quasi-independence approximation, are examined. It is shown that the dynamics of the mean-field model may indicate in a self-consistent fashion the parameter domains where the Quasi-independence approximation fails. Apart from a network of globally coupled units, we also consider the paradigmatic setup of two interacting assemblies to demonstrate how our framework may be extended to hierarchical and modular networks. In both cases, the mean-field model can be used to qualitatively analyze the stability of the system, as well as the scenarios for the onset and the suppression of the collective mode. In quantitative terms, the mean-field model is capable of predicting the average oscillation frequency corresponding to the global variables of the exact system.

  7. Finite-State Mean-Field Games, Crowd Motion Problems, and its Numerical Methods

    KAUST Repository

    Machado Velho, Roberto

    2017-09-10

    In this dissertation, we present two research projects, namely finite-state mean-field games and the Hughes model for the motion of crowds. In the first part, we describe finite-state mean-field games and some applications to socio-economic sciences. Examples include paradigm shifts in the scientific community and the consumer choice behavior in a free market. The corresponding finite-state mean-field game models are hyperbolic systems of partial differential equations, for which we propose and validate a new numerical method. Next, we consider the dual formulation to two-state mean-field games, and we discuss numerical methods for these problems. We then depict different computational experiments, exhibiting a variety of behaviors, including shock formation, lack of invertibility, and monotonicity loss. We conclude the first part of this dissertation with an investigation of the shock structure for two-state problems. In the second part, we consider a model for the movement of crowds proposed by R. Hughes in [56] and describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an Eikonal equation with Dirichlet or Neumann data. We first establish a priori estimates for the solutions. Next, we consider radial solutions, and we identify a shock formation mechanism. Subsequently, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. We also propose a new numerical method for the solution of Fokker-Planck equations and then to systems of PDEs composed by a Fokker-Planck equation and a potential type equation. Finally, we illustrate the use of the numerical method both to the Hughes model and mean-field games. We also depict cases such as the evacuation of a room and the movement of persons around Kaaba (Saudi Arabia).

  8. Derivation of mean-field dynamics for fermions

    International Nuclear Information System (INIS)

    Petrat, Soeren

    2014-01-01

    In this work, we derive the time-dependent Hartree(-Fock) equations as an effective dynamics for fermionic many-particle systems. Our main results are the first for a quantum mechanical mean-field dynamics for fermions; in previous works, the mean-field limit is usually either coupled to a semiclassical limit, or the interaction is scaled down so much, that the system behaves freely for large particle number N. We mainly consider systems with total kinetic energy bounded by const.N and long-range interaction potentials, e.g., Coulomb interaction. Examples for such systems are large molecules or certain solid states. Our analysis also applies to attractive interactions, as, e.g., in fermionic stars. The fermionic Hartree(-Fock) equations are a standard tool to describe, e.g., excited states or chemical reactions of large molecules (like proteins). A deeper understanding of these equations as an approximation to the time evolution of a many body quantum system is thus highly relevant. We consider the fermionic Hartree equations (i.e., the Hartree-Fock equations without exchange term) in this work, since the exchange term is subleading in our setting. The main result is that the fermionic Hartree dynamics approximates the Schroedinger dynamics well for large N. This statement becomes exact in the thermodynamic limit N→∞. We give explicit values for the rates of convergence. We prove two types of results. The first type is very general and concerns arbitrary free Hamiltonians (e.g., relativistic, non-relativistic, with external fields) and arbitrary interactions. The theorems give explicit conditions on the solutions to the fermionic Hartree equations under which a derivation of the mean-field dynamics succeeds. The second type of results scrutinizes situations where the conditions are fulfilled. These results are about non-relativistic free Hamiltonians with external fields, systems with total kinetic energy bounded by const.N and with long-range interactions of

  9. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  10. The mean field in many body quantum physics

    International Nuclear Information System (INIS)

    Llano, M. de

    1984-01-01

    As an introduction to the quantum problem of many bodies we present a panoramic view of the most elementary theories called mean field theories. They comprise: i) the fermions ideal gas theory which implies, in a simple manner, the stability of white dwarf stars and of neutron stars, ii) the Hartree-Fock approximation for thermodynamical systems which is presented here in the context of a liquid-crystal phase transition, and iii) the Thomas-Fermi theory which is applied to the total binding energy of neutral atoms. (author)

  11. Applicability of self-consistent mean-field theory

    International Nuclear Information System (INIS)

    Guo Lu; Sakata, Fumihiko; Zhao Enguang

    2005-01-01

    Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case

  12. Surface incompressibility from semiclassical relativistic mean field calculations

    International Nuclear Information System (INIS)

    Patra, S.K.; Centelles, M.; Vinas, X.; Estal, M. del

    2002-01-01

    By using the scaling method and the Thomas-Fermi and extended Thomas-Fermi approaches to relativistic mean field theory the surface contribution to the leptodermous expansion of the finite nuclei incompressibility K A has been self-consistently computed. The validity of the simplest expansion, which contains volume, volume-symmetry, surface, and Coulomb terms, is examined by comparing it with self-consistent results of K A for some currently used nonlinear σ-ω parameter sets. A numerical estimate of higher-order contributions to the leptodermous expansion, namely, the curvature and surface-symmetry terms, is made

  13. Relativistic mean field calculations in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  14. Time-Dependent Mean-Field Games with Logarithmic Nonlinearities

    KAUST Repository

    Gomes, Diogo A.; Pimentel, Edgard

    2015-01-01

    In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.

  15. Time-Dependent Mean-Field Games with Logarithmic Nonlinearities

    KAUST Repository

    Gomes, Diogo A.

    2015-10-06

    In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.

  16. A basal magma ocean dynamo to explain the early lunar magnetic field

    Science.gov (United States)

    Scheinberg, Aaron L.; Soderlund, Krista M.; Elkins-Tanton, Linda T.

    2018-06-01

    The source of the ancient lunar magnetic field is an unsolved problem in the Moon's evolution. Theoretical work invoking a core dynamo has been unable to explain the magnitude of the observed field, falling instead one to two orders of magnitude below it. Since surface magnetic field strength is highly sensitive to the depth and size of the dynamo region, we instead hypothesize that the early lunar dynamo was driven by convection in a basal magma ocean formed from the final stages of an early lunar magma ocean; this material is expected to be dense, radioactive, and metalliferous. Here we use numerical convection models to predict the longevity and heat flow of such a basal magma ocean and use scaling laws to estimate the resulting magnetic field strength. We show that, if sufficiently electrically conducting, a magma ocean could have produced an early dynamo with surface fields consistent with the paleomagnetic observations.

  17. Statistical Mechanics of Turbulent Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  18. Sums over geometries and improvements on the mean field approximation

    International Nuclear Information System (INIS)

    Sacksteder, Vincent E. IV

    2007-01-01

    The saddle points of a Lagrangian due to Efetov are analyzed. This Lagrangian was originally proposed as a tool for calculating systematic corrections to the Bethe approximation, a mean-field approximation which is important in statistical mechanics, glasses, coding theory, and combinatorial optimization. Detailed analysis shows that the trivial saddle point generates a sum over geometries reminiscent of dynamically triangulated quantum gravity, which suggests new possibilities to design sums over geometries for the specific purpose of obtaining improved mean-field approximations to D-dimensional theories. In the case of the Efetov theory, the dominant geometries are locally treelike, and the sum over geometries diverges in a way that is similar to quantum gravity's divergence when all topologies are included. Expertise from the field of dynamically triangulated quantum gravity about sums over geometries may be able to remedy these defects and fulfill the Efetov theory's original promise. The other saddle points of the Efetov Lagrangian are also analyzed; the Hessian at these points is nonnormal and pseudo-Hermitian, which is unusual for bosonic theories. The standard formula for Gaussian integrals is generalized to nonnormal kernels

  19. Non-local correlations within dynamical mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang

    2009-03-15

    The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)

  20. Quantum mean-field theory of collective dynamics and tunneling

    International Nuclear Information System (INIS)

    Negele, J.W.

    1981-01-01

    A fundamental problem in quantum many-body theory is formulation of a microscopic theory of collective motion. For self-bound, saturating systems like finite nuclei described in the context of nonrelativistic quantum mechanics with static interactions, the essential problem is how to formulate a systematic quantal theory in which the relevant collective variables and their dynamics arise directly and naturally from the Hamiltonian and the system under consideration. Significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples are summarized. An exact expression for an observable of interest is written using a functional integral representation for the evolution operator, and tractable time-dependent mean field equations are obtained by application of the stationary-phase approximation (SPA) to the functional integral. Corrections to the lowest-order theory may be systematically enumerated. 6 figures

  1. Non-local correlations within dynamical mean field theory

    International Nuclear Information System (INIS)

    Li, Gang

    2009-03-01

    The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)

  2. A study of the required Rayleigh number to sustain dynamo with various inner core radius

    Science.gov (United States)

    Nishida, Y.; Katoh, Y.; Matsui, H.; Kumamoto, A.

    2017-12-01

    It is widely accepted that the geomagnetic field is sustained by thermal and compositional driven convections of a liquid iron alloy in the outer core. The generation process of the geomagnetic field has been studied by a number of MHD dynamo simulations. Recent studies of the ratio of the Earth's core evolution suggest that the inner solid core radius ri to the outer liquid core radius ro changed from ri/ro = 0 to 0.35 during the last one billion years. There are some studies of dynamo in the early Earth with smaller inner core than the present. Heimpel et al. (2005) revealed the Rayleigh number Ra of the onset of dynamo process as a function of ri/ro from simulation, while paleomagnetic observation shows that the geomagnetic field has been sustained for 3.5 billion years. While Heimpel and Evans (2013) studied dynamo processes taking into account the thermal history of the Earth's interior, there were few cases corresponding to the early Earth. Driscoll (2016) performed a series of dynamo based on a thermal evolution model. Despite a number of dynamo simulations, dynamo process occurring in the interior of the early Earth has not been fully understood because the magnetic Prandtl numbers in these simulations are much larger than that for the actual outer core.In the present study, we performed thermally driven dynamo simulations with different aspect ratio ri/ro = 0.15, 0.25 and 0.35 to evaluate the critical Ra for the thermal convection and required Ra to maintain the dynamo. For this purpose, we performed simulations with various Ra and fixed the other control parameters such as the Ekman, Prandtl, and magnetic Prandtl numbers. For the initial condition and boundary conditions, we followed the dynamo benchmark case 1 by Christensen et al. (2001). The results show that the critical Ra increases with the smaller aspect ratio ri/ro. It is confirmed that larger amplitude of buoyancy is required in the smaller inner core to maintain dynamo.

  3. Some consequences of shear on galactic dynamos with helicity fluxes

    Science.gov (United States)

    Zhou, Hongzhe; Blackman, Eric G.

    2017-08-01

    Galactic dynamo models sustained by supernova (SN) driven turbulence and differential rotation have revealed that the sustenance of large-scale fields requires a flux of small-scale magnetic helicity to be viable. Here we generalize a minimalist analytic version of such galactic dynamos to explore some heretofore unincluded contributions from shear on the total turbulent energy and turbulent correlation time, with the helicity fluxes maintained by either winds, diffusion or magnetic buoyancy. We construct an analytic framework for modelling the turbulent energy and correlation time as a function of SN rate and shear. We compare our prescription with previous approaches that include only rotation. The solutions depend separately on the rotation period and the eddy turnover time and not just on their ratio (the Rossby number). We consider models in which these two time-scales are allowed to be independent and also a case in which they are mutually dependent on radius when a radial-dependent SN rate model is invoked. For the case of a fixed rotation period (or a fixed radius), we show that the influence of shear is dramatic for low Rossby numbers, reducing the correlation time of the turbulence, which, in turn, strongly reduces the saturation value of the dynamo compared to the case when the shear is ignored. We also show that even in the absence of winds or diffusive fluxes, magnetic buoyancy may be able to sustain sufficient helicity fluxes to avoid quenching.

  4. A simplified BBGKY hierarchy for correlated fermions from a stochastic mean-field approach

    International Nuclear Information System (INIS)

    Lacroix, Denis; Tanimura, Yusuke; Ayik, Sakir; Yilmaz, Bulent

    2016-01-01

    The stochastic mean-field (SMF) approach allows to treat correlations beyond mean-field using a set of independent mean-field trajectories with appropriate choice of fluctuating initial conditions. We show here that this approach is equivalent to a simplified version of the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy between one-, two-,.., N -body degrees of freedom. In this simplified version, one-body degrees of freedom are coupled to fluctuations to all orders while retaining only specific terms of the general BBGKY hierarchy. The use of the simplified BBGKY is illustrated with the Lipkin-Meshkov-Glick (LMG) model. We show that a truncated version of this hierarchy can be useful, as an alternative to the SMF, especially in the weak coupling regime to get physical insight in the effect beyond mean-field. In particular, it leads to approximate analytical expressions for the quantum fluctuations both in the weak and strong coupling regime. In the strong coupling regime, it can only be used for short time evolution. In that case, it gives information on the evolution time-scale close to a saddle point associated to a quantum phase-transition. For long time evolution and strong coupling, we observed that the simplified BBGKY hierarchy cannot be truncated and only the full SMF with initial sampling leads to reasonable results. (orig.)

  5. A Stochastic Maximum Principle for General Mean-Field Systems

    International Nuclear Information System (INIS)

    Buckdahn, Rainer; Li, Juan; Ma, Jin

    2016-01-01

    In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and we extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.

  6. Relativistic mean field theory for deformed nuclei with pairing correlations

    International Nuclear Information System (INIS)

    Geng, Lisheng; Toki, Hiroshi; Sugimoto, Satoru; Meng, Jie

    2003-01-01

    We develop a relativistic mean field (RMF) description of deformed nuclei with pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei whose Fermi surfaces are close to the threshold of unbound states needs special attention. With this in mind, we use a delta function interaction for the pairing interaction to pick up those states whose wave functions are concentrated in the nuclear region and employ the standard BCS approximation for the single-particle states obtained from the BMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line. (author)

  7. Displacement Convexity for First-Order Mean-Field Games

    KAUST Repository

    Seneci, Tommaso

    2018-05-01

    In this thesis, we consider the planning problem for first-order mean-field games (MFG). These games degenerate into optimal transport when there is no coupling between players. Our aim is to extend the concept of displacement convexity from optimal transport to MFGs. This extension gives new estimates for solutions of MFGs. First, we introduce the Monge-Kantorovich problem and examine related results on rearrangement maps. Next, we present the concept of displacement convexity. Then, we derive first-order MFGs, which are given by a system of a Hamilton-Jacobi equation coupled with a transport equation. Finally, we identify a large class of functions, that depend on solutions of MFGs, which are convex in time. Among these, we find several norms. This convexity gives bounds for the density of solutions of the planning problem.

  8. A Stochastic Maximum Principle for General Mean-Field Systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckdahn, Rainer, E-mail: Rainer.Buckdahn@univ-brest.fr [Université de Bretagne-Occidentale, Département de Mathématiques (France); Li, Juan, E-mail: juanli@sdu.edu.cn [Shandong University, Weihai, School of Mathematics and Statistics (China); Ma, Jin, E-mail: jinma@usc.edu [University of Southern California, Department of Mathematics (United States)

    2016-12-15

    In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and we extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.

  9. Explicit Solutions for One-Dimensional Mean-Field Games

    KAUST Repository

    Prazeres, Mariana

    2017-04-05

    In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested in MFGs with a nonmonotonic behavior, which corresponds to situations where agents tend to aggregate. First, we derive the MFG equations from control theory. Then, we compute explicit solutions using the current formulation and examine their behavior. Finally, we represent the solutions and analyze the results. This thesis main contributions are the following: First, we develop the current method to solve MFG explicitly. Second, we analyze in detail non-monotonic MFGs and discover new phenomena: non-uniqueness, discontinuous solutions, empty regions and unhappiness traps. Finally, we address several regularization procedures and examine the stability of MFGs.

  10. Mean field instabilities in dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Colonna, M.; Guarnera, A.; Istituto Nazionale di Fisica Nucleare, Bologna; Catania Univ.; Di Torro, M.; Catania Univ.

    1995-01-01

    We discuss new reaction mechanisms that may occur in semi-peripheral heavy ion collisions at intermediate energies. In particular we focus on the dynamics of the overlapping zone, showing the development of neck instabilities, coupled with the possibility of an increasing amount amount of dynamical fluctuations. In a very selected beam energy range between 40 and 70 MeV/u we observe an important interplay between stochastic nucleon exchange and the random nature of nucleon-nucleon collisions. Expected consequences are intermediate mass fragment emissions from the neck region and large variances in the projectile-like and target-like observables. The crucial importance of a time matching between the growth of mean field instabilities and the separation of the interacting system is stressed. Some hints towards the observation of relatively large instability effects in deep inelastic collisions at lower energy are finally suggested. (authors). 29 refs., 5 figs., 2 tabs

  11. Existence for stationary mean-field games with congestion and quadratic Hamiltonians

    KAUST Repository

    Gomes, Diogo A.

    2015-09-03

    Here, we investigate the existence of solutions to a stationary mean-field game model introduced by J.-M. Lasry and P.-L. Lions. This model features a quadratic Hamiltonian and congestion effects. The fundamental difficulty of potential singular behavior is caused by congestion. Thanks to a new class of a priori bounds, combined with the continuation method, we prove the existence of smooth solutions in arbitrary dimensions. © 2015 Springer Basel

  12. Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Chiaki; Yokoyama, Takaaki [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-04-10

    Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentz force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.

  13. The relativistic mean-field description of nuclei and nuclear dynamics

    International Nuclear Information System (INIS)

    Reinhard, P.G.

    1989-01-01

    The relativistic mean-field model of the nucleus is reviewed. It describes the nucleus as a system of Dirac-Nucleons which interact in a relativistic covariant manner via meson fields. The meson fields are treated as mean fields, i.e. as non quantal c-number fields. The effects of the Dirac sea of the nucleons is neglected. The model is interpreted as a phenomenological ansatz providing a selfconsistent relativistic description of nuclei and nuclear dynamics. It is viewed, so to say, as the relativistic generalisation of the Skyrme-Hartree-Fock ansatz. The capability and the limitations of the model to describe nuclear properties are discussed. Recent applications to spherical and deformed nuclei and to nuclear dynamics are presented. (orig.)

  14. Mean-field dynamics of a population of stochastic map neurons

    Science.gov (United States)

    Franović, Igor; Maslennikov, Oleg V.; Bačić, Iva; Nekorkin, Vladimir I.

    2017-07-01

    We analyze the emergent regimes and the stimulus-response relationship of a population of noisy map neurons by means of a mean-field model, derived within the framework of cumulant approach complemented by the Gaussian closure hypothesis. It is demonstrated that the mean-field model can qualitatively account for stability and bifurcations of the exact system, capturing all the generic forms of collective behavior, including macroscopic excitability, subthreshold oscillations, periodic or chaotic spiking, and chaotic bursting dynamics. Apart from qualitative analogies, we find a substantial quantitative agreement between the exact and the approximate system, as reflected in matching of the parameter domains admitting the different dynamical regimes, as well as the characteristic properties of the associated time series. The effective model is further shown to reproduce with sufficient accuracy the phase response curves of the exact system and the assembly's response to external stimulation of finite amplitude and duration.

  15. Feasible homopolar dynamo with sliding liquid-metal contacts

    International Nuclear Information System (INIS)

    Priede, Jānis; Avalos-Zúñiga, Raúl

    2013-01-01

    We present a feasible homopolar dynamo design consisting of a flat, multi-arm spiral coil, which is placed above a fast-spinning metal ring and connected to the latter by sliding liquid-metal electrical contacts. Using a simple, analytically solvable axisymmetric model, we determine the optimal design of such a setup. For small contact resistance, the lowest magnetic Reynolds number, Rm≈34.6, at which the dynamo can work, is attained at the optimal ratio of the outer and inner radii of the rings R i /R o ≈0.36 and the spiral pitch angle 54.7°. In a setup of two copper rings with the thickness of 3 cm, R i =10 cm and R o =30 cm, self-excitation of the magnetic field is expected at a critical rotation frequency around 10 Hz

  16. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  17. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1998-03-01

    We study the equation of state (EOS) of {beta}-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson (a{sub 0}(980)). A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s}{approx}30 MeV. We find that the quantity most sensitive to the {delta}-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the {delta}-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger {delta}-meson coupling. (author) 8 refs, 6 figs, 2 tabs

  18. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1998-01-01

    We study the equation of state (EOS) of β-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson (a 0 (980)). A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼30 MeV. We find that the quantity most sensitive to the δ-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the δ-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger δ-meson coupling. (author)

  19. Relativistic mean-field approximation with density-dependent screening meson masses in nuclear matter

    International Nuclear Information System (INIS)

    Sun, Baoxi; Lu, Xiaofu; Shen, Pengnian; Zhao, Enguang

    2003-01-01

    The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)

  20. An RVB state with fermionic charges and bosonic spins: Mean field theory

    International Nuclear Information System (INIS)

    Flensberg, K.; Hedegard, P.; Brix Pedersen, M.

    1989-01-01

    We consider a representation of the Hubbard model, in which the charge carriers are fermions and the spin carriers are bosons. We show that there exist a mean-field solution with a condensate of spin-singlets and we characterize the low temperature behavior of the quasiparticles. Finally we calculate the tunneling spectrum for a normal metal-RVB state tunnel junction and suggest the tunneling experiment as a probe of the statistics of the RVB quasiparticles. (orig.)

  1. Mean-field behavior for the survival probability and the point-to-surface connectivity

    CERN Document Server

    Sakai, A

    2003-01-01

    We consider the critical survival probability for oriented percolation and the contact process, and the point-to-surface connectivity for critical percolation. By similarity, let \\rho denote the critical expoents for both quantities. We prove in a unified fashion that, if \\rho exists and if both two-point function and its certain restricted version exhibit the same mean-field behavior, then \\rho=2 for percolation with d>7 and \\rho=1 for the time-oriented models with d>4.

  2. Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach

    OpenAIRE

    Chenavaz, Régis; Paraschiv, Corina; Turinici, Gabriel

    2017-01-01

    Dynamic pricing of new products has been extensively studied in monopolistic and oligopolistic markets. But, the optimal control and differential game tools used to investigate the pricing behavior on markets with a finite number of firms are not well-suited to model competitive markets with an infinity of firms. Using a mean-field games approach, this paper examines dynamic pricing policies in competitive markets, where no firm exerts market power. The theoretical setting is based on a diffu...

  3. Superheavy nuclei in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.; Gambhir, Y.K.

    1996-01-01

    We have carried out a study of superheavy nuclei in the framework of the relativistic mean-field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed. (orig.)

  4. Trapped Bose gas. Mean-field approximation and beyond

    International Nuclear Information System (INIS)

    Pitaevskii, L.P.

    1998-01-01

    The recent realization of Bose-Einstein condensation in atomic gases opens new possibilities for observation of macroscopic quantum phenomena. There are two important features of the system - weak interaction and significant spatial inhomogeneity. Because of this inhomogeneity a non-trivial 'zeroth-order' theory exists, compared to the 'first-order' Bogoliubov theory. This theory is based on the mean-field Gross-Pitaevskii equation for the condensate ψ -function. The equation is classical in its essence but contains the ℎ constant explicitly. Phenomena such as collective modes, interference, tunneling, Josephson-like current and quantized vortex lines can be described using this equation. The study of deviations from the zeroth-order theory arising from zero-point and thermal fluctuations is also of great interest. Thermal fluctuations are described by elementary excitations which define the thermodynamic behaviour of the system and result in Landau-type damping of collective modes. Fluctuations of the phase of the condensate wave function restrict the monochromaticity of the Josephson current. Fluctuations of the numbers of quanta result in the quantum collapse-revival of the collective oscillations. This phenomenon is considered in some details. Collapse time for the JILA experimental conditions turns out to be of the order of seconds. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  5. Mean-field inference of Hawkes point processes

    International Nuclear Information System (INIS)

    Bacry, Emmanuel; Gaïffas, Stéphane; Mastromatteo, Iacopo; Muzy, Jean-François

    2016-01-01

    We propose a fast and efficient estimation method that is able to accurately recover the parameters of a d-dimensional Hawkes point-process from a set of observations. We exploit a mean-field approximation that is valid when the fluctuations of the stochastic intensity are small. We show that this is notably the case in situations when interactions are sufficiently weak, when the dimension of the system is high or when the fluctuations are self-averaging due to the large number of past events they involve. In such a regime the estimation of a Hawkes process can be mapped on a least-squares problem for which we provide an analytic solution. Though this estimator is biased, we show that its precision can be comparable to the one of the maximum likelihood estimator while its computation speed is shown to be improved considerably. We give a theoretical control on the accuracy of our new approach and illustrate its efficiency using synthetic datasets, in order to assess the statistical estimation error of the parameters. (paper)

  6. Faraday rotation signatures of fluctuation dynamos in young galaxies

    Science.gov (United States)

    Sur, Sharanya; Bhat, Pallavi; Subramanian, Kandaswamy

    2018-03-01

    Observations of Faraday rotation through high-redshift galaxies have revealed that they host coherent magnetic fields that are of comparable strengths to those observed in nearby galaxies. These fields could be generated by fluctuation dynamos. We use idealized numerical simulations of such dynamos in forced compressible turbulence up to rms Mach number of 2.4 to probe the resulting rotation measure (RM) and the degree of coherence of the magnetic field. We obtain rms values of RM at dynamo saturation of the order of 45-55 per cent of the value expected in a model where fields are assumed to be coherent on the forcing scale of turbulence. We show that the dominant contribution to the RM in subsonic and transonic cases comes from the general sea of volume filling fields, rather than from the rarer structures. However, in the supersonic case, strong field regions as well as moderately overdense regions contribute significantly. Our results can account for the observed RMs in young galaxies.

  7. An impurity solver for nonequilibrium dynamical mean field theory based on hierarchical quantum master equations

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer [Institut fuer Theoretische Physik, Georg-August-Universitaet Goettingen, Goettingen (Germany); Millis, Andrew J. [Department of Physics, Columbia University, New York (United States)

    2016-07-01

    We present a new impurity solver for real-time and nonequilibrium dynamical mean field theory applications, based on the recently developed hierarchical quantum master equation approach. Our method employs a hybridization expansion of the time evolution operator, including an advanced, systematic truncation scheme. Convergence to exact results for not too low temperatures has been demonstrated by a direct comparison to quantum Monte Carlo simulations. The approach is time-local, which gives us access to slow dynamics such as, e.g., in the presence of magnetic fields or exchange interactions and to nonequilibrium steady states. Here, we present first results of this new scheme for the description of strongly correlated materials in the framework of dynamical mean field theory, including benchmark and new results for the Hubbard and periodic Anderson model.

  8. Covariant density functional theory beyond mean field and applications for nuclei far from stability

    International Nuclear Information System (INIS)

    Ring, P

    2010-01-01

    Density functional theory provides a very powerful tool for a unified microscopic description of nuclei all over the periodic table. It is not only successful in reproducing bulk properties of nuclear ground states such as binding energies, radii, or deformation parameters, but it also allows the investigation of collective phenomena, such as giant resonances and rotational excitations. However, it is based on the mean field concept and therefore it has its limits. We discuss here two methods based based on covariant density functional theory going beyond the mean field concept, (i) models with an energy dependent self energy allowing the coupling to complex configurations and a quantitative description of the width of giant resonances and (ii) methods of configuration mixing between Slater determinants with different deformation and orientation providing are very successful description of transitional nuclei and quantum phase transitions.

  9. Advances in dynamic and mean field games theory, applications, and numerical methods

    CERN Document Server

    Viscolani, Bruno

    2017-01-01

    This contributed volume considers recent advances in dynamic games and their applications, based on presentations given at the 17th Symposium of the International Society of Dynamic Games, held July 12-15, 2016, in Urbino, Italy. Written by experts in their respective disciplines, these papers cover various aspects of dynamic game theory including mean-field games, stochastic and pursuit-evasion games, and computational methods for dynamic games. Topics covered include Pedestrian flow in crowded environments Models for climate change negotiations Nash Equilibria for dynamic games involving Volterra integral equations Differential games in healthcare markets Linear-quadratic Gaussian dynamic games Aircraft control in wind shear conditions Advances in Dynamic and Mean-Field Games presents state-of-the-art research in a wide spectrum of areas. As such, it serves as a testament to the continued vitality and growth of the field of dynamic games and their applications. It will be of interest to an interdisciplinar...

  10. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)]. A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼ 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the δ-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing δmeson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab

  11. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)]. A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s} {approx} 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the {delta}-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing {delta}meson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab.

  12. Short-range correlations in an extended time-dependent mean-field theory

    International Nuclear Information System (INIS)

    Madler, P.

    1982-01-01

    A generalization is performed of the time-dependent mean-field theory by an explicit inclusion of strong short-range correlations on a level of microscopic reversibility relating them to realistic nucleon-nucleon forces. Invoking a least action principle for correlated trial wave functions, equations of motion for the correlation functions and the single-particle model wave function are derived in lowest order of the FAHT cluster expansion. Higher order effects as well as long-range correlations are consider only to the extent to which they contribute to the mean field via a readjusted phenomenological effective two-body interaction. The corresponding correlated stationary problem is investigated and appropriate initial conditions to describe a heavy ion reaction are proposed. The singleparticle density matrix is evaluated

  13. BABCOCK–LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Karak, Bidya Binay; Cameron, Robert, E-mail: bkarak@ucar.edu [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-11-20

    The key elements of the Babcock–Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock–Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock–Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.

  14. BABCOCK–LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY

    International Nuclear Information System (INIS)

    Karak, Bidya Binay; Cameron, Robert

    2016-01-01

    The key elements of the Babcock–Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock–Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock–Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.

  15. Magnetism, dynamo action and the solar-stellar connection

    Directory of Open Access Journals (Sweden)

    Allan Sacha Brun

    2017-09-01

    Full Text Available Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observations of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connection”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, including a very brief discussion of mean-field theory and related concepts. Next we turn to simulations of convection and magnetism in stellar interiors, highlighting both some peculiarities of field generation in different types of stars and some unifying physical processes that likely influence dynamo action in general. We conclude with a brief summary of what we have learned, and a sampling of issues that remain uncertain or unsolved.

  16. Fission barriers and asymmetric ground states in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Rutz, K.; Reinhard, P.G.; Greiner, W.

    1995-01-01

    The symmetric and asymmetric fission path for 240 Pu, 232 Th and 226 Ra is investigated within the relativistic mean-field model. Standard parametrizations which are well fitted to nuclear ground-state properties are found to deliver reasonable qualitative and quantitative features of fission, comparable to similar nonrelativistic calculations. Furthermore, stable octupole deformations in the ground states of radium isotopes are investigated. They are found in a series of isotopes, qualitatively in agreement with nonrelativistic models. But the quantitative details differ amongst the models and between the various relativistic parametrizations. (orig.)

  17. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  18. The effect of collisionality and diamagnetism on the plasma dynamo

    International Nuclear Information System (INIS)

    Ji, H.; Yagi, Y.; Hattori, K.; Hirano, Y.; Shimada, T.; Maejima, Y.; Hayase, K.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.

    1995-01-01

    Fluctuation-induced dynamo forces are measured over a wide range of electron collisionality in the edge of TPE-1RM20 Reversed-Field Pinch (RFP). In the collisionless region the Magnetohydrodynamic (MHD) dynamo alone can sustain the parallel current, while in the collisional region a new dynamo mechanism resulting from the fluctuations in the electron diamagnetic drift becomes dominant. A comprehensive picture of the RFP dynamo emerges by combining with earlier results from MST and REPUTE RFPs

  19. Magnetic reversals from planetary dynamo waves

    DEFF Research Database (Denmark)

    Sheyko, Andrey; Finlay, Chris; Jackson, Andrew

    2016-01-01

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes ...... to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.......A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes...... place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines...

  20. On the Existence of Solutions for Stationary Mean-Field Games with Congestion

    KAUST Repository

    Evangelista, David

    2017-09-11

    Mean-field games (MFGs) are models of large populations of rational agents who seek to optimize an objective function that takes into account their location and the distribution of the remaining agents. Here, we consider stationary MFGs with congestion and prove the existence of stationary solutions. Because moving in congested areas is difficult, agents prefer to move in non-congested areas. As a consequence, the model becomes singular near the zero density. The existence of stationary solutions was previously obtained for MFGs with quadratic Hamiltonians thanks to a very particular identity. Here, we develop robust estimates that give the existence of a solution for general subquadratic Hamiltonians.

  1. Quark self-energy beyond the mean field at finite temperature

    International Nuclear Information System (INIS)

    Zhuang, P.

    1995-01-01

    The Nambu--Jona-Lasinio model, an effective low-energy model of QCD, is extended to the next to the leading order in the 1/N c expansion at finite temperature and density. The contributions to the quark self-energy and the constituent quark mass from the meson dressing are considered in a perturbative approach about the mean field. In particular, the temperature dependence of the quark mass is shown numerically at zero chemical potential. The correction to the quark mass from the meson dressing amounts to 20% compared to the result of the leading order at low temperature, and rapidly approaches zero at high temperature

  2. On the Existence of Solutions for Stationary Mean-Field Games with Congestion

    KAUST Repository

    Evangelista, David; Gomes, Diogo A.

    2017-01-01

    Mean-field games (MFGs) are models of large populations of rational agents who seek to optimize an objective function that takes into account their location and the distribution of the remaining agents. Here, we consider stationary MFGs with congestion and prove the existence of stationary solutions. Because moving in congested areas is difficult, agents prefer to move in non-congested areas. As a consequence, the model becomes singular near the zero density. The existence of stationary solutions was previously obtained for MFGs with quadratic Hamiltonians thanks to a very particular identity. Here, we develop robust estimates that give the existence of a solution for general subquadratic Hamiltonians.

  3. Naturalness of Nonlinear Scalar Self-Couplings in a Relativistic Mean Field Theory for Neutron Stars

    International Nuclear Information System (INIS)

    Maekawa, Claudio; Razeira, Moises; Vasconcellos, Cesar A. Z.; Dillig, Manfred; Bodmann, Bardo E. J.

    2004-01-01

    We investigate the role of naturalness in effective field theory. We focus on dense hadronic matter using a generalized relativistic multi-baryon lagrangian density mean field approach which contains nonlinear self-couplings of the σ, δ meson fields and the fundamental baryon octet. We adjust the model parameters to describe bulk static properties of ordinary nuclear matter. Then, we show that our approach represents a natural modelling of nuclear matter under the extreme conditions of density as the ones found in the interior of neutron stars

  4. Mean-field theory of photoinduced formation of surface reliefs in side-chain azobenzene polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Johansen, Per Michael; Holme, N.C.R.

    1998-01-01

    A mean-field model of photoinduced surface reliefs in dye containing side-chain polymers is presented. It is demonstrated that photoinduced ordering of dye molecules subject to anisotropic intermolecular interactions leads to mass transport even when the intensity of the incident light is spatially...... uniform. Theoretical profiles are obtained using a simple variational method and excellent agreement with experimental surface reliefs recorded under various polarization configurations is found. The polarization dependence of both period and shape of the profiles is correctly reproduced by the model....

  5. Spectral gaps, inertial manifolds and kinematic dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)]. E-mail: mnjmhd@am.uva.es

    2005-10-17

    Inertial manifolds are desirable objects when ones wishes a dynamical process to behave asymptotically as a finite-dimensional ones. Recently [Physica D 194 (2004) 297] these manifolds are constructed for the kinematic dynamo problem with time-periodic velocity. It turns out, however, that the conditions imposed on the fluid velocity to guarantee the existence of inertial manifolds are too demanding, in the sense that they imply that all the solutions tend exponentially to zero. The inertial manifolds are meaningful because they represent different decay rates, but the classical dynamos where the magnetic field is maintained or grows are not covered by this approach, at least until more refined estimates are found.

  6. Anelastic spherical dynamos with radially variable electrical conductivity

    Science.gov (United States)

    Dietrich, W.; Jones, C. A.

    2018-05-01

    A series of numerical simulations of the dynamo process operating inside gas giant planets has been performed. We use an anelastic, fully nonlinear, three-dimensional, benchmarked MHD code to evolve the flow, entropy and magnetic field. Our models take into account the varying electrical conductivity, high in the ionised metallic hydrogen region, low in the molecular outer region. Our suite of electrical conductivity profiles ranges from Jupiter-like, where the outer hydrodynamic region is quite thin, to Saturn-like, where there is a thick non-conducting shell. The rapid rotation leads to the formation of two distinct dynamical regimes which are separated by a magnetic tangent cylinder - mTC. Outside the mTC there are strong zonal flows, where Reynolds stress balances turbulent viscosity, but inside the mTC Lorentz force reduces the zonal flow. The dynamic interaction between both regions induces meridional circulation. We find a rich diversity of magnetic field morphologies. There are Jupiter-like steady dipolar fields, and a belt of quadrupolar dominated dynamos spanning the range of models between Jupiter-like and Saturn-like conductivity profiles. This diversity may be linked to the appearance of reversed sign helicity in the metallic regions of our dynamos. With Saturn-like conductivity profiles we find models with dipolar magnetic fields, whose axisymmetric components resemble those of Saturn, and which oscillate on a very long time-scale. However, the non-axisymmetric field components of our models are at least ten times larger than those of Saturn, possibly due to the absence of any stably stratified layer.

  7. Present state of the theory of a MHD-dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Soward, A M; Roberts, P H

    1976-01-01

    A review is given of the state of the theory of a MHD-dynamo, that is, the theory of self-excited magnetic fields in homogeneous moving liquids. A description is given of two basic approaches-the turbulent dynamos of Steinbeck, Krause and Redler and the high-conductivity dynamo of Braginski, and a look is also taken at the relation between these dynamos. Finally a look is taken at the results of recent studies of the total problem of a MHD-dynamo, that is, at the results of recent attempts to solve the electro- and hydrodynamic equations and to obtain self-excited fields. 6 figs., 122 ref. (SJR)

  8. Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory

    NARCIS (Netherlands)

    Aarts, G.; Smit, J.

    2000-01-01

    As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function

  9. A Bayesian mean field game approach to supply demand analysis of the smart grid

    KAUST Repository

    Kamgarpour, Maryam

    2013-07-01

    We explore a game theoretic framework for multiple energy producers competing in energy market. Each producer, referred to as a player, optimizes its own objective function given the demand utility. The equilibrium strategy of each player depends on the production cost, referred to as type, of the other players. We show that as the number of players increases, the mean of the types is sufficient for finding the equilibrium. For finite number of players, we design a mean field distributed learning algorithm that converges to equilibrium. We discuss extensions of our model to include several realistic aspects of the energy market. © 2013 IEEE.

  10. Monotone numerical methods for finite-state mean-field games

    KAUST Repository

    Gomes, Diogo A.; Saude, Joao

    2017-01-01

    Here, we develop numerical methods for finite-state mean-field games (MFGs) that satisfy a monotonicity condition. MFGs are determined by a system of differential equations with initial and terminal boundary conditions. These non-standard conditions are the main difficulty in the numerical approximation of solutions. Using the monotonicity condition, we build a flow that is a contraction and whose fixed points solve the MFG, both for stationary and time-dependent problems. We illustrate our methods in a MFG modeling the paradigm-shift problem.

  11. Short-time existence of solutions for mean-field games with congestion

    KAUST Repository

    Gomes, Diogo A.

    2015-11-20

    We consider time-dependent mean-field games with congestion that are given by a Hamilton–Jacobi equation coupled with a Fokker–Planck equation. These models are motivated by crowd dynamics in which agents have difficulty moving in high-density areas. The congestion effects make the Hamilton–Jacobi equation singular. The uniqueness of solutions for this problem is well understood; however, the existence of classical solutions was only known in very special cases, stationary problems with quadratic Hamiltonians and some time-dependent explicit examples. Here, we demonstrate the short-time existence of C∞ solutions for sub-quadratic Hamiltonians.

  12. Time dependent mean field approximation to the many-body S-matrix

    International Nuclear Information System (INIS)

    Alhassid, Y.; Koonin, S.E.

    1980-01-01

    Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures

  13. Pionic atoms, the relativistic mean-field theory and the pion-nucleon scattering lenghts

    International Nuclear Information System (INIS)

    Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.

    1991-01-01

    Analysing pionic-atom data of isoscalar nuclei within the relativistic mean-field (RMF) theory, we determine the pseudoscalar πNN mixing parameter x=0.24±0.06 (syst.) and the strength of the nuclear scalar meson field for pions, S π =-34±14 (syst.) MeV. We show that these values are compatible with the elementary π-N interaction. Our RMF model provides a solution to the long-standing problem of the s-wave repulsion. (orig.)

  14. Identical bands at normal deformation: Necessity of going beyond the mean-field approach

    International Nuclear Information System (INIS)

    Sun, Y.; Wu, C.; Feng, D.H.; Egido, J.L.; Guidry, M.

    1996-01-01

    The validity of BCS theory has been questioned because the appearance of normally deformed identical bands in odd and even nuclei seems to contradict the conventional understanding of the blocking effect. This problem is examined with the projected shell model (PSM), which projects good angular momentum states and includes many-body correlations in both deformation and pairing channels. Satisfactory reproduction of identical band data by the PSM suggests that it may be necessary to go beyond the mean field to obtain a quantitative account of identical bands. copyright 1996 The American Physical Society

  15. Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Johansen, P.M.

    1997-01-01

    . The theory provides an explanation for the high long-term stability of the photoinduced anisotropy as well as a theoretical prediction of the temporal behavior of photoinduced birefringence. The theoretical results agree favorably with measurements in the entire range of writing intensities used......A novel mean-field theory of photoinduced reorientation and optical anisotropy in liquid crystalline side-chain polymers is presented and compared with experiments, The reorientation mechanism is based on photoinduced trans cis isomerization and a multidomain model of the material is introduced...

  16. Monotone numerical methods for finite-state mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2017-04-29

    Here, we develop numerical methods for finite-state mean-field games (MFGs) that satisfy a monotonicity condition. MFGs are determined by a system of differential equations with initial and terminal boundary conditions. These non-standard conditions are the main difficulty in the numerical approximation of solutions. Using the monotonicity condition, we build a flow that is a contraction and whose fixed points solve the MFG, both for stationary and time-dependent problems. We illustrate our methods in a MFG modeling the paradigm-shift problem.

  17. A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution

    Science.gov (United States)

    Evans, A. J.; Zuber, M. T.; Weiss, B. P.; Tikoo, S. M.

    2014-05-01

    While recent analyses of lunar samples indicate the Moon had a core dynamo from at least 4.2-3.56 Ga, mantle convection models of the Moon yield inadequate heat flux at the core-mantle boundary to sustain thermal core convection for such a long time. Past investigations of lunar dynamos have focused on a generally homogeneous, relatively dry Moon, while an initial compositionally stratified mantle is the expected consequence of a postaccretionary lunar magma ocean. Furthermore, recent re-examination of Apollo samples and geophysical data suggests that the Moon contains at least some regions with high water content. Using a finite element model, we investigate the possible consequences of a heterogeneously wet, compositionally stratified interior for the evolution of the Moon. We find that a postoverturn model of mantle cumulates could result in a core heat flux sufficiently high to sustain a dynamo through 2.5 Ga and a maximum surface, dipolar magnetic field strength of less than 1 μT for a 350-km core and near ˜2 μT for a 450-km core. We find that if water was transported or retained preferentially in the deep interior, it would have played a significant role in transporting heat out of the deep interior and reducing the lower mantle temperature. Thus, water, if enriched in the lower mantle, could have influenced core dynamo timing by over 1.0 Gyr and enhanced the vigor of a lunar core dynamo. Our results demonstrate the plausibility of a convective lunar core dynamo even beyond the period currently indicated by the Apollo samples.

  18. Large-scale dynamo action due to α fluctuations in a linear shear flow

    Science.gov (United States)

    Sridhar, S.; Singh, Nishant K.

    2014-12-01

    We present a model of large-scale dynamo action in a shear flow that has stochastic, zero-mean fluctuations of the α parameter. This is based on a minimal extension of the Kraichnan-Moffatt model, to include a background linear shear and Galilean-invariant α-statistics. Using the first-order smoothing approximation we derive a linear integro-differential equation for the large-scale magnetic field, which is non-perturbative in the shearing rate S , and the α-correlation time τα . The white-noise case, τα = 0 , is solved exactly, and it is concluded that the necessary condition for dynamo action is identical to the Kraichnan-Moffatt model without shear; this is because white-noise does not allow for memory effects, whereas shear needs time to act. To explore memory effects we reduce the integro-differential equation to a partial differential equation, valid for slowly varying fields when τα is small but non-zero. Seeking exponential modal solutions, we solve the modal dispersion relation and obtain an explicit expression for the growth rate as a function of the six independent parameters of the problem. A non-zero τα gives rise to new physical scales, and dynamo action is completely different from the white-noise case; e.g. even weak α fluctuations can give rise to a dynamo. We argue that, at any wavenumber, both Moffatt drift and Shear always contribute to increasing the growth rate. Two examples are presented: (a) a Moffatt drift dynamo in the absence of shear and (b) a Shear dynamo in the absence of Moffatt drift.

  19. Realization of the mean-field universality class in spin-crossover materials

    Science.gov (United States)

    Miyashita, Seiji; Konishi, Yusuké; Nishino, Masamichi; Tokoro, Hiroko; Rikvold, Per Arne

    2008-01-01

    In spin-crossover materials, the volume of a molecule changes depending on whether it is in the high-spin (HS) or low-spin (LS) state. This change causes distortion of the lattice. Elastic interactions among these distortions play an important role for the cooperative properties of spin-transition phenomena. We find that the critical behavior caused by this elastic interaction belongs to the mean-field universality class, in which the critical exponents for the spontaneous magnetization and the susceptibility are β=1/2 and γ=1 , respectively. Furthermore, the spin-spin correlation function is a constant at long distances, and it does not show an exponential decay in contrast to short-range models. The value of the correlation function at long distances shows different size dependences: O(1/N) , O(1/N) , and constant for temperatures above, at, and below the critical temperature, respectively. The model does not exhibit clusters, even near the critical point. We also found that cluster growth is suppressed in the present model and that there is no critical opalescence in the coexistence region. During the relaxation process from a metastable state at the end of a hysteresis loop, nucleation phenomena are not observed, and spatially uniform configurations are maintained during the change of the fraction of HS and LS. These characteristics of the mean-field model are expected to be found not only in spin-crossover materials, but also generally in systems where elastic distortion mediates the interaction among local states.

  20. A Study of Stochastic Resonance in the Periodically Forced Rikitake Dynamo

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen Chih-Yuan Tseng

    2007-01-01

    Full Text Available The geodynamo has widely been thought to be an intuitive and selfsustained model of the Earth¡¦s magnetic field. In this paper, we elucidate how a periodic signal could be embedded in the geomagnetic filed via the mechanism of stochastic resonance in a forced Rikitake dynamo. Based on the stochastic resonance observed in the periodically forced Rikitake dynamo, we thus suggest a common triggering for geomagnetic reversal and glacial events. Both kinds of catastrophes may result from the cyclic variation of the Earth¡¦s orbital eccentricity.

  1. Mean field approximation for biased diffusion on Japanese inter-firm trading network.

    Science.gov (United States)

    Watanabe, Hayafumi

    2014-01-01

    By analysing the financial data of firms across Japan, a nonlinear power law with an exponent of 1.3 was observed between the number of business partners (i.e. the degree of the inter-firm trading network) and sales. In a previous study using numerical simulations, we found that this scaling can be explained by both the money-transport model, where a firm (i.e. customer) distributes money to its out-edges (suppliers) in proportion to the in-degree of destinations, and by the correlations among the Japanese inter-firm trading network. However, in this previous study, we could not specifically identify what types of structure properties (or correlations) of the network determine the 1.3 exponent. In the present study, we more clearly elucidate the relationship between this nonlinear scaling and the network structure by applying mean-field approximation of the diffusion in a complex network to this money-transport model. Using theoretical analysis, we obtained the mean-field solution of the model and found that, in the case of the Japanese firms, the scaling exponent of 1.3 can be determined from the power law of the average degree of the nearest neighbours of the network with an exponent of -0.7.

  2. Mean-field Theory for Some Bus Transport Networks with Random Overlapping Clique Structure

    International Nuclear Information System (INIS)

    Yang Xuhua; Sun Bao; Wang Bo; Sun Youxian

    2010-01-01

    Transport networks, such as railway networks and airport networks, are a kind of random network with complex topology. Recently, more and more scholars paid attention to various kinds of transport networks and try to explore their inherent characteristics. Here we study the exponential properties of a recently introduced Bus Transport Networks (BTNs) evolution model with random overlapping clique structure, which gives a possible explanation for the observed exponential distribution of the connectivities of some BTNs of three major cities in China. Applying mean-field theory, we analyze the BTNs model and prove that this model has the character of exponential distribution of the connectivities, and develop a method to predict the growth dynamics of the individual vertices, and use this to calculate analytically the connectivity distribution and the exponents. By comparing mean-field based theoretic results with the statistical data of real BTNs, we observe that, as a whole, both of their data show similar character of exponential distribution of the connectivities, and their exponents have same order of magnitude, which show the availability of the analytical result of this paper. (general)

  3. Relativistic approach to superfluidity in nuclear matter. Constructing effective pair wave function from relativistic mean field theory with a cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, M. [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan); Tanigawa, T.

    1999-08-01

    We propose a simple method to reproduce the {sup 1}S{sub 0} pairing properties of nuclear matter, which are obtained by a sophisticated model, by introducing a density-independent cutoff into the relativistic mean field model. This applies well to the physically relevant density range. (author)

  4. Magnetorotational Dynamo Action in the Shearing Box

    Science.gov (United States)

    Walker, Justin; Boldyrev, Stanislav

    2017-10-01

    Magnetic dynamo action caused by the magnetorotational instability is studied in the shearing-box approximation with no imposed net magnetic flux. Consistent with recent studies, the dynamo action is found to be sensitive to the aspect ratio of the box: it is much easier to obtain in tall boxes (stretched in the direction normal to the disk plane) than in long boxes (stretched in the radial direction). Our direct numerical simulations indicate that the dynamo is possible in both cases, given a large enough magnetic Reynolds number. To explain the relatively larger effort required to obtain the dynamo action in a long box, we propose that the turbulent eddies caused by the instability most efficiently fold and mix the magnetic field lines in the radial direction. As a result, in the long box the scale of the generated strong azimuthal (stream-wise directed) magnetic field is always comparable to the scale of the turbulent eddies. In contrast, in the tall box the azimuthal magnetic flux spreads in the vertical direction over a distance exceeding the scale of the turbulent eddies. As a result, different vertical sections of the tall box are permeated by large-scale nonzero azimuthal magnetic fluxes, facilitating the instability. NSF AGS-1261659, Vilas Associates Award, NSF-Teragrid Project TG-PHY110016.

  5. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Tomio, L.; Dey, M.; Frederico, T.

    1989-01-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M Ν , m σ , m ω are found to scale with density. The equations are solved self consistently. (author)

  6. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    International Nuclear Information System (INIS)

    Cébron, D.; Hollerbach, R.

    2014-01-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere

  7. Autonomously responsive pumping by a bacterial flagellar forest: A mean-field approach

    Science.gov (United States)

    Martindale, James D.; Fu, Henry C.

    2017-09-01

    This study is motivated by a microfluidic device that imparts a magnetic torque on an array of bacterial flagella. Bacterial flagella can transform their helical geometry autonomously in response to properties of the background fluid, which provides an intriguing mechanism allowing their use as an engineered element for the regulation or transport of chemicals in microscale applications. The synchronization of flagellar phase has been widely studied in biological contexts, but here we examine the synchronization of flagellar tilt, which is necessary for effective pumping. We first examine the effects of helical geometry and tilt on the pumping flows generated by a single rotating flagellum. Next, we explore a mean-field model for an array of helical flagella to understand how collective tilt arises and influences pumping. The mean-field methodology allows us to take into account possible phase differences through a time-averaging procedure and to model an infinite array of flagella. We find array separation distances, magnetic field strengths, and rotation frequencies that produce nontrivial self-consistent pumping solutions. For individual flagella, pumping is reversed when helicity or rotation is reversed; in contrast, when collective effects are included, self-consistent tilted pumping solutions become untilted nonpumping solutions when helicity or rotation is reversed.

  8. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Frederico, T.; Tomio, L.

    1990-09-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M N , m σ , m ω are found to scale with density. The equations are solved self consistently. (author). 29 refs, 2 tabs

  9. Warm and cold pasta phase in relativistic mean field theory

    International Nuclear Information System (INIS)

    Avancini, S. S.; Menezes, D. P.; Alloy, M. D.; Marinelli, J. R.; Moraes, M. M. W.; Providencia, C.

    2008-01-01

    In the present article we investigate the onset of the pasta phase with different parametrizations of the nonlinear Walecka model. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. matter with fixed proton fractions and in β equilibrium is studied. The pasta phase decreases with the increase of temperature. The internal pasta structure and the beginning of the homogeneous phase vary depending on the proton fraction (or the imposition of β equilibrium), on the method used, and on the chosen parametrization. It is shown that a good parametrization of the surface tension with dependence on the temperature, proton fraction, and geometry is essential to describe correctly large isospin asymmetries and the transition from pasta to homogeneous matter

  10. Warm and cold pasta phase in relativistic mean field theory

    Science.gov (United States)

    Avancini, S. S.; Menezes, D. P.; Alloy, M. D.; Marinelli, J. R.; Moraes, M. M. W.; Providência, C.

    2008-07-01

    In the present article we investigate the onset of the pasta phase with different parametrizations of the nonlinear Walecka model. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium is studied. The pasta phase decreases with the increase of temperature. The internal pasta structure and the beginning of the homogeneous phase vary depending on the proton fraction (or the imposition of β equilibrium), on the method used, and on the chosen parametrization. It is shown that a good parametrization of the surface tension with dependence on the temperature, proton fraction, and geometry is essential to describe correctly large isospin asymmetries and the transition from pasta to homogeneous matter.

  11. Elementary methods for statistical systems, mean field, large-n, and duality

    International Nuclear Information System (INIS)

    Itzykson, C.

    1983-01-01

    Renormalizable field theories are singled out by such precise restraints that regularization schemes must be used to break these invariances. Statistical methods can be adapted to these problems where asymptotically free models fail. This lecture surveys approximation schemes developed in the context of statistical mechanics. The confluence point of statistical mechanics and field theory is the use of discretized path integrals, where continuous space time has been replaced by a regular lattice. Dynamic variables, a Boltzman weight factor, and boundary conditions are the ingredients. Mean field approximations --field equations, Random field transform, and gauge invariant systems--are surveyed. Under Large-N limits vector models are found to simplify tremendously. The reasons why matrix models drawn from SU (n) gauge theories do not simplify are discussed. In the epilogue, random curves versus random surfaces are offered as an example where global and local symmetries are not alike

  12. Cluster formation in nuclear reactions from mean-field inhomogeneities

    Science.gov (United States)

    Napolitani, Paolo; Colonna, Maria; Mancini-Terracciano, Carlo

    2018-05-01

    Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10 ‑ 21s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which in its latest development unifies in a common approach the description of fluctuations in nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments. After a theoretical introduction, a few

  13. Atomically flat superconducting nanofilms: multiband properties and mean-field theory

    Science.gov (United States)

    Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.

    2015-05-01

    Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.

  14. Atomically flat superconducting nanofilms: multiband properties and mean-field theory

    International Nuclear Information System (INIS)

    Shanenko, A A; Aguiar, J Albino; Vagov, A; Croitoru, M D; Milošević, M V

    2015-01-01

    Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D–2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin–Wagner–Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri–Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg–Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields. (paper)

  15. Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems

    Directory of Open Access Journals (Sweden)

    Jiasen Jin

    2016-07-01

    Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

  16. IMPACT OF A REALISTIC DENSITY STRATIFICATION ON A SIMPLE SOLAR DYNAMO CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elisa; Lopes, Ilidio, E-mail: ilidio.lopes@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-09-20

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.

  17. Inertial effects on thermochemically driven convection and hydromagnetic dynamos in a spherical shell

    Czech Academy of Sciences Publication Activity Database

    Šimkanin, Ján; Kyselica, Juraj; Guba, P.

    2018-01-01

    Roč. 212, č. 3 (2018), s. 2194-2205 ISSN 0956-540X Institutional support: RVO:67985530 Keywords : composition and structure of the core * dynamo * nonlinear differential equations * numerical modelling Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.414, year: 2016

  18. Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers

    Science.gov (United States)

    Šimkanin, Ján; Kyselica, Juraj

    2017-12-01

    Numerical simulations of the geodynamo are becoming more realistic because of advances in computer technology. Here, the geodynamo model is investigated numerically at the extremely low Ekman and magnetic Prandtl numbers using the PARODY dynamo code. These parameters are more realistic than those used in previous numerical studies of the geodynamo. Our model is based on the Boussinesq approximation and the temperature gradient between upper and lower boundaries is a source of convection. This study attempts to answer the question how realistic the geodynamo models are. Numerical results show that our dynamo belongs to the strong-field dynamos. The generated magnetic field is dipolar and large-scale while convection is small-scale and sheet-like flows (plumes) are preferred to a columnar convection. Scales of magnetic and velocity fields are separated, which enables hydromagnetic dynamos to maintain the magnetic field at the low magnetic Prandtl numbers. The inner core rotation rate is lower than that in previous geodynamo models. On the other hand, dimensional magnitudes of velocity and magnetic fields and those of the magnetic and viscous dissipation are larger than those expected in the Earth's core due to our parameter range chosen.

  19. IMPACT OF A REALISTIC DENSITY STRATIFICATION ON A SIMPLE SOLAR DYNAMO CALCULATION

    International Nuclear Information System (INIS)

    Cardoso, Elisa; Lopes, Ilídio

    2012-01-01

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.

  20. One-dimensional, non-local, first-order, stationary mean-field games with congestion: a Fourier approach

    KAUST Repository

    Nurbekyan, Levon

    2017-03-11

    Here, we study a one-dimensional, non-local mean-field game model with congestion. When the kernel in the non-local coupling is a trigonometric polynomial we reduce the problem to a finite dimensional system. Furthermore, we treat the general case by approximating the kernel with trigonometric polynomials. Our technique is based on Fourier expansion methods.