WorldWideScience

Sample records for mc dose calculations

  1. Monte Carlo dose calculation improvements for low energy electron beams using eMC

    International Nuclear Information System (INIS)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Born, Ernst J; Manser, Peter; Neuenschwander, Hans

    2010-01-01

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm 2 of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d max and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm 2 at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation

  2. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    Science.gov (United States)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  3. Dose rates from a C-14 source using extrapolation chamber and MC calculations

    International Nuclear Information System (INIS)

    Borg, J.

    1996-05-01

    The extrapolation chamber technique and the Monte Carlo (MC) calculation technique based on the EGS4 system have been studied for application for determination of dose rates in a low-energy β radiation field e.g., that from a 14 C source. The extrapolation chamber measurement method is the basic method for determination of dose rates in β radiation fields. Applying a number of correction factors and the stopping power ratio, tissue to air, the measured dose rate in an air volume surrounded by tissue equivalent material is converted into dose to tissue. Various details of the extrapolation chamber measurement method and evaluation procedure have been studied and further developed, and a complete procedure for the experimental determination of dose rates from a 14 C source is presented. A number of correction factors and other parameters used in the evaluation procedure for the measured data have been obtained by MC calculations. The whole extrapolation chamber measurement procedure was simulated using the MC method. The measured dose rates showed an increasing deviation from the MC calculated dose rates as the absorber thickness increased. This indicates that the EGS4 code may have some limitations for transport of very low-energy electrons. i.e., electrons with estimated energies less than 10 - 20 keV. MC calculations of dose to tissue were performed using two models: a cylindrical tissue phantom and a computer model of the extrapolation chamber. The dose to tissue in the extrapolation chamber model showed an additional buildup dose compared to the dose in the tissue model. (au) 10 tabs., 11 ills., 18 refs

  4. Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types.

    Science.gov (United States)

    Fix, Michael K; Cygler, Joanna; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2013-05-07

    The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

  5. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    Science.gov (United States)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun

    2015-09-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  6. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    Science.gov (United States)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-07

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  7. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    International Nuclear Information System (INIS)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-01-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon–electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783–97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48–0.53% for the electron beam cases and 0.15–0.17% for the photon beam cases. In terms of efficiency, goMC was ∼4–16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was

  8. Superficial dose evaluation of four dose calculation algorithms

    Science.gov (United States)

    Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei

    2017-08-01

    Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank

  9. The denoising of Monte Carlo dose distributions using convolution superposition calculations

    International Nuclear Information System (INIS)

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-01-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)

  10. Is the standard dose rate for de-contamination, 0.23 mc-Sv/hr, truly 1 mSv/year?

    International Nuclear Information System (INIS)

    Furuta, Sadaaki

    2014-01-01

    Examined is the validity of the standard dose rates in the title, which have been additionally defined by Ministry of the Environment (ME) to the measures of Fukushima Nuclear Power Plant Accident. The standard 0.23 mc-Sv/hr is the sum of natural ambient dose rate 0.04 mc-Sv/hr in average of Japan as measured with NaI scintillation surveymeter, plus additional accidental exposure dose 1 mSv/y, which is defined equivalent to 0.19 mc-Sv/hr. Here, the equation of addition 0.04+0.19 mc-Sv/hr is not exactly correct because the unit of each dose value has different means as follows. The natural dose is derived from the value 5.8 mc-R/hr (0.038 mc-Sv/hr, effective dose) of the average national natural dose data (2011) of Ministry of Education, Culture, Sports, Science and Technology. However, if the measurement is done with the surveymeter which practically gives 1 cm dose equivalent, the rate is calculated to be 0.06 mc-Sv/hr. When the Fukushima prefectural natural dose rate 6.4 mc-R/hr is employed, the calculation gives 0.07 mc-Sv/hr. ME defines the additional doses to be 0.19 mc-Sv/hr and 1 mSv/y, which are derived from the calculation: (0.19 mc-Sv/hr x 8 hr outdoor + 0.19 mc-Sv/hr x 0.4 indoor, shielded) x 365 d/y= 1 mSv/y. The dose is assumed to be measurable with the surveymeter (1 cm dose equivalent) and thereby calculation, if the source is mainly "1"3"4Cs and "1"3"7Cs, gives the effective dose of 0.32 mc-Sv/hr to be managed by the meter. As this, the effective dose unit and 1 cm equivalent dose unit are used for calculation of the administrative standard dose rate of 1 mSv/y, which should be recognized by both radiological experts and administration for the explanation to general public. (T.T.)

  11. Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning.

    Science.gov (United States)

    Chamberland, Eve; Beaulieu, Luc; Lachance, Bernard

    2015-05-08

    The purpose of this study is to evaluate the accuracy of the electron Monte Carlo (eMC) dose calculation algorithm included in a commercial treatment planning system and compare its performance against an electron pencil beam algorithm. Several tests were performed to explore the system's behavior in simple geometries and in configurations encountered in clinical practice. The first series of tests were executed in a homogeneous water phantom, where experimental measurements and eMC-calculated dose distributions were compared for various combinations of energy and applicator. More specifically, we compared beam profiles and depth-dose curves at different source-to-surface distances (SSDs) and gantry angles, by using dose difference and distance to agreement. Also, we compared output factors, we studied the effects of algorithm input parameters, which are the random number generator seed, as well as the calculation grid size, and we performed a calculation time evaluation. Three different inhomogeneous solid phantoms were built, using high- and low-density materials inserts, to clinically simulate relevant heterogeneity conditions: a small air cylinder within a homogeneous phantom, a lung phantom, and a chest wall phantom. We also used an anthropomorphic phantom to perform comparison of eMC calculations to measurements. Finally, we proceeded with an evaluation of the eMC algorithm on a clinical case of nose cancer. In all mentioned cases, measurements, carried out by means of XV-2 films, radiographic films or EBT2 Gafchromic films. were used to compare eMC calculations with dose distributions obtained from an electron pencil beam algorithm. eMC calculations in the water phantom were accurate. Discrepancies for depth-dose curves and beam profiles were under 2.5% and 2 mm. Dose calculations with eMC for the small air cylinder and the lung phantom agreed within 2% and 4%, respectively. eMC calculations for the chest wall phantom and the anthropomorphic phantom also

  12. Dose calculation of X-ray in medium

    International Nuclear Information System (INIS)

    Liu Yanmei; Xue Dingyu; Xu Xinhe; Chen Zhen; Dong Zaili

    2006-01-01

    The photon transportation in radiotherapy is studied based on Monte Carlo method. The dose calculation based on the MC simulation package DPM has been carried out, and the results have been visualized using MEX technology of Matlab. The dose results of X-ray in homogeneity and inhomogeneity medium have been compared with experimental data and those of other MC simulation package, and these results all agree. The calculation method we proposed has the advantage of high speed and good accuracy, therefore, is applicable in practice. (authors)

  13. NOTE: The denoising of Monte Carlo dose distributions using convolution superposition calculations

    Science.gov (United States)

    El Naqa, I.; Cui, J.; Lindsay, P.; Olivera, G.; Deasy, J. O.

    2007-09-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction.

  14. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine

    International Nuclear Information System (INIS)

    Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F

    2005-01-01

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  15. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.

    Science.gov (United States)

    Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei

    2014-12-16

    The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately

  16. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation

    Science.gov (United States)

    Ziegenhein, Peter; Pirner, Sven; Kamerling, Cornelis Ph; Oelfke, Uwe

    2015-08-01

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37× compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25× and 1.95× faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  17. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    International Nuclear Information System (INIS)

    Carrier, Jean-Francois; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-01-01

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D 90 parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future

  18. SU-F-SPS-09: Parallel MC Kernel Calculations for VMAT Plan Improvement

    International Nuclear Information System (INIS)

    Chamberlain, S; French, S; Nazareth, D

    2016-01-01

    Purpose: Adding kernels (small perturbations in leaf positions) to the existing apertures of VMAT control points may improve plan quality. We investigate the calculation of kernel doses using a parallelized Monte Carlo (MC) method. Methods: A clinical prostate VMAT DICOM plan was exported from Eclipse. An arbitrary control point and leaf were chosen, and a modified MLC file was created, corresponding to the leaf position offset by 0.5cm. The additional dose produced by this 0.5 cm × 0.5 cm kernel was calculated using the DOSXYZnrc component module of BEAMnrc. A range of particle history counts were run (varying from 3 × 10"6 to 3 × 10"7); each job was split among 1, 10, or 100 parallel processes. A particle count of 3 × 10"6 was established as the lower range because it provided the minimal accuracy level. Results: As expected, an increase in particle counts linearly increases run time. For the lowest particle count, the time varied from 30 hours for the single-processor run, to 0.30 hours for the 100-processor run. Conclusion: Parallel processing of MC calculations in the EGS framework significantly decreases time necessary for each kernel dose calculation. Particle counts lower than 1 × 10"6 have too large of an error to output accurate dose for a Monte Carlo kernel calculation. Future work will investigate increasing the number of parallel processes and optimizing run times for multiple kernel calculations.

  19. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    International Nuclear Information System (INIS)

    Wan, H; Tseung, Chan; Beltran, C

    2016-01-01

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10"8 proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  20. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    Energy Technology Data Exchange (ETDEWEB)

    Wan, H; Tseung, Chan; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10{sup 8} proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  1. Applying graphics processor units to Monte Carlo dose calculation in radiation therapy

    Directory of Open Access Journals (Sweden)

    Bakhtiari M

    2010-01-01

    Full Text Available We investigate the potential in using of using a graphics processor unit (GPU for Monte-Carlo (MC-based radiation dose calculations. The percent depth dose (PDD of photons in a medium with known absorption and scattering coefficients is computed using a MC simulation running on both a standard CPU and a GPU. We demonstrate that the GPU′s capability for massive parallel processing provides a significant acceleration in the MC calculation, and offers a significant advantage for distributed stochastic simulations on a single computer. Harnessing this potential of GPUs will help in the early adoption of MC for routine planning in a clinical environment.

  2. The impact of dose calculation algorithms on partial and whole breast radiation treatment plans

    International Nuclear Information System (INIS)

    Basran, Parminder S; Zavgorodni, Sergei; Berrang, Tanya; Olivotto, Ivo A; Beckham, Wayne

    2010-01-01

    This paper compares the calculated dose to target and normal tissues when using pencil beam (PBC), superposition/convolution (AAA) and Monte Carlo (MC) algorithms for whole breast (WBI) and accelerated partial breast irradiation (APBI) treatment plans. Plans for 10 patients who met all dosimetry constraints on a prospective APBI protocol when using PBC calculations were recomputed with AAA and MC, keeping the monitor units and beam angles fixed. Similar calculations were performed for WBI plans on the same patients. Doses to target and normal tissue volumes were tested for significance using the paired Student's t-test. For WBI plans the average dose to target volumes when using PBC calculations was not significantly different than AAA calculations, the average PBC dose to the ipsilateral breast was 10.5% higher than the AAA calculations and the average MC dose to the ipsilateral breast was 11.8% lower than the PBC calculations. For ABPI plans there were no differences in dose to the planning target volume, ipsilateral breast, heart, ipsilateral lung, or contra-lateral lung. Although not significant, the maximum PBC dose to the contra-lateral breast was 1.9% higher than AAA and the PBC dose to the clinical target volume was 2.1% higher than AAA. When WBI technique is switched to APBI, there was significant reduction in dose to the ipsilateral breast when using PBC, a significant reduction in dose to the ipsilateral lung when using AAA, and a significant reduction in dose to the ipsilateral breast and lung and contra-lateral lung when using MC. There is very good agreement between PBC, AAA and MC for all target and most normal tissues when treating with APBI and WBI and most of the differences in doses to target and normal tissues are not clinically significant. However, a commonly used dosimetry constraint, as recommended by the ASTRO consensus document for APBI, that no point in the contra-lateral breast volume should receive >3% of the prescribed dose needs

  3. submitter Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems

    CERN Document Server

    Molinelli, Silvia; Mairani, Andrea; Matsufuji, Naruhiro; Kanematsu, Nobuyuki; Inaniwa, Taku; Mirandola, Alfredo; Russo, Stefania; Mastella, Edoardo; Hasegawa, Azusa; Tsuji, Hiroshi; Yamada, Shigeru; Vischioni, Barbara; Vitolo, Viviana; Ferrari, Alfredo; Ciocca, Mario; Kamada, Tadashi; Tsujii, Hirohiko; Orecchia, Roberto; Fossati, Piero

    2016-01-01

    Background and purpose: In carbon ion radiotherapy (CIRT), the use of different relative biological effectiveness (RBE) models in the RBE-weighted dose $(D_{RBE})$ calculation can lead to deviations in the physical dose $(D_{phy})$ delivered to the patient. Our aim is to reduce target $D_{phy}$ deviations by converting prescription dose values. Material and methods: Planning data of patients treated at the National Institute of Radiological Sciences (NIRS) were collected, with prescribed doses per fraction ranging from 3.6 Gy (RBE) to 4.6 Gy (RBE), according to the Japanese semi-empirical model. The $D_{phy}$ was Monte Carlo (MC) re-calculated simulating the NIRS beamline. The local effect model (LEM)_I was then applied to estimate $D_{RBE}$. Target median $D_{RBE}$ ratios between MC + LEM_I and NIRS plans determined correction factors for the conversion of prescription doses. Plans were re-optimized in a LEM_I-based commercial system, prescribing the NIRS uncorrected and corrected $D_{RBE}$. Results: The MC ...

  4. Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2013-01-01

    . The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the beam extraction region, the individual neutron states are handed to McStas via the MCNPX-McStas interface. McStas transports the neutrons through the beam guide and by using newly......Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed[1]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides...... developed event logging capability, the neutron state parameters corresponding to un-reflected neutrons are recorded at each scattering. This information is handed back to MCNPX where it serves as neutron source input for a second MCNPX simulation. This simulation enables calculation of dose rates...

  5. Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy

    Science.gov (United States)

    Mackeprang, P.-H.; Vuong, D.; Volken, W.; Henzen, D.; Schmidhalter, D.; Malthaner, M.; Mueller, S.; Frei, D.; Stampanoni, M. F. M.; Dal Pra, A.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2018-01-01

    This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.

  6. Monte Carlo dose calculations for phantoms with hip prostheses

    International Nuclear Information System (INIS)

    Bazalova, M; Verhaegen, F; Coolens, C; Childs, P; Cury, F; Beaulieu, L

    2008-01-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses

  7. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, A [Linkoping University, Linkoping, Linkoping (Sweden); Persson, M; Nilsson, J [Karolinska hospital, Stockholm, Stockholm (Sweden)

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  8. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    International Nuclear Information System (INIS)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-01-01

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined

  9. Towards real-time photon Monte Carlo dose calculation in the cloud

    Science.gov (United States)

    Ziegenhein, Peter; Kozin, Igor N.; Kamerling, Cornelis Ph; Oelfke, Uwe

    2017-06-01

    Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.

  10. SU-E-T-112: An OpenCL-Based Cross-Platform Monte Carlo Dose Engine (oclMC) for Coupled Photon-Electron Transport

    International Nuclear Information System (INIS)

    Tian, Z; Shi, F; Folkerts, M; Qin, N; Jiang, S; Jia, X

    2015-01-01

    Purpose: Low computational efficiency of Monte Carlo (MC) dose calculation impedes its clinical applications. Although a number of MC dose packages have been developed over the past few years, enabling fast MC dose calculations, most of these packages were developed under NVidia’s CUDA environment. This limited their code portability to other platforms, hindering the introduction of GPU-based MC dose engines to clinical practice. To solve this problem, we developed a cross-platform fast MC dose engine named oclMC under OpenCL environment for external photon and electron radiotherapy. Methods: Coupled photon-electron simulation was implemented with standard analogue simulation scheme for photon transport and Class II condensed history scheme for electron transport. We tested the accuracy and efficiency of oclMC by comparing the doses calculated using oclMC and gDPM, a previously developed GPU-based MC code on NVidia GPU platform, for a 15MeV electron beam and a 6MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. We also tested code portability of oclMC on different devices, including an NVidia GPU, two AMD GPUs and an Intel CPU. Results: Satisfactory agreements were observed in all photon and electron cases, with ∼0.48%–0.53% average dose differences at regions within 10% isodose line for electron beam cases and ∼0.15%–0.17% for photon beam cases. It took oclMC 3–4 sec to perform transport simulation for electron beam on NVidia Titan GPU and 35–51 sec for photon beam, both with ∼0.5% statistical uncertainty. The computation was 6%–17% slower than gDPM due to the differences in both physics model and development environment, which is considered not significant for clinical applications. In terms of code portability, gDPM only runs on NVidia GPUs, while oclMC successfully runs on all the tested devices. Conclusion: oclMC is an accurate and fast MC dose engine. Its high cross

  11. SU-E-T-112: An OpenCL-Based Cross-Platform Monte Carlo Dose Engine (oclMC) for Coupled Photon-Electron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Folkerts, M; Qin, N; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2015-06-15

    Purpose: Low computational efficiency of Monte Carlo (MC) dose calculation impedes its clinical applications. Although a number of MC dose packages have been developed over the past few years, enabling fast MC dose calculations, most of these packages were developed under NVidia’s CUDA environment. This limited their code portability to other platforms, hindering the introduction of GPU-based MC dose engines to clinical practice. To solve this problem, we developed a cross-platform fast MC dose engine named oclMC under OpenCL environment for external photon and electron radiotherapy. Methods: Coupled photon-electron simulation was implemented with standard analogue simulation scheme for photon transport and Class II condensed history scheme for electron transport. We tested the accuracy and efficiency of oclMC by comparing the doses calculated using oclMC and gDPM, a previously developed GPU-based MC code on NVidia GPU platform, for a 15MeV electron beam and a 6MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. We also tested code portability of oclMC on different devices, including an NVidia GPU, two AMD GPUs and an Intel CPU. Results: Satisfactory agreements were observed in all photon and electron cases, with ∼0.48%–0.53% average dose differences at regions within 10% isodose line for electron beam cases and ∼0.15%–0.17% for photon beam cases. It took oclMC 3–4 sec to perform transport simulation for electron beam on NVidia Titan GPU and 35–51 sec for photon beam, both with ∼0.5% statistical uncertainty. The computation was 6%–17% slower than gDPM due to the differences in both physics model and development environment, which is considered not significant for clinical applications. In terms of code portability, gDPM only runs on NVidia GPUs, while oclMC successfully runs on all the tested devices. Conclusion: oclMC is an accurate and fast MC dose engine. Its high cross

  12. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ying, C. K. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu (Malaysia); Kamil, W. A. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and Radiology Department, Hospital USM, Kota Bharu (Malaysia); Shuaib, I. L. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang (Malaysia); Matsufuji, Naruhiro [Research Centre of Charged Particle Therapy, National Institute of Radiological Sciences, NIRS, Chiba (Japan)

    2014-02-12

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.

  13. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    International Nuclear Information System (INIS)

    Ying, C. K.; Kamil, W. A.; Shuaib, I. L.; Matsufuji, Naruhiro

    2014-01-01

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations

  14. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    International Nuclear Information System (INIS)

    Ying, C.K.; Kamil, W.A.; Shuaib, I.L.; Ying, C.K.; Kamil, W.A.

    2013-01-01

    Full-text: Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations. (author)

  15. The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement

    International Nuclear Information System (INIS)

    Fragoso, M; Love, P A; Verhaegen, F; Nalder, C; Bidmead, A M; Leach, M; Webb, S

    2004-01-01

    In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous-with an air cavity-polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated

  16. An evaluation of calculation parameters in the EGSnrc/BEAMnrc Monte Carlo codes and their effect on surface dose calculation

    International Nuclear Information System (INIS)

    Kim, Jung-Ha; Hill, Robin; Kuncic, Zdenka

    2012-01-01

    The Monte Carlo (MC) method has proven invaluable for radiation transport simulations to accurately determine radiation doses and is widely considered a reliable computational measure that can substitute a physical experiment where direct measurements are not possible or feasible. In the EGSnrc/BEAMnrc MC codes, there are several user-specified parameters and customized transport algorithms, which may affect the calculation results. In order to fully utilize the MC methods available in these codes, it is essential to understand all these options and to use them appropriately. In this study, the effects of the electron transport algorithms in EGSnrc/BEAMnrc, which are often a trade-off between calculation accuracy and efficiency, were investigated in the buildup region of a homogeneous water phantom and also in a heterogeneous phantom using the DOSRZnrc user code. The algorithms and parameters investigated include: boundary crossing algorithm (BCA), skin depth, electron step algorithm (ESA), global electron cutoff energy (ECUT) and electron production cutoff energy (AE). The variations in calculated buildup doses were found to be larger than 10% for different user-specified transport parameters. We found that using BCA = EXACT gave the best results in terms of accuracy and efficiency in calculating buildup doses using DOSRZnrc. In addition, using the ESA = PRESTA-I option was found to be the best way of reducing the total calculation time without losing accuracy in the results at high energies (few keV ∼ MeV). We also found that although choosing a higher ECUT/AE value in the beam modelling can dramatically improve computation efficiency, there is a significant trade-off in surface dose uncertainty. Our study demonstrates that a careful choice of user-specified transport parameters is required when conducting similar MC calculations. (note)

  17. SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields

    International Nuclear Information System (INIS)

    Varadhan; Way, S; Arentsen, L; Gerbi, B

    2016-01-01

    Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R_8_0_–_2_0 electron distal falloff distance and number of particle histories was set at 500,000 per cm"2. Percent depth dose scans and beam profiles at dmax, d_9_0 and d_8_0 depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom"2 scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d_9_0 and d_8_0 depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.

  18. SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields

    Energy Technology Data Exchange (ETDEWEB)

    Varadhan [Minneapolis Radiation Oncology, Fridley, MN (United States); Way, S [Minneapolis Radiation Oncology, Robbinsdale, MN (United States); Arentsen, L; Gerbi, B [University of Minnesota, Minneapolis, MN (United States)

    2016-06-15

    Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distance and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.

  19. Monte Carlo dose calculation algorithm on a distributed system

    International Nuclear Information System (INIS)

    Chauvie, Stephane; Dominoni, Matteo; Marini, Piergiorgio; Stasi, Michele; Pia, Maria Grazia; Scielzo, Giuseppe

    2003-01-01

    The main goal of modern radiotherapy, such as 3D conformal radiotherapy and intensity-modulated radiotherapy is to deliver a high dose to the target volume sparing the surrounding healthy tissue. The accuracy of dose calculation in a treatment planning system is therefore a critical issue. Among many algorithms developed over the last years, those based on Monte Carlo proven to be very promising in terms of accuracy. The most severe obstacle in application to clinical practice is the high time necessary for calculations. We have studied a high performance network of Personal Computer as a realistic alternative to a high-costs dedicated parallel hardware to be used routinely as instruments of evaluation of treatment plans. We set-up a Beowulf Cluster, configured with 4 nodes connected with low-cost network and installed MC code Geant4 to describe our irradiation facility. The MC, once parallelised, was run on the Beowulf Cluster. The first run of the full simulation showed that the time required for calculation decreased linearly increasing the number of distributed processes. The good scalability trend allows both statistically significant accuracy and good time performances. The scalability of the Beowulf Cluster system offers a new instrument for dose calculation that could be applied in clinical practice. These would be a good support particularly in high challenging prescription that needs good calculation accuracy in zones of high dose gradient and great dishomogeneities

  20. SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation

    International Nuclear Information System (INIS)

    Yao, W; Farr, J

    2015-01-01

    Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MC simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations

  1. Commissioning and Validation of the First Monte Carlo Based Dose Calculation Algorithm Commercial Treatment Planning System in Mexico

    International Nuclear Information System (INIS)

    Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Hernandez-Bojorquez, M.; Galvan de la Cruz, O. O.; Ballesteros-Zebadua, P.

    2010-01-01

    This work presents the beam data commissioning and dose calculation validation of the first Monte Carlo (MC) based treatment planning system (TPS) installed in Mexico. According to the manufacturer specifications, the beam data commissioning needed for this model includes: several in-air and water profiles, depth dose curves, head-scatter factors and output factors (6x6, 12x12, 18x18, 24x24, 42x42, 60x60, 80x80 and 100x100 mm 2 ). Radiographic and radiochromic films, diode and ionization chambers were used for data acquisition. MC dose calculations in a water phantom were used to validate the MC simulations using comparisons with measured data. Gamma index criteria 2%/2 mm were used to evaluate the accuracy of MC calculations. MC calculated data show an excellent agreement for field sizes from 18x18 to 100x100 mm 2 . Gamma analysis shows that in average, 95% and 100% of the data passes the gamma index criteria for these fields, respectively. For smaller fields (12x12 and 6x6 mm 2 ) only 92% of the data meet the criteria. Total scatter factors show a good agreement ( 2 ) that show a error of 4.7%. MC dose calculations are accurate and precise for clinical treatment planning up to a field size of 18x18 mm 2 . Special care must be taken for smaller fields.

  2. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo, E-mail: Facundo.Ballester@uv.es [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Carlsson Tedgren, Åsa [Department of Medical and Health Sciences (IMH), Radiation Physics, Faculty of Health Sciences, Linköping University, Linköping SE-581 85, Sweden and Department of Medical Physics, Karolinska University Hospital, Stockholm SE-171 76 (Sweden); Granero, Domingo [Department of Radiation Physics, ERESA, Hospital General Universitario, Valencia E-46014 (Spain); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre and Royal Melbourne Institute of Technology, Melbourne, Victoria 3000 (Australia); Mourtada, Firas [Department of Radiation Oncology, Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware 19713 (United States); Fonseca, Gabriel Paiva [Instituto de Pesquisas Energéticas e Nucleares – IPEN-CNEN/SP, São Paulo 05508-000, Brazil and Department of Radiation Oncology (MAASTRO), GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Zourari, Kyveli; Papagiannis, Panagiotis [Medical Physics Laboratory, Medical School, University of Athens, 75 MikrasAsias, Athens 115 27 (Greece); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Siebert, Frank-André [Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel 24105 (Germany); Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  3. SU-F-T-157: Physics Considerations Regarding Dosimetric Accuracy of Analytical Dose Calculations for Small Field Proton Therapy: A Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Geng, C [Massachusetts General Hospital, Boston, MA (United States); Nanjing University of Aeronautics and Astronautics, Nanjing (China); Daartz, J; Cheung, K; Bussiere, M; Shih, H; Paganetti, H; Schuemann, J [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To evaluate the accuracy of dose calculations by analytical dose calculation methods (ADC) for small field proton therapy in a gantry based passive scattering facility. Methods: 50 patients with intra-cranial disease were evaluated in the study. Treatment plans followed standard prescription and optimization procedures of proton stereotactic radiosurgery. Dose distributions calculated with the Monte Carlo (MC) toolkit TOPAS were used to represent delivered treatments. The MC dose was first adjusted using the output factor (OF) applied clinically. This factor is determined from the field size and the prescribed range. We then introduced a normalization factor to measure the difference in mean dose between the delivered dose (MC dose with OF) and the dose calculated by ADC for each beam. The normalization was determined by the mean dose of the center voxels of the target area. We compared delivered dose distributions and those calculated by ADC in terms of dose volume histogram parameters and beam range distributions. Results: The mean target dose for a whole treatment is generally within 5% comparing delivered dose (MC dose with OF) and ADC dose. However, the differences can be as great as 11% for shallow and small target treated with a thick range compensator. Applying the normalization factor to the MC dose with OF can reduce the mean dose difference to less than 3%. Considering range uncertainties, the generally applied margins (3.5% of the prescribed range + 1mm) to cover uncertainties in range might not be sufficient to guarantee tumor coverage. The range difference for R90 (90% distal dose falloff) is affected by multiple factors, such as the heterogeneity index. Conclusion: This study indicates insufficient accuracy calculating proton doses using ADC. Our results suggest that uncertainties of target doses are reduced using MC techniques, improving the dosimetric accuracy for proton stereotactic radiosurgery. The work was supported by NIH/NCI under CA

  4. Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hünemohr, Nora, E-mail: n.huenemohr@dkfz.de; Greilich, Steffen [Medical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg (Germany); Paganetti, Harald; Seco, Joao [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Jäkel, Oliver [Medical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany and Department of Radiation Oncology and Radiation Therapy, University Hospital of Heidelberg, 69120 Heidelberg (Germany)

    2014-06-15

    Purpose: The authors describe a novel method of predicting mass density and elemental mass fractions of tissues from dual energy CT (DECT) data for Monte Carlo (MC) based dose planning. Methods: The relative electron density ϱ{sub e} and effective atomic number Z{sub eff} are calculated for 71 tabulated tissue compositions. For MC simulations, the mass density is derived via one linear fit in the ϱ{sub e} that covers the entire range of tissue compositions (except lung tissue). Elemental mass fractions are predicted from the ϱ{sub e} and the Z{sub eff} in combination. Since particle therapy dose planning and verification is especially sensitive to accurate material assignment, differences to the ground truth are further analyzed for mass density, I-value predictions, and stopping power ratios (SPR) for ions. Dose studies with monoenergetic proton and carbon ions in 12 tissues which showed the largest differences of single energy CT (SECT) to DECT are presented with respect to range uncertainties. The standard approach (SECT) and the new DECT approach are compared to reference Bragg peak positions. Results: Mean deviations to ground truth in mass density predictions could be reduced for soft tissue from (0.5±0.6)% (SECT) to (0.2±0.2)% with the DECT method. Maximum SPR deviations could be reduced significantly for soft tissue from 3.1% (SECT) to 0.7% (DECT) and for bone tissue from 0.8% to 0.1%. MeanI-value deviations could be reduced for soft tissue from (1.1±1.4%, SECT) to (0.4±0.3%) with the presented method. Predictions of elemental composition were improved for every element. Mean and maximum deviations from ground truth of all elemental mass fractions could be reduced by at least a half with DECT compared to SECT (except soft tissue hydrogen and nitrogen where the reduction was slightly smaller). The carbon and oxygen mass fraction predictions profit especially from the DECT information. Dose studies showed that most of the 12 selected tissues would

  5. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    Energy Technology Data Exchange (ETDEWEB)

    French, S; Nazareth, D [Roswell Park Cancer Institute, Buffalo, NY (United States); Bellor, M [Lockheed Martin, Manassas, VA (United States)

    2016-06-15

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrc package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate

  6. Effect of Embolization Material in the Calculation of Dose Deposition in Arteriovenous Malformations

    International Nuclear Information System (INIS)

    De la Cruz, O. O. Galvan; Moreno-Jimenez, S.; Larraga-Gutierrez, J. M.; Celis-Lopez, M. A.

    2010-01-01

    In this work it is studied the impact of the incorporation of high Z materials (embolization material) in the dose calculation for stereotactic radiosurgery treatment for arteriovenous malformations. A statistical analysis is done to establish the variables that may impact in the dose calculation. To perform the comparison pencil beam (PB) and Monte Carlo (MC) calculation algorithms were used. The comparison between both dose calculations shows that PB overestimates the dose deposited. The statistical analysis, for the quantity of patients of the study (20), shows that the variable that may impact in the dose calculation is the volume of the high Z material in the arteriovenous malformation. Further studies have to be done to establish the clinical impact with the radiosurgery result.

  7. Dose attenuation effect of hip prostheses in a 9-MV photon beam. Commercial treatment planning system versus Monte Carlo calculations

    International Nuclear Information System (INIS)

    Mesbahi, A.; Nejad, F.S.

    2007-01-01

    The purpose of this study was to investigate the dosimetric effect of various hip prostheses on pelvis lateral fields treated by a 9-MV photon beam using Monte Carlo (MC) and effective path-length (EPL) methods. The head of the Neptun 10 pc linac was simulated using the MCNP4C MC code. The accuracy of the MC model was evaluated using measured dosimetric features including depth dose values and dose profiles in a water phantom. The Alfard treatment planning system (TPS) was used for EPL calculations. A virtual water phantom with dimensions of 30 x 30 x 30 cm 3 and a cube with dimensions of 4 x 4 x 4 cm 3 made of various metals centered in 12 cm depth was used for MC and EPL calculations. Various materials including titanium, Co-Cr-Mo, and steel alloys were used as hip prostheses. Our results showed significant attenuation in absorbed dose for points after and inside the prostheses. Attenuations of 32%, 54% and 55% were seen for titanium, Co-Cr-Mo, and steel alloys, respectively, at a distance of 5 cm from the prosthesis. Considerable dose increase (up to 18%) was found at the water-prosthesis interface due to back-scattered electrons using the MC method. The results of EPL calculations for the titanium implant were comparable to the MC calculations. This method, however, was not able to predict the interface effect or calculate accurately the absorbed dose in the presence of the Co-Cr-Mo and steel prostheses. The dose perturbation effect of hip prostheses is significant and cannot be predicted accurately by the EPL method for Co-Cr-Mo or steel prostheses. The use of MC-based TPS is recommended for treatments requiring fields passing through hip prostheses. (author)

  8. SU-C-BRC-03: Development of a Novel Strategy for On-Demand Monte Carlo and Deterministic Dose Calculation Treatment Planning and Optimization for External Beam Photon and Particle Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y M; Bush, K; Han, B; Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) method that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high

  9. SU-C-BRC-03: Development of a Novel Strategy for On-Demand Monte Carlo and Deterministic Dose Calculation Treatment Planning and Optimization for External Beam Photon and Particle Therapy

    International Nuclear Information System (INIS)

    Yang, Y M; Bush, K; Han, B; Xing, L

    2016-01-01

    Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) method that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high

  10. Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT

    International Nuclear Information System (INIS)

    Zheng, Dandan; Zhu, Xiaofeng; Zhang, Qinghui; Liang, Xiaoying; Zhen, Weining; Lin, Chi; Verma, Vivek; Wang, Shuo; Wahl, Andrew; Lei, Yu; Zhou, Sumin; Zhang, Chi

    2016-01-01

    A challenge preventing routine clinical implementation of Monte Carlo (MC)-based lung SBRT is the difficulty of reinterpreting historical outcome data calculated with inaccurate dose algorithms, because the target dose was found to decrease to varying degrees when recalculated with MC. The large variability was previously found to be affected by factors such as tumour size, location, and lung density, usually through sub-group comparisons. We hereby conducted a pilot study to systematically and quantitatively analyze these patient factors and explore accurate target dose conversion models, so that large-scale historical outcome data can be correlated with more accurate MC dose without recalculation. Twenty-one patients that underwent SBRT for early-stage lung cancer were replanned with 6MV 360° dynamic conformal arcs using pencil-beam (PB) and recalculated with MC. The percent D95 difference (PB-MC) was calculated for the PTV and GTV. Using single linear regression, this difference was correlated with the following quantitative patient indices: maximum tumour diameter (MaxD); PTV and GTV volumes; minimum distance from tumour to soft tissue (dmin); and mean density and standard deviation of the PTV, GTV, PTV margin, lung, and 2 mm, 15 mm, 50 mm shells outside the PTV. Multiple linear regression and artificial neural network (ANN) were employed to model multiple factors and improve dose conversion accuracy. Single linear regression with PTV D95 deficiency identified the strongest correlation on mean-density (location) indices, weaker on lung density, and the weakest on size indices, with the following R 2 values in decreasing orders: shell2mm (0.71), PTV (0.68), PTV margin (0.65), shell15mm (0.62), shell50mm (0.49), lung (0.40), dmin (0.22), GTV (0.19), MaxD (0.17), PTV volume (0.15), and GTV volume (0.08). A multiple linear regression model yielded the significance factor of 3.0E-7 using two independent features: mean density of shell2mm (P = 1.6E-7) and PTV volume

  11. Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2014-01-01

    Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed [1, 2]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides......, and by using newly developed event logging capability, the neutron state parameters corresponding to un-reflected neutrons are recorded at each scattering. This information is handed back to MCNPX where it serves as neutron source input for a second MCNPX simulation. This simulation enables calculation of dose...

  12. Suitability of point kernel dose calculation techniques in brachytherapy treatment planning

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan Thilagam

    2010-01-01

    Full Text Available Brachytherapy treatment planning system (TPS is necessary to estimate the dose to target volume and organ at risk (OAR. TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i Board of Radiation Isotope and Technology (BRIT low dose rate (LDR applicator and (ii Fletcher Green type LDR applicator (iii Fletcher Williamson high dose rate (HDR applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron. The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5

  13. Fetal doses to pregnant patients from CT with tube current modulation calculated using Monte Carlo simulations and realistic phantoms

    International Nuclear Information System (INIS)

    Gu, J.; George Xu, X.; Caracappa, P. F.; Liu, B.

    2013-01-01

    To investigate the radiation dose to the fetus using retrospective tube current modulation (TCM) data selected from archived clinical records. This paper describes the calculation of fetal doses using retrospective TCM data and Monte Carlo (MC) simulations. Three TCM schemes were adopted for use with three pregnant patient phantoms. MC simulations were used to model CT scanners, TCM schemes and pregnant patients. Comparisons between organ doses from TCM schemes and those from non-TCM schemes show that these three TCM schemes reduced fetal doses by 14, 18 and 25 %, respectively. These organ doses were also compared with those from ImPACT calculation. It is found that the difference between the calculated fetal dose and the ImPACT reported dose is as high as 46 %. This work demonstrates methods to study organ doses from various TCM protocols and potential ways to improve the accuracy of CT dose calculation for pregnant patients. (authors)

  14. SU-F-T-373: Monte Carlo Versus Pencil Beam Dose Calculation for Spine SBRT Treatments Using HybridARC and Sliding Windows IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, C; Pino, M; Caussa, L; Garrigo, E [Instituto de Radioterapia - Fundacion Marie Curie, Cordoba (Argentina); Molineu, A [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The purpose of this work was to quantify the dosimetric impact of Monte Carlo (MC) dose calculation algorithm compared to Pencil Beam (PB) on Spine SBRT with HybridARC (HA) and sliding windows IMRT (dMLC) treatment modality. Methods: A 6MV beam (1000MU/min) produced by a Novalis TX (BrainLAB-Varian) equipped with HDMLC was used. HA uses 1 arc plus 8 IMRT beams (arc weight between 60–40%) and dIMRT 15 beams. Plans were calculated using iPlan v.4.5.3 (BrainLAB) and the treatment dose prescription was 27Gy in 3 fractions. Dose calculation was done by PB (4mm spatial resolution) with heterogeneity correction and MC dose to water (4mm spatial resolution and 4% mean variance). PTV and spinal cord dose comparison were done. Study was done on 12 patients. IROC Spine Phantom was used to validate HA and quantify dose variation using PB and MC algorithm. Results: The difference between PB and MC for PTV D98%, D95%, Dmean, D2% were 2.6% [−5.1, 6.8], 0.1% [−4.2, 5.4], 0.9% [−1.5, 3.8] and 2.4% [−0.5, 8.3]. The difference between PB and MC for spinal cord Dmax, D1.2cc and D0.35cc were 5.3% [−6.4, 18.4], 9% [−7.0, 17.0] and 7.6% [−0.6, 14.8] respectively. IROC spine phantom shows PTV TLD dose variation of 0.98% for PB and 1.01% for MC. Axial and sagittal film plane gamma index (5%-3mm) was 95% and 97% for PB and 95% and 99% for MC. Conclusion: PB slightly underestimates the dose for the PTV. For the spinal cord PB underestimates the dose and dose differences could be as high as 18% which could have unexpected clinical impact. CI shows no variation between PB and MC for both treatment modalities Treatment modalities have no impact with the dose calculation algorithms used. Following the IROC pass-fail criteria, treatment acceptance requirement was fulfilled for PB and MC.

  15. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J da [University of Cambridge, Cambridge, Cambridgeshire (United Kingdom)

    2014-06-15

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552.

  16. TH-A-19A-09: Towards Sub-Second Proton Dose Calculation On GPU

    International Nuclear Information System (INIS)

    Silva, J da

    2014-01-01

    Purpose: To achieve sub-second dose calculation for clinically relevant proton therapy treatment plans. Rapid dose calculation is a key component of adaptive radiotherapy, necessary to take advantage of the better dose conformity offered by hadron therapy. Methods: To speed up proton dose calculation, the pencil beam algorithm (PBA; clinical standard) was parallelised and implemented to run on a graphics processing unit (GPU). The implementation constitutes the first PBA to run all steps on GPU, and each part of the algorithm was carefully adapted for efficiency. Monte Carlo (MC) simulations obtained using Fluka of individual beams of energies representative of the clinical range impinging on simple geometries were used to tune the PBA. For benchmarking, a typical skull base case with a spot scanning plan consisting of a total of 8872 spots divided between two beam directions of 49 energy layers each was provided by CNAO (Pavia, Italy). The calculations were carried out on an Nvidia Geforce GTX680 desktop GPU with 1536 cores running at 1006 MHz. Results: The PBA reproduced within ±3% of maximum dose results obtained from MC simulations for a range of pencil beams impinging on a water tank. Additional analysis of more complex slab geometries is currently under way to fine-tune the algorithm. Full calculation of the clinical test case took 0.9 seconds in total, with the majority of the time spent in the kernel superposition step. Conclusion: The PBA lends itself well to implementation on many-core systems such as GPUs. Using the presented implementation and current hardware, sub-second dose calculation for a clinical proton therapy plan was achieved, opening the door for adaptive treatment. The successful parallelisation of all steps of the calculation indicates that further speedups can be expected with new hardware, brightening the prospects for real-time dose calculation. This work was funded by ENTERVISION, European Commission FP7 grant 264552

  17. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities

    International Nuclear Information System (INIS)

    Carrasco, P.; Jornet, N.; Duch, M. A.; Panettieri, V.; Weber, L.; Eudaldo, T.; Ginjaume, M.; Ribas, M.

    2007-01-01

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10x10, 5x5, and 2x2 cm 2 ) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2x2 cm 2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values within

  18. Comparison of dose calculation algorithms in slab phantoms with cortical bone equivalent heterogeneities.

    Science.gov (United States)

    Carrasco, P; Jornet, N; Duch, M A; Panettieri, V; Weber, L; Eudaldo, T; Ginjaume, M; Ribas, M

    2007-08-01

    To evaluate the dose values predicted by several calculation algorithms in two treatment planning systems, Monte Carlo (MC) simulations and measurements by means of various detectors were performed in heterogeneous layer phantoms with water- and bone-equivalent materials. Percentage depth doses (PDDs) were measured with thermoluminescent dosimeters (TLDs), metal-oxide semiconductor field-effect transistors (MOSFETs), plane parallel and cylindrical ionization chambers, and beam profiles with films. The MC code used for the simulations was the PENELOPE code. Three different field sizes (10 x 10, 5 x 5, and 2 x 2 cm2) were studied in two phantom configurations and a bone equivalent material. These two phantom configurations contained heterogeneities of 5 and 2 cm of bone, respectively. We analyzed the performance of four correction-based algorithms and one based on convolution superposition. The correction-based algorithms were the Batho, the Modified Batho, the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system (TPS), and the Helax-TMS Pencil Beam from the Helax-TMS (Nucletron) TPS. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. All the correction-based calculation algorithms underestimated the dose inside the bone-equivalent material for 18 MV compared to MC simulations. The maximum underestimation, in terms of root-mean-square (RMS), was about 15% for the Helax-TMS Pencil Beam (Helax-TMS PB) for a 2 x 2 cm2 field inside the bone-equivalent material. In contrast, the Collapsed Cone algorithm yielded values around 3%. A more complex behavior was found for 6 MV where the Collapsed Cone performed less well, overestimating the dose inside the heterogeneity in 3%-5%. The rebuildup in the interface bone-water and the penumbra shrinking in high-density media were not predicted by any of the calculation algorithms except the Collapsed Cone, and only the MC simulations matched the experimental values

  19. VERA Pin and Fuel Assembly Depletion Benchmark Calculations by McCARD and DeCART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Jin; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Monte Carlo (MC) codes have been developed and used to simulate a neutron transport since MC method was devised in the Manhattan project. Solving the neutron transport problem with the MC method is simple and straightforward to understand. Because there are few essential approximations for the 6- dimension phase of a neutron such as the location, energy, and direction in MC calculations, highly accurate solutions can be obtained through such calculations. In this work, the VERA pin and fuel assembly (FA) depletion benchmark calculations are performed to examine the depletion capability of the newly generated DeCART multi-group cross section library. To obtain the reference solutions, MC depletion calculations are conducted using McCARD. Moreover, to scrutinize the effect by stochastic uncertainty propagation, uncertainty propagation analyses are performed using a sensitivity and uncertainty (S/U) analysis method and stochastic sampling (S.S) method. It is still expensive and challenging to perform a depletion analysis by a MC code. Nevertheless, many studies and works for a MC depletion analysis have been conducted to utilize the benefits of the MC method. In this study, McCARD MC and DeCART MOC transport calculations are performed for the VERA pin and FA depletion benchmarks. The DeCART depletion calculations are conducted to examine the depletion capability of the newly generated multi-group cross section library. The DeCART depletion calculations give excellent agreement with the McCARD reference one. From the McCARD results, it is observed that the MC depletion results depend on how to split the burnup interval. First, only to quantify the effect of the stochastic uncertainty propagation at 40 DTS, the uncertainty propagation analyses are performed using the S/U and S.S. method.

  20. MC-PDFT can calculate singlet-triplet splittings of organic diradicals

    Science.gov (United States)

    Stoneburner, Samuel J.; Truhlar, Donald G.; Gagliardi, Laura

    2018-02-01

    The singlet-triplet splittings of a set of diradical organic molecules are calculated using multiconfiguration pair-density functional theory (MC-PDFT), and the results are compared with those obtained by Kohn-Sham density functional theory (KS-DFT) and complete active space second-order perturbation theory (CASPT2) calculations. We found that MC-PDFT, even with small and systematically defined active spaces, is competitive in accuracy with CASPT2, and it yields results with greater accuracy and precision than Kohn-Sham DFT with the parent functional. MC-PDFT also avoids the challenges associated with spin contamination in KS-DFT. It is also shown that MC-PDFT is much less computationally expensive than CASPT2 when applied to larger active spaces, and this illustrates the promise of this method for larger diradical organic systems.

  1. A Monte Carlo evaluation of RapidArc dose calculations for oropharynx radiotherapy

    International Nuclear Information System (INIS)

    Gagne, I M; Ansbacher, W; Zavgorodni, S; Popescu, C; Beckham, W A

    2008-01-01

    RapidArc(TM), recently released by Varian Medical Systems, is a novel extension of IMRT in which an optimized 3D dose distribution may be delivered in a single gantry rotation of 360 deg. or less. The purpose of this study was to investigate the accuracy of the analytical anisotropic algorithm (AAA), the sole algorithm for photon dose calculations of RapidArc(TM) treatment plans. The clinical site chosen was oropharynx and the associated nodes involved. The VIMC-Arc system, which utilizes BEAMnrc and DOSXYZnrc for particle transport through the linac head and patient CT phantom, was used as a benchmarking tool. As part of this study, the dose for a single static aperture, typical for RapidArc(TM) delivery, was calculated by the AAA, MC and compared with the film. This film measurement confirmed MC modeling of the beam aperture in water. It also demonstrated that the AAA dosimetric error can be as high as 12% near isolated leaf edges and up to 5% at the leaf end. The composite effect of these errors in a full RapidArc(TM) calculation in water involving a C-shaped target and the associated organ at risk produced a 1.5% overprediction of the mean target dose. In our cohort of six patients, the AAA was found, on average, to overestimate the PTV60 coverage at the 95% level in the presence of air cavities by 1.0% (SD = 1.1%). Removing the air cavities from the target volumes reduced these differences by about a factor of 2. The dose to critical structures was also overestimated by the AAA. The mean dose to the spinal cord was higher by 1.8% (SD = 0.8%), while the effective maximum dose (D 2% ) was only 0.2% higher (SD = 0.6%). The mean dose to the parotid glands was overestimated by ∼9%. This study has shown that the accuracy of the AAA for RapidArc(TM) dose calculations, performed at a resolution of 2.5 mm or better, is adequate for clinical use.

  2. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage

    DEFF Research Database (Denmark)

    Aarup, Lasse Rye; Nahum, Alan E; Zacharatou, Christina

    2009-01-01

    PURPOSE: To evaluate against Monte-Carlo the performance of various dose calculations algorithms regarding lung tumour coverage in stereotactic body radiotherapy (SBRT) conditions. MATERIALS AND METHODS: Dose distributions in virtual lung phantoms have been calculated using four commercial Treatm...... target dose, the AAA(Ecl) and CCC(OMP) algorithms appear to be adequate alternatives to MC....

  3. Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.

    Science.gov (United States)

    Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A

    2016-05-08

    The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.

  4. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams.

    Science.gov (United States)

    Vandervoort, Eric J; Tchistiakova, Ekaterina; La Russa, Daniel J; Cygler, Joanna E

    2014-02-01

    In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm(2). Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm γ-criteria) provided that the steep dose gradient in the depth direction is considered. Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  5. Investigation of Reduction of the Uncertainty of Monte Carlo Dose Calculations in Oncor® Clinical Linear Accelerator Simulation Using the DBS Variance Reduction Technique in Monte Carlo Code BEAMnrc

    Directory of Open Access Journals (Sweden)

    Amin Asadi

    2017-10-01

    Full Text Available Purpose: To study the benefits of Directional Bremsstrahlung Splitting (DBS dose variance reduction technique in BEAMnrc Monte Carlo (MC code for Oncor® linac at 6MV and 18MV energies. Materials and Method: A MC model of Oncor® linac was built using BEAMnrc MC Code and verified by the measured data for 6MV and 18MV energies of various field sizes. Then Oncor® machine was modeled running DBS technique, and the efficiency of total fluence and spatial fluence for electron and photon, the efficiency of dose variance reduction of MC calculations for PDD on the central beam axis and lateral dose profile across the nominal field was measured and compared. Result: With applying DBS technique, the total fluence of electron and photon increased in turn 626.8 (6MV and 983.4 (6MV, and 285.6 (18MV and 737.8 (18MV, the spatial fluence of electron and photon improved in turn 308.6±1.35% (6MV and 480.38±0.43% (6MV, and 153±0.9% (18MV and 462.6±0.27% (18MV. Moreover, by running DBS technique, the efficiency of dose variance reduction for PDD MC dose calculations before maximum dose point and after dose maximum point enhanced 187.8±0.68% (6MV and 184.6±0.65% (6MV, 156±0.43% (18MV and 153±0.37% (18MV, respectively, and the efficiency of MC calculations for lateral dose profile remarkably on the central beam axis and across the treatment field raised in turn 197±0.66% (6MV and 214.6±0.73% (6MV, 175±0.36% (18MV and 181.4±0.45% (18MV. Conclusion: Applying dose variance reduction technique of DBS for modeling Oncor® linac with using BEAMnrc MC Code surprisingly improved the fluence of electron and photon, and it therefore enhanced the efficiency of dose variance reduction for MC calculations. As a result, running DBS in different kinds of MC simulation Codes might be beneficent in reducing the uncertainty of MC calculations

  6. Influence of breast composition and interseed attenuation in dose calculations for post-implant assessment of permanent breast 103Pd seed implant

    International Nuclear Information System (INIS)

    Afsharpour, Hossein; Beaulieu, Luc; Pignol, Jean-Philippe; Keller, Brian; Carrier, Jean-Francois; Reniers, Brigitte; Verhaegen, Frank

    2010-01-01

    The impact of tissue heterogeneity and interseed attenuation is studied in post-implant evaluation of five clinical permanent breast 103 Pd seed implants using the Monte Carlo (MC) dose calculation method. Dose metrics for the target (PTV) as well as an organ at risk (skin) are used to visualize the differences between a TG43-like MC method and more accurate MC methods capable of considering the breast tissue heterogeneity as well as the interseed attenuation. PTV dose is reduced when using a breast tissue model instead of water in MC calculations while the dose to the skin is increased. Furthermore, we investigate the effect of varying the glandular/adipose proportion of the breast tissue on dose distributions. The dose to the PTV (skin) decreases (increases) with the increasing adipose proportion inside the breast. In a complete geometry and compared to a TG43-like situation, the average PTV D 90 reduction varies from 3.9% in a glandular breast to 35.5% when the breast consists entirely of adipose. The skin D 10 increases by 28.2% in an entirely adipose breast. The results of this work show the importance of an accurate and patient-dependent breast tissue model to be used in the dosimetry for this kind of low energy implant.

  7. Reducing dose calculation time for accurate iterative IMRT planning

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Lauterbach, Marc; Tong, Shidong; Wu Qiuwen; Mohan, Radhe

    2002-01-01

    A time-consuming component of IMRT optimization is the dose computation required in each iteration for the evaluation of the objective function. Accurate superposition/convolution (SC) and Monte Carlo (MC) dose calculations are currently considered too time-consuming for iterative IMRT dose calculation. Thus, fast, but less accurate algorithms such as pencil beam (PB) algorithms are typically used in most current IMRT systems. This paper describes two hybrid methods that utilize the speed of fast PB algorithms yet achieve the accuracy of optimizing based upon SC algorithms via the application of dose correction matrices. In one method, the ratio method, an infrequently computed voxel-by-voxel dose ratio matrix (R=D SC /D PB ) is applied for each beam to the dose distributions calculated with the PB method during the optimization. That is, D PB xR is used for the dose calculation during the optimization. The optimization proceeds until both the IMRT beam intensities and the dose correction ratio matrix converge. In the second method, the correction method, a periodically computed voxel-by-voxel correction matrix for each beam, defined to be the difference between the SC and PB dose computations, is used to correct PB dose distributions. To validate the methods, IMRT treatment plans developed with the hybrid methods are compared with those obtained when the SC algorithm is used for all optimization iterations and with those obtained when PB-based optimization is followed by SC-based optimization. In the 12 patient cases studied, no clinically significant differences exist in the final treatment plans developed with each of the dose computation methodologies. However, the number of time-consuming SC iterations is reduced from 6-32 for pure SC optimization to four or less for the ratio matrix method and five or less for the correction method. Because the PB algorithm is faster at computing dose, this reduces the inverse planning optimization time for our implementation

  8. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Science.gov (United States)

    Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  9. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Directory of Open Access Journals (Sweden)

    Obioma Nwankwo

    Full Text Available To introduce a new method of deriving a virtual source model (VSM of a linear accelerator photon beam from a phase space file (PSF for Monte Carlo (MC dose calculation.A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses.The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate for the evaluated fields.A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  10. SU-E-T-632: Preliminary Study On Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Jin, L; Eldib, A; Li, J; Price, R; Ma, C

    2015-01-01

    Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin

  11. Automatic commissioning of a GPU-based Monte Carlo radiation dose calculation code for photon radiotherapy

    International Nuclear Information System (INIS)

    Tian, Zhen; Jia, Xun; Jiang, Steve B; Graves, Yan Jiang

    2014-01-01

    Monte Carlo (MC) simulation is commonly considered as the most accurate method for radiation dose calculations. Commissioning of a beam model in the MC code against a clinical linear accelerator beam is of crucial importance for its clinical implementation. In this paper, we propose an automatic commissioning method for our GPU-based MC dose engine, gDPM. gDPM utilizes a beam model based on a concept of phase-space-let (PSL). A PSL contains a group of particles that are of the same type and close in space and energy. A set of generic PSLs was generated by splitting a reference phase-space file. Each PSL was associated with a weighting factor, and in dose calculations the particle carried a weight corresponding to the PSL where it was from. Dose for each PSL in water was pre-computed, and hence the dose in water for a whole beam under a given set of PSL weighting factors was the weighted sum of the PSL doses. At the commissioning stage, an optimization problem was solved to adjust the PSL weights in order to minimize the difference between the calculated dose and measured one. Symmetry and smoothness regularizations were utilized to uniquely determine the solution. An augmented Lagrangian method was employed to solve the optimization problem. To validate our method, a phase-space file of a Varian TrueBeam 6 MV beam was used to generate the PSLs for 6 MV beams. In a simulation study, we commissioned a Siemens 6 MV beam on which a set of field-dependent phase-space files was available. The dose data of this desired beam for different open fields and a small off-axis open field were obtained by calculating doses using these phase-space files. The 3D γ-index test passing rate within the regions with dose above 10% of d max dose for those open fields tested was improved averagely from 70.56 to 99.36% for 2%/2 mm criteria and from 32.22 to 89.65% for 1%/1 mm criteria. We also tested our commissioning method on a six-field head-and-neck cancer IMRT plan. The

  12. A track length estimator method for dose calculations in low-energy X-ray irradiations. Implementation, properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Baldacci, F.; Delaire, F.; Letang, J.M.; Sarrut, D.; Smekens, F.; Freud, N. [Lyon-1 Univ. - CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Centre Leon Berard (France); Mittone, A.; Coan, P. [LMU Munich (Germany). Dept. of Physics; LMU Munich (Germany). Faculty of Medicine; Bravin, A.; Ferrero, C. [European Synchrotron Radiation Facility, Grenoble (France); Gasilov, S. [LMU Munich (Germany). Dept. of Physics

    2015-05-01

    The track length estimator (TLE) method, an 'on-the-fly' fluence tally in Monte Carlo (MC) simulations, recently implemented in GATE 6.2, is known as a powerful tool to accelerate dose calculations in the domain of low-energy X-ray irradiations using the kerma approximation. Overall efficiency gains of the TLE with respect to analogous MC were reported in the literature for regions of interest in various applications (photon beam radiation therapy, X-ray imaging). The behaviour of the TLE method in terms of statistical properties, dose deposition patterns, and computational efficiency compared to analogous MC simulations was investigated. The statistical properties of the dose deposition were first assessed. Derivations of the variance reduction factor of TLE versus analogous MC were carried out, starting from the expression of the dose estimate variance in the TLE and analogous MC schemes. Two test cases were chosen to benchmark the TLE performance in comparison with analogous MC: (i) a small animal irradiation under stereotactic synchrotron radiation therapy conditions and (ii) the irradiation of a human pelvis during a cone beam computed tomography acquisition. Dose distribution patterns and efficiency gain maps were analysed. The efficiency gain exhibits strong variations within a given irradiation case, depending on the geometrical (voxel size, ballistics) and physical (material and beam properties) parameters on the voxel scale. Typical values lie between 10 and 103, with lower levels in dense regions (bone) outside the irradiated channels (scattered dose only), and higher levels in soft tissues directly exposed to the beams.

  13. SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose

    Energy Technology Data Exchange (ETDEWEB)

    Prajapati, S; Yan, Y; Gifford, K [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To generate and validate a linac Monte Carlo (MC) model for surface dose prediction. Methods: BEAMnrc V4-2.4.0 was used to model 6 and 18 MV photon beams for a commercially available linac. DOSXYZnrc V4-2.4.0 calculated 3D dose distributions in water. Percent depth dose (PDD) and beam profiles were extracted for comparison to measured data. Surface dose and at depths in the buildup region was measured with radiochromic film at 100 cm SSD for 4 × 4 cm{sup 2} and 10 × 10 cm{sup 2} collimator settings for open and MLC collimated fields. For the 6 MV beam, films were placed at depths ranging from 0.015 cm to 2 cm and for 18 MV, 0.015 cm to 3.5 cm in Solid Water™. Films were calibrated for both photon energies at their respective dmax. PDDs and profiles were extracted from the film and compared to the MC data. The MC model was adjusted to match measured PDD and profiles. Results: For the 6 MV beam, the mean error(ME) in PDD between film and MC for open fields was 1.9%, whereas it was 2.4% for MLC. For the 18 MV beam, the ME in PDD for open fields was 2% and was 3.5% for MLC. For the 6 MV beam, the average root mean square(RMS) deviation for the central 80% of the beam profile for open fields was 1.5%, whereas it was 1.6% for MLC. For the 18 MV beam, the maximum RMS for open fields was 3%, and was 3.1% for MLC. Conclusion: The MC model of a linac agreed to within 4% of film measurements for depths ranging from the surface to dmax. Therefore, the MC linac model can predict surface dose for clinical applications. Future work will focus on adjusting the linac MC model to reduce RMS error and improve accuracy.

  14. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  15. MC2-2: a code to calculate fast neutron spectra and multigroup cross sections

    International Nuclear Information System (INIS)

    Henryson, H. II; Toppel, B.J.; Stenberg, C.G.

    1976-06-01

    MC 2 -2 is a program to solve the neutron slowing down problem using basic neutron data derived from the ENDF/B data files. The spectrum calculated by MC 2 -2 is used to collapse the basic data to multigroup cross sections for use in standard reactor neutronics codes. Four different slowing down formulations are used by MC 2 -2: multigroup, continuous slowing down using the Goertzel-Greuling or Improved Goertzel-Greuling moderating parameters, and a hyper-fine-group integral transport calculation. Resolved and unresolved resonance cross sections are calculated accounting for self-shielding, broadening and overlap effects. This document provides a description of the MC 2 -2 program. The physics and mathematics of the neutron slowing down problem are derived and detailed information is provided to aid the MC 2 -2 user in preparing input for the program and implementation of the program on IBM 370 or CDC 7600 computers

  16. TU-AB-BRC-11: Moving a GPU-OpenCL-Based Monte Carlo (MC) Dose Engine Towards Routine Clinical Use: Automatic Beam Commissioning and Efficient Source Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Folkerts, M; Jiang, S; Jia, X [UT Southwestern Medical Ctr, Dallas, TX (United States); Li, Y [Beihang University, Beijing (China)

    2016-06-15

    Purpose: We have previously developed a GPU-OpenCL-based MC dose engine named goMC with built-in analytical linac beam model. To move goMC towards routine clinical use, we have developed an automatic beam-commissioning method, and an efficient source sampling strategy to facilitate dose calculations for real treatment plans. Methods: Our commissioning method is to automatically adjust the relative weights among the sub-sources, through an optimization process minimizing the discrepancies between calculated dose and measurements. Six models built for Varian Truebeam linac photon beams (6MV, 10MV, 15MV, 18MV, 6MVFFF, 10MVFFF) were commissioned using measurement data acquired at our institution. To facilitate dose calculations for real treatment plans, we employed inverse sampling method to efficiently incorporate MLC leaf-sequencing into source sampling. Specifically, instead of sampling source particles control-point by control-point and rejecting the particles blocked by MLC, we assigned a control-point index to each sampled source particle, according to MLC leaf-open duration of each control-point at the pixel where the particle intersects the iso-center plane. Results: Our auto-commissioning method decreased distance-to-agreement (DTA) of depth dose at build-up regions by 36.2% averagely, making it within 1mm. Lateral profiles were better matched for all beams, with biggest improvement found at 15MV for which root-mean-square difference was reduced from 1.44% to 0.50%. Maximum differences of output factors were reduced to less than 0.7% for all beams, with largest decrease being from1.70% to 0.37% found at 10FFF. Our new sampling strategy was tested on a Head&Neck VMAT patient case. Achieving clinically acceptable accuracy, the new strategy could reduce the required history number by a factor of ∼2.8 given a statistical uncertainty level and hence achieve a similar speed-up factor. Conclusion: Our studies have demonstrated the feasibility and effectiveness of

  17. SU-F-T-81: Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, L; Fan, J; Eldib, A; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.

  18. A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Tse, Teddy K.H.; Ho, Cola L.M.; Yeung, Eric C.Y.

    2013-01-01

    Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each case by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time

  19. A virtual-accelerator-based verification of a Monte Carlo dose calculation algorithm for electron beam treatment planning in homogeneous phantoms

    International Nuclear Information System (INIS)

    Wieslander, Elinore; Knoeoes, Tommy

    2006-01-01

    By introducing Monte Carlo (MC) techniques to the verification procedure of dose calculation algorithms in treatment planning systems (TPSs), problems associated with conventional measurements can be avoided and properties that are considered unmeasurable can be studied. The aim of the study is to implement a virtual accelerator, based on MC simulations, to evaluate the performance of a dose calculation algorithm for electron beams in a commercial TPS. The TPS algorithm is MC based and the virtual accelerator is used to study the accuracy of the algorithm in water phantoms. The basic test of the implementation of the virtual accelerator is successful for 6 and 12 MeV (γ < 1.0, 0.02 Gy/2 mm). For 18 MeV, there are problems in the profile data for some of the applicators, where the TPS underestimates the dose. For fields equipped with patient-specific inserts, the agreement is generally good. The exception is 6 MeV where there are slightly larger deviations. The concept of the virtual accelerator is shown to be feasible and has the potential to be a powerful tool for vendors and users

  20. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-01

    The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given

  1. Improved tissue assignment using dual-energy computed tomography in low-dose rate prostate brachytherapy for Monte Carlo dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Côté, Nicolas [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4 (Canada); Bedwani, Stéphane [Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada); Carrier, Jean-François, E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada and Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada)

    2016-05-15

    Purpose: An improvement in tissue assignment for low-dose rate brachytherapy (LDRB) patients using more accurate Monte Carlo (MC) dose calculation was accomplished with a metallic artifact reduction (MAR) method specific to dual-energy computed tomography (DECT). Methods: The proposed MAR algorithm followed a four-step procedure. The first step involved applying a weighted blend of both DECT scans (I {sub H/L}) to generate a new image (I {sub Mix}). This action minimized Hounsfield unit (HU) variations surrounding the brachytherapy seeds. In the second step, the mean HU of the prostate in I {sub Mix} was calculated and shifted toward the mean HU of the two original DECT images (I {sub H/L}). The third step involved smoothing the newly shifted I {sub Mix} and the two original I {sub H/L}, followed by a subtraction of both, generating an image that represented the metallic artifact (I {sub A,(H/L)}) of reduced noise levels. The final step consisted of subtracting the original I {sub H/L} from the newly generated I {sub A,(H/L)} and obtaining a final image corrected for metallic artifacts. Following the completion of the algorithm, a DECT stoichiometric method was used to extract the relative electronic density (ρ{sub e}) and effective atomic number (Z {sub eff}) at each voxel of the corrected scans. Tissue assignment could then be determined with these two newly acquired physical parameters. Each voxel was assigned the tissue bearing the closest resemblance in terms of ρ{sub e} and Z {sub eff}, comparing with values from the ICRU 42 database. A MC study was then performed to compare the dosimetric impacts of alternative MAR algorithms. Results: An improvement in tissue assignment was observed with the DECT MAR algorithm, compared to the single-energy computed tomography (SECT) approach. In a phantom study, tissue misassignment was found to reach 0.05% of voxels using the DECT approach, compared with 0.40% using the SECT method. Comparison of the DECT and SECT D

  2. First vapor explosion calculations performed with MC3D thermal-hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Brayer, C.; Berthoud, G. [CEA Centre d`Etudes de Grenoble, 38 (France). Direction des Reacteurs Nucleaires

    1998-01-01

    This paper presents the first calculations performed with the `explosion` module of the multiphase computer code MC3D, which is devoted to the fine fragmentation and explosion phase of a fuel coolant interaction. A complete description of the physical laws included in this module is given. The fragmentation models, taking into account two fragmentation mechanisms, a thermal one and an hydrodynamic one, are also developed here. Results to some calculations to test the numerical behavior of MC3D and to test the explosion models in 1D or 2D are also presented. (author)

  3. SU-E-T-135: Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Giantsoudi, D; Grassberger, C; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To estimate the clinical relevance of approximations made in analytical dose calculation methods (ADCs) used for treatment planning on tumor coverage and tumor control probability (TCP) in proton therapy. Methods: We compared dose distributions planned with ADC to delivered dose distributions (as determined by TOPAS Monte Carlo (MC) simulations). We investigated 10 patients per site for 5 treatment sites (head-and-neck, lung, breast, prostate, liver). We evaluated differences between the two dose distributions analyzing dosimetric indices based on the dose-volume-histograms, the γ-index and the TCP. The normal tissue complication probability (NTCP) was estimated for the bladder and anterior rectum for the prostate patients. Results: We find that the target doses are overestimated by the ADC by 1–2% on average for all patients considered. All dosimetric indices (the mean dose, D95, D50 and D02, the dose values covering 95%, 50% and 2% of the target volume, respectively) are predicted within 5% of the delivered dose. A γ-index with a 3%/3mm criteria had a passing rate for target volumes above 96% for all patients. The TCP predicted by the two algorithms was up to 2%, 2.5%, 6%, 6.5%, and 11% for liver and breast, prostate, head-and-neck and lung patients, respectively. Differences in NTCP for anterior-rectum and bladder for prostate patients were less than 3%. Conclusion: We show that ADC provide adequate dose distributions for most patients, however, they can Result in underdosage of the target by as much as 5%. The TCP was found to be up to 11% lower than predicted. Advanced dose-calculation methods like MC simulations may be necessary in proton therapy to ensure target coverage for heterogeneous patient geometries, in clinical trials comparing proton therapy to conventional radiotherapy to avoid biases due to systematic discrepancies in calculated dose distributions, and, if tighter range margins are considered. Fully funded by NIH grants.

  4. Spent Fuel Pool Dose Rate Calculations Using Point Kernel and Hybrid Deterministic-Stochastic Shielding Methods

    International Nuclear Information System (INIS)

    Matijevic, M.; Grgic, D.; Jecmenica, R.

    2016-01-01

    This paper presents comparison of the Krsko Power Plant simplified Spent Fuel Pool (SFP) dose rates using different computational shielding methodologies. The analysis was performed to estimate limiting gamma dose rates on wall mounted level instrumentation in case of significant loss of cooling water. The SFP was represented with simple homogenized cylinders (point kernel and Monte Carlo (MC)) or cuboids (MC) using uranium, iron, water, and dry-air as bulk region materials. The pool is divided on the old and new section where the old one has three additional subsections representing fuel assemblies (FAs) with different burnup/cooling time (60 days, 1 year and 5 years). The new section represents the FAs with the cooling time of 10 years. The time dependent fuel assembly isotopic composition was calculated using ORIGEN2 code applied to the depletion of one of the fuel assemblies present in the pool (AC-29). The source used in Microshield calculation is based on imported isotopic activities. The time dependent photon spectra with total source intensity from Microshield multigroup point kernel calculations was then prepared for two hybrid deterministic-stochastic sequences. One is based on SCALE/MAVRIC (Monaco and Denovo) methodology and another uses Monte Carlo code MCNP6.1.1b and ADVANTG3.0.1. code. Even though this model is a fairly simple one, the layers of shielding materials are thick enough to pose a significant shielding problem for MC method without the use of effective variance reduction (VR) technique. For that purpose the ADVANTG code was used to generate VR parameters (SB cards in SDEF and WWINP file) for MCNP fixed-source calculation using continuous energy transport. ADVATNG employs a deterministic forward-adjoint transport solver Denovo which implements CADIS/FW-CADIS methodology. Denovo implements a structured, Cartesian-grid SN solver based on the Koch-Baker-Alcouffe parallel transport sweep algorithm across x-y domain blocks. This was first

  5. Poster - 08: Preliminary Investigation into Collapsed-Cone based Dose Calculations for COMS Eye Plaques

    International Nuclear Information System (INIS)

    Morrison, Hali; Menon, Geetha; Sloboda, Ron

    2016-01-01

    Purpose: To investigate the accuracy of model-based dose calculations using a collapsed-cone algorithm for COMS eye plaques loaded with I-125 seeds. Methods: The Nucletron SelectSeed 130.002 I-125 seed and the 12 mm COMS eye plaque were incorporated into a research version of the Oncentra® Brachy v4.5 treatment planning system which uses the Advanced Collapsed-cone Engine (ACE) algorithm. Comparisons of TG-43 and high-accuracy ACE doses were performed for a single seed in a 30×30×30 cm 3 water box, as well as with one seed in the central slot of the 12 mm COMS eye plaque. The doses along the plaque central axis (CAX) were used to calculate the carrier correction factor, T(r), and were compared to tabulated and MCNP6 simulated doses for both the SelectSeed and IsoAid IAI-125A seeds. Results: The ACE calculated dose for the single seed in water was on average within 0.62 ± 2.2% of the TG-43 dose, with the largest differences occurring near the end-welds. The ratio of ACE to TG-43 calculated doses along the CAX (T(r)) of the 12 mm COMS plaque for the SelectSeed was on average within 3.0% of previously tabulated data, and within 2.9% of the MCNP6 simulated values. The IsoAid and SelectSeed T(r) values agreed within 0.3%. Conclusions: Initial comparisons show good agreement between ACE and MC doses for a single seed in a 12 mm COMS eye plaque; more complicated scenarios are being investigated to determine the accuracy of this calculation method.

  6. Poster - 08: Preliminary Investigation into Collapsed-Cone based Dose Calculations for COMS Eye Plaques

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Hali; Menon, Geetha; Sloboda, Ron [Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB, Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB, Cross Cancer Institute, Edmonton, AB, and University of Alberta, Edmonton, AB (Canada)

    2016-08-15

    Purpose: To investigate the accuracy of model-based dose calculations using a collapsed-cone algorithm for COMS eye plaques loaded with I-125 seeds. Methods: The Nucletron SelectSeed 130.002 I-125 seed and the 12 mm COMS eye plaque were incorporated into a research version of the Oncentra® Brachy v4.5 treatment planning system which uses the Advanced Collapsed-cone Engine (ACE) algorithm. Comparisons of TG-43 and high-accuracy ACE doses were performed for a single seed in a 30×30×30 cm{sup 3} water box, as well as with one seed in the central slot of the 12 mm COMS eye plaque. The doses along the plaque central axis (CAX) were used to calculate the carrier correction factor, T(r), and were compared to tabulated and MCNP6 simulated doses for both the SelectSeed and IsoAid IAI-125A seeds. Results: The ACE calculated dose for the single seed in water was on average within 0.62 ± 2.2% of the TG-43 dose, with the largest differences occurring near the end-welds. The ratio of ACE to TG-43 calculated doses along the CAX (T(r)) of the 12 mm COMS plaque for the SelectSeed was on average within 3.0% of previously tabulated data, and within 2.9% of the MCNP6 simulated values. The IsoAid and SelectSeed T(r) values agreed within 0.3%. Conclusions: Initial comparisons show good agreement between ACE and MC doses for a single seed in a 12 mm COMS eye plaque; more complicated scenarios are being investigated to determine the accuracy of this calculation method.

  7. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Grassberger, C; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Dowdell, S [Illawarra Shoalhaven Local Health District, Wollongong (Australia)

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  8. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Schuemann, J; Grassberger, C; Paganetti, H; Dowdell, S

    2014-01-01

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  9. Three-dimensional electron-beam dose calculations

    International Nuclear Information System (INIS)

    Shiu, A.S.

    1988-01-01

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron-beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements were incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. A pencil-beam redefinition model was developed for the calculation of electron-beam dose distributions in three dimensions

  10. SU-F-T-667: Development and Validation of Dose Calculation for An Open-Source KV Treatment Planning System for Small Animal Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Prajapati, S [M D Anderson Cancer Center, Houston, TX (United States); Mo, X; Bednarz, B; Lawless, M; Hammer, C; Jeraj, R; Mackie, T [University of Wisconsin- Madison, Madison, WI (United States); Flynn, R [University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Westerly, D [University of Colorado Denver, Aurora, CO (United States)

    2016-06-15

    Purpose: An open-source, convolution/superposition based kV-treatment planning system(TPS) was developed for small animal radiotherapy from previously existed in-house MV-TPS. It is flexible and applicable to both step and shoot and helical tomotherapy treatment delivery. For initial commissioning process, the dose calculation from kV-TPS was compared with measurements and Monte Carlo(MC) simulations. Methods: High resolution, low energy kernels were simulated using EGSnrc user code EDKnrc, which was used as an input in kV-TPS together with MC-simulated x-ray beam spectrum. The Blue Water™ homogeneous phantom (with film inserts) and heterogeneous phantom (with film and TLD inserts) were fabricated. Phantom was placed at 100cm SSD, and was irradiated with 250 kVp beam for 10mins with 1.1cm × 1.1cm open field (at 100cm) created by newly designed binary micro-MLC assembly positioned at 90cm SSD. Gafchromic™ EBT3 film was calibrated in-phantom following AAPM TG-61 guidelines, and were used for measurement at 5 different depths in phantom. Calibrated TLD-100s were obtained from ADCL. EGS and MNCP5 simulation were used to model experimental irradiation set up calculation of dose in phantom. Results: Using the homogeneous phantom, dose difference between film and kV-TPS was calculated: mean(x)=0.9%; maximum difference(MD)=3.1%; standard deviation(σ)=1.1%. Dose difference between MCNP5 and kV-TPS was: x=1.5%; MD=4.6%; σ=1.9%. Dose difference between EGS and kV-TPS was: x=0.8%; MD=1.9%; σ=0.8%. Using the heterogeneous phantom, dose difference between film and kV-TPS was: x=2.6%; MD=3%; σ=1.1%; and dose difference between TLD and kV-TPS was: x=2.9%; MD=6.4%; σ=2.5%. Conclusion: The inhouse, open-source kV-TPS dose calculation system was comparable within 5% of measurements and MC simulations in both homogeneous and heterogeneous phantoms. The dose calculation system of the kV-TPS is validated as a part of initial commissioning process for small animal radiotherapy

  11. Radioactive cloud dose calculations

    International Nuclear Information System (INIS)

    Healy, J.W.

    1984-01-01

    Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available

  12. Build-up and surface dose measurements on phantoms using micro-MOSFET in 6 and 10 MV x-ray beams and comparisons with Monte Carlo calculations

    International Nuclear Information System (INIS)

    Xiang, Hong F.; Song, Jun S.; Chin, David W. H.; Cormack, Robert A.; Tishler, Roy B.; Makrigiorgos, G. Mike; Court, Laurence E.; Chin, Lee M.

    2007-01-01

    This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 deg. - 80 deg. onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC

  13. Dose calculation for electrons

    International Nuclear Information System (INIS)

    Hirayama, Hideo

    1995-01-01

    The joint working group of ICRP/ICRU is advancing the works of reviewing the ICRP publication 51 by investigating the data related to radiation protection. In order to introduce the 1990 recommendation, it has been demanded to carry out calculation for neutrons, photons and electrons. As for electrons, EURADOS WG4 (Numerical Dosimetry) rearranged the data to be calculated at the meeting held in PTB Braunschweig in June, 1992, and the question and request were presented by Dr. J.L. Chartier, the responsible person, to the researchers who are likely to undertake electron transport Monte Carlo calculation. The author also has carried out the requested calculation as it was the good chance to do the mutual comparison among various computation codes regarding electron transport calculation. The content that the WG requested to calculate was the absorbed dose at depth d mm when parallel electron beam enters at angle α into flat plate phantoms of PMMA, water and ICRU4-element tissue, which were placed in vacuum. The calculation was carried out by the versatile electron-photon shower computation Monte Carlo code, EGS4. As the results, depth dose curves and the dependence of absorbed dose on electron energy, incident angle and material are reported. The subjects to be investigated are pointed out. (K.I.)

  14. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1987-11-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. Critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 [1] methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed. The effective dose equivalent determined using ICRP-26 methods is significantly smaller than the dose equivalent determined by traditional methods. No existing personnel dosimeter or health physics instrument can determine effective dose equivalent. At the present time, the conversion of dosimeter response to dose equivalent is based on calculations for maximal or ''cap'' values using homogeneous spherical or cylindrical phantoms. The evaluated dose equivalent is, therefore, a poor approximation of the effective dose equivalent as defined by ICRP Publication 26. 3 refs., 2 figs., 1 tab

  15. Evaluation of dose prediction errors and optimization convergence errors of deliverable-based head-and-neck IMRT plans computed with a superposition/convolution dose algorithm

    International Nuclear Information System (INIS)

    Mihaylov, I. B.; Siebers, J. V.

    2008-01-01

    The purpose of this study is to evaluate dose prediction errors (DPEs) and optimization convergence errors (OCEs) resulting from use of a superposition/convolution dose calculation algorithm in deliverable intensity-modulated radiation therapy (IMRT) optimization for head-and-neck (HN) patients. Thirteen HN IMRT patient plans were retrospectively reoptimized. The IMRT optimization was performed in three sequential steps: (1) fast optimization in which an initial nondeliverable IMRT solution was achieved and then converted to multileaf collimator (MLC) leaf sequences; (2) mixed deliverable optimization that used a Monte Carlo (MC) algorithm to account for the incident photon fluence modulation by the MLC, whereas a superposition/convolution (SC) dose calculation algorithm was utilized for the patient dose calculations; and (3) MC deliverable-based optimization in which both fluence and patient dose calculations were performed with a MC algorithm. DPEs of the mixed method were quantified by evaluating the differences between the mixed optimization SC dose result and a MC dose recalculation of the mixed optimization solution. OCEs of the mixed method were quantified by evaluating the differences between the MC recalculation of the mixed optimization solution and the final MC optimization solution. The results were analyzed through dose volume indices derived from the cumulative dose-volume histograms for selected anatomic structures. Statistical equivalence tests were used to determine the significance of the DPEs and the OCEs. Furthermore, a correlation analysis between DPEs and OCEs was performed. The evaluated DPEs were within ±2.8% while the OCEs were within 5.5%, indicating that OCEs can be clinically significant even when DPEs are clinically insignificant. The full MC-dose-based optimization reduced normal tissue dose by as much as 8.5% compared with the mixed-method optimization results. The DPEs and the OCEs in the targets had correlation coefficients greater

  16. On the use of Gafchromic EBT3 films for validating a commercial electron Monte Carlo dose calculation algorithm.

    Science.gov (United States)

    Chan, EuJin; Lydon, Jenny; Kron, Tomas

    2015-03-07

    This study aims to investigate the effects of oblique incidence, small field size and inhomogeneous media on the electron dose distribution, and to compare calculated (Elekta/CMS XiO) and measured results. All comparisons were done in terms of absolute dose. A new measuring method was developed for high resolution, absolute dose measurement of non-standard beams using Gafchromic® EBT3 film. A portable U-shaped holder was designed and constructed to hold EBT3 films vertically in a reproducible setup submerged in a water phantom. The experimental film method was verified with ionisation chamber measurements and agreed to within 2% or 1 mm. Agreement between XiO electron Monte Carlo (eMC) and EBT3 was within 2% or 2 mm for most standard fields and 3% or 3 mm for the non-standard fields. Larger differences were seen in the build-up region where XiO eMC overestimates dose by up to 10% for obliquely incident fields and underestimates the dose for small circular fields by up to 5% when compared to measurement. Calculations with inhomogeneous media mimicking ribs, lung and skull tissue placed at the side of the film in water agreed with measurement to within 3% or 3 mm. Gafchromic film in water proved to be a convenient high spatial resolution method to verify dose distributions from electrons in non-standard conditions including irradiation in inhomogeneous media.

  17. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    International Nuclear Information System (INIS)

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y

    2015-01-01

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit

  18. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y [Hiroshima University, Hiroshima, Hiroshima (Japan)

    2015-06-15

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit.

  19. Infinite slab-shield dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab

  20. Monte Carlo based electron treatment planning and cutout output factor calculations

    Science.gov (United States)

    Mitrou, Ellis

    Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.

  1. Improvements in pencil beam scanning proton therapy dose calculation accuracy in brain tumor cases with a commercial Monte Carlo algorithm.

    Science.gov (United States)

    Widesott, Lamberto; Lorentini, Stefano; Fracchiolla, Francesco; Farace, Paolo; Schwarz, Marco

    2018-05-04

    validation of a commercial Monte Carlo (MC) algorithm (RayStation ver6.0.024) for the treatment of brain tumours with pencil beam scanning (PBS) proton therapy, comparing it via measurements and analytical calculations in clinically realistic scenarios. Methods: For the measurements a 2D ion chamber array detector (MatriXX PT)) was placed underneath the following targets: 1) anthropomorphic head phantom (with two different thickness) and 2) a biological sample (i.e. half lamb's head). In addition, we compared the MC dose engine vs. the RayStation pencil beam (PB) algorithm clinically implemented so far, in critical conditions such as superficial targets (i.e. in need of range shifter), different air gaps and gantry angles to simulate both orthogonal and tangential beam arrangements. For every plan the PB and MC dose calculation were compared to measurements using a gamma analysis metrics (3%, 3mm). Results: regarding the head phantom the gamma passing rate (GPR) was always >96% and on average > 99% for the MC algorithm; PB algorithm had a GPR ≤90% for all the delivery configurations with single slab (apart 95 % GPR from gantry 0° and small air gap) and in case of two slabs of the head phantom the GPR was >95% only in case of small air gaps for all the three (0°, 45°,and 70°) simulated beam gantry angles. Overall the PB algorithm tends to overestimate the dose to the target (up to 25%) and underestimate the dose to the organ at risk (up to 30%). We found similar results (but a bit worse for PB algorithm) for the two targets of the lamb's head where only two beam gantry angles were simulated. Conclusions: our results suggest that in PBS proton therapy range shifter (RS) need to be used with extreme caution when planning the treatment with an analytical algorithm due to potentially great discrepancies between the planned dose and the dose delivered to the patients, also in case of brain tumours where this issue could be underestimated. Our results also

  2. Methods of bone marrow dose calculation

    International Nuclear Information System (INIS)

    Taboaco, R.C.

    1982-02-01

    Several methods of bone marrow dose calculation for photon irradiation were analised. After a critical analysis, the author proposes the adoption, by the Instituto de Radioprotecao e Dosimetria/CNEN, of Rosenstein's method for dose calculations in Radiodiagnostic examinations and Kramer's method in case of occupational irradiation. It was verified by Eckerman and Simpson that for monoenergetic gamma emitters uniformly distributed within the bone mineral of the skeleton the dose in the bone surface can be several times higher than dose in skeleton. In this way, is also proposed the Calculation of tissue-air ratios for bone surfaces in some irradiation geometries and photon energies to be included in the Rosenstein's method for organ dose calculation in Radiodiagnostic examinations. (Author) [pt

  3. Validation of a virtual source model of medical linac for Monte Carlo dose calculation using multi-threaded Geant4

    Science.gov (United States)

    Aboulbanine, Zakaria; El Khayati, Naïma

    2018-04-01

    The use of phase space in medical linear accelerator Monte Carlo (MC) simulations significantly improves the execution time and leads to results comparable to those obtained from full calculations. The classical representation of phase space stores directly the information of millions of particles, producing bulky files. This paper presents a virtual source model (VSM) based on a reconstruction algorithm, taking as input a compressed file of roughly 800 kb derived from phase space data freely available in the International Atomic Energy Agency (IAEA) database. This VSM includes two main components; primary and scattered particle sources, with a specific reconstruction method developed for each. Energy spectra and other relevant variables were extracted from IAEA phase space and stored in the input description data file for both sources. The VSM was validated for three photon beams: Elekta Precise 6 MV/10 MV and a Varian TrueBeam 6 MV. Extensive calculations in water and comparisons between dose distributions of the VSM and IAEA phase space were performed to estimate the VSM precision. The Geant4 MC toolkit in multi-threaded mode (Geant4-[mt]) was used for fast dose calculations and optimized memory use. Four field configurations were chosen for dose calculation validation to test field size and symmetry effects, , , and for squared fields, and for an asymmetric rectangular field. Good agreement in terms of formalism, for 3%/3 mm and 2%/3 mm criteria, for each evaluated radiation field and photon beam was obtained within a computation time of 60 h on a single WorkStation for a 3 mm voxel matrix. Analyzing the VSM’s precision in high dose gradient regions, using the distance to agreement concept (DTA), showed also satisfactory results. In all investigated cases, the mean DTA was less than 1 mm in build-up and penumbra regions. In regards to calculation efficiency, the event processing speed is six times faster using Geant4-[mt] compared to sequential

  4. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  5. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1988-01-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed

  6. Tank Z-361 dose rate calculations

    International Nuclear Information System (INIS)

    Richard, R.F.

    1998-01-01

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses

  7. Practical applications of internal dose calculations

    International Nuclear Information System (INIS)

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describes nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles

  8. CTC-ask: a new algorithm for conversion of CT numbers to tissue parameters for Monte Carlo dose calculations applying DICOM RS knowledge

    International Nuclear Information System (INIS)

    Ottosson, Rickard O; Behrens, Claus F

    2011-01-01

    One of the building blocks in Monte Carlo (MC) treatment planning is to convert patient CT data to MC compatible phantoms, consisting of density and media matrices. The resulting dose distribution is highly influenced by the accuracy of the conversion. Two major contributing factors are precise conversion of CT number to density and proper differentiation between air and lung. Existing tools do not address this issue specifically. Moreover, their density conversion may depend on the number of media used. Differentiation between air and lung is an important task in MC treatment planning and misassignment may lead to local dose errors on the order of 10%. A novel algorithm, CTC-ask, is presented in this study. It enables locally confined constraints for the media assignment and is independent of the number of media used for the conversion of CT number to density. MC compatible phantoms were generated for two clinical cases using a CT-conversion scheme implemented in both CTC-ask and the DICOM-RT toolbox. Full MC dose calculation was subsequently conducted and the resulting dose distributions were compared. The DICOM-RT toolbox inaccurately assigned lung in 9.9% and 12.2% of the voxels located outside of the lungs for the two cases studied, respectively. This was completely avoided by CTC-ask. CTC-ask is able to reduce anatomically irrational media assignment. The CTC-ask source code can be made available upon request to the authors. (note)

  9. Equivalent-spherical-shield neutron dose calculations

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.

    1988-01-01

    Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab

  10. Weldon Spring dose calculations

    International Nuclear Information System (INIS)

    Dickson, H.W.; Hill, G.S.; Perdue, P.T.

    1978-09-01

    In response to a request by the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) for assistance to the Department of the Army (DA) on the decommissioning of the Weldon Spring Chemical Plant, the Health and Safety Research Division of the Oak Ridge National Laboratory (ORNL) performed limited dose assessment calculations for that site. Based upon radiological measurements from a number of soil samples analyzed by ORNL and from previously acquired radiological data for the Weldon Spring site, source terms were derived to calculate radiation doses for three specific site scenarios. These three hypothetical scenarios are: a wildlife refuge for hunting, fishing, and general outdoor recreation; a school with 40 hr per week occupancy by students and a custodian; and a truck farm producing fruits, vegetables, meat, and dairy products which may be consumed on site. Radiation doses are reported for each of these scenarios both for measured uranium daughter equilibrium ratios and for assumed secular equilibrium. Doses are lower for the nonequilibrium case

  11. SU-E-T-381: Evaluation of Calculated Dose Accuracy for Organs-At-Risk Located at Out-Of-Field in a Commercial Treatment Planning System for High Energy Photon Beams Produced From TrueBeam Accelerators

    International Nuclear Information System (INIS)

    Wang, L; Ding, G

    2015-01-01

    Purpose: Dose calculation accuracy for the out-of-field dose is important for predicting the dose to the organs-at-risk when they are located outside primary beams. The investigations on evaluating the calculation accuracy of treatment planning systems (TPS) on out-of-field dose in existing publications have focused on low energy (6MV) photon. This study evaluates out-of-field dose calculation accuracy of AAA algorithm for 15MV high energy photon beams. Methods: We used the EGSnrc Monte Carlo (MC) codes to evaluate the AAA algorithm in Varian Eclipse TPS (v.11). The incident beams start with validated Varian phase-space sources for a TrueBeam linac equipped with Millennium 120 MLC. Dose comparisons between using AAA and MC for CT based realistic patient treatment plans using VMAT techniques for prostate and lung were performed and uncertainties of organ dose predicted by AAA at out-of-field location were evaluated. Results: The results show that AAA calculations under-estimate doses at the dose level of 1% (or less) of prescribed dose for CT based patient treatment plans using VMAT techniques. In regions where dose is only 1% of prescribed dose, although AAA under-estimates the out-of-field dose by 30% relative to the local dose, it is only about 0.3% of prescribed dose. For example, the uncertainties of calculated organ dose to liver or kidney that is located out-of-field is <0.3% of prescribed dose. Conclusion: For 15MV high energy photon beams, very good agreements (<1%) in calculating dose distributions were obtained between AAA and MC. The uncertainty of out-of-field dose calculations predicted by the AAA algorithm for realistic patient VMAT plans is <0.3% of prescribed dose in regions where the dose relative to the prescribed dose is <1%, although the uncertainties can be much larger relative to local doses. For organs-at-risk located at out-of-field, the error of dose predicted by Eclipse using AAA is negligible. This work was conducted in part using the

  12. Independent calculation of monitor units for VMAT and SPORT

    International Nuclear Information System (INIS)

    Chen, Xin; Bush, Karl; Ding, Aiping; Xing, Lei

    2015-01-01

    Purpose: Dose and monitor units (MUs) represent two important facets of a radiation therapy treatment. In current practice, verification of a treatment plan is commonly done in dose domain, in which a phantom measurement or forward dose calculation is performed to examine the dosimetric accuracy and the MU settings of a given treatment plan. While it is desirable to verify directly the MU settings, a computational framework for obtaining the MU values from a known dose distribution has yet to be developed. This work presents a strategy to calculate independently the MUs from a given dose distribution of volumetric modulated arc therapy (VMAT) and station parameter optimized radiation therapy (SPORT). Methods: The dose at a point can be expressed as a sum of contributions from all the station points (or control points). This relationship forms the basis of the proposed MU verification technique. To proceed, the authors first obtain the matrix elements which characterize the dosimetric contribution of the involved station points by computing the doses at a series of voxels, typically on the prescription surface of the VMAT/SPORT treatment plan, with unit MU setting for all the station points. An in-house Monte Carlo (MC) software is used for the dose matrix calculation. The MUs of the station points are then derived by minimizing the least-squares difference between doses computed by the treatment planning system (TPS) and that of the MC for the selected set of voxels on the prescription surface. The technique is applied to 16 clinical cases with a variety of energies, disease sites, and TPS dose calculation algorithms. Results: For all plans except the lung cases with large tissue density inhomogeneity, the independently computed MUs agree with that of TPS to within 2.7% for all the station points. In the dose domain, no significant difference between the MC and Eclipse Anisotropic Analytical Algorithm (AAA) dose distribution is found in terms of isodose contours

  13. Independent calculation of monitor units for VMAT and SPORT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin; Bush, Karl; Ding, Aiping; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)

    2015-02-15

    Purpose: Dose and monitor units (MUs) represent two important facets of a radiation therapy treatment. In current practice, verification of a treatment plan is commonly done in dose domain, in which a phantom measurement or forward dose calculation is performed to examine the dosimetric accuracy and the MU settings of a given treatment plan. While it is desirable to verify directly the MU settings, a computational framework for obtaining the MU values from a known dose distribution has yet to be developed. This work presents a strategy to calculate independently the MUs from a given dose distribution of volumetric modulated arc therapy (VMAT) and station parameter optimized radiation therapy (SPORT). Methods: The dose at a point can be expressed as a sum of contributions from all the station points (or control points). This relationship forms the basis of the proposed MU verification technique. To proceed, the authors first obtain the matrix elements which characterize the dosimetric contribution of the involved station points by computing the doses at a series of voxels, typically on the prescription surface of the VMAT/SPORT treatment plan, with unit MU setting for all the station points. An in-house Monte Carlo (MC) software is used for the dose matrix calculation. The MUs of the station points are then derived by minimizing the least-squares difference between doses computed by the treatment planning system (TPS) and that of the MC for the selected set of voxels on the prescription surface. The technique is applied to 16 clinical cases with a variety of energies, disease sites, and TPS dose calculation algorithms. Results: For all plans except the lung cases with large tissue density inhomogeneity, the independently computed MUs agree with that of TPS to within 2.7% for all the station points. In the dose domain, no significant difference between the MC and Eclipse Anisotropic Analytical Algorithm (AAA) dose distribution is found in terms of isodose contours

  14. Dose-Response Calculator for ArcGIS

    Science.gov (United States)

    Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.

    2011-01-01

    The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.

  15. Comparison of depth-dose distributions of proton therapeutic beams calculated by means of logical detectors and ionization chamber modeled in Monte Carlo codes

    Energy Technology Data Exchange (ETDEWEB)

    Pietrzak, Robert [Department of Nuclear Physics and Its Applications, Institute of Physics, University of Silesia, Katowice (Poland); Konefał, Adam, E-mail: adam.konefal@us.edu.pl [Department of Nuclear Physics and Its Applications, Institute of Physics, University of Silesia, Katowice (Poland); Sokół, Maria; Orlef, Andrzej [Department of Medical Physics, Maria Sklodowska-Curie Memorial Cancer Center, Institute of Oncology, Gliwice (Poland)

    2016-08-01

    The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method. - Highlights: • Influence of the bin structure on the proton dose distributions was examined for the MC simulations. • The considered relative proton dose distributions in water correspond to the clinical application. • MC simulations performed with the logical detectors and the

  16. SU-C-204-06: Monte Carlo Dose Calculation for Kilovoltage X-Ray-Psoralen Activated Cancer Therapy (X-PACT): Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Mein, S [Duke University Medical Physics Graduate Program (United States); Gunasingha, R [Department of Radiation Safety, Duke University Medical Center (United States); Nolan, M [Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University (United States); Oldham, M; Adamson, J [Department of Radiation Oncology, Duke University Medical Center (United States)

    2016-06-15

    Purpose: X-PACT is an experimental cancer therapy where kV x-rays are used to photo-activate anti-cancer therapeutics through phosphor intermediaries (phosphors that absorb x-rays and re-radiate as UV light). Clinical trials in pet dogs are currently underway (NC State College of Veterinary Medicine) and an essential component is the ability to model the kV dose in these dogs. Here we report the commissioning and characterization of a Monte Carlo (MC) treatment planning simulation tool to calculate X-PACT radiation doses in canine trials. Methods: FLUKA multi-particle MC simulation package was used to simulate a standard X-PACT radiation treatment beam of 80kVp with the Varian OBI x-ray source geometry. The beam quality was verified by comparing measured and simulated attenuation of the beam by various thicknesses of aluminum (2–4.6 mm) under narrow beam conditions (HVL). The beam parameters at commissioning were then corroborated using MC, characterized and verified with empirically collected commissioning data, including: percent depth dose curves (PDD), back-scatter factors (BSF), collimator scatter factor(s), and heel effect, etc. All simulations were conducted for N=30M histories at M=100 iterations. Results: HVL and PDD simulation data agreed with an average percent error of 2.42%±0.33 and 6.03%±1.58, respectively. The mean square error (MSE) values for HVL and PDD (0.07% and 0.50%) were low, as expected; however, longer simulations are required to validate convergence to the expected values. Qualitatively, pre- and post-filtration source spectra matched well with 80kVp references generated via SPEKTR software. Further validation of commissioning data simulation is underway in preparation for first-time 3D dose calculations with canine CBCT data. Conclusion: We have prepared a Monte Carlo simulation capable of accurate dose calculation for use with ongoing X-PACT canine clinical trials. Preliminary results show good agreement with measured data and hold

  17. SU-F-SPS-02: Accuracy of the Small Field Dosimetry Using the Monte Carlo and Sequential Dose Calculation Algorithms of Multiplan Treatment Planning System Within and Beyond Heterogeneous Media for Cyberknife M6 Unit

    Energy Technology Data Exchange (ETDEWEB)

    Serin, E.; Codel, G.; Mabhouti, H.; Cebe, M.; Sanli, E.; Pacaci, P.; Kucuk, N.; Kucukmorkoc, E.; Doyuran, M.; Canoglu, D.; Altinok, A.; Acar, H.; Caglar Ozkok, H. [Medipol University, Istanbul, Istanbul (Turkey)

    2016-06-15

    Purpose: In small field geometries, the electronic equilibrium can be lost, making it challenging for the dose-calculation algorithm to accurately predict the dose, especially in the presence of tissue heterogeneities. In this study, dosimetric accuracy of Monte Carlo (MC) advanced dose calculation and sequential algorithms of Multiplan treatment planning system were investigated for small radiation fields incident on homogeneous and heterogeneous geometries. Methods: Small open fields of fixed cones of Cyberknife M6 unit 100 to 500 mm2 were used for this study. The fields were incident on in house phantom containing lung, air, and bone inhomogeneities and also homogeneous phantom. Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of MC and sequential algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement between two algorithms and film measurement For MC algorithm, the minimum gamma analysis passing rates between measured and calculated dose distributions were 99.7% and 98.3% for homogeneous and inhomogeneous fields in the case of lung and bone respectively. For sequential algorithm, the minimum gamma analysis passing rates were 98.9% and 92.5% for for homogeneous and inhomogeneous fields respectively for used all cone sizes. In the case of the air heterogeneity, the differences were larger for both calculation algorithms. Overall, when compared to measurement, the MC had better agreement than sequential algorithm. Conclusion: The Monte Carlo calculation algorithm in the Multiplan treatment planning system is an improvement over the existing sequential algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.

  18. SU-F-SPS-02: Accuracy of the Small Field Dosimetry Using the Monte Carlo and Sequential Dose Calculation Algorithms of Multiplan Treatment Planning System Within and Beyond Heterogeneous Media for Cyberknife M6 Unit

    International Nuclear Information System (INIS)

    Serin, E.; Codel, G.; Mabhouti, H.; Cebe, M.; Sanli, E.; Pacaci, P.; Kucuk, N.; Kucukmorkoc, E.; Doyuran, M.; Canoglu, D.; Altinok, A.; Acar, H.; Caglar Ozkok, H.

    2016-01-01

    Purpose: In small field geometries, the electronic equilibrium can be lost, making it challenging for the dose-calculation algorithm to accurately predict the dose, especially in the presence of tissue heterogeneities. In this study, dosimetric accuracy of Monte Carlo (MC) advanced dose calculation and sequential algorithms of Multiplan treatment planning system were investigated for small radiation fields incident on homogeneous and heterogeneous geometries. Methods: Small open fields of fixed cones of Cyberknife M6 unit 100 to 500 mm2 were used for this study. The fields were incident on in house phantom containing lung, air, and bone inhomogeneities and also homogeneous phantom. Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of MC and sequential algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement between two algorithms and film measurement For MC algorithm, the minimum gamma analysis passing rates between measured and calculated dose distributions were 99.7% and 98.3% for homogeneous and inhomogeneous fields in the case of lung and bone respectively. For sequential algorithm, the minimum gamma analysis passing rates were 98.9% and 92.5% for for homogeneous and inhomogeneous fields respectively for used all cone sizes. In the case of the air heterogeneity, the differences were larger for both calculation algorithms. Overall, when compared to measurement, the MC had better agreement than sequential algorithm. Conclusion: The Monte Carlo calculation algorithm in the Multiplan treatment planning system is an improvement over the existing sequential algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.

  19. Application of Higher Order Fission Matrix for Real Variance Estimation in McCARD Monte Carlo Eigenvalue Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    In a Monte Carlo (MC) eigenvalue calculation, it is well known that the apparent variance of a local tally such as pin power differs from the real variance considerably. The MC method in eigenvalue calculations uses a power iteration method. In the power iteration method, the fission matrix (FM) and fission source density (FSD) are used as the operator and the solution. The FM is useful to estimate a variance and covariance because the FM can be calculated by a few cycle calculations even at inactive cycle. Recently, S. Carney have implemented the higher order fission matrix (HOFM) capabilities into the MCNP6 MC code in order to apply to extend the perturbation theory to second order. In this study, the HOFM capability by the Hotelling deflation method was implemented into McCARD and used to predict the behavior of a real and apparent SD ratio. In the simple 1D slab problems, the Endo's theoretical model predicts well the real to apparent SD ratio. It was noted that the Endo's theoretical model with the McCARD higher mode FS solutions by the HOFM yields much better the real to apparent SD ratio than that with the analytic solutions. In the near future, the application for a high dominance ratio problem such as BEAVRS benchmark will be conducted.

  20. Selection of skin dose calculation methodologies

    International Nuclear Information System (INIS)

    Farrell, W.E.

    1987-01-01

    This paper reports that good health physics practice dictates that a dose assessment be performed for any significant skin contamination incident. There are, however, several methodologies that could be used, and while there is probably o single methodology that is proper for all cases of skin contamination, some are clearly more appropriate than others. This can be demonstrated by examining two of the more distinctly different options available for estimating skin dose the calculational methods. The methods compiled by Healy require separate beta and gamma calculations. The beta calculational method is the derived by Loevinger, while the gamma dose is calculated from the equation for dose rate from an infinite plane source with an absorber between the source and the detector. Healy has provided these formulas in graphical form to facilitate rapid dose rate determinations at density thicknesses of 7 and 20 mg/cm 2 . These density thicknesses equate to the regulatory definition of the sensitive layer of the skin and a more arbitrary value to account of beta absorption in contaminated clothing

  1. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution.

    Science.gov (United States)

    Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel

    2017-03-01

    Radiation therapy, in conjunction with surgical implant fixation, is a common combined treatment in cases of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced Polyetheretherketone (CFR-PEEK) material has been recently introduced for production of intramedullary nails and plates. The purpose of this work was to investigate the perturbation effects of the new CFR-PEEK screws on radiotherapy dose distributions and to evaluate these effects in comparison with traditional titanium screws. The investigation was performed by means of Monte Carlo (MC) simulations for a 6 MV photon beam. The project consisted of two main stages. First, a comparison of measured and MC calculated doses was performed to verify the validity of the MC simulation results for different materials. For this purpose, stainless steel, titanium, and CFR-PEEK plates of various thicknesses were used for attenuation and backscatter measurements in a solid water phantom. For the same setup, MC dose calculations were performed. Next, MC dose calculations for titanium, CFR-PEEK screws, and CFR-PEEK screws with ultrathin titanium coating were performed. For the plates, the results of our MC calculations for all materials were found to be in good agreement with the measurements. This indicates that the MC model can be used for calculation of dose perturbation effects caused by the screws. For the CFR-PEEK screws, the maximum dose perturbation was less than 5%, compared to more than 30% perturbation for the titanium screws. Ultrathin titanium coating had a negligible effect on the dose distribution. CFR-PEEK implants have good prospects for use in radiotherapy because of minimal dose alteration and the potential for more accurate treatment planning. This could favorably influence treatment efficiency and decrease possible over- and underdose of adjacent tissues. The use of such implants has potential clinical advantages

  2. Radiation leakage dose from Elekta electron collimation system.

    Science.gov (United States)

    Pitcher, Garrett M; Hogstrom, Kenneth R; Carver, Robert L

    2016-09-08

    This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out-of field leakage dose. Specifically, off-axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out-of-field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out-of-field dose profiles. Off-axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in-plane, cross-plane, and both diagonal axes using a cylindrical ionization chamber with the 10 × 10 and 20 × 20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in-field beam flatness met our acceptance criteria (± 3% on major and ±4% on diagonal axes) and that out-of-field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross-plane out-of-field dose profiles showed greater leakage dose than in-plane profiles, attributed to the curved edges of the upper X-ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10 × 10 and 20 × 20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding model-ing of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions

  3. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  4. Dose Calculation Accuracy of the Monte Carlo Algorithm for CyberKnife Compared with Other Commercially Available Dose Calculation Algorithms

    International Nuclear Information System (INIS)

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required.

  5. Electron and bremsstrahlung penetration and dose calculation

    Science.gov (United States)

    Watts, J. W., Jr.; Burrell, M. O.

    1972-01-01

    Various techniques for the calculation of electron and bremsstrahlung dose deposition are described. Energy deposition, transmission, and reflection coefficients for electrons incident on plane slabs are presented, and methods for their use in electron dose calculations were developed. A method using the straight-ahead approximation was also developed, and the various methods were compared and found to be in good agreement. Both accurate and approximate methods of calculating bremsstrahlung dose were derived and compared. Approximation is found to give a good estimate of dose where the electron spectrum falls off exponentially with energy.

  6. Fluence-convolution broad-beam (FCBB) dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    IMRT optimization requires a fast yet relatively accurate algorithm to calculate the iteration dose with small memory demand. In this paper, we present a dose calculation algorithm that approaches these goals. By decomposing the infinitesimal pencil beam (IPB) kernel into the central axis (CAX) component and lateral spread function (LSF) and taking the beam's eye view (BEV), we established a non-voxel and non-beamlet-based dose calculation formula. Both LSF and CAX are determined by a commissioning procedure using the collapsed-cone convolution/superposition (CCCS) method as the standard dose engine. The proposed dose calculation involves a 2D convolution of a fluence map with LSF followed by ray tracing based on the CAX lookup table with radiological distance and divergence correction, resulting in complexity of O(N{sup 3}) both spatially and temporally. This simple algorithm is orders of magnitude faster than the CCCS method. Without pre-calculation of beamlets, its implementation is also orders of magnitude smaller than the conventional voxel-based beamlet-superposition (VBS) approach. We compared the presented algorithm with the CCCS method using simulated and clinical cases. The agreement was generally within 3% for a homogeneous phantom and 5% for heterogeneous and clinical cases. Combined with the 'adaptive full dose correction', the algorithm is well suitable for calculating the iteration dose during IMRT optimization.

  7. Text book of dose calculation for operators

    International Nuclear Information System (INIS)

    Aoyagi, Haruki; Gonda, Kozo

    1979-07-01

    This is a text book of dose calculation for the operators of the reprocessing factory of Power Reactor and Nuclear Fuel Development Corporation. The radiations considered are beta-ray and gamma-ray. The method used is a point attenuation nuclear integral method. Radiation sources are considered as the assemblies of point sources. Dose from each point source is calculated, then, total dose is obtained by the integration for all sources. Attenuation is calculated by considering the attenuation owing to distance and the absorption by absorbers. The build-up factor is introduced for the correction for scattered gamma-ray. The build-up factor is given in a table for various scatterers. The operators are able to calculate dose by themselves. The results of integral calculation expressed with formulas are given in graphs. (Kato, T.)

  8. Two examples of indication specific radiation dose calculations in dental CBCT and Multidetector CT scanners.

    Science.gov (United States)

    Stratis, Andreas; Zhang, Guozhi; Lopez-Rendon, Xochitl; Politis, Constantinus; Hermans, Robert; Jacobs, Reinhilde; Bogaerts, Ria; Shaheen, Eman; Bosmans, Hilde

    2017-09-01

    To calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners. The radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.l, IT) and in Somatom Definition Flash (Siemens, DE) MDCT scanner. For temporal bone imaging, radiation doses were calculated via MC simulations for a CBCT protocol in NewTom 5G (QR s.r.l, IT) and with the use of a software tool (CT-expo) for Somatom Force (Siemens, DE). All procedures had been optimized at the acceptance tests of the devices. For orthognathic protocols, dental CBCT scanners deliver lower doses compared to MDCT scanners. The estimated effective dose (ED) was 0.32mSv for a normal resolution operation mode in Promax 3D Max, 0.27mSv in VGi-evo and 1.18mSv in the Somatom Definition Flash. For temporal bone protocols, the Somatom Force resulted in an estimated ED of 0.28mSv while for NewTom 5G the ED was 0.31 and 0.22mSv for monolateral and bilateral imaging respectively. Two clinical exams which are carried out with both a CBCT or a MDCT scanner were compared in terms of radiation dose. Dental CBCT scanners deliver lower doses for orthognathic patients whereas for temporal bone procedures the doses were similar. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. SU-F-I-38: Patient Organ Specific Dose Assessment in Coronary CT Angiograph Using Voxellaized Volume Dose Index in Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fallal, Mohammadi Gh.; Riyahi, Alam N.; Graily, Gh. [Tehran University of Medical Scienced(TUMS), School of Medicine, Department of Nedical Physics and Biomedical Engineering, Tehran (Iran, Islamic Republic of); Paydar, R. [Iran University of Medical Sciences(IUMS), Allied Medicine Faculty, Department of radiation Sciences, Tehran (Iran, Islamic Republic of)

    2016-06-15

    Purpose: Clinical use of multi detector computed tomography(MDCT) in diagnosis of diseases due to high speed in data acquisition and high spatial resolution is significantly increased. Regarding to the high radiation dose in CT and necessity of patient specific radiation risk assessment, the adoption of new method in the calculation of organ dose is completely required and necessary. In this study by introducing a conversion factor, patient organ dose in thorax region based on CT image data using MC system was calculated. Methods: The geometry of x-ray tube, inherent filter, bow tie filter and collimator were designed using EGSnrc/BEAMnrc MC-system component modules according to GE-Light-speed 64-slices CT-scanner geometry. CT-scan image of patient thorax as a specific phantom was voxellised with 6.25mm3 in voxel and 64×64×20 matrix size. Dose to thorax organ include esophagus, lung, heart, breast, ribs, muscle, spine, spinal cord with imaging technical condition of prospectively-gated-coronary CT-Angiography(PGT) as a step and shoot method, were calculated. Irradiation of patient specific phantom was performed using a dedicated MC-code as DOSXYZnrc with PGT-irradiation model. The ratio of organ dose value calculated in MC-method to the volume CT dose index(CTDIvol) reported by CT-scanner machine according to PGT radiation technique has been introduced as conversion factor. Results: In PGT method, CTDIvol was 10.6mGy and Organ Dose/CTDIvol conversion factor for esophagus, lung, heart, breast, ribs, muscle, spine and spinal cord were obtained as; 0.96, 1.46, 1.2, 3.28. 6.68. 1.35, 3.41 and 0.93 respectively. Conclusion: The results showed while, underestimation of patient dose was found in dose calculation based on CTDIvol, also dose to breast is higher than the other studies. Therefore, the method in this study can be used to provide the actual patient organ dose in CT imaging based on CTDIvol in order to calculation of real effective dose(ED) based on organ dose

  10. Dose calculation system for remotely supporting radiotherapy

    International Nuclear Information System (INIS)

    Saito, K.; Kunieda, E.; Narita, Y.; Kimura, H.; Hirai, M.; Deloar, H. M.; Kaneko, K.; Ozaki, M.; Fujisaki, T.; Myojoyama, A.; Saitoh, H.

    2005-01-01

    The dose calculation system IMAGINE is being developed keeping in mind remotely supporting external radiation therapy using photon beams. The system is expected to provide an accurate picture of the dose distribution in a patient body, using a Monte Carlo calculation that employs precise models of the patient body and irradiation head. The dose calculation will be performed utilising super-parallel computing at the dose calculation centre, which is equipped with the ITBL computer, and the calculated results will be transferred through a network. The system is intended to support the quality assurance of current, widely carried out radiotherapy and, further, to promote the prevalence of advanced radiotherapy. Prototypes of the modules constituting the system have already been constructed and used to obtain basic data that are necessary in order to decide on the concrete design of the system. The final system will be completed in 2007. (authors)

  11. Georgia fishery study: implications for dose calculations

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. A fish consumption value of 11.3 kg/yr should be used to recalculate dose to the average individual from L-Reactor restart. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average fish consumption value of 11.3 kg/yr, and a maximum fish consumption value of 34 kg/yr

  12. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  13. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices

    International Nuclear Information System (INIS)

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-01-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan

  14. Monte Carlo dose calculations and radiobiological modelling: analysis of the effect of the statistical noise of the dose distribution on the probability of tumour control

    International Nuclear Information System (INIS)

    Buffa, Francesca M.

    2000-01-01

    The aim of this work is to investigate the influence of the statistical fluctuations of Monte Carlo (MC) dose distributions on the dose volume histograms (DVHs) and radiobiological models, in particular the Poisson model for tumour control probability (tcp). The MC matrix is characterized by a mean dose in each scoring voxel, d, and a statistical error on the mean dose, σ d ; whilst the quantities d and σ d depend on many statistical and physical parameters, here we consider only their dependence on the phantom voxel size and the number of histories from the radiation source. Dose distributions from high-energy photon beams have been analysed. It has been found that the DVH broadens when increasing the statistical noise of the dose distribution, and the tcp calculation systematically underestimates the real tumour control value, defined here as the value of tumour control when the statistical error of the dose distribution tends to zero. When increasing the number of energy deposition events, either by increasing the voxel dimensions or increasing the number of histories from the source, the DVH broadening decreases and tcp converges to the 'correct' value. It is shown that the underestimation of the tcp due to the noise in the dose distribution depends on the degree of heterogeneity of the radiobiological parameters over the population; in particular this error decreases with increasing the biological heterogeneity, whereas it becomes significant in the hypothesis of a radiosensitivity assay for single patients, or for subgroups of patients. It has been found, for example, that when the voxel dimension is changed from a cube with sides of 0.5 cm to a cube with sides of 0.25 cm (with a fixed number of histories of 10 8 from the source), the systematic error in the tcp calculation is about 75% in the homogeneous hypothesis, and it decreases to a minimum value of about 15% in a case of high radiobiological heterogeneity. The possibility of using the error on the

  15. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.

    Science.gov (United States)

    Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki

    2016-03-01

    The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference

  16. Internal dose conversion factors for calculation of dose to the public

    International Nuclear Information System (INIS)

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities

  17. Dose calculations for severe LWR accident scenarios

    International Nuclear Information System (INIS)

    Margulies, T.S.; Martin, J.A. Jr.

    1984-05-01

    This report presents a set of precalculated doses based on a set of postulated accident releases and intended for use in emergency planning and emergency response. Doses were calculated for the PWR (Pressurized Water Reactor) accident categories of the Reactor Safety Study (WASH-1400) using the CRAC (Calculations of Reactor Accident Consequences) code. Whole body and thyroid doses are presented for a selected set of weather cases. For each weather case these calculations were performed for various times and distances including three different dose pathways - cloud (plume) shine, ground shine and inhalation. During an emergency this information can be useful since it is immediately available for projecting offsite radiological doses based on reactor accident sequence information in the absence of plant measurements of emission rates (source terms). It can be used for emergency drill scenario development as well

  18. Development of virtual patient models for permanent implant brachytherapy Monte Carlo dose calculations: interdependence of CT image artifact mitigation and tissue assignment.

    Science.gov (United States)

    Miksys, N; Xu, C; Beaulieu, L; Thomson, R M

    2015-08-07

    This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose

  19. SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification

    International Nuclear Information System (INIS)

    Folkerts, M; Graves, Y; Tian, Z; Gu, X; Jia, X; Jiang, S

    2014-01-01

    Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is able to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA

  20. SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, M [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States); University of California, San Diego, La Jolla, CA (United States); Graves, Y [University of California, San Diego, La Jolla, CA (United States); Tian, Z; Gu, X; Jia, X; Jiang, S [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2014-06-01

    Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is able to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.

  1. Recommendations on dose buildup factors used in models for calculating gamma doses for a plume

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Thykier-Nielsen, S.

    1980-09-01

    Calculations of external γ-doses from radioactivity released to the atmosphere have been made using different dose buildup factor formulas. Some of the dose buildup factor formulas are used by the Nordic countries in their respective γ-dose models. A comparison of calculated γ-doses using these dose buildup factors shows that the γ-doses can be significantly dependent on the buildup factor formula used in the calculation. Increasing differences occur for increasing plume height, crosswind distance, and atmospheric stability and also for decreasing downwind distance. It is concluded that the most accurate γ-dose can be calculated by use of Capo's polynomial buildup factor formula. Capo-coefficients have been calculated and shown in this report for γ-energies below the original lower limit given by Capo. (author)

  2. A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation.

    Science.gov (United States)

    Sikora, M; Dohm, O; Alber, M

    2007-08-07

    A dedicated, efficient Monte Carlo (MC) accelerator head model for intensity modulated stereotactic radiosurgery treatment planning is needed to afford a highly accurate simulation of tiny IMRT fields. A virtual source model (VSM) of a mini multi-leaf collimator (MLC) (the Elekta Beam Modulator (EBM)) is presented, allowing efficient generation of particles even for small fields. The VSM of the EBM is based on a previously published virtual photon energy fluence model (VEF) (Fippel et al 2003 Med. Phys. 30 301) commissioned with large field measurements in air and in water. The original commissioning procedure of the VEF, based on large field measurements only, leads to inaccuracies for small fields. In order to improve the VSM, it was necessary to change the VEF model by developing (1) a method to determine the primary photon source diameter, relevant for output factor calculations, (2) a model of the influence of the flattening filter on the secondary photon spectrum and (3) a more realistic primary photon spectrum. The VSM model is used to generate the source phase space data above the mini-MLC. Later the particles are transmitted through the mini-MLC by a passive filter function which significantly speeds up the time of generation of the phase space data after the mini-MLC, used for calculation of the dose distribution in the patient. The improved VSM model was commissioned for 6 and 15 MV beams. The results of MC simulation are in very good agreement with measurements. Less than 2% of local difference between the MC simulation and the diamond detector measurement of the output factors in water was achieved. The X, Y and Z profiles measured in water with an ion chamber (V = 0.125 cm(3)) and a diamond detector were used to validate the models. An overall agreement of 2%/2 mm for high dose regions and 3%/2 mm in low dose regions between measurement and MC simulation for field sizes from 0.8 x 0.8 cm(2) to 16 x 21 cm(2) was achieved. An IMRT plan film verification

  3. MC2-2, Calculation of Fast Neutron Spectra and Multigroup Cross-Sections from ENDF/B Data

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: MC 2 -2 solves the neutron slowing-down equations using basic neutron data derived from ENDF/B data files to determine fundamental mode spectra for use in generating multigroup neutron cross sections. The current edition includes the ability to treat all ENDF/B-V and -VI data representations. It accommodates high-order P scattering representations and provides numerous capabilities such as isotope mixing, delayed neutron processing, free-format input, and flexibility in output data selection. This edition supersedes previous releases of the MC22 program and the earlier MC2 program. Improved physics algorithms and increased computational efficiency are incorporated. Input data files required by MC2-2 may be generated from ENDF/B data by the code ETOE-2. The hyper-fine-group integral transport theory module of MC2-2, RABANL, is an improved version of the RABBLE/RABID codes. Many of the MC2-2 modules are used in the SDX code. 2 - Methods: The extended transport P1, B1, consistent P1, and consistent B1 fundamental mode ultra-fine-group equations are solved using continuous slowing-down theory and multigroup methods. Fast and accurate resonance integral methods are used in the narrow resonance resolved and unresolved resonance treatments. A fundamental mode homogeneous unit cell calculation is performed using either a multigroup or a continuous slowing-down treatment. Multigroup neutron homogeneous cross sections are generated in an ISOTXS format for an arbitrary group structure. A hyper-fine-group integral transport slowing down calculation (RABANL) is available as an option. RABANL performs a homogeneous or heterogeneous (pin or slab) unit cell calculation over the resonance region (resolved and unresolved) and generates multigroup neutron cross sections in an ISOTXS format. Neutron cross sections are generated by RABANL for the homogeneous unit cell and for each heterogeneous region in the pin or slab unit cell calculation

  4. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Jin Han, Tae; Kim, Haeyoung; Lee, Me-Yeon; Ju Kim, Kyoung, E-mail: kjkim@hallym.or.kr; Bae, Hoonsik

    2015-10-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.

  5. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy

    CERN Document Server

    Mairani, A; Kraemer, M; Sommerer, F; Parodi, K; Scholz, M; Cerutti, F; Ferrari, A; Fasso, A

    2010-01-01

    Clinical Monte Carlo (MC) calculations for carbon ion therapy have to provide absorbed and RBE-weighted dose. The latter is defined as the product of the dose and the relative biological effectiveness (RBE). At the GSI Helmholtzzentrum fur Schwerionenforschung as well as at the Heidelberg Ion Therapy Center (HIT), the RBE values are calculated according to the local effect model (LEM). In this paper, we describe the approach followed for coupling the FLUKA MC code with the LEM and its application to dose and RBE-weighted dose calculations for a superimposition of two opposed C-12 ion fields as applied in therapeutic irradiations. The obtained results are compared with the available experimental data of CHO (Chinese hamster ovary) cell survival and the outcomes of the GSI analytical treatment planning code TRiP98. Some discrepancies have been observed between the analytical and MC calculations of absorbed physical dose profiles, which can be explained by the differences between the laterally integrated depth-d...

  6. Validation of dose calculation programmes for recycling

    International Nuclear Information System (INIS)

    Menon, Shankar; Brun-Yaba, Christine; Yu, Charley; Cheng, Jing-Jy; Williams, Alexander

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  7. Validation of dose calculation programmes for recycling

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Shankar [Menon Consulting, Nykoeping (Sweden); Brun-Yaba, Christine [Inst. de Radioprotection et Securite Nucleaire (France); Yu, Charley; Cheng, Jing-Jy [Argonne National Laboratory, IL (United States). Environmental Assessment Div.; Bjerler, Jan [Studsvik Stensand, Nykoeping (Sweden); Williams, Alexander [Dept. of Energy (United States). Office of Environmental Management

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  8. Calculational Tool for Skin Contamination Dose Assessment

    CERN Document Server

    Hill, R L

    2002-01-01

    Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.

  9. A comparison of Monte Carlo and Fermi-Eyges-Hogstrom estimates of heart and lung dose from breast electron boost treatment

    International Nuclear Information System (INIS)

    Coleman, Joy; Park, Catherine; Villarreal-Barajas, J. Eduardo; Petti, Paula; Faddegon, Bruce

    2005-01-01

    Purpose: Electrons are commonly used in the treatment of breast cancer primarily to deliver a tumor bed boost. We compared the use of the Monte Carlo (MC) method and the Fermi-Eyges-Hogstrom (FEH) algorithm to calculate the dose distribution of electron treatment to normal tissues. Methods and materials: Ten patients with left-sided breast cancer treated with breast-conservation therapy at the University of California, San Francisco, were included in this study. Each patient received an electron boost to the surgical bed to a dose of 1,600 cGy in 200 cGy fractions prescribed to 80% of the maximum. Doses to the left ventricle (LV) and the ipsilateral lung (IL) were calculated using the EGS4 MC system and the FEH algorithm implemented on the commercially available Pinnacle treatment planning system. An anthromorphic phantom was irradiated with radiochromic film in place to verify the accuracy of the MC system. Results: Dose distributions calculated with the MC algorithm agreed with the film measurements within 3% or 3 mm. For all patients in the study, the dose to the LV and IL was relatively low as calculated by MC. That is, the maximum dose received by up to 98% of the LV volume was 30 cGy and differences in maximum dose of < 35 cGy/day to the LV and 80 cGy/day to the IL. Conclusions: From our series, using clinical judgment to prescribe the boost to the surgical bed after breast-conserving treatment results in low doses to the underlying LV and IL. When calculated dose distributions are desired, MC is the most accurate, but FEH can still be used

  10. Clinical introduction of Monte Carlo treatment planning: A different prescription dose for non-small cell lung cancer according to tumor location and size

    International Nuclear Information System (INIS)

    Voort van Zyp, Noelle C. van der; Hoogeman, Mischa S.; Water, Steven van de; Levendag, Peter C.; Holt, Bronno van der; Heijmen, Ben J.M.; Nuyttens, Joost J.

    2010-01-01

    Purpose: To provide a prescription dose for Monte Carlo (MC) treatment planning in patients with non-small-cell lung cancer according to tumor size and location. Methods: Fifty-three stereotactic radiotherapy plans designed using the equivalent path-length (EPL) algorithm were re-calculated using MC. Plans were compared by the minimum dose to 95% of the PTV (D95), the heterogeneity index (HI) and the mean dose to organs at risk (OARs). Based on changes in D95, the prescription dose was converted from EPL to MC. Based on changes in HI, we examined the feasibility of MC prescription to plans re-calculated but not re-optimized with MC. Results: The MC fraction dose for peripheral tumors is 16-18 Gy depending on tumor size. For central tumors the MC dose was reduced less than for peripheral tumors. The HI decreased on average by 4-9% in peripheral tumors and 3-5% in central tumors. The mean dose to OARs was lower for MC than EPL, and correlated strongly (R 2 = 0.98-0.99). Conclusion: For the conversion from EPL to MC we recommend a separate prescription dose according to tumor size. MC optimization is not required if a HI ≥ 70% is accepted. Dose constraints to OARs can be easily converted due to the high EPL-MC correlation.

  11. SU-E-T-356: Accuracy of Eclipse Electron Macro Monte Carlo Dose Algorithm for Use in Bolus Electron Conformal Therapy

    International Nuclear Information System (INIS)

    Carver, R; Popple, R; Benhabib, S; Antolak, J; Sprunger, C; Hogstrom, K

    2014-01-01

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10 9 ), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT

  12. SU-E-T-356: Accuracy of Eclipse Electron Macro Monte Carlo Dose Algorithm for Use in Bolus Electron Conformal Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carver, R [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Popple, R; Benhabib, S [UniversityAlabama Birmingham, Birmingham, AL (United Kingdom); Antolak, J [Mayo Clinic, Rochester, MN (United States); Sprunger, C [Louisiana State University, Baton Rouge, LA (United States); Hogstrom, K [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Louisiana State University, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.

  13. Development of internal dose calculation programing via food ingestion

    International Nuclear Information System (INIS)

    Kim, H. J.; Lee, W. K.; Lee, M. S.

    1998-01-01

    Most of dose for public via ingestion pathway is calculating for considering several pathways; which start from radioactive material released from a nuclear power plant to diffusion and migration. But in order to model these complicate pathways mathematically, some assumptions are essential and lots of input data related with pathways are demanded. Since there is uncertainty related with environment in these assumptions and input data, the accuracy of dose calculating result is not reliable. To reduce, therefore, these uncertain assumptions and inputs, this paper presents exposure dose calculating method using the activity of environmental sample detected in any pathway. Application of dose calculation is aim at peoples around KORI nuclear power plant and the value that is used to dose conversion factor recommended in ICRP Publ. 60

  14. SU-E-T-256: Development of a Monte Carlo-Based Dose-Calculation System in a Cloud Environment for IMRT and VMAT Dosimetric Verification

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y [Tokai University School of Medicine, Isehara, Kanagawa (Japan)

    2015-06-15

    Purpose: Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are techniques that are widely used for treating cancer due to better target coverage and critical structure sparing. The increasing complexity of IMRT and VMAT plans leads to decreases in dose calculation accuracy. Monte Carlo simulations are the most accurate method for the determination of dose distributions in patients. However, the simulation settings for modeling an accurate treatment head are very complex and time consuming. The purpose of this work is to report our implementation of a simple Monte Carlo simulation system in a cloud-computing environment for dosimetric verification of IMRT and VMAT plans. Methods: Monte Carlo simulations of a Varian Clinac linear accelerator were performed using the BEAMnrc code, and dose distributions were calculated using the DOSXYZnrc code. Input files for the simulations were automatically generated from DICOM RT files by the developed web application. We therefore must only upload the DICOM RT files through the web interface, and the simulations are run in the cloud. The calculated dose distributions were exported to RT Dose files that can be downloaded through the web interface. The accuracy of the calculated dose distribution was verified by dose measurements. Results: IMRT and VMAT simulations were performed and good agreement results were observed for measured and MC dose comparison. Gamma analysis with a 3% dose and 3 mm DTA criteria shows a mean gamma index value of 95% for the studied cases. Conclusion: A Monte Carlo-based dose calculation system has been successfully implemented in a cloud environment. The developed system can be used for independent dose verification of IMRT and VMAT plans in routine clinical practice. The system will also be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems. This work was supported by JSPS KAKENHI Grant Number 25861057.

  15. SU-E-T-256: Development of a Monte Carlo-Based Dose-Calculation System in a Cloud Environment for IMRT and VMAT Dosimetric Verification

    International Nuclear Information System (INIS)

    Fujita, Y

    2015-01-01

    Purpose: Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are techniques that are widely used for treating cancer due to better target coverage and critical structure sparing. The increasing complexity of IMRT and VMAT plans leads to decreases in dose calculation accuracy. Monte Carlo simulations are the most accurate method for the determination of dose distributions in patients. However, the simulation settings for modeling an accurate treatment head are very complex and time consuming. The purpose of this work is to report our implementation of a simple Monte Carlo simulation system in a cloud-computing environment for dosimetric verification of IMRT and VMAT plans. Methods: Monte Carlo simulations of a Varian Clinac linear accelerator were performed using the BEAMnrc code, and dose distributions were calculated using the DOSXYZnrc code. Input files for the simulations were automatically generated from DICOM RT files by the developed web application. We therefore must only upload the DICOM RT files through the web interface, and the simulations are run in the cloud. The calculated dose distributions were exported to RT Dose files that can be downloaded through the web interface. The accuracy of the calculated dose distribution was verified by dose measurements. Results: IMRT and VMAT simulations were performed and good agreement results were observed for measured and MC dose comparison. Gamma analysis with a 3% dose and 3 mm DTA criteria shows a mean gamma index value of 95% for the studied cases. Conclusion: A Monte Carlo-based dose calculation system has been successfully implemented in a cloud environment. The developed system can be used for independent dose verification of IMRT and VMAT plans in routine clinical practice. The system will also be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems. This work was supported by JSPS KAKENHI Grant Number 25861057

  16. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  17. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms.

    Science.gov (United States)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik

    2015-01-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  18. Dose rate calculations for a reconnaissance vehicle

    International Nuclear Information System (INIS)

    Grindrod, L.; Mackey, J.; Salmon, M.; Smith, C.; Wall, S.

    2005-01-01

    A Chemical Nuclear Reconnaissance System (CNRS) has been developed by the British Ministry of Defence to make chemical and radiation measurements on contaminated terrain using appropriate sensors and recording equipment installed in a land rover. A research programme is under way to develop and validate a predictive capability to calculate the build-up of contamination on the vehicle, radiation detector performance and dose rates to the occupants of the vehicle. This paper describes the geometric model of the vehicle and the methodology used for calculations of detector response. Calculated dose rates obtained using the MCBEND Monte Carlo radiation transport computer code in adjoint mode are presented. These address the transient response of the detectors as the vehicle passes through a contaminated area. Calculated dose rates were found to agree with the measured data to be within the experimental uncertainties, thus giving confidence in the shielding model of the vehicle and its application to other scenarios. (authors)

  19. SU-F-T-117: A Pilot Study of Organ Dose Reconstruction for Wilms Tumor Patients Treated with Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Makkia, R; Pelletier, C; Jung, J [East Carolina University, Greenville, NC (United States); Gopalakrishnan, M [Northwestern Memorial Hospital, Chicago, IL (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States); Mille, M; Lee, C [National Cancer Institute, Rockville, MD (United States); Kalapurakal, J [Northwestern University, Chicago, IL (United States)

    2016-06-15

    Purpose: To reconstruct major organ doses for the Wilms tumor pediatric patients treated with radiation therapy using pediatric computational phantoms, treatment planning system (TPS), and Monte Carlo (MC) dose calculation methods. Methods: A total of ten female and male pediatric patients (15–88 months old) were selected from the National Wilms Tumor Study cohort and ten pediatric computational phantoms corresponding to the patient’s height and weight were selected for the organ dose reconstruction. Treatment plans were reconstructed on the computational phantoms in a Pinnacle TPS (v9.10) referring to treatment records and exported into DICOM-RT files, which were then used to generate the input files for XVMC MC code. The mean doses to major organs and the dose received by 50% of the heart were calculated and compared between TPS and MC calculations. The same calculations were conducted by replacing the computational human phantoms with a series of diagnostic patient CT images selected by matching the height and weight of the patients to validate the anatomical accuracy of the computational phantoms. Results: Dose to organs located within the treatment fields from the computational phantoms and the diagnostic patient CT images agreed within 2% for all cases for both TPS and MC calculations. The maximum difference of organ doses was 55.9 % (thyroid), but the absolute dose difference in this case was 0.33 Gy which was 0.96% of the prescription dose. The doses to ovaries and testes from MC in out-of-field provided more discrepancy (the maximum difference of 13.2% and 50.8%, respectively). The maximum difference of the 50% heart volume dose between the phantoms and the patient CT images was 40.0%. Conclusion: This study showed the pediatric computational phantoms are applicable to organ doses reconstruction for the radiotherapy patients whose three-dimensional radiological images are not available.

  20. Fitting and benchmarking of Monte Carlo output parameters for iridium-192 high dose rate brachytherapy source

    International Nuclear Information System (INIS)

    Acquah, F.G.

    2011-01-01

    Brachytherapy, the use of radioactive sources for the treatment of tumours is an important tool in radiation oncology. Accurate calculations of dose delivered to malignant and normal tissues are the main responsibility of the Medical Physics staff. With the use of Treatment Planning System (TPS) computers now becoming a standard practice in the Radiation Oncology Departments, Independent calculations to certify the results of these commercial TPSs are important part of a good quality management system for brachytherapy implants. There are inherent errors in the dose distributions produced by these TPSs due to its failure to account for heterogeneity in the calculation algorithms and Monte Carlo (MC) method seems to be the panacea for these corrections. In this study, a fit functional form using MC output parameters was performed to reduce dose calculation uncertainty using the Matlab software curve fitting applications. This includes the modification of the AAPM TG-43 parameters to accommodate the new developments for a rapid brachytherapy dose rate calculation. Analytical computations were performed to hybridize the anisotropy function, F(r,θ) and radial dose function, g(r) into a single new function f(r,θ) for the Nucletron microSelectron High Dose Rate 'new or v2' (mHDRv2) 192 Ir brachytherapy source. In order to minimize computation time and to improve the accuracy of manual calculations, the dosimetry function f(r,θ) used fewer parameters and formulas for the fit. Using MC outputs as the standard, the percentage errors for the fits were calculated and used to evaluate the average and maximum uncertainties. Dose rate deviation between the MC data and fit were also quantified as errors(E), which showed minimal values. These results showed that the dosimetry parameters from this study as compared to those of MC outputs parameters were in good agreement and better than the results obtained from literature. The work confirms a lot of promise in building robust

  1. Manual method for dose calculation in gynecologic brachytherapy

    International Nuclear Information System (INIS)

    Vianello, Elizabeth A.; Almeida, Carlos E. de; Biaggio, Maria F. de

    1998-01-01

    This paper describes a manual method for dose calculation in brachytherapy of gynecological tumors, which allows the calculation of the doses at any plane or point of clinical interest. This method uses basic principles of vectorial algebra and the simulating orthogonal films taken from the patient with the applicators and dummy sources in place. The results obtained with method were compared with the values calculated with the values calculated with the treatment planning system model Theraplan and the agreement was better than 5% in most cases. The critical points associated with the final accuracy of the proposed method is related to the quality of the image and the appropriate selection of the magnification factors. This method is strongly recommended to the radiation oncology centers where are no treatment planning systems available and the dose calculations are manually done. (author)

  2. Fast patient-specific Monte Carlo brachytherapy dose calculations via the correlated sampling variance reduction technique

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, Andrew; Le Yi; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2012-02-15

    Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, {Delta}D, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 {sup 125}I seeds. The breast case consisted of 87 Model-200 {sup 103}Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D{sub 90}, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 x 1 x 1 mm{sup 3} dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and

  3. A dose error evaluation study for 4D dose calculations

    Science.gov (United States)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex

  4. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mairani, A [University of Pavia, Department of Nuclear and Theoretical Physics, and INFN, via Bassi 6, 27100 Pavia (Italy); Brons, S; Parodi, K [Heidelberg Ion Beam Therapy Center and Department of Radiation Oncology, Im Neuenheimer Feld 450, 69120 Heidelberg (Germany); Cerutti, F; Ferrari, A; Sommerer, F [CERN, 1211 Geneva 23 (Switzerland); Fasso, A [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kraemer, M; Scholz, M, E-mail: Andrea.Mairani@mi.infn.i [GSI Biophysik, Planck-Str. 1, D-64291 Darmstadt (Germany)

    2010-08-07

    Clinical Monte Carlo (MC) calculations for carbon ion therapy have to provide absorbed and RBE-weighted dose. The latter is defined as the product of the dose and the relative biological effectiveness (RBE). At the GSI Helmholtzzentrum fuer Schwerionenforschung as well as at the Heidelberg Ion Therapy Center (HIT), the RBE values are calculated according to the local effect model (LEM). In this paper, we describe the approach followed for coupling the FLUKA MC code with the LEM and its application to dose and RBE-weighted dose calculations for a superimposition of two opposed {sup 12}C ion fields as applied in therapeutic irradiations. The obtained results are compared with the available experimental data of CHO (Chinese hamster ovary) cell survival and the outcomes of the GSI analytical treatment planning code TRiP98. Some discrepancies have been observed between the analytical and MC calculations of absorbed physical dose profiles, which can be explained by the differences between the laterally integrated depth-dose distributions in water used as input basic data in TRiP98 and the FLUKA recalculated ones. On the other hand, taking into account the differences in the physical beam modeling, the FLUKA-based biological calculations of the CHO cell survival profiles are found in good agreement with the experimental data as well with the TRiP98 predictions. The developed approach that combines the MC transport/interaction capability with the same biological model as in the treatment planning system (TPS) will be used at HIT to support validation/improvement of both dose and RBE-weighted dose calculations performed by the analytical TPS.

  5. EA-MC Neutronic Calculations on IAEA ADS Benchmark 3.2

    Energy Technology Data Exchange (ETDEWEB)

    Dahlfors, Marcus [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Kadi, Yacine [CERN, Geneva (Switzerland). Emerging Energy Technologies

    2006-01-15

    The neutronics and the transmutation properties of the IAEA ADS benchmark 3.2 setup, the 'Yalina' experiment or ISTC project B-70, have been studied through an extensive amount of 3-D Monte Carlo calculations at CERN. The simulations were performed with the state-of-the-art computer code package EA-MC, developed at CERN. The calculational approach is outlined and the results are presented in accordance with the guidelines given in the benchmark description. A variety of experimental conditions and parameters are examined; three different fuel rod configurations and three types of neutron sources are applied to the system. Reactivity change effects introduced by removal of fuel rods in both central and peripheral positions are also computed. Irradiation samples located in a total of 8 geometrical positions are examined. Calculations of capture reaction rates in {sup 129}I, {sup 237}Np and {sup 243}Am samples and of fission reaction rates in {sup 235}U, {sup 237}Np and {sup 243}Am samples are presented. Simulated neutron flux densities and energy spectra as well as spectral indices inside experimental channels are also given according to benchmark specifications. Two different nuclear data libraries, JAR-95 and JENDL-3.2, are applied for the calculations.

  6. Calculation method for gamma dose rates from Gaussian puffs

    Energy Technology Data Exchange (ETDEWEB)

    Thykier-Nielsen, S; Deme, S; Lang, E

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E{sub {gamma}}, {sigma}{sub y}, the asymmetry factor - {sigma}{sub y}/{sigma}{sub z}, the height of puff center - H and the distance from puff center R{sub xy}. To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs.

  7. Calculation method for gamma dose rates from Gaussian puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1995-06-01

    The Lagrangian puff models are widely used for calculation of the dispersion of releases to the atmosphere. Basic output from such models is concentration of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on the semi-infinite cloud model. This method is however only applicable for puffs with large dispersion parameters, i.e. for receptors far away from the release point. The exact calculation of the cloud dose using volume integral requires large computer time usually exceeding what is available for real time calculations. The volume integral for gamma doses could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor because only a few of the relevant parameters are considered. A multi-parameter method for calculation of gamma doses is described here. This method uses precalculated values of the gamma dose rates as a function of E γ , σ y , the asymmetry factor - σ y /σ z , the height of puff center - H and the distance from puff center R xy . To accelerate the calculations the release energy, for each significant radionuclide in each energy group, has been calculated and tabulated. Based on the precalculated values and suitable interpolation procedure the calculation of gamma doses needs only short computing time and it is almost independent of the number of radionuclides considered. (au) 2 tabs., 15 ills., 12 refs

  8. Dose assessment for brachytherapy with Henschke applicator

    International Nuclear Information System (INIS)

    Yu, Pei-Chieh; Chao, Tsi-Chian; Tung, Chuan-Jong; Wu, Ching-Jung; Lee, Chung-Chi

    2011-01-01

    Dose perturbation caused by the Henschke applicator is a major concern for the brachytherapy planning system (BPS) in recent years. To investigate dose impact owing to neglect of the metal shielding effect, Monte Carlo (MC) simulation, BPS calculation, and film measurement have been performed for dose assessment in a water phantom. Additionally, a cylindrical air cavity representing the rectum was added into the MC simulation to study its effect on dose distribution. Monte Carlo N-Particle Transport Code (MCNP) was used in this study to simulate the dose distribution using a mesh tally. This Monte Carlo simulation has been validated using the TG-43 data in a previous report. For the measurement, the Henschke applicator was placed in a specially-designed phantom, and Gafchromic films were inserted in the center plane for 2D dose assessment. Isodose distributions with and without the Henschke applicator by the MC simulation show significant deviation from those by the BPS. For MC simulation, the isodose curves shrank more significantly when the metal applicator was applied. For the impact of the added air cavity, the results indicate that it is hard to distinguish between with and without the cavity. Thus, the rectum cavity has little impact on the dose distribution around the Henschke applicator.

  9. Clinical implementation and evaluation of the Acuros dose calculation algorithm.

    Science.gov (United States)

    Yan, Chenyu; Combine, Anthony G; Bednarz, Greg; Lalonde, Ronald J; Hu, Bin; Dickens, Kathy; Wynn, Raymond; Pavord, Daniel C; Saiful Huq, M

    2017-09-01

    The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off-axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose-to-water (calculated by AAA and Acuros XB) and dose-to-medium (calculated by Acuros XB) on patient plans were compared and evaluated. For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and

  10. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations

    Science.gov (United States)

    Fogliata, Antonella; Vanetti, Eugenio; Albers, Dirk; Brink, Carsten; Clivio, Alessandro; Knöös, Tommy; Nicolini, Giorgia; Cozzi, Luca

    2007-03-01

    A comparative study was performed to reveal differences and relative figures of merit of seven different calculation algorithms for photon beams when applied to inhomogeneous media. The following algorithms were investigated: Varian Eclipse: the anisotropic analytical algorithm, and the pencil beam with modified Batho correction; Nucletron Helax-TMS: the collapsed cone and the pencil beam with equivalent path length correction; CMS XiO: the multigrid superposition and the fast Fourier transform convolution; Philips Pinnacle: the collapsed cone. Monte Carlo simulations (MC) performed with the EGSnrc codes BEAMnrc and DOSxyznrc from NRCC in Ottawa were used as a benchmark. The study was carried out in simple geometrical water phantoms (ρ = 1.00 g cm-3) with inserts of different densities simulating light lung tissue (ρ = 0.035 g cm-3), normal lung (ρ = 0.20 g cm-3) and cortical bone tissue (ρ = 1.80 g cm-3). Experiments were performed for low- and high-energy photon beams (6 and 15 MV) and for square (13 × 13 cm2) and elongated rectangular (2.8 × 13 cm2) fields. Analysis was carried out on the basis of depth dose curves and transverse profiles at several depths. Assuming the MC data as reference, γ index analysis was carried out distinguishing between regions inside the non-water inserts or inside the uniform water. For this study, a distance to agreement was set to 3 mm while the dose difference varied from 2% to 10%. In general all algorithms based on pencil-beam convolutions showed a systematic deficiency in managing the presence of heterogeneous media. In contrast, complicated patterns were observed for the advanced algorithms with significant discrepancies observed between algorithms in the lighter materials (ρ = 0.035 g cm-3), enhanced for the most energetic beam. For denser, and more clinical, densities a better agreement among the sophisticated algorithms with respect to MC was observed.

  11. Shutdown Dose Rate Analysis Using the Multi-Step CADIS Method

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; Grove, Robert E.

    2015-01-01

    The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) hybrid Monte Carlo (MC)/deterministic radiation transport method was proposed to speed up the shutdown dose rate (SDDR) neutron MC calculation using an importance function that represents the neutron importance to the final SDDR. This work applied the MS-CADIS method to the ITER SDDR benchmark problem. The MS-CADIS method was also used to calculate the SDDR uncertainty resulting from uncertainties in the MC neutron calculation and to determine the degree of undersampling in SDDR calculations because of the limited ability of the MC method to tally detailed spatial and energy distributions. The analysis that used the ITER benchmark problem compared the efficiency of the MS-CADIS method to the traditional approach of using global MC variance reduction techniques for speeding up SDDR neutron MC calculation. Compared to the standard Forward-Weighted-CADIS (FW-CADIS) method, the MS-CADIS method increased the efficiency of the SDDR neutron MC calculation by 69%. The MS-CADIS method also increased the fraction of nonzero scoring mesh tally elements in the space-energy regions of high importance to the final SDDR

  12. The calculation of dose rates from rectangular sources

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1998-01-01

    A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)

  13. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  14. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Ziegler

    2000-11-20

    The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

  15. On the conversion of dose to bone to dose to water in radiotherapy treatment planning systems

    Directory of Open Access Journals (Sweden)

    Nick Reynaert

    2018-01-01

    Full Text Available Background and purpose: Conversion factors between dose to medium (Dm,m and dose to water (Dw,w provided by treatment planning systems that model the patient as water with variable electron density are currently based on stopping power ratios. In the current paper it will be illustrated that this conversion method is not correct. Materials and methods: Monte Carlo calculations were performed in a phantom consisting of a 2 cm bone layer surrounded by water. Dw,w was obtained by modelling the bone layer as water with the electron density of bone. Conversion factors between Dw,w and Dm,m were obtained and compared to stopping power ratios and ratios of mass-energy absorption coefficients in regions of electronic equilibrium and interfaces. Calculations were performed for 6 MV and 20 MV photon beams. Results: In the region of electronic equilibrium the stopping power ratio of water to bone (1.11 largely overestimates the conversion obtained using the Monte Carlo calculations (1.06. In that region the MC dose conversion corresponds to the ratio of mass energy absorption coefficients. Near the water to bone interface, the MC ratio cannot be determined from stopping powers or mass energy absorption coefficients. Conclusion: Stopping power ratios cannot be used for conversion from Dm,m to Dw,w provided by treatment planning systems that model the patient as water with variable electron density, either in regions of electronic equilibrium or near interfaces. In regions of electronic equilibrium mass energy absorption coefficient ratios should be used. Conversions at interfaces require detailed MC calculations. Keywords: Dose to water, Monte Carlo, Dosimetry, TPS comparison

  16. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P. [Commissariat a l' Energie Atomique et Aux Energies Alternatives, CEA Cadarache, DEN, F-13108 Saint-Paul-Les-Durance (France)

    2012-07-01

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  17. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    International Nuclear Information System (INIS)

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P.

    2012-01-01

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  18. Calculation of dose equivalents for photon skyshine production; Calculo da dose equivalente para fotons decorrente da producao de skyshine

    Energy Technology Data Exchange (ETDEWEB)

    Frota, Marco A.; Kelecom, Alphonse [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Biologia Geral. Lab. de Radiobiologia e Radiometria (LARARA)]. E-mail: egbakel@vm.uff.br

    2005-07-01

    Some radiation facilities are designed with little shielding in the ceiling above the accelerator. A problem may then arise as a result of the radiation scattered by the atmosphere to points at ground level outside the treatment room. Stray radiation of this type is referred to as skyshine, and the National Council on Radiation Protection and Measurements Report No. 51 (NCRP 1977) gives methods for the calculation of skyshine for accelerator facilities. McGinley (1993) has compared skyshine measurements made at an 18 MeV medical accelerator facility with values calculated using the techniques presented in NCRP Report No. 51. Measurements were made of the photon levels outside a treatment room housing a Varian 2100 deg C. The roof above the accelerator was designed for weather protection only and offered little shielding for the primary beam and scattered radiation. The distance from the treatment room floor to the roof was 4.27 m, and the primary walls were constructed of concrete 2.0 m thick.The secondary walls were fabricated of concrete 0.99 m thick. The results for the photon skyshine rate dose as a function of distance from the isocenter using Monte Carlo code, are compared with those in NCRP publication 74 and measured obtained. The photon skyshine dose rates simulated for real clinic spectra transmitted through roof range from 4.7 to 14.6 nSv.s{sup -1}. (author)

  19. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    International Nuclear Information System (INIS)

    Khailov, A.M.; Ivannikov, A.I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. - Highlights: • Elemental composition and density of nails were determined. • MIRD-type mathematical human phantom with arms and hands was created. • Organ doses and doses to nails were calculated for external photon exposure in air. • Effective dose and nail doses values are close for rotational and soil surface exposures.

  20. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  1. Simplified dose calculation method for mantle technique

    International Nuclear Information System (INIS)

    Scaff, L.A.M.

    1984-01-01

    A simplified dose calculation method for mantle technique is described. In the routine treatment of lymphom as using this technique, the daily doses at the midpoints at five anatomical regions are different because the thicknesses are not equal. (Author) [pt

  2. WE-DE-201-06: Impact of Temporal Image Coregistration Methods On 3D Internal Dose Calculations in Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Besemer, A; Marsh, I; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The calculation of 3D internal dose calculations in targeted radionuclide therapy requires the acquisition and temporal coregistration of a serial PET/CT or SPECT/CT images. This work investigates the dosimetric impact of different temporal coregistration methods commonly used for 3D internal dosimetry. Methods: PET/CT images of four mice were acquired at 1, 24, 48, 72, 96, 144 hrs post-injection of {sup 124}I-CLR1404. The therapeutic {sup 131}I-CLR1404 absorbed dose rate (ADR) was calculated at each time point using a Geant4-based MC dosimetry platform using three temporal image coregistration Methods: (1) no coregistration (NC), whole body sequential CT-CT affine coregistration (WBAC), and individual sequential ROI-ROI affine coregistration (IRAC). For NC, only the ROI mean ADR was integrated to obtain ROI mean doses. For WBAC, the CT at each time point was coregistered to a single reference CT. The CT transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the whole CT volume. For IRAC, each individual ROI was isolated and sequentially coregistered to a single reference ROI. The ROI transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the ROI volumes. Results: The percent differences in the ROI mean doses were as large as 109%, 88%, and 32%, comparing the WBAC vs. IRAC, NC vs. IRAC, and NC vs. WBAC methods, respectively. The CoV in the mean dose between the all three methods ranged from 2–36%. The pronounced curvature of the spinal cord was not adequately coregistered using WBAC which resulted in large difference between the WBAC and IRAC. Conclusion: The method used for temporal image coregistration can result in large differences in 3D internal dosimetry calculations. Care must be taken to choose the most appropriate method depending on the imaging conditions, clinical site, and specific application. This work is partially funded by

  3. Comparison of measured and calculated doses for narrow MLC defined fields

    International Nuclear Information System (INIS)

    Lydon, J.; Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: The introduction of Intensity Modulated Radiotherapy (IMRT) has led to the use of narrow fields in the delivery of radiation doses to patients. Such fields are not well characterized by calculation methods commonly used in radiotherapy treatment planning systems. The accuracy of the dose calculation algorithm must therefore be investigated prior to clinical use. This study looked at symmetrical and asymmetrical 0.1 to 3cm wide fields delivered with a Varian CL2100C 6MV photon beam. Measured doses were compared to doses calculated using Pinnacle, the ADAC radiotherapy treatment planning system. Two high resolution methods of measuring dose were used. A MOSFET detector in a water phantom and radiographic film in a solid water phantom with spatial resolutions of 10 and 89μm respectively. Dose calculations were performed using the collapsed cone convolution algorithm in Pinnacle with a 0.1cm dose calculation grid in the MLC direction. The effect of Pinnacle not taking into account the rounded leaf ends was simulated by offsetting the leaves by 0.1cm in the dose calculation. Agreement between measurement and calculation is good for fields of 1cm and wider. However, fields of less than 1cm width can show a significant difference between measurement and calculation

  4. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC

    International Nuclear Information System (INIS)

    Wu, Yican; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Long, Pengcheng; Hu, Liqin

    2015-01-01

    Highlights: • The new developed CAD-based Monte Carlo program named SuperMC for integrated simulation of nuclear system makes use of hybrid MC-deterministic method and advanced computer technologies. SuperMC is designed to perform transport calculation of various types of particles, depletion and activation calculation including isotope burn-up, material activation and shutdown dose, and multi-physics coupling calculation including thermo-hydraulics, fuel performance and structural mechanics. The bi-directional automatic conversion between general CAD models and physical settings and calculation models can be well performed. Results and process of simulation can be visualized with dynamical 3D dataset and geometry model. Continuous-energy cross section, burnup, activation, irradiation damage and material data etc. are used to support the multi-process simulation. Advanced cloud computing framework makes the computation and storage extremely intensive simulation more attractive just as a network service to support design optimization and assessment. The modular design and generic interface promotes its flexible manipulation and coupling of external solvers. • The new developed and incorporated advanced methods in SuperMC was introduced including hybrid MC-deterministic transport method, particle physical interaction treatment method, multi-physics coupling calculation method, geometry automatic modeling and processing method, intelligent data analysis and visualization method, elastic cloud computing technology and parallel calculation method. • The functions of SuperMC2.1 integrating automatic modeling, neutron and photon transport calculation, results and process visualization was introduced. It has been validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model. - Abstract: Monte Carlo (MC) method has distinct advantages to simulate complicated nuclear systems and is envisioned as a routine

  5. Study on development of ASCFR1.0/MC and initial calculation of moderator temperature effect for ASCFR

    International Nuclear Information System (INIS)

    Li Zhifeng; Yu Tao; Xie Jinsen

    2013-01-01

    In order to develop the temperature-dependent point-wise cross section library for the advanced supercritical water cooled fast reactor, the JEZEBEL fast neutron benchmark was used to analyze the important parameters of the NJOY code and compare the different effects of the input parameters. Then the most reasonable parameters were selected to develop the ASCFR1.0/MC which was based on the ENDF/B-VII.1. Finally, the Doppler coefficient benchmark was applied to test and verify the ASCFR.10/MC. In conclusion, the precision of the ASCFR1.0/MC were perfect. The resulted library can be used in the analysis and verification of the temperature effect in the Advanced Supercritical Fast Reactor (ASCFR), Finally, the moderator effect of ASCFR was calculated with MCNP using the ASCFR1.0/MC library, and the moderator effect of the ASCFR is positive. (authors)

  6. Analysis of offsite dose calculation methodology for a nuclear power reactor

    International Nuclear Information System (INIS)

    Moser, D.M.

    1995-01-01

    This technical study reviews the methodology for calculating offsite dose estimates as described in the offsite dose calculation manual (ODCM) for Pennsylvania Power and Light - Susquehanna Steam Electric Station (SSES). An evaluation of the SSES ODCM dose assessment methodology indicates that it conforms with methodology accepted by the US Nuclear Regulatory Commission (NRC). Using 1993 SSES effluent data, dose estimates are calculated according to SSES ODCM methodology and compared to the dose estimates calculated according to SSES ODCM and the computer model used to produce the reported 1993 dose estimates. The 1993 SSES dose estimates are based on the axioms of Publication 2 of the International Commission of Radiological Protection (ICRP). SSES Dose estimates based on the axioms of ICRP Publication 26 and 30 reveal the total body estimates to be the most affected

  7. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    Science.gov (United States)

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter bones). This study indicates that the decrease in absorbed dose is not dependent on the bone diameter with all types of bones. Thus

  8. Calculation method for gamma-dose rates from spherical puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1993-05-01

    The Lagrangian puff-models are widely used for calculation of the dispersion of atmospheric releases. Basic output from such models are concentrations of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on semi-infinite cloud model. This method is however only applicable for points far away from the release point. The exact calculation of the cloud dose using the volume integral requires significant computer time. The volume integral for the gamma dose could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor due to the fact that the same correction factors are used for all isotopes. The authors describe a more elaborate correction method. This method uses precalculated values of the gamma-dose rate as a function of the puff dispersion parameter (δ p ) and the distance from the puff centre for four energy groups. The release of energy for each radionuclide in each energy group has been calculated and tabulated. Based on these tables and a suitable interpolation procedure the calculation of gamma doses takes very short time and is almost independent of the number of radionuclides. (au) (7 tabs., 7 ills., 12 refs.)

  9. Construction of voxel head phantom and application to BNCT dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik; Lee, Choon Ik; Lee, Jai Ki [Hanyang Univ., Seoul (Korea, Republic of)

    2001-06-15

    Voxel head phantom for overcoming the limitation of mathematical phantom in depicting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for voxel Monte Carlo calculation. Simple binary voxel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct voxel head phantom. Comparison od doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of voxel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is 30{mu}g/g to 3 {mu}g/g. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  10. SU-E-J-55: Dosimetric Evaluation of Centrally Located Lung Tumors: A Monte Carlo (MC) Study of Lung SBRT Planning

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, D; Badkul, R; Jiang, H; Saleh, H; Estes, C; Park, J; Kumar, P; Wang, F [University Kansas Medical Center, Kansas City, KS (United States)

    2014-06-01

    Purpose: To compare dose distributions calculated using the iPlan XVMC algorithm and heterogeneities corrected/uncorrected Pencil Beam (PB-hete/PB-homo) algorithms for SBRT treatments of lung tumors. Methods: Ten patients with centrally located solitary lung tumors were treated using MC-based SBRT to 60Gy in 5 fractions for PTVV100%=95%. ITV was delineated on MIP-images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1–106.5cc(mean=48.6cc). MC-SBRT plans were generated with a combination of non-coplanar conformal arcs/beams using iPlan-XVMC-algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX consisting of HD-MLCs and 6MV-SRS(1000MU/min) mode, following RTOG 0813 dosimetric criteria. For comparison, PB-hete/PB-homo algorithms were used to re-calculate dose distributions using same beam configurations, MLCs/monitor units. Plans were evaluated with isocenter/maximal/mean doses to PTV. Normal lung doses were evaluated with V5/V10/V20 and mean-lung-dose(MLD), excluding PTV. Other OAR doses such as maximal spinal cord/2cc-esophagus/max bronchial tree (BT/maximal heart doses were tabulated. Results: Maximal/mean/isocenter doses to PTV calculated by PB-hete were uniformly larger than MC plans by a factors of 1.09/1.13/1.07, on average, whereas they were consistently lower by PB-homo by a factors of 0.9/0.84/0.9, respectively. The volume covered by 5Gy/10Gy/20Gy isodose-lines of the lung were comparable (average within±3%) when calculated by PB-hete compared to XVMC, but, consistently lower by PB-homo by a factors of 0.90/0.88/0.85, respectively. MLD was higher with PB-hete by 1.05, but, lower by PB-homo by 0.9, on average, compared to XVMC. XVMC max-cord/max-BT/max-heart and 2cc of esophagus doses were comparable to PB-hete; however, PB-homo underestimates by a factors of 0.82/0.89/0.88/0.86, on average, respectively. Conclusion: PB-hete significantly overestimates dose to PTV relative to XVMC -hence underdosing the target. MC is more complex and accurate with

  11. Monte Carlo calculations supporting patient plan verification in proton therapy

    Directory of Open Access Journals (Sweden)

    Thiago Viana Miranda Lima

    2016-03-01

    Full Text Available Patient’s treatment plan verification covers substantial amount of the quality assurance (QA resources, this is especially true for Intensity Modulated Proton Therapy (IMPT. The use of Monte Carlo (MC simulations in supporting QA has been widely discussed and several methods have been proposed. In this paper we studied an alternative approach from the one being currently applied clinically at Centro Nazionale di Adroterapia Oncologica (CNAO. We reanalysed the previously published data (Molinelli et al. 2013, where 9 patient plans were investigated in which the warning QA threshold of 3% mean dose deviation was crossed. The possibility that these differences between measurement and calculated dose were related to dose modelling (Treatment Planning Systems (TPS vs MC, limitations on dose delivery system or detectors mispositioning was originally explored but other factors such as the geometric description of the detectors were not ruled out. For the purpose of this work we compared ionisation-chambers measurements with different MC simulations results. It was also studied some physical effects introduced by this new approach for example inter detector interference and the delta ray thresholds. The simulations accounting for a detailed geometry typically are superior (statistical difference - p-value around 0.01 to most of the MC simulations used at CNAO (only inferior to the shift approach used. No real improvement were observed in reducing the current delta-ray threshold used (100 keV and no significant interference between ion chambers in the phantom were detected (p-value 0.81. In conclusion, it was observed that the detailed geometrical description improves the agreement between measurement and MC calculations in some cases. But in other cases position uncertainty represents the dominant uncertainty. The inter chamber disturbance was not detected for the therapeutic protons energies and the results from the current delta threshold are

  12. Calculating patient specific doses in X-ray diagnostics and from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lampinen, J.

    2000-01-01

    The risk associated with exposure to ionising radiation is dependent on the characteristics of the exposed individual. The size and structure of the individual influences the absorbed dose distribution in the organs. Traditional methods used to calculate the patient organ doses are based on standardised calculation phantoms, which neglect the variance of the patient size or even sex. When estimating the radiation dose of an individual patient, patient specific calculation methods must be used. Methods for patient specific dosimetry in the fields of X-ray diagnostics and diagnostic and therapeutic use of radiopharmaceuticals were proposed in this thesis. A computer program, ODS-60, for calculating organ doses from diagnostic X-ray exposures was presented. The calculation is done in a patient specific phantom with depth dose and profile algorithms fitted to Monte Carlo simulation data from a previous study. Improvements to the version reported earlier were introduced, e.g. bone attenuation was implemented. The applicability of the program to determine patient doses from complex X-ray examinations (barium enema examination) was studied. The conversion equations derived for female and male patients as a function of patient weight gave the smallest deviation from the actual patient doses when compared to previous studies. Another computer program, Intdose, was presented for calculation of the dose distribution from radiopharmaceuticals. The calculation is based on convolution of an isotope specific point dose kernel with activity distribution, obtained from single photon emission computed tomography (SPECT) images. Anatomical information is taken from magnetic resonance (MR) or computed tomography (CT) images. According to a phantom study, Intdose agreed within 3 % with measurements. For volunteers administered diagnostic radiopharmaceuticals, the results given by Intdose were found to agree with traditional methods in cases of medium sized patients. For patients

  13. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  14. Smartphone apps for calculating insulin dose: a systematic assessment.

    Science.gov (United States)

    Huckvale, Kit; Adomaviciute, Samanta; Prieto, José Tomás; Leow, Melvin Khee-Shing; Car, Josip

    2015-05-06

    Medical apps are widely available, increasingly used by patients and clinicians, and are being actively promoted for use in routine care. However, there is little systematic evidence exploring possible risks associated with apps intended for patient use. Because self-medication errors are a recognized source of avoidable harm, apps that affect medication use, such as dose calculators, deserve particular scrutiny. We explored the accuracy and clinical suitability of apps for calculating medication doses, focusing on insulin calculators for patients with diabetes as a representative use for a prevalent long-term condition. We performed a systematic assessment of all English-language rapid/short-acting insulin dose calculators available for iOS and Android. Searches identified 46 calculators that performed simple mathematical operations using planned carbohydrate intake and measured blood glucose. While 59% (n = 27/46) of apps included a clinical disclaimer, only 30% (n = 14/46) documented the calculation formula. 91% (n = 42/46) lacked numeric input validation, 59% (n = 27/46) allowed calculation when one or more values were missing, 48% (n = 22/46) used ambiguous terminology, 9% (n = 4/46) did not use adequate numeric precision and 4% (n = 2/46) did not store parameters faithfully. 67% (n = 31/46) of apps carried a risk of inappropriate output dose recommendation that either violated basic clinical assumptions (48%, n = 22/46) or did not match a stated formula (14%, n = 3/21) or correctly update in response to changing user inputs (37%, n = 17/46). Only one app, for iOS, was issue-free according to our criteria. No significant differences were observed in issue prevalence by payment model or platform. The majority of insulin dose calculator apps provide no protection against, and may actively contribute to, incorrect or inappropriate dose recommendations that put current users at risk of both catastrophic overdose and more

  15. Testing of the analytical anisotropic algorithm for photon dose calculation

    International Nuclear Information System (INIS)

    Esch, Ann van; Tillikainen, Laura; Pyykkonen, Jukka; Tenhunen, Mikko; Helminen, Hannu; Siljamaeki, Sami; Alakuijala, Jyrki; Paiusco, Marta; Iori, Mauro; Huyskens, Dominique P.

    2006-01-01

    The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimization algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below d max . The electron contamination model was found to be suboptimal to model the dose around d max , especially for physical

  16. Hot particle dose calculations using the computer code VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.

    1991-01-01

    The only calculational model recognised by the Nuclear Regulatory Commission (NRC) for hot particle dosimetry is VARSKIN Mod 1. Because the code was designed to calculate skin dose from distributed skin contamination and not hot particles, it is assumed that the particle has no thickness and, therefore, that no self-absorption occurs within the source material. For low energy beta particles such as those emitted from 60 Co, a significant amount of self-shielding occurs in hot particles and VARSKIN Mod 1 overestimates the skin dose. In addition, the presence of protective clothing, which will reduce the calculated skin dose for both high and low energy beta emitters, is not modelled in VARSKIN Mod 1. Finally, there is no provision in VARSKIN Mod 1 to calculate the gamma contribution to skin dose from radionuclides that emit both beta and gamma radiation. The computer code VARSKIN Mod 1 has been modified to model three-dimensional sources, insertion of layers of protective clothing between the source and skin, and gamma dose from appropriate radionuclides. The new code, VARSKIN Mod 2, is described and the sensitivity of the calculated dose to source geometry, diameter, thickness, density, and protective clothing thickness are discussed. Finally, doses calculated using VARSKIN Mod 2 are compared to doses measured from hot particles found in nuclear power plants. (author)

  17. [Comparison of dose calculation algorithms in stereotactic radiation therapy in lung].

    Science.gov (United States)

    Tomiyama, Yuki; Araki, Fujio; Kanetake, Nagisa; Shimohigashi, Yoshinobu; Tominaga, Hirofumi; Sakata, Jyunichi; Oono, Takeshi; Kouno, Tomohiro; Hioki, Kazunari

    2013-06-01

    Dose calculation algorithms in radiation treatment planning systems (RTPSs) play a crucial role in stereotactic body radiation therapy (SBRT) in the lung with heterogeneous media. This study investigated the performance and accuracy of dose calculation for three algorithms: analytical anisotropic algorithm (AAA), pencil beam convolution (PBC) and Acuros XB (AXB) in Eclipse (Varian Medical Systems), by comparison against the Voxel Monte Carlo algorithm (VMC) in iPlan (BrainLab). The dose calculations were performed with clinical lung treatments under identical planning conditions, and the dose distributions and the dose volume histogram (DVH) were compared among algorithms. AAA underestimated the dose in the planning target volume (PTV) compared to VMC and AXB in most clinical plans. In contrast, PBC overestimated the PTV dose. AXB tended to slightly overestimate the PTV dose compared to VMC but the discrepancy was within 3%. The discrepancy in the PTV dose between VMC and AXB appears to be due to differences in physical material assignments, material voxelization methods, and an energy cut-off for electron interactions. The dose distributions in lung treatments varied significantly according to the calculation accuracy of the algorithms. VMC and AXB are better algorithms than AAA for SBRT.

  18. High-speed radiation dose calculations for severe accidents using INDOS

    International Nuclear Information System (INIS)

    Davidson, G.R.; Godin-Jacqmin, L.J.; Raines, J.C.

    1992-01-01

    The computer code INDOS (in-plant dose) has been developed for the high-speed calculation of in-plant radiation dose rates and doses during and/or due to a severe accident at a nuclear power plant. This paper describes the current capabilities of the code and presents the results of calculations for several severe-accident scenarios. The INDOS code can be run either as a module of MAAP, a code widely used in the nuclear industry for simulating the response of a light water reactor system during severe accidents, or as a stand-alone code using output from an alternative companion code. INDOS calculates gamma dose rates and doses in major plant compartments caused by airborne and deposited fission products released during an accident. The fission product concentrations are determined by the companion code

  19. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  20. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.

    2014-08-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  1. Dose calculation methods in photon beam therapy using energy deposition kernels

    International Nuclear Information System (INIS)

    Ahnesjoe, A.

    1991-01-01

    The problem of calculating accurate dose distributions in treatment planning of megavoltage photon radiation therapy has been studied. New dose calculation algorithms using energy deposition kernels have been developed. The kernels describe the transfer of energy by secondary particles from a primary photon interaction site to its surroundings. Monte Carlo simulations of particle transport have been used for derivation of kernels for primary photon energies form 0.1 MeV to 50 MeV. The trade off between accuracy and calculational speed has been addressed by the development of two algorithms; one point oriented with low computional overhead for interactive use and one for fast and accurate calculation of dose distributions in a 3-dimensional lattice. The latter algorithm models secondary particle transport in heterogeneous tissue by scaling energy deposition kernels with the electron density of the tissue. The accuracy of the methods has been tested using full Monte Carlo simulations for different geometries, and found to be superior to conventional algorithms based on scaling of broad beam dose distributions. Methods have also been developed for characterization of clinical photon beams in entities appropriate for kernel based calculation models. By approximating the spectrum as laterally invariant, an effective spectrum and dose distribution for contaminating charge particles are derived form depth dose distributions measured in water, using analytical constraints. The spectrum is used to calculate kernels by superposition of monoenergetic kernels. The lateral energy fluence distribution is determined by deconvolving measured lateral dose distributions by a corresponding pencil beam kernel. Dose distributions for contaminating photons are described using two different methods, one for estimation of the dose outside of the collimated beam, and the other for calibration of output factors derived from kernel based dose calculations. (au)

  2. Dose calculations at high altitudes and in deep space with GEANT4 using BIC and JQMD models for nucleus-nucleus reactions

    International Nuclear Information System (INIS)

    Sihver, L; Mancusi, D; Matthiae, D; Koi, T

    2008-01-01

    Radiation exposure of aircrew is more and more recognized as an occupational hazard. The ionizing environment at standard commercial aircraft flight altitudes consists mainly of secondary particles, of which the neutrons give a major contribution to the dose equivalent. Accurate estimations of neutron spectra in the atmosphere are therefore essential for correct calculations of aircrew doses. Energetic solar particle events (SPE) could also lead to significantly increased dose rates, especially at routes close to the North Pole, e.g. for flights between Europe and USA. It is also well known that the radiation environment encountered by personnel aboard low Earth orbit (LEO) spacecraft or aboard a spacecraft traveling outside the Earth's protective magnetosphere is much harsher compared with that within the atmosphere since the personnel are exposed to radiation from both galactic cosmic rays (GCR) and SPE. The relative contribution to the dose from GCR when traveling outside the Earth's magnetosphere, e.g. to the Moon or Mars, is even greater, and reliable and accurate particle and heavy ion transport codes are essential to calculate the radiation risks for both aircrew and personnel on spacecraft. We have therefore performed calculations of neutron distributions in the atmosphere, total dose equivalents, and quality factors at different depths in a water sphere in an imaginary spacecraft during solar minimum in a geosynchronous orbit. The calculations were performed with the GEANT4 Monte Carlo (MC) code using both the binary cascade (BIC) model, which is part of the standard GEANT4 package, and the JQMD model, which is used in the particle and heavy ion transport code PHITS GEANT4.

  3. Dose calculations at high altitudes and in deep space with GEANT4 using BIC and JQMD models for nucleus nucleus reactions

    Science.gov (United States)

    Sihver, L.; Matthiä, D.; Koi, T.; Mancusi, D.

    2008-10-01

    Radiation exposure of aircrew is more and more recognized as an occupational hazard. The ionizing environment at standard commercial aircraft flight altitudes consists mainly of secondary particles, of which the neutrons give a major contribution to the dose equivalent. Accurate estimations of neutron spectra in the atmosphere are therefore essential for correct calculations of aircrew doses. Energetic solar particle events (SPE) could also lead to significantly increased dose rates, especially at routes close to the North Pole, e.g. for flights between Europe and USA. It is also well known that the radiation environment encountered by personnel aboard low Earth orbit (LEO) spacecraft or aboard a spacecraft traveling outside the Earth's protective magnetosphere is much harsher compared with that within the atmosphere since the personnel are exposed to radiation from both galactic cosmic rays (GCR) and SPE. The relative contribution to the dose from GCR when traveling outside the Earth's magnetosphere, e.g. to the Moon or Mars, is even greater, and reliable and accurate particle and heavy ion transport codes are essential to calculate the radiation risks for both aircrew and personnel on spacecraft. We have therefore performed calculations of neutron distributions in the atmosphere, total dose equivalents, and quality factors at different depths in a water sphere in an imaginary spacecraft during solar minimum in a geosynchronous orbit. The calculations were performed with the GEANT4 Monte Carlo (MC) code using both the binary cascade (BIC) model, which is part of the standard GEANT4 package, and the JQMD model, which is used in the particle and heavy ion transport code PHITS GEANT4.

  4. Approaches to reducing photon dose calculation errors near metal implants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Liu, Xinming [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Stingo, Francesco C. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States)

    2016-09-15

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  5. Approaches to reducing photon dose calculation errors near metal implants

    International Nuclear Information System (INIS)

    Huang, Jessie Y.; Followill, David S.; Howell, Rebecca M.; Mirkovic, Dragan; Kry, Stephen F.; Liu, Xinming; Stingo, Francesco C.

    2016-01-01

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well as two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact

  6. Method for dose calculation in intracavitary irradiation of endometrical carcinoma

    International Nuclear Information System (INIS)

    Zevrieva, I.F.; Ivashchenko, N.T.; Musapirova, N.A.; Fel'dman, S.Z.; Sajbekov, T.S.

    1979-01-01

    A method for dose calculation for the conditions of intracavitary gamma therapy of endometrial carcinoma using spherical and linear 60 Co sources was elaborated. Calculations of dose rates for different amount and orientation of spherical radiation sources and for different planes were made with the aid of BEhSM-4M computer. Dosimet were made with the aid of BEhSM-4M computer. Dosimetric study of dose fields was made using a phantom imitating the real conditions of irradiation. Discrepancies between experimental and calculated values are within the limits of the experiment accuracy

  7. SU-F-303-17: Real Time Dose Calculation of MRI Guided Co-60 Radiotherapy Treatments On Free Breathing Patients, Using a Motion Model and Fast Monte Carlo Dose Calculation

    International Nuclear Information System (INIS)

    Thomas, D; O’Connell, D; Lamb, J; Cao, M; Yang, Y; Agazaryan, N; Lee, P; Low, D

    2015-01-01

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment were generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments

  8. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Randriantsizafy, R D; Ramanandraibe, M J [Madagascar Institut National des Sciences et Techniques Nucleaires, Antananarivo (Madagascar); Raboanary, R [Institut of astro and High-Energy Physics Madagascar, University of Antananarivo, Antananarivo (Madagascar)

    2007-07-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  9. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    International Nuclear Information System (INIS)

    Randriantsizafy, R.D.; Ramanandraibe, M.J.; Raboanary, R.

    2007-01-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  10. Point kernels and superposition methods for scatter dose calculations in brachytherapy

    International Nuclear Information System (INIS)

    Carlsson, A.K.

    2000-01-01

    Point kernels have been generated and applied for calculation of scatter dose distributions around monoenergetic point sources for photon energies ranging from 28 to 662 keV. Three different approaches for dose calculations have been compared: a single-kernel superposition method, a single-kernel superposition method where the point kernels are approximated as isotropic and a novel 'successive-scattering' superposition method for improved modelling of the dose from multiply scattered photons. An extended version of the EGS4 Monte Carlo code was used for generating the kernels and for benchmarking the absorbed dose distributions calculated with the superposition methods. It is shown that dose calculation by superposition at and below 100 keV can be simplified by using isotropic point kernels. Compared to the assumption of full in-scattering made by algorithms currently in clinical use, the single-kernel superposition method improves dose calculations in a half-phantom consisting of air and water. Further improvements are obtained using the successive-scattering superposition method, which reduces the overestimates of dose close to the phantom surface usually associated with kernel superposition methods at brachytherapy photon energies. It is also shown that scatter dose point kernels can be parametrized to biexponential functions, making them suitable for use with an effective implementation of the collapsed cone superposition algorithm. (author)

  11. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2012-09-15

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  12. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    International Nuclear Information System (INIS)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun

    2012-01-01

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  13. Disposition and pharmacokinetics in rats of McN-5707, a potential antidepressant drug

    International Nuclear Information System (INIS)

    Ng, K.T.; Holland, M.L.; Hills, J.F.; Uetz, J.A.

    1986-01-01

    A single 80 mg/kg oral solution dose of McN-5707- 14 C x HBr [trans-6-(2-chlorophenyl)-1,2,3,5,6,10b-hexahydropyrrolo[2,1-a]isoquinoline hydrobromide (1:1)] was administered orally to 40 Wistar rats. Total 14 C concentrations in plasma were high (> 4.5 μg x equiv/mL) for at least 24 hours after dosing. Unchanged McN-5707 represented 14 C concs in plasma at 45 min and < 1% at 24 hours after dosing. In the 8 days following dose administration, 23% of the dose was excreted in urine and 70% of the dose was excreted in feces. Analysis (HPLC and TLC) of glusulase treated urine, plasma and fecal samples revealed the presence of multiple metabolites of McN-5707. Unchanged McN-5707 was found only in fecal extracts (2-7% of dose). Single solution doses of McN-5707 x HBr were administered p.o. (20 mg/kg) and i.v. (4 mg/kg) to 39 Wistar rats. Plasma samples were analyzed for McN-5707 using a capillary GC assay. These studies indicated that McN-5707 was well absorbed and extensively metabolized in rats following oral doses

  14. Validation of GPU based TomoTherapy dose calculation engine.

    Science.gov (United States)

    Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond

    2012-04-01

    The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.

  15. Qualification test of few group constants generated from an MC method by the two-step neutronics analysis system McCARD/MASTER

    International Nuclear Information System (INIS)

    Park, Ho Jin; Shim, Hyung Jin; Joo, Han Gyu; Kim, Chang Hyo

    2011-01-01

    The purpose of this paper is to examine the qualification of few group constants estimated by the Seoul National University Monte Carlo particle transport analysis code McCARD in terms of core neutronics analyses and thus to validate the McCARD method as a few group constant generator. The two- step core neutronics analyses are conducted for a mini and a realistic PWR by the McCARD/MASTER code system in which McCARD is used as an MC group constant generation code and MASTER as a diffusion core analysis code. The two-step calculations for the effective multiplication factors and assembly power distributions of the two PWR cores by McCARD/MASTER are compared with the reference McCARD calculations. By showing excellent agreements between McCARD/MASTER and the reference MC core neutronics analyses for the two PWRs, it is concluded that the MC method implemented in McCARD can generate few group constants which are well qualified for high-accuracy two-step core neutronics calculations. (author)

  16. The Monte Carlo applied for calculation dose

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1988-01-01

    The Monte Carlo method is showed for the calculation of absorbed dose. The trajectory of the photon is traced simulating sucessive interaction between the photon and the substance that consist the human body simulator. The energy deposition in each interaction of the simulator organ or tissue per photon is also calculated. (C.G.C.) [pt

  17. Dose calculations algorithm for narrow heavy charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Barna, E A; Kappas, C [Department of Medical Physics, School of Medicine, University of Patras (Greece); Scarlat, F [National Institute for Laser and Plasma Physics, Bucharest (Romania)

    1999-12-31

    The dose distributional advantages of the heavy charged-particles can be fully exploited by using very efficient and accurate dose calculation algorithms, which can generate optimal three-dimensional scanning patterns. An inverse therapy planning algorithm for dynamically scanned, narrow heavy charged-particle beams is presented in this paper. The irradiation `start point` is defined at the distal end of the target volume, right-down, in a beam`s eye view. The peak-dose of the first elementary beam is set to be equal to the prescribed dose in the target volume, and is defined as the reference dose. The weighting factor of any Bragg-peak is determined by the residual dose at the point of irradiation, calculated as the difference between the reference dose and the cumulative dose delivered at that point of irradiation by all the previous Bragg-peaks. The final pattern consists of the weighted Bragg-peaks irradiation density. Dose distributions were computed using two different scanning steps equal to 0.5 mm, and 1 mm respectively. Very accurate and precise localized dose distributions, conform to the target volume, were obtained. (authors) 6 refs., 3 figs.

  18. A fast dose calculation method based on table lookup for IMRT optimization

    International Nuclear Information System (INIS)

    Wu Qiuwen; Djajaputra, David; Lauterbach, Marc; Wu Yan; Mohan, Radhe

    2003-01-01

    This note describes a fast dose calculation method that can be used to speed up the optimization process in intensity-modulated radiotherapy (IMRT). Most iterative optimization algorithms in IMRT require a large number of dose calculations to achieve convergence and therefore the total amount of time needed for the IMRT planning can be substantially reduced by using a faster dose calculation method. The method that is described in this note relies on an accurate dose calculation engine that is used to calculate an approximate dose kernel for each beam used in the treatment plan. Once the kernel is computed and saved, subsequent dose calculations can be done rapidly by looking up this kernel. Inaccuracies due to the approximate nature of the kernel in this method can be reduced by performing scheduled kernel updates. This fast dose calculation method can be performed more than two orders of magnitude faster than the typical superposition/convolution methods and therefore is suitable for applications in which speed is critical, e.g., in an IMRT optimization that requires a simulated annealing optimization algorithm or in a practical IMRT beam-angle optimization system. (note)

  19. Application of a sitting MIRD phantom for effective dose calculations

    International Nuclear Information System (INIS)

    Olsher, R. H.; Van Riper, K. A.

    2005-01-01

    In typical realistic scenarios, dose factors due to 60 Co contaminated steel, used in consumer products, cannot be approximated by standard exposure geometries. It is then necessary to calculate the effective dose using an appropriate anthropomorphic phantom. MCNP calculations were performed using a MIRD human model in two settings. In the first, a male office worker is sitting in a chair containing contaminated steel, surrounded by contaminated furniture. In the second, a male driver is seated inside an automobile, the steel of which is uniformly contaminated. To accurately calculate the dose to lower body organs, especially the gonads, it was essential to modify the MIRD model to simulate two sitting postures: chair and driving position. The phantom modifications are described, and the results of the calculations are presented. In the case of the automobile scenarios, results are compared to those obtained using an isotropic fluence-to-dose conversion function. (authors)

  20. A photon source model based on particle transport in a parameterized accelerator structure for Monte Carlo dose calculations.

    Science.gov (United States)

    Ishizawa, Yoshiki; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Takahito; Takayama, Yoshiki; Sato, Kiyokazu; Takeda, Ken

    2018-05-17

    An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4

  1. SU-F-J-14: Kilovoltage Cone-Beam CT Dose Estimation of Varian On-Board Imager Using GMctdospp Monte Carlo Framework

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Rangaraj, D [Baylor Scott & White Health, Temple, TX (United States)

    2016-06-15

    Purpose: Although cone-beam CT (CBCT) imaging became popular in radiation oncology, its imaging dose estimation is still challenging. The goal of this study is to assess the kilovoltage CBCT doses using GMctdospp - an EGSnrc based Monte Carlo (MC) framework. Methods: Two Varian OBI x-ray tube models were implemented in the GMctpdospp framework of EGSnrc MC System. The x-ray spectrum of 125 kVp CBCT beam was acquired from an EGSnrc/BEAMnrc simulation and validated with IPEM report 78. Then, the spectrum was utilized as an input spectrum in GMctdospp dose calculations. Both full and half bowtie pre-filters of the OBI system were created by using egs-prism module. The x-ray tube MC models were verified by comparing calculated dosimetric profiles (lateral and depth) to ion chamber measurements for a static x-ray beam irradiation to a cuboid water phantom. An abdominal CBCT imaging doses was simulated in GMctdospp framework using a 5-year-old anthropomorphic phantom. The organ doses and effective dose (ED) from the framework were assessed and compared to the MOSFET measurements and convolution/superposition dose calculations. Results: The lateral and depth dose profiles in the water cuboid phantom were well matched within 6% except a few areas - left shoulder of the half bowtie lateral profile and surface of water phantom. The organ doses and ED from the MC framework were found to be closer to MOSFET measurements and CS calculations within 2 cGy and 5 mSv respectively. Conclusion: This study implemented and validated the Varian OBI x-ray tube models in the GMctdospp MC framework using a cuboid water phantom and CBCT imaging doses were also evaluated in a 5-year-old anthropomorphic phantom. In future study, various CBCT imaging protocols will be implemented and validated and consequently patient CT images will be used to estimate the CBCT imaging doses in patients.

  2. Standardized dose factors for dose calculations - 1982 SRP reactor safety analysis report tritium, iodine, and noble gases

    International Nuclear Information System (INIS)

    Pillinger, W.L.; Marter, W.L.

    1982-01-01

    Standardized dose constants are recommended for calculation of offsite doses in the 1982 SRP Reactor Safety Analysis Report (SAR). Dose constants are proposed for inhalation of tritium and radioiodines and for submersion in a semi-infinite cloud of radioiodines and noble gases. The proposed constants, based on ICRP2 methodology for internal dose and methodology recommended by the US Nuclear Regulatory Commission for external dose, are compatible with dose calculational methods used at the Savannah River Plant and Savannah River Laboratory for normal releases of radioactivity. 8 references

  3. Entrance surface dose distribution and organ dose assessment for cone-beam computed tomography using measurements and Monte Carlo simulations with voxel phantoms

    Science.gov (United States)

    Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.

    2017-11-01

    Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the

  4. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.

    Science.gov (United States)

    Martinez-Rovira, I; Sempau, J; Prezado, Y

    2012-05-01

    Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-μm-wide microbeams spaced by 200-400 μm) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two

  5. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rovira, I.; Sempau, J.; Prezado, Y. [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain) and ID17 Biomedical Beamline, European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz B.P. 220, F-38043 Grenoble Cedex (France); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain); Laboratoire Imagerie et modelisation en neurobiologie et cancerologie, UMR8165, Centre National de la Recherche Scientifique (CNRS), Universites Paris 7 et Paris 11, Bat 440., 15 rue Georges Clemenceau, F-91406 Orsay Cedex (France)

    2012-05-15

    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at

  6. Dose specification for 192Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium

    International Nuclear Information System (INIS)

    Fonseca, Gabriel Paiva; Yoriyaz, Hélio; Tedgren, Åsa Carlsson; Nilsson, Josef; Persson, Maria; Reniers, Brigitte; Verhaegen, Frank

    2015-01-01

    Dose calculation in high dose rate brachytherapy with 192 Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (D m,m ) and dose-to-water-in-medium (D w,m ). The relation between D m,m and D w,m for 192 Ir is the main goal of this study, in particular the dependence of D w,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: D m,m, D w,m (LCT), mean photon energy and photon fluence. D w,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between D m,m and D w,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between D w,m (SCT) and D w,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between D m,m and D w,m (SCT) mainly depend on tissue type, differences between D m,m and D w,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources. (paper)

  7. COSANI-2, Gamma Doses from SABINE Calculation, Activity from ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Dupont, C.

    1975-01-01

    1 - Nature of physical problem solved: Retrieval of SABINE and/or ANISN results. Calculates in case of SABINE results the individual contributions of capture gamma rays in each region to the total gamma dose and to the total gamma heating may calculate in case of ANISN new activity rates starting from ANISN flux saved on tape and activity cross sections taken on an ANISN binary library tape. The program can draw on a BENSON plotter any of the following quantities: - group flux; - activity rates; - dose rates; - neutron spectra for SABINE; - neutron or gamma direct or adjoint spectra for ANISN; - gamma heating and dose rate for SABINE including individual contributions from each region. Several ANISN and/or SABINE cases can be drawn on the same graph for comparison purposes. 2 - Restrictions on the complexity of the problem: Maximum number of: - tapes containing ANISN and/or SABINE results: 5; - curves per graph: 3; - regions: 40; - points per curve: 500; - energy groups: 200

  8. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A. [Department of Human Oncology, University of Wisconsin-Madison, WI, 53792 (United States); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC 3002 (Australia) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Human Oncology, University of Wisconsin-Madison, WI 53792 (United States); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia) and Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Einstein Institute of Oncophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 (United States) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  9. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tomé, Wolfgang A.

    2012-01-01

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed “Super Sampling” involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  10. CT-based dose calculations and in vivo dosimetry for lung cancer treatment

    International Nuclear Information System (INIS)

    Essers, M.; Lanson, J.H.; Leunens, G.; Schnabel, T.; Mijnheer, B.J.

    1995-01-01

    Reliable CT-based dose calculations and dosimetric quality control are essential for the introduction of new conformal techniques for the treatment of lung cancer. The first aim of this study was therefore to check the accuracy of dose calculations based on CT-densities, using a simple inhomogeneity correction model, for lung cancer patients irradiated with an AP-PA treatment technique. Second, the use of diodes for absolute exit dose measurements and an Electronic Portal Imaging Device (EPID) for relative transmission dose verification was investigated for 22 and 12 patients, respectively. The measured dose values were compared with calculations performed using our 3-dimensional treatment planning system, using CT-densities or assuming the patient to be water-equivalent. Using water-equivalent calculations, the actual exit dose value under lung was, on average, underestimated by 30%, with an overall spread of 10% (1 SD). Using inhomogeneity corrections, the exit dose was, on average, overestimated by 4%, with an overall spread of 6% (1 SD). Only 2% of the average deviation was due to the inhomogeneity correction model. An uncertainty in exit dose calculation of 2.5% (1 SD) could be explained by organ motion, resulting from the ventilatory or cardiac cycle. The most important reason for the large overall spread was, however, the uncertainty involved in performing point measurements: about 4% (1 SD). This difference resulted from the systematic and random deviation in patient set-up and therefore in diode position with respect to patient anatomy. Transmission and exit dose values agreed with an average difference of 1.1%. Transmission dose profiles also showed good agreement with calculated exit dose profiles. Our study shows that, for this treatment technique, the dose in the thorax region is quite accurately predicted using CT-based dose calculations, even if a simple inhomogeneity correction model is used. Point detectors such as diodes are not suitable for exit

  11. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  12. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  13. Incorporating partial shining effects in proton pencil-beam dose calculation

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Lii Mingfwu; Sahoo, Narayan; Zhu, Ron X; Gillin, Michael; Mohan, Radhe

    2008-01-01

    A range modulator wheel (RMW) is an essential component in passively scattered proton therapy. We have observed that a proton beam spot may shine on multiple steps of the RMW. Proton dose calculation algorithms normally do not consider the partial shining effect, and thus overestimate the dose at the proximal shoulder of spread-out Bragg peak (SOBP) compared with the measurement. If the SOBP is adjusted to better fit the plateau region, the entrance dose is likely to be underestimated. In this work, we developed an algorithm that can be used to model this effect and to allow for dose calculations that better fit the measured SOBP. First, a set of apparent modulator weights was calculated without considering partial shining. Next, protons spilled from the accelerator reaching the modulator wheel were simplified as a circular spot of uniform intensity. A weight-splitting process was then performed to generate a set of effective modulator weights with the partial shining effect incorporated. The SOBPs of eight options, which are used to label different combinations of proton-beam energy and scattering devices, were calculated with the generated effective weights. Our algorithm fitted the measured SOBP at the proximal and entrance regions much better than the ones without considering partial shining effect for all SOBPs of the eight options. In a prostate patient, we found that dose calculation without considering partial shining effect underestimated the femoral head and skin dose

  14. An independent dose calculation algorithm for MLC-based stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lorenz, Friedlieb; Killoran, Joseph H.; Wenz, Frederik; Zygmanski, Piotr

    2007-01-01

    We have developed an algorithm to calculate dose in a homogeneous phantom for radiotherapy fields defined by multi-leaf collimator (MLC) for both static and dynamic MLC delivery. The algorithm was developed to supplement the dose algorithms of the commercial treatment planning systems (TPS). The motivation for this work is to provide an independent dose calculation primarily for quality assurance (QA) and secondarily for the development of static MLC field based inverse planning. The dose calculation utilizes a pencil-beam kernel. However, an explicit analytical integration results in a closed form for rectangular-shaped beamlets, defined by single leaf pairs. This approach reduces spatial integration to summation, and leads to a simple method of determination of model parameters. The total dose for any static or dynamic MLC field is obtained by summing over all individual rectangles from each segment which offers faster speed to calculate two-dimensional dose distributions at any depth in the phantom. Standard beam data used in the commissioning of the TPS was used as input data for the algorithm. The calculated results were compared with the TPS and measurements for static and dynamic MLC. The agreement was very good (<2.5%) for all tested cases except for very small static MLC sizes of 0.6 cmx0.6 cm (<6%) and some ion chamber measurements in a high gradient region (<4.4%). This finding enables us to use the algorithm for routine QA as well as for research developments

  15. Dose calculations for intakes of ore dust

    International Nuclear Information System (INIS)

    O'Brien, R.S.

    1998-08-01

    This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these 'ores' contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another 'parent' radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures

  16. Dose calculation in brachytherapy with microcomputers

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1989-01-01

    The computer algorithms, that allow the calculation of brachytherapy doses and its graphic representation for implants, using programs developed for Pc microcomputers are presented. These algorithms allow to localized the sources in space, from their projection in radiographics images and trace isodose counter. (C.G.C.) [pt

  17. A convolution-superposition dose calculation engine for GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe [Departement de genie informatique et genie logiciel, Ecole polytechnique de Montreal, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4 (Canada); Departement de radio-oncologie, CRCHUM-Centre hospitalier de l' Universite de Montreal, 1560 rue Sherbrooke Est, Montreal, Quebec H2L 4M1 (Canada)

    2010-03-15

    Purpose: Graphic processing units (GPUs) are increasingly used for scientific applications, where their parallel architecture and unprecedented computing power density can be exploited to accelerate calculations. In this paper, a new GPU implementation of a convolution/superposition (CS) algorithm is presented. Methods: This new GPU implementation has been designed from the ground-up to use the graphics card's strengths and to avoid its weaknesses. The CS GPU algorithm takes into account beam hardening, off-axis softening, kernel tilting, and relies heavily on raytracing through patient imaging data. Implementation details are reported as well as a multi-GPU solution. Results: An overall single-GPU acceleration factor of 908x was achieved when compared to a nonoptimized version of the CS algorithm implemented in PlanUNC in single threaded central processing unit (CPU) mode, resulting in approximatively 2.8 s per beam for a 3D dose computation on a 0.4 cm grid. A comparison to an established commercial system leads to an acceleration factor of approximately 29x or 0.58 versus 16.6 s per beam in single threaded mode. An acceleration factor of 46x has been obtained for the total energy released per mass (TERMA) calculation and a 943x acceleration factor for the CS calculation compared to PlanUNC. Dose distributions also have been obtained for a simple water-lung phantom to verify that the implementation gives accurate results. Conclusions: These results suggest that GPUs are an attractive solution for radiation therapy applications and that careful design, taking the GPU architecture into account, is critical in obtaining significant acceleration factors. These results potentially can have a significant impact on complex dose delivery techniques requiring intensive dose calculations such as intensity-modulated radiation therapy (IMRT) and arc therapy. They also are relevant for adaptive radiation therapy where dose results must be obtained rapidly.

  18. SU-E-T-22: A Deterministic Solver of the Boltzmann-Fokker-Planck Equation for Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X; Gao, H [Shanghai Jiao Tong University, Shanghai, Shanghai (China); Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: The Boltzmann-Fokker-Planck equation (BFPE) accurately models the migration of photons/charged particles in tissues. While the Monte Carlo (MC) method is popular for solving BFPE in a statistical manner, we aim to develop a deterministic BFPE solver based on various state-of-art numerical acceleration techniques for rapid and accurate dose calculation. Methods: Our BFPE solver is based on the structured grid that is maximally parallelizable, with the discretization in energy, angle and space, and its cross section coefficients are derived or directly imported from the Geant4 database. The physical processes that are taken into account are Compton scattering, photoelectric effect, pair production for photons, and elastic scattering, ionization and bremsstrahlung for charged particles.While the spatial discretization is based on the diamond scheme, the angular discretization synergizes finite element method (FEM) and spherical harmonics (SH). Thus, SH is used to globally expand the scattering kernel and FFM is used to locally discretize the angular sphere. As a Result, this hybrid method (FEM-SH) is both accurate in dealing with forward-peaking scattering via FEM, and efficient for multi-energy-group computation via SH. In addition, FEM-SH enables the analytical integration in energy variable of delta scattering kernel for elastic scattering with reduced truncation error from the numerical integration based on the classic SH-based multi-energy-group method. Results: The accuracy of the proposed BFPE solver was benchmarked against Geant4 for photon dose calculation. In particular, FEM-SH had improved accuracy compared to FEM, while both were within 2% of the results obtained with Geant4. Conclusion: A deterministic solver of the Boltzmann-Fokker-Planck equation is developed for dose calculation, and benchmarked against Geant4. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang

  19. Analytical probabilistic proton dose calculation and range uncertainties

    Science.gov (United States)

    Bangert, M.; Hennig, P.; Oelfke, U.

    2014-03-01

    We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.

  20. Evaluating the calculation accuracy of AAA algorithm for the situation with small fields in bone by monte carlo

    International Nuclear Information System (INIS)

    Zhang Yanqiu; Qiu Xiaoping; Yang Zhen; Lu Zhiping

    2011-01-01

    In order to evaluate the calculation accuracy of Anisotropic Analytical Algorithm (AAA) for the situation with small fields in a water-bone phantom using Monte Carlo simulation as benchmarks. A water phantom with a bone slab was built,in which the depth dose (DD) and off-axis ratio (OAR) for field 2 cm x 2 cm to field 8 cm x 8 cm were calculated by AAA algorithms, PBC algorithms (as comparison), and Monte Carlo (MC) simulation. The evaluation of algorithms by MC simulation was achieved by the comparisons of DD and the 1 dimension gamma analysis of OAR. It was shown that both of AAA algorithm and PBC algorithm overestimated the DD in bone region, and the dose differences ranged from 2.16%-2.7%, 1.4%-2.03%, respectively. AAA algorithm and PBC algorithm underestimated the DD in back of bone region, and the dose differences ranged from -0.39% - -1.19%, -0.13% - -0.4%, respectively. AAA algorithm and PBC algorithm overestimated the dose of field inner edge and field outer edge,respectively. One dimension gamma analysis indicated that AAA algorithm and PBC algorithm gamma pass rate was 100%, 100%, 100%, 86%, 100%, 100%, 72%, 64%, respectively. In bone medium,the dose calculated by AAA was slightly higher than MC simulation, the calculation accuracy was not evidently higher than PBC. (authors)

  1. Accurate convolution/superposition for multi-resolution dose calculation using cumulative tabulated kernels

    International Nuclear Information System (INIS)

    Lu Weiguo; Olivera, Gustavo H; Chen Mingli; Reckwerdt, Paul J; Mackie, Thomas R

    2005-01-01

    Convolution/superposition (C/S) is regarded as the standard dose calculation method in most modern radiotherapy treatment planning systems. Different implementations of C/S could result in significantly different dose distributions. This paper addresses two major implementation issues associated with collapsed cone C/S: one is how to utilize the tabulated kernels instead of analytical parametrizations and the other is how to deal with voxel size effects. Three methods that utilize the tabulated kernels are presented in this paper. These methods differ in the effective kernels used: the differential kernel (DK), the cumulative kernel (CK) or the cumulative-cumulative kernel (CCK). They result in slightly different computation times but significantly different voxel size effects. Both simulated and real multi-resolution dose calculations are presented. For simulation tests, we use arbitrary kernels and various voxel sizes with a homogeneous phantom, and assume forward energy transportation only. Simulations with voxel size up to 1 cm show that the CCK algorithm has errors within 0.1% of the maximum gold standard dose. Real dose calculations use a heterogeneous slab phantom, both the 'broad' (5 x 5 cm 2 ) and the 'narrow' (1.2 x 1.2 cm 2 ) tomotherapy beams. Various voxel sizes (0.5 mm, 1 mm, 2 mm, 4 mm and 8 mm) are used for dose calculations. The results show that all three algorithms have negligible difference (0.1%) for the dose calculation in the fine resolution (0.5 mm voxels). But differences become significant when the voxel size increases. As for the DK or CK algorithm in the broad (narrow) beam dose calculation, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 10% (7%) of the maximum dose. As for the broad (narrow) beam dose calculation using the CCK algorithm, the dose differences between the 0.5 mm voxels and the voxels up to 8 mm (4 mm) are around 1% of the maximum dose. Among all three methods, the CCK algorithm

  2. Accuracy of internal dose calculations with special consideration of radiopharmaceutical biokinetics

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    The individual steps of internal dose calculation, including the models and data used, as well as error considerations, are analysed following a short synopsis on the formalism of absorbed dose calculation. The mean dose in a target tissue depends on the administered activity, the residence time of the activity in the source tissues and the mean absorbed dose in the target tissue per transformation in a source tissue. Usually, a standard dosage is applied in radionuclide studies except in children. Actually administered and nomial activities generally differ by less than 10%. For the purpose of internal dose calculation, the biokinetics of a radiopharmaceutical are reflected in the residence times for the individual source tissues. The methods and the evaluation of measurements of biodistribution and retention data are discussed. The extrapolation of animal data to man is treated in some detail, including a survey of the methods used, as well as an attempt for validating these methods. None of these seem to yield more convincing results than the direct transfer of the residence times from animal to man, at least for the two radiopharmaceuticals discussed. The minimum period of measurement to derive residence times for the purpose of dose calculation has been determined as about one physical half-time. Some problems of the dose per transformation to a phantom are presented, including the age- or size-dependence of the internal dose. Organ doses to the phantom, calculated from different apparently reliable sets of biokinetic data, are generally compatible within a factor of 2 to 3, and somatically effective doses are generally compatible within a factor of less than 2

  3. Dose calculation method with 60-cobalt gamma rays in total body irradiation

    International Nuclear Information System (INIS)

    Scaff, Luiz Alberto Malaguti

    2001-01-01

    Physical factors associated to total body irradiation using 60 Co gamma rays beams, were studied in order to develop a calculation method of the dose distribution that could be reproduced in any radiotherapy center with good precision. The method is based on considering total body irradiation as a large and irregular field with heterogeneities. To calculate doses, or doses rates, of each area of interest (head, thorax, thigh, etc.), scattered radiation is determined. It was observed that if dismagnified fields were considered to calculate the scattered radiation, the resulting values could be applied on a projection to the real size to obtain the values for dose rate calculations. In a parallel work it was determined the variation of the dose rate in the air, for the distance of treatment, and for points out of the central axis. This confirm that the use of the inverse square law is not valid. An attenuation curve for a broad beam was also determined in order to allow the use of absorbers. In this work all the adapted formulas for dose rate calculations in several areas of the body are described, as well time/dose templates sheets for total body irradiation. The in vivo dosimetry, proved that either experimental or calculated dose rate values (achieved by the proposed method), did not have significant discrepancies. (author)

  4. Implatation of MC2 computer code

    International Nuclear Information System (INIS)

    Seehusen, J.; Nair, R.P.K.; Becceneri, J.C.

    1981-01-01

    The implantation of MC2 computer code in the CDC system is presented. The MC2 computer code calculates multigroup cross sections for tipical compositions of fast reactors. The multigroup constants are calculated using solutions of PI or BI approximations for determined buckling value as weighting function. (M.C.K.) [pt

  5. Exact comparison of dose rate measurements and calculation of TN12/2 packages

    International Nuclear Information System (INIS)

    Taniuchi, H.; Matsuda, F.

    1998-01-01

    Both of dose rate measurements of TN 12/2 package and calculations by Monte Carlo code MORSE in SCALE code system and MCNP were performed to evaluate the difference between the measurement and the calculation and finding out the cause of the difference. The calculated gamma-ray dose rates agreed well with measured ones, but calculated neutron dose rates overestimated more than a factor of 1.7. When considering the cause of the difference and applying the modification into the neutron calculation, the calculated neutron dose rates become to agree well, and the factor decreased to around 1.3. (authors)

  6. Columbia River pathway report: phase I of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab.

  7. Calculation of dose point kernels for five radionuclides used in radio-immunotherapy

    International Nuclear Information System (INIS)

    Okigaki, S.; Ito, A.; Uchida, I.; Tomaru, T.

    1994-01-01

    With the recent interest in radioimmunotherapy, attention has been given to calculation of dose distribution from beta rays and monoenergetic electrons in tissue. Dose distribution around a point source of a beta ray emitting radioisotope is referred to as a beta dose point kernel. Beta dose point kernels for five radionuclides such as 131 I, 186 Re, 32 P, 188 Re, and 90 Y appropriate for radioimmunotherapy are calculated by Monte Carlo method using the EGS4 code system. Present results were compared with the published data of experiments and other calculations. Accuracy and precisions of beta dose point kernels are discussed. (author)

  8. MO-FG-202-08: Real-Time Monte Carlo-Based Treatment Dose Reconstruction and Monitoring for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Gu, X; Tan, J; Hassan-Rezaeian, N; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Graves, Y [University of California, San Diego, La Jolla, CA (United States)

    2016-06-15

    Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashion in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion

  9. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  10. Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors

    DEFF Research Database (Denmark)

    Holst, Birgitte; Elling, Christian E; Schwartz, Thue W

    2002-01-01

    -melanocortin stimulating hormone (alpha-MSH) in the MC1 and MC4 receptors, respectively. In the presence of peptide agonist, Zn(II) acted as an enhancer on both receptors, because it shifted the dose-response curves to the left: most pronounced was a 6-fold increase in alpha-MSH potency on the MC1 receptor. The effect......An endogenous metal-ion site in the melanocortin MC1 and MC4 receptors was characterized mainly in transiently transfected COS-7 cells. ZnCl(2) alone stimulated signaling through the Gs pathway with a potency of 11 and 13 microm and an efficacy of 50 and 20% of that of alpha...... affinities and profiles were similar for a number of the 2,2'-bipyridine and 1,10-phenanthroline analogs in complex with Zn(II) in the MC1 and MC4 receptors. However, the potencies and efficacies of the metal-ion complexes were very different in the two receptors, and close to full agonism was obtained...

  11. Activities of the ICRP task group on dose calculations (DOCAL)

    International Nuclear Information System (INIS)

    Bertelli, Luiz

    1997-01-01

    Full text. The International Commission of Radiological Protection has been doing many efforts to improve dose calculations due to intake of radionuclides by workers and members of the public. More specifically, the biokinetic models have become more and more physiologically based and developed for age-groups ranging from the embryo to the adult. The dosimetric aspects have also been very carefully revised and a new series of phantoms encompassing all developing stages of embryo and fetus were also envisaged. In order to assure the quality of the calculations, dose coefficients have been derived by two different laboratories and the results and methods have been frequently compared and discussed. A CD-ROM has been prepared allowing the user to obtain dose coefficients for the several age-groups for ingestion and inhalation of all important radionuclides. Inhalation dose coefficients will be available for several AMADs. For the particular case of embryo and fetus, doses will be calculated when the intake occurred before and during gestation for single and chronic patterns of intake

  12. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    International Nuclear Information System (INIS)

    Yepes, Pablo P; Mirkovic, Dragan; Taddei, Phillip J

    2010-01-01

    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomical areas, like the thorax. Monte Carlo techniques provide superior accuracy; however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the fast dose calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the fast dose calculator for proton radiotherapy on a card equipped with graphics processor units (GPUs) rather than on a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than 1 min utilizing one single GPU card, which should allow real-time accurate dose calculations.

  13. Calculation of age-dependent dose conversion coefficients for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van; Satoh, Daiki; Takahashi, Fumiaki; Tsuda, Shuichi; Endo, Akira; Saito, Kimiaki; Yamaguchi, Yasuhiro

    2005-02-01

    Age-dependent dose conversion coefficients for external exposure to photons emitted by radionuclides uniformly distributed in air were calculated. The size of the source region in the calculation was assumed to be effectively semi-infinite in extent. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using MCNP code, a Monte Carlo transport code. The calculations were performed for mono-energetic photon sources of twelve energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10 and 15 years, and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. The calculated effective doses were used to interpolate the conversion coefficients of the effective doses for 160 radionuclides, which are important for dose assessment of nuclear facilities. In the calculation, energies and intensities of emitted photons from radionuclides were taken from DECDC, a recent compilation of decay data for radiation dosimetry developed at JAERI. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ). (author)

  14. Sensitivity of NTCP parameter values against a change of dose calculation algorithm

    International Nuclear Information System (INIS)

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-01-01

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis with those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models

  15. Methodology of dose calculation for the SRS SAR

    International Nuclear Information System (INIS)

    Price, J.B.

    1991-07-01

    The Savannah River Site (SRS) Safety Analysis Report (SAR) covering K reactor operation assesses a spectrum of design basis accidents. The assessment includes estimation of the dose consequences from the analyzed accidents. This report discusses the methodology used to perform the dose analysis reported in the SAR and also includes the quantified doses. Doses resulting from postulated design basis reactor accidents in Chapter 15 of the SAR are discussed, as well as an accident in which three percent of the fuel melts. Doses are reported for both atmospheric and aqueous releases. The methodology used to calculate doses from these accidents as reported in the SAR is consistent with NRC guidelines and industry standards. The doses from the design basis accidents for the SRS reactors are below the limits set for commercial reactors by the NRC and also meet industry criteria. A summary of doses for various postulated accidents is provided

  16. Development of an effective dose coefficient database using a computational human phantom and Monte Carlo simulations to evaluate exposure dose for the usage of NORM-added consumer products.

    Science.gov (United States)

    Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Jaekook; Yeom, Yeon Soo; Kim, Chan Hyeong; Chang, Byung-Uck; Min, Chul Hee

    2017-11-01

    After the Fukushima accident in Japan, the Korean Government implemented the "Act on Protective Action Guidelines Against Radiation in the Natural Environment" to regulate unnecessary radiation exposure to the public. However, despite the law which came into effect in July 2012, an appropriate method to evaluate the equivalent and effective doses from naturally occurring radioactive material (NORM) in consumer products is not available. The aim of the present study is to develop and validate an effective dose coefficient database enabling the simple and correct evaluation of the effective dose due to the usage of NORM-added consumer products. To construct the database, we used a skin source method with a computational human phantom and Monte Carlo (MC) simulation. For the validation, the effective dose was compared between the database using interpolation method and the original MC method. Our result showed a similar equivalent dose across the 26 organs and a corresponding average dose between the database and the MC calculations of database with sufficient accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The calculation of electron depth-dose distributions in multilayer medium

    International Nuclear Information System (INIS)

    Wang Chuanshan; Xu Mengjie; Li Zhiliang; Feng Yongxiang; Li Panlin

    1989-01-01

    Energy deposition in multilayer medium and the depth dose distribution in the layers are studied. Based on semi-empirical calculation of electron energy absorption in matter with EDMULT program of Tabata and Ito, further work has been carried out to extend the computation to multilayer composite material. New program developed in this paper makes IBM-PC compatible with complicated electron dose calculations

  18. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  19. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    International Nuclear Information System (INIS)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach

  20. Technical basis for beta skin dose calculations at the Y-12 Plant

    International Nuclear Information System (INIS)

    Thomas, J.M.; Bogard, R.S.

    1994-03-01

    This report describes the methods for determining shallow dose equivalent to workers at the Oak Ridge Y-12 Plant from skin contamination detected by survey instrumentation. Included is a discussion of how the computer code VARSKIN is used to calculate beta skin dose and how the code input parameters affect skin dose calculation results. A summary of Y-12 Plant specific assumptions used in performing VARSKIN calculations is presented. Derivations of contamination levels that trigger the need for skin dose assessment are given for both enriched and depleted uranium with the use of Y-12 Plant site-specific survey instruments. Department of Energy recording requirements for nonuniform exposure of the skin are illustrated with sample calculations

  1. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.

    Science.gov (United States)

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-21

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  2. Thermal neutron dose calculation in synovium membrane for BNCS

    International Nuclear Information System (INIS)

    Abdalla, Khalid; Naqvi, A.A.; Maalej, N.; El-Shahat, B.

    2006-01-01

    A D(d,n) reaction based setup has been optimized for Boron Neutron Capture Synovectomy (BNCS). The polyethylene moderator and graphite reflector sizes were optimized to deliver the highest ratio of thermal to fast neutron yield. The neutron dose was calculated at various depths in a knee phantom loaded with boron to determine therapeutic ratios of synovium dose/skin dose and synovium dose/bone dose. Normalized to same boron loading in synovium, the values of the therapeutic ratios obtained in the present study are 12-30 times higher than the published values. (author)

  3. Probabilistic approach to external cloud dose calculations using onsite meteorological data

    International Nuclear Information System (INIS)

    Strenge, D.L.; Watson, E.C.; Bander, T.J.; Kennedy, W.E.

    1976-01-01

    A method is described for calculation of external total body and skin doses from accidental atmospheric releases of radionuclides based on hourly onsite meteorological data. The method involves calculation of dose values from a finite size cloud for each hourly observation for a given radionuclide inventory. These values are then used to determine the probability of occurrence of dose levels for specified release times ranging from one hour to 30 days

  4. Concepts for dose determination in flat-detector CT

    Science.gov (United States)

    Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A.

    2008-07-01

    Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDIL=100 mm, where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm × 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDIL determination with respect to the desired CTDI∞. Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of >=600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of >=600 mm appeared to be necessary to approximate CTDI∞ in within 1%. MC simulations

  5. Determination of organ doses during radiological examinations and calculation of somatically significant dose

    International Nuclear Information System (INIS)

    Steiner, H.

    1980-01-01

    Examples are used to demonstrate that a shift in the point of emphasis is necessary with regard to radiation hazard in medicinal X-ray diagnosis. The parameters employed in this study to calculate somatic dose (SD) and somatically significant dose (SSD) may well be in need of modification; nevertheless the numerical estimation of SSD arrived at here appears to reflect the right order of magnitude for the estimation of somatic risk. The consideration of the threshold dose for somatic injury remains a problem. (orig./MG) [de

  6. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  7. Development of a radiopharmaceutical dose calculator for pediatric patients undergoing diagnostic nuclear medicine studies

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Sharma, Punit; Gupta, Priyanka; Kumar, Rakesh

    2013-01-01

    It is important to ensure that as low as reasonably achievable (ALARA) concept during the radiopharmaceutical (RPH) dose administration in pediatric patients. Several methods have been suggested over the years for the calculation of individualized RPH dose, sometimes requiring complex calculations and large variability exists for administered dose in children. The aim of the present study was to develop a software application that can calculate and store RPH dose along with patient record. We reviewed the literature to select the dose formula and used Microsoft Access (a software package) to develop this application. We used the Microsoft Excel to verify the accurate execution of the dose formula. The manual and computer time using this program required for calculating the RPH dose were compared. The developed application calculates RPH dose for pediatric patients based on European Association of Nuclear Medicine dose card, weight based, body surface area based, Clark, Solomon Fried, Young and Webster's formula. It is password protected to prevent the accidental damage and stores the complete record of patients that can be exported to Excel sheet for further analysis. It reduces the burden of calculation and saves considerable time i.e., 2 min computer time as compared with 102 min (manual calculation with the calculator for all seven formulas for 25 patients). The software detailed above appears to be an easy and useful method for calculation of pediatric RPH dose in routine clinical practice. This software application will help in helping the user to routinely applied ALARA principle while pediatric dose administration. (author)

  8. Calculating gamma dose factors for hot particle exposures

    International Nuclear Information System (INIS)

    Murphy, P.

    1990-01-01

    For hot particle exposures to the skin, the beta component of radiation delivers the majority of the dose. However, in order to fully demonstrate regulatory compliance, licenses must ordinarily provide reasonable bases for assuming that both the gamma component of the skin dose and the whole body doses are negligible. While beta dose factors are commonly available in the literature, gamma dose factors are not. This paper describes in detail a method by which gamma skin dose factors may be calculated using the Specific Gamma-ray Constant, even if the particle is not located directly on the skin. Two common hot particle exposure geometries are considered: first, a single square centimeter of skin lying at density thickness of 7 mg/cm 2 and then at 1000 mg/cm 2 . A table provides example gamma dose factors for a number of isotopes encountered at power reactors

  9. SU-F-T-441: Dose Calculation Accuracy in CT Images Reconstructed with Artifact Reduction Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C; Chan, S; Lee, F; Ngan, R [Queen Elizabeth Hospital (Hong Kong); Lee, V [University of Hong Kong, Hong Kong, HK (Hong Kong)

    2016-06-15

    Purpose: Accuracy of radiotherapy dose calculation in patients with surgical implants is complicated by two factors. First is the accuracy of CT number, second is the dose calculation accuracy. We compared measured dose with dose calculated on CT images reconstructed with FBP and an artifact reduction algorithm (OMAR, Philips) for a phantom with high density inserts. Dose calculation were done with Varian AAA and AcurosXB. Methods: A phantom was constructed with solid water in which 2 titanium or stainless steel rods could be inserted. The phantom was scanned with the Philips Brillance Big Bore CT. Image reconstruction was done with FBP and OMAR. Two 6 MV single field photon plans were constructed for each phantom. Radiochromic films were placed at different locations to measure the dose deposited. One plan has normal incidence on the titanium/steel rods. In the second plan, the beam is at almost glancing incidence on the metal rods. Measurements were then compared with dose calculated with AAA and AcurosXB. Results: The use of OMAR images slightly improved the dose calculation accuracy. The agreement between measured and calculated dose was best with AXB and image reconstructed with OMAR. Dose calculated on titanium phantom has better agreement with measurement. Large discrepancies were seen at points directly above and below the high density inserts. Both AAA and AXB underestimated the dose directly above the metal surface, while overestimated the dose below the metal surface. Doses measured downstream of metal were all within 3% of calculated values. Conclusion: When doing treatment planning for patients with metal implants, care must be taken to acquire correct CT images to improve dose calculation accuracy. Moreover, great discrepancies in measured and calculated dose were observed at metal/tissue interface. Care must be taken in estimating the dose in critical structures that come into contact with metals.

  10. Dose calculation and isodose curves determination in brachytherapy

    International Nuclear Information System (INIS)

    Maranhao, Frederico B.; Lima, Fernando R.A.; Khoury, Helen J.

    2000-01-01

    Brachytherapy is a form of cancer treatment in which small radioactive sources are placed inside of, or close to small tumors, in order to cause tissue necrosis and, consequently, to interrupt the tumor growth process. A very important aspect to the planning of this therapy is the calculation of dose distributions in the tumor and nearby tissues, to avoid the unnecessary irradiation of healthy tissue. The objective of this work is to develop a computer program that will permit treatment planning for brachytherapy at low dose rates, minimizing the possible errors introduced when such calculations are done manually. Results obtained showed good agreement with those from programs such as BRA, which is widely used in medical practice. (author)

  11. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    International Nuclear Information System (INIS)

    Kim, Yong Ho

    1991-02-01

    60 Co-gamma irradiators have long been used for foods sterilization, plant mutation and development of radio-protective agents, radio-sensitizers and other purposes. The Applied Radiological Science Research Institute of Cheju National University has a multipurpose gamma irradiation facility loaded with a MDS Nordin standard 60 Co source (C188), of which the initial activity was 400 TBq (10,800 Ci) on February 19, 2004. This panoramic gamma irradiator is designed to irradiate in all directions various samples such as plants, cultured cells and mice to administer given radiation doses. In order to give accurate doses to irradiation samples, appropriate methods of evaluating, both by calculation and measurement, the radiation doses delivered to the samples should be set up. Computational models have been developed to evaluate the radiation dose distributions inside the irradiation chamber and the radiation doses delivered to typical biolological samples which are frequently irradiated in the facility. The computational models are based on using the MCNPX code. The horizontal and vertical dose distributions has been calculated inside the irradiation chamber and compared the calculated results with measured data obtained with radiation dosimeters to verify the computational models. The radiation dosimeters employed are a Famer's type ion chamber and MOSFET dosimeters. Radiation doses were calculated by computational models, which were delivered to cultured cell samples contained in test tubes and to a mouse fixed in a irradiation cage, and compared the calculated results with the measured data. The computation models are also tested to see if they can accurately simulate the case where a thick lead shield is placed between the source and detector. Three tally options of the MCNPX code, F4, F5 and F6, are alternately used to see which option produces optimum results. The computation models are also used to calculate gamma ray energy spectra of a BGO scintillator at

  12. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann, E-mail: hermann.fuchs@meduniwien.ac.at [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Alber, Markus [Department for Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Schreiner, Thomas [PEG MedAustron, Wiener Neustadt 2700 (Austria); Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria)

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  13. New formula for calculation of cobalt-60 percent depth dose

    International Nuclear Information System (INIS)

    Tahmasebi Birgani, M. J.; Ghorbani, M.

    2005-01-01

    On the basis of percent depth dose calculation, the application of - dosimetry in radiotherapy has an important role to play in reducing the chance of tumor recurrence. The aim of this study is to introduce a new formula for calculating the central axis percent depth doses of Cobalt-60 beam. Materials and Methods: In the present study, based on the British Journal of Radiology table, nine new formulas are developed and evaluated for depths of 0.5 - 30 cm and fields of (4*4) - (45*45) cm 2 . To evaluate the agreement between the formulas and the table, the average of the absolute differences between the values was used and the formula with the least average was selected as the best fitted formula. The Microsoft Excel 2000 and the Data fit 8.0 soft wares were used to perform the calculations. Results: The results of this study indicated that one amongst the nine formulas gave a better agreement with the percent depth doses listed in the table of British Journal of Radiology . The new formula has two parts in terms of log (A/P). The first part as a linear function with the depth in the range of 0.5 to 5 cm and the other one as a second order polynomial with the depth in the range of 6 to 30 cm. The average of - the differences between the tabulated and the calculated data using the formula (Δ) is equal to 0.3 152. Discussion and Conclusion: Therefore, the calculated percent depth dose data based on this formula has a better agreement with the published data for Cobalt-60 source. This formula could be used to calculate the percent depth dose for the depths and the field sizes not listed in the British Journal of Radiology table

  14. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    International Nuclear Information System (INIS)

    Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G

    2008-01-01

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity

  15. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)

    2008-04-21

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.

  16. Calculation of age-dependent effective doses for external exposure using the MCNP code

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2013-01-01

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  17. Calculation of age-dependent effective doses for external exposure using the MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Tran Van [Research and Development Center for Radiation Technology, ThuDuc, HoChiMinh City (VT)

    2013-07-15

    Age-dependent effective dose for external exposure to photons uniformly distributed in air were calculated. Firstly, organ doses were calculated with a series of age-specific MIRD-5 type phantoms using the Monte Carlo code MCNP. The calculations were performed for mono-energetic photon sources with source energies from 10 keV to 5 MeV and for phantoms of newborn, 1, 5, 10, and 15 years-old and adult. Then, the effective doses to the different age-phantoms from the mono-energetic photon sources were estimated based on the obtained organ doses. From the calculated results, it is shown that the effective doses depend on the body size; the effective doses in younger phantoms are higher than those in the older phantoms, especially below 100 keV. (orig.)

  18. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  19. Does Vertebroplasty Affect Radiation Dose Distribution?: Comparison of Spatial Dose Distributions in a Cement-Injected Vertebra as Calculated by Treatment Planning System and Actual Spatial Dose Distribution

    International Nuclear Information System (INIS)

    Komemushi, A.; Tanigawa, N.; Kariya, Sh.; Yagi, R.; Nakatani, M.; Suzuki, S.; Sano, A.; Ikeda, K.; Utsunomiya, K.; Harima, Y.; Sawada, S.

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution

  20. Parallel processing of dose calculation for external photon beam therapy

    International Nuclear Information System (INIS)

    Kunieda, Etsuo; Ando, Yutaka; Tsukamoto, Nobuhiro; Ito, Hisao; Kubo, Atsushi

    1994-01-01

    We implemented external photon beam dose calculation programs into a parallel processor system consisting of Transputers, 32-bit processors especially suitable for multi-processor configuration. Two network conformations, binary-tree and pipeline, were evaluated for rectangular and irregular field dose calculation algorithms. Although computation speed increased in proportion to the number of CPU, substantial overhead caused by inter-processor communication occurred when a smaller computation load was delivered to each processor. On the other hand, for irregular field calculation, which requires more computation capability for each calculation point, the communication overhead was still less even when more than 50 processors were involved. Real-time responses could be expected for more complex algorithms by increasing the number of processors. (author)

  1. Is it worth to calculate the dose of radioiodine?

    International Nuclear Information System (INIS)

    Mikalauskas, V.; Kuprionis, G.; Vajauskas, D.

    2005-01-01

    Full text: Administration of empirical doses of radioiodine (RAI) has been preferred to calculated doses in many hospitals, because the need to measure the size and the iodine uptake in the thyroid involves considerable inconvenience to the patient and additional costs. The preparation of RAI of varying activities also means extra work. Today there is no general consensus on whether radioiodine should be given as a fixed dose or should be calculated. There is also no consensus regarding the question of which radiation burden should be administered to a given volume of thyroid if the activity is calculated. However, while it is possible to deliver a relatively precise dose of radiation to the thyroid gland, maybe it is worth doing this?The aim of this study was to investigate the results of different uptake and volume dependent target doses on clinical outcome of patients with hyperthyroidism in Graves' disease, multi-nodular toxic goiter or toxic adenoma after radioiodine therapy. We reviewed the records of 428 patients (389 women and 39 men, mean age 56.8±12.9 years) who had received radioiodine treatment for Graves' disease and multinodular toxic goiter (n=312) or toxic adenoma (n=116) during the period of 2000-2004 in Kaunas Medical University Hospital. Most patients were given antithyroid drug therapy in order to achieve euthyroidism before treatment with RAI. Radioiodine uptake test with repeated measurements at 2, 6, 24, 48 and/or 72 and/or 96 hr to define the effective half-life was performed. In addition, all the patients underwent thyroid ultrasonography and scintigraphy to define the volume of the thyroid. The 131I activities were calculated according to the formula of Marinelli. In addition to the normal calculation individual target doses were adjusted to the thyroid volumes of each patient before therapy. For statistical evaluation, the patients were divided into four groups: group I included those with a thyroid volume 51 ml. Statistical analysis was

  2. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-31

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.

  3. Enamel dose calculation by electron paramagnetic resonance spectral simulation technique

    International Nuclear Information System (INIS)

    Dong Guofu; Cong Jianbo; Guo Linchao; Ning Jing; Xian Hong; Wang Changzhen; Wu Ke

    2011-01-01

    Objective: To optimize the enamel electron paramagnetic resonance (EPR) spectral processing by using the EPR spectral simulation method to improve the accuracy of enamel EPR dosimetry and reduce artificial error. Methods: The multi-component superimposed EPR powder spectral simulation software was developed to simulate EPR spectrum models of the background signal (BS) and the radiation- induced signal (RS) of irradiated enamel respectively. RS was extracted from the multi-component superimposed spectrum of irradiated enamel and its amplitude was calculated. The dose-response curve was then established for calculating the doses of a group of enamel samples. The result of estimated dose was compared with that calculated by traditional method. Results: BS was simulated as a powder spectrum of gaussian line shape with the following spectrum parameters: g=2.00 35 and Hpp=0.65-1.1 mT, RS signal was also simulated as a powder spectrum but with axi-symmetric spectrum characteristics. The spectrum parameters of RS were: g ⊥ =2.0018, g ‖ =1.9965, Hpp=0.335-0.4 mT. The amplitude of RS had a linear response to radiation dose with the regression equation as y=240.74x + 76 724 (R 2 =0.9947). The expectation of relative error of dose estimation was 0.13. Conclusions: EPR simulation method has improved somehow the accuracy and reliability of enamel EPR dose estimation. (authors)

  4. Calculation of radiation dose received in computed tomography examinations

    International Nuclear Information System (INIS)

    Abed Elseed, Eslam Mustafa

    2014-07-01

    Diagnostic computed tomography (CT) examinations play an important role in the health care of the population. These examination may involve significant irradiation of the patient and probably represent the largest man-made source of radiation exposure for the population. This study was performed to assess the effective dose (ED) received in brain CT examination ( base of skull and cerebrum) and to analyze effective dose distributions among radiological departments under study. The study was performed at Elnileen Medical Center, coverage one CT unit and a sample of 51 patients (25 cerebrum sample and 26 base of skull sample). The following parameters were recorded age, weight, height body mass index (BMI) derived from weight (kg) and height ( m) and exposure factor and CTDI voi , DLP value. The effective dose was measured for brain CT examination. The ED values were calculated from the obtained DLP values using AAPM report No 96 calculation methods. The results of ED values calculated showed that patient exposure were within the normal range of exposure. The mean ED values calculated were 0.35±0.15 for base of skull of brain CT examinations and 0.70±0.32 for cerebrum of brain CT examination, respectively. Further studies are recommended with more number of pa.(Author)

  5. DANCOFF-MC: A program to calculate Dancoff factors in CANDU type fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S; Valko, J

    1992-12-01

    The objective of DANCOFF-MC is the evaluation of Dancoff factors for cylindrical fuel rods arranged parallel in various and complicated bundle geometries. No interaction with fuel rods in any of the other bundles are considered due to the large distance, in mean free paths, between the buldes. Using a common basic algorithm three versions of the program have been written so far: The DANCOFF-MC-2, the DANCOFF-MC-19 and the DANCOFF-MC-27. (orig./HP).

  6. Independent dose calculation of the Tps Iplan in radiotherapy conformed with MLC

    International Nuclear Information System (INIS)

    Adrada, A.; Tello, Z.; Medina, L.; Garrigo, E.; Venencia, D.

    2014-08-01

    The systems utilization of independent dose calculation in three dimensional-Conformal Radiation Therapy (3D-Crt) treatments allows a direct verification of the treatments times. The utilization of these systems allows diminishing the probability of errors occurrence generated by the treatment planning system (Tps), allowing a detailed analysis of the dose to delivering and review of the normalization point (Np) or prescription. The independent dose calculation is realized across the knowledge of dosimetric parameters of the treatment machine and particular characteristics of every individual field. The aim of this work is develops a calculation system of punctual doses for isocentric fields conformed with multi-leaf collimation systems (MLC), where the dose calculation is in conformity with the suggested ones by ICRU Report No. 42, 1987. Calculation software was realized in C ++ under a free platform of programming (Code::Blocks). The system uses files in format Rtp, exported from the Tps to systems of record and verification (Lantis). This file contains detailed information of the dose, Um, position of the MLC sheets and collimators for every field of treatment. The size of equivalent field is obtained from the positions of every sheet; the effective depth of calculation can be introduced from the dosimetric report of the Tps or automatically from the DFS of the field. The 3D coordinates of the isocenter and the Np for the treatment plan must be introduced manually. From this information the system looks the dosimetric parameters and calculates the Um. The calculations were realized in two accelerators a NOVALIS Tx (Varian) with 120 sheets of high definition (hd-MLC) and a PRIMUS Optifocus (Siemens) with 82 sheets. 705 patients were analyzed for a total of 1082, in plans made for both equipment s, the average uncertainty with regard to the calculation of the Tps is-0.43% ± 2.42% in a range between [-7.90 %, 7.50 %]. The major uncertainty was in Np near of the

  7. Influence of metallic dental implants and metal artefacts on dose calculation accuracy.

    Science.gov (United States)

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-03-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.

  8. Influence of metallic dental implants and metal artefacts on dose calculation accuracy

    International Nuclear Information System (INIS)

    Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara

    2015-01-01

    Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic trademark EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques. (orig.) [de

  9. Manual method for dose calculation in gynecologic brachytherapy; Metodo manual para o calculo de doses em braquiterapia ginecologica

    Energy Technology Data Exchange (ETDEWEB)

    Vianello, Elizabeth A.; Almeida, Carlos E. de [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil); Biaggio, Maria F. de [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

    1998-09-01

    This paper describes a manual method for dose calculation in brachytherapy of gynecological tumors, which allows the calculation of the doses at any plane or point of clinical interest. This method uses basic principles of vectorial algebra and the simulating orthogonal films taken from the patient with the applicators and dummy sources in place. The results obtained with method were compared with the values calculated with the values calculated with the treatment planning system model Theraplan and the agreement was better than 5% in most cases. The critical points associated with the final accuracy of the proposed method is related to the quality of the image and the appropriate selection of the magnification factors. This method is strongly recommended to the radiation oncology centers where are no treatment planning systems available and the dose calculations are manually done. (author) 10 refs., 5 figs.

  10. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    International Nuclear Information System (INIS)

    Smith, F.

    2016-01-01

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 ''Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site''.

  11. Simulation of dose deposition in stereotactic synchrotron radiation therapy: a fast approach combining Monte Carlo and deterministic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Smekens, F; Freud, N; Letang, J M; Babot, D [CNDRI (Nondestructive Testing using Ionizing Radiations) Laboratory, INSA-Lyon, 69621 Villeurbanne Cedex (France); Adam, J-F; Elleaume, H; Esteve, F [INSERM U-836, Equipe 6 ' Rayonnement Synchrotron et Recherche Medicale' , Institut des Neurosciences de Grenoble (France); Ferrero, C; Bravin, A [European Synchrotron Radiation Facility, Grenoble (France)], E-mail: francois.smekens@insa-lyon.fr

    2009-08-07

    A hybrid approach, combining deterministic and Monte Carlo (MC) calculations, is proposed to compute the distribution of dose deposited during stereotactic synchrotron radiation therapy treatment. The proposed approach divides the computation into two parts: (i) the dose deposited by primary radiation (coming directly from the incident x-ray beam) is calculated in a deterministic way using ray casting techniques and energy-absorption coefficient tables and (ii) the dose deposited by secondary radiation (Rayleigh and Compton scattering, fluorescence) is computed using a hybrid algorithm combining MC and deterministic calculations. In the MC part, a small number of particle histories are simulated. Every time a scattering or fluorescence event takes place, a splitting mechanism is applied, so that multiple secondary photons are generated with a reduced weight. The secondary events are further processed in a deterministic way, using ray casting techniques. The whole simulation, carried out within the framework of the Monte Carlo code Geant4, is shown to converge towards the same results as the full MC simulation. The speed of convergence is found to depend notably on the splitting multiplicity, which can easily be optimized. To assess the performance of the proposed algorithm, we compare it to state-of-the-art MC simulations, accelerated by the track length estimator technique (TLE), considering a clinically realistic test case. It is found that the hybrid approach is significantly faster than the MC/TLE method. The gain in speed in a test case was about 25 for a constant precision. Therefore, this method appears to be suitable for treatment planning applications.

  12. Oblique incidence of electron beams - comparisons between calculated and measured dose distributions

    International Nuclear Information System (INIS)

    Karcher, J.; Paulsen, F.; Christ, G.

    2005-01-01

    Clinical applications of high-energy electron beams, for example for the irradiation of internal mammary lymph nodes, can lead to oblique incidence of the beams. It is well known that oblique incidence of electron beams can alter the depth dose distribution as well as the specific dose per monitor unit. The dose per monitor unit is the absorbed dose in a point of interest of a beam, which is reached with a specific dose monitor value (DIN 6814-8[5]). Dose distribution and dose per monitor unit at oblique incidence were measured with a small-volume thimble chamber in a water phantom, and compared to both normal incidence and calculations of the Helax TMS 6.1 treatment planning system. At 4 MeV and 60 degrees, the maximum measured dose per monitor unit at oblique incidence was decreased up to 11%, whereas at 18MeV and 60 degrees this was increased up to 15% compared to normal incidence. Comparisons of measured and calculated dose distributions showed that the predicted dose at shallow depths is usually higher than the measured one, whereas it is smaller at depths beyond the depth of maximum dose. On the basis of the results of these comparisons, normalization depths and correction factors for the dose monitor value were suggested to correct the calculations of the dose per monitor unit. (orig.)

  13. Comparison of CT number calibration techniques for CBCT-based dose calculation

    International Nuclear Information System (INIS)

    Dunlop, Alex; McQuaid, Dualta; Nill, Simeon; Hansen, Vibeke N.; Oelfke, Uwe; Murray, Julia; Bhide, Shreerang; Harrington, Kevin; Poludniowski, Gavin; Nutting, Christopher; Newbold, Kate

    2015-01-01

    The aim of this work was to compare and validate various computed tomography (CT) number calibration techniques with respect to cone beam CT (CBCT) dose calculation accuracy. CBCT dose calculation accuracy was assessed for pelvic, lung, and head and neck (H and N) treatment sites for two approaches: (1) physics-based scatter correction methods (CBCT r ); (2) density override approaches including assigning water density to the entire CBCT (W), assignment of either water or bone density (WB), and assignment of either water or lung density (WL). Methods for CBCT density assignment within a commercially available treatment planning system (RS auto ), where CBCT voxels are binned into six density levels, were assessed and validated. Dose-difference maps and dose-volume statistics were used to compare the CBCT dose distributions with the ground truth of a planning CT acquired the same day as the CBCT. For pelvic cases, all CTN calibration methods resulted in average dose-volume deviations below 1.5 %. RS auto provided larger than average errors for pelvic treatments for patients with large amounts of adipose tissue. For H and N cases, all CTN calibration methods resulted in average dose-volume differences below 1.0 % with CBCT r (0.5 %) and RS auto (0.6 %) performing best. For lung cases, WL and RS auto methods generated dose distributions most similar to the ground truth. The RS auto density override approach is an attractive option for CTN adjustments for a variety of anatomical sites. RS auto methods were validated, resulting in dose calculations that were consistent with those calculated on diagnostic-quality CT images, for CBCT images acquired of the lung, for patients receiving pelvic RT in cases without excess adipose tissue, and for H and N cases. (orig.) [de

  14. Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields

    International Nuclear Information System (INIS)

    Hsu, Shu-Hui; Moran, Jean M.; Chen Yu; Kulasekere, Ravi; Roberson, Peter L.

    2010-01-01

    Purpose: Dose accuracy in the buildup region for radiotherapy treatment planning suffers from challenges in both measurement and calculation. This study investigates the dosimetry in the buildup region at normal and oblique incidences for open and IMRT fields and assesses the quality of the treatment planning calculations. Methods: This study was divided into three parts. First, percent depth doses and profiles (for 5x5, 10x10, 20x20, and 30x30 cm 2 field sizes at 0 deg., 45 deg., and 70 deg. incidences) were measured in the buildup region in Solid Water using an Attix parallel plate chamber and Kodak XV film, respectively. Second, the parameters in the empirical contamination (EC) term of the convolution/superposition (CVSP) calculation algorithm were fitted based on open field measurements. Finally, seven segmental head-and-neck IMRT fields were measured on a flat phantom geometry and compared to calculations using γ and dose-gradient compensation (C) indices to evaluate the impact of residual discrepancies and to assess the adequacy of the contamination term for IMRT fields. Results: Local deviations between measurements and calculations for open fields were within 1% and 4% in the buildup region for normal and oblique incidences, respectively. The C index with 5%/1 mm criteria for IMRT fields ranged from 89% to 99% and from 96% to 98% at 2 mm and 10 cm depths, respectively. The quality of agreement in the buildup region for open and IMRT fields is comparable to that in nonbuildup regions. Conclusions: The added EC term in CVSP was determined to be adequate for both open and IMRT fields. Due to the dependence of calculation accuracy on (1) EC modeling, (2) internal convolution and density grid sizes, (3) implementation details in the algorithm, and (4) the accuracy of measurements used for treatment planning system commissioning, the authors recommend an evaluation of the accuracy of near-surface dose calculations as a part of treatment planning commissioning.

  15. Calculations of dose distributions using a neural network model

    International Nuclear Information System (INIS)

    Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J

    2005-01-01

    The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map

  16. SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, E; Kim, S; Lee, C [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD (United States); Lee, C [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Pelletier, C; Jung, J [Department of Physics, East Carolina University Greenville, NC (United States); Jones, E [Radiology and Imaging Sciences Clinical Center, National Institutes of Health, Bethesda, MD (United States)

    2016-06-15

    Purpose: Epidemiological studies of second cancer risks in breast cancer radiotherapy patients often use generic patient anatomy to reconstruct normal tissue doses when CT images of patients are not available. To evaluate the uncertainty involved in the dosimetry approach, we evaluated the esophagus dose in five sample patients by simulating breast cancer treatments. Methods: We obtained the diagnostic CT images of five anonymized adult female patients in different Body Mass Index (BMI) categories (16– 36kg/m2) from National Institutes of Health Clinical Center. We contoured the esophagus on the CT images and imported them into a Treatment Planning System (TPS) to create treatment plans and calculate esophagus doses. Esophagus dose was calculated once again via experimentally-validated Monte Carlo (MC) transport code, XVMC under the same geometries. We compared the esophagus doses from TPS and the MC method. We also investigated the degree of variation in the esophagus dose across the five patients and also the relationship between the patient characteristics and the esophagus doses. Results: Eclipse TPS using Analytical Anisotropic Algorithm (AAA) significantly underestimates the esophagus dose in breast cancer radiotherapy compared to MC. In the worst case, the esophagus dose from AAA was only 40% of the MC dose. The Coefficient of Variation across the patients was 48%. We found that the maximum esophagus dose was up to 2.7 times greater than the minimum. We finally observed linear relationship (Dose = 0.0218 × BMI – 0.1, R2=0.54) between patient’s BMI and the esophagus doses. Conclusion: We quantified the degree of uncertainty in the esophagus dose in five sample breast radiotherapy patients. The results of the study underscore the importance of individualized dose reconstruction for the study cohort to avoid misclassification in the risk analysis of second cancer. We are currently extending the number of patients up to 30.

  17. SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients

    International Nuclear Information System (INIS)

    Mosher, E; Kim, S; Lee, C; Lee, C; Pelletier, C; Jung, J; Jones, E

    2016-01-01

    Purpose: Epidemiological studies of second cancer risks in breast cancer radiotherapy patients often use generic patient anatomy to reconstruct normal tissue doses when CT images of patients are not available. To evaluate the uncertainty involved in the dosimetry approach, we evaluated the esophagus dose in five sample patients by simulating breast cancer treatments. Methods: We obtained the diagnostic CT images of five anonymized adult female patients in different Body Mass Index (BMI) categories (16– 36kg/m2) from National Institutes of Health Clinical Center. We contoured the esophagus on the CT images and imported them into a Treatment Planning System (TPS) to create treatment plans and calculate esophagus doses. Esophagus dose was calculated once again via experimentally-validated Monte Carlo (MC) transport code, XVMC under the same geometries. We compared the esophagus doses from TPS and the MC method. We also investigated the degree of variation in the esophagus dose across the five patients and also the relationship between the patient characteristics and the esophagus doses. Results: Eclipse TPS using Analytical Anisotropic Algorithm (AAA) significantly underestimates the esophagus dose in breast cancer radiotherapy compared to MC. In the worst case, the esophagus dose from AAA was only 40% of the MC dose. The Coefficient of Variation across the patients was 48%. We found that the maximum esophagus dose was up to 2.7 times greater than the minimum. We finally observed linear relationship (Dose = 0.0218 × BMI – 0.1, R2=0.54) between patient’s BMI and the esophagus doses. Conclusion: We quantified the degree of uncertainty in the esophagus dose in five sample breast radiotherapy patients. The results of the study underscore the importance of individualized dose reconstruction for the study cohort to avoid misclassification in the risk analysis of second cancer. We are currently extending the number of patients up to 30.

  18. The interpretation of animal data in the calculation of doses from new radiolabeled compounds

    International Nuclear Information System (INIS)

    Naylor, G.P.L.; Ellender, M.; Harrison, J.D.

    1992-01-01

    At NRPB, dose calculations are performed for pharmaceutical companies wishing to obtain approval for human volunteer experiments. Animal data from one or more species are used to estimate the radiation doses to humans that would result from the administration of novel radiolabeled compounds. The calculations themselves are straightforward, but the animal data can be interpreted in different ways, leading to variations in the calculated dose. Doses to the gut compartments usually dominate the committed effective dose equivalent, but retention in other tissues may be important for some compounds. Long-term retention components in tissues can affect doses considerably, and the binding of many radiopharmaceuticals to melanin means that doses to the eye are particularly important. The effect of these considerations on calculating doses are considered, as well as the effect of changes in risk estimates and tissue weighting factors

  19. Calculation of the radial dose distribution around the trajectory of an ion

    International Nuclear Information System (INIS)

    Pretzsch, G.

    1979-01-01

    The dose caused in polyester by incoming protons, alpha beams, 127 I ions, and 16 O ions has been calculated as a function of the distance perpendicularly to their trajectory. Based on simplified assumptions regarding the binding state of target electrons, emission of secondary electrons and their propagation in matter, it has been found that the dose depends on the distance to the ion trajectory (R) in the form Rsup(-l), l being about 2. The calculated radial dose distributions agree well with values calculated or measured by other authors

  20. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  1. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  2. HADOC: a computer code for calculation of external and inhalation doses from acute radionuclide releases

    International Nuclear Information System (INIS)

    Strenge, D.L.; Peloquin, R.A.

    1981-04-01

    The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure mode are also printed if requested

  3. Emergency Doses (ED) - Revision 3: A calculator code for environmental dose computations

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1990-12-01

    The calculator program ED (Emergency Doses) was developed from several HP-41CV calculator programs documented in the report Seven Health Physics Calculator Programs for the HP-41CV, RHO-HS-ST-5P (Rittman 1984). The program was developed to enable estimates of offsite impacts more rapidly and reliably than was possible with the software available for emergency response at that time. The ED - Revision 3, documented in this report, revises the inhalation dose model to match that of ICRP 30, and adds the simple estimates for air concentration downwind from a chemical release. In addition, the method for calculating the Pasquill dispersion parameters was revised to match the GENII code within the limitations of a hand-held calculator (e.g., plume rise and building wake effects are not included). The summary report generator for printed output, which had been present in the code from the original version, was eliminated in Revision 3 to make room for the dispersion model, the chemical release portion, and the methods of looping back to an input menu until there is no further no change. This program runs on the Hewlett-Packard programmable calculators known as the HP-41CV and the HP-41CX. The documentation for ED - Revision 3 includes a guide for users, sample problems, detailed verification tests and results, model descriptions, code description (with program listing), and independent peer review. This software is intended to be used by individuals with some training in the use of air transport models. There are some user inputs that require intelligent application of the model to the actual conditions of the accident. The results calculated using ED - Revision 3 are only correct to the extent allowed by the mathematical models. 9 refs., 36 tabs

  4. Study of dose calculation and beam parameters optimization with genetic algorithm in IMRT

    International Nuclear Information System (INIS)

    Chen Chaomin; Tang Mutao; Zhou Linghong; Lv Qingwen; Wang Zhuoyu; Chen Guangjie

    2006-01-01

    Objective: To study the construction of dose calculation model and the method of automatic beam parameters selection in IMRT. Methods: The three-dimension convolution dose calculation model of photon was constructed with the methods of Fast Fourier Transform. The objective function based on dose constrain was used to evaluate the fitness of individuals. The beam weights were optimized with genetic algorithm. Results: After 100 iterative analyses, the treatment planning system produced highly conformal and homogeneous dose distributions. Conclusion: the throe-dimension convolution dose calculation model of photon gave more accurate results than the conventional models; genetic algorithm is valid and efficient in IMRT beam parameters optimization. (authors)

  5. Influence of boundary effects on electron beam dose distribution formation in multilayer targets

    International Nuclear Information System (INIS)

    Kaluska, I.; Zimek, Z.; Lazurik, V.T.; Lazurik, V.M.; Popov, G.F.; Rogov, Y.V.

    2010-01-01

    Computational dosimetry play a significant role in an industrial radiation processing at dose measurements in the product irradiated with electron beams (EB), X-ray and gamma ray from radionuclide sources. Accurate and validated programs for absorbed dose calculations are required for computational dosimetry. The program ModeStEB (modelling of EB processing in a three-dimensional (3D) multilayer flat targets) was designed specially for simulation and optimization of industrial radiation processing, calculation of the 3D absorbed dose distribution within multilayer packages. The package is irradiated with scanned EB on an industrial radiation facility that is based on the pulsed or continuous type of electron accelerators in the electron energy range from 0.1 to 25 MeV. Simulation of EB dose distributions in the multilayer targets was accomplished using the Monte Carlo (MC) method. Experimental verification of MC simulation prediction for EB dose distribution formation in a stack of plates interleaved with polyvinylchloride (PVC) dosimetric films (DF), within a packing box, and irradiated with a scanned 10 MeV EB on a moving conveyer is discussed. (authors)

  6. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Schlegel, Wolfgang [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Oelfke, Uwe [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  7. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    International Nuclear Information System (INIS)

    Klüter, Sebastian; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-01-01

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  8. Calculate the maximum expected dose for technical radio physicists a cobalt machine

    International Nuclear Information System (INIS)

    Avila Avila, Rafael; Perez Velasquez, Reytel; Gonzalez Lapez, Nadia

    2009-01-01

    Considering the daily operations carried out by technicians Radiophysics Medical Service Department of Radiation Oncology Hospital V. General Teaching I. Lenin in the city of Holguin, during a working week (Between Monday and Friday) as an important element in calculating the maximum expected dose (MDE). From the exponential decay law which is subject the source activity, we propose corrections to the cumulative doses in the weekly period, leading to obtaining a formula which takes into a cumulative dose during working days and sees no dose accumulation of rest days (Saturday and Sunday). The estimate factor correction is made from a power series expansion convergent is truncated at the n-th term coincides with the week period for which you want to calculate the dose. As initial condition is adopted ambient dose equivalent rate as a given, which allows estimate MDE in the moments after or before this. Calculations were proposed use of an Excel spreadsheet that allows simple and accessible processing the formula obtained. (author)

  9. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Karsten [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: k.pfeiffer at dkfz.de; Bendl, Rolf [Medizinische Physik, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg (Germany). E-mail: r.bendl at dkfz.de

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach. (author)

  10. A formalism for independent checking of Gamma Knife dose calculations

    International Nuclear Information System (INIS)

    Tsai Jensan; Engler, Mark J.; Rivard, Mark J.; Mahajan, Anita; Borden, Jonathan A.; Zheng Zhen

    2001-01-01

    For stereotactic radiosurgery using the Leksell Gamma Knife system, it is important to perform a pre-treatment verification of the maximum dose calculated with the Leksell GammaPlan[reg] (D LGP ) stereotactic radiosurgery system. This verification can be incorporated as part of a routine quality assurance (QA) procedure to minimize the chance of a hazardous overdose. To implement this procedure, a formalism has been developed to calculate the dose D CAL (X,Y,Z,d av ,t) using the following parameters: average target depth (d av ), coordinates (X,Y,Z) of the maximum dose location or any other dose point(s) to be verified, 3-dimensional (3-dim) beam profiles or off-center-ratios (OCR) of the four helmets, helmet size i, output factor O i , plug factor P i , each shot j coordinates (x,y,z) i,j , and shot treatment time (t i,j ). The average depth of the target d av was obtained either from MRI/CT images or ruler measurements of the Gamma Knife Bubble Head Frame. D CAL and D LGP were then compared to evaluate the accuracy of this independent calculation. The proposed calculation for an independent check of D LGP has been demonstrated to be accurate and reliable, and thus serves as a QA tool for Gamma Knife stereotactic radiosurgery

  11. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    PURPOSE: Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  12. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    Science.gov (United States)

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems

    Science.gov (United States)

    Panettieri, Vanessa; Wennberg, Berit; Gagliardi, Giovanna; Amor Duch, Maria; Ginjaume, Mercè; Lax, Ingmar

    2007-07-01

    The purpose of this work was to simulate with the Monte Carlo (MC) code PENELOPE the dose distribution in lung tumours including breathing motion in stereotactic body radiation therapy (SBRT). Two phantoms were modelled to simulate a pentagonal cross section with chestwall (unit density), lung (density 0.3 g cm-3) and two spherical tumours (unit density) of diameters respectively of 2 cm and 5 cm. The phase-space files (PSF) of four different SBRT field sizes of 6 MV from a Varian accelerator were calculated and used as beam sources to obtain both dose profiles and dose-volume histograms (DVHs) in different volumes of interest. Dose distributions were simulated for five beams impinging on the phantom. The simulations were conducted both for the static case and including the influence of respiratory motion. To reproduce the effect of breathing motion different simulations were performed keeping the beam fixed and displacing the phantom geometry in chosen positions in the cranial and caudal and left-right directions. The final result was obtained by combining the different position with two motion patterns. The MC results were compared with those obtained with three commercial treatment planning systems (TPSs), two based on the pencil beam (PB) algorithm, the TMS-HELAX (Nucletron, Sweden) and Eclipse (Varian Medical System, Palo Alto, CA), and one based on the collapsed cone algorithm (CC), Pinnacle3 (Philips). Some calculations were also carried out with the analytical anisotropic algorithm (AAA) in the Eclipse system. All calculations with the TPSs were performed without simulated breathing motion, according to clinical practice. In order to compare all the TPSs and MC an absolute dose calibration in Gy/MU was performed. The analysis shows that the dose (Gy/MU) in the central part of the gross tumour volume (GTV) is calculated for both tumour sizes with an accuracy of 2-3% with PB and CC algorithms, compared to MC. At the periphery of the GTV the TPSs overestimate

  14. Calculation of committed dose equivalent from intake of tritiated water

    International Nuclear Information System (INIS)

    Law, D.V.

    1978-08-01

    A new computerized method of calculating the committed dose equivalent from the intake of tritiated water at Harwell is described in this report. The computer program has been designed to deal with a variety of intake patterns and urine sampling schemes, as well as to produce committed dose equivalents corresponding to any periods for which individual monitoring for external radiation is undertaken. Details of retrospective doses are added semi-automatically to the Radiation Dose Records and committed dose equivalents are retained on a separate file. (author)

  15. Concepts for dose determination in flat-detector CT

    International Nuclear Information System (INIS)

    Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A

    2008-01-01

    Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDI L=100mm , where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm x 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDI L determination with respect to the desired CTDI ∞ . Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of ≥600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of ≥600 mm appeared to be necessary to approximate CTDI ∞ in within 1%. MC

  16. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy

    International Nuclear Information System (INIS)

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn

    2008-01-01

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical Systems Inc

  17. Current evaluation of dose rate calculation - analytical method

    International Nuclear Information System (INIS)

    Tello, Marcos; Vilhena, Marco Tulio

    1996-01-01

    The accuracy of the dose calculations based on pencil beam formulas such as Fokker-Plank equations and Fermi equations for charged particle transport are studied and a methodology to solve the Boltzmann transport equation is suggested

  18. Dose calculations for irregular fields using three-dimensional first-scatter integration

    International Nuclear Information System (INIS)

    Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.

    1986-01-01

    This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)

  19. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Panettieri, Vanessa; Barsoum, Pierre; Westermark, Mathias; Brualla, Lorenzo; Lax, Ingmar

    2009-01-01

    Background and purpose: In tangential beam treatments accurate dose calculation of the absorbed dose in the build-up region is of major importance, in particular when the target has superficial extension close to the skin. In most analytical treatment planning systems (TPSs) calculations depend on the experimental measurements introduced by the user in which accuracy might be limited by the type of detector employed to perform them. To quantify the discrepancy between analytically calculated and delivered dose in the build-up region, near the skin of a patient, independent Monte Carlo (MC) simulations using the PENELOPE code were performed. Dose distributions obtained with MC simulations were compared with those given by the Pencil Beam Convolution (PBC) algorithm and the Analytical Anisotropic Algorithm (AAA) implemented in the commercial TPS Eclipse. Material and methods: A cylindrical phantom was used to approximate the breast contour of a patient for MC simulations and the TPS. Calculations of the absorbed doses were performed for 6 and 18 MV beams for four different angles of incidence: 15 deg., 30 deg., 45 deg. and 75 deg. and different field sizes: 3 x 3 cm 2 , 10 x 10 cm 2 and 40 x 40 cm 2 . Absorbed doses along the phantom central axis were obtained with both the PBC algorithm and the AAA and compared to those estimated by the MC simulations. Additionally, a breast patient case was calculated with two opposed 6 MV photon beams using all the aforementioned analytical and stochastic algorithms. Results: For the 6 MV photon beam in the phantom case, both the PBC algorithm and the AAA tend to underestimate the absorbed dose in the build-up region in comparison to MC results. These differences are clinically irrelevant and are included in a 1 mm range. This tendency is also confirmed in the breast patient case. For the 18 MV beam the PBC algorithm underestimates the absorbed dose with respect to the AAA. In comparison to MC simulations the PBC algorithm tends

  20. Fast optimization and dose calculation in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-01-01

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min

  1. Comprehensive evaluations of cone-beam CT dose in image-guided radiation therapy via GPU-based Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Graves, Yan Jiang; Cervino, Laura [Center for Advanced Radiotherapy Technologies, University of California San Diego, La Jolla, CA 92037-0843 (United States); Yan, Hao; Jiang, Steve B; Jia, Xun [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9315 (United States); Rice, Roger [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92037-0843 (United States)

    2014-03-07

    Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1–3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case. (paper)

  2. Impact of dose engine algorithm in pencil beam scanning proton therapy for breast cancer.

    Science.gov (United States)

    Tommasino, Francesco; Fellin, Francesco; Lorentini, Stefano; Farace, Paolo

    2018-06-01

    Proton therapy for the treatment of breast cancer is acquiring increasing interest, due to the potential reduction of radiation-induced side effects such as cardiac and pulmonary toxicity. While several in silico studies demonstrated the gain in plan quality offered by pencil beam scanning (PBS) compared to passive scattering techniques, the related dosimetric uncertainties have been poorly investigated so far. Five breast cancer patients were planned with Raystation 6 analytical pencil beam (APB) and Monte Carlo (MC) dose calculation algorithms. Plans were optimized with APB and then MC was used to recalculate dose distribution. Movable snout and beam splitting techniques (i.e. using two sub-fields for the same beam entrance, one with and the other without the use of a range shifter) were considered. PTV dose statistics were recorded. The same planning configurations were adopted for the experimental benchmark. Dose distributions were measured with a 2D array of ionization chambers and compared to APB and MC calculated ones by means of a γ analysis (agreement criteria 3%, 3 mm). Our results indicate that, when using proton PBS for breast cancer treatment, the Raystation 6 APB algorithm does not allow obtaining sufficient accuracy, especially with large air gaps. On the contrary, the MC algorithm resulted into much higher accuracy in all beam configurations tested and has to be recommended. Centers where a MC algorithm is not yet available should consider a careful use of APB, possibly combined with a movable snout system or in any case with strategies aimed at minimizing air gaps. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  4. Beta and gamma dose calculations for PWR and BWR containments

    International Nuclear Information System (INIS)

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 x 10 8 rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 x 10 8 rad equipment qualification test region. 8 refs., 23 figs., 12 tabs

  5. A comparison of the calculation methods of the maze shielding dose

    International Nuclear Information System (INIS)

    Li Wenqian; Li Junli; Li Pengyu; Tao Yinghua

    2009-01-01

    This paper gives a theoretical calculating method for the dose rate of the maze of the low-energy accelerators or high-energy accelerators, based on the NCRP report Nos.49, 51 and 151. The multi-legged maze of the Miyun CT workshop of the NUCTECH Company Limited and the arc maze of the radiation laboratory of the Academy of Military Medical Sciences were calculated using this method. The calculating results were compared with the MCNP simulating results and the measured results. For the commonly estimation of the maze dose rate, as long as the parameters chosen properly, this method can give a conservative result, and save time from simulation. It's hoped that this work could offer a reference for the maze design and the dose estimation method in the aftertime. (authors)

  6. Dosimetric evaluation of photon dose calculation under jaw and MLC shielding

    International Nuclear Information System (INIS)

    Fogliata, A.; Clivio, A.; Vanetti, E.; Nicolini, G.; Belosi, M. F.; Cozzi, L.

    2013-01-01

    Purpose: The accuracy of photon dose calculation algorithms in out-of-field regions is often neglected, despite its importance for organs at risk and peripheral dose evaluation. The present work has assessed this for the anisotropic analytical algorithm (AAA) and the Acuros-XB algorithms implemented in the Eclipse treatment planning system. Specifically, the regions shielded by the jaw, or the MLC, or both MLC and jaw for flattened and unflattened beams have been studied.Methods: The accuracy in out-of-field dose under different conditions was studied for two different algorithms. Measured depth doses out of the field, for different field sizes and various distances from the beam edge were compared with the corresponding AAA and Acuros-XB calculations in water. Four volumetric modulated arc therapy plans (in the RapidArc form) were optimized in a water equivalent phantom, PTW Octavius, to obtain a region always shielded by the MLC (or MLC and jaw) during the delivery. Doses to different points located in the shielded region and in a target-like structure were measured with an ion chamber, and results were compared with the AAA and Acuros-XB calculations. Photon beams of 6 and 10 MV, flattened and unflattened were used for the tests.Results: Good agreement between calculated and measured depth doses was found using both algorithms for all points measured at depth greater than 3 cm. The mean dose differences (±1SD) were −8%± 16%, −3%± 15%, −16%± 18%, and −9%± 16% for measurements vs AAA calculations and −10%± 14%, −5%± 12%, −19%± 17%, and −13%± 14% for Acuros-XB, for 6X, 6 flattening-filter free (FFF), 10X, and 10FFF beams, respectively. The same figures for dose differences relative to the open beam central axis dose were: −0.1%± 0.3%, 0.0%± 0.4%, −0.3%± 0.3%, and −0.1%± 0.3% for AAA and −0.2%± 0.4%, −0.1%± 0.4%, −0.5%± 0.5%, and −0.3%± 0.4% for Acuros-XB. Buildup dose was overestimated with AAA, while Acuros-XB gave

  7. Improved algorithms and advanced features of the CAD to MC conversion tool McCad

    International Nuclear Information System (INIS)

    Lu, L.; Fischer, U.; Pereslavtsev, P.

    2014-01-01

    Highlights: •The latest improvements of the McCad conversion approach including decomposition and void filling algorithms is presented. •An advanced interface for the materials editing and assignment has been developed and added to the McCAD GUI. •These improvements have been tested and successfully applied to DEMO and ITER NBI (Neutral Beam Injector) applications. •The performance of the CAD model conversion process is shown to be significantly improved. -- Abstract: McCad is a geometry conversion tool developed at KIT to enable the automatic bi-directional conversions of CAD models into the Monte Carlo (MC) geometries utilized for neutronics calculations (CAD to MC) and, reversed (MC to CAD), for visualization purposes. The paper presents the latest improvements of the conversion algorithms including improved decomposition, void filling and an advanced interface for the materials editing and assignment. The new implementations and features were tested on fusion neutronics applications to the DEMO and ITER NBI (Neutral Beam Injector) models. The results demonstrate greater stability and enhanced efficiency of McCad conversion process

  8. A pencil beam dose calculation model for CyberKnife system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bin; Li, Yongbao; Liu, Bo; Zhou, Fugen [Image Processing Center, Beihang University, Beijing 100191 (China); Xu, Shouping [Department of Radiation Oncology, PLA General Hospital, Beijing 100853 (China); Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2016-10-15

    Purpose: CyberKnife system is initially equipped with fixed circular cones for stereotactic radiosurgery. Two dose calculation algorithms, Ray-Tracing and Monte Carlo, are available in the supplied treatment planning system. A multileaf collimator system was recently introduced in the latest generation of system, capable of arbitrarily shaped treatment field. The purpose of this study is to develop a model based dose calculation algorithm to better handle the lateral scatter in an irregularly shaped small field for the CyberKnife system. Methods: A pencil beam dose calculation algorithm widely used in linac based treatment planning system was modified. The kernel parameters and intensity profile were systematically determined by fitting to the commissioning data. The model was tuned using only a subset of measured data (4 out of 12 cones) and applied to all fixed circular cones for evaluation. The root mean square (RMS) of the difference between the measured and calculated tissue-phantom-ratios (TPRs) and off-center-ratio (OCR) was compared. Three cone size correction techniques were developed to better fit the OCRs at the penumbra region, which are further evaluated by the output factors (OFs). The pencil beam model was further validated against measurement data on the variable dodecagon-shaped Iris collimators and a half-beam blocked field. Comparison with Ray-Tracing and Monte Carlo methods was also performed on a lung SBRT case. Results: The RMS between the measured and calculated TPRs is 0.7% averaged for all cones, with the descending region at 0.5%. The RMSs of OCR at infield and outfield regions are both at 0.5%. The distance to agreement (DTA) at the OCR penumbra region is 0.2 mm. All three cone size correction models achieve the same improvement in OCR agreement, with the effective source shift model (SSM) preferred, due to their ability to predict more accurately the OF variations with the source to axis distance (SAD). In noncircular field validation

  9. The Mayak Worker Dosimetry System (MWDS-2013): implementation of the dose calculations

    International Nuclear Information System (INIS)

    Zhdanov, A.; Vostrotin, V.; Efimov, A.; Birchall, A.; Puncher, M.

    2017-01-01

    The calculation of internal doses for the Mayak Worker Dosimetry System (MWDS-2013) involved extensive computational resources due to the complexity and sheer number of calculations required. The required output consisted of a set of 1000 hyper-realizations: each hyper-realization consists of a set (1 for each worker) of probability distributions of organ doses. This report describes the hardware components and computational approaches required to make the calculation tractable. Together with the software, this system is referred to here as the 'PANDORA system'. It is based on a commercial SQL server database in a series of six work stations. A complete run of the entire Mayak worker cohort entailed a huge amount of calculations in PANDORA and due to the relatively slow speed of writing the data into the SQL server, each run took about 47 days. Quality control was monitored by comparing doses calculated in PANDORA with those in a specially modified version of the commercial software 'IMBA Professional Plus'. Suggestions are also made for increasing calculation and storage efficiency for future dosimetry calculations using PANDORA. (authors)

  10. Comparing different methods for estimating radiation dose to the conceptus

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rendon, X.; Dedulle, A. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); Walgraeve, M.S.; Woussen, S.; Zhang, G. [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Bosmans, H. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Zanca, F. [KU Leuven, Department of Imaging and Pathology, Division of Medical Physics and Quality Assessment, Herestraat 49, box 7003, Leuven (Belgium); GE Healthcare, Buc (France)

    2017-02-15

    To compare different methods available in the literature for estimating radiation dose to the conceptus (D{sub conceptus}) against a patient-specific Monte Carlo (MC) simulation and a commercial software package (CSP). Eight voxel models from abdominopelvic CT exams of pregnant patients were generated. D{sub conceptus} was calculated with an MC framework including patient-specific longitudinal tube current modulation (TCM). For the same patients, dose to the uterus, D{sub uterus}, was calculated as an alternative for D{sub conceptus}, with a CSP that uses a standard-size, non-pregnant phantom and a generic TCM curve. The percentage error between D{sub uterus} and D{sub conceptus} was studied. Dose to the conceptus and percent error with respect to D{sub conceptus} was also estimated for three methods in the literature. The percentage error ranged from -15.9% to 40.0% when comparing MC to CSP. When comparing the TCM profiles with the generic TCM profile from the CSP, differences were observed due to patient habitus and conceptus position. For the other methods, the percentage error ranged from -30.1% to 13.5% but applicability was limited. Estimating an accurate D{sub conceptus} requires a patient-specific approach that the CSP investigated cannot provide. Available methods in the literature can provide a better estimation if applicable to patient-specific cases. (orig.)

  11. Independent procedure of checking dose calculations using an independent calculus algorithm

    International Nuclear Information System (INIS)

    Perez Rozos, A.; Jerez Sainz, I.; Carrasco Rodriguez, J. L.

    2006-01-01

    In radiotherapy it is recommended the use of an independent procedure of checking dose calculations, in order to verify the main treatment planning system and double check every patient dosimetry. In this work we present and automatic spreadsheet that import data from planning system using IMPAC/RTP format and verify monitor unit calculation using an independent calculus algorithm. Additionally, it perform a personalized analysis of dose volume histograms and several radiobiological parameters like TCP and NTCP. Finally, the application automatically generate a clinical dosimetry report for every patient, including treatment fields, fractionation, independent check results, dose volume analysis, and first day forms. (Author)

  12. Dose variations with varying calculation grid size in head and neck IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Heeteak [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Fl 32611-8300 (United States); Jin, Hosang [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Fl 32611-8300 (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, Fl 32610-0385 (United States); Suh, Tae-Suk [Department of Biomedical Engineering, Catholic University of Korea (Korea, Republic of); Kim, Siyong [Department of Radiation Oncology, University of Florida, Gainesville, Fl 32610-0385 (United States)

    2006-10-07

    Ever since the advent and development of treatment planning systems, the uncertainty associated with calculation grid size has been an issue. Even to this day, with highly sophisticated 3D conformal and intensity-modulated radiation therapy (IMRT) treatment planning systems (TPS), dose uncertainty due to grid size is still a concern. A phantom simulating head and neck treatment was prepared from two semi-cylindrical solid water slabs and a radiochromic film was inserted between the two slabs for measurement. Plans were generated for a 5400 cGy prescribed dose using Philips Pinnacle{sup 3} TPS for two targets, one shallow ({approx}0.5 cm depth) and one deep ({approx}6 cm depth). Calculation grid sizes of 1.5, 2, 3 and 4 mm were considered. Three clinical cases were also evaluated. The dose differences for the varying grid sizes (2 mm, 3 mm and 4 mm from 1.5 mm) in the phantom study were 126 cGy (2.3% of the 5400 cGy dose prescription), 248.2 cGy (4.6% of the 5400 cGy dose prescription) and 301.8 cGy (5.6% of the 5400 cGy dose prescription), respectively for the shallow target case. It was found that the dose could be varied to about 100 cGy (1.9% of the 5400 cGy dose prescription), 148.9 cGy (2.8% of the 5400 cGy dose prescription) and 202.9 cGy (3.8% of the 5400 cGy dose prescription) for 2 mm, 3 mm and 4 mm grid sizes, respectively, simply by shifting the calculation grid origin. Dose difference with a different range of the relative dose gradient was evaluated and we found that the relative dose difference increased with an increase in the range of the relative dose gradient. When comparing varying calculation grid sizes and measurements, the variation of the dose difference histogram was insignificant, but a local effect was observed in the dose difference map. Similar results were observed in the case of the deep target and the three clinical cases also showed results comparable to those from the phantom study.

  13. Dose variations with varying calculation grid size in head and neck IMRT

    International Nuclear Information System (INIS)

    Chung, Heeteak; Jin, Hosang; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong

    2006-01-01

    Ever since the advent and development of treatment planning systems, the uncertainty associated with calculation grid size has been an issue. Even to this day, with highly sophisticated 3D conformal and intensity-modulated radiation therapy (IMRT) treatment planning systems (TPS), dose uncertainty due to grid size is still a concern. A phantom simulating head and neck treatment was prepared from two semi-cylindrical solid water slabs and a radiochromic film was inserted between the two slabs for measurement. Plans were generated for a 5400 cGy prescribed dose using Philips Pinnacle 3 TPS for two targets, one shallow (∼0.5 cm depth) and one deep (∼6 cm depth). Calculation grid sizes of 1.5, 2, 3 and 4 mm were considered. Three clinical cases were also evaluated. The dose differences for the varying grid sizes (2 mm, 3 mm and 4 mm from 1.5 mm) in the phantom study were 126 cGy (2.3% of the 5400 cGy dose prescription), 248.2 cGy (4.6% of the 5400 cGy dose prescription) and 301.8 cGy (5.6% of the 5400 cGy dose prescription), respectively for the shallow target case. It was found that the dose could be varied to about 100 cGy (1.9% of the 5400 cGy dose prescription), 148.9 cGy (2.8% of the 5400 cGy dose prescription) and 202.9 cGy (3.8% of the 5400 cGy dose prescription) for 2 mm, 3 mm and 4 mm grid sizes, respectively, simply by shifting the calculation grid origin. Dose difference with a different range of the relative dose gradient was evaluated and we found that the relative dose difference increased with an increase in the range of the relative dose gradient. When comparing varying calculation grid sizes and measurements, the variation of the dose difference histogram was insignificant, but a local effect was observed in the dose difference map. Similar results were observed in the case of the deep target and the three clinical cases also showed results comparable to those from the phantom study

  14. Modelling lateral beam quality variations in pencil kernel based photon dose calculations

    International Nuclear Information System (INIS)

    Nyholm, T; Olofsson, J; Ahnesjoe, A; Karlsson, M

    2006-01-01

    Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error

  15. Phase space determination from measured dose data for intraoperative electron radiation therapy.

    Science.gov (United States)

    Herranz, E; Herraiz, J L; Ibáñez, P; Pérez-Liva, M; Puebla, R; Cal-González, J; Guerra, P; Rodríguez, R; Illana, C; Udías, J M

    2015-01-07

    A procedure to characterize beams of a medical linear accelerator for their use in Monte Carlo (MC) dose calculations for intraoperative electron radiation therapy (IOERT) is presented. The procedure relies on dose measurements in homogeneous media as input, avoiding the need for detailed simulations of the accelerator head. An iterative algorithm (EM-ML) has been employed to extract the relevant details of the phase space (PHSP) of the particles coming from the accelerator, such as energy spectra, spatial distribution and angle of emission of particles. The algorithm can use pre-computed dose volumes in water and/or air, so that the machine-specific tuning with actual data can be performed in a few minutes. To test the procedure, MC simulations of a linear accelerator with typical IOERT applicators and energies, have been performed and taken as reference. A solution PHSP derived from the dose produced by the simulated accelerator has been compared to the reference PHSP. Further, dose delivered by the simulated accelerator for setups not included in the fit of the PHSP were compared to the ones derived from the solution PHSP. The results show that it is possible to derive from dose measurements PHSP accurate for IOERT MC dose estimations.

  16. A flexible Monte Carlo tool for patient or phantom specific calculations: comparison with preliminary validation measurements

    Science.gov (United States)

    Davidson, S.; Cui, J.; Followill, D.; Ibbott, G.; Deasy, J.

    2008-02-01

    The Dose Planning Method (DPM) is one of several 'fast' Monte Carlo (MC) computer codes designed to produce an accurate dose calculation for advanced clinical applications. We have developed a flexible machine modeling process and validation tests for open-field and IMRT calculations. To complement the DPM code, a practical and versatile source model has been developed, whose parameters are derived from a standard set of planning system commissioning measurements. The primary photon spectrum and the spectrum resulting from the flattening filter are modeled by a Fatigue function, cut-off by a multiplying Fermi function, which effectively regularizes the difficult energy spectrum determination process. Commonly-used functions are applied to represent the off-axis softening, increasing primary fluence with increasing angle ('the horn effect'), and electron contamination. The patient dependent aspect of the MC dose calculation utilizes the multi-leaf collimator (MLC) leaf sequence file exported from the treatment planning system DICOM output, coupled with the source model, to derive the particle transport. This model has been commissioned for Varian 2100C 6 MV and 18 MV photon beams using percent depth dose, dose profiles, and output factors. A 3-D conformal plan and an IMRT plan delivered to an anthropomorphic thorax phantom were used to benchmark the model. The calculated results were compared to Pinnacle v7.6c results and measurements made using radiochromic film and thermoluminescent detectors (TLD).

  17. Touch screen man machine interfere for emergency dose calculations

    International Nuclear Information System (INIS)

    Woodard, K.; Abrams, M.

    1987-01-01

    Emergency dose calculation systems generally use a keyboard to provide the interface between the user and the computer. This interface is preferred by users who work daily with computers; however, for many plant personnel who are not continuously involved with computer operations, the use of a keyboard can be cumbersome and time consuming. This is particularly true when the user is under pressure during a drill or an actual emergency. Experience in many applications of Pickard, Lowe and Garrick's PLG's Meteorological Information and Dose Assessment System (MIDAS) has shown that user friendliness is a key ingredient toward achieving acceptance of computerized systems. Hardware to support to touch screen interface is now available and has been implemented in MIDAS. Recent experience has demonstrated that selection times for dose calculations are reduced, data entry errors have been minimized, and confusion over appropriate entries has been avoided due to the built-in logic. A 10-yr search for an acceptable keyboard replacement has ended

  18. Independent dose calculation in IMRT for the Tps Iplan using the Clarkson modified integral

    International Nuclear Information System (INIS)

    Adrada, A.; Tello, Z.; Garrigo, E.; Venencia, D.

    2014-08-01

    Intensity-Modulated Radiation Therapy (IMRT) treatments require a quality assurance (Q A) specific patient before delivery. These controls include the experimental verification in dose phantom of the total plan as well as dose distributions. The use of independent dose calculation (IDC) is used in 3D-Crt treatments; however its application in IMRT requires the implementation of an algorithm that allows considering a non-uniform intensity beam. The purpose of this work was to develop IDC software in IMRT with MLC using the algorithm proposed by Kung (Kung et al. 2000). The software was done using Matlab programming. The Clarkson modified integral was implemented on each flowing, applying concentric rings for the dose determination. From the integral of each field was calculated the dose anywhere. One time finished a planning; all data are exported to a phantom where a Q A plan is generated. On this is calculated the half dose in a representative volume of the ionization chamber and the dose at the center of it. Until now 230 IMRT planning were analyzed carried out ??in the treatment planning system (Tps) Iplan. For each one of them Q A plan was generated, were calculated and compared calculated dose with the Tps, IDC system and measurement with ionization chamber. The average difference between measured and calculated dose with the IDC system was 0.4% ± 2.2% [-6.8%, 6.4%]. The difference between the measured and the calculated doses by the pencil-beam algorithm (Pb) of Tps was 2.6% ± 1.41% [-2.0%, 5.6%] and with the Monte Carlo algorithm was 0.4% ± 1.5% [-4.9%, 3.7%]. The differences of the carried out software are comparable to the obtained with the ionization chamber and Tps in Monte Carlo mode. (author)

  19. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  20. Qualification of McCARD/MASTER Code System for Yonggwang Unit 4

    International Nuclear Information System (INIS)

    Park, Ho Jin; Shim, Hyung Jin; Joo, Han Gyu; Kim, Chang Hyo

    2011-01-01

    Recently, we have developed the new two-step procedure based on the Monte Carlo (MC) methods. In this procedure, one can generate the few group constants including the few-group diffusion constants by the MC method augmented by the critical spectrum, which is provided by the solution to the homogeneous 0-dimensional B1 equation. In order to examine the qualification of the few-group constants generated by MC method, we combine MASTER with McCARD to form McCARD/MASTER code system for two-step core neutronics calculations. In the fictitious PWR system problems, the core design parameters calculated by the two-step McCARD/MASTER analysis agree well with those from the direct MC calculations. In this paper, a neutronic design analysis for the initial core of Yonggwang Nuclear Unit 4 (YGN4) is conducted using McCARD/MASTER two-step procedure to examine the qualification of two group constants from McCARD in terms of a real PWR core problem. To compare with the results, the nuclear design report and measured data are chosen as the reference solutions

  1. Measurement of MC5 antibody distribution in blood and bone marrow

    International Nuclear Information System (INIS)

    Johnson, T.K.; Gonzales, R.; Kasliwal, R.; Lear, J.; Feyerabend, A.; Ceriani, R.; Bunn, P.

    1990-01-01

    PURPOSE: Bone marrow is most often the dose-limiting organ in radioimmunotherapy. Controversy exists over optimal methods of estimating dose exposure to bone marrow. The purpose of this paper is to compare bone marrow activity from serial blood samples versus bone marrow biopsy specimens as measures of dose exposure to bone marrow. Peripheral blood samples and bone marrow biopsy specimens were obtained at 48 and 168 hours after infusion from 12 female patients infused with iodine-131-labeled MC5 antibody. The percentage of bone marrow in each biopsy specimen was assumed to be equivalent to the percentage of active bone marrow estimated to be in the pelvis. Activity present in the bone marrow as calculated with use of the estimated bone marrow mass for an adult female and then compared with the peripheral blood activity

  2. Development of a computational methodology for internal dose calculations

    International Nuclear Information System (INIS)

    Yoriyaz, Helio

    2000-01-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body and a more precise tool for the radiation transport simulation. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. In order to utilize the segmented human anatomy as a computational model for the simulation of radiation transport, an interface program, SCMS, was developed to build the geometric configurations for the phantom through the use of tomographic images. This procedure allows to calculate not only average dose values but also spatial distribution of dose in regions of interest. With the present methodology absorbed fractions for photons and electrons in various organs of the Zubal segmented phantom were calculated and compared to those reported for the mathematical phantoms of Snyder and Cristy-Eckerman. Although the differences in the organ's geometry between the phantoms are quite evident, the results demonstrate small discrepancies, however, in some cases, considerable discrepancies were found due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the Zubal segmented phantom, which is not considered in the mathematical phantom. This effect was quite evident for organ cross-irradiation from electrons. With the determination of spatial dose distribution it was demonstrated the possibility of evaluation of more detailed doses data than those obtained in conventional methods, which will give important information for the clinical analysis in therapeutic procedures and in radiobiologic studies of the human body. (author)

  3. Modelling the Influence of Shielding on Physical and Biological Organ Doses

    CERN Document Server

    Ballarini, Francesca; Ferrari, Alfredo; Ottolenghi, Andrea; Pelliccioni, Maurizio; Scannicchio, Domenico

    2002-01-01

    Distributions of "physical" and "biological" dose in different organs were calculated by coupling the FLUKA MC transport code with a geometrical human phantom inserted into a shielding box of variable shape, thickness and material. While the expression "physical dose" refers to the amount of deposited energy per unit mass (in Gy), "biological dose" was modelled with "Complex Lesions" (CL), clustered DNA strand breaks calculated in a previous work based on "event-by-event" track-structure simulations. The yields of complex lesions per cell and per unit dose were calculated for different radiation types and energies, and integrated into a version of FLUKA modified for this purpose, allowing us to estimate the effects of mixed fields. As an initial test simulation, the phantom was inserted into an aluminium parallelepiped and was isotropically irradiated with 500 MeV protons. Dose distributions were calculated for different values of the shielding thickness. The results were found to be organ-dependent. In most ...

  4. Calculation of the gamma-dose rate from a continuously emitted plume

    International Nuclear Information System (INIS)

    Huebschmann, W.; Papadopoulos, D.

    1975-06-01

    A computer model is presented which calculates the long term gamma dose rate caused by the radioactive off-gas continuously emitted from a stack. The statistical distribution of the wind direction and velocity and of the stability categories is taken into account. The emitted activity, distributed in the atmosphere according to this statistics, is assumed to be concentrated at the mesh points of a three-dimensional grid. The grid spacing and the integration limits determine the accuracy as well as the computer time needed. When calculating the dose rate in a given wind direction, the contribution of the activity emitted into the neighbouring sectors is evaluated. This influence is demonstrated in the results, which are calculated with a error below 3% and compared to the dose rate distribution curves of the submersion model and the model developed by K.J. Vogt. (orig.) [de

  5. Investigation of bulk electron densities for dose calculations on cone-beam CT images

    International Nuclear Information System (INIS)

    Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.

    2010-01-01

    Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.

  6. Measurements and calculations of doses from radioactive particles

    International Nuclear Information System (INIS)

    Leroux, J.B.; Herbaut, Y.

    1996-01-01

    Three Mile Island (TMI) and Tchernobyl reactor accidents have revealed the importance of the skin exposure to beta radiation produced by small high activity sources, named 'hot particles'. In nuclear power reactors, they may arise as small fragments of irradiated fuel or material which have been neutron activated by passing through the reactor co. In recent years, skin exposure to hot particles has been subject to different limitation criteria, formulated by AIEA, ICRP, NCRP working groups. The present work is the contribution of CEA Grenoble to a contract of the Commission of the European communities in cooperation with several laboratories: University of Birmingham, University of Toulouse and University of Montpellier with the main goal to check experiments and calculations of tissue dose from 60 Co radioactive particles. This report is split up into two parts: hot particle dosimetry close to a 60 Co spherical sample with an approximately 200 μm diameter, using a PTW extrapolation chamber model 233991; dose calculations from two codes: the Varskin Mod 2 computer code and the Hot 25 S2 Monte Carlo algorithm. The two codes lead to similar results; nevertheless there is a large discrepancy (of about 2) between calculations and PTW measurements which are higher by a factor of 1.9. At a 70 μm skin depth and for 1 cm 2 irradiated area, the total (β + γ) tissue dose rate delivered by a spherical ( φ = 200 μm) 60 Co source, in contact with skin, is of the order of 6.1 10 -2 nGy s -1 Bq -1 . (author)

  7. Deterministic calculations of radiation doses from brachytherapy seeds

    International Nuclear Information System (INIS)

    Reis, Sergio Carneiro dos; Vasconcelos, Vanderley de; Santos, Ana Maria Matildes dos

    2009-01-01

    Brachytherapy is used for treating certain types of cancer by inserting radioactive sources into tumours. CDTN/CNEN is developing brachytherapy seeds to be used mainly in prostate cancer treatment. Dose calculations play a very significant role in the characterization of the developed seeds. The current state-of-the-art of computation dosimetry relies on Monte Carlo methods using, for instance, MCNP codes. However, deterministic calculations have some advantages, as, for example, short computer time to find solutions. This paper presents a software developed to calculate doses in a two-dimensional space surrounding the seed, using a deterministic algorithm. The analysed seeds consist of capsules similar to IMC6711 (OncoSeed), that are commercially available. The exposure rates and absorbed doses are computed using the Sievert integral and the Meisberger third order polynomial, respectively. The software also allows the isodose visualization at the surface plan. The user can choose between four different radionuclides ( 192 Ir, 198 Au, 137 Cs and 60 Co). He also have to enter as input data: the exposure rate constant; the source activity; the active length of the source; the number of segments in which the source will be divided; the total source length; the source diameter; and the actual and effective source thickness. The computed results were benchmarked against results from literature and developed software will be used to support the characterization process of the source that is being developed at CDTN. The software was implemented using Borland Delphi in Windows environment and is an alternative to Monte Carlo based codes. (author)

  8. Measurement of secondary cosmic radiation and calculation of associated dose conversion coefficients for humans

    International Nuclear Information System (INIS)

    Simmer, Gregor

    2012-01-01

    Due to secondary cosmic radiation (SCR), pilots and flight attendants receive elevated effective doses at flight altitudes. For this reason, since 2003 aircrew members are considered as occupationally exposed, in Germany. This work deals with the calculation of dose conversion coefficients (DCC) for protons, neutrons, electrons, positrons, photons and myons, which are crucial for estimation of effective dose from SCR. For the first time, calculations were performed combining Geant4 - a Monte Carlo code developed at CERN - with the voxel phantoms for the reference female and male published in 2008 by ICRP and ICRU. Furthermore, measurements of neutron fluence spectra - which contribute the major part to the effective dose of SCR - were carried out at the Environmental Research Station Schneefernerhaus (UFS) located at 2650 m above sea level nearby the Zugspitze mountain, Germany. These measured neutron spectra, and additionally available calculated spectra, were then folded with the DCC calculated in this work, and effective dose rates for different heights were calculated.

  9. Calculation of fast neutron dose in plastic-coated optical fibers

    International Nuclear Information System (INIS)

    Siebert, B.R.L.; Henschel, H.

    1998-01-01

    The dose of fast neutrons in optical fibers with hydrogen-containing coating materials is considerably increased by energetic recoil protons. Their contribution to the dose in a SiO 2 fiber core is calculated by the Monte Carlo method for different fiber geometries and a fiber optic cable. With 14 MeV neutrons the dose in a single fiber is increased by about 21%, whereas in fiber bundles the dose increase can reach about 170%. Maximum dose enhancement in fiber bundles (about 610%) occurs at neutron energies around 5.5 MeV. The dose increase caused by 14 MeV neutrons in the fiber of a typical laboratory cable is about 124%

  10. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    CERN Document Server

    Foust, D J

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  11. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    International Nuclear Information System (INIS)

    FOUST, D.J.

    2000-01-01

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering

  12. Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate

    International Nuclear Information System (INIS)

    Riegel, Adam C.; Ahmad, Moiz; Sun Xiaojun; Pan Tinsu

    2008-01-01

    Dose calculation for thoracic radiotherapy is commonly performed on a free-breathing helical CT despite artifacts caused by respiratory motion. Four-dimensional computed tomography (4D-CT) is one method to incorporate motion information into the treatment planning process. Some centers now use the respiration-averaged CT (RACT), the pixel-by-pixel average of the ten phases of 4D-CT, for dose calculation. This method, while sparing the tedious task of 4D dose calculation, still requires 4D-CT technology. The authors have recently developed a means to reconstruct RACT directly from unsorted cine CT data from which 4D-CT is formed, bypassing the need for a respiratory surrogate. Using RACT from cine CT for dose calculation may be a means to incorporate motion information into dose calculation without performing 4D-CT. The purpose of this study was to determine if RACT from cine CT can be substituted for RACT from 4D-CT for the purposes of dose calculation, and if increasing the cine duration can decrease differences between the dose distributions. Cine CT data and corresponding 4D-CT simulations for 23 patients with at least two breathing cycles per cine duration were retrieved. RACT was generated four ways: First from ten phases of 4D-CT, second, from 1 breathing cycle of images, third, from 1.5 breathing cycles of images, and fourth, from 2 breathing cycles of images. The clinical treatment plan was transferred to each RACT and dose was recalculated. Dose planes were exported at orthogonal planes through the isocenter (coronal, sagittal, and transverse orientations). The resulting dose distributions were compared using the gamma (γ) index within the planning target volume (PTV). Failure criteria were set to 2%/1 mm. A follow-up study with 50 additional lung cancer patients was performed to increase sample size. The same dose recalculation and analysis was performed. In the primary patient group, 22 of 23 patients had 100% of points within the PTV pass γ criteria

  13. Calculation of the effective dose from natural radioactivity sources in soil using MCNP code

    International Nuclear Information System (INIS)

    Krstic, D.; Nikezic, D.

    2008-01-01

    Full text: Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this report. Calculations have been done for the most common natural radionuclides in soil as 238 U, 232 Th series and 40 K. A ORNL age-dependent phantom and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs of phantom.The effective dose was calculated according to ICRP74 recommendations. Conversion coefficients of effective dose per air kerma were determined. Results obtained here were compared with other authors

  14. A study of different dose calculation methods and the impact on the dose evaluation protocol in lung stereotactic radiation therapy

    International Nuclear Information System (INIS)

    Takada, Takahiro; Furuya, Tomohisa; Ozawa, Shuichi; Ito, Kana; Kurokawa, Chie; Karasawa, Kumiko; Miura, Kohei

    2008-01-01

    AAA (analytical anisotropic algorithm) dose calculation, which shows a better performance for heterogeneity correction, was tested for lung stereotactic radiation therapy (SBRT) in comparison to conventional PBC (pencil beam convolution method) to evaluate its impact on tumor dose parameters. Eleven lung SBRT patients who were treated with photon 4 MV beams in our department between April 2003 and February 2007 were reviewed. Clinical target volume (CTV) was delineated including the spicula region on planning CT images. Planning target volume (PTV) was defined by adding the internal target volume (ITV) and set-up margin (SM) of 5 mm from CTV, and then an multileaf collimator (MLC) penumbra margin of another 5 mm was also added. Six-port non-coplanar beams were employed, and a total prescribed dose of 48 Gy was defined at the isocenter point with four fractions. The entire treatment for an individual patient was completed within 8 days. Under the same prescribed dose, calculated dose distribution, dose volume histogram (DVH), and tumor dose parameters were compared between two dose calculation methods. In addition, the fractionated prescription dose was repeatedly scaled until the monitor units (MUs) calculated by AAA reached a level of MUs nearly identical to those achieved by PBC. AAA resulted in significantly less D95 (irradiation dose that included 95% volume of PTV) and minimal dose in PTV compared to PBC. After rescaling of each MU for each beam in the AAA plan, there was no revision of the isocenter of the prescribed dose required. However, when the PTV volume was less than 20 cc, a 4% lower prescription resulted in nearly identical MUs between AAA and PBC. The prescribed dose in AAA should be the same as that in PBC, if the dose is administered at the isocenter point. However, planners should compare DVHs and dose distributions between AAA and PBC for a small lung tumor with a PTV volume less than approximately 20 cc. (author)

  15. Calculation of dose distribution above contaminated soil

    Science.gov (United States)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  16. SU-D-16A-01: A Novel Method to Estimate Normal Tissue Dose for Radiotherapy Patients to Support Epidemiologic Studies of Second Cancer Risk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C [University of Michigan, Ann Arbor, MI (United States); Jung, J; Pelletier, C [East Carolina University, Greenville, NC (United States); Kim, J [University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Lee, C [National Cancer Institute, Bethesda, MD (United States)

    2014-06-01

    Purpose: Patient cohort of second cancer study often involves radiotherapy patients with no radiological images available: We developed methods to construct a realistic surrogate anatomy by using computational human phantoms. We tested this phantom images both in a commercial treatment planning system (Eclipse) and a custom Monte Carlo (MC) transport code. Methods: We used a reference adult male phantom defined by International Commission on Radiological Protection (ICRP). The hybrid phantom which was originally developed in Non-Uniform Rational B-Spline (NURBS) and polygon mesh format was converted into more common medical imaging format. Electron density was calculated from the material composition of the organs and tissues and then converted into DICOM format. The DICOM images were imported into the Eclipse system for treatment planning, and then the resulting DICOM-RT files were imported into the MC code for MC-based dose calculation. Normal tissue doses were calculation in Eclipse and MC code for an illustrative prostate treatment case and compared to each other. Results: DICOM images were generated from the adult male reference phantom. Densities and volumes of selected organs between the original phantom and ones represented within Eclipse showed good agreements, less than 0.6%. Mean dose from Eclipse and MC code match less than 7%, whereas maximum and minimum doses were different up to 45%. Conclusion: The methods established in this study will be useful for the reconstruction of organ dose to support epidemiological studies of second cancer in cancer survivors treated by radiotherapy. We also work on implementing body size-dependent computational phantoms to better represent patient's anatomy when the height and weight of patients are available.

  17. McSustainability and McJustice: Certification, Alternative Food and Agriculture, and Social Change

    Directory of Open Access Journals (Sweden)

    Maki Hatanaka

    2014-11-01

    Full Text Available Alternative food and agriculture movements increasingly rely on market-based approaches, particularly voluntary standards and certification, to advance environmental sustainability and social justice. Using a case study of an ecological shrimp project in Indonesia that became certified organic, this paper raises concerns regarding the impacts of certification on alternative food and agriculture movements, and their aims of furthering sustainability and justice. Drawing on George Ritzer’s McDonaldization framework, I argue that the ecological shrimp project became McDonaldized with the introduction of voluntary standards and certification. Specifically, efficiency, calculability, predictability, and control became key characteristics of the shrimp project. While the introduction of such characteristics increased market access, it also entailed significant costs, including an erosion of trust and marginalization and alienation of farmers. Given such tradeoffs, in concluding I propose that certification is producing particular forms of environmental sustainability and social justice, what I term McSustainability and McJustice. While enabling the expansion of alternative food and agriculture, McSustainability and McJustice tend to allow little opportunity for farmer empowerment and food sovereignty, as well as exclude aspects of sustainable farming or ethical production that are not easily measured, standardized, and validated.

  18. New model for mines and transportation tunnels external dose calculation using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Allam, Kh. A.

    2017-01-01

    In this work, a new methodology is developed based on Monte Carlo simulation for tunnels and mines external dose calculation. Tunnels external dose evaluation model of a cylindrical shape of finite thickness with an entrance and with or without exit. A photon transportation model was applied for exposure dose calculations. A new software based on Monte Carlo solution was designed and programmed using Delphi programming language. The variation of external dose due to radioactive nuclei in a mine tunnel and the corresponding experimental data lies in the range 7.3 19.9%. The variation of specific external dose rate with position in, tunnel building material density and composition were studied. The given new model has more flexible for real external dose in any cylindrical tunnel structure calculations. (authors)

  19. Target dose study of effects of changes in the AAA calculation resolution on lung SABR plan

    International Nuclear Information System (INIS)

    Kim, Dae Il; Son, Sang Jun; Ahn, Bum Seok; Jung, Chi Hoon; Yoo, Suk Hyun

    2014-01-01

    Changing the calculation grid of AAA in Lung SABR plan and to analyze the changes in target dose, and investigated the effects associated with it, and considered a suitable method of application. 4D CT image that was used to plan all been taken with Brilliance Big Bore CT (Philips, Netherlands) and in Lung SABR plan(Eclipse TM ver10.0.42, Varian, the USA), use anisotropic analytic algorithm(AAA, ver.10, Varian Medical Systems, Palo Alto, CA, USA) and, was calculated by the calculation grid 1.0, 3.0, 5.0 mm in each Lung SABR plan. Lung SABR plan of 10 cases are using each of 1.0 mm, 3.0 mm, 5.0 mm calculation grid, and in case of use a 1.0 mm calculation grid V98 of the prescribed dose is about 99.5%±1.5%, Dmin of the prescribed dose is about 92.5±1.5% and Homogeneity Index(HI) is 1.0489±0.0025. In the case of use a 3.0 mm calculation grid V98 dose of the prescribed dose is about 90±4.5% , Dmin of the prescribed dose is about 87.5±3% and HI is about 1.07±1. In the case of use a 5.0 mm calculation grid V98 dose of the prescribed dose is about 63±15%, Dmin of the prescribed dose is about 83±4% and HI is about 1.13±0.2, respectively. The calculation grid of 1.0 mm is better improves the accuracy of dose calculation than using 3.0 mm and 5.mm, although calculation times increase in the case of smaller PTV relatively. As lung, spread relatively large and low density and small PTV, it is considered and good to use a calculation grid of 1.0 mm

  20. FORTRAN Code for Glandular Dose Calculation in Mammography Using Sobol-Wu Parameters

    Directory of Open Access Journals (Sweden)

    Mowlavi A A

    2007-07-01

    Full Text Available Background: Accurate computation of the radiation dose to the breast is essential to mammography. Various the thicknesses of breast, the composition of the breast tissue and other variables affect the optimal breast dose. Furthermore, the glandular fraction, which refers to the composition of the breasts, as partitioned between radiation-sensitive glandular tissue and the adipose tissue, also has an effect on this calculation. Fatty or fibrous breasts would have a lower value for the glandular fraction than dense breasts. Breast tissue composed of half glandular and half adipose tissue would have a glandular fraction in between that of fatty and dense breasts. Therefore, the use of a computational code for average glandular dose calculation in mammography is a more effective means of estimating the dose of radiation, and is accurate and fast. Methods: In the present work, the Sobol-Wu beam quality parameters are used to write a FORTRAN code for glandular dose calculation in molybdenum anode-molybdenum filter (Mo-Mo, molybdenum anode-rhodium filter (Mo-Rh and rhodium anode-rhodium filter (Rh-Rh target-filter combinations in mammograms. The input parameters of code are: tube voltage in kV, half-value layer (HVL of the incident x-ray spectrum in mm, breast thickness in cm (d, and glandular tissue fraction (g. Results: The average glandular dose (AGD variation against the voltage of the mammogram X-ray tube for d = 4 cm, HVL = 0.34 mm Al and g=0.5 for the three filter-target combinations, as well as its variation against the glandular fraction of breast tissue for kV=25, HVL=0.34, and d=4 cm has been calculated. The results related to the average glandular absorbed dose variation against HVL for kV = 28, d=4 cm and g= 0.6 are also presented. The results of this code are in good agreement with those previously reported in the literature. Conclusion: The code developed in this study calculates the glandular dose quickly, and it is complete and

  1. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  2. SU-F-T-60: A Quick Dose Calculation Check for Accuboost Breast Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A [Cancer Treatment Center of America, Tulsa, OK (United States)

    2016-06-15

    Purpose: Accuboost treatment planning uses dwell times from a nomogram designed with Monte Carlo calculations for round and D-shaped applicators. A quick dose calculation method has been developed for verification of the HDR Brachytherapy dose as a second check. Methods: Accuboost breast treatment uses several round and D-shaped applicators to be used non-invasively with an Ir-192 source from a HDR Brachytherapy afterloader after the breast is compressed in a mammographic unit for localization. The breast thickness, source activity, the prescription dose and the applicator size are entered into a nomogram spreadsheet which gives the dwell times to be manually entered into the delivery computer. Approximating the HDR Ir-192 as a point source, and knowing the geometry of the round and D-applicators, the distances from the source positions to the midpoint of the central plane are calculated. Using the exposure constant of Ir-192 and medium as human tissue, the dose at a point is calculated as: D(cGy) = 1.254 × A × t/R2, where A is the activity in Ci, t is the dwell time in sec and R is the distance in cm. The dose from each dwell position is added to get the total dose. Results: Each fraction is delivered in two compressions: cranio-caudally and medial-laterally. A typical APBI treatment in 10 fractions requires 20 compressions. For a patient treated with D45 applicators and an average of 5.22 cm thickness, this calculation was 1.63 % higher than the prescription. For another patient using D53 applicators in the CC direction and 7 cm SDO applicators in the ML direction, this calculation was 1.31 % lower than the prescription. Conclusion: This is a simple and quick method to double check the dose on the central plane for Accuboost treatment.

  3. A comparison of skin and chest wall dose delivered with multicatheter, Contura multilumen balloon, and MammoSite breast brachytherapy.

    Science.gov (United States)

    Cuttino, Laurie W; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W

    2011-01-01

    Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A Comparison of Skin and Chest Wall Dose Delivered With Multicatheter, Contura Multilumen Balloon, and MammoSite Breast Brachytherapy

    International Nuclear Information System (INIS)

    Cuttino, Laurie W.; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W.

    2011-01-01

    Purpose: Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. Methods and Materials: 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. Results: The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). Conclusion: The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS.

  5. SUBDOSA: a computer program for calculating external doses from accidental atmospheric releases of radionuclides

    International Nuclear Information System (INIS)

    Strenge, D.L.; Watson, E.C.; Houston, J.R.

    1975-06-01

    A computer program, SUBDOSA, was developed for calculating external γ and β doses to individuals from the accidental release of radionuclides to the atmosphere. Characteristics of SUBDOSA are: doses from both γ and β radiation are calculated as a function of depth in tissue, summed and reported as skin, eye, gonadal, and total body dose; doses are calculated for releases within each of several release time intervals and nuclide inventories and atmospheric dispersion conditions are considered for each time interval; radioactive decay is considered during the release and/or transit using a chain decay scheme with branching to account for transitions to and from isomeric states; the dose from gamma radiation is calculated using a numerical integration technique to account for the finite size of the plume; and the program computes and lists the normalized air concentrations at ground level as a function of distance from the point of release. (auth)

  6. EFFDOS - a FORTRAN-77-code for the calculation of the effective dose equivalent

    International Nuclear Information System (INIS)

    Baer, M.; Honcu, S.; Huebschmann, W.

    1984-01-01

    The FORTRAN-77-code EFFDOS calculates the effective dose equivalent according to ICRP 26 due to the longterm emission of radionuclides into the atmosphere for the following exposure pathways: inhalation, ingestion, γ-ground irradiation (γ-irradiation by radionuclides deposited on the ground) and β- or γ-submersion (irradiation by the passing radioactive cloud). For calculating the effective dose equivalent at a single spot it is necessary to put in the diffusion factor and - if need be - the washout factor; otherwise EFFDOS calculates the input data for the computer codes ISOLA III and WOLGA-1, which then are enabled to compute the atmospheric diffusion, ground deposition and local dose equivalent distribution for the requested exposure pathway. Atmospheric diffusion, deposition and radionuclide transfer are calculated according to the ''Allgemeine Berechnungsgrundlage ....'' recommended by the German Fed. Ministry of Interior. A sample calculated is added. (orig.) [de

  7. Calculation of radiation dose rates from a spent nuclear fuel shipping cask

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    Radiation doses from a spent nuclear fuel cask are usually from various phases of operations during handling, shipping, and storage of the casks. Assessment of such doses requires knowledge of external radiation dose rates at various locations surrounding a cask. Under current practices, dose rates from gamma photons are usually estimated by means of point- or line-source approaches incorporating the conventional buildup factors. Although such simplified approaches may at times be easy to use, their accuracy has not been verified. For example, those simplified methods have not taken into account influencing factors such as the geometry of the cask and the presence of the ground surface, and the effects of these factors on the calculated dose rates are largely unknown. Moreover, similar empirical equations for buildup factors currently do not exist for neutrons. The objective of this study is to use a more accurate approach in calculating radiation dose rates for both neutrons and gamma photons from a spent fuel cask. The calculation utilizes the more sophisticated transport method and takes into account the geometry of the cask and the presence of the ground surface. The results of a detailed study of dose rates in the near field (within 20 meters) are presented and, for easy application, the cask centerline dose rates are fitted into empirical equations at cask centerline distances up to 2000 meters from the surface of the cask

  8. SU-E-T-573: Normal Tissue Dose Effect of Prescription Isodose Level Selection in Lung Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Zhang, Q; Lei, Y; Zheng, D; Zhu, X; Wahl, A; Lin, C; Zhou, S; Zhen, W

    2015-01-01

    Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness were created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing

  9. Verification of absorbed dose calculation with XIO Radiotherapy Treatment Planning System

    International Nuclear Information System (INIS)

    Bokulic, T.; Budanec, M.; Frobe, A.; Gregov, M.; Kusic, Z.; Mlinaric, M.; Mrcela, I.

    2013-01-01

    Modern radiotherapy relies on computerized treatment planning systems (TPS) for absorbed dose calculation. Most TPS require a detailed model of a given machine and therapy beams. International Atomic Energy Agency (IAEA) recommends acceptance testing for the TPS (IAEA-TECDOC-1540). In this study we present customization of those tests for measurements with the purpose of verification of beam models intended for clinical use in our department. Elekta Synergy S linear accelerator installation and data acquisition for Elekta CMS XiO 4.62 TPS was finished in 2011. After the completion of beam modelling in TPS, tests were conducted in accordance with the IAEA protocol for TPS dose calculation verification. The deviations between the measured and calculated dose were recorded for 854 points and 11 groups of tests in a homogenous phantom. Most of the deviations were within tolerance. Similar to previously published results, results for irregular L shaped field and asymmetric wedged fields were out of tolerance for certain groups of points.(author)

  10. Feasibility of CBCT-based dose calculation: Comparative analysis of HU adjustment techniques

    International Nuclear Information System (INIS)

    Fotina, Irina; Hopfgartner, Johannes; Stock, Markus; Steininger, Thomas; Lütgendorf-Caucig, Carola; Georg, Dietmar

    2012-01-01

    Background and purpose: The aim of this work was to compare the accuracy of different HU adjustments for CBCT-based dose calculation. Methods and materials: Dose calculation was performed on CBCT images of 30 patients. In the first two approaches phantom-based (Pha-CC) and population-based (Pop-CC) conversion curves were used. The third method (WAB) represents override of the structures with standard densities for water, air and bone. In ROI mapping approach all structures were overridden with average HUs from planning CT. All techniques were benchmarked to the Pop-CC and CT-based plans by DVH comparison and γ-index analysis. Results: For prostate plans, WAB and ROI mapping compared to Pop-CC showed differences in PTV D median below 2%. The WAB and Pha-CC methods underestimated the bladder dose in IMRT plans. In lung cases PTV coverage was underestimated by Pha-CC method by 2.3% and slightly overestimated by the WAB and ROI techniques. The use of the Pha-CC method for head–neck IMRT plans resulted in difference in PTV coverage up to 5%. Dose calculation with WAB and ROI techniques showed better agreement with pCT than conversion curve-based approaches. Conclusions: Density override techniques provide an accurate alternative to the conversion curve-based methods for dose calculation on CBCT images.

  11. Calculation of organ doses in x-ray examinations of premature babies

    International Nuclear Information System (INIS)

    Smans, Kristien; Tapiovaara, Markku; Cannie, Mieke; Struelens, Lara; Vanhavere, Filip; Smet, Marleen; Bosmans, Hilde

    2008-01-01

    Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Knowledge of the radiation dose is therefore necessary to justify the exposures. To calculate doses in the entire body and in specific organs, computational models of the human anatomy are needed. Using medical imaging techniques, voxel phantoms have been developed to achieve a representation as close as possible to the anatomical properties. In this study two voxel phantoms, representing prematurely born babies, were created from computed tomography- and magnetic resonance images: Phantom 1 (1910 g) and Phantom 2 (590 g). The two voxel phantoms were used in Monte Carlo calculations (MCNPX) to assess organ doses. The results were compared with the commercially available software package PCXMC in which the available mathematical phantoms can be downsized toward the prematurely born baby. The simple phantom-scaling method used in PCXMC seems to be sufficient to calculate doses for organs within the radiation field. However, one should be careful in specifying the irradiation geometry. Doses in organs that are wholly or partially outside the primary radiation field depend critically on the irradiation conditions and the phantom model

  12. Dose and dose commitment calculations from groundwaterborne radio-active elements released from a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Bergstroem, U.

    1983-05-01

    The turnover of radioactive matter entering the biosphere with groundwater has been studied with regard to exposure and doses to critical groups and populations. Two main recipients, a well and a lake, have been considered for the inflow of groundwaterborne nuclides. Mathematical models of a set of coupled ecosystems on regional, intermediate and global levels have been used for calculations of doses. The intermediate system refers to the Baltic Sea. The mathematical treatment of the model is based upon compartment theory with first order kinetics and also includes products in decay chains. The time-dependent exposures have been studied for certain long-lived nuclides of radiological interest in waste from disposed fuel. Dose and dose commitment have been calculated for different episodes for inflow to the biosphere. (author)

  13. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    International Nuclear Information System (INIS)

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-01-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy

  14. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Directory of Open Access Journals (Sweden)

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  15. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yani, Sitti; Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam; Rhani, Moh. Fadhillah

    2015-01-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm 3 , 1 × 1 × 0.5 cm 3 , and 1 × 1 × 0.8 cm 3 . The 1 × 10 9 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d max from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm 3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm 3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important

  16. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  17. Calculation of dose-rate conversion factors for external exposure to photons and electrons

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1978-01-01

    Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air

  18. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, Hanna; Seppaelae, Tiina; Uusi-Simola, Jouni; Merimaa, Katja; Savolainen, Sauli [Department of Physics, POB 64, FI-00014 University of Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo, POB 1000, FI-02044 VTT (Finland); Kortesniemi, Mika, E-mail: hanna.koivunoro@helsinki.f [HUS Helsinki Medical Imaging Center, University of Helsinki, POB 340, FI-00029 HUS (Finland)

    2010-06-21

    In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The {sup 55}Mn(n,{gamma}) and {sup 197}Au(n,{gamma}) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The {sup 55}Mn(n,{gamma}) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size ({<=}0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

  19. Modeling for Dose Rate Calculation of the External Exposure to Gamma Emitters in Soil

    International Nuclear Information System (INIS)

    Allam, K. A.; El-Mongy, S. A.; El-Tahawy, M. S.; Mohsen, M. A.

    2004-01-01

    Based on the model proposed and developed in Ph.D thesis of the first author of this work, the dose rate conversion factors (absorbed dose rate in air per specific activity of soil in nGy.hr - 1 per Bq.kg - 1) are calculated 1 m above the ground for photon emitters of natural radionuclides uniformly distributed in the soil. This new and simple dose rate calculation software was used for calculation of the dose rate in air 1 m above the ground. Then the results were compared with those obtained by five different groups. Although the developed model is extremely simple, the obtained results of calculations, based on this model, show excellent agreement with those obtained by the above-mentioned models specially that one adopted by UNSCEAR. (authors)

  20. Influence on dose calculation by difference of dose calculation algorithms in stereotactic lung irradiation. Comparison of pencil beam convolution (inhomogeneity correction: batho power law) and analytical anisotropic algorithm

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)

  1. Modification and validation of an analytical source model for external beam radiotherapy Monte Carlo dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Scott E., E-mail: sedavids@utmb.edu [Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas 77555 (United States); Cui, Jing [Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Kry, Stephen; Ibbott, Geoffrey S.; Followill, David S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Vicic, Milos [Department of Applied Physics, University of Belgrade, Belgrade 11000 (Serbia); White, R. Allen [Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2016-08-15

    Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data

  2. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    Science.gov (United States)

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  3. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations

    International Nuclear Information System (INIS)

    Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.

    2000-01-01

    A new Monte Carlo (MC) algorithm, the 'dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm 3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 128 3 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a 'mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels. (author)

  4. MCID: A Software Tool to Provide Monte Carlo Driven Dosimetric Calculations Using Multimodality NM Images

    International Nuclear Information System (INIS)

    Vergara Gil, Alex; Torres Aroche, Leonel A; Coca Péreza, Marco A; Pacilio, Massimiliano; Botta, Francesca; Cremonesi, Marta

    2016-01-01

    Aim: In this work, a new software tool (named MCID) to calculate patient specific absorbed dose in molecular radiotherapy, based on Monte Carlo simulation, is presented. Materials & Methods: The inputs for MCID are two co-registered medical images containing anatomical (CT) and functional (PET or SPECT) information of the patient. The anatomical image is converted to a density map, and tissues segmentation is provided considering compositions and densities from ICRU 44 and ICRP; the functional image provides the cumulative activity map at voxel level (figure 1). MCID creates an input file for Monte Carlo (MC) codes such as MCNP5 and GATE, and converts the MC outputs into an absorbed dose image. Results: The developed tool allows estimating dose distributions for non-uniform activities distributions and non-homogeneous tissues. It includes tools for delineation of volumes of interest, and dosimetric data analysis. Procedures to decrease the calculation time are implemented in order to allow its use in clinical settings. Dose–volume histograms are computed and presented from the obtained dosimetric maps as well as dose statistics such as mean, minimum and maximum dose values; the results can be saved in common medical image formats (Interfile, DICOM, Analyze, MetaImage). The MCID was validated by comparing estimated dose values versus reference data, such as gold standards phantoms (OLINDA´s spheres) and other MC simulations of non-homogeneous phantoms. A good agreement was obtained in spheres ranged 1g to 1kg of mass and in non-homogeneous phantoms. Clinical studies were also examined. Dosimetric evaluations in patients undergoing 153Sm-EDTMP therapy for osseous metastases showed non-significant differences with calculations performed by traditional methods. The possibility of creating input files to perform the simulations using the Gate Code has increased the MCID applications and improved its functionality, Different clinical situations including PET and SPECT

  5. Calculating external doses from contaminated soil with the computer model SOILD

    International Nuclear Information System (INIS)

    Chen, Y.; LePoire, D.; Yu, C.

    1991-01-01

    The SOILD computer model was developed for calculating the effective dose equivalent from external exposure to distributed gamma sources in soil. It is designed to assess external doses under various exposure scenarios that may be encountered in environmental restoration programs. The model's four major functional features address (a) dose versus source depth in soil, (b) shielding of clean cover soil, (c) area of contamination, and (d) nonuniform distribution of sources. The model can also adjust doses when there are variations in soil densities for both source and cover soils. It is supported by a data base of ∼500 radionuclides. A sample calculation was performed by SOILD to determine the effective dose equivalent for a uniform source distribution in soil. The soil density was assumed to be 1.6 g/cm 3 , and the source strength was assumed to be 1 pCi/cm 3 . The following radionuclides were studied: 60 C, 131 I, 137+D Cs, 238+D U, and 226+D Ra ('+D' denotes the parent nuclide and daughters)

  6. Evolution of dose calculation models for proton-therapy treatment planning

    International Nuclear Information System (INIS)

    Vidal, Marie

    2011-01-01

    This work was achieved in collaboration between the Institut Curie proton-therapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the proton-therapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams [fr

  7. Applying the 'general principles of dose calculation' (ABG) in practice. Pt. 1

    International Nuclear Information System (INIS)

    Haubelt, R.

    1985-01-01

    Radiation doses are to be calculated for the main exposure pathways such as gamma submersion, beta submersion, gamma radiation at ground level, inhalation and ingestion of radionuclides. After the amendment of the German Radiation Protection Ordinance to include the latest ICRP Recommendations, the dose to be determined now is the effective dose equivalent, replacing the former whole-body dose equivalent. (DG) [de

  8. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.

    Science.gov (United States)

    Bevelacqua, J J

    2011-07-01

    Conservatism in the calculation of the effective dose following an airborne release from an accident involving a fuel reprocessing waste tank is examined. Within the regulatory constraints at the Hanford Site, deterministic effective dose calculations are conservative by at least an order of magnitude. Deterministic calculations should be used with caution in reaching decisions associated with required safety systems and mitigation philosophy related to the accidental release of airborne radioactive material to the environment.

  9. Paradigm shift in LUNG SBRT dose calculation associated with Heterogeneity correction

    International Nuclear Information System (INIS)

    Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Pinto Monedero, M.; Marti Asensjo, J.; Alonso Iracheta, L.

    2015-01-01

    Treatment of lung injury SBRT requires great dosimetric accuracy, the increasing clinical importance of dose calculation heterogeneities introducing algorithms that adequately model the transport of particles narrow beams in media of low density, as with Monte Carlo calculation. (Author)

  10. Monte Carlo calculation of ''skyshine'' neutron dose from ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on ''skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations

  11. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    Science.gov (United States)

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  12. On the development of a comprehensive MC simulation model for the Gamma Knife Perfexion radiosurgery unit

    Science.gov (United States)

    Pappas, E. P.; Moutsatsos, A.; Pantelis, E.; Zoros, E.; Georgiou, E.; Torrens, M.; Karaiskos, P.

    2016-02-01

    This work presents a comprehensive Monte Carlo (MC) simulation model for the Gamma Knife Perfexion (PFX) radiosurgery unit. Model-based dosimetry calculations were benchmarked in terms of relative dose profiles (RDPs) and output factors (OFs), against corresponding EBT2 measurements. To reduce the rather prolonged computational time associated with the comprehensive PFX model MC simulations, two approximations were explored and evaluated on the grounds of dosimetric accuracy. The first consists in directional biasing of the 60Co photon emission while the second refers to the implementation of simplified source geometric models. The effect of the dose scoring volume dimensions in OF calculations accuracy was also explored. RDP calculations for the comprehensive PFX model were found to be in agreement with corresponding EBT2 measurements. Output factors of 0.819  ±  0.004 and 0.8941  ±  0.0013 were calculated for the 4 mm and 8 mm collimator, respectively, which agree, within uncertainties, with corresponding EBT2 measurements and published experimental data. Volume averaging was found to affect OF results by more than 0.3% for scoring volume radii greater than 0.5 mm and 1.4 mm for the 4 mm and 8 mm collimators, respectively. Directional biasing of photon emission resulted in a time efficiency gain factor of up to 210 with respect to the isotropic photon emission. Although no considerable effect on relative dose profiles was detected, directional biasing led to OF overestimations which were more pronounced for the 4 mm collimator and increased with decreasing emission cone half-angle, reaching up to 6% for a 5° angle. Implementation of simplified source models revealed that omitting the sources’ stainless steel capsule significantly affects both OF results and relative dose profiles, while the aluminum-based bushing did not exhibit considerable dosimetric effect. In conclusion, the results of this work suggest that any PFX

  13. Correction of CT artifacts and its influence on Monte Carlo dose calculations

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank

    2007-01-01

    Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts

  14. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    Science.gov (United States)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  15. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    International Nuclear Information System (INIS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Xu, X George; Long, Daniel J; Bolch, Wesley E; Liu, Bob

    2015-01-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations. (paper)

  16. SKYSHIN: A computer code for calculating radiation dose over a barrier

    International Nuclear Information System (INIS)

    Atwood, C.L.; Boland, J.R.; Dickman, P.T.

    1986-11-01

    SKYSHIN is a computer code for calculating the radioactive dose (mrem), when there is a barrier between the point source and the receptor. The two geometrical configurations considered are: the source and receptor separated by a rectangular wall, and the source at the bottom of a cylindrical hole in the ground. Each gamma ray traveling over the barrier is assumed to be scattered at a single point. The dose to a receptor from such paths is numerically integrated for the total dose, with symmetry used to reduce the triple integral to a double integral. The buildup factor used along a straight line through air is based on published data, and extrapolated in a stable way to low energy levels. This buildup factor was validated by comparing calculated and experimental line-of-sight doses. The entire code shows good agreement to limited field data. The code runs on a CDC or on a Vax computer, and could be modified easily for others

  17. Effective Dose Calculation Program (EDCP) for the usage of NORM-added consumer product.

    Science.gov (United States)

    Yoo, Do Hyeon; Lee, Jaekook; Min, Chul Hee

    2018-04-09

    The aim of this study is to develop the Effective Dose Calculation Program (EDCP) for the usage of Naturally Occurring Radioactive Material (NORM) added consumer products. The EDCP was developed based on a database of effective dose conversion coefficient and the Matrix Laboratory (MATLAB) program to incorporate a Graphic User Interface (GUI) for ease of use. To validate EDCP, the effective dose calculated with EDCP by manually determining the source region by using the GUI and that by using the reference mathematical algorithm were compared for pillow, waist supporter, eye-patch and sleeping mattress. The results show that the annual effective dose calculated with EDCP was almost identical to that calculated using the reference mathematical algorithm in most of the assessment cases. With the assumption of the gamma energy of 1 MeV and activity of 1 MBq, the annual effective doses of pillow, waist supporter, sleeping mattress, and eye-patch determined using the reference algorithm were 3.444 mSv year -1 , 2.770 mSv year -1 , 4.629 mSv year -1 , and 3.567 mSv year -1 , respectively, while those calculated using EDCP were 3.561 mSv year -1 , 2.630 mSv year -1 , 4.740 mSv year -1 , and 3.780 mSv year -1 , respectively. The differences in the annual effective doses were less than 5%, despite the different calculation methods employed. The EDCP can therefore be effectively used for radiation protection management in the context of the usage of NORM-added consumer products. Additionally, EDCP can be used by members of the public through the GUI for various studies in the field of radiation protection, thus facilitating easy access to the program. Copyright © 2018. Published by Elsevier Ltd.

  18. Transport calculations of. gamma. -ray flux density and dose rate about implantable californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A; Lin, B I [Cincinnati Univ., Ohio (USA). Dept. of Chemical and Nuclear Engineering; Windham, J P; Kereiakes, J G

    1976-07-01

    ..gamma.. flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.

  19. Accumulated dose calculations in Indian PHWRs under DBA

    International Nuclear Information System (INIS)

    Nesaraj, David; Pradhan, A.S.; Bhardwaj, S.A.

    1996-01-01

    Accumulated gamma dose inside reactor building due to release of fission products from equilibrium core of Indian PHWR under accident condition has been assessed. The assessment has been done for the radiation tolerance limit of the critical equipment inside reactor building. The basic source data has been generated using computer code ORIGEN2 written and developed by Oak Ridge National Laboratory, USA (ORNL). This paper discusses the details of the calculations done on the basis of certain assumption which are mentioned at relevant places. The results indicate accumulated gamma dose at a few typical locations inside reactor building under accident condition. (author). 1 ref., 1 tab., 1 fig

  20. Scoping calculation for components of the cow-milk dose pathway for evaluating the dose contribution from iodine-131

    International Nuclear Information System (INIS)

    Ikenberry, T.A.; Napier, B.A.

    1992-12-01

    A series of scoping calculations have been undertaken to evaluate The absolute and relative contribution of different exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 001) examined the contributions of the various exposure pathways associated with environmental transport and accumulation of iodine-131 in the pasture-cow-milk pathway. Addressed in this calculation were the contributions to thyroid dose of infants and adult from (1) the ingestion by dairy cattle of various feedstuffs (pasturage, silage, alfalfa hay, and grass hay) in four different feeding regimes; (2) ingestion of soil by dairy cattle; (3) ingestion of stared feed on which airborne iodine-131 had been deposited; and (4) inhalation of airborne iodine-131 by dairy cows

  1. SU-F-T-381: Fast Calculation of Three-Dimensional Dose Considering MLC Leaf Positional Errors for VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, Y [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan); Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Kadoya, N; Jingu, K [Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Shimizu, E; Majima, K [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan)

    2016-06-15

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dose calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.

  2. Dose calculation for iridium-192 sources by a personal computer

    International Nuclear Information System (INIS)

    Takahashi, Kenichi; Ishigaki, Hideyo; Udagawa, Kimio; Saito, Masami; Yamaguchi, Kyoko

    1988-01-01

    Recently Ir-192 sources have been used for interstitial radiotherapy instead of Ra-226 needles. One end of Ir-192 (single-pin) is formed with circlet and implanted Ir-192 sources are not always straight line. So the authors have developed a new dose calculation system, in which the authers employed conventional method considering oblique filteration for linear source and multi-point source method for curved source. Conventionally the positions of sources in three dimensions are determined from projections of the implanted sources on orthogonal or stereo radiographs. But it is frequentry impossible to define the end of sources on account of overlap. Then the authers have devised a method to determine the positions of sources from two radiographs which were taken with arbitrary directions. For tongue cancer injuries of mandibula so frequently occur after interstitial radiotherapy that the calculation of gingival dose is necessary. The positions of the gingival line are determined from two directional radiographs too. Further the three dimensional dose distributions can be displayed on the cathod ray tube. These calculations are performed by using a personal computer because of its distinctive features such as superiority in cost performance and flexibility for development and modification of programs. (author)

  3. Accurate heterogeneous dose calculation for lung cancer patients without high‐resolution CT densities

    Science.gov (United States)

    Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.

    2009-01-01

    The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf

  4. Calculation of the dose distribution in water from {sup 71}Ge K-shell x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang H.; Reece, Warren D.; Poston, John W. Sr. [Department of Nuclear Engineering, Texas A and M University, College Station, TX (United States)

    1997-06-01

    The dose distribution in water from {sup 71}Ge K-shell x-rays (E{sub ave}=9.44 eV) was calculated for various source configurations using both analytic and GS4 Monte Carlo calculations. The point source kernel and the buildup factor are presented. The buildup factor for a point source in water has been found to increase up to about 1.1 as radial distance approaches 1 cm. Comparison between {sup 71}Ge and {sup 90}Sr/Y shows a similarity between their relative dose distribution in water. The dose distribution from a disc source was calculated using the EGS4 code and compared with the results from analytic calculation. Excellent agreement was observed, confirming the validity of analytic calculations. The dose rate at 0.01 cm from a {sup 71}Ge disc source was calculated to be about 1.3x10{sup -5} Gy MBq{sup -1}s{sup -1}. Based on the results from his study, {sup 71}Ge activity of the order of 3.7x10{sup 10} Bq({approx}1 Ci) might be necessary to obtain dose rates typical of {sup 90}Sr/Y ophthalmic applicators. The possibility of using {sup 71}Ge as a source of radioactive stents was also investigated. A {sup 71}Ge stent was modelled as a cylindrical shell source and the dose rates were determined by Monte Carlo calculations. Some calculated results are compared with published values for a {sup 32}P-coated stent. The dose rate at 0.01 cm from a {sup 71}Ge stent has been calculated to be about .5x10{sup -3} Gy MBq{sup -1}h{sup -1}, which is much lower than the reported dose rate at the same distance from a {sup 32}P-coated stent. However, an initial source activity of the order of 3.7x10{sup 7} Bq ({approx}1 mCi) would easily result in a typical target dose ({approx}24 Gy) needed for intravascular stent applications. In conclusion, {sup 71}Ge sources could be used as alternatives to beta sources and, unlike high-energy ({approx}MeV) beta sources, may provide easily predictable dose distributions in heterogeneous media and low dose rates, which might be beneficial for

  5. A simple formula for depth dose calculation for Co-60 teletherapy beam dosimetry

    International Nuclear Information System (INIS)

    Tripathi, U.B.; Kelkar, N.Y.

    1979-01-01

    Knowledge of dose at all points of interest in the plane of tumour is essential for treatment planning. A very simple formula for scatter dose calculation along the central axis of a Co-60 beam has been derived. This formula uses primary dose at depth d, scatter air ratio at the depth of maximum ionisation and the effective depth of the volume, irradiating the medium. The method for calculation of percentage depth dose at any point in the principal plane has been explained in detail. The simple form of the formulation will help in improving the treatment plans for treatments of lesions using Co-60 teletherapy machines. (orig.) [de

  6. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  7. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    International Nuclear Information System (INIS)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S

    2016-01-01

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V_2_0 and V_5 to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm"3. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V_2_0 (+3.1%) and V_5 (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates attributable to algorithm

  8. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yaparpalvi, R; Mynampati, D; Kuo, H; Garg, M; Tome, W; Kalnicki, S [Montefiore Medical Center, Bronx, NY (United States)

    2016-06-15

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performed using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates

  9. SU-F-T-560: Measurement of Dose Blurring Effect Due to Respiratory Motion for Lung Stereotactic Body Radiation Therapy (SBRT) Using Monte Carlo Based Calculation Algorithm

    International Nuclear Information System (INIS)

    Badkul, R; Pokhrel, D; Jiang, H; Lominska, C; Wang, F; Ramanjappa, T

    2016-01-01

    Purpose: Intra-fractional tumor motion due to respiration may potentially compromise dose delivery for SBRT of lung tumors. Even sufficient margins are used to ensure there is no geometric miss of target volume, there is potential dose blurring effect may present due to motion and could impact the tumor coverage if motions are larger. In this study we investigated dose blurring effect of open fields as well as Lung SBRT patients planned using 2 non-coplanar dynamic conformal arcs(NCDCA) and few conformal beams(CB) calculated with Monte Carlo (MC) based algorithm utilizing phantom with 2D-diode array(MapCheck) and ion-chamber. Methods: SBRT lung patients were planned on Brainlab-iPlan system using 4D-CT scan and ITV were contoured on MIP image set and verified on all breathing phase image sets to account for breathing motion and then 5mm margin was applied to generate PTV. Plans were created using two NCDCA and 4-5 CB 6MV photon calculated using XVMC MC-algorithm. 3 SBRT patients plans were transferred to phantom with MapCheck and 0.125cc ion-chamber inserted in the middle of phantom to calculate dose. Also open field 3×3, 5×5 and 10×10 were calculated on this phantom. Phantom was placed on motion platform with varying motion from 5, 10, 20 and 30 mm with duty cycle of 4 second. Measurements were carried out for open fields as well 3 patients plans at static and various degree of motions. MapCheck planar dose and ion-chamber reading were collected and compared with static measurements and computed values to evaluate the dosimetric effect on tumor coverage due to motion. Results: To eliminate complexity of patients plan 3 simple open fields were also measured to see the dose blurring effect with the introduction of motion. All motion measured ionchamber values were normalized to corresponding static value. For open fields 5×5 and 10×10 normalized central axis ion-chamber values were 1.00 for all motions but for 3×3 they were 1 up to 10mm motion and 0.97 and 0

  10. Development of new methodology for dose calculation in photographic dosimetry

    International Nuclear Information System (INIS)

    Daltro, T.F.L.; Campos, L.L.; Perez, H.E.B.

    1996-01-01

    The personal dosemeter system of IPEN is based on film dosimetry. Personal doses at IPEN are mainly due to X or gamma radiation. The use of personal photographic dosemeters involves two steps: firstly, data acquisition including their evaluation with respect to the calibration quantity and secondly, the interpretation of the data in terms of effective dose. The effective dose was calculated using artificial intelligence techniques by means of neural network. The learning of the neural network was performed by taking the readings of optical density as a function of incident energy and exposure from the calibration curve. The obtained output in the daily grind is the mean effective energy and the effective dose. (author)

  11. SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Tian, Z; Song, T; Jia, X; Gu, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accounting for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.

  12. Calculation of neutron and gamma-ray flux-to-dose-rate conversion factors

    International Nuclear Information System (INIS)

    Kwon, S.G.; Lee, S.Y.; Yook, C.C.

    1981-01-01

    This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute (ANSI) N666. These data are used to calculate the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoenergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions. (author)

  13. Toolkit for high performance Monte Carlo radiation transport and activation calculations for shielding applications in ITER

    International Nuclear Information System (INIS)

    Serikov, A.; Fischer, U.; Grosse, D.; Leichtle, D.; Majerle, M.

    2011-01-01

    The Monte Carlo (MC) method is the most suitable computational technique of radiation transport for shielding applications in fusion neutronics. This paper is intended for sharing the results of long term experience of the fusion neutronics group at Karlsruhe Institute of Technology (KIT) in radiation shielding calculations with the MCNP5 code for the ITER fusion reactor with emphasizing on the use of several ITER project-driven computer programs developed at KIT. Two of them, McCad and R2S, seem to be the most useful in radiation shielding analyses. The McCad computer graphical tool allows to perform automatic conversion of the MCNP models from the underlying CAD (CATIA) data files, while the R2S activation interface couples the MCNP radiation transport with the FISPACT activation allowing to estimate nuclear responses such as dose rate and nuclear heating after the ITER reactor shutdown. The cell-based R2S scheme was applied in shutdown photon dose analysis for the designing of the In-Vessel Viewing System (IVVS) and the Glow Discharge Cleaning (GDC) unit in ITER. Newly developed at KIT mesh-based R2S feature was successfully tested on the shutdown dose rate calculations for the upper port in the Neutral Beam (NB) cell of ITER. The merits of McCad graphical program were broadly acknowledged by the neutronic analysts and its continuous improvement at KIT has introduced its stable and more convenient run with its Graphical User Interface. Detailed 3D ITER neutronic modeling with the MCNP Monte Carlo method requires a lot of computation resources, inevitably leading to parallel calculations on clusters. Performance assessments of the MCNP5 parallel runs on the JUROPA/HPC-FF supercomputer cluster permitted to find the optimal number of processors for ITER-type runs. (author)

  14. Computer code for calculating personnel doses due to tritium exposures

    International Nuclear Information System (INIS)

    Graham, C.L.; Parlagreco, J.R.

    1977-01-01

    This report describes a computer code written in LLL modified Fortran IV that can be used on a CDC 7600 for calculating personnel doses due to internal exposures to tritium. The code is capable of handling various exposure situations and is also capable of detecting a large variety of data input errors that would lead to errors in the dose assessment. The critical organ is the body water

  15. Interpretation of animal data in the calculation of doses from new radiolabelled compounds

    International Nuclear Information System (INIS)

    Ellender, M.; Naylor, G.P.L.

    1992-01-01

    The Radionuclide Biokinetics Group of the Biomedical Effects Department at NRPB provides a dose calculation service for pharmaceutical companies and associated laboratories which plan to administer radiolabelled drugs to human volunteers as part of their research and development programmes for new compounds. Animal data provided by these companies are used to estimate the likely doses to humans from administration of the compound. The dose estimate then accompanies the pharmaceutical company's application for approval from the UK Administration of Radioactive Substances Advisory Committee (ARSAC). The method of calculation, the interpretation of the animal data and the range of results obtained are discussed. In addition, the effect of the use of the new ICRP tissue weighting factors in the calculations is considered. (Author)

  16. A unique manual method for emergency offsite dose calculations

    International Nuclear Information System (INIS)

    Wildner, T.E.; Carson, B.H.; Shank, K.E.

    1987-01-01

    This paper describes a manual method developed for performance of emergency offsite dose calculations for PP and L's Susquehanna Steam Electric Station. The method is based on a three-part carbonless form. The front page guides the user through selection of the appropriate accident case and inclusion of meteorological and effluent data data. By circling the applicable accident descriptors, the user circles the dose factors on pages 2 and 3 which are then simply multiplied to yield the whole body and thyroid dose rates at the plant boundary, two, five, and ten miles. The process used to generate the worksheet is discussed, including the method used to incorporate the observed terrain effects on airflow patterns caused by the Susquehanna River Valley topography

  17. SU-E-T-538: Evaluation of IMRT Dose Calculation Based on Pencil-Beam and AAA Algorithms.

    Science.gov (United States)

    Yuan, Y; Duan, J; Popple, R; Brezovich, I

    2012-06-01

    To evaluate the accuracy of dose calculation for intensity modulated radiation therapy (IMRT) based on Pencil Beam (PB) and Analytical Anisotropic Algorithm (AAA) computation algorithms. IMRT plans of twelve patients with different treatment sites, including head/neck, lung and pelvis, were investigated. For each patient, dose calculation with PB and AAA algorithms using dose grid sizes of 0.5 mm, 0.25 mm, and 0.125 mm, were compared with composite-beam ion chamber and film measurements in patient specific QA. Discrepancies between the calculation and the measurement were evaluated by percentage error for ion chamber dose and γ〉l failure rate in gamma analysis (3%/3mm) for film dosimetry. For 9 patients, ion chamber dose calculated with AAA-algorithms is closer to ion chamber measurement than that calculated with PB algorithm with grid size of 2.5 mm, though all calculated ion chamber doses are within 3% of the measurements. For head/neck patients and other patients with large treatment volumes, γ〉l failure rate is significantly reduced (within 5%) with AAA-based treatment planning compared to generally more than 10% with PB-based treatment planning (grid size=2.5 mm). For lung and brain cancer patients with medium and small treatment volumes, γ〉l failure rates are typically within 5% for both AAA and PB-based treatment planning (grid size=2.5 mm). For both PB and AAA-based treatment planning, improvements of dose calculation accuracy with finer dose grids were observed in film dosimetry of 11 patients and in ion chamber measurements for 3 patients. AAA-based treatment planning provides more accurate dose calculation for head/neck patients and other patients with large treatment volumes. Compared with film dosimetry, a γ〉l failure rate within 5% can be achieved for AAA-based treatment planning. © 2012 American Association of Physicists in Medicine.

  18. McJobs and Pieces of Flair: Linking McDonaldization to Alienating Work

    Science.gov (United States)

    Treiber, Linda Ann

    2013-01-01

    This article offers strategies for teaching about rationality, bureaucracy, and social change using George Ritzer's "The McDonaldization of Society" and its ideas about efficiency, predictability, calculability, and control. Student learning is facilitated using a series of strategies: making the familiar strange, explaining…

  19. Calculation of dose for β point and sphere sources in soft tissue

    International Nuclear Information System (INIS)

    Sun Fuyin; Yuan Shuyu; Tan Jian

    1999-01-01

    Objective: To compare the results of the distribution of dose rate calculated by three typical methods for point source and sphere source of β nuclide. Methods: Calculating and comparing the distributions of dose rate from 32 P β point and sphere sources in soft tissue calculated by the three methods published in references, [1]. [2] and [3], respectively. Results: For the point source of 3.7 x 10 7 Bq (1mCi), the variations of the calculation results of the three formulas are within 10% if r≤0.35 g/cm 2 , r being the distance from source, and larger than 10% if r > 0.35 g/cm 2 . For the sphere source whose volume is 50 μl and activity is 3.7 x 10 7 Bq(1 mCi), the variations are within 10% if z≤0.15 g/cm 2 , z being the distance from the surface of the sphere source to a point outside the sphere. Conclusion: The agreement of the distributions of the dose rate calculated by the three methods mentioned above for point and sphere β source are good if the distances from point source or the surface of sphere source to the points observed are small, and poor if they are large

  20. Assessment of fetal radiation dose to patients and staff in diagnostic radiology

    International Nuclear Information System (INIS)

    Osei, E.K.

    2000-07-01

    A major source of uncertainty in the estimation of fetal absorbed radiation dose is the influence of fetal size and position as these change with gestational age. Consequently, dose to the fetus is related to gestational age. Most studies of fetal dose estimation during pregnancy assume that the uterus dose is equal to fetal dose. These dose estimates do not take account of gestational age and individual fetal depth, factors which are significant when calculating dose. To establish both positional and size data for estimation of fetal absorbed dose from radiological examinations, the depths from the mother's anterior surface to the mid-line of the fetal head and abdomen were measured from ultrasound scans in 215 pregnant women. Depths were measured along a ray path projected in the anterior-posterior direction from the mother's abdomen. The fetal size was estimated from measurements of the fetal abdominal and head circumference, femur length and the biparietal diameter. The effects of fetal presentation, maternal bladder volume, placenta location, gestational age and maternal AP thickness on fetal depth and size were analysed. A Monte Carlo (MC) model was developed, and used to derive factors for converting dose-area product and free-in-air entrance surface dose from medical exposure of a pregnant patient to absorbed dose to the uterus/embryo, and for converting uterus dose to fetal dose in the later stages of pregnancy. Also presented are factors for converting thermoluminescence dosimeter reading from occupational exposure of a pregnant worker to equivalent dose to the fetus. The MC model was verified experimentally by direct measurement of uterus depth dose in a female Rando phantom, and also by comparison with other experimental work and MC results in the literature. The application of the various conversion factors is demonstrated by a review of the dose estimation process in 50 cases of fetal irradiation from medical exposures. (author)

  1. SU-F-T-54: Determination of the AAPM TG-43 Brachytherapy Dosimetry Parameters for A New Titanium-Encapsulated Yb-169 Source by Monte Carlo Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, F [UT MD Anderson Cancer Center, Houston, TX (United States); Washington University School of Medicine, St. Louis, MO (United States); Munro, J [Source Production & Equipment Co., Inc., St. Rose, LA (United States); Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To determine the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source designed to maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Methods: An existing Monte Carlo (MC) model of the titanium-encapsulated Yb-169 source, which was described in the current investigators’ published MC optimization study, was modified based on the source manufacturer’s detailed specifications, resulting in an accurate model of the titanium-encapsulated Yb-169 source that was actually manufactured. MC calculations were then performed using the MCNP5 code system and the modified source model, in order to obtain a complete set of the AAPM TG-43 parameters for the new Yb-169 source. Results: The MC-calculated dose rate constant for the new titanium-encapsulated Yb-169 source was 1.05 ± 0.03 cGy per hr U, indicating about 10% decrease from the values reported for the conventional stainless steel-encapsulated Yb-169 sources. The source anisotropy and radial dose function for the new source were found similar to those reported for the conventional Yb-169 sources. Conclusion: In this study, the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source were determined by MC calculations. The current results suggested that the use of titanium, instead of stainless steel, to encapsulate the Yb-169 core would not lead to any major change in the dosimetric characteristics of the Yb-169 source, while it would allow more low energy photons being transmitted through the source filter thereby leading to an increased dose enhancement during GNRT. Supported by DOD/PCRP grant W81XWH-12-1-0198 This investigation was supported by DOD/PCRP grant W81XWH-12-1- 0198.

  2. TU-D-201-05: Validation of Treatment Planning Dose Calculations: Experience Working with MPPG 5.a

    Energy Technology Data Exchange (ETDEWEB)

    Xue, J; Park, J; Kim, L; Wang, C [MD Anderson Cancer Center at Cooper, Camden, NJ (United States); Balter, P; Ohrt, J; Kirsner, S; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Newly published medical physics practice guideline (MPPG 5.a.) has set the minimum requirements for commissioning and QA of treatment planning dose calculations. We present our experience in the validation of a commercial treatment planning system based on MPPG 5.a. Methods: In addition to tests traditionally performed to commission a model-based dose calculation algorithm, extensive tests were carried out at short and extended SSDs, various depths, oblique gantry angles and off-axis conditions to verify the robustness and limitations of a dose calculation algorithm. A comparison between measured and calculated dose was performed based on validation tests and evaluation criteria recommended by MPPG 5.a. An ion chamber was used for the measurement of dose at points of interest, and diodes were used for photon IMRT/VMAT validations. Dose profiles were measured with a three-dimensional scanning system and calculated in the TPS using a virtual water phantom. Results: Calculated and measured absolute dose profiles were compared at each specified SSD and depth for open fields. The disagreement is easily identifiable with the difference curve. Subtle discrepancy has revealed the limitation of the measurement, e.g., a spike at the high dose region and an asymmetrical penumbra observed on the tests with an oblique MLC beam. The excellent results we had (> 98% pass rate on 3%/3mm gamma index) on the end-to-end tests for both IMRT and VMAT are attributed to the quality beam data and the good understanding of the modeling. The limitation of the model and the uncertainty of measurement were considered when comparing the results. Conclusion: The extensive tests recommended by the MPPG encourage us to understand the accuracy and limitations of a dose algorithm as well as the uncertainty of measurement. Our experience has shown how the suggested tests can be performed effectively to validate dose calculation models.

  3. Calculation of radiation dose rate arisen from radionuclide contained in building materials

    International Nuclear Information System (INIS)

    Lai Tien Thinh; Nguyen Hao Quang

    2008-01-01

    This paper presents some results that we used MCNP5 program to calculate radiation dose rate arisen from radionuclide in building materials. Since then, the limits of radionuclide content in building materials are discussed. The calculation results by MCNP are compared with those calculated by analytical method. (author)

  4. A comparison study of size-specific dose estimate calculation methods

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, Roshni A. [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Wien, Michael A.; Jordan, David W.; Ciancibello, Leslie; Berlin, Sheila C. [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); Novak, Ronald D. [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); Rebecca D. Considine Research Institute, Children' s Hospital Medical Center of Akron, Center for Mitochondrial Medicine Research, Akron, OH (United States); Klahr, Paul [CT Clinical Science, Philips Healthcare, Highland Heights, OH (United States); Soriano, Stephanie [Rainbow Babies and Children' s Hospital, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Department of Radiology, Cleveland, OH (United States); University of Washington, Department of Radiology, Seattle, WA (United States)

    2018-01-15

    The size-specific dose estimate (SSDE) has emerged as an improved metric for use by medical physicists and radiologists for estimating individual patient dose. Several methods of calculating SSDE have been described, ranging from patient thickness or attenuation-based (automated and manual) measurements to weight-based techniques. To compare the accuracy of thickness vs. weight measurement of body size to allow for the calculation of the size-specific dose estimate (SSDE) in pediatric body CT. We retrospectively identified 109 pediatric body CT examinations for SSDE calculation. We examined two automated methods measuring a series of level-specific diameters of the patient's body: method A used the effective diameter and method B used the water-equivalent diameter. Two manual methods measured patient diameter at two predetermined levels: the superior endplate of L2, where body width is typically most thin, and the superior femoral head or iliac crest (for scans that did not include the pelvis), where body width is typically most thick; method C averaged lateral measurements at these two levels from the CT projection scan, and method D averaged lateral and anteroposterior measurements at the same two levels from the axial CT images. Finally, we used body weight to characterize patient size, method E, and compared this with the various other measurement methods. Methods were compared across the entire population as well as by subgroup based on body width. Concordance correlation (ρ{sub c}) between each of the SSDE calculation methods (methods A-E) was greater than 0.92 across the entire population, although the range was wider when analyzed by subgroup (0.42-0.99). When we compared each SSDE measurement method with CTDI{sub vol,} there was poor correlation, ρ{sub c}<0.77, with percentage differences between 20.8% and 51.0%. Automated computer algorithms are accurate and efficient in the calculation of SSDE. Manual methods based on patient thickness provide

  5. Recent developments in biokinetic models and the calculation of internal dose coefficients

    International Nuclear Information System (INIS)

    Fell, T.P.; Phipps, A.W.; Kendall, G.M.; Stradling, G.N.

    1997-01-01

    In most cases the measurement of radioactivity in an environmental or biological sample will be followed by some estimation of dose and possibly risk, either to a population or an individual. This will normally involve the use of a dose coefficient (dose per unit intake value) taken from a compendium. In recent years the calculation of dose coefficients has seen many developments in both biokinetic modelling and computational capabilities. ICRP has recommended new models for the respiratory tract and for the systemic behavior of many of the more important elements. As well as this, a general age-dependent calculation method has been developed which involves an effectively continuous variation of both biokinetic and dosimetric parameters, facilitating more realistic estimation of doses to young people. These new developments were used in work for recent ICRP, IAEA and CEC compendia of dose coefficients for both members of the public (including children) and workers. This paper presents a general overview of the method of calculation of internal doses with particular reference to the actinides. Some of the implications for dose coefficients of the new models are discussed. For example it is shown that compared with data in ICRP Publications 30 and 54: the new respiratory tract model generally predicts lower deposition in systemic tissues per unit intake; the new biokinetic models for actinides allow for burial of material deposited on bone surfaces; age-dependent models generally feature faster turnover of material in young people. All of these factors can lead to substantially different estimates of dose and examples of the new dose coefficients are given to illustrate these differences. During the development of the new models for actinides, human bioassay data were used to validate the model. Thus, one would expect the new models to give reasonable predictions of bioassay quantities. Some examples of the bioassay applications, e.g., excretion data for the

  6. The calculation of the surface dose in examinations following cardiac catheterization

    International Nuclear Information System (INIS)

    Ewen, K.

    1995-01-01

    It is inevitable in examinations requiring patient exposure to high doses that the investigators and medical assistants receive high wholebody doses on account of fray radiation and, occasionally, also high partial body doses (hands) on account of the useful beam range. A number of different circumstances are adding up to create this extreme situation. In this connection, a mathematical method for the calculation of the surface dose (cutaneous dose rate) is described that is based on sets of parameters commonly used in diagnostic radiology: Set I of parameters: Tube voltage - current strength of tube - distance between focus and skin; - set II of parameters: Incidence dose rate of image intensifier - distance between focus and skin -distance between image intensifier and plane of ray incidence (skin). (orig./VHE) [de

  7. Improved method for calculation of population doses from nuclear complexes over large geographical areas

    International Nuclear Information System (INIS)

    Corley, J.P.; Baker, D.A.; Hill, E.R.; Wendell, L.L.

    1977-09-01

    To simplify the calculation of potential long-distance environmental impacts, an overall average population exposure coefficient (P.E.C.) for the entire contiguous United States was calculated for releases to the atmosphere from Hanford facilities. The method, requiring machine computation, combines Bureau of Census population data by census enumeration district and an annual average atmospheric dilution factor (anti chi/Q') derived from 12-hourly gridded wind analyses provided by the NOAA's National Meteorological Center. A variable-trajectory puff-advection model was used to calculate an hourly anti chi/Q' for each grid square, assuming uniform hourly releases; seasonal and annual averages were then calculated. For Hanford, using 1970 census data, a P.E.C. of 2 x 10 -3 man-seconds per cubic meter was calculated. The P.E.C. is useful for both radioactive and nonradioactive releases. To calculate population doses for the entire contiguous United States, the P.E.C. is multiplied by the annual average release rate and then by the dose factor (rem/yr per Ci/m 3 ) for each radionuclide, and the dose contribution in man-rem is summed for all radionuclides. For multiple pathways, the P.E.C. is still useful, provided that doses from a unit release can be obtained from a set of atmospheric dose factors. The methodology is applicable to any point source, any set of population data by map grid coordinates, and any geographical area covered by equivalent meteorological data

  8. Differentiated thyroid cancer treatment with therapeutic doses of 131I calculated by dosimetry: our experience

    International Nuclear Information System (INIS)

    Fadel, Ana M.; Chebel, G.M.; Valdivieso, C.M.; Degrossi, Osvaldo J.; Cabrejas, R.; Cabrejas, M.L.

    2006-01-01

    The optimum dose for the differentiated thyroid cancer treatment is a motive of controversy. There exist two ways of deciding the dose to administer: the empirical method (fixed doses) and dosimetric calculation method. The use of fixed doses has demonstrated safety and effectiveness. Nevertheless there are cases in which the use of several small doses not resolves the metastases illness of the patients. Using the Benua-Leeper method for dosimetric calculation we have evaluated the maximum dose treatment that could be administered to 20 patients who showed persistent disease after several treatments with 131 I. (author) [es

  9. Method for calculating individual equivalent doses and cumulative dose of population in the vicinity of nuclear power plant site

    International Nuclear Information System (INIS)

    Namestek, L.; Khorvat, D; Shvets, J.; Kunz, Eh.

    1976-01-01

    A method of calculating the doses of external and internal person irradiation in the nuclear power plant vicinity under conditions of normal operation and accident situations has been described. The main difference between the above method and methods used up to now is the use of a new antropomorphous representation of a human body model together with all the organs. The antropomorphous model of human body and its organs is determined as a set of simple solids, coordinates of disposistion of the solids, sizes, masses, densities and composition corresponding the genuine organs. The use of the Monte-Carlo method is the second difference. The results of the calculations according to the model suggested can be used for determination: a critical group of inhabitans under conditions of normal plant operation; groups of inhabitants most subjected to irradiation in the case of possible accident; a critical sector with a maximum collective dose in the case of an accident; a critical radioisotope favouring the greatest contribution to an individual equivalent dose; critical irradiation ways promoting a maximum contribution to individual equivalent doses; cumulative collective doses for the whole region or for a chosen part of the region permitting to estimate a population dose. The consequent method evoluation suggests the development of separate units of the calculationg program, critical application and the selection of input data of physical, plysiological and ecological character and improvement of the calculated program for the separate concrete events [ru

  10. Dose-volume histograms based on serial intravascular ultrasound: a calculation model for radioactive stents

    International Nuclear Information System (INIS)

    Kirisits, Christian; Wexberg, Paul; Gottsauner-Wolf, Michael; Pokrajac, Boris; Ortmann, Elisabeth; Aiginger, Hannes; Glogar, Dietmar; Poetter, Richard

    2001-01-01

    Background and purpose: Radioactive stents are under investigation for reduction of coronary restenosis. However, the actual dose delivered to specific parts of the coronary artery wall based on the individual vessel anatomy has not been determined so far. Dose-volume histograms (DVHs) permit an estimation of the actual dose absorbed by the target volume. We present a method to calculate DVHs based on intravascular ultrasound (IVUS) measurements to determine the dose distribution within the vessel wall. Materials and methods: Ten patients were studied by intravascular ultrasound after radioactive stenting (BX Stent, P-32, 15-mm length) to obtain tomographic cross-sections of the treated segments. We developed a computer algorithm using the actual dose distribution of the stent to calculate differential and cumulative DVHs. The minimal target dose, the mean target dose, the minimal doses delivered to 10 and 90% of the adventitia (DV10, DV90), and the percentage of volume receiving a reference dose at 0.5 mm from the stent surface cumulated over 28 days were derived from the DVH plots. Results were expressed as mean±SD. Results: The mean activity of the stents was 438±140 kBq at implantation. The mean reference dose was 111±35 Gy, whereas the calculated mean target dose within the adventitia along the stent was 68±20 Gy. On average, DV90 and DV10 were 33±9 Gy and 117±41 Gy, respectively. Expanding the target volume to include 2.5-mm-long segments at the proximal and distal ends of the stent, the calculated mean target dose decreased to 55±17 Gy, and DV 90 and DV 10 were 6.4±2.4 Gy and 107±36 Gy, respectively. Conclusions: The assessment of DVHs seems in principle to be a valuable tool for both prospective and retrospective analysis of dose-distribution of radioactive stents. It may provide the basis to adapt treatment planning in coronary brachytherapy to the common standards of radiotherapy

  11. SU-C-BRB-06: Utilizing 3D Scanner and Printer for Dummy Eye-Shield: Artifact-Free CT Images of Tungsten Eye-Shield for Accurate Dose Calculation

    International Nuclear Information System (INIS)

    Park, J; Lee, J; Kim, H; Kim, I; Ye, S

    2015-01-01

    Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm 2 applicator. The gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield

  12. SU-C-BRB-06: Utilizing 3D Scanner and Printer for Dummy Eye-Shield: Artifact-Free CT Images of Tungsten Eye-Shield for Accurate Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Park, J; Lee, J [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Kim, H [Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, I [Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Ye, S [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of)

    2015-06-15

    Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm{sup 2} applicator. The gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield.

  13. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    Science.gov (United States)

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  14. Radiation dose distributions due to sudden ejection of cobalt device

    International Nuclear Information System (INIS)

    Abdelhady, Amr

    2016-01-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. - Highlights: • This study aims to calculate the dose rate profiles after cobalt device ejection from open-pool-type reactor core. • MicroShield code was used to evaluate the dose rates inside the reactor control room. • McSKY code was used to evaluate the dose rates outside the reactor building. • The calculated dose rates for workers are higher than the permissible limits after 18 s from device ejection.

  15. DEPDOSE: An interactive, microcomputer based program to calculate doses from exposure to radionuclides deposited on the ground

    International Nuclear Information System (INIS)

    Beres, D.A.; Hull, A.P.

    1991-12-01

    DEPDOSE is an interactive, menu driven, microcomputer based program designed to rapidly calculate committed dose from radionuclides deposited on the ground. The program is designed to require little or no computer expertise on the part of the user. The program consisting of a dose calculation section and a library maintenance section. These selections are available to the user from the main menu. The dose calculation section provides the user with the ability to calculate committed doses, determine the decay time needed to reach a particular dose, cross compare deposition data from separate locations, and approximate a committed dose based on a measured exposure rate. The library maintenance section allows the user to review and update dose modifier data as well as to build and maintain libraries of radionuclide data, dose conversion factors, and default deposition data. The program is structured to provide the user easy access for reviewing data prior to running the calculation. Deposition data can either be entered by the user or imported from other databases. Results can either be displayed on the screen or sent to the printer

  16. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms

    International Nuclear Information System (INIS)

    Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick

    2014-01-01

    The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the

  17. Simplified calculation method for radiation dose under normal condition of transport

    International Nuclear Information System (INIS)

    Watabe, N.; Ozaki, S.; Sato, K.; Sugahara, A.

    1993-01-01

    In order to estimate radiation dose during transportation of radioactive materials, the following computer codes are available: RADTRAN, INTERTRAN, J-TRAN. Because these codes consist of functions for estimating doses not only under normal conditions but also in the case of accidents, when nuclei may leak and spread into the environment by air diffusion, the user needs to have special knowledge and experience. In this presentation, we describe how, with a view to preparing a method by which a person in charge of transportation can calculate doses in normal conditions, the main parameters upon which the value of doses depends were extracted and the dose for a unit of transportation was estimated. (J.P.N.)

  18. SU-E-T-196: Comparative Analysis of Surface Dose Measurements Using MOSFET Detector and Dose Predicted by Eclipse - AAA with Varying Dose Calculation Grid Size

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Nejaiman, S; Pokhrel, D; Jiang, H; Kumar, P [University of Kansas Medical Center, Kansas City, KS (United States)

    2015-06-15

    Purpose: Skin dose can be the limiting factor and fairly common reason to interrupt the treatment, especially for treating head-and-neck with Intensity-modulated-radiation-therapy(IMRT) or Volumetrically-modulated - arc-therapy (VMAT) and breast with tangentially-directed-beams. Aim of this study was to investigate accuracy of near-surface dose predicted by Eclipse treatment-planning-system (TPS) using Anisotropic-Analytic Algorithm (AAA)with varying calculation grid-size and comparing with metal-oxide-semiconductor-field-effect-transistors(MOSFETs)measurements for a range of clinical-conditions (open-field,dynamic-wedge, physical-wedge, IMRT,VMAT). Methods: QUASAR™-Body-Phantom was used in this study with oval curved-surfaces to mimic breast, chest wall and head-and-neck sites.A CT-scan was obtained with five radio-opaque markers(ROM) placed on the surface of phantom to mimic the range of incident angles for measurements and dose prediction using 2mm slice thickness.At each ROM, small structure(1mmx2mm) were contoured to obtain mean-doses from TPS.Calculations were performed for open-field,dynamic-wedge,physical-wedge,IMRT and VMAT using Varian-21EX,6&15MV photons using twogrid-sizes:2.5mm and 1mm.Calibration checks were performed to ensure that MOSFETs response were within ±5%.Surface-doses were measured at five locations and compared with TPS calculations. Results: For 6MV: 2.5mm grid-size,mean calculated doses(MCD)were higher by 10%(±7.6),10%(±7.6),20%(±8.5),40%(±7.5),30%(±6.9) and for 1mm grid-size MCD were higher by 0%(±5.7),0%(±4.2),0%(±5.5),1.2%(±5.0),1.1% (±7.8) for open-field,dynamic-wedge,physical-wedge,IMRT,VMAT respectively.For 15MV: 2.5mm grid-size,MCD were higher by 30%(±14.6),30%(±14.6),30%(±14.0),40%(±11.0),30%(±3.5)and for 1mm grid-size MCD were higher by 10% (±10.6), 10%(±9.8),10%(±8.0),30%(±7.8),10%(±3.8) for open-field, dynamic-wedge, physical-wedge, IMRT, VMAT respectively.For 6MV, 86% and 56% of all measured values

  19. Development of Japanese voxel models and their application to organ dose calculation

    International Nuclear Information System (INIS)

    Sato, Kaoru; Endo, Akira; Saito, Kimiaki

    2007-01-01

    Three Japanese voxel (volume pixel) phantoms in supine and upright postures, which are consisted of about 1 mm 3 size voxels, have been developed on the basis of computed tomography (CT) images of healthy Japanese adult male and female volunteers. Their body structures are reproduced more realistically in comparison with most existing voxel phantoms. Organ doses due to internal or external exposures were calculated using the developed phantoms. In estimation of radiation dose from radionuclides incorporated into body, specific absorbed fractions (SAFs) for low energy photon were significantly influenced by the changes in postures. In estimation of organ doses due to external exposures, the doses of some organs of the developed phantom were calculated and were compared with those of a previous Japanese voxel phantom (voxel size: 0.98x0.98x10 mm 3 ) and the reference values of ICRP Publication 74. (author)

  20. The sensitivity of calculated doses to critical assumptions for the offsite consequences of nuclear power reactor accidents

    International Nuclear Information System (INIS)

    Moeller, M.P.; Scherpelz, R.I.; Desrosiers, A.E.

    1982-01-01

    This work analyzes the sensitivity of calculated doses to critical assumptions for offsite consequences following a PWR-2 accident at a nuclear power reactor. The calculations include three radiation dose pathways: internal dose resulting from inhalation, external doses from exposure to the plume, and external doses from exposure to contaminated ground. The critical parameters are the time period of integration for internal dose commitment and the duration of residence on contaminated ground. The data indicate the calculated offsite whole body dose will vary by as much as 600% depending upon the parameters assumed. When offsite radiation doses determine the size of emergency planning zones, this uncertainty has significant effect upon the resources allocated to emergency preparedness

  1. The effects of low dose X-irradiation on osteoblastic MC3T3-E1 cells in vitro

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2012-06-01

    Full Text Available Abstract Background It has been indicated that moderate or high dose of X-irradiation could delay fracture union and cause osteoradionecrosis, in part, mediated by its effect on proliferation and differentiation of osteoblasts. However, whether low dose irradiation (LDI has similar roles on osteoblasts is still unknown. In this study, we investigated whether and to what extent LDI could affect the proliferation, differentiation and mineralization of osteoblasts in vitro. Methods The MC3T3-E1 cells were exposed to single dose of X-irradiation with 0, 0.1, 0.5, 1.0 Gy respectively. Cell proliferation, apoptosis, alkaline phosphatase (ALP activity, and mineralization was evaluated by methylthiazoletetrazolium (MTT and bromodeoxyuridine (BrdU assay, flow cytometry, ALP viability kit and von Kossa staining, respectively. Osteocalcin (OCN and core-binding factor α1 (Cbfα1 expressions were measured by real time-PCR and western blot, respectively. Results The proliferation of the cells exposed to 2.0 Gy was significantly lower than those exposed to ≤1.0 Gy (p  Conclusions LDI have different effects on proliferation and differentiation of osteoblasts from those of high dose of X-irradiation, which might suggest that LDI could lead to promotion of frature healing through enhancing the differentiation and mineralization of osteoblasts.

  2. SU-E-J-60: Efficient Monte Carlo Dose Calculation On CPU-GPU Heterogeneous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, K; Chen, D. Z; Hu, X. S [University of Notre Dame, Notre Dame, IN (United States); Zhou, B [Altera Corp., San Jose, CA (United States)

    2014-06-01

    Purpose: It is well-known that the performance of GPU-based Monte Carlo dose calculation implementations is bounded by memory bandwidth. One major cause of this bottleneck is the random memory writing patterns in dose deposition, which leads to several memory efficiency issues on GPU such as un-coalesced writing and atomic operations. We propose a new method to alleviate such issues on CPU-GPU heterogeneous systems, which achieves overall performance improvement for Monte Carlo dose calculation. Methods: Dose deposition is to accumulate dose into the voxels of a dose volume along the trajectories of radiation rays. Our idea is to partition this procedure into the following three steps, which are fine-tuned for CPU or GPU: (1) each GPU thread writes dose results with location information to a buffer on GPU memory, which achieves fully-coalesced and atomic-free memory transactions; (2) the dose results in the buffer are transferred to CPU memory; (3) the dose volume is constructed from the dose buffer on CPU. We organize the processing of all radiation rays into streams. Since the steps within a stream use different hardware resources (i.e., GPU, DMA, CPU), we can overlap the execution of these steps for different streams by pipelining. Results: We evaluated our method using a Monte Carlo Convolution Superposition (MCCS) program and tested our implementation for various clinical cases on a heterogeneous system containing an Intel i7 quad-core CPU and an NVIDIA TITAN GPU. Comparing with a straightforward MCCS implementation on the same system (using both CPU and GPU for radiation ray tracing), our method gained 2-5X speedup without losing dose calculation accuracy. Conclusion: The results show that our new method improves the effective memory bandwidth and overall performance for MCCS on the CPU-GPU systems. Our proposed method can also be applied to accelerate other Monte Carlo dose calculation approaches. This research was supported in part by NSF under Grants CCF

  3. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yani, Sitti, E-mail: sitti.yani@s.itb.ac.id [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Akademi Kebidanan Pelita Ibu, Kendari (Indonesia); Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Rhani, Moh. Fadhillah [Tan Tock Seng Hospital (Singapore)

    2015-09-30

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm{sup 3}, 1 × 1 × 0.5 cm{sup 3}, and 1 × 1 × 0.8 cm{sup 3}. The 1 × 10{sup 9} histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d{sub max} from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm{sup 3} about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm{sup 3} about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  4. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  5. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  6. SU-E-T-67: Clinical Implementation and Evaluation of the Acuros Dose Calculation Algorithm

    International Nuclear Information System (INIS)

    Yan, C; Combine, T; Dickens, K; Wynn, R; Pavord, D; Huq, M

    2014-01-01

    Purpose: The main aim of the current study is to present a detailed description of the implementation of the Acuros XB Dose Calculation Algorithm, and subsequently evaluate its clinical impacts by comparing it with AAA algorithm. Methods: The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were evaluated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6cm × 6cm to 40cm × 40cm. Central axis and off-axis points with different depths were chosen for the comparison. Similarly, wedge fields with wedge angles from 15 to 60 degree were used. In addition, variable field sizes for a heterogeneous phantom were used to evaluate the Acuros algorithm. Finally, both Acuros and AAA were tested on VMAT patient plans for various sites. Does distributions and calculation time were compared. Results: On average, computation time is reduced by at least 50% by Acuros XB compared with AAA on single fields and VMAT plans. When used for open 6MV photon beams on homogeneous water phantom, both Acuros XB and AAA calculated doses were within 1% of measurement. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. When heterogeneous phantom was used, Acuros XB also improved on accuracy. Conclusion: Compared with AAA, Acuros XB can improve accuracy while significantly reduce computation time for VMAT plans

  7. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Koong, Albert C; Tantawi, Sami; Dolgashev, Valery; Maxim, Peter G; Loo, Billy W

    2015-04-01

    To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0-6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4-6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0-4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. The authors demonstrate that relative dose distributions for VHEE beams of 50-70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  8. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Koong, Albert C.; Maxim, Peter G., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu; Loo, Billy W., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Tantawi, Sami; Dolgashev, Valery [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2015-04-15

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  9. Dose distribution and dosimetry parameters calculation of MED3633 Palladium-103 source in water phantom using MCNP

    International Nuclear Information System (INIS)

    Mowlavi, A. A.; Binesh, A.; Moslehitabar, H.

    2006-01-01

    Palladium-103 ( 103 Pd) is a brachytherapy source for cancer treatment. The Monte Carlo codes are usually applied for dose distribution and effect of shieldings. Monte Carlo calculation of dose distribution in water phantom due to a MED3633 103 Pd source is presented in this work. Materials and Methods: The dose distribution around the 10 3Pd Model MED3633 located in the center of 30*30*30 m 3 water phantom cube was calculated using MCNP code by the Monte Carlo method. The percentage depth dose variation along the different axis parallel and perpendicular to the source was also calculated. Then, the isodose curves for 100%, 75%, 50% and 25% percentage depth dose and dosimetry parameters of TG-43 protocol were determined. Results: The results show that the Monte Carlo Method could calculate dose deposition in high gradient region, near the source, accurately. The isodose curves and dosimetric characteristics obtained for MED3633 103 Pd source are in good agreement with published results. Conclusion: The isodose curves of the MED3633 103 Pd source have been derived form dose calculation by MCNP code. The calculated dosimetry parameters for the source agree quite well with their Monte Carlo calculated and experimental measurement values

  10. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience

    International Nuclear Information System (INIS)

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Joergen; Nyholm, Tufve; Ahnesjoe, Anders; Karlsson, Mikael

    2007-01-01

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm 3 ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 ± 1.2% and 0.5 ± 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 ± 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach

  11. Development of internal dose calculation model and the data base updated IDES (Internal Dose Estimation System)

    International Nuclear Information System (INIS)

    Hongo, Shozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi; Iwai, Satoshi.

    1994-01-01

    A computer program named IDES is developed by BASIC language for a personal computer and translated to C language of engineering work station. The IDES carries out internal dose calculations described in ICRP Publication 30 and it installs the program of transformation method which is an empirical method to estimate absorbed fractions of different physiques from ICRP Referenceman. The program consists of three tasks: productions of SAF for Japanese including children, productions of SEE, Specific Effective Energy, and calculation of effective dose equivalents. Each task and corresponding data file appear as a module so as to meet future requirement for revisions of the related data. Usefulness of IDES is discussed by exemplifying the case that 5 age groups of Japanese intake orally Co-60 or Mn-54. (author)

  12. Dose rates modeling of pressurized water reactor primary loop components with SCALE6.0

    International Nuclear Information System (INIS)

    Matijević, Mario; Pevec, Dubravko; Trontl, Krešimir

    2015-01-01

    Highlights: • Shielding analysis of the typical PWR primary loop components was performed. • FW-CADIS methodology was thoroughly investigated using SCALE6.0 code package. • Versatile ability of SCALE6.0/FW-CADIS for deep penetration models was proved. • The adjoint source with focus on specific material can improve MC modeling. - Abstract: The SCALE6.0 simulation model of a typical PWR primary loop components for effective dose rates calculation based on hybrid deterministic–stochastic methodology was created. The criticality sequence CSAS6/KENO-VI of the SCALE6.0 code package, which includes KENO-VI Monte Carlo code, was used for criticality calculations, while neutron and gamma dose rates distributions were determined by MAVRIC/Monaco shielding sequence. A detailed model of a combinatorial geometry, materials and characteristics of a generic two loop PWR facility is based on best available input data. The sources of ionizing radiation in PWR primary loop components included neutrons and photons originating from critical core and photons from activated coolant in two primary loops. Detailed calculations of the reactor pressure vessel and the upper reactor head have been performed. The efficiency of particle transport for obtaining global Monte Carlo dose rates was further examined and quantified with a flexible adjoint source positioning in phase-space. It was demonstrated that generation of an accurate importance map (VR parameters) is a paramount step which enabled obtaining Monaco dose rates with fairly uniform uncertainties. Computer memory consumption by the S N part of hybrid methodology represents main obstacle when using meshes with large number of cells together with high S N /P N parameters. Detailed voxelization (homogenization) process in Denovo together with high S N /P N parameters is essential for precise VR parameters generation which will result in optimized MC distributions. Shielding calculations were also performed for the reduced PWR

  13. Dose Measurement and Calculation of Asymmetric X-Ray Fields from Therapeutic Linac

    International Nuclear Information System (INIS)

    El-Attar, A. L.; Abdel-Wanees, M. E.; Hashem, M. A.

    2011-01-01

    Linear accelerators with x-ray collimators that move independently are becoming increasingly common for treatment with asymmetric fields. In this paper we present a simplified approach to the calculation of dose for asymmetric fields. A method is described for calculating the beam profiles, depth doses and output factors for asymmetric fields of radiation produced by linear accelerators (siemens mevatron M2) with independent jaws. Values are calculated from data measured for symmetric fields. Symmetric field data are modified using opened off-axis factors (OAFs) and primary off-centre ratios (POCRs) which are obtained from in air measurements of the largest possible opened field. Beam hardening occurring within the flattening filter is taken into account using of attenuation coefficients for opened field and used to generate the opened POCR at different depths. A full investigation to compare measured and calculated profiles demonstrates favorable agreement.

  14. Calculation of radiation dose to infants from radioactive breast milk and suspensions necessary to constrain dose

    International Nuclear Information System (INIS)

    Cormack, J.; Shearer, J.

    2000-01-01

    Full text: For nuclear medicine patients who are breast feeding an infant, special radiation safety precautions may need to be taken. An estimate of the potential radiation dose to the child from ingested milk must be made, and breast-feeding may need to be suspended until levels of radioactivity in the breast-milk have fallen to acceptable levels. The risk of radiation to the child must be weighed against the benefits of breast-feeding and the possible trauma to both mother and child arising from interruption or cessation of the milk supply. In the United States, the Nuclear Regulatory Commission (NRC) has already published regulations which will necessitate an estimate of the infant's dose from breast milk to be made, in principle, for every breast-feeding patient. There is obviously, therefore, a need to provide a rapid and reliable means of estimating such doses. A spreadsheet template which automatically calculates the cumulative dose to breast feeding infants based on any multi-exponential clearance of activity from the breast milk, and any pattern of feeding, has been developed by the authors. The time (post administration) for which breast-feeding should be interrupted in order to constrain the radiation dose to a selected limit is also calculated along with the concentration of activity in breast milk at which feeding can resume. The effect of changing dose limits, feeding patterns and using individually derived breast milk clearance rates may be readily modelled using this spreadsheet template. Data has been included for many of the most commonly used radiopharmaceuticals and new data can readily be incorporated as it becomes available. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. SU-E-T-492: The Dosimetric and Clinical Impact of the Metallic Dental Implants on Radiation Dose Distributions in IMRT Head and Neck Cancer Patients.

    Science.gov (United States)

    Wang, L; Xing, L; Le, Q

    2012-06-01

    In H&N cancer patients, the development of oral mucositis is related closely to the radiation dose to the oral cavity. It is generally presumed that the existence of metallic dental implants makes it worse due to the scattering effect of the metal. This study investigates the effects of the dental implants on radiation doses to PTV, tongue mucosa, and other structures for IMRT H&N cancer patients by Monte Carlo (MC) dose calculations. Two H&N cancer patients who have dental implant and are treated by IMRT technique are selected for the purpose. The BEAMnrc/DOSXYZnrc MC codes are employed for the CT-image based dose calculations. The radiation sources are the validated Varian phase-space files for 6MV linac beams. The CT image artifacts caused by the dental fillings are replaced by tissue material. Two sets of MC calculations for each patient are performed at a calculation statistics of 1%: one treats all dental implants as bones, the other substitutes the implants by metal of either titanium or gold with correct density. Doses in PTV and various tissue structures are compared for the two scenarios. With titanium implant, there is no significant difference in doses to PTV and tongue mucosa from that when treating implant as bone. With gold implant, the mean dose to PTV is slightly lowered by 1%; the mean dose to tongue mucosa is reduced by less than 0.5%, although the maximum dose is increased by 5%. The scattering dose from titanium implants is not of concern for H&N patients irradiated by 6MV IMRT beams. For gold implants, the scattering dose to tongue mucosa is not as severe as presumed; and the dose to PTV could be slightly compromised due to the attenuation effect of the metal. This work was supported in part by Varian Medical Systems. © 2012 American Association of Physicists in Medicine.

  16. A sensitivity study on neutron flux variation due to 10B concentration in dose calculation for BNCT

    International Nuclear Information System (INIS)

    Jung, Sang Hoon

    2006-02-01

    The effects of inclusion of 10 B concentration on neutron flux and dose in dose calculation were studied. In order to provide the quantitative effects of inclusion of 10 B concentrations on depressions of neutron and photon flux and dose, the fluxes and doses with voxel head phantoms for various 10 B concentrations homogeneously distributed were calculated by using MCNPX simulations. A lithium target system and beam shaping assembly, which have been developed at the Hanyang University, were used as epithermal neutron beam. The calculation results show that the neutron flux at the center of the head phantom decreases by approximately 5.4% per 10 ppm of 10 B concentration in comparison with the neutron flux in the case of boron-free. It was also observed that the tissue dose at the center of the head phantom is depressed by approximately 4.7% per 10 ppm of the 10 B concentration and the tumor dose by approximately 5.3% per 10 ppm. According to depth of tumors, it was observed that the depressions of the doses in the tumors are ranged in 3.7 ∼ 9.2%. The dose calculations in the case of boron-free show that it is overestimated in comparison with the dose calculations in the cases of the inclusion of 10 B concentrations for the normal tissue and the tumors. Therefore, in dose calculation for BNCT, the depressions of neutron flux and dose should be considered. The results in this study are available to setting up the depression ratios which can be used for converting neutron and gamma fluxes and doses in phantom with boron free into the fluxes and doses in phantom with inclusion of 10 B concentrations in treatment. It is expected that the depression ratios is practicable to dose evaluation for BNCT

  17. Monte Carlo estimation of the absorbed dose in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Woo; Youn, Han Bean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The purpose of this study is to devise an algorithm calculating absorbed dose distributions of patients based on Monte Carlo (MC) methods, and which includes the dose estimations due to primary and secondary (scattered) x-ray photons. Assessment of patient dose in computed tomography (CT) at the population level has become a subject of public attention and concern, and ultimate CT quality assurance and dose optimization have the goal of reducing radiation-induced cancer risks in the examined population. However, the conventional CT dose index (CTDI) concept is not a surrogate of risk but it has rather been designed to measure an average central dose. In addition, the CTDI or the dose-length product has showed troubles for helical CT with a wider beam collimation. Simple algorithms to estimate a patient specific CT dose based on the MCNP output data have been introduced. For numerical chest and head phantoms, the spatial dose distributions were calculated. The results were reasonable. The estimated dose distribution map can be readily converted into the effective dose. The important list for further studies includes the validation of the models with the experimental measurements and the acceleration of algorithms.

  18. The ratio of ICRP103 to ICRP60 calculated effective doses from CT: Monte Carlo calculations with the ADELAIDE voxel paediatric model and comparisons with published values

    International Nuclear Information System (INIS)

    Caon, Martin

    2013-01-01

    The ADELAIDE voxel model of paediatric anatomy was used with the EGSnrc Monte Carlo code to compare effective dose from computed tomography (CT) calculated with both the ICRP103 and ICRP60 definitions which are different in their tissue weighting factors and in the included tissues. The new tissue weighting factors resulted in a lower effective dose for pelvis CT (than if calculated using ICRP60 tissue weighting factors), by 6.5 % but higher effective doses for all other examinations. ICRP103 calculated effective dose for CT abdomen + pelvis was higher by 4.6 %, for CT abdomen (by 9.5 %), for CT chest + abdomen + pelvis (by 6 %), for CT chest + abdomen (by 9.6 %), for CT chest (by 10.1 %) and for cardiac CT (by 11.5 %). These values, along with published values of effective dose from CT that were calculated for both sets of tissue weighting factors were used to determine single values for the ratio ICRP103:ICRP60 calculated effective doses from CT, for seven CT examinations. The following values for ICRP103:ICRP60 are suggested for use to convert ICRP60 calculated effective dose to ICRP103 calculated effective dose for the following CT examinations: Pelvis CT, 0.75; for abdomen CT, abdomen + pelvis CT, chest + abdomen + pelvis CT, 1.00; for chest + abdomen CT, and for chest CT. 1.15; for cardiac CT 1.25.

  19. Dose calculations using artificial neural networks: A feasibility study for photon beams

    Science.gov (United States)

    Vasseur, Aurélien; Makovicka, Libor; Martin, Éric; Sauget, Marc; Contassot-Vivier, Sylvain; Bahi, Jacques

    2008-04-01

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150×1×150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions.

  20. Dose calculations using artificial neural networks: A feasibility study for photon beams

    International Nuclear Information System (INIS)

    Vasseur, Aurelien; Makovicka, Libor; Martin, Eric; Sauget, Marc; Contassot-Vivier, Sylvain; Bahi, Jacques

    2008-01-01

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150x1x150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions

  1. Dose calculations using artificial neural networks: A feasibility study for photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Vasseur, Aurelien [University of Franche-Comte, IRMA/CREST Femto-ST, Portes du Jura, 4 place Tharradin, BP 71427, 25211 Montbeliard Cedex (France); University of Franche-Comte, AND/LIFC, rue Engel Gros, 90016 Belfort (France)], E-mail: aurelien.vasseur@gmail.com; Makovicka, Libor; Martin, Eric [University of Franche-Comte, IRMA/CREST Femto-ST, Portes du Jura, 4 place Tharradin, BP 71427, 25211 Montbeliard Cedex (France); Sauget, Marc [University of Franche-Comte, IRMA/CREST Femto-ST, Portes du Jura, 4 place Tharradin, BP 71427, 25211 Montbeliard Cedex (France); University of Franche-Comte, AND/LIFC, rue Engel Gros, 90016 Belfort (France); Contassot-Vivier, Sylvain; Bahi, Jacques [University of Franche-Comte, AND/LIFC, rue Engel Gros, 90016 Belfort (France)

    2008-04-15

    Direct dose calculations are a crucial requirement for Treatment Planning Systems. Some methods, such as Monte Carlo, explicitly model particle transport, others depend upon tabulated data or analytic formulae. However, their computation time is too lengthy for clinical use, or accuracy is insufficient, especially for recent techniques such as Intensity-Modulated Radiotherapy. Based on artificial neural networks (ANNs), a new solution is proposed and this work extends the properties of such an algorithm and is called NeuRad. Prior to any calculations, a first phase known as the learning process is necessary. Monte Carlo dose distributions in homogeneous media are used, and the ANN is then acquired. According to the training base, it can be used as a dose engine for either heterogeneous media or for an unknown material. In this report, two networks were created in order to compute dose distribution within a homogeneous phantom made of an unknown material and within an inhomogeneous phantom made of water and TA6V4 (titanium alloy corresponding to hip prosthesis). All NeuRad results were compared to Monte Carlo distributions. The latter required about 7 h on a dedicated cluster (10 nodes). NeuRad learning requires between 8 and 18 h (depending upon the size of the training base) on a single low-end computer. However, the results of dose computation with the ANN are available in less than 2 s, again using a low-end computer, for a 150x1x150 voxels phantom. In the case of homogeneous medium, the mean deviation in the high dose region was less than 1.7%. With a TA6V4 hip prosthesis bathed in water, the mean deviation in the high dose region was less than 4.1%. Further improvements in NeuRad will have to include full 3D calculations, inhomogeneity management and input definitions.

  2. Accuracy of pencil-beam redefinition algorithm dose calculations in patient-like cylindrical phantoms for bolus electron conformal therapy.

    Science.gov (United States)

    Carver, Robert L; Hogstrom, Kenneth R; Chu, Connel; Fields, Robert S; Sprunger, Conrad P

    2013-07-01

    The purpose of this study was to document the improved accuracy of the pencil beam redefinition algorithm (PBRA) compared to the pencil beam algorithm (PBA) for bolus electron conformal therapy using cylindrical patient phantoms based on patient computed tomography (CT) scans of retromolar trigone and nose cancer. PBRA and PBA electron dose calculations were compared with measured dose in retromolar trigone and nose phantoms both with and without bolus. For the bolus treatment plans, a radiation oncologist outlined a planning target volume (PTV) on the central axis slice of the CT scan for each phantom. A bolus was designed using the planning.decimal(®) (p.d) software (.decimal, Inc., Sanford, FL) to conform the 90% dose line to the distal surface of the PTV. Dose measurements were taken with thermoluminescent dosimeters placed into predrilled holes. The Pinnacle(3) (Philips Healthcare, Andover, MD) treatment planning system was used to calculate PBA dose distributions. The PBRA dose distributions were calculated with an in-house C++ program. In order to accurately account for the phantom materials a table correlating CT number to relative electron stopping and scattering powers was compiled and used for both PBA and PBRA dose calculations. Accuracy was determined by comparing differences in measured and calculated dose, as well as distance to agreement for each measurement point. The measured doses had an average precision of 0.9%. For the retromolar trigone phantom, the PBRA dose calculations had an average ± 1σ dose difference (calculated - measured) of -0.65% ± 1.62% without the bolus and -0.20% ± 1.54% with the bolus. The PBA dose calculation had an average dose difference of 0.19% ± 3.27% without the bolus and -0.05% ± 3.14% with the bolus. For the nose phantom, the PBRA dose calculations had an average dose difference of 0.50% ± 3.06% without bolus and -0.18% ± 1.22% with the bolus. The PBA dose calculations had an average dose difference of 0.65%

  3. Calculation of residence times and radiation doses using the standard PC software Excel

    International Nuclear Information System (INIS)

    Herzog, H.; Zilken, H.; Niederbremer, A.; Friedrich, W.; Mueller-Gaertner, H.W.

    1997-01-01

    We developed a program which aims to facilitate the calculation of radiation doses to single organs and the whole body. IMEDOSE uses Excel to include calculations, graphical displays, and interactions with the user in a single general-purpose PC software tool. To start the procedure the input data are copied into a spreadsheet. They must represent percentage uptake values of several organs derived from measurements in animals or humans. To extrapolate these data up to seven half-lives of the radionuclide, fitting to one or two exponentional functions is included and can be checked by the user. By means of the approximate time-activity information the cumulated activity or residence times are calculated. Finally these data are combined with the absorbed fraction doses (S-values) given by MIRD pamphlet No. 11 to yield radiation doses, the effective dose equivalent and the effective dose. These results are presented in a final table. Interactions are realized with push-buttons and drop-down menus. Calculations use the Visual Basic tool of Excel. In order to test our program, biodistribution data of fluorine-18 fluorodeoxyglucose were taken from the literature (Meija et al., J Nucl Med 1991; 32:699-706). For a 70-kg adult the resulting radiation doses of all target organs listed in MIRD 11 were different from the ICRP 53 values by 1%±18% on the average. When the residence times were introduced into MIRDOSE3 (Stabin, J Nucl Med 1996; 37:538-546) the mean difference between our results and those of MIRDOSE3 was -3%±6%. Both outcomes indicate the validity of the present approach. (orig.)

  4. Calculation of residence times and radiation doses using the standard PC software Excel.

    Science.gov (United States)

    Herzog, H; Zilken, H; Niederbremer, A; Friedrich, W; Müller-Gärtner, H W

    1997-12-01

    We developed a program which aims to facilitate the calculation of radiation doses to single organs and the whole body. IMEDOSE uses Excel to include calculations, graphical displays, and interactions with the user in a single general-purpose PC software tool. To start the procedure the input data are copied into a spreadsheet. They must represent percentage uptake values of several organs derived from measurements in animals or humans. To extrapolate these data up to seven half-lives of the radionuclide, fitting to one or two exponentional functions is included and can be checked by the user. By means of the approximate time-activity information the cumulated activity or residence times are calculated. Finally these data are combined with the absorbed fraction doses (S-values) given by MIRD pamphlet No. 11 to yield radiation doses, the effective dose equivalent and the effective dose. These results are presented in a final table. Interactions are realized with push-buttons and drop-down menus. Calculations use the Visual Basic tool of Excel. In order to test our program, biodistribution data of fluorine-18 fluorodeoxyglucose were taken from the literature (Meija et al., J Nucl Med 1991; 32:699-706). For a 70-kg adult the resulting radiation doses of all target organs listed in MIRD 11 were different from the ICRP 53 values by 1%+/-18% on the average. When the residence times were introduced into MIRDOSE3 (Stabin, J Nucl Med 1996; 37:538-546) the mean difference between our results and those of MIRDOSE3 was -3%+/-6%. Both outcomes indicate the validity of the present approach.

  5. Calculation of residence times and radiation doses using the standard PC software Excel

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.; Zilken, H.; Niederbremer, A.; Friedrich, W. [Institute of Medicine, Research Center Juelich, Juelich (Germany); Mueller-Gaertner, H.W. [Institute of Medicine, Research Center Juelich, Juelich (Germany)]|[Department of Nuclear Medicine, Heinrich-Heine University Hospital Duesseldorf (Germany)

    1997-12-01

    We developed a program which aims to facilitate the calculation of radiation doses to single organs and the whole body. IMEDOSE uses Excel to include calculations, graphical displays, and interactions with the user in a single general-purpose PC software tool. To start the procedure the input data are copied into a spreadsheet. They must represent percentage uptake values of several organs derived from measurements in animals or humans. To extrapolate these data up to seven half-lives of the radionuclide, fitting to one or two exponentional functions is included and can be checked by the user. By means of the approximate time-activity information the cumulated activity or residence times are calculated. Finally these data are combined with the absorbed fraction doses (S-values) given by MIRD pamphlet No. 11 to yield radiation doses, the effective dose equivalent and the effective dose. These results are presented in a final table. Interactions are realized with push-buttons and drop-down menus. Calculations use the Visual Basic tool of Excel. In order to test our program, biodistribution data of fluorine-18 fluorodeoxyglucose were taken from the literature (Meija et al., J Nucl Med 1991; 32:699-706). For a 70-kg adult the resulting radiation doses of all target organs listed in MIRD 11 were different from the ICRP 53 values by 1%{+-}18% on the average. When the residence times were introduced into MIRDOSE3 (Stabin, J Nucl Med 1996; 37:538-546) the mean difference between our results and those of MIRDOSE3 was -3%{+-}6%. Both outcomes indicate the validity of the present approach. (orig.) With 5 figs., 2 tabs., 18 refs.

  6. Application of the mathematical modelling and human phantoms for calculation of the organ doses

    International Nuclear Information System (INIS)

    Kluson, J.; Cechak, T.

    2005-01-01

    Increasing power of the computers hardware and new versions of the software for the radiation transport simulation and modelling of the complex experimental setups and geometrical arrangement enable to dramatically improve calculation of organ or target volume doses ( dose distributions) in the wide field of medical physics and radiation protection applications. Increase of computers memory and new software features makes it possible to use not only analytical (mathematical) phantoms but also allow constructing the voxel models of human or phantoms with voxels fine enough (e.g. 1·1·1 mm) to represent all required details. CT data can be used for the description of such voxel model geometry .Advanced scoring methods are available in the new software versions. Contribution gives the overview of such new possibilities in the modelling and doses calculations, discusses the simulation/approximation of the dosimetric quantities ( especially dose ) and calculated data interpretation. Some examples of application and demonstrations will be shown, compared and discussed. Present computational tools enables to calculate organ or target volumes doses with new quality of large voxel models/phantoms (including CT based patient specific model ), approximating the human body with high precision. Due to these features has more and more importance and use in the fields of medical and radiological physics, radiation protection, etc. (authors)

  7. [Evaluation of methods to calculate dialysis dose in daily hemodialysis].

    Science.gov (United States)

    Maduell, F; Gutiérrez, E; Navarro, V; Torregrosa, E; Martínez, A; Rius, A

    2003-01-01

    Daily dialysis has shown excellent clinical results because a higher frequency of dialysis is more physiological. Different methods have been described to calculate dialysis dose which take into consideration change in frequency. The aim of this study was to calculate all dialysis dose possibilities and evaluate the better and practical options. Eight patients, 6 males and 2 females, on standard 4 to 5 hours thrice weekly on-line hemodiafiltration (S-OL-HDF) were switched to daily on-line hemodiafiltration (D-OL-HDF) 2 to 2.5 hours six times per week. Dialysis parameters were identical during both periods and only frequency and dialysis time of each session were changed. Time average concentration (TAC), time average deviation (TAD), normalized protein catabolic rate (nPCR), Kt/V, equilibrated Kt/V (eKt/V), equivalent renal urea clearance (EKR), standard Kt/V (stdKt/V), urea reduction ratio (URR), hemodialysis product and time off dialysis were measured. Daily on-line hemodiafiltration was well accepted and tolerated. Patients maintained the same TAC although TAD decreased from 9.7 +/- 2 in baseline to a 6.2 +/- 2 mg/dl after six months, p time off dialysis was reduced to half. Dialysis frequency is an important urea kinetic parameter which there are to take in consideration. It's necessary to use EKR, stdKt/V or weekly URR to calculate dialysis dose for an adequate comparison between different frequency dialysis schedules.

  8. Review of calculational models and computer codes for environmental dose assessment of radioactive releases

    International Nuclear Information System (INIS)

    Strenge, D.L.; Watson, E.C.; Droppo, J.G.

    1976-06-01

    The development of technological bases for siting nuclear fuel cycle facilities requires calculational models and computer codes for the evaluation of risks and the assessment of environmental impact of radioactive effluents. A literature search and review of available computer programs revealed that no one program was capable of performing all of the great variety of calculations (i.e., external dose, internal dose, population dose, chronic release, accidental release, etc.). Available literature on existing computer programs has been reviewed and a description of each program reviewed is given

  9. Review of calculational models and computer codes for environmental dose assessment of radioactive releases

    Energy Technology Data Exchange (ETDEWEB)

    Strenge, D.L.; Watson, E.C.; Droppo, J.G.

    1976-06-01

    The development of technological bases for siting nuclear fuel cycle facilities requires calculational models and computer codes for the evaluation of risks and the assessment of environmental impact of radioactive effluents. A literature search and review of available computer programs revealed that no one program was capable of performing all of the great variety of calculations (i.e., external dose, internal dose, population dose, chronic release, accidental release, etc.). Available literature on existing computer programs has been reviewed and a description of each program reviewed is given.

  10. SU-E-T-481: In Vivo and Post Mortem Animal Irradiation: Measured Vs. Calculated Doses

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, P [Univ New Mexico Radiology Dept., Albuquerque, NM (United States); Heintz, B [Texas Oncology, PA, Southlake, TX (United States); Sandoval, D [University of New Mexico, Albuquerque, NM (United States); Weber, W; Melo, D; Guilmette, R [Lovelace Respiratory Research Institute, Albuquerque, NM (United States)

    2015-06-15

    Purpose: Computerized radiation therapy treatment planning is performed on almost all patients today. However it is seldom used for laboratory irradiations. The first objective is to assess whether modern radiation therapy treatment planning (RTP) systems accurately predict the subject dose by comparing in vivo and decedent dose measurements to calculated doses. The other objective is determine the importance of using a RTP system for laboratory irradiations. Methods: 5 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the absorbed dose at 5 levels (carina, lung, heart, liver and rectum) during whole body irradiation. The subjects were treated with large opposed lateral fields and extended distances to cover the entire subject using a Varian 600C linac. CT simulation was performed ante-mortem (AM) and post-mortem (PM). To compare AM and PM doses, calculation points were placed at the location of each dosimeter in the treatment plan. The measured results were compared to the results using Varian Eclipse and Prowess Panther RTP systems. Results: The Varian and Prowess treatment planning system agreed to within in +1.5% for both subjects. However there were significant differences between the measured and calculated doses. For both animals the calculated central axis dose was higher than prescribed by 3–5%. This was caused in part by inaccurate measurement of animal thickness at the time of irradiation. For one subject the doses ranged from 4% to 7% high and the other subject the doses ranged 7% to 14% high when compared to the RTP doses. Conclusions: Our results suggest that using proper CT RTP system can more accurately deliver the prescribed dose to laboratory subjects. It also shows that there is significant dose variation in such subjects when inhomogeneities are not considered in the planning process.

  11. MC rate at NLO for heavy flavour photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Toll, Tobias

    2010-02-15

    A Monte Carlo at next-to-leading order (MC rate at NLO) has been constructed for the production of heavy quark flavours in photoproduction. As such, it is the rst Monte Carlo event generator with next-to-leading order (NLO) accuracy for a process in lepton hadron scattering. In order to construct such an MC rate at NLO, the matrix element for the process has to be calculated at NLO and then be matched with a parton shower. When doing this, it is important that none of the parton configurations produced are doubly counted. In this thesis, the concept of a Monte Carlo event generator will be explained, with emphasis on the HERWIG parton shower. Also, different techniques of calculating matrix elements at NLO accuracy will be explained. It will then be shown how the NLO calculation can be matched with the HERWIG parton shower in an MC rate at NLO without double counting, producing unweighted events at NLO-accuracy. Many comparisons are made between the MC rate at NLO here constructed, the HERWIG Monte Carlo and the FMNR NLO calculation. Also many comparisons are made to HERA data from the H1 and ZEUS experiments. It is shown that all HERA data with heavy quarks produced in photoproduction can be described by the MC rate at NLO program constructed in this thesis. (orig.)

  12. MC rate at NLO for heavy flavour photoproduction at HERA

    International Nuclear Information System (INIS)

    Toll, Tobias

    2010-02-01

    A Monte Carlo at next-to-leading order (MC rate at NLO) has been constructed for the production of heavy quark flavours in photoproduction. As such, it is the rst Monte Carlo event generator with next-to-leading order (NLO) accuracy for a process in lepton hadron scattering. In order to construct such an MC rate at NLO, the matrix element for the process has to be calculated at NLO and then be matched with a parton shower. When doing this, it is important that none of the parton configurations produced are doubly counted. In this thesis, the concept of a Monte Carlo event generator will be explained, with emphasis on the HERWIG parton shower. Also, different techniques of calculating matrix elements at NLO accuracy will be explained. It will then be shown how the NLO calculation can be matched with the HERWIG parton shower in an MC rate at NLO without double counting, producing unweighted events at NLO-accuracy. Many comparisons are made between the MC rate at NLO here constructed, the HERWIG Monte Carlo and the FMNR NLO calculation. Also many comparisons are made to HERA data from the H1 and ZEUS experiments. It is shown that all HERA data with heavy quarks produced in photoproduction can be described by the MC rate at NLO program constructed in this thesis. (orig.)

  13. Investigations on the necessity of dose calculations for several planes of the target volume

    International Nuclear Information System (INIS)

    Richter, E.

    1987-01-01

    In radiotherapy planning, the shape of a target volume can at present be exactly delimited by means of computed tomography. A method often applied is to project the largest target volume scan on the plane of the central ray and to calculate the dose in this plane. This method does not allow to take into account any change of the target volume scan which will be mainly due to the body contours of the patient. The results of dose calculations made in several planes for pharyngeal and laryngeal tumors are presented. With this procedure, 33 out of 60 irradiation techniques for nine tumor sites meet the requirements with regard to the central ray plane. If several planes are regarded, this is only true for ten irradiation plans. If is therefore absolutely necessary to calculate the doses of several planes if the target volume has an irregular shape or if the body contours vary considerably. This is the only way to prevent a false treatment caused by possibly severe dose excesses or dose insufficiencies in radiotherapy. (orig.) [de

  14. Radiation transport calculation methods in BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Seppaelae, T.; Savolainen, S.

    2000-01-01

    Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles

  15. CloudMC: a cloud computing application for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-01-01

    This work presents CloudMC, a cloud computing application—developed in Windows Azure®, the platform of the Microsoft® cloud—for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based—the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice. (note)

  16. CloudMC: a cloud computing application for Monte Carlo simulation.

    Science.gov (United States)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  17. Internal radiation dose calculations with the INREM II computer code

    International Nuclear Information System (INIS)

    Dunning, D.E. Jr.; Killough, G.G.

    1978-01-01

    A computer code, INREM II, was developed to calculate the internal radiation dose equivalent to organs of man which results from the intake of a radionuclide by inhalation or ingestion. Deposition and removal of radioactivity from the respiratory tract is represented by the Internal Commission on Radiological Protection Task Group Lung Model. A four-segment catenary model of the gastrointestinal tract is used to estimate movement of radioactive material that is ingested, or swallowed after being cleared from the respiratory tract. Retention of radioactivity in other organs is specified by linear combinations of decaying exponential functions. The formation and decay of radioactive daughters is treated explicitly, with each radionuclide in the decay chain having its own uptake and retention parameters, as supplied by the user. The dose equivalent to a target organ is computed as the sum of contributions from each source organ in which radioactivity is assumed to be situated. This calculation utilizes a matrix of dosimetric S-factors (rem/μCi-day) supplied by the user for the particular choice of source and target organs. Output permits the evaluation of components of dose from cross-irradiations when penetrating radiations are present. INREM II has been utilized with current radioactive decay data and metabolic models to produce extensive tabulations of dose conversion factors for a reference adult for approximately 150 radionuclides of interest in environmental assessments of light-water-reactor fuel cycles. These dose conversion factors represent the 50-year dose commitment per microcurie intake of a given radionuclide for 22target organs including contributions from specified source organs and surplus activity in the rest of the body. These tabulations are particularly significant in their consistent use of contemporary models and data and in the detail of documentation

  18. Educational audit on drug dose calculation learning in a Tanzanian ...

    African Journals Online (AJOL)

    Background: Patient safety is a key concern for nurses; ability to calculate drug ... Specific objectives were to assess learning from targeted teaching, to identify problem areas in perfor- .... this could result in reduced risk of drug dose error in.

  19. Dose calculation on voxels phantoms using the GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison S.; Queiroz Filho, Pedro P.; Begalli, Marcia

    2009-01-01

    This work implemented an anthropomorphic phantom of voxels on the structure of Monte Carlo GEANT4, for utilization by professionals from the radioprotection, external dosimetry and medical physics. This phantom allows the source displacement that can be isotropic punctual, plain beam, linear or radioactive gas, in order to obtain diverse irradiation geometries. In them, the radioactive sources exposure is simulated viewing the determination of effective dose or the dose in each organ of the human body. The Zubal head and body trunk phantom was used, and we can differentiate the organs and tissues by the chemical constitution in soft tissue, lung tissue, bone tissue, water and air. The calculation method was validated through the comparison with other well established method, the Visual Monte Carlo (VMC). Besides, a comparison was done with the international recommendation for the evaluation of dose by exposure to punctual sources, described in the document TECDOC - 1162- Generic Procedures for Assessment and Response During a Radiological Emergency, where analytical expressions for this calculation are given. Considerations are made on the validity limits of these expressions for various irradiation geometries, including linear sources, immersion into clouds and contaminated soils

  20. Improved Patient Size Estimates for Accurate Dose Calculations in Abdomen Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Lae [Yonsei University, Wonju (Korea, Republic of)

    2017-07-15

    The radiation dose of CT (computed tomography) is generally represented by the CTDI (CT dose index). CTDI, however, does not accurately predict the actual patient doses for different human body sizes because it relies on a cylinder-shaped head (diameter : 16 cm) and body (diameter : 32 cm) phantom. The purpose of this study was to eliminate the drawbacks of the conventional CTDI and to provide more accurate radiation dose information. Projection radiographs were obtained from water cylinder phantoms of various sizes, and the sizes of the water cylinder phantoms were calculated and verified using attenuation profiles. The effective diameter was also calculated using the attenuation of the abdominal projection radiographs of 10 patients. When the results of the attenuation-based method and the geometry-based method shown were compared with the results of the reconstructed-axial-CT-image-based method, the effective diameter of the attenuation-based method was found to be similar to the effective diameter of the reconstructed-axial-CT-image-based method, with a difference of less than 3.8%, but the geometry-based method showed a difference of less than 11.4%. This paper proposes a new method of accurately computing the radiation dose of CT based on the patient sizes. This method computes and provides the exact patient dose before the CT scan, and can therefore be effectively used for imaging and dose control.

  1. Parameter calculation tool for the application of radiological dose projection codes

    International Nuclear Information System (INIS)

    Galindo G, I. F.; Vergara del C, J. A.; Galvan A, S. J.; Tijerina S, F.

    2016-09-01

    The use of specialized codes to estimate the radiation dose projection to an emergency postulated event at a nuclear power plant requires that certain plant data be available according to the event being simulated. The calculation of the possible radiological release is the critical activity to carry out the emergency actions. However, not all of the plant data required are obtained directly from the plant but need to be calculated. In this paper we present a computational tool that calculates the plant data required to use the radiological dose estimation codes. The tool provides the required information when there is a gas emergency venting event in the primary containment atmosphere, whether well or dry well and also calculates the time in which the spent fuel pool would be discovered in the event of a leak of water on some of the walls or floor of the pool. The tool developed has mathematical models for the processes involved such as: compressible flow in pipes considering area change and for constant area, taking into account the effects of friction and for the case of the spent fuel pool hydraulic models to calculate the time in which a container is emptied. The models implemented in the tool are validated with data from the literature for simulated cases. The results with the tool are very similar to those of reference. This tool will also be very supportive so that in postulated emergency cases can use the radiological dose estimation codes to adequately and efficiently determine the actions to be taken in a way that affects as little as possible. (Author)

  2. A Monte Carlo calculation model of electronic portal imaging device for transit dosimetry through heterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States); Kim, Jong Oh [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Yeo, Inhwan [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)

    2016-05-15

    Purpose: To develop and evaluate a fast Monte Carlo (MC) dose calculation model of electronic portal imaging device (EPID) based on its effective atomic number modeling in the XVMC code. Methods: A previously developed EPID model, based on the XVMC code by density scaling of EPID structures, was modified by additionally considering effective atomic number (Z{sub eff}) of each structure and adopting a phase space file from the EGSnrc code. The model was tested under various homogeneous and heterogeneous phantoms and field sizes by comparing the calculations in the model with measurements in EPID. In order to better evaluate the model, the performance of the XVMC code was separately tested by comparing calculated dose to water with ion chamber (IC) array measurement in the plane of EPID. Results: In the EPID plane, calculated dose to water by the code showed agreement with IC measurements within 1.8%. The difference was averaged across the in-field regions of the acquired profiles for all field sizes and phantoms. The maximum point difference was 2.8%, affected by proximity of the maximum points to penumbra and MC noise. The EPID model showed agreement with measured EPID images within 1.3%. The maximum point difference was 1.9%. The difference dropped from the higher value of the code by employing the calibration that is dependent on field sizes and thicknesses for the conversion of calculated images to measured images. Thanks to the Z{sub eff} correction, the EPID model showed a linear trend of the calibration factors unlike those of the density-only-scaled model. The phase space file from the EGSnrc code sharpened penumbra profiles significantly, improving agreement of calculated profiles with measured profiles. Conclusions: Demonstrating high accuracy, the EPID model with the associated calibration system may be used for in vivo dosimetry of radiation therapy. Through this study, a MC model of EPID has been developed, and their performance has been rigorously

  3. ALMA. Calculations of diffusion and radiation doses in connection with final storage of radioactive wastes

    International Nuclear Information System (INIS)

    Gelin, R.; Kjellbert, N.; Stenquist, C.

    1978-09-01

    Calculations of diffusion and radiation doses in connection with final storage of low-lavel and intermediate-level radioactive wastes. The results show that the doses obtained with realistic values of parameters used in the calculations are very low. However, substantially simplified assumption have been applied in the calculations. Thus more detailed models for the description of the diffusion process have to be developed. (E.R.)

  4. Calculation of individual and population doses on Danish territory resulting from hypothetical core-melt accidents at the Barsebaeck reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Individual and population doses within Danish territory are calculated from hypothetical, severe core-melt accidents at the Swedish nuclear plant at Barsebaeck. The fission product inventory of the Barsebaeck reactor is calculated. The release fractions for the accidents are taken from WASH-1400. Based on parametric studies, doses are calculated for very unfavourable, but not incredible weather conditions. The probability of such conditions in combination with wind direction towards Danish territory is estimated. Doses to bone marrow, lungs, GI-tract and thyroid are calculated based on dose models developed at Risoe. These doses are found to be consistent with doses calculated with the models used in WASH-1400. (author)

  5. Validation of Dose Calculation Codes for Clearance

    International Nuclear Information System (INIS)

    Menon, S.; Wirendal, B.; Bjerler, J.; Studsvik; Teunckens, L.

    2003-01-01

    Various international and national bodies such as the International Atomic Energy Agency, the European Commission, the US Nuclear Regulatory Commission have put forward proposals or guidance documents to regulate the ''clearance'' from regulatory control of very low level radioactive material, in order to allow its recycling as a material management practice. All these proposals are based on predicted scenarios for subsequent utilization of the released materials. The calculation models used in these scenarios tend to utilize conservative data regarding exposure times and dose uptake as well as other assumptions as a safeguard against uncertainties. None of these models has ever been validated by comparison with the actual real life practice of recycling. An international project was organized in order to validate some of the assumptions made in these calculation models, and, thereby, better assess the radiological consequences of recycling on a practical large scale

  6. Verification of SuperMC with ITER C-Lite neutronic model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shu [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Yu, Shengpeng [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); He, Peng, E-mail: peng.he@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2016-12-15

    Highlights: • Verification of the SuperMC Monte Carlo transport code with ITER C-Lite model. • The modeling of the ITER C-Lite model using the latest SuperMC/MCAM. • All the calculated quantities are consistent with MCNP well. • Efficient variance reduction methods are adopted to accelerate the calculation. - Abstract: In pursit of accurate and high fidelity simulation, the reference model of ITER is becoming more and more detailed and complicated. Due to the complexity in geometry and the thick shielding of the reference model, the accurate modeling and precise simulaion of fusion neutronics are very challenging. Facing these difficulties, SuperMC, the Monte Carlo simulation software system developed by the FDS Team, has optimized its CAD interface for the automatic converting of more complicated models and increased its calculation efficiency with advanced variance reduction methods To demonstrate its capabilites of automatic modeling, neutron/photon coupled simulation and visual analysis for the ITER facility, numerical benchmarks using the ITER C-Lite neutronic model were performed. The nuclear heating in divertor and inboard toroidal field (TF) coils and a global neutron flux map were evaluated. All the calculated nuclear heating is compared with the results of the MCNP code and good consistencies between the two codes is shown. Using the global variance reduction methods in SuperMC, the average speed-up is 292 times for the calculation of inboard TF coils nuclear heating, and 91 times for the calculation of global flux map, compared with the analog run. These tests have shown that SuperMC is suitable for the design and analysis of ITER facility.

  7. Calculation of the effective environmental dose rate for ESR and luminescence dating

    International Nuclear Information System (INIS)

    Brennan, B.J.

    2001-01-01

    The determination of the age of a sample using luminescence and ESR dating techniques requires knowledge of the sample's average effective environmental dose rate due to natural radiation sources (alpha, beta, gamma, and cosmic), and age estimates can never be more accurate than the estimate of this dose rate. The estimation process is often complicated by spatial and temporal inhomogeneities in the distribution of natural radiation sources. This paper discusses applications of radiation physics in modelling the effects of these inhomogeneities to ensure accurate estimation of the average dose rate for the sample. For natural alpha, beta, and gamma sources, 'dose point kernels' are employed in calculations using an assumed model for the spatial and temporal dependence of source concentrations. These three types of radiation have rather different penetration properties, with their typical effective ranges being multiples of 10 micrometre, 1 mm, and 100 mm respectively. For each type of radiation, applications are discussed where spatial inhomogeneity in the distribution of sources around and in a sample has a serious effect on the average dose rate to the sample. In some cases, (e.g. gamma dose estimation in 'lumpy' environments) lack of detailed knowledge precludes accurate modelling of the site for a particular sample, but useful statistical information can still be obtained. Temporal variation of radioactive source concentrations is usually coupled with spatial effects and can arise from processes such as parent-daughter disequilibrium, uptake or leaching of sources, or variation in burial depth or water saturation. Again, calculations based non a known or assumed history can be employed to obtain a time-averaged dose rate for a sample. The accuracy with which these calculations can reflect the true environmental dose rate is limited principally by the reliability of the model assumed, which in turn depends on the state of knowledge of the site and its history

  8. THIDA: code system for calculation of the exposure dose rate around a fusion device

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Igarashi, Masahito.

    1978-12-01

    A code system THIDA has been developed for calculation of the exposure dose rates around a fusion device. It consists of the following: one- and two-dimensional discrete ordinate transport codes; induced activity calculation code; activation chain, activation cross section, radionuclide gamma-ray energy/intensity and gamma-ray group constant files; and gamma ray flux to exposure dose rate conversion coefficients. (author)

  9. Monte Carlo calculations of patient doses from dental radiography

    International Nuclear Information System (INIS)

    Gibbs, S.J.; Pujol, A.; Chen, T.S.; Malcolm, A.W.

    1984-01-01

    A Monte Carlo computer program has been developed to calculate patient dose from diagnostic radiologic procedures. Input data include patient anatomy as serial CT scans at 1-cm intervals from a typical cadaver, beam spectrum, and projection geometry. The program tracks single photons, accounting for photoelectric effect, coherent (using atomic form factors) and incoherent (using scatter functions) scatter. Inhomogeneities (bone, teeth, muscle, fat, lung, air cavities, etc.) are accounted for as they are encountered. Dose is accumulated in a three-dimensional array of voxels, corresponding to the CT input. Output consists of isodose curves, doses to specific organs, and effective dose equivalent, H/sub E/, as defined by ICRP. Initial results, from dental bite-wing projections using 90-kVp, half-wave rectified dental spectra, have produced H/sub E/ values ranging from 3 to 17 microsieverts (0.3-1.7 mrem) per image, depending on image receptor and projection geometry. The probability of stochastic effect is estimated by ICRP as 10/sup -2//Sv, or about 10/sup -7/ to 10/sup -8/ per image

  10. CT dose profiles and MSAD calculation in a chest phantom

    International Nuclear Information System (INIS)

    Oliveira, Bruno Beraldo; Silva, Teogenes Augusto da

    2011-01-01

    For optimizing patient doses in computed tomography (CT), the Brazilian legislation has only established diagnostic reference levels (DRLs) in terms of Multiple Scan Average Dose (MSAD) in a typical adult as a quality control parameter for CT scanners. Compliance with the DRLs can be verified by measuring the Computed Tomography Air Kerma Index with a calibrated pencil ionization chamber or by obtaining the dose distribution in CT scans. An analysis of the quality of five CT scanners in Belo Horizonte was done in terms of dose profile of chest scans and MSAD determinations. Measurements were done with rod shape lithium fluoride thermoluminescent dosimeters (TLD-100) distributed in cylinders positioned in peripheral and central regions of a polymethylmethacrylate chest phantom. The peripheral regions presented higher dose values. The longitudinal dose variation can be observed and the maximum dose was recorded at the edges of the phantom at the midpoint of the longitudinal axis. The MSAD results were in according to the DRL of 25 mGy established by Brazilian legislation. The results contribute to disseminate to hospitals and radiologists the proper procedure to use the thermoluminescent dosimeters for the calculation of the MSAD from the CT dose profiles and to notice the compliance with the DRLs. (author)

  11. A model for the calculation of the radiation dose from natural radionuclides in The Netherlands

    International Nuclear Information System (INIS)

    Ackers, J.G.

    1986-02-01

    A model has been developed to calculate the radiation dose incurred from natural radioactivity indoors and outdoors, expressed in effective dose equivalence/year. The model is applied on a three rooms dwelling characterized by interconnecting air flows and on a dwelling with crawlspace. In this model the distinct parameters are variable in order to allow the investigation of the relative influence. The calculated effective dose equivalent for an adult in the dwelling was calculated to be about 1.7 mSv/year, composed of 15% from cosmic radiation, 35% from terrestrial radioactivity, 20% from radioactivity in the body and 30% from natural radionuclides in building materials. The calculations show an enhancement of about a factor of two in radon concentration in air in a room which is ventilated by air from an adjacent room. It is also shown that the attachment rate of radon products to aerosols and the plate-out effect are relatively important parameters influencing the magnitude of the dose rate. (Auth.)

  12. Evolution of calculation models for the proton-therapy dose planning software

    International Nuclear Information System (INIS)

    Vidal, Marie

    2011-01-01

    This work was achieved in collaboration between the Institut Curie Proton-therapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the proton-therapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams. (author) [fr

  13. Assessment the accuracy of dose calculation in build-up region for two radiotherapy treatment planning systems

    Directory of Open Access Journals (Sweden)

    Bagher Farhood

    2017-01-01

    Conclusions: It is concluded that for open field sizes without gantry angulation, dose calculation accuracy in Prowess TPS with CCCS algorithm is better than TiGRT and Prowess TPSs with FPE algorithm. Furthermore, it is concluded that for wedged field with large gantry angle, dose calculation accuracy of Prowess TPS with FPE algorithm is better than TiGRT TPS while, for medium and small gantry angles, dose calculation accuracy of TiGRT TPS is better than Prowess TPS with FPE algorithm.

  14. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A. [Department of Radiological Sciences, St Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States); Mirro, Amy E. [Department of Biomedical Engineering, Washington University, St Louis, Missouri 63130 (United States)

    2014-07-15

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. The CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to

  15. Comparison of measured and calculated contralateral breast doses in whole breast radiotherapy for VMAT and standard tangent techniques

    International Nuclear Information System (INIS)

    Tse, T.L.J; Bromley, R.; Booth, J.; Gray, A.

    2011-01-01

    Full text: Objective This study aims to evaluate the accuracy of calculated dose with the Eclipse analytical anisotropic algorithm (AAA) for contralateral breast (CB) in left-sided breast radiotherapy for dual-arc VMA T and standard wedged tangent (SWT) techniques. Methods and materials Internal and surface CB doses were measured with EBT2 film in an anthropomorphic phantom mounted with C-cup and D-cup breasts. The measured point dose was approximated by averaging doses over the 4 x 4 mm 2 central region of each 2 x 2 cm2 piece of film. The dose in the target region of the breast was also measured. The measured results were compared to AAA calculations with calculation grids of I, 2.5 and 5 mm. Results In SWT plans, the average ratios of calculation to measurement for internal doses were 0.63 ± 0.081 and 0.5 I ± 0.28 in the medial and lateral aspects, respectively. Corresponding ratios for surface doses were 0.88 ± 0.22 and 0.38 ± 0.38. In VMAT plans, however, the calculation accuracies showed little dependence on the measurement locations, the ratios were 0.78 ± O. I I and 0.81 ± 0.085 for internal and surface doses. In general, finer calculation resolutions did not inevitably improve the dose estimates of internal doses. For surface doses, using smaller grid size I mm could improve the calculation accuracies on the medial but not the lateral aspects of CB. Conclusion In all plans, AAA had a tendency to underestimate both internal and surface CB doses. Overall, it produces more accurate results in VMAT than SWT plans.

  16. SU-E-T-202: Impact of Monte Carlo Dose Calculation Algorithm On Prostate SBRT Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, C; Garrigo, E; Cardenas, J; Castro Pena, P [Instituto de Radioterapia - Fundacion Marie Curie, Cordoba (Argentina)

    2014-06-01

    Purpose: The purpose of this work was to quantify the dosimetric impact of using Monte Carlo algorithm on pre calculated SBRT prostate treatment with pencil beam dose calculation algorithm. Methods: A 6MV photon beam produced by a Novalis TX (BrainLAB-Varian) linear accelerator equipped with HDMLC was used. Treatment plans were done using 9 fields with Iplanv4.5 (BrainLAB) and dynamic IMRT modality. Institutional SBRT protocol uses a total dose to the prostate of 40Gy in 5 fractions, every other day. Dose calculation is done by pencil beam (2mm dose resolution), heterogeneity correction and dose volume constraint (UCLA) for PTV D95%=40Gy and D98%>39.2Gy, Rectum V20Gy<50%, V32Gy<20%, V36Gy<10% and V40Gy<5%, Bladder V20Gy<40% and V40Gy<10%, femoral heads V16Gy<5%, penile bulb V25Gy<3cc, urethra and overlap region between PTV and PRV Rectum Dmax<42Gy. 10 SBRT treatments plans were selected and recalculated using Monte Carlo with 2mm spatial resolution and mean variance of 2%. DVH comparisons between plans were done. Results: The average difference between PTV doses constraints were within 2%. However 3 plans have differences higher than 3% which does not meet the D98% criteria (>39.2Gy) and should have been renormalized. Dose volume constraint differences for rectum, bladder, femoral heads and penile bulb were les than 2% and within tolerances. Urethra region and overlapping between PTV and PRV Rectum shows increment of dose in all plans. The average difference for urethra region was 2.1% with a maximum of 7.8% and for the overlapping region 2.5% with a maximum of 8.7%. Conclusion: Monte Carlo dose calculation on dynamic IMRT treatments could affects on plan normalization. Dose increment in critical region of urethra and PTV overlapping region with PTV could have clinical consequences which need to be studied. The use of Monte Carlo dose calculation algorithm is limited because inverse planning dose optimization use only pencil beam.

  17. Modelling of an industrial environment, part 2.: External dose calculation with relevant countermeasures

    International Nuclear Information System (INIS)

    Eged, K.; Kis, Z.; Alvarez-Farizo, B.; Gil, J.; Voigt, G.

    2002-01-01

    The calculation of the collective dose and averted collective dose after applying countermeasures in an industrial environment has been divided in two parts. In the first part (Kis et al. 2002) separate Monte Carlo simulations of photon transport resulted in the air kermas per photon per unit area due to the industrial surfaces contaminated by 1 37C s at specific points using the so-called local approach. In the local approach the air kerma rates due to specific intervention elements at the evaluation locations in the whole environment are determined (Gutierrez et al. 2000). In this way the collective and averted collective dose due to the radiation from a particular intervention element (e.g. the roof of a building) can be obtained. It can, therefore, provide a ranking of the specific intervention elements based on their contribution to collective dose as well. The deposition pattern and the long-term behaviour of deposited radionuclides vary widely in natural circumstances; therefore the number of the photons emitted from the various surfaces per unit area and time can differ significantly. This means the results of the Monte Carlo simulations have to be weighted according to the number of emitted photons so that the actual radiation field can be set up. For this purpose, a dose calculation code has been developed in the framework of the TEMAS project (Gutierrez et al. 2000) which allows to calculate collective doses for different environments. This code has been applied in the present work

  18. Development of a method to calculate organ doses for the upper gastrointestinal fluoroscopic examination

    International Nuclear Information System (INIS)

    Suleiman, O.H.

    1989-01-01

    A method was developed to quantitatively measure the upper gastrointestinal fluoroscopic examination in order to calculate organ doses. The dynamic examination was approximated with a set of discrete x-ray fields. Once the examination was segmented into discrete x-ray fields appropriate organ dose tables were generated using an existing computer program for organ dose calculations. This, along with knowledge of the radiation exposures associated with each of the fields, enabled the calculation of organ doses for the entire dynamic examination. The protocol involves videotaping the examination while fluoroscopic technique factors, tube current and tube potential, are simultaneously recorded on the audio tracks of the videotape. Subsequent analysis allows the dynamic examination to be segmented into a series of discrete x-ray fields uniquely defined by field size, projection, and anatomical region. The anatomical regions associated with the upper gastrointestinal examination were observed to be the upper, middle, and lower esophagus, the gastroesophageal junction, the stomach, and the duodenum

  19. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4

    International Nuclear Information System (INIS)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R.

    2014-01-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H p (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm 3 , composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm 2 ). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  20. Methods for calculating population dose from atmospheric dispersion of radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L; Jow, H N; Lee, I S [Pittsburgh Univ., PA (USA)

    1978-06-01

    Curves are computed from which population dose (man-rem) due to dispersal of radioactivity from a point source can be calculated in the gaussian plume model by simple multiplication, and methods of using them and their limitations are considered. Illustrative examples are presented.