WorldWideScience

Sample records for maximum woody vegetation

  1. Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna.

    Science.gov (United States)

    Dohn, Justin; Augustine, David J; Hanan, Niall P; Ratnam, Jayashree; Sankaran, Mahesh

    2017-02-01

    The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation. Interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-yr longitudinal study of spatially explicit growth patterns of woody vegetation in an East African savanna following exclusion of large herbivores and in the absence of fire. We examined plant spatial patterns and quantified the degree of competition among woody individuals. Woody plants in this semiarid savanna exhibit strongly clumped spatial distributions at scales of 1-5 m. However, analysis of woody plant growth rates relative to their conspecific and heterospecific neighbors revealed evidence for strong competitive interactions at neighborhood scales of up to 5 m for most woody plant species. Thus, woody plants were aggregated in clumps despite significantly decreased growth rates in close proximity to neighbors, indicating that the spatial distribution of woody plants in this region depends on dispersal and establishment processes rather than on competitive, density-dependent mortality. However, our documentation of suppressive effects of woody plants on neighbors also suggests a potentially important role for tree-tree competition in controlling vegetation structure and indicates that the balanced-competition hypothesis may contribute to well-known patterns in maximum tree cover across rainfall gradients in Africa. © 2016 by the Ecological Society of America.

  2. Patterns in woody vegetation structure across African savannas

    Science.gov (United States)

    Axelsson, Christoffer R.; Hanan, Niall P.

    2017-07-01

    Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal

  3. Patterns in woody vegetation structure across African savannas

    Directory of Open Access Journals (Sweden)

    C. R. Axelsson

    2017-07-01

    Full Text Available Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs, which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality, soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr−1 to the wettest (1200–1400 mm yr−1 end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand

  4. Determinants of patchiness of woody vegetation in an African savanna

    NARCIS (Netherlands)

    Veldhuis, Michiel P.; Rozen-Rechels, David; le Roux, Elizabeth; Cromsigt, Joris P.G.M.; Berg, Matheus P.; Olff, Han

    2016-01-01

    How is woody vegetation patchiness affected by rainfall, fire and large herbivore biomass? Can we predict woody patchiness and cover over large-scale environmental gradients? We quantified variation in local patchiness as the lacunarity of woody cover on satellite-derived images. Using Random Forest

  5. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    Directory of Open Access Journals (Sweden)

    David Helman

    2015-09-01

    Full Text Available We present an efficient method for monitoring woody (i.e., evergreen and herbaceous (i.e., ephemeral vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS. The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI in the dry season was attributed to the woody vegetation (NDVIW. A constant NDVI value was assumed for soil background during this period. In the wet season, changes in NDVI were attributed to the development of ephemeral herbaceous vegetation in the forest floor and its maximum value to the peak green cover (NDVIH. NDVIW and NDVIH agreed well with field estimates of leaf area index and fraction of vegetation cover in two differently structured Mediterranean forests. To further assess the method’s assumptions, understory NDVI was retrieved form MODIS Bidirectional Reflectance Distribution Function (BRDF data and compared with NDVIH. After calibration, leaf area index and woody and herbaceous vegetation covers were assessed for those forests. Applicability for pre- and post-fire monitoring is presented as a potential use of this method for forest management in Mediterranean-climate regions.

  6. Mapping gains and losses in woody vegetation across global tropical drylands

    DEFF Research Database (Denmark)

    Tian, Feng; Brandt, Martin Stefan; Liu, Yi Y

    2017-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to remove the interannual fluctuations of the woody leaf component. We revealed significant trends (P ... trend in the leaf component (VODleaf modeled from NDVI), indicating pronounced gradual growth/decline in woody vegetation not captured by traditional assessments. The method is validated using a unique record of ground measurements from the semiarid Sahel and shows a strong agreement between changes...

  7. Climatological determinants of woody cover in Africa.

    Science.gov (United States)

    Good, Stephen P; Caylor, Kelly K

    2011-03-22

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

  8. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa.

    Science.gov (United States)

    Brandt, Martin; Rasmussen, Kjeld; Peñuelas, Josep; Tian, Feng; Schurgers, Guy; Verger, Aleixandre; Mertz, Ole; Palmer, John R B; Fensholt, Rasmus

    2017-03-06

    The rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land and forest products, which presumably leads to deforestation. Conversely, a greening of African drylands has been reported, but this has been difficult to associate with changes in woody vegetation. There is thus an incomplete understanding of how woody vegetation responds to socio-economic and environmental change. Here we used a passive microwave Earth observation data set to document two different trends in land area with woody cover for 1992-2011: 36% of the land area (6,870,000 km 2 ) had an increase in woody cover largely in drylands, and 11% had a decrease (2,150,000 km 2 ), mostly in humid zones. Increases in woody cover were associated with low population growth, and were driven by increases in CO 2 in the humid zones and by increases in precipitation in drylands, whereas decreases in woody cover were associated with high population growth. The spatially distinct pattern of these opposing trends reflects, first, the natural response of vegetation to precipitation and atmospheric CO 2 , and second, deforestation in humid areas, minor in size but important for ecosystem services, such as biodiversity and carbon stocks. This nuanced picture of changes in woody cover challenges widely held views of a general and ongoing reduction of the woody vegetation in Africa.

  9. Spatial-structural analysis of leafless woody riparian vegetation for hydraulic considerations

    Science.gov (United States)

    Weissteiner, Clemens; Jalonen, Johanna; Järvelä, Juha; Rauch, Hans Peter

    2013-04-01

    Woody riparian vegetation is a vital element of riverine environments. On one hand woody riparian vegetation has to be taken into account from a civil engineering point of view due to boundary shear stress and vegetation drag. On the other hand it has to be considered from a river ecological point of view due to shadowing effects and as a source of organic material for aquatic habitats. In hydrodynamic and hydro-ecological studies the effects of woody riparian vegetation on flow patterns are usually investigated on a very detailed level. On the contrary vegetation elements and their spatial patterns are generally analysed and discussed on the basis of an integral approach measuring for example basal diameters, heights and projected plant areas. For a better understanding of the influence of woody riparian vegetation on turbulent flow and on river ecology, it is essential to record and analyse plant data sets on the same level of quality as for hydrodynamic or hydro-ecologic purposes. As a result of the same scale of the analysis it is possible to incorporate riparian vegetation as a sub-model in the hydraulic analysis. For plant structural components, such as branches on different topological levels it is crucial to record plant geometrical parameters describing the habitus of the plant on branch level. An exact 3D geometrical model of real plants allows for an extraction of various spatial-structural plant parameters. In addition, allometric relationships help to summarize and describe plant traits of riparian vegetation. This paper focuses on the spatial-structural composition of leafless riparia woddy vegetation. Structural and spatial analyses determine detailed geometric properties of the structural components of the plants. Geometrical and topological parameters were recorded with an electro-magnetic scanning device. In total, 23 plants (willows, alders and birches) were analysed in the study. Data were recorded on branch level, which allowed for the

  10. Structure and composition of woody vegetation in two important bird areas in southern Zimbabwe

    NARCIS (Netherlands)

    Gandiwa, P.; Chinoitezvi, E.; Gandiwa, E.

    2013-01-01

    This study assessed the status of woody vegetation structure and composition in two Important Bird Areas (IBA) i.e. Manjinji Pan and Save-Runde Junction located in southeastern Zimbabwe. The objectives of this study were to: (i) determine the woody vegetation structure and composition of the study

  11. Diversity and structure of woody vegetation across areas with ...

    African Journals Online (AJOL)

    Here we investigate the differences and/or similarities of woody vegetation diversity and structure across areas with different edaphic factors (i.e. soil group) in Gonarezhou National Park, Zimbabwe. We stratified our study area into two strata based on soil group, namely siallitic soil in northern Gonarezhou and regosol soil ...

  12. Application of Bridge Pier Scour Equations for Large Woody Vegetation

    Science.gov (United States)

    2016-07-01

    velocities and, thus, reduces boundary shear stress , the primary driver of sediment erosion. Even if this vegetation should become uprooted, the smaller...ER D C TR -1 6- 10 Application of Bridge Pier Scour Equations for Large Woody Vegetation En gi ne er R es ea rc h an d D ev el op m...K. Corcoran, and Kevin S. Holden July 2016 Approved for public release ; distribution is unlimited. The U.S. Army Engineer Research and

  13. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    Directory of Open Access Journals (Sweden)

    Nicholas R Vaughn

    Full Text Available Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  14. Eleventh-year response of loblolly pine and competing vegetation to woody and herbaceous plant control on a Georgia flatwoods site

    Science.gov (United States)

    Bruce R. Zutter; James H. Miller

    1998-01-01

    Through 11 growing seasons, growth of loblolly pine (Pinus taeda L.) increased after control of herbaceous, woody, or both herbaceous and woody vegetation (total control) for the first 3 years after planting on a bedded site in the Georgia coastal flatwoods. Gains in stand volume index from controlling either herbaceous or woody vegetation alone were approximately two-...

  15. Woody Vegetation Composition and Structure in Peri-urban Chongming Island, China

    Science.gov (United States)

    Zhao, Min; Escobedo, Francisco J.; Wang, Ruijing; Zhou, Qiaolan; Lin, Wenpeng; Gao, Jun

    2013-05-01

    Chongming, the world's largest alluvial island, is located within the municipality of Shanghai, China. Recent projects have now linked peri-urban Chongming to Shanghai's urban core and as a result will soon undergo substantial changes from urbanization. We quantitatively analyzed the structure and composition of woody vegetation across subtropical, peri-urban Chongming as a basis for sustainable management of these rapidly urbanizing subtropical ecosystems elsewhere. We used 178 permanent, random plots to statistically and spatially analyze woody plant composition and tree structure across the 1,041 km2 of Chongming. A total of 2,251 woody plants were measured comprising 42 species in 37 genera. We statistically and geospatially analyzed field data according to land uses and modeled air pollution removal by trees. Average tree diameter at breast height, total height, and crown widths on transportation land uses were greater than other land uses. These same values were lowest on forest land use and greater tree cover was associated with areas of increased anthropogenic activity. Less than 20 % of the woody vegetation was exotic and a species richness index was significantly different between land uses due to legacy effects. Composition of agriculture and forest land uses were similar to residential and transportation. Tree cover across Chongming was also estimated to annually remove 1,400 tons of air pollutants. We propose that this integrated and quantitative method can be used in other subtropical, peri-urban areas in developing countries to establish baseline trends for future sustainability objectives and to monitor the effects of urbanization and climate change.

  16. Climatological determinants of woody cover in Africa

    OpenAIRE

    Good, Stephen P.; Caylor, Kelly K.

    2011-01-01

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent....

  17. Exploring an extensive dataset to establish woody vegetation cover and composition in Kruger National Park for the late 1980s

    Directory of Open Access Journals (Sweden)

    Gregory A. Kiker

    2014-09-01

    Conservation implications: The results provided evidence that large-scale, woody vegetation surveys conducted along roads offer useful ecosystem level information. However, such an approach fails to pick up less common species. The data presented here provided a useful snapshot of KNP woody vegetation structure and composition and could provide excellent opportunities for spatio-temporal comparisons.

  18. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Rasmussen, Kjeld; Peñuelas, Josep

    2017-01-01

    The rapidly growing human population in sub-Saharan Africa generates increasing demand for agricultural land and forest products, which presumably leads to deforestation. Conversely, a greening of African drylands has been reported, but this has been difficult to associate with changes in woody...... an increase in woody cover largely in drylands, and 11% had a decrease (2,150,000 km2), mostly in humid zones. Increases in woody cover were associated with low population growth, and were driven by increases in CO2 in the humid zones and by increases in precipitation in drylands, whereas decreases in woody...... cover were associated with high population growth. The spatially distinct pattern of these opposing trends reflects, first, the natural response of vegetation to precipitation and atmospheric CO2, and second, deforestation in humid areas, minor in size but important for ecosystem services...

  19. Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa – Lidar results

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2011-04-01

    Full Text Available use and conservation on woody vegetation structure in the Lowveld savannas of South Africa ? Lidar results. K.J. Wesselsa*, R. Mathieub, B.F.N. Erasmusc, G.P. Asnerd, I.P.J. Smite, J.A.N. Van Aardtf, R. Mainb, J. Fisherb,c a Remote Sensing... with related studies, suggest that communal land use have a higher impact on the woody cover below 5m than both elephants and fire. Keywords: Carnegie Airborne Observatory (CAO), Lidar, fuel wood, South Africa, Savannas, woody vegetation structure 1...

  20. Tree Plantation Will not Compensate Natural Woody Vegetation Cover Loss in the Atlantic Department of Southern Benin

    Directory of Open Access Journals (Sweden)

    Toyi, MS.

    2013-01-01

    Full Text Available This study deals with land use and land cover changes for a 33 years period. We assessed these changes for eight land cover classes in the south of Benin by using an integrated multi-temporal analysis using three Landsat images (1972 Landsat MSS, 1986 Landsat TM and 2005 Landsat ETM+. Three scenarios for the future were simulated using a first-order Markovian model based on annual probability matrices. The contribution of tree plantations to compensate forest loss was assessed. The results show a strong loss of forest and savanna, mainly due to increased agricultural land. Natural woody vegetation ("forest", "wooded savanna" and "tree and shrub savanna" will seriously decrease by 2025 due to the expansion of agricultural activities and the increase of settlements. Tree plantations are expected to double by 2025, but they will not compensate for the loss of natural woody vegetation cover. Consequently, we assist to a continuing woody vegetation area decrease. Policies regarding reforestation and forest conservation must be initiated to reverse the currently projected tendencies.

  1. Multiscale influence of woody riparian vegetation on fluvial topography quantified with ground-based and airborne lidar

    Science.gov (United States)

    Bywater-Reyes, Sharon; Wilcox, Andrew C.; Diehl, Rebecca M.

    2017-06-01

    Coupling between riparian vegetation and river processes can result in the coevolution of plant communities and channel morphology. Quantifying biotic-abiotic interactions remains difficult because of the challenges in making and analyzing appropriately scaled observations. We measure the influence of woody vegetation on channel topography at the patch and reach scales in a sand bed, dryland river system (Santa Maria River, Arizona) with native Populus and invasive Tamarix. At the patch scale, we use ground-based lidar to relate plant morphology to "tail bars" formed in the lee of vegetation. We find vegetation roughness density (λf) to most influence tail-bar shape and size, suggesting coherent flow structures associated with roughness density are responsible for sediment deposition at this scale. Using airborne lidar, we test whether relationships between topography and vegetation morphology observed at the patch scale are persistent at the reach scale. We find that elevation of the channel (relative to the local mean) covaries with a metric of vegetation density, indicating analogous influences of vegetation density on topography across spatial scales. While these results are expected, our approach provides insight regarding interactions between woody riparian vegetation and channel topography at multiple scales, and a means to quantify such interactions for use in other field settings.

  2. Vegetation types, dominant compositions, woody plant diversity and stand structure in Trishna Wildlife Sanctuary of Northeast India.

    Science.gov (United States)

    Majumdar, Koushik; Datta, B K

    2015-03-01

    Present study was carried out to assess the vegetation types, diversity and phytosociological status of woody plants in Trishna Wildlife Sanctuary of Tripura, Northeast India. Vegetation data was derived by 25 line transects (10 m wide and 500 m length, each 0.5 ha size). All woody species at >10 cm gbh (Girth at Breast Height) within each plots were measured and counted. A total of six forest types were classified by cluster analysis using Importance Value Index (IVI) of 289 woody species. Species diversity, forest structure and woody community associations were evaluated and discussed. One way ANOVA revealed significant differences in all species diversity measures and stand structure along the forest types. Distribution of stem density at ten different gbh classes showed reverse J-shaped curves. Population status of woody plants was also examined through grouping of all individuals into four population age stages viz. sapling ( or = 30 - 120 - 210 cm gbh) and old (> or =210 cm). To observe dominant composition and species population trend, IVI of top ten dominant species from all forest types were tabulated. The present study suggested that Trishna Wildlife Sanctuary is an important habitat in Tripura from floristic point of view and it should be conserved on priority basis for remaining wildlife endurances and monitor for forest livelihoods products for sustainable biodiversity conservation in this region.

  3. Woody structure facilitates invasion of woody plants by providing perches for birds.

    Science.gov (United States)

    Prather, Chelse M; Huynh, Andrew; Pennings, Steven C

    2017-10-01

    Woody encroachment threatens prairie ecosystems globally, and thus understanding the mechanisms that facilitate woody encroachment is of critical importance. Coastal tallgrass prairies along the Gulf Coast of the US are currently threatened by the spread of several species of woody plants. We studied a coastal tallgrass prairie in Texas, USA, to determine if existing woody structure increased the supply of seeds from woody plants via dispersal by birds. Specifically, we determined if (i) more seedlings of an invasive tree ( Tridacia sebifera ) are present surrounding a native woody plant ( Myrica cerifera ); (ii) wooden perches increase the quantity of seeds dispersed to a grassland; and (iii) perches alter the composition of the seed rain seasonally in prairie habitats with differing amounts of native and invasive woody vegetation, both underneath and away from artificial wooden perches. More T. sebifera seedlings were found within M. cerifera patches than in graminoid-dominated areas. Although perches did not affect the total number of seeds, perches changed the composition of seed rain to be less dominated by grasses and forbs. Specifically, 20-30 times as many seeds of two invasive species of woody plants were found underneath perches independent of background vegetation, especially during months when seed rain was highest. These results suggest that existing woody structure in a grassland can promote further woody encroachment by enhancing seed dispersal by birds. This finding argues for management to reduce woody plant abundance before exotic plants set seeds and argues against the use of artificial perches as a restoration technique in grasslands threatened by woody species.

  4. Comparison of 226Ra nuclide from soil by three woody species Betula pendula, Sambucus nigra and Alnus glutinosa during the vegetation period

    International Nuclear Information System (INIS)

    Soudek, Petr; Petrova, Sarka; Benesova, Dagmar; Tykva, Richard; Vankova, Radomira; Vanek, Tomas

    2007-01-01

    The uptake of 226 Ra from the contaminated soil was compared in three woody species: alder (Alnus glutinosa), birch (Betula pendula) and elder (Sambucus nigra). The 226 Ra activities increased during the vegetation periods (in 2003, 2004 and 2005) both in the leaves and flowers + seeds. The highest accumulation was found in birch, reaching 0.41 Bq/g DW in the leaves (at the end of the vegetation period in 2003). The lowest 226 Ra accumulation was determined in alder. The extent of 226 Ra accumulation in the leaves of woody species demonstrates that these pioneer woody species can be used as remediation alternative to the use of herbs, provided that the removal of fallen leaves could be achieved in the end of vegetation period

  5. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    OpenAIRE

    David Helman; Itamar M. Lensky; Naama Tessler; Yagil Osem

    2015-01-01

    We present an efficient method for monitoring woody (i.e., evergreen) and herbaceous (i.e., ephemeral) vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI) time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI ...

  6. Effects of Fireplace Use on Forest Vegetation and Amount of Woody Debris in Suburban Forests in Northwestern Switzerland

    Science.gov (United States)

    Hegetschweiler, K. Tessa; van Loon, Nicole; Ryser, Annette; Rusterholz, Hans-Peter; Baur, Bruno

    2009-02-01

    Urban forests are popular recreation areas in Europe. Several of these temperate broad-leaved forests also have a high conservation value due to sustainable management over many centuries. Recreational activities, particularly the use of fireplaces, can cause extensive damage to soil, ground vegetation, shrubs, and trees. Firewood collection depletes woody debris, leading to a loss of habitat for specialized organisms. We examined the effects of fireplace use on forest vegetation and the amount of woody debris by comparing disturbed and control plots in suburban forests in northwestern Switzerland. At frequently used fireplaces, we found reduced species densities in the ground vegetation and shrub layer and changes in plant species composition due to human trampling within an area of 150-200 m2. Picnicking and grilling also reduced the height and changed the age structure of shrubs and young trees. The amount of woody debris was lower in disturbed plots than in control plots. Pieces of wood with a diameter of 0.6-7.6 cm were preferentially collected by fireplace users. The reduction in woody debris volume extended up to a distance of 16 m from the fire ring, covering an area of 800 m2 at each picnic site. In order to preserve the ecological integrity of urban forests and to maintain their attractiveness as important recreation areas, we suggest depositing logging residues to be used as firewood and to restrict visitor movements near picnic sites.

  7. Woody vegetation, fuel and fire track the melting of the Scandinavian ice-sheet before 9500 cal yr BP

    Science.gov (United States)

    Carcaillet, Christopher; Hörnberg, Greger; Zackrisson, Olle

    2012-11-01

    New studies indicate the presence of early Holocene ice-free areas far north in Scandinavia. Post-glacial fire and vegetation were investigated based on sedimentary charcoal and pollen from two small lakes in northern Sweden. Accumulation of organic sediment started around 10,900 and 9200 cal yr BP, showing that both lake valleys were ice-free extremely early given their northerly location. Fire events started after 9600 cal yr BP and became less common around the '8.2-ka event'. Woody vegetation provided fuel that contributed to fires. The first vegetation in our pollen record consisted of Hippophae, Dryas, grasses and sedges. Subsequently broadleaved trees (Betula, Salix) increased in abundance and later Pinus, Alnus, ferns and Lycopodium characterized the vegetation. Pollen from Larix, Picea and Malus were also found. The change in vegetation composition was synchronous with the decrease in lake-water pH in the region, indicating ecosystem-scale processes; this occurred during a period of net global and regional warming. The changes in fire frequency and vegetation appear independent of regional trends in precipitation. The reconstructed fire history and vegetation support the scenario of early ice-free areas far north in Scandinavia during early Holocene warming, creating favorable conditions for woody plants and wildfires.

  8. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Dvorščík, P.; Vávrová, A.; Doušová, O.; Kadochová, Štěpánka; Matějíček, L.

    2015-01-01

    Roč. 84, November (2015), s. 233-239 ISSN 0925-8574 Grant - others:GA ČR(CZ) GAP504/12/1288 Program:GA Institutional support: RVO:60077344 Keywords : aerial photographs * reclaimed sites * succession * tree biomass * woody vegetation cover Subject RIV: EH - Ecology, Behaviour Impact factor: 2.740, year: 2015

  9. WILDFIRE INDUCED DEGRADATION OF WOODY VEGETATION IN DRY ZONE OF KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    A. Terekhov

    2012-08-01

    Full Text Available Small bushy tree species dominate the semi-arid areas of Kazakhstan. In the course of their life cycle, they form a layer of litter that is resistant to wind transport. This small shrub species with its own litter play a significant role in the spectral characteristics of the Earth surface. Changes in the density of shrub canopy forms or replacing them with herbaceous species is accompanied by significant changes in the spectral characteristics in the visible and near infrared spectral bands in the autumn. These changes can be recorded from satellite data. LANDSAT-TM images during 1985–2007 years and MODIS data (USGS: MOD09Q1, 2000–2010 used to diagnose changes in relation between woody\\herbaceous vegetation species in the dry zone of Kazakhstan. It was found that over the past 10 years, spreading small shrub forms of semi-arid vegetation significantly decreased. There is a persistent expansion of herbal forms, leading to the semi-steppe formation areas. The mechanism of repression of wood forms constructed through the accumulation of dry plant mass during wet years, with its subsequent burnout during wildfires. In the case of a strong fire, a complete destruction of species is observed. The restoration of small shrub cover demands more than 20 years. Comparative analysis of LANDSAT-TM images showed a 10 times increasing of the fire scar areas in the test area in the central part of Kazakhstan between 1985 and 2007. According MOD09Q1 was conducted mapping small shrub forms of degradation in Kazakhstan. Reducing the area occupied by woody vegetation, semi-desert was about 30 million hectares or over 30% of their total range in Kazakhstan.

  10. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.

    Science.gov (United States)

    Gandhi, Durai Sanjay; Sundarapandian, Somaiah

    2017-04-01

    Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among

  11. Soil N mineralization profiles of co-existing woody vegetation islands at the alpine tree line

    Czech Academy of Sciences Publication Activity Database

    Wang, L.; Godbold, Douglas

    2017-01-01

    Roč. 136, 5-6 (2017), s. 881-892 ISSN 1612-4669 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Tree line * Soil N mineralization * in situ field incubation * Soil N availability * Resin capsule * Woody vegetation islands Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.017, year: 2016

  12. Fire and climate suitability for woody vegetation communities in the south central United States

    Science.gov (United States)

    Stroh, Esther; Struckhoff, Matthew; Stambaugh, Michael C.; Guyette, Richard P.

    2018-01-01

    Climate and fire are primary drivers of plant species distributions. Long-term management of south central United States woody vegetation communities can benefit from information on potential changes in climate and fire frequencies, and how these changes might affect plant communities. We used historical (1900 to 1929) and future (2040 to 2069 and 2070 to 2099) projected climate data for the conterminous US to estimate reference and future fire probabilities

  13. Land use changes and development of the non-forest woody vegetation in the Danubian Lowland in Slovakia

    Directory of Open Access Journals (Sweden)

    Supuka Ján

    2018-03-01

    Full Text Available The aim of this paper is to assess the changes in the landscape structure of the Žitný Ostrov territory and in the woody species of the non-forest woody vegetation (NFWV over the past 120 years. Within the assessed periods of 1892, 1949, 1969 and 2015, the shares of arable land increased by 17% while the ratio of the built-up areas with gardens increased by 3.7%. At the same time, natural habitats, grassland, waterlogged meadows and wetlands decreased by 26%. These changes, concerning small mosaic plots as well as large cultural blocks, were caused by the intensification of agriculture after 1948. Ecological stability and biodiversity of these areas has decreased. Thereafter 60 windbreaks were planted from 1951–1952 in an area of 30 ha. In total, 37 woody species were planted, of which 22 were alien species. After 25 years (in 1976, 19 of the same windbreaks were surveyed, observing 16 native and 12 alien woody species. During these periods, many rare alien and coniferous species died. In 2015, 13 windbreaks with 39 woody species were identified, both in the tree and the shrubby layer. The downside is that four of the long-time surviving species are invasive trees.

  14. Three-dimensional woody vegetation structure across different land-use types and land-use intensities in a semi-arid savanna

    CSIR Research Space (South Africa)

    Fisher, J

    2009-07-01

    Full Text Available Factors influencing woody savanna vegetation structure across a land-use gradient of intensity (highly and lightly utilized communal rangeland) and type (national protected area, private game reserve and communal rangelands) were investigated. Small...

  15. Species composition and diversity of non-forest woody vegetation along roads in the agricultural landscape

    Directory of Open Access Journals (Sweden)

    Tóth Attila

    2016-03-01

    Full Text Available Non-forest woody vegetation represents an important component of green infrastructure in the agricultural landscape, where natural and semi-natural forest cover has only a low land use proportion. This paper focuses on linear woody vegetation structures along roads in the agricultural landscape and analyses them in three study areas in the Nitra Region, Slovakia. We evaluate species composition and diversity, species occurrence frequency or spatial distribution, their structure according to relatively achievable age and origin. For the evaluation of occurrence frequency, a Frequency Factor was proposed and applied. This factor allows a better comparison of different study areas and results in more representative findings. The study areas were divided into sectors based on visual landscape features, which are easily identifiable in the field, such as intersections and curves in roads, and intersections of roads with other features, such as cadastral or land boundaries, watercourses, etc. Based on the species abundance, woody plants present within the sectors were categorised into 1 predominant, 2 complementary and 3 mixed-in species; and with regard to their origin into 1 autochthonous and 2 allochthonous. Further, trees were categorised into 1 long-lived, 2 medium-lived and 3 short-lived tree species. The main finding is that among trees, mainly allochthonous species dominated. Robinia pseudoacacia L. was the predominant tree species in all three study areas. It was up to 4 times more frequent than other predominant tree species. Introduced tree species prevailed also among complementary and mixed-in species. Among shrubs, mainly native species dominated, while non-native species had a significantly lower proportion and spatial distribution. Based on these findings, several measures have been proposed to improve the overall ecological stability, the proportion and spatial distribution of native woody plant species. The recommendations and

  16. Woody riparian vegetation response to different alluvial water table regimes

    Science.gov (United States)

    Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    2000-01-01

    Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than that in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.

  17. Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2011-01-01

    Full Text Available @yahoo.co 0378-1127/ doi Please cite this article in press as: Wessels, K.J., et al., Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa. Forest Ecol. Manage. (2010), doi:10.1016/j.foreco.2010....09.012 d in revised form 24 August 2010 d 7 September 2010 y words: R l land use r National Park y vegetation structure l wood a Using airborne LiDAR from the Carnegie Airborne Observatory (CAO), we quantified and compared tree canopy cover...

  18. Environmental Impacts and Costs of Hydrotreated Vegetable Oils, Transesterified Lipids and Woody BTL—A Review

    Directory of Open Access Journals (Sweden)

    Andreas Brekke

    2011-05-01

    Full Text Available This article reviews and compares assessments of three biodiesel fuels: (1 transesterified lipids, (2 hydrotreated vegetable oils (HVO, and (3 woody biomass-to-liquid (BTL Fischer-Tropsch diesel and selected feedstock options. The article attempts to rank the environmental performance and costs of fuel and feedstock combinations. Due to inter-study differences in goal and study assumptions, the ranking was mostly qualitative and intra-study results are emphasized. Results indicate that HVO made from wastes or by-products such as tall oil, tallow or used cooking oil outperform transesterified lipids and BTL from woody material, both with respect to environmental life cycle impacts and costs. These feedstock options are, however, of limited availability, and to produce larger volumes of biofuels other raw materials must also be used. BTL from woody biomass seems promising with good environmental performance and the ability not to compete with food production. Production of biofuels from agricultural feedstock sources requires much energy and leads to considerable emissions due to agrochemical inputs. Thus, such biodiesel fuels are ranked lowest in this comparison. Production of feedstock is the most important life cycle stage. Avoiding detrimental land use changes and maintaining good agricultural or forestry management practices are the main challenges to ensure that biofuels can be a sustainable option for the future transport sector.

  19. Growing stock and woody biomass assessment in Asola-Bhatti Wildlife Sanctuary, Delhi, India.

    Science.gov (United States)

    Kushwaha, S P S; Nandy, S; Gupta, Mohini

    2014-09-01

    Biomass is an important entity to understand the capacity of an ecosystem to sequester and accumulate carbon over time. The present study, done in collaboration with the Delhi Forest Department, focused on the estimation of growing stock and the woody biomass in the so-called lungs of Delhi--the Asola-Bhatti Wildlife Sanctuary in northern Aravalli hills. The satellite-derived vegetation strata were field-inventoried using stratified random sampling procedure. Growing stock was calculated for the individual sample plots using field data and species-specific volume equations. Biomass was estimated from the growing stock and the specific gravity of the wood. Among the four vegetation types, viz. Prosopis juliflora, Anogeissus pendula, forest plantation and the scrub, the P. juliflora was found to be the dominant vegetation in the area, covering 23.43 km(2) of the total area. The study revealed that P. juliflora forest with moderate density had the highest (10.7 m(3)/ha) while A. pendula forest with moderate density had the lowest (3.6 m(3)/ha) mean volume. The mean woody biomass was also found to be maximum in P. juliflora forest with moderate density (10.3 t/ha) and lowest in A. pendula forest with moderate density (3.48 t/ha). The total growing stock was estimated to be 20,772.95 m(3) while total biomass worked out to be 19,366.83 t. A strong correlation was noticed between the normalized difference vegetation index (NDVI) and the growing stock (R(2) = 0.84)/biomass (R(2) = 0.88). The study demonstrated that growing stock and the biomass of the woody vegetation in Asola-Bhatti Wildlife Sanctuary could be estimated with high accuracy using optical remote sensing data.

  20. Assessing the impact of climate variability on catchment water balance and vegetation cover

    Directory of Open Access Journals (Sweden)

    X. Xu

    2012-01-01

    >Rg, on average. Results of elasticity analysis on the maximum monthly vegetation cover indicate that incoming shortwave radiation during the growing season (Rsd,grow is the most important factor affecting the change in vegetation cover. Change of Rsd,grow by +1% produces a −1.08% change of total vegetation cover (Ft on average. The significance of other causative factors is in the order of precipitation during growing season, mean temperature during growing season and precipitation during non-growing season. Growing season precipitation is more significant than non-growing season precipitation to non-woody vegetation cover, but both have equivalent effects to woody vegetation cover.

  1. The woody vegetation communities of the Hluhluwe-Corridor- Umfolozi Game Reserve Complex

    Directory of Open Access Journals (Sweden)

    A. Whateley

    1983-11-01

    Full Text Available Land units for the 900 km- Hluhluwe-Corridor-Umfolozi Game Reserve Complex in north eastern Natal were identified on aerial photographs. The physiognomy, dominants and description of the woody vegetation for each unit were identified during ground inspections and. where necessary, the point-centred quarter method was applied. Two forest, two riverine forest, ten woodland and two thicket communities were recognized. These communities are described according to their distribution, height and percentage frequency of the components in the different canopy strata. A map at a scale of 1:25 000 was also compiled. Some of these communities are compared with other similar woodlands previously described for Natal. In some communities the frequency of certain dominant canopy species in the under tree strata was extremely low and autecological research has been suggested.

  2. Measuring Biomass and Carbon Stock in Resprouting Woody Plants

    Science.gov (United States)

    Matula, Radim; Damborská, Lenka; Nečasová, Monika; Geršl, Milan; Šrámek, Martin

    2015-01-01

    Resprouting multi-stemmed woody plants form an important component of the woody vegetation in many ecosystems, but a clear methodology for reliable measurement of their size and quick, non-destructive estimation of their woody biomass and carbon stock is lacking. Our goal was to find a minimum number of sprouts, i.e., the most easily obtainable, and sprout parameters that should be measured for accurate sprout biomass and carbon stock estimates. Using data for 5 common temperate woody species, we modelled carbon stock and sprout biomass as a function of an increasing number of sprouts in an interaction with different sprout parameters. The mean basal diameter of only two to five of the thickest sprouts and the basal diameter and DBH of the thickest sprouts per stump proved to be accurate estimators for the total sprout biomass of the individual resprouters and the populations of resprouters, respectively. Carbon stock estimates were strongly correlated with biomass estimates, but relative carbon content varied among species. Our study demonstrated that the size of the resprouters can be easily measured, and their biomass and carbon stock estimated; therefore, resprouters can be simply incorporated into studies of woody vegetation. PMID:25719601

  3. Can lemmings control the expansion of woody plants on tundra?

    Science.gov (United States)

    Oksanen, Lauri; Oksanen, Tarja; Olofsson, Johan; Virtanen, Risto; Hoset, Katrine; Tuomi, Maria; Kyrö, Kukka

    2013-04-01

    The ongoing expansion of woody vegetation in the arctic, due to global warming, creates a positive feed back loop. Increasing abundance of woody plants reduces surface albedo both directly and via speeding up snow melt. Thus a successively greater fraction of incoming solar radiation is absorbed and converted to heat. Browsing mammals - both big and small - can prevent this by consuming woody plants. However, the grazer/browser community of many tundra areas is dominated by brown/Norwegian lemmings (Lemmus spp.) which eat graminoids and mosses and cannot use woody plants as forage. It would seem a priori likely that in such areas, mammalian herbivores speed up the expansion of woody plants by improving the chances of their seedlings to get established. We studied the impact of lemmings on woody plants by constructing lemming proof exclosures within piece high-altitude tundra at Joatkanjávri, northernmost Norway. The exclosures were constructed in 1998, during a period of low lemming densities, in snow-beds, where Norwegian lemmings (L. lemmus) were the only ecologically significant herbivorous mammals. (Reindeer migrate through the area in May, when snow-beds are inaccessible for them; during the fall migration, the area represents a dead end and is therefore avoided.) We chose pairs of maximally similar vegetation patches of 0.5 by 0.5 m and randomly assigned one of each pair to become an exclosure while the other plot was left open. The initial state of the vegetation was documented by the point frequency method. In 2008, after the 2007 lemming outbreak, the same documentation was repeated; thereafter the plots were harvested, the vegetation was sorted to species, oven dried and weighed. Exclusion of lemmings resulted to pronounced increase in community level plant biomass. Evergreen woody plants were especially favored by the exclusion of lemming: their above-ground biomass in exclosures was 14 times as great as their biomass on open reference plots. The

  4. Assessing Woody Vegetation Trends in Sahelian Drylands Using MODIS Based Seasonal Metrics

    Science.gov (United States)

    Brandt, Martin; Hiernaux, Pierre; Rasmussen, Kjeld; Mbow, Cheikh; Kergoat, Laurent; Tagesson, Torbern; Ibrahim, Yahaya Z.; Wele, Abdoulaye; Tucker, Compton J.; Fensholt, Rasmus

    2016-01-01

    Woody plants play a major role for the resilience of drylands and in peoples' livelihoods. However, due to their scattered distribution, quantifying and monitoring woody cover over space and time is challenging. We develop a phenology driven model and train/validate MODIS (MCD43A4, 500m) derived metrics with 178 ground observations from Niger, Senegal and Mali to estimate woody cover trends from 2000 to 2014 over the entire Sahel. The annual woody cover estimation at 500 m scale is fairly accurate with an RMSE of 4.3 (woody cover %) and r(exp 2) = 0.74. Over the 15 year period we observed an average increase of 1.7 (+/- 5.0) woody cover (%) with large spatial differences: No clear change can be observed in densely populated areas (0.2 +/- 4.2), whereas a positive change is seen in sparsely populated areas (2.1 +/- 5.2). Woody cover is generally stable in cropland areas (0.9 +/- 4.6), reflecting the protective management of parkland trees by the farmers. Positive changes are observed in savannas (2.5 +/- 5.4) and woodland areas (3.9 +/- 7.3). The major pattern of woody cover change reveals strong increases in the sparsely populated Sahel zones of eastern Senegal, western Mali and central Chad, but a decreasing trend is observed in the densely populated western parts of Senegal, northern Nigeria, Sudan and southwestern Niger. This decrease is often local and limited to woodlands, being an indication of ongoing expansion of cultivated areas and selective logging.We show that an overall positive trend is found in areas of low anthropogenic pressure demonstrating the potential of these ecosystems to provide services such as carbon storage, if not over-utilized. Taken together, our results provide an unprecedented synthesis of woody cover dynamics in theSahel, and point to land use and human population density as important drivers, however only partially and locally offsetting a general post-drought increase.

  5. Effects of topoclimatic complexity on the composition of woody plant communities.

    Science.gov (United States)

    Oldfather, Meagan F; Britton, Matthew N; Papper, Prahlad D; Koontz, Michael J; Halbur, Michelle M; Dodge, Celeste; Flint, Alan L; Flint, Lorriane E; Ackerly, David D

    2016-01-01

    Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by

  6. Woody-Herbaceous Species Coexistence in Mulga Hillslopes: Modelling Structure and Function

    Science.gov (United States)

    Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.

    2016-12-01

    The fundamental processes underlying the coexistence of woody and herbaceous species in arid and semi-arid areas have been a topic of intense research during the last few decades. Experimental and modelling studies have both supported and disputed alternative hypotheses explaining this phenomenon. Vegetation models including the key processes that drive coexistence can be used to understand vegetation pattern dynamics and structure under current climate conditions, and to predict changes under future conditions. Here we present work done towards linking the observations to modelling. The model captures woody-herbaceous coexistence along a rainfall gradient characteristic of typical conditions on Mulga ecosystems in Australia. The dynamic vegetation model simulates the spatial dynamics of overland flow, soil moisture and vegetation growth of two species. It incorporates key mechanisms for coexistence and pattern formation, including facilitation by evaporation reduction through shading, and infiltration feedbacks, local and non-local seed dispersal, competition for water uptake. Model outcomes, obtained including diflerent mechanisms, are qualitatively compared to typical vegetation cover patterns in the Australian Mulga bioregion where bush fire is very infrequent and the fate of vegetation cover is mostly determined by intra- and interspecies interactions. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the dynamics of such ecosystems, we identify main mechanisms that need an improved representation in the dynamic vegetation models. We show that a realistic parameterization of the model leads to results which are aligned with the observations reported in the literature. At the lower end of the rainfall gradient woody species coexist with herbaceous species within a sparse banded pattern, while at higher rainfall woody species tend to dominate the landscape.

  7. Effects of soil and space on the woody species composition and vegetation structure of three Cerrado phytophysiognomies in the Cerrado-Amazon transition.

    Science.gov (United States)

    Maracahipes-Santos, L; Lenza, E; Santos, J O; Mews, H A; Oliveira, B

    2017-11-01

    The Cerrado Biome is considered one of the world's biodiversity hotspots because of its rich biodiversity, the high level of endemism and the increasing threat. The Cerrado is composed by a mosaic of different vegetation types, including physiognomies that vary from grasslands (campo limpo) to savannas (typical cerrado or cerrado sensu stricto) and cerrado woodlands (cerradão). However, the factors that determine the composition of the Cerrado's flora and the structure of the physiognomies that compose this biome are still poorly understood. Here, we investigate the influence of the chemical and granulometric properties of the soil and the effect of geographic distance on the occurrence and abundance of woody species in three Cerrado phytophysiognomies - cerrado woodland (cerradão), dense cerrado savanna and typical cerrado savanna - in the Cerrado-Amazon transition. We tested the hypothesis that the edaphic characteristics and geographic space determine the species composition and the structure of the woody vegetation of these three phytophysiognomies. We demonstrate that the dissimilarities in the structure and composition of the three sites were determined more by space (13% of explanation) than edaphic properties (1%), but primarily by the interaction between these two factors (26%). We conclude that, in situations where the chemical and granulometric properties of the soil are relatively homogeneous, as we found in the present study, geographic distance between sites has a greater influence than variation in the substrate's properties on modelling the occurrence and abundance of the woody plant species in the Cerrado.

  8. The impact of an increasing elephant population on the woody vegetation in southern Sabi Sand Wildtuin, South Africa

    Directory of Open Access Journals (Sweden)

    Kay Hiscocks

    1999-07-01

    Full Text Available In 1961, a fence was erected between privately owned Sabi Sand Wildtuin (SSW and the Kruger National Park (KNP, which largely prevented elephants entering the SSW. In 1993, the fence was removed. This lead to a rapid influx of elephants into the SSW during the winter months, most of which move back into the KNP during the wet summer season. In 1993, the SSW elephant population was 1/1045 ha but increased to 1/305.8 ha in 1996. It more than doubled to 1/146 ha in 1998. This study was undertaken on the property Kingston, in southern SSW, to assess the impact of elephants on woody vegetation and determine why they show seasonal dietary preferences for specific tree parts. Vegetation utilisation was recorded on a five kilometer transect of vehicle track in 1996 and repeated in 1998. From the transect, species density was calculated for those trees impacted on. Trees that had been newly bark stripped were recorded in 1996 and 1998. Cambium samples were collected in summer and winter from eight tree species. Field observations of elephants impacting on woody vegetation augmented the data base. Transect analysis showed a strong correlation between tree utilisation and density. The most visual damage was of Combretum apiculatum, Acacia burkei, Pterocarpus rotundifolius and Grewia species. Tree damage increased by 73 from 1996 to 1998. Significantly higher levels of nitrogen, sodium and magnesium were found in the species most regularly bark stripped. Bull elephants were responsible for 94 of the trees seen uprooted. The results suggested that SSW can sustain the present elephant population, but further influx at the present rate of increase, will have a negative impact on the reserve.

  9. Assessing woody vegetation trends in Sahelian drylands using MODIS based seasonal metrics

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Hiernaux, Pierre; Rasmussen, Kjeld

    2016-01-01

    Woody plants play a major role for the resilience of drylands and in peoples' livelihoods. However, due to their scattered distribution, quantifying and monitoring woody cover over space and time is challenging. We develop a phenology driven model and train/validate MODIS (MCD43A4, 500 m) derived...

  10. Effects of soil and space on the woody species composition and vegetation structure of three Cerrado phytophysiognomies in the Cerrado-Amazon transition

    Directory of Open Access Journals (Sweden)

    L. Maracahipes-Santos

    2017-03-01

    Full Text Available Abstract The Cerrado Biome is considered one of the world's biodiversity hotspots because of its rich biodiversity, the high level of endemism and the increasing threat. The Cerrado is composed by a mosaic of different vegetation types, including physiognomies that vary from grasslands (campo limpo to savannas (typical cerrado or cerrado sensu stricto and cerrado woodlands (cerradão. However, the factors that determine the composition of the Cerrado’s flora and the structure of the physiognomies that compose this biome are still poorly understood. Here, we investigate the influence of the chemical and granulometric properties of the soil and the effect of geographic distance on the occurrence and abundance of woody species in three Cerrado phytophysiognomies – cerrado woodland (cerradão, dense cerrado savanna and typical cerrado savanna – in the Cerrado-Amazon transition. We tested the hypothesis that the edaphic characteristics and geographic space determine the species composition and the structure of the woody vegetation of these three phytophysiognomies. We demonstrate that the dissimilarities in the structure and composition of the three sites were determined more by space (13% of explanation than edaphic properties (1%, but primarily by the interaction between these two factors (26%. We conclude that, in situations where the chemical and granulometric properties of the soil are relatively homogeneous, as we found in the present study, geographic distance between sites has a greater influence than variation in the substrate’s properties on modelling the occurrence and abundance of the woody plant species in the Cerrado.

  11. Nutrition and adventitious rooting in woody plants

    Directory of Open Access Journals (Sweden)

    Fernanda Bortolanza Pereira

    2016-09-01

    Full Text Available Vegetative propagation success of commercial genotypes via cutting techniques is related to several factors, including nutritional status of mother trees and of propagation material. The nutritional status determines the carbohydrate quantities, auxins and other compounds of plant essential metabolism for root initiation and development. Each nutrient has specific functions in plant, acting on plant structure or on plant physiology. Although the importance of mineral nutrition for success of woody plants vegetative propagation and its relation with adventitious rooting is recognized, the role of some mineral nutrients is still unknown. Due to biochemical and physiological complexity of adventitious rooting process, there are few researches to determine de role of nutrients on development of adventitious roots. This review intends to explore de state of the art about the effect of mineral nutrition on adventitious rooting of woody plants.

  12. The spatial pattern and dominant drivers of woody cover change in Latin America and Caribbean from 2001 to 2010

    Science.gov (United States)

    Clark, M.; Aide, T.; Riner, G.; Redo, D.; Grau, H.; Bonilla-Moheno, M.; Lopez-Carr, D.; Levy, M.

    2011-12-01

    Change in woody vegetation (i.e., forests, shrublands) is a major component of global environmental change: it directly affects biodiversity, the global carbon budget, and ecosystem function. For several decades, remote sensing technology has been used to document deforestation in Latin America and the Caribbean (LAC), although mostly at local to regional scales (e.g., moist forests of the Amazon basin). Most studies have focused on forest loss, some local-scale studies have mapped forest recovery, with contrasting forest dynamics attributed to shifting demographic and socio-economic factors. For example, local population change (rural-urban migration) can stimulate forest recovery on abandoned land, while increasing global food demand may drive regional expansion of mechanized agriculture. However, there are no studies in LAC that simultaneously map both loss and gain in woody vegetation at continental, national, and municipality scales with consistent data sources, methods and accuracy; and thus, we lack a comprehensive assessment of the spatial distribution of woody vegetation change and the relative importance of the multi-scale drivers of this change. We overcame this limitation by producing annual land-cover maps between 2001 and 2010 for each of the >16,000 municipalities in LAC. We focused on mapping municipality-scale trends in three broad classes: woody vegetation, mixed woody/plantations, and agriculture/herbaceous vegetation. Our area estimates show that woody vegetation change during the past decade was dominated by deforestation, or loss (-541,830 km2), particularly in the Amazon basin moist forest and the tropical-subtropical Cerrado and Chaco ecoregions, where large swaths of forest have been transformed to pastures and agricultural lands. Extensive areas (362,431 km2) in LAC also gained woody vegetation, particularly in regions too dry or too steep for modern agriculture, including the desert/xeric shrub biome in NE Brazil and northern Mexico, the

  13. Backwater development by woody debris

    Science.gov (United States)

    Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton

    2017-04-01

    Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.

  14. Woody plants diversity and type of vegetation in non cultivated plain of Moutourwa, Far-North, Cameroon

    Directory of Open Access Journals (Sweden)

    Gilbert Todou

    2016-12-01

    Full Text Available In order to valorize the wild vegetal resources for the efficient conservation and sustainable use in sahelo-sudanian zone in Cameroon, a study of non cultivated plain of Moutourwa was carry out to assess the floristic richness, the specific diversity and the type of vegetation. The inventory of all trees and shrubs (dbh ? 2.5 cm and the determination of the vegetation cover were done in five linear transects (20 m × 1000 m. In total, 27 families, 54 genera and 75 species were found. Caesalpinaceae is the most abundant family that relative abundance (pi*100 is 34.41%, the most abundant genus was Piliostigma (pi*100 = 30.66% and the most represented species was Piliostigma reticulatum (pi*100 = 29.56%; D = 53.6 stems/ha. The Simpson index (E= 0.89, the Shannon index (H= 3.2 and the equitability index of Pielou (J= 0.74 indicated that there were moderate diversity with more or less equitable species. The wild fruits species were numerous (pi*100 = 32.76%; D = 59.7 stems/ha. A. senegalensis is was the most represented (pi*100 = 9.04 ; D = 16.4 followed by Hexalobus monopetalus (pi*100 = 5.16 ; D = 9.4 and Balanites aegyptiaca (pi*100 = 3.69 ; D = 6.7. These results contribute efficaciously to valorize the wild vegetal resources for efficient conservation and sustainable use. Keywords: Woody plants diversity, conservation, sustainable use, sahelo-sudanian, Moutourwa

  15. Feedbacks among Floods, Pioneer Woody Vegetation, and Channel Change in Sand-Bed Rivers: Insights from Field Studies of Controlled Flood Releases and Models

    Science.gov (United States)

    Wilcox, A. C.; Shafroth, P. B.; Lightbody, A.; Stella, J. C.; Bywater-Reyes, S.; Kiu, L.; Skorko, K.

    2012-04-01

    To investigate feedbacks between flow, geomorphic processes, and pioneer riparian vegetation in sand-bed rivers, we are combining field, hydraulic modeling, and laboratory simulations. Field studies have examined the response of woody riparian seedlings and channel morphology to prescribed dam-released floods that have been designed in part to maintain a native riparian woodland system on the Bill Williams River, Arizona, USA. Through monitoring of floods over a 7-year period, we have observed temporal and spatial variations in channel response. Floods have produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach with greater sediment supply. We also have observed that as vegetation grows beyond the seedling stage, its stabilizing effect on bars and its drag effect on flow progressively increases, such that floods of similar sizes but at different times may produce markedly different downstream responses as a function of vegetation characteristics. We also observed greater mortality among nonnative Tamarix spp. (tamarisk) seedlings than among native Salix gooddingii (Goodding's willow) seedlings, likely as a result of the greater first-year growth of willow relative to tamarisk. Combining field observations with modeling predictions of local hydraulics for the flood events we have studied is being used to draw linkages between hydraulics, channel change, and plant response at the patch and bar scale. In addition, mechanistic linkages are being examined using a field-scale laboratory stream channel, where seedlings of Tamarix spp. (tamarisk) and Populus fremontii (cottonwood) were planted and subjected to floods with varying sediment feed rate and plant configurations. The floods conveyed by our model channel were generally insufficient to scour the woody seedlings we planted, but changes in bar size and

  16. Importance of Coarse Woody Debris to Avian Communities in Loblolly Pine Forests

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, S.M.; Gauthreaux, S.A.; Kilgo, J.C.

    2001-06-14

    Investigates the importance of standing and down coarse woody debris to bird communities in loblolly pine forests, researchers compared breeding and nonbreeding responses of birds among two coarse woody debris removal and control treatments. Quantification of vegetation layers to determine their effects on the experimental outcome coarse woody debris removal had no effect on the nonbreeding bird community. Most breeding and nonbreeding species used habitats with sparse midstory and well-developed understory, where as sparse canopy cover and dense midstory were important to some nonbreeding species. Snag and down coarse woody debris practices that maintain a dense understory, sparse midstory and canopy will create favorable breeding habitat.

  17. Woody Vegetation Die off and Regeneration in Response to Rainfall Variability in the West African Sahel

    Directory of Open Access Journals (Sweden)

    Martin Brandt

    2017-01-01

    Full Text Available The greening in the Senegalese Sahel has been linked to an increase in net primary productivity, with significant long-term trends being closely related to the woody strata. This study investigates woody plant growth and mortality within greening areas in the pastoral areas of Senegal, and how these dynamics are linked to species diversity, climate, soil and human management. We analyse woody cover dynamics by means of multi-temporal and multi-scale Earth Observation, satellite based rainfall and in situ data sets covering the period 1994 to 2015. We find that favourable conditions (forest reserves, low human population density, sufficient rainfall led to a rapid growth of Combretaceae and Balanites aegyptiaca between 2000 and 2013 with an average increase of 4% woody cover. However, the increasing dominance and low drought resistance of drought prone species bears the risk of substantial woody cover losses following drought years. This was observed in 2014–2015, with a die off of Guiera senegalensis in most places of the study area. We show that woody cover and woody cover trends are closely related to mean annual rainfall, but no clear relationship with rainfall trends was found over the entire study period. The observed spatial and temporal variation contrasts with the simplified labels of “greening” or “degradation”. While in principal a low woody plant diversity negatively impacts regional resilience, the Sahelian system is showing signs of resilience at decadal time scales through widespread increases in woody cover and high regeneration rates after periodic droughts. We have reaffirmed that the woody cover in Sahel responds to its inherent climatic variability and does not follow a linear trend.

  18. Woody vegetation die off and regeneration in response to rainfall variability in the west African Sahel

    Science.gov (United States)

    Brandt, Martin; Tappan, G. Gray; Aziz Diouf, Abdoul; Beye, Gora; Mbow, Cheikh; Fensholt, Rasmus

    2017-01-01

    The greening in the Senegalese Sahel has been linked to an increase in net primary productivity, with significant long-term trends being closely related to the woody strata. This study investigates woody plant growth and mortality within greening areas in the pastoral areas of Senegal, and how these dynamics are linked to species diversity, climate, soil and human management. We analyse woody cover dynamics by means of multi-temporal and multi-scale Earth Observation, satellite based rainfall and in situ data sets covering the period 1994 to 2015. We find that favourable conditions (forest reserves, low human population density, sufficient rainfall) led to a rapid growth of Combretaceae and Balanites aegyptiaca between 2000 and 2013 with an average increase of 4% woody cover. However, the increasing dominance and low drought resistance of drought prone species bears the risk of substantial woody cover losses following drought years. This was observed in 2014–2015, with a die off of Guiera senegalensis in most places of the study area. We show that woody cover and woody cover trends are closely related to mean annual rainfall, but no clear relationship with rainfall trends was found over the entire study period. The observed spatial and temporal variation contrasts with the simplified labels of “greening” or “degradation”. While in principal a low woody plant diversity negatively impacts regional resilience, the Sahelian system is showing signs of resilience at decadal time scales through widespread increases in woody cover and high regeneration rates after periodic droughts. We have reaffirmed that the woody cover in Sahel responds to its inherent climatic variability and does not follow a linear trend.

  19. Global changes in dryland vegetation dynamics (1988–2008 assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data

    Directory of Open Access Journals (Sweden)

    N. Andela

    2013-10-01

    Full Text Available Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite-observed vegetation products were used to study the long-term (1988–2008 vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI and the recently developed passive-microwave-based Vegetation Optical Depth (VOD. The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO2 level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily uses shallow soil water, whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment appears to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information and allow new insights into dryland vegetation dynamics.

  20. Frost resistance in alpine woody plants.

    Science.gov (United States)

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  1. Frost resistance of alpine woody plants

    Directory of Open Access Journals (Sweden)

    Gilbert eNeuner

    2014-12-01

    Full Text Available This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research.Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover.Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate.In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers and fruits and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  2. Determining Characteristic Vegetation Areas by Terrestrial Laser Scanning for Floodplain Flow Modeling

    Directory of Open Access Journals (Sweden)

    Johanna Jalonen

    2015-01-01

    Full Text Available Detailed modeling of floodplain flows and associated processes requires data on mixed, heterogeneous vegetation at river reach scale, though the collection of vegetation data is typically limited in resolution or lack spatial information. This study investigates physically-based characterization of mixed floodplain vegetation by means of terrestrial laser scanning (TLS. The work aimed at developing an approach for deriving the characteristic reference areas of herbaceous and foliated woody vegetation, and estimating the vertical distribution of woody vegetation. Detailed experimental data on vegetation properties were gathered both in a floodplain site for herbaceous vegetation, and under laboratory conditions for 2–3 m tall trees. The total plant area (Atot of woody vegetation correlated linearly with the TLS-based voxel count, whereas the Atot of herbaceous vegetation showed a linear correlation with TLS-based vegetation mean height. For woody vegetation, 1 cm voxel size was found suitable for estimating both the Atot and its vertical distribution. A new concept was proposed for deriving Atot for larger areas from the point cloud attributes of small sub-areas. The results indicated that the relationships between the TLS attributes and Atot of the sub-areas can be derived either by mm resolution TLS or by manual vegetation sampling.

  3. Determinants of woody cover in African savannas

    Science.gov (United States)

    Sankaran, M.; Hanan, N.P.; Scholes, Robert J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le, Roux X.; Ludwig, F.; Ardo, J.; Banyikwa, F.; Bronn, A.; Bucini, G.; Caylor, K.K.; Coughenour, M.B.; Diouf, A.; Ekaya, W.; Feral, C.J.; February, E.C.; Frost, P.G.H.; Hiernaux, P.; Hrabar, H.; Metzger, K.L.; Prins, H.H.T.; Ringrose, S.; Sea, W.; Tews, J.; Worden, J.; Zambatis, N.

    2005-01-01

    Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties 1-3. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover1,2,4,5, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than ???650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of ???650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation 6 may considerably affect their distribution and dynamics. ?? 2005 Nature Publishing Group.

  4. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  5. Land Use and Land Cover Change, and Woody Vegetation Diversity in Human Driven Landscape of Gilgel Tekeze Catchment, Northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Samuale Tesfaye

    2014-01-01

    Full Text Available Land use and land cover (LULC change through inappropriate agricultural practices and high human and livestock population pressure have led to severe land degradation in the Ethiopian highlands. This has led to further degradation such as biodiversity loss, deforestation, and soil erosion. The study examined woody vegetation diversity status and the impact of drivers of change across different LULC types and agroecological zones in Gilgel Tekeze catchment, northern Ethiopian highlands. LULC dynamics were assessed using GIS techniques on 1976, 1986, and 2008 satellite images. Vegetation data were collected from 135 sample plots (20 m × 20 m from five LULC types, namely, forest, shrub-bush, grazing, settlement, and cultivated land, in the three agroecological zones; Kolla, Weyna-Dega, and Dega. Differences in vegetation structure and composition and their relationship to agroecological zones were tested using two-way ANOVA and PCA technique. The results show that vegetation structure and composition significantly differed across all LULC types in different agroecological zones particularly in sapling density, tree height, and shrub height and in each agroecological zone between forest land, shrub-bush land, and settlement area. Overall, Weyna-Dega agroecological zone and the shrub-bush land had more structural and compositional diversity than the other agroecological zones and LULC types.

  6. Potential for water salvage by removal of non-native woody vegetation from dryland river systems

    Science.gov (United States)

    Doody, T.M.; Nagler, P.L.; Glenn, E.P.; Moore, G.W.; Morino, K.; Hultine, K.R.; Benyon, R.G.

    2011-01-01

    Globally, expansion of non-native woody vegetation across floodplains has raised concern of increased evapotranspiration (ET) water loss with consequent reduced river flows and groundwater supplies. Water salvage programs, established to meet water supply demands by removing introduced species, show little documented evidence of program effectiveness. We use two case studies in the USA and Australia to illustrate factors that contribute to water salvage feasibility for a given ecological setting. In the USA, saltcedar (Tamarix spp.) has become widespread on western rivers, with water salvage programs attempted over a 50-year period. Some studies document riparian transpiration or ET reduction after saltcedar removal, but detectable increases in river base flow are not conclusively shown. Furthermore, measurements of riparian vegetation ET in natural settings show saltcedar ET overlaps the range measured for native riparian species, thereby constraining the possibility of water salvage by replacing saltcedar with native vegetation. In Australia, introduced willows (Salix spp.) have become widespread in riparian systems in the Murray-Darling Basin. Although large-scale removal projects have been undertaken, no attempts have been made to quantify increases in base flows. Recent studies of ET indicate that willows growing in permanently inundated stream beds have high transpiration rates, indicating water savings could be achieved from removal. In contrast, native Eucalyptus trees and willows growing on stream banks show similar ET rates with no net water salvage from replacing willows with native trees. We conclude that water salvage feasibility is highly dependent on the ecohydrological setting in which the non-native trees occur. We provide an overview of conditions favorable to water salvage. Copyright ?? 2011 John Wiley & Sons, Ltd.

  7. Vegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015

    Directory of Open Access Journals (Sweden)

    Zhihua Liu

    2016-12-01

    Full Text Available The Upper Guinea Forest (UGF region of West Africa is one of the most climatically marginal and human-impacted tropical forest regions in the world. Research on the patterns and drivers of vegetation change is critical for developing strategies to sustain ecosystem services in the region and to understand how climate and land use change will affect other tropical forests around the globe. We compared six spectral indices calculated from the 2001–2015 MODIS optical-infrared reflectance data with manually-interpreted measurements of woody vegetation cover from high resolution imagery. The tasseled cap wetness (TCW index was found to have the strongest association with woody vegetation cover, whereas greenness indices, such as the enhanced vegetation index (EVI, had relatively weak associations with woody cover. Trends in woody vegetation cover measured with the TCW index were analyzed using Mann–Kendall statistics and were contrasted with trends in vegetation greenness measured with EVI. In the drier West Sudanian Savanna and Guinean Forest-Savanna Mosaic ecoregions, EVI trends were primarily positive, and TCW trends were primarily negative, suggesting that woody vegetation cover was decreasing, while herbaceous vegetation cover is increasing. In the wettest tropical forests in the Western Guinean Lowland Forest ecoregion, declining trends in both TCW and EVI were indicative of widespread forest degradation resulting from human activities. Across all ecoregions, declines in woody cover were less prevalent in protected areas where human activities were restricted. Multiple lines of evidence suggested that human land use and resource extraction, rather than climate trends or short-term climatic anomalies, were the predominant drivers of recent vegetation change in the UGF region of West Africa.

  8. Evaluating ecohydrological theories of woody root distribution in the Kalahari.

    Directory of Open Access Journals (Sweden)

    Abinash Bhattachan

    Full Text Available The contribution of savannas to global carbon storage is poorly understood, in part due to lack of knowledge of the amount of belowground biomass. In these ecosystems, the coexistence of woody and herbaceous life forms is often explained on the basis of belowground interactions among roots. However, the distribution of root biomass in savannas has seldom been investigated, and the dependence of root biomass on rainfall regime remains unclear, particularly for woody plants. Here we investigate patterns of belowground woody biomass along a rainfall gradient in the Kalahari of southern Africa, a region with consistent sandy soils. We test the hypotheses that (1 the root depth increases with mean annual precipitation (root optimality and plant hydrotropism hypothesis, and (2 the root-to-shoot ratio increases with decreasing mean annual rainfall (functional equilibrium hypothesis. Both hypotheses have been previously assessed for herbaceous vegetation using global root data sets. Our data do not support these hypotheses for the case of woody plants in savannas. We find that in the Kalahari, the root profiles of woody plants do not become deeper with increasing mean annual precipitation, whereas the root-to-shoot ratios decrease along a gradient of increasing aridity.

  9. Woody vegetation and succession on the Fonde surface mine demonstration area, Bell County, Kentucky

    International Nuclear Information System (INIS)

    Wade, G.L.; Thompson, R.L.

    1999-01-01

    The long term impact of surface mining on vegetation and plant succession has always been of concern to environmentalists and residents of Appalachia. The Fonde Surface Mine Demonstration Area is a 7.3-ha, NE-NW-aspect contour coal mine at an elevation of 562 m. It was reclaimed in 1965 to show state-of-the-art surface mine reclamation techniques consistent with then-current law and regulations after coal mining in 1959 and 1963. The mine spoils were lightly graded to control erosion and crates a bench with water control and two sediment ponds. Soil pH ranged from 2.8 to 5.9. About 80 percent of the mine was planted with 18 tree and shrub species including plantations of mixed pine, mixed hardwoods, black locust, and shrubs for wildlife. In a complete floristic inventory conducted 25 years later, the authors found the woody flora consisted of 34 families, 53 genera, and 70 species including 7 exotics. This inventory of the Fonde mine shows that a diverse forest vegetation can be reestablished after extreme disturbances in Appalachia. Black locust, yellow poplar, and Virginia pine reproduction varied significantly among plantation types. Canopy tree species significantly affected ground layer cover, total species richness, number of tree seedling species, and total number of tree seedlings present. Mine soil type affected ground layer percent cover and total species richness. Pre-SMCRA (Surface Mining Control and Reclamation Act of 1977) reclaimed and inventoried mines can be used to evaluate biodiversity on post-SMCRA mines

  10. Woody vegetation and succession on the Fonde surface mine demonstration area, Bell County, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wade, G.L.; Thompson, R.L.

    1999-07-01

    The long term impact of surface mining on vegetation and plant succession has always been of concern to environmentalists and residents of Appalachia. The Fonde Surface Mine Demonstration Area is a 7.3-ha, NE-NW-aspect contour coal mine at an elevation of 562 m. It was reclaimed in 1965 to show state-of-the-art surface mine reclamation techniques consistent with then-current law and regulations after coal mining in 1959 and 1963. The mine spoils were lightly graded to control erosion and crates a bench with water control and two sediment ponds. Soil pH ranged from 2.8 to 5.9. About 80 percent of the mine was planted with 18 tree and shrub species including plantations of mixed pine, mixed hardwoods, black locust, and shrubs for wildlife. In a complete floristic inventory conducted 25 years later, the authors found the woody flora consisted of 34 families, 53 genera, and 70 species including 7 exotics. This inventory of the Fonde mine shows that a diverse forest vegetation can be reestablished after extreme disturbances in Appalachia. Black locust, yellow poplar, and Virginia pine reproduction varied significantly among plantation types. Canopy tree species significantly affected ground layer cover, total species richness, number of tree seedling species, and total number of tree seedlings present. Mine soil type affected ground layer percent cover and total species richness. Pre-SMCRA (Surface Mining Control and Reclamation Act of 1977) reclaimed and inventoried mines can be used to evaluate biodiversity on post-SMCRA mines.

  11. Spatial partitioning of water use by herbaceous and woody lifeforms in semiarid woodlands

    International Nuclear Information System (INIS)

    Breshears, D.D.

    1993-01-01

    Ecological studies of soil moisture, plant water uptake, and community composition in semiarid regions have focused on differences with depth in the soil profile, yet there are many reasons to expect that moisture also varies with the presence or absence of woody vegetation. Plant and soil moisture relationships for three dominant species in a semiarid woodland, Bouteloua gracilis, Juniperus monosperma, and Pinus edulis, were studied for 1.5 years. Soil moisture varied by type of plant cover as well as by depth. Plant water potential and conductance differed among species and was related to spatial variability in soil moisture. Water potential for blue grama was most correlated with soil moisture in the 0-15 cm layer of intercanopies; juniper water potential was highly correlated with soil moisture in the 0-15 cm layer beneath tree canopies of either species, and pinyon water potential was only weakly correlated with soil moisture in the 15-30 cm depth interval beneath pinyons. Pinyons had consistently greater maximum conductance rates than junipers, even though pinyon conductance was more sensitive to reductions in soil moisture. The results from this study indicate that horizontal differences in the soil moisture profile associated with type of plant cover may be as important as differences in depth for predicting plant-water relationships. A simple model was hypothesized for predicting community composition of three lifeforms: Herbaceous plants, shallow-rooted woody plants, and deeper-rooted woody plants. Distributions of roots of each lifeform and plant-available water were defined with respect to four soil compartments that distinguish upper vs. lower and canopy vs. intercanopy soil regions. The model predicts that multiple combinations of herbaceous and woody biomass can exist at a site and was qualitatively consistent with field data from a climatic gradient

  12. ANALYSIS OF THE WOODY VEGETATION DYNAMICS IN THE AREA OF TREE LINE ECOTONE ON THE BASIS OF PHOTO MONITORING DATA AND USING GIS

    Directory of Open Access Journals (Sweden)

    A. P. Mikhailovich

    2016-01-01

    Full Text Available A method of processing and presentation of the repeated landscape photographs for analysis of spatio-temporal dynamics of woody vegetation in tree line ecotone the Polar Urals (mountain Rai-Iz was developed. It is intended to solve problems with the use of such photographs so as to help the researcher to gain an integral representation of the space under study, obtain additional information about the region of interest, create and update annotation to photographs, and develop thematic maps using repeated landscape photography.

  13. Vegetation impoverishment despite greening: a case study from central Senegal

    Science.gov (United States)

    Herrmann, Stefanie M.; Tappan, G. Gray

    2013-01-01

    Recent remote sensing studies have documented a greening trend in the semi-arid Sahel and Sudan zones of West Africa since the early 1980s, which challenges the mainstream paradigm of irreversible land degradation in this region. What the greening trend means on the ground, however, has not yet been explored. This research focuses on a region in central Senegal to examine changes in woody vegetation abundance and composition in selected sites by means of a botanical inventory of woody vegetation species, repeat photography, and perceptions of local land users. Despite the greening, an impoverishment of the woody vegetation cover was observed in the studied sites, indicated by an overall reduction in woody species richness, a loss of large trees, an increasing dominance of shrubs, and a shift towards more arid-tolerant, Sahelian species since 1983. Thus, interpretation of the satellite-derived greening trend as an improvement or recovery is not always justified. The case of central Senegal represents only one of several possible pathways of greening throughout the region, all of which result in similar satellite-derived greening signals.

  14. Woody debris

    Science.gov (United States)

    Donna B. Scheungrab; Carl C. Trettin; Russ Lea; Martin F. Jurgensen

    2000-01-01

    Woody debris can be defined as any dead, woody plant material, including logs, branches, standing dead trees, and root wads. Woody debris is an important part of forest and stream ecosystems because it has a role in carbon budgets and nutrient cycling, is a source of energy for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes...

  15. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings.

    Science.gov (United States)

    Saintilan, Neil; Rogers, Kerrylee

    2015-02-01

    A global trend of woody plant encroachment of terrestrial grasslands is co-incident with woody plant encroachment of wetland in freshwater and saline intertidal settings. There are several arguments for considering tree encroachment of wetlands in the context of woody shrub encroachment of grassland biomes. In both cases, delimitation of woody shrubs at regional scales is set by temperature thresholds for poleward extent, and by aridity within temperature limits. Latitudinal expansion has been observed for terrestrial woody shrubs and mangroves, following recent warming, but most expansion and thickening has been due to the occupation of previously water-limited grassland/saltmarsh environments. Increases in atmospheric CO₂, may facilitate the recruitment of trees in terrestrial and wetland settings. Improved water relations, a mechanism that would predict higher soil moisture in grasslands and saltmarshes, and also an enhanced capacity to survive arid conditions, reinforces local mechanisms of change. The expansion of woody shrubs and mangroves provides a negative feedback on elevated atmospheric CO₂ by increasing carbon sequestration in grassland and saltmarsh, and is a significant carbon sink globally. These broad-scale vegetation shifts may represent a new stable state, reinforced by positive feedbacks between global change drivers and endogenic mechanisms of persistence in the landscape.

  16. Vegetation recovery in slash-pile scars following conifer removal in a grassland-restoration experiment

    Science.gov (United States)

    Charles B. Halpern; Joseph A. Antos; Liam M. Beckman

    2014-01-01

    A principal challenge to restoring tree-invaded grasslands is the removal of woody biomass. Burning of slash piles to reduce woody residues from forest restoration practices generates intense, prolonged heating, with adverse effects on soils and vegetation. In this study, we examined vegetation responses to pile burning following tree removal from conifer-invaded...

  17. An Improved Estimation of Regional Fractional Woody/Herbaceous Cover Using Combined Satellite Data and High-Quality Training Samples

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2017-01-01

    Full Text Available Mapping vegetation cover is critical for understanding and monitoring ecosystem functions in semi-arid biomes. As existing estimates tend to underestimate the woody cover in areas with dry deciduous shrubland and woodland, we present an approach to improve the regional estimation of woody and herbaceous fractional cover in the East Asia steppe. This developed approach uses Random Forest models by combining multiple remote sensing data—training samples derived from high-resolution image in a tailored spatial sampling and model inputs composed of specific metrics from MODIS sensor and ancillary variables including topographic, bioclimatic, and land surface information. We emphasize that effective spatial sampling, high-quality classification, and adequate geospatial information are important prerequisites of establishing appropriate model inputs and achieving high-quality training samples. This study suggests that the optimal models improve estimation accuracy (NMSE 0.47 for woody and 0.64 for herbaceous plants and show a consistent agreement with field observations. Compared with existing woody estimate product, the proposed woody cover estimation can delineate regions with subshrubs and shrubs, showing an improved capability of capturing spatialized detail of vegetation signals. This approach can be applicable over sizable semi-arid areas such as temperate steppes, savannas, and prairies.

  18. Simulation of maximum light use efficiency for some typical vegetation types in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Maximum light use efficiency (εmax) is a key parameter for the estimation of net primary productivity (NPP) derived from remote sensing data. There are still many divergences about its value for each vegetation type. The εmax for some typical vegetation types in China is simulated using a modified least squares function based on NOAA/AVHRR remote sensing data and field-observed NPP data. The vegetation classification accuracy is introduced to the process. The sensitivity analysis of εmax to vegetation classification accuracy is also conducted. The results show that the simulated values of εmax are greater than the value used in CASA model, and less than the values simulated with BIOME-BGC model. This is consistent with some other studies. The relative error of εmax resulting from classification accuracy is -5.5%―8.0%. This indicates that the simulated values of εmax are reliable and stable.

  19. The flora of woody plants and vegetation on the Horn of Africa

    DEFF Research Database (Denmark)

    Friis, Ib

    2017-01-01

    There are about one thousand species of woody plants that occur naturally on the Horn of Africa, including trees and large shrubs, and they have many functions in the highly varied ecosystem on the Horn, including soil conservation and the prevention of flooding during tropical rainstorms. For hi...

  20. LBA-ECO ND-02 Secondary Forest Small Stem, Non-Woody Biomass, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports biomass from small stems and non-woody vegetation measured from 1999 to 2005 in plots of a secondary-growth forest fertilization experiment....

  1. LBA-ECO ND-02 Secondary Forest Small Stem, Non-Woody Biomass, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports biomass from small stems and non-woody vegetation measured from 1999 to 2005 in plots of a secondary-growth forest fertilization...

  2. Trophic ecology of Lepidoptera larvae associated with woody vegetation in a savanna ecosystem

    CSIR Research Space (South Africa)

    Scholtz, CH

    1982-06-01

    Full Text Available This study represents a quantitative survey of a Lepidoptera community and deals with the trophic ecology of the 27 species of foliage-feeding Lepidoptera on the eight dominant woody plants in the Burkea africana-Eragrostis pallens savanna...

  3. Scrubbing up: multi-scale investigation of woody encroachment in a southern African savannah

    OpenAIRE

    Marston, Christopher G.; Aplin, Paul; Wilkinson, David M.; Field, Richard; O'Regan, Hannah J.

    2017-01-01

    Changes in the extent of woody vegetation represent a major conservation question in many savannah systems around the globe. To address the problem of the current lack of broad-scale cost-effective tools for land cover monitoring in complex savannah environments, we use a multi-scale approach to quantifying vegetation change in Kruger National Park (KNP), South Africa. We test whether medium spatial resolution satellite data (Landsat, existing back to the 1970s), which have pixel sizes larger...

  4. Landscape Evolution in South Texas Savannas: Impact of Woody Encroachment on Land-Surface Hydrology

    Science.gov (United States)

    Basant, S.; Wilcox, B. P.

    2017-12-01

    South Texas shrubland savannas have seen extensive woody encroachment over the last century. The ecosystem is largely spread over the coastal sediments typified by subtle elevation differences which are marked by bands of thick vegetation. Together, they form a dendritic pattern of vegetation which resembles a drainage network. We hypothesize that these vegetation shifts from grassland to woodlands began with the woody encroachment of drainage networks first. This was helped mainly by two factors, a) cattle grazing, b) the undulating feature of the landscape, c) periodic high intensity storms every few years resulting in large overland flows. We propose that the overland flows generated by these periodic storms provided a `subsidy' of extra water accounting for the differential rate of biomass production in lowlands. We also propose that with the continued woody encroachment, the extent of redistribution of water has changed in extent, and in scale triggering vegetation dynamics which are more controlled at patch scales. Soil moisture data was collected for over a year using neutron moisture meter for 40 points spread over a micro catchment. Plot scale runoff and interception data was sampled for the same catchment. USGS historical streamflow data from nearby creeks was used to confirm the periodic trend of runoff generation. Control exerted by microtopography of the site was accounted by using DEM at 1m resolution. Soil water storage was found to be consistently higher for uplands with open areas while lower for wooded patches but the upland sites also exhibited variability based on the slope and soil texture. Runoff generated also varied on shrub cover, slope and soil order, but higher for areas with previous records of grazing. Most runoff events were < 2mm except for 2 hurricane events in our records which generated more than 100mm of runoff. This points to the importance the role of rainfall intensity and the scale of runoff redistribution in providing

  5. Review article: Vegetative growth, reproduction, browse production ...

    African Journals Online (AJOL)

    Vegetative growth, reproduction, browse production and response to tree clearing of ... water stress, soil nutrient availability, carbohydrate reserves, plant hormones, ... animal-plant interactions) of woody plants in various savanna ecosystems.

  6. Dynamic response of woody vegetation on fencing protection in semi-arid areas; Case study: Pilot exclosure on the Firmihin Plateau, Socotra Island

    Directory of Open Access Journals (Sweden)

    Hana Habrova

    2017-02-01

    Full Text Available Woody vegetation dynamics and Dracaena cinnabari regeneration have been studied for five years in the conditions of Socotra Island. Woody plants were measured regularly inside and outside the exclosure area, and the growth and survival of D. cinnabari seedlings were observed. In the exclosure of about 1000 m2 a total of 49 species were identified, including 23 endemics, growing in the average density of 3.82 specimens per m2. The fenced area was overgrown relatively rapidly by dense grass cover – reaching approx. 2.7 t/ha. Species growth dynamics inside and outside the exclosure shows that grazing had a marked impact, leading to the elimination of trees and shrubs. All grazed species grew noticeably in the exclosure, in the average of 50 cm in 5 years. D. cinnabari as the dominant flagship species of Socotra has been studied with regards to regeneration dynamics. Observations indicate that probability of its seedlings survival increases with their age. No seedlings germinated from the seeds sown in the experiment, however, outplanted seedlings performed relatively well. Field observations show that D. cinnabari seed germination is triggered when the seed reaches a protected micro-habitat with a developed humus layer and high relative humidity in the soil lasts for at least two days.

  7. Comparison of the current state of non-forest woody vegetation in two contrasted case study areas in Central Europe

    Directory of Open Access Journals (Sweden)

    Demková Katarína

    2017-03-01

    Full Text Available Non-forest woody vegetation (NFWV, as a part of green infrastructure, has gained a great deal of attention in recent years. Despite its importance in many productive and non-productive functions, an inventory (collection of quantitative and qualitative data on a national or even on a local level is not available in many European countries. The main aim of this study is to carry out a comparison of two study areas (lowland and upland from the perspective of the current state of NFWV. We investigate qualitative attributes of NFWV, its relation to environmental conditions and its spatial pattern. After manual vectorization of orthophotos, qualitative data were collected in the field. Using statistical and landscape-ecological methods, the relation between NFWV and environmental conditions, as well as its spatial pattern were assessed. Substantial differences in character and in the spatial pattern of NFWV were identified between the study areas. NFWV in the upland area has a higher proportion (2.6% than in lowland study area (1.5%, and it also has a more heterogeneous spatial structure. Statistical analysis points to a significant relation between the NFWV and land cover types in both study areas. A significant relation between NFWV and soil types was identified only in the upland area, however, while an association with potential natural vegetation was found in the lowland study area.

  8. IMPACT OF Acacia drepanolobium (AN INVASIVE WOODY SPECIES ON GUM-RESIN RESOURCES AND LOCAL LIVELIHOOD IN BORANA, SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Ayana Abdeta

    2011-10-01

    Full Text Available We investigated the impact of Acacia drepanolobium, a species threatening rangeland resources including Gum-resin production and pastoralists’ livelihoods in Borana. Data were collected through vegetation surveys, key informant interviews, use of formal questionnaires and focus group discussions. We found a total of 22 woody species in the study area. A. drepanolobium was found to be the most dominant (22% and abundant (65% invasive woody species with an importance value index (IVI of 103. According to our respondents, A. drepanolobium was the first widely expanded woody species followed by Dichrostachys cinerea and A. mellifera. Eighty seven percent of our respondents ranked A. drepanolobium as the most invading woody species during their life time. Overall, our results demonstrated that the impact of A. drepanolobium had greatly affected the condition of rangeland vegetation. The implication is that the reduction in the capacity of rangelands for livestock grazing could reduce the resilience of local livelihood under changing environmental conditions. Furthermore, pastoralists’ perception indicated that the expansion of A. drepanolobium had reduced the survival of Gum-resin producing species. Generally, the shift from cattle based pastoral economy to mixed livestock types could be attributed to the expansion of A. drepanolobium that forced the community to shift their mode of production. We confirmed that A. drepanolobium is an invasive indigenous woody species with multiple effects on the ecology of rangelands and on the livelihood security of pastoral communities.

  9. The National Inventory of Down Woody Materials: Methods, Outputs, and Future Directions

    Science.gov (United States)

    Christopher W. Woodall

    2003-01-01

    The Forest Inventory and Analysis Program (FIA) of the USDA Forest Service conducts a national inventory of forests of the United States. A subset of FIA permanent inventory plots are sampled every year for numerous forest health indicators ranging fiom soils to understory vegetation. Down woody material (DWM) is an FIA indicator that refines estimation of forest...

  10. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds

    Directory of Open Access Journals (Sweden)

    Amelia eElgar

    2014-05-01

    Full Text Available Combating the legacy of deforestation on tropical biodiversity requires the conversion to forest of large areas of established pasture, where barriers to native plant regeneration include competition with pasture grasses and poor propagule supply (seed availability. In addition, initial woody plants that colonise pasture are often invasive non-native species whose ecological roles and management in the context of forest regeneration are contested. In a restoration experiment at two 0.64 ha sites we quantified the response of native woody vegetation recruitment to (1 release from competition with introduced pasture grasses, and (2 local facilitation of frugivore-assisted seed dispersal provided by scattered woody plants and artificial bird perches. Herbicide pasture grass suppression during 20 months caused a significant but modest increase in density of native woody seedlings, together with abundant co-recruitment of the prominent non-native pioneer wild tobacco (Solanum mauritianum. Recruitment of native species was further enhanced by local structure in herbicide-treated areas, being consistently greater under live trees and dead non-native shrubs (herbicide-treated than in open areas, and intermediate under bird perches. Native seedling recruitment comprised 28 species across 0.25 ha sampled but was dominated by two rainforest pioneers (Homalanthus novoguineensis, Polyscias murrayi. These early results are consistent with the expected increase in woody vegetation recruitment in response to release from competitive and dispersive barriers to rainforest regeneration. The findings highlight the need for a pragmatic consideration of the ecological roles of woody weeds and the potential roles of ‘new forests’ more broadly in accelerating succession of humid tropical forest across large areas of retired agricultural land.

  11. Renewable energy from vegetation; Les energies renouvelables d'origine vegetale

    Energy Technology Data Exchange (ETDEWEB)

    Sales, C. [Centre francais de cooperation international en recherche agronomique pour le developpement (France)

    2009-07-15

    Currently, vegetation accounts for 3 major types of energy sources, notably woody biomass, starches and vegetable oils. Bio-ethanol and biodiesel is produced from the fermentation of starches, such as sugar cane, beet sugar, sorghum, corn and potatoes. Biofuels can be produced from palm tree oil, coconut oil , soya oil, sunflower oil or any type of vegetable based oil. This article discussed energy efficiency issues and the environmental impact of developing these energies. In general, the lower energy efficiency of the starches can be attributed to the enzymes responsible for the catalysis. The article also reviewed the thermochemistry and energy efficiency regarding second generation fuels. It also discussed the burning of biomass, including woody biomass, forest waste and agricultural waste. 1 ref., 2 figs.

  12. Vegetation composition and structure influences bird species ...

    African Journals Online (AJOL)

    Vegetation composition and structure influences bird species community ... variables on bird species diversity and richness of respective foraging guilds, and ... of the species assessed: (1) increasing closed cover due to woody plant density, ...

  13. Sparrow nest survival in relation to prescribed fire and woody plant invasion in a northern mixed-grass prairie

    Science.gov (United States)

    Murphy, Robert K.; Shaffer, Terry L.; Grant, Todd A.; Derrig, James L.; Rubin, Cory S.; Kerns, Courtney K.

    2017-01-01

    Prescribed fire is used to reverse invasion by woody vegetation on grasslands, but managers often are uncertain whether influences of shrub and tree reduction outweigh potential effects of fire on nest survival of grassland birds. During the 2001–2003 breeding seasons, we examined relationships of prescribed fire and woody vegetation to nest survival of clay-colored sparrow (Spizella pallida) and Savannah sparrow (Passerculus sandwichensis) in mixed-grass prairie at Des Lacs National Wildlife Refuge in northwestern North Dakota, USA. We assessed relationships of nest survival to 1) recent fire history, in terms of number of breeding seasons (2, 3, or 4–5) since the last prescribed fire, and 2) prevalence of trees and tall (>1.5 m) shrubs in the landscape and of low (≤1.5 m) shrubs within 5 m of nests. Nest survival of both species exhibited distinct patterns related to age of the nest and day of year, but bore no relationship to fire history. Survival of clay-colored sparrow nests declined as the amount of trees and tall shrubs within 100 m increased, but we found no relationship to suggest nest parasitism by brown-headed cowbirds (Molothrus ater) as an underlying mechanism. We found little evidence linking nest survival of Savannah sparrow to woody vegetation. Our results suggest that fire can be used to restore northern mixed-grass prairies without adversely affecting nest survival of ≥2 widespread passerine species. Survival of nests of clay-colored sparrow may increase when tall woody cover is reduced by fire. Our data lend support to the use of fire for reducing scattered patches of tall woody cover to enhance survival of nests of ≥1 grassland bird species in northern mixed-grass prairies, but further study is needed that incorporates experimental approaches and assessments of shorter term effects of fire on survival of nests of grassland passerines.

  14. Optimum Vegetation Conditions for Successful Establishment of Planted Eastern White Pine (Pinus strobus L.

    Directory of Open Access Journals (Sweden)

    Douglas G. Pitt

    2016-08-01

    Full Text Available The 10th-growing season performance of planted eastern white pine (Pinus strobus L. seedlings was evaluated in response to herbaceous and woody vegetation control treatments within a clearcut and two variants of the uniform shelterwood regeneration system (single vs. multiple future removal cuts. Herbaceous vegetation control involved the suppression of grasses, forbs, ferns and low shrubs for the first 2 or 4 growing seasons after planting. Deciduous woody vegetation control treatments, conducted in combination with the herbaceous treatments within a response-surface design, involved the permanent removal of all tall shrubs and deciduous trees at the time of planting, at the end of the 2nd or 5th growing seasons, or not at all. In general, the average size of planted pine was related positively to the duration of herbaceous vegetation control and negatively to delays in woody control. White pine weevil (Pissodes strobi Peck altered these trends, reducing the height of pine on plots with little or no overtopping deciduous woody vegetation or mature tree cover. Where natural pine regeneration occurred on these plots, growth was similar but subordinate to the planted pine. Data from the three sites indicate that at least 60% of planted pine may be expected to reach an age-10 height target of 2.5 m when overtopping cover (residual overstory + regenerating deciduous is managed at approximately 65% ± 10%, and total herbaceous cover is suppressed to levels not exceeding 50% in the first five years. On productive sites, this combination may be difficult to achieve in a clearcut, and requires fairly rigorous vegetation management in shelterwood regeneration systems. Currently, synthetic herbicides offer the only affordable and effective means of achieving such vegetation control.

  15. Selection and Vegetative Propagation of Native Woody Plants for Water-Wise Landscaping

    OpenAIRE

    Rupp, Larry A; Varga, William A; Anderson, David

    2011-01-01

    Native woody plants with ornamental characteristics such as brilliant fall color, dwarf form, or glossy leaves have potential for use in water conserving urban landscapes. Individual accessions with one or more of these unique characteristics were identified based on the recommendations of a wide range of plant enthusiasts (both professional and amateur). Documentation of these accessions has been done through locating plants on-site where possible and then developing a record based on digita...

  16. A non-destructive method for quantifying small-diameter woody biomass in southern pine forests

    Science.gov (United States)

    D. Andrew Scott; Rick Stagg; Morris Smith

    2006-01-01

    Quantifying the impact of silvicultural treatments on woody understory vegetation largely has been accomplished by destructive sampling or through estimates of frequency and coverage. In studies where repeated measures of understory biomass across large areas are needed, destructive sampling and percent cover estimates are not satisfactory. For example, estimates of...

  17. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?

    Science.gov (United States)

    Stevens, Nicola; Erasmus, B F N; Archibald, S; Bond, W J

    2016-09-19

    Woody encroachment in 'open' biomes like grasslands and savannahs is occurring globally. Both local and global drivers, including elevated CO2, have been implicated in these increases. The relative importance of different processes is unresolved as there are few multi-site, multi-land-use evaluations of woody plant encroachment. We measured 70 years of woody cover changes over a 1020 km(2) area covering four land uses (commercial ranching, conservation with elephants, conservation without elephants and communal rangelands) across a rainfall gradient in South African savannahs. Different directions of woody cover change would be expected for each different land use, unless a global factor is causing the increases. Woody cover change was measured between 1940 and 2010 using the aerial photo record. Detection of woody cover from each aerial photograph was automated using eCognitions' Object-based image analysis (OBIA). Woody cover doubled in all land uses across the rainfall gradient, except in conservation areas with elephants in low-rainfall savannahs. Woody cover in 2010 in low-rainfall savannahs frequently exceeded the maximum woody cover threshold predicted for African savannahs. The results indicate that a global factor, of which elevated CO2 is the likely candidate, may be driving encroachment. Elephants in low-rainfall savannahs prevent encroachment and localized megafaunal extinction is a probable additional cause of encroachment.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  18. Multi-scale associations between vegetation cover and woodland bird communities across a large agricultural region.

    Directory of Open Access Journals (Sweden)

    Karen Ikin

    Full Text Available Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1 How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2 Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3 Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha over two time periods across a large (6,800 km(2 agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.

  19. Woodiness within the Spermacoceae–Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation?

    Science.gov (United States)

    Lens, Frederic; Groeninckx, Inge; Smets, Erik; Dessein, Steven

    2009-01-01

    Background and Aims The tribe Spermacoceae is essentially a herbaceous Rubiaceae lineage, except for some species that can be described as ‘woody’ herbs, small shrubs to treelets, or lianas. Its sister tribe Knoxieae contains a large number of herbaceous taxa, but the number of woody taxa is higher compared to Spermacoceae. The occurrence of herbaceous and woody species within the same group raises the question whether the woody taxa are derived from herbaceous taxa (i.e. secondary woodiness), or whether woodiness represents the ancestral state (i.e. primary woodiness). Microscopic observations of wood anatomy are combined with an independent molecular phylogeny to answer this question. Methods Observations of wood anatomy of 21 woody Spermacoceae and eight woody Knoxieae species, most of them included in a multi-gene molecular phylogeny, are carried out using light microscopy. Key Results Observations of wood anatomy in Spermacoceae support the molecular hypothesis that all the woody species examined are secondary derived. Well-known wood anatomical characters that demonstrate this shift from the herbaceous to the woody habit are the typically flat or decreasing length vs. age curves for vessel elements, the abundance of square and upright ray cells, or even the (near-) absence of rays. These so-called paedomorphic wood features are also present in the Knoxieae genera Otiophora, Otomeria, Pentas, Pentanisia and Phyllopentas. However, the wood structure of the other Knoxieae genera observed (Carphalea, Dirichletia and Triainolepis) is typical of primarily woody taxa. Conclusions In Spermacoceae, secondary woodiness has evolved numerous times in strikingly different habitats. In Knoxieae, there is a general trend from primary woodiness towards herbaceousness and back to (secondary) woodiness. PMID:19279041

  20. Woody biomass policies and location decisions of the woody bioenergy industry in the southern United States

    International Nuclear Information System (INIS)

    Guo, Zhimei; Hodges, Donald G.; Young, Timothy M.

    2013-01-01

    Woody biomass for bioenergy production has been included in relatively few renewable energy policies since the 1970s. Recently, however, several states have implemented a variety of new woody biomass policies to spur the establishment of new bioenergy industry. Establishing new woody biomass-based facilities in a specific state is affected by a number of factors such as the strength of these new policy incentives, resource availability, business tax climate, and the available labor force. This study employs a conditional logit model (CLM) to explore the effects of woody biomass policies on the siting decisions of new bioenergy projects relative to some of these other state attributes. The CLM results suggest that state government incentives are significantly related to state success in attracting new plants. The results have substantial implications regarding woody biomass policies and the creation of a new bioenergy industry. -- Highlights: •This study explores the effects of state attributes on the siting decisions of new woody bioenergy projects. •Results suggest that state woody biomass policies are significantly related to state success in attracting new plants. •Other factors related to the siting of woody bioenergy facilities include resource availability, taxes, and wage rate

  1. Useful woody species and its environmental availability: the case of artisanal fishermen in Itaúnas, Brazil

    Directory of Open Access Journals (Sweden)

    Lucas Costa Monteiro Lopes

    2017-06-01

    Full Text Available Ethnobotanical studies involve research with human societies and their different interaction with plants, and the quantitative approaches from thes estudies are important to select conservation priority of species in natural environment. This research aims to quantify use-values for woody plants mentioned by fishers in Itaúnas, state of Espírito Santo, and evaluate the relationship between use-values and species availability (absolute density and frequency, and importance value in two distinct resting vegetation formations. It also proposes to identify priority species for conservation. It was selected 30 species cited in individual semi-structured interviews with key-informant in fishers’ community and who were also on list of structural survey of two vegetation phytophysiognomies in the restinga regions. The data used was collected in previously published work. It was performed a correlation analysis between use-values and structural parameters of the mentioned woody species. Protium heptaphyllum, P. icicariba and Byrsonima sericea present the highest use-values. It was not observed relation between use-value and species availability in each vegetation formation. It was classified two and eight species as priority for conservation on shrubby and forest formations, respectively.

  2. Host range of Phytophthora parsiana: a new high temperature pathogen of woody plants

    Directory of Open Access Journals (Sweden)

    Somieh HAJEBRAHIMI

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 Among several Phytophthora spp. reported previously from Pistacia vera in Iran, a high temperature species recently identified as P. parsiana (formerly known as high temperature P. cryptogea is becoming important in woody plants, including P. vera. The host range of this newly recognised species, including both annual and perennial plants, is reported here. The pathogen infected 4–5 month-old glasshouse grown seedlings of P. vera, Ficus carica, Malus pumila and Prunus dulcis, and detached stems of 23 woody plants collected during dormant and growing seasons. Nineteen field and vegetable crops and 17 weed species were not infected by  P. parsiana in these pathogenicity assays.

  3. Trends in soil erosion and woody shrub encroachment in Ngqushwa district, Eastern Cape Province, South Africa.

    Science.gov (United States)

    Manjoro, Munyaradzi; Kakembo, Vincent; Rowntree, Kate M

    2012-03-01

    Woody shrub encroachment severely impacts on the hydrological and erosion response of rangelands and abandoned cultivated lands. These processes have been widely investigated at various spatial scales, using mostly field experimentation. The present study used remote sensing to investigate spatial and temporal patterns of soil erosion and encroachment by a woody shrub species, Pteronia incana, in a catchment in Ngqushwa district, Eastern Cape Province, South Africa between 1998 and 2008. The extreme categories of soil erosion and shrub encroachment were mapped with higher accuracy than the intermediate ones, particularly where lower spatial resolution data were used. The results showed that soil erosion in the worst category increased simultaneously with dense woody shrub encroachment on the hill slopes. This trend is related to the spatial patterning of woody shrub vegetation that increases bare soil patches--leading to runoff connectivity and concentration of overland flow. The major changes in soil erosion and shrub encroachment analysed during the 10-year period took place in the 5-9° slope category and on the concave slope form. Multi-temporal analyses, based on remote sensing, can extend our understanding of the dynamics of soil erosion and woody shrub encroachment. They may help benchmark the processes and assist in upscaling field studies.

  4. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM)

    Science.gov (United States)

    Wang, Siyang; Xu, Xiaoting; Shrestha, Nawal; Zimmermann, Niklaus E.; Tang, Zhiyao; Wang, Zhiheng

    2017-01-01

    Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM) approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 14C yr BP) and Middle-Holocene (MH, 6000 14C yr BP). The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present. PMID:28426780

  5. How to deal with radiologically contaminated vegetation

    International Nuclear Information System (INIS)

    Wilde, E.W.; Murphy, C.E.; Lamar, R.T.; Larson, M.J.

    1996-01-01

    This report describes the findings from a literature review conducted as part of a Department of Energy, Office of Technology Development Biomass Remediation Task. The principal objective of this project is to develop a process or group of processes to treat radiologically contaminated vegetation in a manner that minimizes handling, processing, and treatment costs. Contaminated, woody vegetation growing on waste sites at SRS poses a problem to waste site closure technologies that are being considered for these sites. It is feared that large sections of woody vegetation (logs) can not be buried in waste sites where isolation of waste is accomplished by capping the site. Logs or large piles of woody debris have the potential of decaying and leaving voids under the cap. This could lead to cap failure and entrance of water into the waste. Large solid objects could also interfere with treatments like in situ mixing of soil with grout or other materials to encapsulate the contaminated sediments and soils in the waste sites. Optimal disposal of the wood includes considerations of volume reduction, treatment of the radioactive residue resulting from volume reduction, or confinement without volume reduction. Volume reduction consists primarily of removing the carbon, oxygen, and hydrogen in the wood, leaving an ash that would contain most of the contamination. The only contaminant that would be released by volume reduction would by small amounts of the radioactive isotope of hydrogen, tritium. The following sections will describe the waste sites at SRS which contain contaminated vegetation and are potential candidates for the technology developed under this proposal. The description will provide a context for the magnitude of the problem and the logistics of the alternative solutions that are evaluated later in the review. 76 refs

  6. How to deal with radiologically contaminated vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.; Murphy, C.E.; Lamar, R.T.; Larson, M.J.

    1996-12-31

    This report describes the findings from a literature review conducted as part of a Department of Energy, Office of Technology Development Biomass Remediation Task. The principal objective of this project is to develop a process or group of processes to treat radiologically contaminated vegetation in a manner that minimizes handling, processing, and treatment costs. Contaminated, woody vegetation growing on waste sites at SRS poses a problem to waste site closure technologies that are being considered for these sites. It is feared that large sections of woody vegetation (logs) can not be buried in waste sites where isolation of waste is accomplished by capping the site. Logs or large piles of woody debris have the potential of decaying and leaving voids under the cap. This could lead to cap failure and entrance of water into the waste. Large solid objects could also interfere with treatments like in situ mixing of soil with grout or other materials to encapsulate the contaminated sediments and soils in the waste sites. Optimal disposal of the wood includes considerations of volume reduction, treatment of the radioactive residue resulting from volume reduction, or confinement without volume reduction. Volume reduction consists primarily of removing the carbon, oxygen, and hydrogen in the wood, leaving an ash that would contain most of the contamination. The only contaminant that would be released by volume reduction would by small amounts of the radioactive isotope of hydrogen, tritium. The following sections will describe the waste sites at SRS which contain contaminated vegetation and are potential candidates for the technology developed under this proposal. The description will provide a context for the magnitude of the problem and the logistics of the alternative solutions that are evaluated later in the review. 76 refs.

  7. Analyses of plant biomarkers in modern ecosystems to improve vegetation reconstructions at hominid sites

    Science.gov (United States)

    Uno, K. T.; Boisserie, J. R.; Cerling, T. E.; Polissar, P. J.

    2017-12-01

    Reconstructing vegetation at hominid localities in eastern Africa remains a significant challenge for examining the role of climate and environment in human evolution. Plant wax biomarker approaches, particularly carbon isotopes of n-alkyl lipids, have been increasingly used to estimate the proportion of C3 and C4­ vegetation in past environments. Identifying new biomarkers indicative of vegetation type, specifically those that can be used to identify (C3) grasses prior to the late Miocene C4 expansion, will enable vegetation reconstructions during the first half of the Neogene, where much remains to be learned about hominid environments. Here, we begin to look beyond carbon isotopes from n-alkyl lipids by analyzing molecular distributions and screening for new plant biomarkers that can be used to identify plant functional types or possibly, more specific taxonomic information. We evaluate molecular distributions, carbon isotope ratios, and pentacyclic triterpenoid methyl esters (PTMEs) in modern soils from a wide range of ecosystems in Ethiopia and Kenya where vegetation types, fraction woody cover, and climatic conditions are known. Preliminary data suggest PTMEs are associated with grassy ecosystems but absent from forested ones. We also find that woody cover can be estimated using n-alkane molecular distributions. This non-isotopic approach to reconstructing woody cover opens the door to reconstructing Neogene vegetation provided the molecular distributions of C3 grasses in the past are similar to those of modern C4 grasses.

  8. The contribution of woody plant materials on the several conditions in a space environment

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.

  9. Distribution of mercury in vegetation at Almaden, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Huckabee, J.W.; Diaz, F.S.; Janzen, S.A.; Solomon, J.

    1983-03-01

    An ecological survey of the distribution of mercury in vegetation was initiated in 1975 in the vicinity of the mercury mine at Almaden, Spain. Samples were collected in autumn 1975, spring 1976, autumn 1976, and spring 1977, and chemical analyses for total mercury (..sigma.. Hg) were completed in 1979. Mean ..sigma.. Hg concentration in terrestrial plants ranged from > 100 ..mu..g g/sup -1/ within 0.5 km of the mine, to 0.20 ..mu..g g/sup -1/ 20 km distant from the mine. Different plant species had different concenrations of ..sigma.. Hg, but moss species usually had higher ..sigma.. Hg concentration than vascular plants. Woody plants were lower in ..sigma.. Hg concentration that forbs. Woody plants apparently accumulated ..sigma.. Hg primarily from atmospheric particulates. Traces of methylated mercury were detected in some plants. The ..sigma.. Hg concentrations in the 2483 vegetation samples reported here are much greater, even at distances of 25 km up-wind from the mine, than other reported ..sigma.. Hg values in comparable vegetation.

  10. Estimating tree species diversity in the savannah using NDVI and woody canopy cover

    Science.gov (United States)

    Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo; Naidoo, Laven

    2018-04-01

    Remote sensing applications in biodiversity research often rely on the establishment of relationships between spectral information from the image and tree species diversity measured in the field. Most studies have used normalized difference vegetation index (NDVI) to estimate tree species diversity on the basis that it is sensitive to primary productivity which defines spatial variation in plant diversity. The NDVI signal is influenced by photosynthetically active vegetation which, in the savannah, includes woody canopy foliage and grasses. The question is whether the relationship between NDVI and tree species diversity in the savanna depends on the woody cover percentage. This study explored the relationship between woody canopy cover (WCC) and tree species diversity in the savannah woodland of southern Africa and also investigated whether there is a significant interaction between seasonal NDVI and WCC in the factorial model when estimating tree species diversity. To fulfil our aim, we followed stratified random sampling approach and surveyed tree species in 68 plots of 90 m × 90 m across the study area. Within each plot, all trees with diameter at breast height of >10 cm were sampled and Shannon index - a common measure of species diversity which considers both species richness and abundance - was used to quantify tree species diversity. We then extracted WCC in each plot from existing fractional woody cover product produced from Synthetic Aperture Radar (SAR) data. Factorial regression model was used to determine the interaction effect between NDVI and WCC when estimating tree species diversity. Results from regression analysis showed that (i) WCC has a highly significant relationship with tree species diversity (r2 = 0.21; p NDVI and WCC is not significant, however, the factorial model significantly reduced the error of prediction (RMSE = 0.47, p NDVI (RMSE = 0.49) or WCC (RMSE = 0.49) model during the senescence period. The result justifies our assertion

  11. Environmental effects of growing short-rotation woody crops on former agricultural lands

    International Nuclear Information System (INIS)

    Tolbert, V.R.; Thornton, F.C.; Joslin, J.D.

    1997-01-01

    Field-scale studies in the Southeast have been addressing the environmental effects of converting agricultural lands to biomass crop production since 1994. Erosion, surface water quality and quantity and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops are being compared. Nutrient cycling, soil physical changes, and crop productivity are also being monitored at the three sites. Maximum sediment losses occurred in the spring and fall. Losses were greater from sweetgum planted without a cover crop than with a cover crop. Nutrient losses of N and P in runoff and subsurface water occurred primarily after spring fertilizer application. These field plot studies are serving as the basis for a water shed study initiated in 1997. Results from the two studies will be used to develop and model nutrient and hydrologic budgets for woody crop plantings to identify potential constraints to sustainable deployment of short-rotation woody crops in the southeastern United States. (author)

  12. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?

    Science.gov (United States)

    Bryant, John P.; Joly, Kyle; Chapin, F. Stuart; DeAngelis, Donald L.; Kielland, Knut

    2014-01-01

    Global climate warming is projected to promote the increase of woody plants, especially shrubs, in arctic tundra. Many factors may affect the extent of this increase, including browsing by mammals. We hypothesize that across the Arctic the effect of browsing will vary because of regional variation in antibrowsing chemical defense. Using birch (Betula) as a case study, we propose that browsing is unlikely to retard birch expansion in the region extending eastward from the Lena River in central Siberia across Beringia and the continental tundra of central and eastern Canada where the more effectively defended resin birches predominate. Browsing is more likely to retard birch expansion in tundra west of the Lena to Fennoscandia, Iceland, Greenland and South Baffin Island where the less effectively defended non-resin birches predominate. Evidence from the literature supports this hypothesis. We further suggest that the effect of warming on the supply of plant-available nitrogen will not significantly change either this pan-Arctic pattern of variation in antibrowsing defense or the resultant effect that browsing has on birch expansion in tundra. However, within central and east Beringia warming-caused increases in plant-available nitrogen combined with wildfire could initiate amplifying feedback loops that could accelerate shrubification of tundra by the more effectively defended resin birches. This accelerated shrubification of tundra by resin birch, if extensive, could reduce the food supply of caribou causing population declines. We conclude with a brief discussion of modeling methods that show promise in projecting invasion of tundra by woody plants.

  13. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States

    Directory of Open Access Journals (Sweden)

    Liknes Greg C

    2008-06-01

    Full Text Available Abstract Background Coarse and fine woody debris are substantial forest ecosystem carbon stocks; however, there is a lack of understanding how these detrital carbon stocks vary across forested landscapes. Because forest woody detritus production and decay rates may partially depend on climatic conditions, the accumulation of coarse and fine woody debris carbon stocks in forests may be correlated with climate. This study used a nationwide inventory of coarse and fine woody debris in the United States to examine how these carbon stocks vary by climatic regions and variables. Results Mean coarse and fine woody debris forest carbon stocks vary by Köppen's climatic regions across the United States. The highest carbon stocks were found in regions with cool summers while the lowest carbon stocks were found in arid desert/steppes or temperate humid regions. Coarse and fine woody debris carbon stocks were found to be positively correlated with available moisture and negatively correlated with maximum temperature. Conclusion It was concluded with only medium confidence that coarse and fine woody debris carbon stocks may be at risk of becoming net emitter of carbon under a global climate warming scenario as increases in coarse or fine woody debris production (sinks may be more than offset by increases in forest woody detritus decay rates (emission. Given the preliminary results of this study and the rather tenuous status of coarse and fine woody debris carbon stocks as either a source or sink of CO2, further research is suggested in the areas of forest detritus decay and production.

  15. Sustainable Biofuels from Forests: Woody Biomass

    Directory of Open Access Journals (Sweden)

    Edwin H. White

    2011-11-01

    Full Text Available The use of woody biomass feedstocks for bioenergy and bioproducts involves multiple sources of material that together create year round supplies. The main sources of woody biomass include residues from wood manufacturing industries, low value trees including logging slash in forests that are currently underutilized and dedicated short-rotation woody crops. Conceptually a ton of woody biomass feedstocks can replace a barrel of oil as the wood is processed (refined through a biorefinery. As oil is refined only part of the barrel is used for liquid fuel, e.g., gasoline, while much of the carbon in oil is refined into higher value chemical products-carbon in woody biomass can be refined into the same value-added products.

  16. Radiocesium levels in vegetation colonizing a contaminated floodplain

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Briese, L.A.; Geiger, R.A.; Sharitz, R.; Smith, M.H.

    1975-01-01

    Radiocesium concentrations in herbaceous and woody plants inhabiting a floodplain contaminated by nuclear production reactor effluents were measured. Leaves and stems of herbaceous plants (Andropogon sp. and Scirpus cyperinus) contained higher concentrations of radiocesium than those of woody plants (Alnus serrulata, Myrica cerifera, and Salix nigra). Andropogon and Alnus fruits had higher concentrations than the leaves or stems. Radiocesium concentrations in fruits and leaves were significantly correlated with stem radiocesium levels in some or all of the species sampled. Mean radiocesium levels in the plant parts exceeded mean soil concentrations; this indicates concentration of radiocesium by the vegetation

  17. Soil physical properties regulate lethal heating during burning of woody residues

    Science.gov (United States)

    Matt Busse; Carol Shestak; Ken Hubbert; Eric Knapp

    2010-01-01

    Temperatures well in excess of the lethal threshold for roots (60°C) have been measured in forest soils when woody fuels are burned. Whether this heat pulse is strongly moderated by soil moisture or soil texture is not fully understood, however. We measured soil heat profi les during 60 experimental burns, identifying changes in maximum soil temperature and heat...

  18. Evaluating vegetation management practices for woody and herbaceous vegetation : phase III : final report.

    Science.gov (United States)

    2017-08-01

    To train ODOT staff to recognize trees along the right-of-way that may be hazardous, identify trees that may be of a species-specific concern for vegetation management objectives, make pruning cuts based on industry standards, and oversee the tree wo...

  19. Effects of Lantana camara (L.) invasion on the native vegetation of ...

    African Journals Online (AJOL)

    ... camara (L.) invasion on the native vegetation of Gonarezhou National Park, Zimbabwe. ... A total of 41 native woody species and 2 native herbaceous species were ... Keywords : Alien plants, Biodiversity, Invasive plants, Lantana camara, ...

  20. Analysis of the herbaceous undergrowth of the woody savanna in the Fathala reserve, Delta du Saloum National park (Senegal)

    Czech Academy of Sciences Publication Activity Database

    Hejcmanová, P.; Hejcman, M.; Camara, A. A.; Antonínová, M.; Pavlů, V.; Černý, Tomáš; Ba, A. T.

    2006-01-01

    Roč. 138, č. 2 (2006), s. 119-228 ISSN 0778-4031 R&D Projects: GA AV ČR IAA6093404 Institutional research plan: CEZ:AV0Z60050516 Keywords : vegetation analysis * herb layer * woody savanna Subject RIV: EF - Botanics Impact factor: 0.208, year: 2006

  1. Comparative study of phloem loading radiotracer techniques for in vivo sucrose translocation in non woody and woody plants

    International Nuclear Information System (INIS)

    Kulkarni, Pranav; Pandey, Manish; Suprasanna Penna; Ramteke, Sahadeo

    2017-01-01

    The application of radioisotopes for analysing the in vivo physiological responses in plants is a well known practical approach for the plant physiologists. Physiological difference in woody and non woody plants necessitates the need for universal way of application of radioisotopes to study in vivo sucrose translocation. In this study, grape vine (Vitis vinifera cv. Thomson seedless) and mustard (Brassica juncea cv. Pusa Bold) plants having active source and sink were used as representative system for woody and non woody plants. In present work we applied different strategies for radio activity loading in both boody and non woody plant viz. phloem loading via cut end, direct injection into phloem and activity incorporation through minor vein of leaves (gaseous CO 2 incorporation)

  2. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Science.gov (United States)

    O'ishi, R.; Abe-Ouchi, A.

    2013-07-01

    When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  3. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    R. O'ishi

    2013-07-01

    Full Text Available When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm. In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ. The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM. Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  4. A vegetation map for eastern Africa

    DEFF Research Database (Denmark)

    Lillesø, Jens-Peter Barnekow; van Breugel, Paulo; Graudal, Lars

    2015-01-01

    The potential natural vegetation (PNV) map of eastern and southern Africa covers the countries Burundi, Ethiopia, Kenya, Uganda, Rwanda, Tanzania, and Zambia. The first version of the map was developed by various partners in East Africa and Europe in 2010 and has now reached version 2. The map...... is available in different formats and is accompanied by an extensive documentation of the floristic, physiognomic and other characteristics of the different vegetation types and useful woody species in the 8 countries. It is complemented by a species selection tool, which can be used to 'find the right tree...

  5. Vegetative rhythm of some woody species

    International Nuclear Information System (INIS)

    Gagnaire, J.

    1965-01-01

    In laboratory conditions from march 1963 to april 1964, variations of calcium absorption by roots and translocation speed towards aerial parts of young norway spruce (Picea excelsa) in hydroponic growing, present fixed stages in a vegetative cycle: 1. from early april until end may a rapid rising of minerals from roots to young parts of the tree, associated with a redistribution of calcium formerly fixed in tissues; 2. in June-July, an equilibrium in mineral exchanges between the different parts of the tree; 3. from early august to end of October, a pre-dormancy phase marked by a slowing of translocation; 4. in november-december, an absolute dormancy period; 5. from January to march, a post-dormancy phase in which root absorption and translocation to aerial parts recover. In outdoors conditions and for a determined climate these stages start and end on dates linked to species and variety: - in Grenoble, absolute dormancy starts in September for thuyas, early October for maple-trees, middle October for norway spruce and novembers for poplars. (authors) [fr

  6. Savanna Vegetation Dynamics and their Influence on Landscape-Scale C, N, and P Biogeochemistry

    Science.gov (United States)

    Boutton, T. W.; Zhou, Y.; Wu, X. B.; Hyodo, A.

    2017-12-01

    Soil carbon (C), nitrogen (N) and phosphorus (P) cycles are strongly interlinked and controlled through biological processes, and the P cycle is further controlled through geochemical processes. In grasslands, savannas, and other dryland ecosystems throughout the world, woody plant encroachment often modifies soil C, N, and P stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic C (SOC), total N (TN), and total P (TP) following woody encroachment by taking spatially-explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by trees and shrubs during the past century in the Rio Grande Plains, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns along the soil profile following woody encroachment. In contrast, TP increased slower than SOC and TN in surface soils, but faster in subsurface soils. Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in deeper portions of the profile. The encroachment of woody plants into this P-limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. Structural equation models (SEM) showed that fine root density explained the greatest proportion of variation in SOC, TN, and TP in the surface soil. In deeper portions of the profile, SEM showed that silt and clay explained much of the variation in SOC and TN, while soil pH strongly controlled TP. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic

  7. Quantifying Regional Vegetation Changes in China During Three Contrasting Warming Intervals since the Last Glacial Maximum

    Science.gov (United States)

    Li, Q.; Wu, H.; Yu, Y.; Sun, A.; Luo, Y.

    2017-12-01

    Reconstructing patterns of past vegetation change on a large-scale facilitates a better understanding of the interactions and feedbacks between climate change and the terrestrial biosphere. In addition, reducing the uncertainty in predictions of vegetation change under global warming highlights the importance of reconstructing vegetation patterns during past warming intervals. Here, we present a quantitative regional vegetation reconstruction for China during three intervals: Last Glacial Maximum (LGM, 18±2 14C kyr B.P.), early Holocene (8.5±0.5 14C kyr B.P.), and mid-Holocene (6±0.5 14C kyr B.P.). The biomization method, based on 249 pollen records, was used for the reconstructions. The results demonstrate that during the LGM, steppe and desert expanded eastwards and southwards, reaching the present-day temperate deciduous forest (TEDE) zone, and dominated northern China. In contrast, the forest in Eastern China underwent a substantial southwards retreat and the percentage of forest-type sites was at a minimum. In addition, the warm mixed forest (WAMF) and TEDE shifted southwards of 10° N relative to the present-day, and tropical seasonal rain forest (TSFO) was almost absent. At the same time, the forest-steppe boundary shifted southwards to near the middle and lower reaches of Yangtze River. For the early Holocene and mid-Holocene, the TSFO, WAMF, and TEDE shifted northwards by 2-5° relative to today, and the percentage of forest sites increased and reached a maximum in the mid-Holocene. The slight expansion of forest from the early Holocene to the mid-Holocene caused the forest-steppe boundary to shift northwestwards to near the present-day 300 mm isohyet by the mid-Holocene. Our results also indicate that climatic warming since the LGM, which strengthened the East Asian summer monsoon, favored the development of forest in China. This is potentially an important finding for evaluating the possible response of forest in China to future global warming.

  8. Woody biomass energy potential in 2050

    International Nuclear Information System (INIS)

    Lauri, Pekka; Havlík, Petr; Kindermann, Georg; Forsell, Nicklas; Böttcher, Hannes; Obersteiner, Michael

    2014-01-01

    From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm 3 /year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m 3 ). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%. - highlights: • We examine woody biomass energy potential by partial equilibrium model of forest and agriculture sectors. • It is possible to satisfy 18% (or 14% if primary forests are excluded) of the world's primary energy consumption in 2050 by woody biomass. • To achieve this would require an extensive subsidy/tax policy and would lead to substantial higher woody biomass prices compared to their current level

  9. Response of Competing Vegetation to Site Preparation on West Gulf Coastal Plain Commercial Forest Land

    Science.gov (United States)

    Gale L. Wolters; Henry A. Pearson; Ronald E. Thill; V. Clark Baldwin; Alton Martin

    1995-01-01

    The response of woody and herbaceous vegetation to site preparation, subsoil texture, and fertilization was measured on the West Gulf Coastal Plain. The influences of these treatments on competing vegetation were short-term. Drastic soil disturbance and fertilization briefly increased herbage production. Shear-windrow and shear-disk were generally the most effective...

  10. Effects of repeated burning on woody vegetation structure and composition in a semi-arid southern African savanna

    NARCIS (Netherlands)

    Gandiwa, E.

    2011-01-01

    The objective of this study was to investigate the effects of repeated dry season annual hot fires on woody plants in a semiarid southern African savanna in Zimbabwe. Parts of the National University of Science and Technology (NUST) research fields in Bulawayo, Zimbabwe have been burnt annually in

  11. Transient catchment hydrology after wildfires in a Mediterranean basin: runoff, sediment and woody debris

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The transient effect of forest fires on runoff, erosion and yield of woody biomass has been investigated by combining the experimental approach with mathematical models of hydrological processes. The case study is the Branega creek in Liguria, Italy, where a forest fire in August 2003 caused substantial changes to soil and vegetation, and left a considerable amount of woody debris on the ground. Immediately after the fire, rainfall simulator experiments in adjacent burned and unburned plots showed the extent to which fire had increased runoff and erosion rates. A distributed hydrological model using the tube-flux approach, calibrated on experimental measurements, has been used to investigate hill slope and channel erosion in a small sub-catchment, 1.5 ha in area, nested in the Branega basin. Simulation runs show that the model accommodates the observed variability of runoff and erosion under disturbed and undisturbed conditions. A model component describing the delivery of wood from hill slopes to the channel in post-fire conditions, validated against local survey data, showed that the removal and transport of woody biomass can be reproduced using an integrated hydrological approach. Hence, transient complexity after wildfires can be addressed by such an approach with empirically determined physically-based parameters.

  12. A reconnaissance survey of the vegetation of the North Luangwa National Park, Zambia

    Directory of Open Access Journals (Sweden)

    P. P. Smith

    1998-10-01

    Full Text Available A comprehensive survey of the vegetation of the North Luangwa National Park (NLNP was carried out over a period of two years. The main aims of the survey were to describe the major vegetation communities in the park and to produce a vegetation map of the NLNP Initial differentiation of vegetation units was established by the appearance of the vegetation on aerial photographs Further information was derived from 353 ground plots in which > 20 000 woody plants were identified and measured Thirteen broad vegetation types were recognised in the NLNP Details of their physiognomy, species composition, distribution, topography and edaphic associations are given.

  13. Woody biomass logistics [Chapter 14

    Science.gov (United States)

    Robert Keefe; Nathaniel Anderson; John Hogland; Ken Muhlenfeld

    2014-01-01

    The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material is often quite low, sometimes near zero. However, the cost of harvesting, collection, processing, storage, and transportation from the harvest site to end...

  14. miRNA control of vegetative phase change in trees.

    Directory of Open Access Journals (Sweden)

    Jia-Wei Wang

    2011-02-01

    Full Text Available After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays, vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima, as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.

  15. A sustainable woody biomass biorefinery.

    Science.gov (United States)

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars

  16. Understanding the role of local management in vegetation recovery around pastoral settlements in northern Kenya.

    Science.gov (United States)

    Roba, Hassan G; Oba, Gufu

    2013-04-01

    The recent greening of the Sahel region and increase in vegetation cover around pastoral settlements previously described as "man-made deserts", have raised important questions on the permanency of land degradation associated with the over-exploitation of woody plants. Evidence presented is mostly on increased wetness, while management by local communities has received limited attention. This study evaluated changes in woody vegetation cover around the settlements of Kargi and Korr in northern Kenya, using satellite imagery (1986/2000), ecological ground surveys and interviews with local elders, in order to understand long-term changes in vegetation cover and the role of local community in vegetation dynamics. At both settlements, there were increments in vegetation cover and reduction in the extent of bare ground between 1986 and 2000. At Kargi settlement, there were more tree seedlings in the centre of settlement than further away. Mature tree class was more abundant in the centre of Korr than outside the settlement. The success of the regeneration and recovery of tree cover was attributed to the actions of vegetation management initiative including stringent measures by the local Environmental Management Committees. This study provides good evidence that local partnership is important for sustainable management of resources especially in rural areas where the effectiveness of government initiative is lacking.

  17. Integrating Measures of Soil Respiration Across Spatial and Temporal Scales Along a Woody Plant Encroachment Gradient Using Traditional and Innovative Techniques 2027

    Science.gov (United States)

    Understanding the response of arid and semi-arid systems to changes in woody plant cover is an area of active research. Shifts in vegetation structure or function in these water-limited systems can have important and non-linear affects on ecosystem function and biogeochemical cycling. Most studies, ...

  18. Facilitation between woody and herbaceous plants that associate with arbuscular mycorrhizal fungi in temperate European forests.

    Science.gov (United States)

    Veresoglou, Stavros D; Wulf, Monika; Rillig, Matthias C

    2017-02-01

    In late-successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a dataset spanning over 400 vegetation plots in the Weser-Elbe region (northwest Germany). Mycorrhizal status information was obtained from published resources, and Ellenberg indicator values were used to infer environmental data. We carried out tests for both relative richness and relative abundance of herbaceous plants. We found that the subset of herbaceous individuals that associated with AM profited when there was a high cover of AM woody plants. These relationships were retained when we accounted for environmental filtering effects using path analysis. Our findings build on the existing literature highlighting the prominent role of mycorrhiza as a coexistence mechanism in plant communities. From a nature conservation point of view, it may be possible to promote functional diversity in the forest understory through introducing AM woody trees in stands when absent.

  19. Use of AIRSAR to identify woody shrub invasion and other indicators of desertification in the Jornada LTER

    Science.gov (United States)

    Musick, H. Brad; Schaber, Gerald G.; Breed, Carol S.

    1995-01-01

    The replacement of semidesert grassland by woody shrubland is a widespread form of desertification. This change in physiognomy and species composition tends to sharply reduce the productivity of the land for grazing by domestic livestock, increase soil erosion and reduce soil fertility, and greatly alter many other aspects of ecosystem structure and functioning. Remote sensing methods are needed to assess and monitor shrubland encroachment. Detection of woody shrubs at low density would provide a particularly useful baseline on which to access changes, because an initially low shrub density often tends to increase even after cessation of the disturbance (e.g., overgrazing, drought, or fire suppression) responsible for triggering the initial stages of the invasion (Grover and Musick, 1990). Limited success has been achieved using optical remote sensing. In contrast to other forms of desertification, biomass does not consistently decrease with a shift from grassland to shrubland. Estimation of green vegetation amount (e.g., by NDVI) is thus of limited utility, unless the shrubs and herbaceous plants differ consistently in phenology and the area can be viewed during a season when only one of these is green. The objective of this study was to determine if the potential sensitivity of active microwave remote sensing to vegetation structure could be used to assess the degree of shrub invasion of grassland. Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were acquired for a semiarid site containing varied mixtures of shrubs and herbaceous vegetation and compared with ground observations of vegetation type and other landsurface characteristics. In this preliminary report we examine the response of radar backscatter intensity to shrub density. The response of other multipolarization parameters will be examined in future work.

  20. Vegetation assessment of forests of Pagan Island, Commonwealth of the Northern Mariana Islands

    Science.gov (United States)

    Pratt, Linda W.

    2011-01-01

    As part of the Marianas Expedition Wildlife Surveys-2010, the forest vegetation of the island of Pagan, Commonwealth of the Northern Mariana Islands (CNMI), was sampled with a series of systematic plots along 13 transects established for monitoring forest bird populations. Shrubland and grassland were also sampled in the northern half of the island. Data collected were woody plant density, tree diameter at breast height, woody plant density in height classes below 2 m, and ground cover measured with the point-intercept method. Coconut forests (Cocos nucifera) were generally found to have low native tree diversity, little regeneration of trees and shrubs in the forest understory, and little live ground cover. The sole exception was a coconut-dominated forest of the northeast side of the island that exhibited high native tree diversity and a large number of young native trees in the understory. Ironwood (Casuarina equisetifolia) forests on the northern half of the island were nearly monocultures with almost no trees other than ironwood in vegetation plots, few woody plants in the understory, and low ground cover dominated by native ferns. Mixed native forests of both northern and southern sections of the island had a diversity of native tree species in both the canopy and the sparse understory. Ground cover of native forests in the north had a mix of native and alien species, but that of the southern half of the island was dominated by native ferns and woody plants.

  1. Studies of the Woody Vegetation of the Welor Forest Reserve ...

    African Journals Online (AJOL)

    komla

    Institute of Environmental Sciences, Faculty of Sciences and Techniques, ... Due to lack of information on this potential, the plant resources of this forest .... to assess the flora and the vegetation derive from a review of the literature, an inventory.

  2. IMPACT OF WOODY PLANTS SPECIES ON SOIL PHYSIO-CHEMICAL PROPERTIES ALONG GRAZING GRADIENTS IN RANGELANDS OF EASTERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Mohammed Mussa Abdulahi

    2016-12-01

    Full Text Available In the lowlands of arid and semiarid rangelands woody plants plays an important role in soil fertility maintenance, providing food, medicine, cosmetics, fodder, fuel wood and pesticides. A better understanding of the interaction of woody plants on their immediate environment is needed to guide optimum management of native vegetation in the production landscapes. However, the impact of woody plant species on soil properties remains poorly understood. This study evaluates the impact of two dominant woody plant species (A. senegal and B. aegyptica on soil physico-chemical properties along grazing gradients in rangelands of eastern Ethiopia. Six trees of each species were selected from light, moderate and heavy grazing sites.  Soil sample data at two depths (0-15 and 16-30 cm were collected from under and open areas of A. senegal and B. aegyptica from each grazing sites, and analysed for nutrient contents. The nutrient status of soil under both woody species was significantly higher especially with regard to soil organic matter (4.37%, total nitrogen (0.313%, and available phosphorus (11.62 than the open grassland with soil organic matter (3.82%, total nitrogen (0.246%, and available phosphorus (10.94 mg/Kg soil for A. Senegal. The soil organic matter (3.93%, total nitrogen (0.285%, available phosphorus (11.66 mg/Kg soil were significantly higher than open grassland with soil organic matter (3.52%, total nitrogen (0.218%, available phosphorus (10.73 mg/Kg soil for B. aegyptica. This was more pronounced in the top 15 cm of soil under A. senegal woody plant species and on the light and moderate grazing site. Therefore, this tree has a significant effect on soil fertility improvement in resource poor rangelands and as a result, it is important to retain scattered A. senegal and B. aegyptica plants in the lowlands of eastern Ethiopia.

  3. Comparing the methods plot and point-centered quarter to describe a woody community from typical Cerrado

    Directory of Open Access Journals (Sweden)

    Firmino Cardoso Pereira

    2015-05-01

    Full Text Available This article evaluates the effectiveness of the methods fixed area plots (AP and point-centered quarters (PQ to describe a woody community from typical Cerrado. We used 10 APs and 140 PQs, distributed into 5 transects. We compared the density of individuals, floristic composition, richness of families, genera, and species, and vertical and horizontal vegetation structure. The AP method was more effective to sample the density of individuals. The PQ method was more effective for characterizing species richness, vertical vegetation structure, and record of species with low abundance. The composition of families, genera, and species, as well as the species with higher importance value index in the community were similarly determined by the 2 methods. The methods compared are complementary. We suggest that the use of AP, PQ, or both methods may be aimed at the vegetation parameter under study.

  4. Post-wildfire recovery of riparian vegetation during a period of water scarcity in the southwestern USA

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; Christian Gunning; Roy Jemison; Jeffrey F. Kelly

    2009-01-01

    Wildland fires occur with increasing frequency in southwestern riparian forests, yet little is known about the effects of fire on populations of native and exotic vegetation. From 2003 to 2006, we monitored recovering woody vegetation in wildfire sites in the bosque (riparian forest) along the Middle Rio Grande of central New Mexico, USA. To examine recovery potential...

  5. Woody Species Diversity in Traditional Agroforestry Practices of Dellomenna District, Southeastern Ethiopia: Implication for Maintaining Native Woody Species

    Directory of Open Access Journals (Sweden)

    Abiot Molla

    2015-01-01

    Full Text Available The major impact of humans on forest ecosystems including loss of forest area, habitat fragmentation, and soil degradation leads to losses of biodiversity. These problems can be addressed by integration of agriculture with forests and maintaining the existing forests. This study was initiated to assess woody species diversity of traditional agroforestry practices. Three study sites (Burkitu, Chire, and Erba were selected based on the presence of agroforestry practice. Forty-eight (48 sample quadrants having an area of 20 m × 20 m, 16 sample quadrants in each study site, were systematically laid using four transect lines at different distance. The diversity of woody species was analyzed by using different diversity indices. A total of 55 woody species belonging to 31 families were identified and documented. There were significantly different (P<0.05 among the study Kebeles (peasant associations. Mangifera indica, Entada abyssinica, and Croton macrostachyus were found to have the highest Important Value Index. The results confirmed that traditional agroforestry plays a major role in the conservation of native woody species. However, threats to woody species were observed. Therefore, there is a need to undertake conservation practices before the loss of species.

  6. Evaluation of vegetation cover using the normalized difference vegetation index (NDVI

    Directory of Open Access Journals (Sweden)

    Gabriela Camargos Lima

    2013-08-01

    Full Text Available Soil loss by water erosion is the main cause of soil degradation in Brazil. However, erosion can be reduced by the presence of vegetation. The Normalized Difference Vegetation Index (NDVI makes it possible to identify the vegetative vigor of crops or natural vegetation which facilities the identification of areas with vegetation covers. This information is very important in identifying the phenomena which might be occurring in a particular area, especially those related to soil degradation by water erosion. Thus, the aim of this work was to assess the canopy cover by using NDVI, checking the image accuracy using the Coverage Index (CI based on the Stocking method, in the Sub-basin of Posses, which belongs to the Cantareira System, located in the Extrema municipality, Minas Gerais, Brazil. Landsat-5 TM images were used. The sub-basin of Posses was very altered in comparison to the surrounding areas. The NDVI technique proved to be a suitable tool to assess the uses that occur in the sub-basin of Posses, as validated by the Stocking methodology. The map derived from NDVI allowed the geographic distribution of different land uses to be observed and allowed for the identification of critical areas in relation to vegetation cover as well. This finding can be used to optimize efforts to recover and protect soil in areas with bare soil and degraded pasture, in order to reduce environmental degradation. The CI has not exceeded 40% for land use classes that occur in the majority of the sub-basin (91%, except in areas of woody vegetation.

  7. Mid-late Holocene climate and vegetation in northeastern part of the Altai Mountains recorded in Lake Teletskoye

    Science.gov (United States)

    Rudaya, Natalia; Nazarova, Larisa; Novenko, Elena; Babich, Valery; Kalugin, Ivan; Daryin, Andrei

    2015-04-01

    We report the first high-resolution (with intervals ca. 20-50 years) late-Holocene (4200 yr BP) pollen record from Lake Teletskoye, Altai Mountains, obtained from the underwater Ridge of Sofia Lepneva in 2006 (core Tel 2006). The study presents (i) the results of palynological analysis of Tel 2006; (ii) the results of spectral analysis of natural cycles based on the periodical fluctuation of taiga-biome curve; and (iii) quantitative reconstructions of the late-Holocene regional vegetation, woody coverage and climate in northern part of the Altai Mountains in order to define place of Northeast Altai on the map of the late-Holocene Central Asian environmental history. Late Holocene vegetation of the northeastern part of Altai recorded in Tel 2006 core is characterized by spread of dark-coniferous forest with structure similar to modern. Dominant trees, Siberian pine (Pinus sibirica) and Siberian fir (Abies sibirica), are the most ecological sensitive taxa between Siberian conifers (Shumilova, 1962), that as a whole suggests mild and humid climatic conditions during last 4200 years. However, changes of pollen taxa percentages and results of numerical analysis reveal pronounced fluctuation of climate and vegetation. Relatively cool and dry stage occurred prior to ca. 3500 cal yr BP. Open vegetation was widespread in the region with maximum deforestation and minimal July temperatures between 3800-3500 cal yr BP. Steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae could grow on the open sites around Lake Teletskoye. Reconstructed woody coverage is very low and varies between 29-35%. After ca. 3500 cal yr BP the area of dark-coniferous mountain taiga has significantly enlarged with maximums of woody coverages and taiga biome scores between ca. 2470-1040 cal yr BP. In the period of ~3500-2500 cal yr BP the averages July temperatures increased more than 1 0C. Climate became warmer and wetter. During last millennium (after 1040 cal yr BP) average July

  8. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment.

    Science.gov (United States)

    Weaver, Carolyn A; Armitage, Anna R

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010-2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  9. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment

    Science.gov (United States)

    Armitage, Anna R.

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010–2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  10. Remote sensing research for spatial assessment of woody structure in African savannahs & woodlands –past, on-going, and future work by the CSIR

    CSIR Research Space (South Africa)

    Mathieu, Renaud SA

    2011-04-01

    Full Text Available for Science, Stanford, CA, USA rmathieu@csir.co.za, lnaidoo@csir.co.za, kwessels@csir.co.za, mcho@csir.co.za, gpa@stanford.edu Introduction: • Appropriate techniques are needed to monitor woody vegetation cover, biomass and carbon stocks • Important for energy...-Angle Imaging Spectro-radiometer • Use Bidirectional Reflectance Distribution Function principles and multi-angle view points of several cameras on board of satellite (forward, nadir, backward) to extract structure • The change in vegetation structure...

  11. Inventory of Green Spaces and Woody Plants in the Urban Landscape in Ariogala

    Directory of Open Access Journals (Sweden)

    Lina Straigytė

    2012-12-01

    Full Text Available Background and Purpose: Regulation of urban greenery design, management and protection was approved in 2008 in Lithuania after the Green Space Law was passed, allowing protection of public green spaces and woody plants. Protection of these resources first requires an inventory, and we have created a digital database that will help in management of urban green spaces. Material and Methods: An inventory of green spaces and woody plants was conducted in the public urban territory of Ariogala, using GIS technology. A digital cartographic database was created using ArcGis 9.1 software. Results and Conclusion: Most of the woody plants in the survey area are deciduous trees, and the survey results highlighted the major green space management problems. Often, planted trees grow under power lines, and their crowns touch the power cables. Near blocks of flats, trees are often in the wrong place-planted too close to buildings, trees shade windows and their roots heave pavers and penetrate building foundations. According to the inventory, street trees sustain the most damage, most commonly showing injuries on their trunks and roots. Leaves of Aesculus hipocastanum L. show massive damage from Cameraria ohridella Deschka & Dimić, and Tilia cordata Mill. are damaged by Cercospora microsora Sacc. T. cordata is a favourite city tree, but is susceptible to infestation and when damaged appears unsightly, ending its vegetation period very early. The inventory of green spaces also showed that there are sufficient public parks.

  12. Field note: comparative efficacy of a woody evapotranspiration landfill cover following the removal of aboveground biomass.

    Science.gov (United States)

    Schnabel, William; Munk, Jens; Byrd, Amanda

    2015-01-01

    Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.

  13. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  14. Herbivores shape woody plant communities in the Kruger National Park: Lessons from three long-term exclosures

    Directory of Open Access Journals (Sweden)

    Benjamin J. Wigley

    2014-03-01

    Full Text Available The role of grazers in determining vegetation community compositions and structuring plant communities is well recognised in grassy systems. The role of browsers in affecting savanna woody plant communities is less clear. We used three long-term exclosures in the Kruger National Park to determine the effect of browsers on species compositions and population structures of woody communities. Species assemblages, plant traits relating to browsing and soil nutrients were compared inside and outside of the exclosures. Our results showed that browsers directly impact plant species distributions, densities and population structures by actively selecting for species with traits which make them desirable to browsers. Species with high leaf nitrogen, low total phenolic content and low acid detergent lignin appeared to be favoured by herbivores and therefore tend to be rare outside of the exclosures. This study also suggested that browsers have important indirect effects on savanna functioning, as the reduction of woody cover can result in less litter of lower quality, which in turn can result in lower soil fertility. However, the magnitude of browser effects appeared to depend on inherent soil fertility and climate. Conservation implications: Browsers were shown to have significant impacts on plant communities. They have noticeable effects on local species diversity and population structure, as well as soil nutrients. These impacts are shown to be related to the underlying geology and climate. The effects of browsers on woody communities were shown to be greater in low rainfall, fertile areas compared to high rainfall, infertile soils.

  15. Intensive ground vegetation growth mitigates the carbon loss after forest disturbance.

    Science.gov (United States)

    Zehetgruber, Bernhard; Kobler, Johannes; Dirnböck, Thomas; Jandl, Robert; Seidl, Rupert; Schindlbacher, Andreas

    2017-01-01

    Slow or failed tree regeneration after forest disturbance is increasingly observed in the central European Alps, potentially amplifying the carbon (C) loss from disturbance. We aimed at quantifying C dynamics of a poorly regenerating disturbance site with a special focus on the role of non-woody ground vegetation. Soil CO 2 efflux, fine root biomass, ground vegetation biomass, tree increment and litter input were assessed in (i) an undisturbed section of a ~ 110 years old Norway spruce stand, (ii) in a disturbed section which was clear-cut six years ago (no tree regeneration), and (iii) in a disturbed section which was clear-cut three years ago (no tree regeneration). Total soil CO 2 efflux was similar across all stand sections (8.5 ± 0.2 to 8.9 ± 0.3 t C ha -1  yr. -1 ). The undisturbed forest served as atmospheric C sink (2.1 t C ha -1  yr. -1 ), whereas both clearings were C sources to the atmosphere. The source strength three years after disturbance (-5.5 t C ha -1  yr. -1 ) was almost twice as high as six years after disturbance (-2.9 t C ha -1  yr. -1 ), with declining heterotrophic soil respiration and the high productivity of dense graminoid ground vegetation mitigating C loss. C loss after disturbance decreases with time and ground vegetation growth. Dense non-woody ground vegetation cover can hamper tree regeneration but simultaneously decrease the ecosystem C loss. The role of ground vegetation should be more explicitly taken into account in forest C budgets assessing disturbance effects.

  16. Repeated burning of eastern tallgrass prairie increases richness and diversity, stabilizing late successional vegetation.

    Science.gov (United States)

    Bowles, Marlin L; Jones, Michael D

    2013-03-01

    Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss

  17. The environment and vegetation of the flux measurement site near Skukuza, Kruger National Park

    Directory of Open Access Journals (Sweden)

    R.J. Scholes

    2001-07-01

    Full Text Available The SAFARI-2000 intensive study site is located 13 km WSW of Skukuza. Detailed measurements of the exchanges of energy, water, carbon dioxide and other substances between the savanna and the atmosphere have been made there since April 2000. This paper provides basic information regarding the climate, soils and vegetation at the site. The site is located near the top of a gentle rise in an undulating granitic landscape. Most of the data were collected within a 300 m square centred on the flux tower situated at 25@01.184' S, 31@29.813' E and oriented true north. The tower stands exactly on the ecotone between a ridgetop broad-leafed Combretum savanna on sandy soil and a midslope fme-leafed Acacia savanna on clayey soil. The ecotone is marked by a 10 m wide band of sedges. The tree basal area within the sample square was 6.8 mVha (@ 1.0 standard error, the tree density 128 @ 16 plants/ha and the tree crown cover 24 @ 4 . Shrubs, defined as woody plants greater than 0.5 m but less than 2.5 m tall, contributed a further 7.6 crown cover. The basal area weighted mean height of the trees was 9 m, and the maximum height 13m. Nineteen woody plant species were recorded within the square, with 70 of the woody plant basal area dominated by Combretum apiculatum, Sclerocarya birrea and Acacia nigrescens. The rooted basal area of grasses was 7.1 @ 0.6 and in June 2000 the grass standing crop was 400 g DM m2.

  18. 48 CFR 1452.237-71 - Utilization of Woody Biomass.

    Science.gov (United States)

    2010-10-01

    ... Biomass. 1452.237-71 Section 1452.237-71 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR... Utilization of Woody Biomass. As prescribed in § 1437.7202, insert the following clause: Utilization of Woody Biomass (MAY 2005) (a) The contractor may remove and utilize woody biomass, if: (1) Project work is...

  19. Aluminium exclusion and aluminium tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    Ivano eBrunner

    2013-06-01

    Full Text Available The aluminium (Al cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al3+ from root cells (exclusion mechanisms and those that enable plants to tolerate Al3+ once it has entered the root and shoot symplast (internal tolerance mechanisms. The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al3+ exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al3+ adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

  20. Aluminum exclusion and aluminum tolerance in woody plants.

    Science.gov (United States)

    Brunner, Ivano; Sperisen, Christoph

    2013-01-01

    The aluminum (Al) cation Al(3) (+) is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al(3) (+) conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al(3) (+) from root cells (exclusion mechanisms) and those that enable plants to tolerate Al(3) (+) once it has entered the root and shoot symplast (internal tolerance mechanisms). The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al(3) (+) exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al(3) (+) adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils.

  1. Scrubbing Up: Multi-Scale Investigation of Woody Encroachment in a Southern African Savannah

    Directory of Open Access Journals (Sweden)

    Christopher G. Marston

    2017-04-01

    Full Text Available Changes in the extent of woody vegetation represent a major conservation question in many savannah systems around the globe. To address the problem of the current lack of broad-scale cost-effective tools for land cover monitoring in complex savannah environments, we use a multi-scale approach to quantifying vegetation change in Kruger National Park (KNP, South Africa. We test whether medium spatial resolution satellite data (Landsat, existing back to the 1970s, which have pixel sizes larger than typical vegetation patches, can nevertheless capture the thematic detail required to detect woody encroachment in savannahs. We quantify vegetation change over a 13-year period in KNP, examine the changes that have occurred, assess the drivers of these changes, and compare appropriate remote sensing data sources for monitoring change. We generate land cover maps for three areas of southern KNP using very high resolution (VHR and medium resolution satellite sensor imagery from February 2001 to 2014. Considerable land cover change has occurred, with large increases in shrubs replacing both trees and grassland. Examination of exclosure areas and potential environmental driver data suggests two mechanisms: elephant herbivory removing trees and at least one separate mechanism responsible for conversion of grassland to shrubs, theorised to be increasing atmospheric CO2. Thus, the combination of these mechanisms causes the novel two-directional shrub encroachment that we observe (tree loss and grassland conversion. Multi-scale comparison of classifications indicates that although spatial detail is lost when using medium resolution rather than VHR imagery for land cover classification (e.g., Landsat imagery cannot readily distinguish between tree and shrub classes, while VHR imagery can, the thematic detail contained within both VHR and medium resolution classifications is remarkably congruent. This suggests that medium resolution imagery contains sufficient

  2. Decline of woody vegetation in a saline landscape in the Groundnut Basin, Senegal

    DEFF Research Database (Denmark)

    Sambou, Antoine; Theilade, Ida; Fensholt, Rasmus

    2016-01-01

    Several studies have documented that vegetation in the Sahel is highly dynamic and is affected by the prevailing climatic conditions, as well as by human use of the areas. However, little is known about vegetation dynamics in the large saline areas bordering the rivers of West Africa. Combining s...

  3. Handbook for inventorying downed woody material

    Science.gov (United States)

    James K. Brown

    1974-01-01

    To facilitate debris management, procedures for inventorying downed woody material are presented. Instructions show how to estimate weights and volumes of downed woody material, fuel depth, and duff depth. Using the planar intersect technique, downed material is inventoried by 0- to 0.25-inch, 0.25- to 1-inch, and 1- to 3-inch diameter classes; and by 1-inch classes...

  4. Vegetation survey of PEN Branch wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  5. Vegetation change in northern KwaZulu-Natal since the Anglo-Zulu ...

    African Journals Online (AJOL)

    The quality of the landscape is declining in many grassland and savanna areas of Africa as a consequence of woody plant encroachment. We investigated the changes in vegetation at selected sites on the battlefields of the Anglo-Zulu War of 1879 in KwaZulu-Natal. We used fixed-point repeat photographs to compare the ...

  6. Woody invasions of urban trails and the changing face of urban forests in the great plains, USA

    Science.gov (United States)

    Nemec, K.T.; Allen, Craig R.; Alai, A.; Clements, G.; Kessler, A.C.; Kinsell, T.; Major, A.; Stephen, B.J.

    2011-01-01

    Corridors such as roads and trails can facilitate invasions by non-native plant species. The open, disturbed habitat associated with corridors provides favorable growing conditions for many non-native plant species. Bike trails are a corridor system common to many urban areas that have not been studied for their potential role in plant invasions. We sampled five linear segments of urban forest along bike trails in Lincoln, Nebraska to assess the invasion of woody non-native species relative to corridors and to assess the composition of these urban forests. The most abundant plant species were generally native species, but five non-native species were also present: white mulberry (Morus alba), common buckthorn (Rhamnus cathartica), tree-of-heaven (Ailanthus altissima), honeysuckle (Lonicera spp.) and elm (Ulmus spp.). The distribution of two of the woody species sampled, common buckthorn and honeysuckle, significantly decreased with increasing distance from a source patch of vegetation (P = 0.031 and 0.030). These linear habitats are being invaded by non-native tree and shrub species, which may change the structure of these urban forest corridors. If non-native woody plant species become abundant in the future, they may homogenize the plant community and reduce native biodiversity in these areas. ?? 2011 American Midland Naturalist.

  7. Woody biomass availability for bioethanol conversion in Mississippi

    International Nuclear Information System (INIS)

    Perez-Verdin, Gustavo; Grebner, Donald L.; Sun, Changyou; Munn, Ian A.; Schultz, Emily B.; Matney, Thomas G.

    2009-01-01

    This study evaluated woody biomass from logging residues, small-diameter trees, mill residues, and urban waste as a feedstock for cellulosic ethanol conversion in Mississippi. The focus on Mississippi was to assess in-state regional variations and provide specific information of biomass estimates for those facilities interested in locating in Mississippi. Supply and cost of four woody biomass sources were derived from Forest Inventory Analysis (FIA) information, a recent forest inventory conducted by the Mississippi Institute for Forest Inventory, and primary production costs. According to our analysis, about 4.0 million dry tons of woody biomass are available for production of up to 1.2 billion liters of ethanol each year in Mississippi. The feedstock consists of 69% logging residues, 21% small-diameter trees, 7% urban waste, and 3% mill residues. Of the total, 3.1 million dry tons (930 million liters of ethanol) can be produced for $34 dry ton -1 or less. Woody biomass from small-diameter trees is more expensive than other sources of biomass. Transportation costs accounted for the majority of total production costs. A sensitivity analysis indicates that the largest impacts in production costs of ethanol come from stumpage price of woody biomass and technological efficiency. These results provide a valuable decision support tool for resource managers and industries in identifying parameters that affect resource magnitude, type, and location of woody biomass feedstocks in Mississippi. (author)

  8. Monitoring flooding and vegetation on seasonally inundated floodplains with multifrequency polarimetric synthetic aperture radar

    Science.gov (United States)

    Hess, Laura Lorraine

    The ability of synthetic aperture radar to detect flooding and vegetation structure was evaluated for three seasonally inundated floodplain sites supporting a broad variety of wetland and upland vegetation types: two reaches of the Solimoes floodplain in the central Amazon, and the Magela Creek floodplain in Northern Territory, Australia. For each site, C- and L-band polarimetric Shuttle Imaging Radar-C (SIR-C) data was obtained at both high- and low-water stages. Inundation status and vegetation structure were documented simultaneous with the SIR-C acquisitions using low-altitude videography and ground measurements. SIR-C images were classified into cover states defined by vegetation physiognomy and presence of standing water, using a decision-tree model with backscattering coefficients at HH, VV, and HV polarizations as input variables. Classification accuracy was assessed using user's accuracy, producer's accuracy, and kappa coefficient for a test population of pixels. At all sites, both C- and L-band were necessary to accurately classify cover types with two dates. HH polarization was most. useful for distinguishing flooded from non-flooded vegetation (C-HH for macrophyte versus pasture, L-HH for flooded versus non-flooded forest), and cross-polarized L-band data provided the best separation between woody and non-woody vegetation. Increases in L-HH backscattering due to flooding were on the order of 3--4 dB for closed-canopy varzea and igapo forest, and 4--7 dB, for open Melaleuca woodland. The broad range of physiognomies and stand structures found in both herbaceous and woody wetland communities, combined with the variation in the amount of emergent canopy caused by water level fluctuations and phenologic changes, resulted in a large range in backscattering characteristics of wetland communities both within and between sites. High accuracies cannot be achieved for these communities using single-date, single-band, single-polarization data, particularly in the

  9. Thermo-Analytical and Physico-Chemical Characterization of Woody and Non-Woody Biomass from an Agro-ecological Zone in Nigeria

    Directory of Open Access Journals (Sweden)

    Ayokunle Oluwabusayo Balogun

    2014-07-01

    Full Text Available Woody (Albizia pedicellaris and Terminalia ivorensis and non-woody (guinea corn (Sorghum bicolor glume and stalk biomass resources from Nigeria were subjected to thermo-analytical and physico-chemical analyses to determine their suitability for thermochemical processing. They were found to have comparably high calorific values (between 16.4 and 20.1 MJ kg-1. The woody biomass had very low ash content (0.32%, while the non-woody biomass had relatively high ash content (7.54%. Thermogravimetric analysis (TGA of the test samples showed significant variation in the decomposition behavior of the individual biomasses. Gas chromatography/mass spectrometry (GC/MS of fatty acid methyl esters (FAMEs derivatives indicated the presence of fatty and resin acids in the dichloromethane (CH2Cl2 extracts. Analytical pyrolysis (Py-GC/MS of the samples revealed that the volatiles liberated consisted mostly of acids, alcohols, ketones, phenols, and sugar derivatives. These biomass types were deemed suitable for biofuel applications.

  10. Assessment of changes in formations of non-forest woody vegetation in southern Denmark based on airborne LiDAR.

    Science.gov (United States)

    Angelidis, Ioannis; Levin, Gregor; Díaz-Varela, Ramón Alberto; Malinowski, Radek

    2017-09-01

    LiDAR (Light Detection and Ranging) is a remote sensing technology that uses light in the form of pulses to measure the range between a sensor and the Earth's surface. Recent increase in availability of airborne LiDAR scanning (ALS) data providing national coverage with high point densities has opened a wide range of possibilities for monitoring landscape elements and their changes at broad geographical extent. We assessed the dynamics of the spatial extent of non-forest woody vegetation (NFW) in a study area of approx. 2500 km 2 in southern Jutland, Denmark, based on two acquisitions of ALS data for 2006 and 2014 in combination with other spatial data. Our results show a net-increase (4.8%) in the total area of NFW. Furthermore, this net change comprises of both areas with a decrease and areas with an increase of NFW. An accuracy assessment based on visual interpretation of aerial photos indicates high accuracy (>95%) in the delineation of NFW without changes during the study period. For NFW that changed between 2006 and 2014, accuracies were lower (90 and 82% in removed and new features, respectively), which is probably due to lower point densities of the 2006 ALS data (0.5 pts./m 2 ) compared to the 2014 data (4-5 pts./m 2 ). We conclude that ALS data, if combined with other spatial data, in principle are highly suitable for detailed assessment of changes in landscape features, such as formations of NFW at broad geographical extent. However, in change assessment based on multi-temporal ALS data with different point densities errors occur, particularly when examining small or narrow NFW objects.

  11. Employing lidar to detail vegetation canopy architecture for prediction of aeolian transport

    Science.gov (United States)

    Sankey, Joel B.; Law, Darin J.; Breshears, David D.; Munson, Seth M.; Webb, Robert H.

    2013-01-01

    The diverse and fundamental effects that aeolian processes have on the biosphere and geosphere are commonly generated by horizontal sediment transport at the land surface. However, predicting horizontal sediment transport depends on vegetation architecture, which is difficult to quantify in a rapid but accurate manner. We demonstrate an approach to measure vegetation canopy architecture at high resolution using lidar along a gradient of dryland sites ranging from 2% to 73% woody plant canopy cover. Lidar-derived canopy height, distance (gaps) between vegetation elements (e.g., trunks, limbs, leaves), and the distribution of gaps scaled by vegetation height were correlated with canopy cover and highlight potentially improved horizontal dust flux estimation than with cover alone. Employing lidar to estimate detailed vegetation canopy architecture offers promise for improved predictions of horizontal sediment transport across heterogeneous plant assemblages.

  12. Microbial Communities in Cerrado Soils under Native Vegetation Subjected to Prescribed Fires and Under Pasture

    Science.gov (United States)

    The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerra...

  13. Wood-inhabiting fungi in southern Italy forest stands: morphogroups, vegetation types and decay classes.

    Science.gov (United States)

    Granito, Vito Mario; Lunghini, Dario; Maggi, Oriana; Persiani, Anna Maria

    2015-01-01

    The authors conducted an ecological study of forests subjected to varying management. The aim of the study was to extend and integrate, within a multivariate context, knowledge of how saproxylic fungal communities behave along altitudinal/vegetational gradients in response to the varying features and quality of coarse woody debris (CWD). The intra-annual seasonal monitoring of saproxylic fungi, based on sporocarp inventories, was used to investigate saproxylic fungi in relation to vegetation types and management categories. We analyzed fungal species occurrence, recorded according to the presence/absence and frequency of sporocarps, on the basis of the harvest season, of coarse woody debris decay classes as well as other environmental and ecological variables. Two-way cluster analysis, DCA and Spearman's rank correlations, for indirect gradient analysis, were performed to identify any patterns of seasonality and decay. Most of the species were found on CWD in an intermediate decay stage. The first DCA axis revealed the vegetational/microclimate gradient as the main driver of fungal community composition, while the second axis corresponded to a strong gradient of CWD decay classes. © 2015 by The Mycological Society of America.

  14. Impacts of Vegetation Growth on Reach-scale Flood Hydraulics in a Sand-bed River and the Implications for Vegetation-morphology Coevolution

    Science.gov (United States)

    Box, S.; Wilcox, A. C.

    2017-12-01

    Vegetation alters flood hydraulics and geomorphic response, yet quantifying and predicting such responses across spatial and temporal scales remains challenging. Plant- and patch-scale studies consistently show that vegetation increases local hydraulic variability, yet reach-scale hydrodynamic models often assume vegetation has a spatially homogeneous effect on hydraulics. Using Nays2DH in iRIC (International River Interface Cooperative), we model the effect of spatially heterogeneous vegetation on a series of floods with varying antecedent vegetation conditions in a sand-bed river in western Arizona, taking advantage of over a decade of data on a system that experienced substantial geomorphic, hydrologic, and ecosystem changes. We show that pioneer woody seedlings (Tamarix, Populus, Salix) and cattail (Typha) increase local hydraulic variability, including velocity and bed shear stress, along individual cross sections, predominantly by decreasing velocity in zones of vegetation establishment and growth and increasing velocity in unvegetated areas, with analogous effects on shear stress. This was especially prominent in a study reach where vegetation growth contributed to thalweg incision relative to a vegetated bar. Evaluation of these results in the context of observed geomorphic response to floods elucidates mechanisms by which vegetation and channel morphology coevolve at a reach scale. By quantifying the influence of spatially heterogeneous vegetation on reach-scale hydraulics, we demonstrate that plant- and patch-scale research on vegetation hydraulics is applicable to ecogeomorphology at the reach scale.

  15. Regional Comparative Advantage for Woody Biofuels Production

    Science.gov (United States)

    Timothy M. Young; Donald G. Hodges; Robert C. Abt; Andy J. Hartsell; James H. Perdue

    2009-01-01

    The economic availability of woody biomass for the southeastern United States is summarized in this final report for the U.S. Department of Transportation, Southeastern Sun Grant Center research contract R11-0515-016 as administered by the University of Tennessee. Georeferenced economic supply curves (marginal cost curves) for woody biomass producers’ for the 13...

  16. Effect of Single Selection Method on Woody and Herbaceous Plant Biodiversity in Khalil-Mahale Forest, Behshahr

    Directory of Open Access Journals (Sweden)

    Sh. Kazemi

    2015-06-01

    Full Text Available This study was undertaken to investigate the role of forest management in tree diversity, regeneration and vegetation in control and managed parcels of series No. 1 of forestry plan in Khalil-Mahale, Behshahr. Thirty samples with an area of 1000 m2 were systematically and randomly taken with a 100 × 75 m grid in both parcels. In each plot, tree number and species type were recorded. In order to study the vegetation, five micro-plots (1 m2, one in the center and four others in four main directions (half radius from the center of the plot were taken in each plot. The type and percentage of herbaceous species were recorded in each microplot. To count the regeneration in the center of the main plot, circular sample plots with an area of 100 m2 were used. To study and compare the biodiversity in the two plots and to calculate the richness and evenness, the Simpson and Shannon-Wiener diversity indices, Margalef and Menhinic indices and the Pilo index were used, respectively, using PAST software. The results showed that the number of plant species was more in managed plots. The biodiversity of woody and herbaceous plants richness indices and regeneration of tree species were higher in managed plots. In fact, the results showed that forest management using single selection method had different effects on woody species regeneration and diversity of herbaceous and tree species.

  17. Woody plant encroachment effect on soil organic carbon dynamics: results from a latitudinal gradient in Italy

    Science.gov (United States)

    Pellis, Guido; Chiti, Tommaso; Moscatelli, Maria Cristina; Marinari, Sara; Papale, Dario

    2016-04-01

    Woody plant encroachment into pastures and grasslands represents a significant land cover change phenomenon, with a considerable impact on carbon dynamics at an ecosystem level. It was estimated that 7.64% of the Southern Europe land was subject to that process between 1950 to 2010. As a result of woody encroachment, changes in vegetation composition can produce substantial changes to the soil organic carbon (SOC) cycle. Despite the numerous papers published on land-use change, an evaluation of the IPCC terrestrial carbon pools changes occurring during woody encroachment on abandoned pastures and grasslands is still lacking, particularly for the Italian territory. Therefore, the aim of this study was to investigate the role of woody encroachment on carbon sequestration over abandoned pastures and grasslands in Alpine and Apennine ecosystems, with a particular focus on the SOC. We applied a chronosequence approach to seven selected sites located along a latitudinal gradient in Italy. Each chronosequence consisted of a pasture currently managed, three sites abandoned at different times in the past and, finally, a mature forest stand representing the last phase of the succession. The European Commission sampling protocols to certify SOC changes was adopted to estimate the variations following woody encroachment. Soil samples were collected at different depths in the topsoil (0-30 cm) and subsoil (30-70 cm), despite the original protocol formulation being limited to the topsoil only. In addition, aboveground living biomass (AGB), dead wood and litter were also measured following international protocols. Considering all C pools together, woody plant encroachment leads to a progressive C stock accumulation in all the chronosequences. The total C stock of mature forest stands ranges from 1.78±0.11 times (Eastern Alps) to 2.48±0.31 times (central Apennine) the initial value on pastures. Unsurprisingly, the C stocks of AGB, dead wood and litter all increase during the

  18. Technical Note: Linking climate change and downed woody debris decomposition across forests of the eastern United States

    Science.gov (United States)

    Russell, Matthew B.; Woodall, Christopher W.; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.

    2014-01-01

    Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years, depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics in addition to a traditional emphasis on live-tree demographics.

  19. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    Science.gov (United States)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have

  20. Stable isotope and modelling evidence for CO2 as a driver of glacial–interglacial vegetation shifts in southern Africa

    Directory of Open Access Journals (Sweden)

    F. J. Bragg

    2013-03-01

    Full Text Available Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses and C3 plants (including nearly all trees, and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to

  1. Effect of downed woody debris on small mammal anti-predator behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Hinkleman, Travis, M.; Orrock, John, L.; Loeb, Susan, C.

    2011-10-01

    Anti-predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs,but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used givingup densities to quantify the degree to which downed woody debris alters perceived predation risk by small mammals in southeastern pineforests. We placed 14 foraging trays next to large downed woody debris,shrubs, and in open areas for 12 consecutive nights. Moon illumination, a common indicator of predation risk, led to a similar reduction in small mammal foraging in all three microhabitats (open, downed woody debris,and shrub). Small mammals perceived open microhabitats as riskier than shrub microhabitats, with downed woody debris habitats perceived as being of intermediate risk between shrub and open microhabitats. Despite the presumed benefits of the protective cover of downed woody debris, small mammals may perceive downed woody debris as a relatively risky foraging site in southeastern pine forests where the high diversity and abundance of rodent-eating snakes may provide a primary predatory threat.

  2. Woody vegetation of the Upper Verde River: 1996-2007 [Chapter 6

    Science.gov (United States)

    Alvin L. Medina

    2012-01-01

    Streamside vegetation is an integral component of a stable riparian ecosystem, providing benefits to both terrestrial and aquatic fauna (Brown and others 1977; National Research Council 2002) as well as Native Americans (Betancourt and Van Devender 1981). On the UVR, stable streambanks are a desirable management goal to attain channel stability for a variety of...

  3. Woody Allen kimpus arhitektuuriga

    Index Scriptorium Estoniae

    2000-01-01

    Woody Allen protesteerib oma uue lühifilmiga kavatsuse vastu ehitada 16-korruseline ärihoone tema New Yorgi kodu lähedale. W. Allen hindab New Yorgi ajaloolisi rajoone, mida näitab ka oma filmides

  4. Investing carbon offsets in woody forests - the best solution for California?

    Science.gov (United States)

    Dass, P.; Houlton, B. Z.; Warlind, D.

    2016-12-01

    Increasing atmospheric carbon dioxide (CO2) concentrations from fossil fuel combustion, land conversion and biomass burning are principal to climate change and its manifolds risks on human health, the environment and the global economy. Effective mitigation of climate change thereby involves cutting fossil-fuel emissions at the source or capturing CO2 in engineered or natural ecosystem stocks, or both. The lifetime of CO2 in the atmosphere exceeds 100 years; thus, in the case of CO2 sequestration by natural ecosystems, the residence time of soil and vegetation carbon(C) is a critical component of the efficacy of C offsets in the marketplace, particularly in local to global Cap and Trade frameworks. Here we use a land-surface model to analyze trade-offs in C investment into natural forest vs. grassland sinks and the role of fire in driving the most sustained pathways of CO2 sequestration under Cap and Trade policies. We focus on the California Climate Exchange and AB32 as the model system for examining risks of CO2 offset investments by considering model-based scenarios of (a.) natural woody forests (mixture of trees, shrubs and grasslands) or (b.) pure grasslands (no woody vegetation allowed) under conditions of drought and changes in fire frequency. While forests capture more carbon than grasslands, the latter stores a greater fraction of C in below ground stocks, making it less vulnerable to climate-driven disturbances. Preliminary results for simulations carried out for the last century for the state of California corroborate this hypothesis: while trees capture 100 GgCyr-1 more than grasses, CO2 emissions due to fire is less by 20 GgCyr-1 from grasslands when compared to forest environments. Since policies need to regard potential future scenarios, we present results that investigate how the alternate systems of trees and grasses respond to (i.) the environmental conditions of the no-mitigation scenario (RCP 8.5) through the year 2100, (ii.) periods of extended

  5. The role of short-rotation woody crops in sustainable development

    International Nuclear Information System (INIS)

    Shepard, J.P.; Tolbert, V.R.

    1996-01-01

    One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society's needs

  6. The role of catchment vegetation in reducing atmospheric inputs of pollutant aerosols in Ganga river.

    Science.gov (United States)

    Shubhashish, Kumar; Pandey, Richa; Pandey, Jitendra

    2012-08-01

    The role of woody perennials in the Ganga river basin in modifying the run-off quality as influenced by atmospheric deposition of pollutant aerosols was investigated. The concentration of seven nutrients and eight metals were measured in atmospheric deposits as well as in run-off water under the influence of five woody perennials. Nutrient retention was recorded maximum for Bougainvillea spectabilis ranged from 4.30 % to 33.70 %. Metal retention was recorded highest for Ficus benghalensis ranged from 5.15 % to 36.98 %. Although some species showed nutrient enrichment, all the species considered in the study invariably contribute to reduce nutrients and metal concentration in run-off water. Reduction in run off was recorded maximum for B. spectabilis (nutrient 6.48 %-40.66 %; metal 7.86 %-22.85 %) and minimum for Ficus religiosa (nutrient 1.68 %-27.19 %; metal 6.55 %-31.55 %). The study forms the first report on the use of woody perennials in reducing input of atmospheric pollutants to Ganga river and has relevance in formulating strategies for river basin management.

  7. Effects of anabolic and catabolic nutrients on woody plant encroachment after long-term experimental fertilization in a South African savanna.

    Directory of Open Access Journals (Sweden)

    Anthony J Mills

    Full Text Available The causes of the worldwide problem of encroachment of woody plants into grassy vegetation are elusive. The effects of soil nutrients on competition between herbaceous and woody plants in various landscapes are particularly poorly understood. A long-term experiment of 60 plots in a South African savanna, comprising annual applications of ammonium sulphate (146-1166 kg ha-1 yr-1 and superphosphate (233-466 kg ha-1 yr-1 over three decades, and subsequent passive protection over another three decades, during which indigenous trees encroached on different plots to extremely variable degrees, provided an opportunity to investigate relationships between soil properties and woody encroachment. All topsoils were analysed for pH, acidity, EC, water-dispersible clay, Na, Mg, K, Ca, P, S, C, N, NH4, NO3, B, Mn, Cu and Zn. Applications of ammonium sulphate (AS, but not superphosphate (SP, greatly constrained tree abundance relative to control plots. Differences between control plots and plots that had received maximal AS application were particularly marked (16.3 ± 5.7 versus 1.2 ± 0.8 trees per plot. Soil properties most affected by AS applications included pH (H2O (control to maximal AS application: 6.4 ± 0.1 to 5.1 ± 0.2, pH (KCl (5.5 ± 0.2 to 4.0 ± 0.1, acidity (0.7 ± 0.1 to 2.6 ± 0.3 cmol kg-1, acid saturation (8 ± 2 to 40 ± 5%, Mg (386 ± 25 to 143 ± 15 mg kg-1, Ca (1022 ± 180 to 322 ± 14 mg kg-1, Mn (314 ± 11 to 118 ± 9 mg kg-1, Cu (3.6 ± 0.3 to 2.3 ± 0.2 mg kg-1 and Zn (6.6 ± 0.4 to 3.7 ± 0.4 mg kg-1. Magnesium, B, Mn and Cu were identified using principal component analysis, boundary line analysis and Kruskal-Wallis rank sum tests as the nutrients most likely to be affecting tree abundance. The ratio Mn/Cu was most related to tree abundance across the experiment, supporting the hypothesis that competition between herbaceous and woody plants depends on the availability of anabolic relative to catabolic nutrients. These findings

  8. Woody encroachment in northern Great Plains grasslands: Perceptions, actions, and needs

    Science.gov (United States)

    Symstad, Amy J.; Leis, Sherry A.

    2017-01-01

    The United States Northern Great Plains (NGP) has a high potential for landscape-scale conservation, but this grassland landscape is threatened by encroachment of woody species. We surveyed NGP land managers to identify patterns in, and illustrate a broad range of, individual managers' perceptions on (1) the threat of woody encroachment to grasslands they manage, and (2) what management practices they use that may influence woody encroachment in this region. In the 34 surveys returned, which came from predominantly public lands in the study area, 79% of responses reported moderate or substantial woody encroachment. Eastern redcedar (Juniperus virginiana) and Rocky Mountain juniper (Juniperus scopulorum) were the most problematic encroachers. Thirty-one survey respondents said that prescribed fire was used on the lands they manage, and 64% of these responses reported that controlling woody encroachment was a fire management objective. However, only 18% of survey respondents using prescribed fire were achieving their desired fire return interval. Most respondents reported using mechanical and/or chemical methods to control woody species. In contrast to evidence from the central and southern Great Plains, few survey respondents viewed grazing as affecting encroachment. Although the NGP public land managers we surveyed clearly recognize woody encroachment as a problem and are taking steps to address it, many feel that the rate of their management is not keeping pace with the rate of encroachment. Developing strategies for effective woody plant control in a variety of NGP management contexts requires filling ecological science gaps and overcoming societal barriers to using prescribed fire.

  9. Testing woody fuel consumption models for application in Australian southern eucalypt forest fires

    Science.gov (United States)

    J.J. Hollis; S. Matthews; Roger Ottmar; S.J. Prichard; S. Slijepcevic; N.D. Burrows; B. Ward; K.G. Tolhurst; W.R. Anderson; J S. Gould

    2010-01-01

    Five models for the consumption of coarse woody debris or woody fuels with a diameter larger than 0.6 cm were assessed for application in Australian southern eucalypt forest fires including: CONSUME models for (1) activity fuels, (2) natural western woody and (3) natural southern woody fuels, (4) the BURNUP model and (5) the recommendation by the Australian National...

  10. Woody biomass for bioenergy and biofuels in the United States -- a briefing paper

    Science.gov (United States)

    Eric M. White

    2010-01-01

    Woody biomass can be used for the generation of heat, electricity, and biofuels. In many cases, the technology for converting woody biomass into energy has been established for decades, but because the price of woody biomass energy has not been competitive with traditional fossil fuels, bioenergy production from woody biomass has not been widely adopted. However,...

  11. Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southeastern Arizona, USA.

    Science.gov (United States)

    McPherson, G R; Boutton, T W; Midwood, A J

    1993-02-01

    In southeastern Arizona, Prosopis juliflora (Swartz) DC. and Quercus emoryi Torr. are the dominant woody species at grassland/woodland boundaries. The stability of the grassland/woodland boundary in this region has been questioned, although there is no direct evidence to confirm that woodland is encroaching into grassland or vice versa. We used stable carbon isotope analysis of soil organic matter to investigate the direction and magnitude of vegetation change along this ecotone. δ 13 C values of soil organic matter and roots along the ecotone indicated that both dominant woody species (C 3 ) are recent components of former grasslands (C 4 ), consistent with other reports of recent increases in woody plant abundance in grasslands and savannas throughout the world. Data on root biomass and soil organic matter suggest that this increase in woody plant abundance in grasslands and savannas may increase carbon storage in these ecosystems, with implications for the global carbon cycle.

  12. Water-based woody biorefinery.

    Science.gov (United States)

    Amidon, Thomas E; Liu, Shijie

    2009-01-01

    The conversion of biomass into chemicals and energy is essential in order to sustain our present way of life. Fossil fuels are currently the predominant energy source, but fossil deposits are limited and not renewable. Biomass is a reliable potential source of materials, chemicals and energy that can be replenished to keep pace with our needs. A biorefinery is a concept for the collection of processes used to convert biomass into materials, chemicals and energy. The biorefinery is a "catch and release" method for using carbon that is beneficial to both the environment and the economy. In this study, we discuss three elements of a wood-based biorefinery, as proposed by the SUNY College of Environmental Science and Forestry (ESF): hot-water extraction, hydrolysis, and membrane separation/concentration. Hemicelluloses are the most easily separable main component of woody biomass and thus form the bulk of the extracts obtained by hot-water extraction of woody biomass. Hot-water extraction is an important step in the processes of woody biomass and product generation, replacing alternative costly pre-treatment methods. The hydrolysis of hemicelluloses produces 5-carbon sugars (mainly xylose), 6-carbon sugars (mainly glucose and mannose), and acetic acid. The use of nano-filtration membranes is an efficient technology that can be employed to fractionate hot-water extracts and wood hydrolysate. The residual solid mass after hot-water extraction has a higher energy content and contains fewer easily degradable components. This allows for more efficient subsequent processing to convert cellulose and lignin into conventional products.

  13. Woody plants and land use

    International Nuclear Information System (INIS)

    Huxley, P.A.

    1982-01-01

    The importance of woody species in land use systems has recently gained international attention. In addition to the production of food and fuelwood, trees can maintain or improve the fertility status of the soil and conserve both soil and water. The use of multipurpose trees in land use system and the important role of trees in association with other crops is now recognized. The methods of scientifically studying such systems, and of manipulating them to improve their productivity or net utility have not been well developed. This introductory paper documents the role of woody species in agriculture, forestry and agroforestry. It outlines some of the important research needs for such systems and the role which isotopes could play in the research. (author)

  14. Topo-edaphic controls over woody plant biomass in South African savannas

    Directory of Open Access Journals (Sweden)

    M. S. Colgan

    2012-05-01

    Full Text Available The distribution of woody biomass in savannas reflects spatial patterns fundamental to ecosystem processes, such as water flow, competition, and herbivory, and is a key contributor to savanna ecosystem services, such as fuelwood supply. While total precipitation sets an upper bound on savanna woody biomass, the extent to which substrate and terrain constrain trees and shrubs below this maximum remains poorly understood, often occluded by local-scale disturbances such as fire and trampling. Here we investigate the role of hillslope topography and soil properties in controlling woody plant aboveground biomass (AGB in Kruger National Park, South Africa. Large-area sampling with airborne Light Detection and Ranging (LiDAR provided a means to average across local-scale disturbances, revealing an unexpectedly linear relationship between AGB and hillslope-position on basalts, where biomass levels were lowest on crests, and linearly increased toward streams (R2 = 0.91. The observed pattern was different on granite substrates, where AGB exhibited a strongly non-linear relationship with hillslope position: AGB was high on crests, decreased midslope, and then increased near stream channels (R2 = 0.87. Overall, we observed 5-to-8-fold lower AGB on clayey, basalt-derived soil than on granites, and we suggest this is due to herbivore-fire interactions rather than lower hydraulic conductivity or clay shrinkage/swelling, as previously hypothesized. By mapping AGB within and outside fire and herbivore exclosures, we found that basalt-derived soils support tenfold higher AGB in the absence of fire and herbivory, suggesting high clay content alone is not a proximal limitation on AGB. Understanding how fire and herbivory contribute to AGB heterogeneity is critical to predicting future savanna carbon storage under a changing climate.

  15. Dynamics of woody vegetation in a semi-arid savanna, with a focus ...

    African Journals Online (AJOL)

    Increases in the tree:grass ratio with accompanying changes in herbaceous composition, called bush or shrub encroachment, is a worldwide phenomenon in ... Acacia mellifera-dominated savannas in the Northern Cape, South Africa, were investigated by means of vegetation classification and analyses of sequential aerial ...

  16. PEMANFAATAN DAUN TANAMAN BERKAYU SEBAGAI PUPUK ORGANIK TANAMAN SAYURAN DAN JAGUNG - (UTILIZATION OF WOODY PLANT LEAVES AS ORGANIC FERTILIZER FOR VEGETABLES AND CORN

    Directory of Open Access Journals (Sweden)

    Dody Priadi

    2017-12-01

    Full Text Available This study aimed to use woody plant leaves as organic fertilizer (compost and their effects on vegetables and corn. The compost was made from leaves of Samanea saman, Swietenia macrophylla, Nephelium lappaceum and cow dung (1:3, 2:2 and 3:1 using OrgaDec (0.5% w/w, Decomic (0.1% v/w and Dectro (0.1 v/w as bioactivator. The result showed that compost from Samanea saman leaves and cow dung (1:3 using Decomic (0.1% v/w met the organic fertilizer standard. The compost was applied to Ipomoea reptans, Capsicum annuum and Zea mays on a media from compost and latosol soil (1:3, 2:2 and 3:1 using Completely Randomized Design (CRD with 3 replications. The analyzed data using ANOVA showed no significant difference in the growth parameter of tested plants. The best media for Ipomoea reptans was the mixture of compost and latosol soil (3:1 meanwhile for Zea mays and Capsicum annuum were 1:3 and 2:2, respectively.Keywords: compost, compost application, organic fertilizer, woody plant leavesABSTRAKPenelitian ini bertujuan untuk memanfaatkan daun tumbuhan berkayu menjadi pupuk organik (kompos serta pengaruhnya terhadap tanaman sayuran dan jagung. Kompos dibuat dari daun kihujan (Samanea saman, daun mahoni (Swietenia macrophylla daun rambutan (Nephelium lappaceum dan kotoran sapi (1:3, 2:2 dan 3:1 dengan penambahan bioaktivator OrgaDec (0,5% w/w, Decomic (0,1% v/w dan Dectro (0,1 v/w. Hasil analisis kimia menunjukkan bahwa kompos yang dibuat dari daun kihujan dan kotoran sapi (1:3 yang menggunakan bioaktivator Decomic (0,1% v/w adalah perlakuan yang paling sesuai dengan baku mutu pupuk organik berdasarkan Permentan No.70/Permentan/SR.140/10/2011. Kompos hasil penelitian diujicobakan kepada tanaman kangkung darat (Ipomoea reptans, cabe keriting (Capsicum annuum dan jagung manis (Zea mays pada media campuran kompos dan tanah latosol (1:3, 2:2 dan 3:1 menggunakan Rancangan Acak Lengkap (RAL dengan 3 ulangan sedangkan data yang diperoleh diolah dengan ANOVA

  17. The long-term legacy of geomorphic and riparian vegetation feedbacks on the dammed Bill Williams River, Arizona, USA

    Science.gov (United States)

    Kui, Li; Stella, John C.; Shafroth, Patrick B.; House, P. Kyle; Wilcox, Andrew C.

    2017-01-01

    On alluvial rivers, fluvial landforms and riparian vegetation communities codevelop as a result of feedbacks between plants and abiotic processes. The influence of vegetation on river channel and floodplain geomorphology can be particularly strong on dammed rivers with altered hydrology and reduced flood disturbance. We used a 56-year series of aerial photos on the dammed Bill Williams River (Arizona, USA) to investigate how (a) different woody riparian vegetation types influence river channel planform and (b) how different fluvial landforms drive the composition of riparian plant communities over time. We mapped vegetation types and geomorphic surfaces and quantified how relations between fluvial and biotic processes covaried over time using linear mixed models. In the decades after the dam was built, woody plant cover within the river's bottomland nearly doubled, narrowing the active channel by 60% and transforming its planform from wide and braided to a single thread and more sinuous channel. Compared with native cottonwood–willow vegetation, nonnative tamarisk locally induced a twofold greater reduction in channel braiding. Vegetation expanded at different rates depending on the type of landform, with tamarisk cover on former high-flow channels increasing 17% faster than cottonwood–willow. Former low-flow channels with frequent inundation supported a greater increase in cottonwood–willow relative to tamarisk. These findings give insight into how feedbacks between abiotic and biotic processes in river channels accelerate and fortify changes triggered by dam construction, creating river systems increasingly distinct from predam ecological communities and landforms, and progressively more resistant to restoration of predam forms and processes.

  18. Vegetation structure and small-scale pattern in Miombo Woodland, Marondera, Zimbabwe

    Directory of Open Access Journals (Sweden)

    B. M. Campbell

    1995-10-01

    Full Text Available The aim ol this paper is to describe woodland structure and small-scale patterning of woody plants at a miombo site, and to relate these to past disturbance and soil properties. Brachystegia spiciformis Benth. and Julbemardia globiflora (Benth. Troupin were the most frequent woody plants at the five hectare site, with size-class distributions which were markedly skewed towards the smaller size classes. The vegetation structure at the site and the increase in basal area over the past thirty years point to considerable disturbance prior to the present protected status. Six woodland subtypes were identified, grouped into two structural types: open and closed woodland. The distribution of woodland subtypes related closely to certain soil properties. It was hypothesized that the distribution of open and closed woodland is stable and a positive feedback mechanism by which this occurs is postulated.

  19. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.

    Science.gov (United States)

    Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R

    2016-12-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Vegetation geographical patterns as a key to the past, with emphasis on the dry vegetation types of South Africa

    Directory of Open Access Journals (Sweden)

    M. J. A. Werger

    1983-11-01

    Full Text Available Southern Africa is characterized by a highly diversified vegetational cover with extremes as contrasting as desert, tropical forest, alpine grassland, or mediterranean type scrub, and many other types in between. This vegetational pattern is strongly correlated to the climatological pattern. It is therefore likely that past changes in climate can still be partly traced in the vegetational pattern, particularly in geographical anomalies, and that study of these patterns provides complementary evidence to palynological research. The following anomalies in the vegetational pattern are briefly discussed: 1. island-wise occurrence of Afro-montane vegetation on mesic, sheltered sites in the southern Sudano- Zambezian Region, in particular in the Highveld grassland/False Karoo transition area; 2. similar westward occurrence of Sudano-Zambezian scrub patches in the Karoo-Namib Region near the Orange/Vaal confluence; 3. scattered occurrence of Sudano-Zambezian woody species in a matrix of Karoo-Namib vegetation in the marginal Karoo-Namib Region; 4. island-wise occurrence of frost-tolerant, dry, karroid dwarf shrub vegetation of predominantly C,-plants on isolated peaks in the winter rainfall area of Namaqualand; 5. peculiar patchy distribution of some succulents in wide areas of climatically rather homogeneous, succulent dwarf shrub vegetation of predominantly CAM-plants in the escarpment area of Namaqualand. a pattern reminiscent of that in many Cape fynbos species. Interpretation of these patterns logically leads to the conclusion that these result from a previously wetter, a previously cooler, or a previously wetter and cooler climate, respectively, over the parts of southern Africa under discussion. This conclusion is compared with published palynological views.

  1. On the Assessment of the CO2 Mitigation Potential of Woody Biomass

    Directory of Open Access Journals (Sweden)

    Víctor Codina Gironès

    2018-01-01

    Full Text Available Woody biomass, a renewable energy resource, accumulates solar energy in form of carbon hydrates produced from atmospheric CO2 and H2O. It is, therefore, a means of CO2 mitigation for society as long as the biogenic carbon released to the atmosphere when delivering its energy content by oxidation can be accumulated again during growth of new woody biomass. Even when considering the complete life cycle, usually, only a small amount of fossil CO2 is emitted. However, woody biomass availability is limited by land requirement and, therefore, it is important to maximize its CO2 mitigation potential in the energy system. In this study, we consider woody biomass not only as a source of renewable energy but also as a source of carbon for seasonal storage of solar electricity. A first analysis is carried out based on the mitigation effect of woody biomass usage pathways, which is the avoided fossil CO2 emissions obtained by using one unit of woody biomass to provide energy services, as alternative to fossil fuels. Results show that woody biomass usage pathways can achieve up to 9.55 times the mitigation effect obtained through combustion of woody biomass, which is taken as a reference. Applying energy system modeling and multi-objective optimization techniques, the role of woody biomass technological choices in the energy transition is then analyzed at a country scale. The analysis is applied to Switzerland, demonstrating that the use of woody biomass in gasification–methanation systems, coupled with electrolysers and combined with an intensive deployment of PV panels and efficient technologies, could reduce the natural gas imports to zero. Electrolysers are used to boost synthetic natural gas production by hydrogen injection into the methanation reaction. The hydrogen used is produced when there is excess of solar electricity. The efficient technologies, such as heat pumps and battery electric vehicles, allow increasing the overall efficiency of the

  2. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: A large-scale phytomanagement case study

    International Nuclear Information System (INIS)

    Dominguez, Maria T.; Maranon, Teodoro; Murillo, Jose M.; Schulin, Rainer; Robinson, Brett H.

    2008-01-01

    Phytomanagement employs vegetation and soil amendments to reduce the environmental risk posed by contaminated sites. We investigated the distribution of trace elements in soils and woody plants from a large phytomanaged site, the Guadiamar Valley (SW Spain), 7 years after a mine spill, which contaminated the area in 1998. At spill-affected sites, topsoils (0-25 cm) had elevated concentrations of As (129 mg kg -1 ), Bi (1.64 mg kg -1 ), Cd (1.44 mg kg -1 ), Cu (115 mg kg -1 ), Pb (210 mg kg -1 ), Sb (13.8 mg kg -1 ), Tl (1.17 mg kg -1 ) and Zn (457 mg kg -1 ). Trace element concentrations in the studied species were, on average, within the normal ranges for higher plants. An exception was white poplar (Populus alba), which accumulated Cd and Zn in leaves up to 3 and 410 mg kg -1 respectively. We discuss the results with regard to the phytomanagement of trace element contaminated sites. - There is a low trace element transfer from contaminated soils to the aboveground parts of afforested woody plants under a semi-arid climate

  3. ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests.

    Science.gov (United States)

    Bolson, Mônica; Smidt, Eric de Camargo; Brotto, Marcelo Leandro; Silva-Pereira, Viviane

    2015-01-01

    The Araucaria Forests in southern Brazil are part of the Atlantic Rainforest, a key hotspot for global biodiversity. This habitat has experienced extensive losses of vegetation cover due to commercial logging and the intense use of wood resources for construction and furniture manufacturing. The absence of precise taxonomic tools for identifying Araucaria Forest tree species motivated us to test the ability of DNA barcoding to distinguish species exploited for wood resources and its suitability for use as an alternative testing technique for the inspection of illegal timber shipments. We tested three cpDNA regions (matK, trnH-psbA, and rbcL) and nrITS according to criteria determined by The Consortium for the Barcode of Life (CBOL). The efficiency of each marker and selected marker combinations were evaluated for 30 commercially valuable woody species in multiple populations, with a special focus on Lauraceae species. Inter- and intraspecific distances, species discrimination rates, and ability to recover species-specific clusters were evaluated. Among the regions and different combinations, ITS was the most efficient for identifying species based on the 'best close match' test; similarly, the trnH-psbA + ITS combination also demonstrated satisfactory results. When combining trnH-psbA + ITS, Maximum Likelihood analysis demonstrated a more resolved topology for internal branches, with 91% of species-specific clusters. DNA barcoding was found to be a practical and rapid method for identifying major threatened woody angiosperms from Araucaria Forests such as Lauraceae species, presenting a high confidence for recognizing members of Ocotea. These molecular tools can assist in screening those botanical families that are most targeted by the timber industry in southern Brazil and detecting certain species protected by Brazilian legislation and could be a useful tool for monitoring wood exploitation.

  4. ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests.

    Directory of Open Access Journals (Sweden)

    Mônica Bolson

    Full Text Available The Araucaria Forests in southern Brazil are part of the Atlantic Rainforest, a key hotspot for global biodiversity. This habitat has experienced extensive losses of vegetation cover due to commercial logging and the intense use of wood resources for construction and furniture manufacturing. The absence of precise taxonomic tools for identifying Araucaria Forest tree species motivated us to test the ability of DNA barcoding to distinguish species exploited for wood resources and its suitability for use as an alternative testing technique for the inspection of illegal timber shipments. We tested three cpDNA regions (matK, trnH-psbA, and rbcL and nrITS according to criteria determined by The Consortium for the Barcode of Life (CBOL. The efficiency of each marker and selected marker combinations were evaluated for 30 commercially valuable woody species in multiple populations, with a special focus on Lauraceae species. Inter- and intraspecific distances, species discrimination rates, and ability to recover species-specific clusters were evaluated. Among the regions and different combinations, ITS was the most efficient for identifying species based on the 'best close match' test; similarly, the trnH-psbA + ITS combination also demonstrated satisfactory results. When combining trnH-psbA + ITS, Maximum Likelihood analysis demonstrated a more resolved topology for internal branches, with 91% of species-specific clusters. DNA barcoding was found to be a practical and rapid method for identifying major threatened woody angiosperms from Araucaria Forests such as Lauraceae species, presenting a high confidence for recognizing members of Ocotea. These molecular tools can assist in screening those botanical families that are most targeted by the timber industry in southern Brazil and detecting certain species protected by Brazilian legislation and could be a useful tool for monitoring wood exploitation.

  5. Woody biomass from short rotation energy crops. Chapter 2

    Science.gov (United States)

    R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  6. Notas sobre a composição arbóreo-arbustiva de uma fisionomia das savanas de Roraima, Amazônia Brasileira Notes on the woody composition of a vegetation physionomy of the Roraima's savannas, Brazilian Amazonia

    Directory of Open Access Journals (Sweden)

    Reinaldo Imbrozio Barbosa

    2005-06-01

    Full Text Available Foi realizado um inventário florístico das espécies arbóreo-arbustivas presentes em uma das unidades de vegetação que compõem a paisagem de savanas do Estado de Roraima, extremo norte da Amazônia brasileira. Esta unidade é caracterizada por ser densamente colonizada por ninhos do cupim Cornitermes ovatus Emerson. Foram observadas 29 espécies (15 famílias botânicas em três localidades utilizadas para a amostragem. O total de espécies, por localidade, variou de 12 a 20. As espécies mais abundantes foram Byrsonima verbascifolia (L. DC. e Mimosa microcephala Humb. & Bonpl. ex Willd. (subarbustivas, Byrsonima cf. intermedia A. Juss. e Randia formosa (Jack. K. Schum. (arbustivas e, Byrsonima crassifolia (L. H.B.K. e Curatella americana L. (arbóreas. Oito espécies são comuns às três localidades. A diversidade medida pelo Índice de Shannon (H' foi baixa para todos os locais amostrados (A floristic inventory of woody species was carried out in one of the vegetation units that compose the savannas landscape of the Roraima State, northernmost of Brazilian Amazonia. This unit is characterized by dense colonization of nests of termites Cornitermes ovatus Emerson. Twenty nine woody species were observed (15 botany families in three localities used for sampling. The total of species varied from 12 to 20 by locality. The most abundant species were Byrsonima verbascifolia (L. DC. and Mimosa microcephala Humb. & Bonpl. ex Willd. (dwarf shrubs, Byrsonima cf. intermedia A. Juss. and Randia formosa (Jack. K. Schum. (shrubby and, Byrsonima crassifolia (L. H.B.K. and Curatella americana L. (arboreal. Eight species are common to all localities. Diversity measured by the Index of Shannon (H' was low for all the areas sampled (<0.90 indicating high specimens concentration in few species. The Index of Sørensen indicated similarities (± 0.60 among studied areas, suggesting a group of landscapes with common plant diversity, representing a same

  7. Woody debris dynamics in Interior West forests and woodlands

    Science.gov (United States)

    John D. Shaw; James Long; Raffaella Marzano; Matteo Garbarino

    2012-01-01

    Managers are interested in the dynamics of down woody material because of its role as a fuel component, a feature of wildlife habitat, a carbon pool, and other characteristics. We analyzed nearly 9,000 plots from the Interior West, spanning the range from sparse juniper and mesquite woodland to dense spruce-fir forests, in order to characterize down woody material as...

  8. Deer browsing delays succession by altering aboveground vegetation and belowground seed banks.

    Directory of Open Access Journals (Sweden)

    Antonio DiTommaso

    Full Text Available Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15 × 15 m fenced enclosures and paired open plots in recently followed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005-2010, we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005-2008 and tree density (2005-2012. The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity, reduced seed bank abundance, relatively more short-lived species (annuals and biennials, and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually

  9. Woody Allen, serial schlemiel ?

    Directory of Open Access Journals (Sweden)

    Frédérique Brisset

    2011-04-01

    Full Text Available Woody Allen a développé au fil des années une persona cinématographique de schlemiel new-yorkais aisément reconnaissable par le spectateur. Elle marque nombre de ses films, qu’il y apparaisse en tant qu’acteur ou y dirige des substituts comédiens comme déclinaisons de lui-même. Si cette figure prototypique est le fondement de la sérialité dans sa filmographie, il est des traits stylistiques qui en portent trace tout au long de son œuvre : la récurrence annuelle de ses réalisations, la signature formelle symbolisée par ses génériques à la typographie singulière, le rythme de ses dialogues ponctués d’interjections et l’usage de l’autocitation sont autant de procédés qui marquent son cinéma d’un sceau très personnel. Ils fonctionnent comme des clins d’œil au spectateur qui reçoit dès lors LE Woody Allen millésimé comme une invitation à retrouver son microcosme. Ainsi la sérialité se pose comme à la fois initiale et conséquentielle de son système filmique, processus de création unique dans le cinéma américain.Woody Allen has long constructed a cinematographic persona of schlemiel New- Yorker that the audience can easily identify. It impacts most of his films, whether he stars in them or directs “substitute” actors to impersonate his character. If this prototypical figure is the basis of seriality in his cinematography, serial stylistic features can also be found all along his career: the annual recurrence of his productions, the formal signature symbolised by the typography of his singular credit titles, his rhythmical interjection-punctuated dialogues and the use of self-quotation imprint a very personal seal upon his movies. They all work as a recognition signals for the audience who thus receive THE Woody Allen vintage as an invitation to re-enter his microcosm. Seriality is then both initial and consequential to his cinematographic system, a unique creative process in American film history.

  10. The role of vegetation dynamics in the control of atmospheric CO{sub 2} content

    Energy Technology Data Exchange (ETDEWEB)

    Sitch, Stephen

    2000-04-01

    the terrestrial biosphere to store additional carbon diminishes. At the end of the forcing period, vegetation is no longer in equilibrium, justifying the need for dynamic models in global change research. LPJ predicts the abundance of woody vegetation to increase everywhere, except in regions facing large reductions in precipitation. The tree-line extends northwards and temperate woody plants expand into the present-day boreal forest.

  11. Volume calculations of coarse woody debris; evaluation of coarse woody debris volume calculations and consequences for coarse woody debris volume estimates in forest reserves

    NARCIS (Netherlands)

    Wijdeven, S.M.J.; Vaessen, O.H.B.; Hees, van A.F.M.; Olsthoorn, A.F.M.

    2005-01-01

    Dead wood is recognized as one of the key indicators for sustainable forest management and biodiversity. Accurate assessments of dead wood volume are thus necessary. In this study New volume models were designed based on actual volume measurements of coarse woody debris. The New generic model

  12. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  13. Processing woody debris biomass for co-milling with pulverized coal

    Science.gov (United States)

    Dana Mitchell; Bob Rummer

    2007-01-01

    The USDA, Forest Service, Forest Products Lab funds several grants each year for the purpose of studying woody biomass utilization. One selected project proposed removing small diameter stems and unmerchantable woody material from National Forest lands and delivering it to a coal-fired power plant in Alabama for energy conversion. The Alabama Power Company...

  14. Peatland Woody Plant Growth Responses to Warming and Elevated CO2 in a Southern-boreal Raised Bog Ecosystem

    Science.gov (United States)

    Phillips, J. R.; Hanson, P. J.; Warren, J.; Ward, E. J.; Brice, D. J.; Graham, J.

    2017-12-01

    Spruce and Peatland Responses Under Changing Environments (SPRUCE) is an in situ warming by elevated CO2 manipulation located in a high-carbon, spruce peatland in northern Minnesota. Warming treatments combined a 12-m diameter open topped chamber with internally recirculating warm air and soil deep heating to simulate a broad range of future warming treatments. Deep below ground soil warming rates are 0, +2.25, +4.5, +6.75, and +9 °C. Deep belowground warming was initiated in June 2014 followed by air warming in August 2015. In June 2016, elevated CO2 atmospheres (eCO2 at + 500 ppm) were added to half of the warming treatments in a regression design. Our objective was to track long-term vegetation responses to warming and eCO2. Annual tree growth is based on winter measurement of circumference of all Picea mariana and Larix laricina trees within each 113 m2 plot, automated dendrometers, terrestrial LIDAR scanning of tree heights and canopy volumes, and destructive allometry. Annual shrub growth is measured in late summer by destructive clipping in two 0.25 m2 sub-plots and separation of the current year tissues. During the first year of warming, tree basal area growth was reduced for Picea, but not Larix trees. Growth responses for the woody shrub vegetation remains highly variable with a trend towards increasing growth with warming. Elevated CO2 enhancements of growth are not yet evident in the data. Second-year results will also be reported. Long-term hypotheses for increased woody plant growth under warming include potential enhancements driven by increased nutrient availability from warming induced decomposition of surface peats.

  15. Evaluation of techniques for determining the density of fine woody debris

    Science.gov (United States)

    Becky Fasth; Mark E. Harmon; Christopher W. Woodall; Jay. Sexton

    2010-01-01

    Evaluated various techniques for determining the density (i.e., bulk density) of fine woody debris during forest inventory activities. It was found that only experts in dead wood inventory may be able to identify fine woody debris stages of decay. Suggests various future research directions such as...

  16. Vegetative Regeneration Capacities of Five Ornamental Plant Invaders After Shredding

    Science.gov (United States)

    Monty, Arnaud; Eugène, Marie; Mahy, Grégory

    2015-02-01

    Vegetation management often involves shredding to dispose of cut plant material or to destroy the vegetation itself. In the case of invasive plants, this can represent an environmental risk if the shredded material exhibits vegetative regeneration capacities. We tested the effect of shredding on aboveground and below-ground vegetative material of five ornamental widespread invaders in Western Europe that are likely to be managed by cutting and shredding techniques: Buddleja davidii (butterfly bush, Scrophulariaceae), Fallopia japonica (Japanese knotweed, Polygonaceae), Spiraea × billardii Hérincq (Billard's bridewort, Rosaceae), Solidago gigantea (giant goldenrod, Asteraceae), and Rhus typhina L. (staghorn sumac, Anacardiaceae). We looked at signs of vegetative regeneration and biomass production, and analyzed the data with respect to the season of plant cutting (spring vs summer), the type of plant material (aboveground vs below-ground), and the shredding treatment (shredded vs control). All species were capable of vegetative regeneration, especially the below-ground material. We found differences among species, but the regeneration potential was generally still present after shredding despite a reduction of growth rates. Although it should not be excluded in all cases (e.g., destruction of giant goldenrod and staghorn sumac aboveground material), the use of a shredder to destroy woody alien plant material cannot be considered as a general management option without significant environmental risk.

  17. Vegetation barrier and tillage effects on runoff and sediment in an alley crop system on a Luvisol in Burkina Faso

    NARCIS (Netherlands)

    Spaan, W.P.; Sikking, A.F.S.; Hoogmoed, W.B.

    2005-01-01

    The effects of vegetation barriers and tillage on runoff and soil loss were evaluated in an alley crop system at a research station in central Burkina Faso. On a 2% slope of a sandy loam various local species (grasses, woody species and a succulent) were planted as conservation barriers in order to

  18. Role of native and exotic woody vegetation in soil restoration in active gully systems (southern Ecuador)

    Science.gov (United States)

    Borja Ramon, Pablo; Alvarado Moncayo, Dario; Vanacker, Veerle; Cisneros, Pedro; Molina, Armando; Govers, Gerard

    2015-04-01

    Revegetation projects in degraded lands have the potential to recover essential soil functions. If vegetation restoration is combined with bioengineering techniques, such as the construction of retention dams in active gully systems, soil restoration could be enhanced. One important aspect of this process is the role of vegetation on restoration of soil chemical and physical properties. There is currently a lack of knowledge on the potential of soil restoration in active badland systems, as most studies have concentrated on the direct and visible effect of revegetation on erosion control. The aim of this study is to evaluate the role of revegetation and bioengineering works on the restoration of soil physical and chemical properties. The analyses are realized in a highly degraded area of 3 km2, located in the lower part of the Loreto catchment (Southern Ecuadorian Andes). First, the soil physical and/or chemical parameters that are most sensitive to track environmental change were evaluated. Second, the role of vegetation on soil restoration was quantified. . Soil samples were taken in sites with different vegetation cover, land use and physiographic position. The following physical and chemical parameters were measured: volumetric water content (θsat, θact), bulk density, pH, texture, organic matter, C and N content. Our first results do not show a clear relationship between volumetric water content at saturation (θsat), bulk density, or C content. The saturation water content does not vary significantly between different sites, or land use types. However, significant differences are found between sites at different stages of restoration; and this for most chemical and physical soil properties. Vegetation cover (%) appears to exert a strong control on the C content in the mineral soils. The highest C values are found in soils of forest plantations with Eucalyptus and Pinus species. These plantations are located in areas that were previously affected by active

  19. Woody biomass utilization trends, barriers, and strategies: Perspectives of U.S. Forest Service managers

    Science.gov (United States)

    Shiloh Sundstrom; Max Nielsen-Pincus; Cassandra Moseley; Sarah. McCaffrey

    2012-01-01

    The use of woody biomass is being promoted across the United States as a means of increasing energy independence, mitigating climate change, and reducing the cost of hazardous fuels reduction treatments and forest restoration projects. The opportunities and challenges for woody biomass use on the national forest system are unique. In addition to making woody biomass...

  20. Carbon Stocks of Fine Woody Debris in Coppice Oak Forests at Different Development Stages

    Directory of Open Access Journals (Sweden)

    Ender Makineci

    2017-06-01

    Full Text Available Dead woody debris is a significant component of the carbon cycle in forest ecosystems. This study was conducted in coppice-originated oak forests to determine carbon stocks of dead woody debris in addition to carbon stocks of different ecosystem compartments from the same area and forests which were formerly elucidated. Weight and carbon stocks of woody debris were determined with recent samplings and compared among development stages (diameter at breast height (DBH, D1.3m, namely small-diameter forests (SDF = 0–8 cm, medium diameter forests (MDF = 8–20 cm, and large-diameter forests (LDF = 20–36 cm. Total woody debris was collected in samplings; as bilateral diameters of all woody debris parts were less than 10 cm, all woody parts were in the “fine woody debris (FWD” class. The carbon concentrations of FWD were about 48% for all stages. Mass (0.78–4.92 Mg·ha−1 and carbon stocks (0.38–2.39 Mg·ha−1 of FWD were significantly (p > 0.05 different among development stages. FWD carbon stocks were observed to have significant correlation with D1.3m, age, basal area, and carbon stocks of aboveground biomass (Spearman rank correlation coefficients; 0.757, 0.735, 0.709, and 0.694, respectively. The most important effects on carbon budgets of fine woody debris were determined to be coppice management and intensive utilization. Also, national forestry management, treatments of traditional former coppice, and conversion to high forest were emphasized as having substantial effects.

  1. Biodiversity of Soil Microbial Communities Following Woody Plant Invasion of Grassland: An Assessment Using Molecular Methods

    Science.gov (United States)

    Kantola, I. B.; Gentry, T. J.; Filley, T. R.; Boutton, T. W.

    2012-12-01

    Woody plants have encroached into grasslands, savannas, and other grass-dominated ecosystems throughout the world during the last century. This dramatic vegetation change is likely driven by livestock grazing, altered fire frequencies, elevated atmospheric CO2 concentrations, and/or changes in atmospheric deposition patterns. Woody invasion often results in significant changes in ecosystem function, including alterations in above- and belowground primary productivity, soil C, N, and P storage and turnover, and the size and activity of the soil microbial biomass pool. The purpose of this study was to examine the relationships and interactions between plant communities and soil microbial communities in the Rio Grande Plains region of southern Texas where grasslands have been largely replaced by woodlands. Research was conducted along a successional chronosequence representing the stages of woody plant encroachment from open grassland to closed-canopy woodland. To characterize soil microbial community composition, soil samples (0-7.5 cm) were collected in remnant grasslands (representing time 0) and near the centers of woody plant clusters, groves, and drainage woodlands ranging in age from 10 to 130 yrs. Ages of woody plant stands were determined by dendrochronology. Community DNA was extracted from each soil sample with a MoBio PowerMax Soil DNA isolation kit. The DNA concentrations were quantified on a NanoDrop ND-1000 spectrophotometer and diluted to a standard concentration. Pyrosequencing was performed by the Research and Testing Laboratory (Lubbock, TX) according to Roche 454 Titanium chemistry protocols. Samples were amplified with primers 27F and 519R for bacteria, and primers ITS1F and ITS4 for fungi. Sequences were aligned using BioEdit and the RDP Pipeline and analyzed in MOTHUR. Non-metric multidimensional scaling of the operational taxonomic units identified by pyrosequencing revealed that both bacterial and fungal community composition were

  2. The combustion of sound and rotten coarse woody debris: a review

    Science.gov (United States)

    Joshua C. Hyde; Alistair M.S. Smith; Roger D. Ottmar; Ernesto C. Alvarado; Penelope Morgan

    2011-01-01

    Coarse woody debris serves many functions in forest ecosystem processes and has important implications for fire management as it affects air quality, soil heating and carbon budgets when it combusts. There is relatively little research evaluating the physical properties relating to the combustion of this coarse woody debris with even less specifically addressing...

  3. Future challenges for woody biomass projections

    NARCIS (Netherlands)

    Schadauer, K.; Barreiro, Susana; Schelhaas, M.; McRoberts, Ronald E.

    2017-01-01

    Many drivers affect woody biomass projections including forest available for wood supply, market behavior, forest ownership, distributions by age and yield classes, forest typologies resulting from different edaphic, climatic conditions, and last but not least, how these factors are incorporated

  4. Relationship of Course Woody Debris to Red-Cockaded Woodpecker Prey Diversity and Abundance

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G.S.

    1999-09-03

    The abundance of diversity of prey commonly used by the red-cockaded woodpecker were monitored in experimental plots in which course woody debris was manipulated. In one treatment, all the woody debris over four inches was removed. In the second treatment, the natural amount of mortality remained intact. The overall diversity of prey was unaffected; however, wood roaches were significantly reduced by removal of woody debris. The latter suggests that intensive utilizations or harvesting practices may reduce foraging.

  5. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Science.gov (United States)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  6. Financial and energy analyses of woody biomass plantations

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    This paper provides an economic analysis of a short rotation woody crop (SRWC) plantation system established the financial and energy costs of woody biomass and related net values for the total system. A production model for commercial-sized Populus plantations was developed from a series of research projects sponsored by the U.S,. Department of Energy's Short Rotation Woody Crops Program. The design was based on hybrid poplar planted on good quality agricultural sites at a density of 2100 cutting ha -1 . Growth was forecast at 16 Mg(OD) ha -1 yr -1 on a six-year rotation cycle. All inputs associated with plantation establishment, annual operations, and land use were identified on a financial and energy cost basis (Strauss et al. 1989). Net values for the system projected a minimum financial profit and a major net energy gain. Financial profit was limited by the high market value of energy inputs as compared to the low market value of the energy output. The net energy gain was attributed to the solar energy captured through photosynthesis. Principal input costs to the overall system, on both a financial and energy basis, were land rent and the harvesting/transportation requirements

  7. Pattern and dynamics of the ground vegetation in south Swedish Carpinus betulus forests. Importance of soil chemistry and management

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, J. [Swedish Univ. of Agricultural Sciences, Dept. of Conservation Biology, Uppsala (Sweden); Falkengren-Grerup, U.; Tyler, G. [Plant Ecology, Dept. of Ecology, Lund (Sweden)

    1997-10-01

    The vegetation and environmental conditions of south Swedish horn-beam Carpinus betulus forests are described with data from 35 permanent sample plots. The main floristic gradient of the ground vegetation is closely related to acid-base properties of the top soil: Base saturation, pH and organic matter content. Other floristic differences are related to tree canopy cover and the distance of the sample plots to the Baltic coast. Species richness of herbaceous plants typical of forests increases with soil pH. The number of other herbaceous species, occurring in both forests and open habitats, and of woody species is not related to pH. Comparisons of vegetation data from 1983 and 1993 show relatively small compositional differences of the herbaceous forest flora. The number of other herbaceous species increased considerably in those plots where canopy trees had been cut after 1983. The number of new species in managed plots increases with soil pH. Species losses and gains of the herbaceous forest flora between 1983 and 1993 are generally lower as compared with other herbaceous species and woody species. However, the ground cover of herbaceous forest species, especially of Oxalis acetosella and Lamium galeobdolon, was considerably lower in 1993 as compared to 1983 in both unmanaged and managed plots. Possible explanations for this decrease are current soil acidification and drought during the growing season. (au) 32 refs.

  8. Recycling of uranium by a perennial vegetation

    International Nuclear Information System (INIS)

    Thiry, Y.

    2005-01-01

    At sites of large scale mining and processing of uranium ore, tailings and waste rock piles are today the most visible relics of the uranium extractive industry. These mining relics are constantly subjected to weathering and leaching processes causing the dissemination of radioactive and toxic elements and sometimes requiring remedial operations. The in situ remediation of waste rock piles usually includes their revegetation for minimizing the water infiltration and for increasing surface soil stability. Thanks to its biomass density and longevity, the perennial vegetation plays an important role in stabilisation of the water cycling. The buffer role of forest vegetation can reduce water export from watersheds as well as erosion and hydrological losses of chemicals including radionuclides from contaminated sites. If long term reduction of contaminant dispersion at revegetated uranium mining sites is to be fully appreciated, then the extent of radioactive contaminant availability to forest vegetation and ecosystem cycling as well as the possible economic valorisation of the woody products must be considered. Concerned study focused on a Scots pine plantation established 35 years ago on a uranium waste rock pile (Wismuth GmbH) situated near Schlema (Germany). This investigation aimed at quantifying the mobility of uranium in the mining debris and its transport to the different tree compartments with emphasis on the processes involved. The influence of pine vegetation on uranium cycling dynamics was further assessed in terms of annual fluxes)

  9. Bench-scale production of liquid fuel from woody biomass via gasification

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Toshiaki; Liu, Yanyong; Matsunaga, Kotetsu; Miyazawa, Tomohisa; Hirata, Satoshi; Sakanishi, Kinya [Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Suehiro 2-2-2, Hiro, Kure, Hiroshima 737-0197 (Japan)

    2010-08-15

    The bench-scale production of hydrocarbon liquid fuel was achieved from woody biomass via gasification. The daily production capacity of the biomass-to-liquid (BTL) plant used in this study was 7.8 L of hydrocarbon liquid from 48 kg of woody biomass (on a dry basis), corresponding to 0.05 barrels. The BTL process involved the following steps: oxygen-enriched air gasification of the woody biomass, wet and dry gas cleaning, gas compression, carbon dioxide removal, and the Fischer-Tropsch (FT) synthesis reaction. In the gasification step, oxygen-enriched air gasification was carried out using a downdraft fixed-bed gasifier. The content of oxygen, which acts as the gasifying agent, was increased from 21.0 to 56.7 vol%; maximum values of the conversion to gas on a carbon basis and cold gas efficiency-approximately 96 C-mol% and 87.8%, respectively-were obtained at an oxygen content of around 30 vol%. With the increased oxygen content, the concentrations of CO, H{sub 2}, and CO{sub 2} increased from 22.8 to 36.5 vol%, from 16.8 to 28.1 vol%, and from 9.8 to 14.8 vol%, respectively, while that of N{sub 2} decreased from 48.8 to 16.0 vol%. The feed gas for the FT synthesis reaction was obtained by passing the product gas from the gasification step through a scrubber, carbon dioxide removal tower, and desulfurization tower; its composition was 30.8 vol% CO, 25.2 vol% H{sub 2}, 0.9 vol% CO{sub 2}, 2.5 vol% CH{sub 4}, 40.6 vol% N{sub 2}, < 5 ppb H{sub 2}S, and < 5 ppb COS. The hydrocarbon fuel was synthesized in a slurry bed reactor using hexadecane as the solvent and a Co/SiO{sub 2} catalyst. For hydrocarbons with carbon chain lengths of more than 5 carbon atoms (collectively referred to as C{sub 5+}) in the liquid fuel, a selectivity of 87.5% was obtained along with a chain growth probability of 0.84 under the following conditions: 4 MPa, 280 to 340 C, and a ratio of catalyst weight to feed gas rate (W/F) of 9.3 g.h/mol. (author)

  10. Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020

    International Nuclear Information System (INIS)

    Sasaki, Nophea; Knorr, Wolfgang; Foster, David R.; Etoh, Hiroko; Ninomiya, Hiroshi; Chay, Sengtha; Sun, Sengxi; Kim, Sophanarith

    2009-01-01

    Forests in Southeast Asia are important sources of timber and other forest products, of local energy for cooking and heading, and potentially as sources of bioenergy. Many of these forests have experienced deforestation and forest degradation over the last few decades. The potential flow of woody biomass for bioenergy from forests is uncertain and needs to be assessed before policy intervention can be successfully implemented in the context of international negotiations on climate change. Using current data, we developed a forest land use model and projected changes in area of natural forests and forest plantations from 1990 to 2020. We also developed biomass change and harvest models to estimate woody biomass availability in the forests under the current management regime. Due to deforestation and logging (including illegal logging), projected annual woody biomass production in natural forests declined from 815.9 million tons (16.3 EJ) in 1990 to 359.3 million tons (7.2 EJ) in 2020. Woody biomass production in forest plantations was estimated at 16.2 million tons yr -1 (0.3 EJ), but was strongly affected by cutting rotation length. Average annual woody biomass production in all forests in Southeast Asia between 1990 and 2020 was estimated at 563.4 million tons (11.3 EJ) yr -1 declining about 1.5% yr -1 . Without incentives to reduce deforestation and forest degradation, and to promote forest rehabilitation and plantations, woody biomass as well as wood production and carbon stocks will continue to decline, putting sustainable development in the region at risk as the majority of the population depend mostly on forest ecosystem services for daily survival. (author)

  11. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    Science.gov (United States)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  12. Effect of removal of hesperis matronalis (Dame's rocket) on species cover of forest understory vegetation in NW indiana

    Science.gov (United States)

    Pavlovic, N.B.; Leicht-Young, S. A.; Frohnapple, K.J.; Grundel, R.

    2009-01-01

    Exotic invasive plant species differ in their effects on indigenous vegetation as evidenced by research evaluating community response to their removal. We used a removal approach to quantify the response of a mesic woodland to the removal versus retention of an invasive plant, Hesperis matronalis (dame's rocket) from paired treatment plots over 3 y. Cover of H. matronalis did not differ between control and treatment plots prior to removal, declined in the removal plots and remained significantly lower in cover compared to the control plots. Removal did not significantly affect species richness and species diversity (evenness, Shannon and Simpson) at the plot scale, but did result in increased species richness overall in the removal plots in the last sampling year when compared to control plots. Non-metric multidimensional scaling ordination analysis indicated a significant compositional change in the spring plant composition of plots over the 3 y, reflecting an increase in exotic woody species. Exotic woody plants, especially Rosa multiflora and Euonymus alatus, increased in cover in response to H. matronalis removal. In the 3 y, neither native nor exotic forbs, nor native woody plants responded to the removal of H. matronalis in a statistically significant manner. The increasing cover of woody invasive plants in response to the removal of H. matronalis has important management implications for restoration of degraded communities.

  13. Interaction between fires and elephants in relation to vegetation structure and composition of miombo woodlands in northern Mozambique

    Science.gov (United States)

    Ribeiro, Natasha Sofia

    Miombo woodlands represent one of the most important dry deciduous ecosystems in southern Africa. They provide goods and services for over 80% of the population in the sub-continent. The ecology of this important ecosystem is strongly defined by the trio climate-fire-herbivory. Thus, miombo woodlands have a key role in the regional, and the global, energy, water and carbon balances. Niassa Reserve located in northern Mozambique, embodies the largest and most pristine conservation area of miombo woodlands in the region. It was left abandoned for almost twenty years of armed conflict in Mozambique. Currently it has the lowest human population and the highest density of elephants within miombo woodlands in the country. Fires occur every year within Niassa Reserve. Thus, Niassa Reserve represents a key area to investigate the relationships between vegetation and environmental drivers, a crucial question in miombo woodlands. The goal of this study is to contribute to the understanding of the vegetation dynamics in relation to rainfall, fire and herbivory by elephants. To accomplish this goal, I used an innovative approach within miombo woodlands that couples field and remote sensing data. Field data collection aimed to gather information on woody species composition, structure and production (measured as biomass and leaf area index). Production data was used to calibrate remote sensing data and address large-scale variations in woody vegetation production. The results from this study indicate that there is a gradient of decreasing fire frequency, elephant density and rainfall and increasing woody production from east to west of Niassa Reserve. There is also a varied species composition along the same direction. These results provide information for ecological models predicting ecosystem dynamics under environmental changing conditions. Regionally, this study contributes to the understanding of the fundamental functioning of miombo woodlands and the associated driving

  14. Response of the mean global vegetation distribution to interannual climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Notaro, Michael [University of Wisconsin-Madison, Center for Climatic Research, Madison, WI (United States)

    2008-06-15

    The impact of interannual variability in temperature and precipitation on global terrestrial ecosystems is investigated using a dynamic global vegetation model driven by gridded climate observations for the twentieth century. Contrasting simulations are driven either by repeated mean climatology or raw climate data with interannual variability included. Interannual climate variability reduces net global vegetation cover, particularly over semi-arid regions, and favors the expansion of grass cover at the expense of tree cover, due to differences in growth rates, fire impacts, and interception. The area burnt by global fires is substantially enhanced by interannual precipitation variability. The current position of the central United States' ecotone, with forests to the east and grasslands to the west, is largely attributed to climate variability. Among woody vegetation, climate variability supports expanded deciduous forest growth and diminished evergreen forest growth, due to difference in bioclimatic limits, leaf longevity, interception rates, and rooting depth. These results offer insight into future ecosystem distributions since climate models generally predict an increase in climate variability and extremes. (orig.)

  15. Characterization of fast pyrolysis products generated from several western USA woody species

    Science.gov (United States)

    Jacqueline M. Jarvis; Deborah S. Page-Dumroese; Nathaniel M. Anderson; Yuri Corilo; Ryan P. Rodgers

    2014-01-01

    Woody biomass has the potential to be utilized at an alternative fuel source through its pyrolytic conversion. Here, fast pyrolysis bio-oils derived from several western USA woody species are characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to determine molecular-level composition. The...

  16. A proposal for pellet production from residual woody biomass in the island of Majorca (Spain

    Directory of Open Access Journals (Sweden)

    Javier Sánchez

    2015-09-01

    Full Text Available The use of residual biomass for energy purposes is of great interest in isolated areas like Majorca for waste reduction, energy sufficiency and renewable energies development. In addition, densification processes lead to easy-to-automate solid biofuels which additionally have higher energy density. The present study aims at (i the estimation of the potential of residual biomass from woody crops as well as from agri-food and wood industries in Majorca, and (ii the analysis of the optimal location of potential pellet plants by means of a GIS approach (location-allocation analysis and a cost evaluation of the pellets production chain. The residual biomass potential from woody crops in Majorca Island was estimated at 35,874 metric tons dry matter (t DM per year, while the wood and agri-food industries produced annually 21,494 t DM and 2717 t DM, respectively. Thus, there would be enough resource available for the installation of 10 pellet plants of 6400 t·year−1 capacity. These plants were optimally located throughout the island of Mallorca with a maximum threshold distance of 28 km for biomass transport from the production points. Values found for the biomass cost at the pellet plant ranged between 57.1 €·t−1 and 63.4 €·t−1 for biomass transport distance of 10 and 28 km. The cost of pelleting amounted to 56.7 €·t−1; adding the concepts of business fee, pellet transport and profit margin (15%, the total cost of pelleting was estimated at 116.6 €·t−1. The present study provides a proposal for pellet production from residual woody biomass that would supply up to 2.8% of the primary energy consumed by the domestic and services sector in the Balearic Islands.

  17. Historical landscape elements in preserving steppic species - vegetation responses on micro-topography and human disturbances

    Science.gov (United States)

    Deák, Balázs; Valkó, Orsolya; Török, Péter; Tóthmérész, Béla

    2017-04-01

    Land use changes of past centuries resulted in a considerable loss and isolation of grassland habitats worldwide which also led to a serious loss in ecosystem functions. In intensively used agricultural landscapes remnants of natural flora persisted only in small habitat islands embedded in a hostile matrix, which are inadequate for arable farming or construction. In the steppe zone of Eurasia burial mounds, so-called kurgans, have a great potential to preserve the natural flora and habitats and act as local biodiversity hotspots. Their special micro-topography and historical origin makes kurgans characteristic landscape elements of the steppe region. These features also result in a specific soil development and micro-climate, which makes kurgans especially adequate habitats for several steppe specialist plant species. Furthermore, they are proper objects for studying the effects of present and past human disturbances on the vegetation of semi-natural habitats. Exploration of the main factors driving biodiversity in isolated habitat fragments is crucial for understanding the ecological processes shaping their vegetation and for designing effective strategies for their protection. We surveyed the vegetation of 44 isolated kurgans in East-Hungary and studied the effects of habitat area, slope, recent disturbance, past destruction and the level of woody encroachment on the species richness and cover of grassland specialist and weedy species. We used model selection techniques and linear models for testing relevant factors affecting specialist species in grassland fragments. We found that the biodiversity conservation potential of kurgans is supported by their steep slopes, which provide adequate habitat conditions and micro-climate for steppic specialist plant species. By harbouring several grassland specialist species, kurgans have a great potential for preserving the natural species pool of even considerably altered agricultural landscapes, and can mitigate the

  18. Harvest of woody crops with a bio-baler in eight different environments in Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Current, D. [Minnesota Univ., MN (United States); Savoie, P. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada); Hebert, P.L. [Laval Univ., Quebec City, PQ (Canada). Dept. des sols et de genie agroalimentaire; Robert, F.S. [Laval Univ., Quebec City, PQ (Canada). Sols et environnement; Gillitzdr, P.

    2010-07-01

    The biobaler was originally developed for short-rotation willow plantations, but can currently harvest a wide range of woody crops with a basal diameter up to 150 mm. The biobaler is an alternate approach to harvest woody crops as round bales, generally 1.2 m wide by 1.5 m diameter. In addition to harvesting trees, it can improve management of wild brush, forest understory vegetation and encroaching small trees on abandoned land. It allows easy handling, storage and transportation to sites where the biomass can be used for energy use or other applications. This paper reported on a study that was conducted in the fall of 2009 in which a third generation biobaler was used on 8 different sites across Minnesota, notably Waseca, Madelia, Faribault, Afton, Ogilvie, Hinckley, Aurora and Hibbing. A total of 160 bales were harvested from these sites. The average bale mass was 466 kg and average bale density was 296 kg/m{sup 3}. The moisture content averaged 44.9 per cent and the bale dry matter density averaged 163 kg DM/m{sup 3}. The harvested biomass per unit area ranged from 2.49 t/ha on lightly covered land to 55.24 t/ha on densely covered land. The harvested or recovered biomass was 72.3 per cent of the original cottonwood in Madelia; 75.8 per cent of the original oak and maple shrubs in Afton; and 73.5 per cent of the poplar regeneration in Hibbing. The actual harvest rate averaged 17.40 bales/h.

  19. Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests

    Science.gov (United States)

    Trugman, Anna T.; Medvigy, David; Hoffmann, William A.; Pellegrini, Adam F. A.

    2018-01-01

    Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.

  20. LANDSCAPE ECOLOGICAL METHOD TO STUDY AGRICULTURAL VEGETATION: SOME EXAMPLES FROM THE PO VALLEY

    Directory of Open Access Journals (Sweden)

    E. GIGLIO

    2006-01-01

    Full Text Available Vegetation is the most important landscape component, as regards to its ability to catch solar energy and to transform it, but also to shape the landscape, to structure the space, to create the fit environment for different animal species, to contribute to the maintenance of a correct metastability level for the landscape, etc. It is a biological system which acts under the constraints of the principles of the System Theory and owns the same properties of any other living system: so, it is a complex adaptive, hierarchical, dynamic, dissipative, self-organizing, self-transcendent, autocatalytic, self-maintaining system and follows the non-equilibrium thermodynamic. Its ecological state can be investigated through the comparison between “gathered data” (pathology and “normal data” (physiology for analogous types of vegetation. The Biological Integrated School of Landscape Ecology provides an integrated methodology to define ecological threshold limits of the different Agricultural Landscape types and applies to agricultural vegetation the specific part of the new methodology already tested to studying forests (the Landscape Biological Survey of Vegetation. Ecological quality, better and worst parameters, biological territorial capacity of vegetated corridors, agricultural field, poplar groves, orchards and woody remnant patches are investigated. Some examples from diverse agricultural landscapes of the Po Valley will be discussed. KEY WORDS: agricultural landscape, vegetation, landscape ecology, landscape health, Biological Integrated Landscape Ecology, Landscape Biological Survey of vegetation.

  1. LANDSCAPE ECOLOGICAL METHOD TO STUDY AGRICULTURAL VEGETATION: SOME EXAMPLES FROM THE PO VALLEY

    Directory of Open Access Journals (Sweden)

    E. GIGLIO

    2006-05-01

    Full Text Available Vegetation is the most important landscape component, as regards to its ability to catch solar energy and to transform it, but also to shape the landscape, to structure the space, to create the fit environment for different animal species, to contribute to the maintenance of a correct metastability level for the landscape, etc. It is a biological system which acts under the constraints of the principles of the System Theory and owns the same properties of any other living system: so, it is a complex adaptive, hierarchical, dynamic, dissipative, self-organizing, self-transcendent, autocatalytic, self-maintaining system and follows the non-equilibrium thermodynamic. Its ecological state can be investigated through the comparison between “gathered data” (pathology and “normal data” (physiology for analogous types of vegetation. The Biological Integrated School of Landscape Ecology provides an integrated methodology to define ecological threshold limits of the different Agricultural Landscape types and applies to agricultural vegetation the specific part of the new methodology already tested to studying forests (the Landscape Biological Survey of Vegetation. Ecological quality, better and worst parameters, biological territorial capacity of vegetated corridors, agricultural field, poplar groves, orchards and woody remnant patches are investigated. Some examples from diverse agricultural landscapes of the Po Valley will be discussed. KEY WORDS: agricultural landscape, vegetation, landscape ecology, landscape health, Biological Integrated Landscape Ecology, Landscape Biological Survey of vegetation.

  2. Field and flume investigations of the effects of logjams and woody debris on streambed morphology

    Science.gov (United States)

    Leung, V.; Montgomery, D. R.; McHenry, M. L.

    2014-12-01

    Interactions among wood debris, fluid flow and sediment transport in rivers are first-order controls on channel morphodynamics, affecting streambed morphology, sediment transport, sediment storage and aquatic habitat. Woody debris increases the hydraulic and topographic complexity in rivers, leading to a greater diversity of aquatic habitats and an increase in the number of large pools that are important fish habitat and breeding grounds. In the past decade, engineered logjams have become an increasingly used tool in river management for simultaneously decreasing the rate of riverbank migration and improving aquatic habitat. Sediment deposits around woody debris build up riverbanks and counteract bank migration caused by erosion. Previous experiments on flow visualization around model woody debris suggest the amount of sediment scour and deposition are primarily related to the presence of roots and the obstructional area of the woody debris. We present the results of fieldwork and sediment transport experiments of streambed morphology around stationary woody debris. Field surveys on the Hoh River and the Elwha River, WA, measure the local streambed morphology around logjams and individual pieces of woody debris. We quantified the amount of local scour and dam-removal related fine sediment deposition around natural and engineered logjams of varying sizes and construction styles, located in different geomorphic settings. We also quantified the amount of local scour around individual pieces of woody debris of varying sizes, geometries and orientations relative to flow. The flume experiments tested the effects of root geometry and log orientation of individual stationary trees on streambed morphology. The flume contained a deformable sediment bed of medium sand. We find that: 1) the presence of roots on woody debris leads to greater areas of both sediment scour and deposition; and 2) the amount of sediment scour and deposition are related to the wood debris cross

  3. Conundrums in mixed woody-herbaceous plant systems

    CSIR Research Space (South Africa)

    House, JI

    2003-11-01

    Full Text Available -form communities, the novel, complex, nonlinear behaviour of mixed tree-grass systems cannot be accounted for by simply studying or modelling woody and herbaceous components independently. A more robust understanding requires addressing three fundamental conundrums...

  4. Rough wave-like heaped overburden promotes establishment of woody vegetation while leveling promotes grasses during unassisted post mining site development.

    Science.gov (United States)

    Frouz, Jan; Mudrák, Ondřej; Reitschmiedová, Erika; Walmsley, Alena; Vachová, Pavla; Šimáčková, Hana; Albrechtová, Jana; Moradi, Jabbar; Kučera, Jiří

    2018-01-01

    Geodiversity plays an important role in species establishment during spontaneous succession. At post-mining sites in the Czech Republic in 2003, we established plots in which the surface of the heaped overburden was either kept wave-like or leveled. Based on surveys conducted from 2006 to 2015, leveled plots were increasingly dominated by grasses and herbs (and especially by the grass Calamagrostis epigejos) while the wave-like plots were increasingly dominated by the trees Salix caprea and Betula pendula. In 2015, a detailed survey was conducted of the dominant species. Both S. caprea and B. pendula occurred more often in wave-like plots than in leveled plots; this was particularly true for trees taller than 1 m, which were absent in leveled plots. In wave-like plots, leaf and root biomasses of both woody species were higher on the wave slopes than on the wave depressions. Nitrogen content was higher but content stress indicating proline in leaves of S. caprea was lower in wave-like plots than in leveled plots. In wave-like plots, both woody species occurred mainly on wave slopes but C. epigejos occurred mainly in the depressions. We speculate that trees were more abundant in wave-like plots than in leveled plots because the waves trapped tree seeds and snow and because the soil porosity was greater in wave-like than in leveled plots. Grasses may have preferred the leveled plots because soil porosity was lower and clay content was higher in leveled than in wave-like plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies.

    Science.gov (United States)

    Tijare, V V; Yang, F L; Kuttappan, V A; Alvarado, C Z; Coon, C N; Owens, C M

    2016-09-01

    The global poultry industry has been faced with emerging broiler breast meat quality issues including conditions known as white striping (WS, white striations parallel to muscle fibers) and woody breast (WB, hardness of raw fillet). Experiments were conducted to evaluate effects of WS and WB hardness on meat quality traits in broiler breast fillets. In Exp. 1, birds were processed at approximately 9 wk of age and deboned at 4 h postmortem (PM); in Exp. 2, birds were processed at approximately 6 and 9 wk of age and deboned at 2 h PM. Fillets were categorized as: normal for both white striping and woody breast (NORM); moderate for white striping and mild for woody breast (MILD); severe for white striping and mild for woody breast (WS); severe for woody breast and moderate for white striping (WB); or severe for both white striping and woody breast (BOTH). Sarcomere length, gravimetric fragmentation index, marination uptake, cook loss, and Meullenet-Owens razor shear energy (MORSE) values on non-marinated and marinated fillets were assessed. Sarcomeres tended to be longer (P = 0.07) with increasing severity of WS and WB in both experiments and gravimetric fragmentation index did not differ (P > 0.05) among categories. Marinade uptake decreased (P  0.05) in non-marinated fillets, the marinated BOTH fillets had greater MORSE values (P  0.05) among categories of marinated breasts. At 9 wk, WS and BOTH were higher (P white striping and woody breast, individually or in combination, negatively impact meat quality, especially water holding capacity attributes such as marinade uptake and cook loss. © 2016 Poultry Science Association Inc.

  6. Vegetation dynamics during the late Pleistocene in the Barreirinhas region, Maranhão State, northeastern Brazil, based on carbon isotopes in soil organic matter

    Science.gov (United States)

    Pessenda, Luiz Carlos Ruiz; Ribeiro, Adauto de Souza; Gouveia, Susy Eli Marques; Aravena, Ramon; Boulet, Rene; Bendassolli, José Albertino

    2004-09-01

    The study place is in the Barreirinhas region, Maranhão State, northeastern Brazil. A vegetation transect of 78 km was studied among four vegetation types: Restinga (coastal vegetation), Cerrado (woody savanna), Cerradão (dense woody savanna), and Forest, as well as three forested sites around Lagoa do Caçó, located approximately 10 km of the transect. Soil profiles in this transect were sampled for δ13C analysis, as well as buried charcoal fragments were used for 14C dating. The data interpretation indicated that approximately between 15,000 and ˜9000 14C yr B.P., arboreal vegetation prevailed in the whole transect, probably due to the presence of a humid climate. Approximately between ˜9000 and 4000-3000 14C yr B.P., there was the expansion of the savanna, probably related to the presence of drier climate. From ˜4000-3000 14C yr B.P. to the present, the results indicated an increase in the arboreal density in the area, due to the return to a more humid and probably similar climate to the present. The presence of buried charcoal fragments in several soil depths suggested the occurrence of palaeofires during the Holocene. The vegetation dynamic inferred in this study for northeastern Brazil is in agreement with the results obtained in areas of Amazon region, based on pollen analysis of lake sediments and carbon isotope analysis of soil organic matter (SOM), implying than similar climatic conditions have affected these areas during the late Pleistocene until the present.

  7. Finite mixture models for sub-pixel coastal land cover classification

    CSIR Research Space (South Africa)

    Ritchie, Michaela C

    2017-05-01

    Full Text Available Models for Sub- pixel Coastal Land Cover Classification M. Ritchie Dr. M. Lück-Vogel Dr. P. Debba Dr. V. Goodall ISRSE - 37 Tshwane, South Africa 10 May 2017 2Study Area Africa South Africa FALSE BAY 3Strand Gordon’s Bay Study Area WorldView-2 Image.../Urban 1 10 10 Herbaceous Vegetation 1 5 5 Shadow 1 8 8 Sparse Vegetation 1 3 3 Water 1 10 10 Woody Vegetation 1 5 5 11 Maximum Likelihood Classification (MLC) 12 Gaussian Mixture Discriminant Analysis (GMDA) 13 A B C t-distribution Mixture Discriminant...

  8. Diel habitat selection of largemouth bass following woody structure installation in Table Rock Lake, Missouri

    Science.gov (United States)

    Harris, J.M.; Paukert, Craig P.; Bush, S.C.; Allen, M.J.; Siepker, Michael

    2018-01-01

    Largemouth bass Micropterus salmoides (Lacepède) use of installed habitat structure was evaluated in a large Midwestern USA reservoir to determine whether or not these structures were used in similar proportion to natural habitats. Seventy largemouth bass (>380 mm total length) were surgically implanted with radio transmitters and a subset was relocated monthly during day and night for one year. The top habitat selection models (based on Akaike's information criterion) suggest largemouth bass select 2–4 m depths during night and 4–7 m during day, whereas littoral structure selection was similar across diel periods. Largemouth bass selected boat docks at twice the rate of other structures. Installed woody structure was selected at similar rates to naturally occurring complex woody structure, whereas both were selected at a higher rate than simple woody structure. The results suggest the addition of woody structure may concentrate largemouth bass and mitigate the loss of woody habitat in a large reservoir.

  9. Restoration of degraded drylands through exclosures enhancing woody species diversity and soil nutrients in the highlands of Tigray, Northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Kide M. Gebremedihin

    2018-02-01

    Full Text Available Exclusion of grazing animals and tree plantations were among the methods used for the rehabilitation of degraded lands in tropical semiarid areas. Exclosures can foster secondary forest succession by improving soil conditions, attracting seed-dispersal agents and modifying microclimate for understory growth. This paper compares the woody species diversity and soil chemical properties under exclosure with increasing age and grazing land at different slope positions. The study has been conducted in northern Ethiopia from 12 exclosure sites paired each with adjacent grazing land with four treatments replicated three times. In the entire study 216 plots were examined of which 108 were in exclosures and 108 in communal grazing lands.There were four age classes and three slope positions in each of the landuses. Vegetation data were collected using plots measuring 100 m2. Soils for physicochemical properties were collected from the four corners and center of 5 × 5m plots which was inside the 10 × 10m plot. A total of 61 woody plant species belonging to 41 families were recorded. Diversity and species richness were higher in the exclosures than in grazing lands. Among exclosures these parameters were higher in exclosures older than 30 years and at the foot of the slope. Grazing lands, the youngest exclosures and upper elevation gradient recorded lower values. Chemical soil properties were significantly higher in the exclosures, among them in the oldest exclosures and at foot elevation (except for P than these were in the grazing land, the youngest exclosures and upper parts of slopes respectively. Exclosures are instrumental to improve the woody species diversity and soil chemical properties in the drylands.

  10. Short-term vegetation response following mechanical control of saltcedar (Tamarix spp.) on the Virgin River, Nevada, USA

    Science.gov (United States)

    Ostoja, Steven M.; Brooks, Matthew L.; Dudley, Tom; Lee, Steven R.

    2014-01-01

    Tamarisk (a.k.a. saltcedar, Tamarix spp.) is an invasive plant species that occurs throughout western riparian and wetland ecosystems. It is implicated in alterations of ecosystem structure and function and is the subject of many local control projects, including removal using heavy equipment. We evaluated short-term vegetation responses to mechanical Tamarix spp. removal at sites ranging from 2 to 5 yr post-treatment along the Virgin River in Nevada, USA. Treatments resulted in lower density and cover (but not eradication) of Tamarix spp., increased cover of the native shrub Pluchea sericia (arrow weed), decreased density and cover of all woody species combined, increased density of both native annual forbs and the nonnative annual Salsola tragus (prickly Russian-thistle), and lower density of nonnative annual grasses. The treated plots had lower mean woody species richness, but greater herbaceous species richness and diversity. Among herbaceous species, native taxa increased in richness whereas nonnative species increased in both species richness and diversity. Thus, efforts to remove Tamarix,/i> spp. at the Virgin River reduced vegetative cover contributing to fuel loads and probability of fire, and resulted in positive effects for native plant diversity, with mixed effects on other nonnative species. However, absolute abundances of native species

  11. Diagnosis of vegetation recovery within herbaceous sub-systems in the West African Sahel Region

    Science.gov (United States)

    Anchang, J.; Hanan, N. P.; Prihodko, L.; Sathyachandran, S. K.; Ji, W.; Ross, C. W.

    2017-12-01

    The West African Sahel (WAS) region is an extensive water limited environment that features a delicate balance of herbaceous and woody vegetation sub systems. These play an important role in the cycling of carbon while also supporting the dominant agro-pastoral human activities in the region. Quantifying the temporal trends in vegetation with regard to these two systems is therefore very important in assessing resource sustainability and food security. In water limited areas, rainfall is a primary driver of vegetation productivity and past watershed scale studies in the WAS region have shown that increase in the slope of the productivity-to-rainfall relationship is indicative of increasing cover and density of herbaceous plants. Given the importance of grazing resources to the region, we perform a wall-to-wall pixel based analysis of changing short-term vegetation sensitivity to changing annual rainfall (hereafter referred to as dS) to examine temporal trends in herbaceous vegetation health. Results indicate that 43% of the Sahelian region has experienced changes (P Western and Central Mali and South Western Niger. Positive dS is indicative of herbaceous vegetation recovery, in response to changing management and rainfall conditions that promote long-term herbaceous community recovery following degradation during the 1970-1980s droughts.

  12. Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem

    Science.gov (United States)

    Biber, P.; Seifert, S.; Zaplata, M. K.; Schaaf, W.; Pretzsch, H.; Fischer, A.

    2013-12-01

    We investigated surface and vegetation dynamics in the artificial initial ecosystem "Chicken Creek" (Lusatia, Germany) in the years 2006-2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system's early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation-substrate feedback processes.

  13. Trampling Impacts on Thermotolerant Vegetation of Geothermal Areas in New Zealand

    Science.gov (United States)

    Burns, Bruce R.; Ward, Jonet; Downs, Theresa M.

    2013-12-01

    Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.

  14. Trampling impacts on thermotolerant vegetation of geothermal areas in New Zealand.

    Science.gov (United States)

    Burns, Bruce R; Ward, Jonet; Downs, Theresa M

    2013-12-01

    Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.

  15. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  16. Cross-stratified Wood: Enigmatic Woody Debris Deposits in Warm-Polar Fluvial Sediments (Pliocene Beaufort Formation, Nunavut)

    Science.gov (United States)

    Davies, N. S.; Gosse, J. C.; Rybczynski, N.

    2012-04-01

    Woody debris has been an important sediment component and a significant geomorphic agent in pristine fluvial systems since the Devonian. In recent years a large volume of research has focussed on various aspects of the importance of woody debris within the fluvial realm; from the evolutionary significance of fossil wood accumulations in the rock record to studies of the biogeomorphological and ecological importance of woody debris in modern rivers. In this presentation we describe cross-stratified woody debris deposits comprising organic detritus from a boreal-type treeline forest that included species of pine, birch, poplar, alder, spruce, eastern cedar, and larch, in both shrub and tree form. The cross-stratified wood is an enigmatic subset of fine woody debris which, to our knowledge, has never before been described from either the global stratigraphic record or modern fluvial environments. The deposits we describe are located within the Pliocene Beaufort Formation on Meighen Island, Nunavut, Canada, at a latitude of 80°N, and are compared with other cross-stratified woody debris deposits that have been noted elsewhere in the Pliocene of the Canadian Arctic. We make the robust observation that these deposits appear to be geographically and stratigraphically restricted to polar latitudes from a period of warm climatic conditions during the Pliocene (15-20 °C warmer mean annual temperature than the present day). In this regard it is possible to speculate that the transport of large amounts of woody debris as bedload is potentially a unique feature of forested high latitude rivers. Such bedload deposition requires a large amount of woody debris with a greater density than the fluid transporting it. The softwood composition of the debris suggests that this was most likely attained by saturation and subsequent entrainment of extensive accumulations of deadwood, promoted by unusually high rates of tree mortality and low rates of bacterial decomposition arising from

  17. Woody plants and the prediction of climate-change impacts on bird diversity

    DEFF Research Database (Denmark)

    Kissling, W. Daniel; Field, R.; Korntheuer, H.

    2010-01-01

    Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant...... species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change...... suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically...

  18. Openbaar groen op ecologische grondslag

    NARCIS (Netherlands)

    Koster, A.

    2001-01-01

    This thesis is concerned with ecologically managed public green spaces. Woody vegetation is an important component of such areas. The impact of woody vegetation on herbaceous plant species and wild bees is investigated. Then, guidelines are given based on the research for the design of woody

  19. Crimes e pecados: Woody Allen, Hollywood e o cinema independente

    OpenAIRE

    Soares, Marcos; Anjos, Ana Paula B.; Fabris, Marcos

    2012-01-01

    In this essay we propose an analysis of the film Crimes and Misdemeanors (1989) by Woody Allen in an attempt to focus on its reflections both on the American independent movie production in the 80’s as well as on the conditions of possibility of Allen’s career. Este ensaio traz uma análise do filme Crimes e Pecados (1989) do cineasta Woody Allen que enfatiza suas reflexões tanto sobre a situação do cinema independente no final dos anos 80 nos Estados...

  20. On the effects attendant on the decrease of the radionuclide contents in woody plants

    International Nuclear Information System (INIS)

    Bulko, N.I.; Shabaleva, M.A.; Starovojtova, T.V.

    2002-01-01

    Our experiment on the study of migration and accumulation of radiocesium in woody plants performed on radiation-contaminated forest soils within the greenhouse experiment/microfield experiment/natural forest stand system shows that it is quite possible to influence markedly on the Cs 137 migration within the soil/woody plant system by the purposeful action on water and nutritive regimes of bogs. When fertilizers are applied, a decrease in the Cs 137 contents in woody plants and an increase in growth indices are observed, these being attended with antagonism, dissolution, binding and maximization effects

  1. Physiology of woody plants

    CERN Document Server

    Hazewinkel, Michiel; Pallardy, Stephen G

    1996-01-01

    This completely revised classic volume is an up-to-date synthesis of the intensive research devoted to woody plants. Intended primarily as a text for students and a reference for researchers, this interdisciplinary book should be useful to a broad range of scientists from agroforesters, agronomists, and arborists to plant pathologists, ecophysiologists, and soil scientists. Anyone interested in plant physiology will find this text invaluable. Key Features * Includes supplementary chapter summaries and lists of general references * Provides a solid foundation of reference information * Thoroughly updated classic text/reference.

  2. Airflow Dynamics over a Beach and Foredune System with Large Woody Debris

    Directory of Open Access Journals (Sweden)

    Michael J. Grilliot

    2018-04-01

    Full Text Available Airflow dynamics over beach-foredune systems can be complex. Although a great deal is known about the effects of topographic forcing and vegetation cover on wind-field modification, the role of large woody debris (LWD as a roughness element and modifier of boundary layer flow is relatively understudied. Individual pieces of LWD are non-porous elements that impose bluff body effects and induce secondary flow circulation that varies with size, density, and arrangement. Large assemblages of LWD are common on beaches near forested watersheds and collectively have a degree of porosity that increases aerodynamic roughness in ways that are not fully understood. A field study on a mesotidal sandy beach with a scarped foredune (Calvert Island, British Columbia, Canada shows that LWD influences flow patterns and turbulence levels. Overall mean and fluctuating energy decline as flow transitions across LWD, while mean energy is converted to turbulent energy. Such flow alterations have implications for sand transport pathways and resulting sedimentation patterns, primarily by inducing deposition within the LWD matrix.

  3. DETERMINATION OF CRYSTALLINITY INDEX OF CARBOHYDRATE COMPONENTS IN HEMP (CANNABIS SATIVA L. WOODY CORE BY MEANS OF FT-IR SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2005-04-01

    Full Text Available In this study; it was investigated chemical compositions of hemp woody core and changes in crystallinity index of its carbohydrate components by using FT-IR spectroscopy was investigated. It was determined that carbohyrate components ratio in hemp woody core were similar to that in hard wood, but lignin content in hemp woody core was higher than in hard wood. Crystallinity index of carbohydrate components in hemp woody core increased by removing amorphous components. It was designated that monoclinic structure in hemp woody core and its carbohydrate components was dominant, but triclinic ratio increased by treated chemical isolation of carbohydrate from hemp woody core.

  4. Spatiotemporal soil and saprolite moisture dynamics across a semi-arid woody plant gradient

    Science.gov (United States)

    Woody plant cover has increased 10-fold over the last 140+ years in many parts of the semi-arid western USA. Woody plant cover can alter the timing and amount of plant available moisture in the soil and saprolite. To assess spatiotemporal subsurface moisture dynamics over two water years in a snow-d...

  5. Variation in woody plant mortality and dieback from severe drought among soils, plant groups, and species within a northern Arizona ecotone.

    Science.gov (United States)

    Koepke, Dan F; Kolb, Thomas E; Adams, Henry D

    2010-08-01

    Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest-woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest-woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.

  6. Uprooting force balance for pioneer woody plants: A quantification of the relative contribution of above- and below-ground plant architecture to uprooting susceptibility

    Science.gov (United States)

    Bywater-Reyes, S.; Wilcox, A. C.; Lightbody, A.; Skorko, K.; Stella, J. C.

    2012-12-01

    Cottonwood (Populus), willow (Salix), and tamarisk (Tamarix) populate riparian areas in many dryland regions, and their recruitment depends heavily on hydrogeomorphic conditions. The survival of pioneer woody seedlings depends in part on the establishment of root systems capable of anchoring plants in subsequent floods, and this root system development in turn influences the cohesion that plants provide to bars. The factors influencing the anchoring ability and resistance to scour of woody seedlings include plant frontal area and flexibility, root structure, and water table elevation. This study aims to quantify the factors comprising the force balance to uproot woody seedlings and saplings in two field sites characterized by different hydrologic conditions. The Bill Williams River (AZ) is an impounded river with elevated water table elevations produced by dam-released base flows. The Bitterroot River (MT) is an unimpounded river with a snowmelt hydrograph and seasonal fluctuations in river and water table elevation. We simulate uprooting from flooding events by saturating substrates and applying force near the base of the plant in a lateral, downstream direction until uprooting occurs, for a range of plant sizes but with a focus on small (plants, with cottonwood and tamarisk seedlings showing greater variability than willow. In contrast, root length and stem diameter are only weakly correlated with pull-out force. By combining pull test results with measurements of geomorphic and groundwater conditions, this study provides insights into the relative contribution of a plant's above-ground and below-ground architecture to uprooting potential and into the feedbacks between vegetation and morphodynamics on river bars.

  7. Assessing the Roles of Fire Frequency and Precipitation in Determining Woody Plant Expansion in Central U.S. Grasslands

    Science.gov (United States)

    Brunsell, N. A.; Van Vleck, E. S.; Nosshi, M.; Ratajczak, Z.; Nippert, J. B.

    2017-10-01

    Woody plant expansion into grasslands and savannas is occurring and accelerating worldwide and often impacts ecosystem processes. Understanding and predicting the environmental and ecological impacts of encroachment has led to a variety of methodologies for assessing its onset, transition, and stability, generally relying on dynamical systems approaches. Here we continue this general line of investigation to facilitate the understanding of the roles of precipitation frequency and intensity and fire frequency on the conversion of grasslands to woody-dominated systems focusing on the central United States. A low-dimensional model with stochastic precipitation and fire disturbance is introduced to examine the complex interactions between precipitation and fire as mechanisms that may suppress or facilitate increases in woody cover. By using Lyapunov exponents, we are able to ascertain the relative control exerted on woody encroachment through these mechanisms. Our results indicate that precipitation frequency is a more important control on woody encroachment than the intensity of individual precipitation events. Fire, however, exerts a much more dominant impact on the limitation of encroachment over the range of precipitation variability considered here. These results indicate that fire management may be an effective strategy to slow the onset of woody species into grasslands. While climate change might predict a reduced potential for woody encroachment in the near future, these results indicate a reduction in woody fraction may be unlikely when considering anthropogenic fire suppression.

  8. Determination of zinc contents in vegetables

    International Nuclear Information System (INIS)

    Salah-ud-Din; Salariya, A.M.; Yasin, M.

    1996-01-01

    Zinc content of three groups of vegetables (roots and tuber, leaves and fruits) collected from local markets was determined and are reported here. The determination was made by Atomic Absorption Spectrophotometer. The results obtained show that the zinc content of different vegetables ranged from 6.26-36.80 ppm, 8.80-70-70 ppm and 7.20-35.10 ppm for roots and tubers, fruits of vegetables respectively on dry weight basis. Generally, the values obtained in majority are not above, the maximum permissible limits. (author)

  9. Potential of pest regulation by insectivorous birds in Mediterranean woody crops.

    Directory of Open Access Journals (Sweden)

    José M Rey Benayas

    Full Text Available Regulation of agricultural pests managing their natural enemies represents an alternative to chemical pesticides. We assessed the potential of insectivorous birds as pest regulators in woody crops located in central Spain. A total of 417 nest boxes installed in five field study sites (one vineyard, two fruit orchards, and two olive groves were monitored for use and breeding of insectivorous birds and other species for four consecutive years (2013-2016. At all field sites except the two olive groves, where birds never occupied the nest boxes, predation experiments were conducted with Greater wax moth (Galleria mellonella sentinel caterpillars, and food consumption by birds was estimated. Nesting of insectivorous birds, chiefly Great tit (Parus major, and sparrows (Passer domesticus and P. montanus increased over time, averaging 60% per field site in the vineyard and fruit orchards by the fourth year. Use of nest boxes by sparrows and by Garden dormouse (Eliomys quercinus was high at the fruit orchards (70% and the vineyard (30%, respectively. Micro-habitat characteristics (nest box level and meso-habitat characteristics (patch level strongly affected use of nest boxes and bird breeding (i.e. number of laid eggs and produced chicks in different years. Distance to natural or semi-natural vegetation did not consistently affect bird breeding, nor did we see consistent evidence of competition between adjacent breeding birds. Predation rates of sentinel caterpillars were approximately one-third higher near boxes with nesting birds (31.51 ± 43.13% than at paired distant areas without nest boxes (22.45% ± 38.58%. Food consumption by insectivorous birds per ha and breeding season were conservatively estimated to range from 0.02 kg in one fruit orchard to 0.15 kg in the vineyard. We conclude that installation of nest boxes in Mediterranean woody crops enhances populations of insectivorous birds that regulate pests, but that the effects are moderate and

  10. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  11. 75 FR 80490 - Pesticide Products; Registration Applications

    Science.gov (United States)

    2010-12-22

    ..., ornamentals (herbaceous and woody), pistachio, pome fruits, root and tuber vegetables, small fruit vine... (herbaceous and woody), pistachio, pome fruits, root and tuber vegetables, small fruit vine climbing (except...), pistachio, pome fruits, root and tuber vegetables, small fruit vine climbing (except fuzzy kiwifruit...

  12. Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics.

    Science.gov (United States)

    Ma, Peng-Fei; Vorontsova, Maria S; Nanjarisoa, Olinirina Prisca; Razanatsoa, Jacqueline; Guo, Zhen-Hua; Haevermans, Thomas; Li, De-Zhu

    2017-12-21

    Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance

  13. Accumulation of Elements in Salix and Other Species Used in Vegetation Filters with Focus on Wood Fuel Quality

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Anneli

    2007-07-01

    Woody or herbaceous perennials used as vegetation filters for treatment of different types of wastes can be suitable for production of solid biofuels when their above ground harvestable biomass yield is sufficiently high and when biomass contains appropriate concentrations of minerals with regard to fuel combustion processes. The concentrations of nitrogen (N), potassium (K) and heavy metals (especially Zn and Cd) in fuel should be low and calcium (Ca) concentrations high to avoid technical problems and environmentally harmful emissions during combustion. Since soil supplementation with essential elements improves biomass yield, a conflict might arise between yield and quality aims. There are various possibilities to influence fuel quality during the growing phase of the life cycle of perennial biomass crops. This study assessed the suitability of two deciduous woody perennials (Salix and Populus) and two summer green herbaceous perennials (Phragmites and Urtica) for phytoremediation in terms of growth and nutrient allocation patterns. Salix and Populus proved suitable as vegetation filters when nutrients were available to plants in near-optimal proportions, but when unbalanced nutrient solutions (wastewater) were applied, stem biomass fraction was strongly reduced. Phragmites was more tolerant to wastewater treatment in terms of plant biomass production and nutrient allocation patterns, so if the N:P ratio of the wastewater is suboptimal, a vegetation filter using Phragmites could be considered. In further studies, a method was developed to determine the proportions of nutrient-rich bark in coppiced Salix, while heavy metal phytoextraction capacity was assessed in two Salix vegetation filters. The relevance of proportion of bark on wood fuel quality and element removal from vegetation filters was also investigated. The concentrations of the elements studied in harvestable Salix shoot biomass were higher, meaning lower wood fuel quality, in plantations where

  14. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    Science.gov (United States)

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  15. Utilization characteristics and importance of woody biomass resources on the rural-urban fringe in botswana.

    Science.gov (United States)

    Nkambwe, Musisi; Sekhwela, Mogodisheng B M

    2006-02-01

    This article examines the utilization characteristics and importance of woody biomass resources in the rural-urban fringe zones of Botswana. In the literature for Africa, attention has been given to the availability and utilization of biomass in either urban or rural environments, but the rural-urban fringe has been neglected. Within southern Africa, this neglect is not justified; the rural-urban fringe, not getting the full benefits available in urban environments in Botswana, has developed problems in woody biomass availability and utilization that require close attention. In this article, socioeconomic data on the importance of woody biomass in the Batlokwa Tribal Territory, on the rural-urban fringe of Gaborone, Botswana, were collected together with ecologic data that reveal the utilization characteristics and potential for regrowth of woody biomass. The analysis of these results show that local woody biomass is very important in the daily lives of communities in the rural-urban fringe zones and that there is a high level of harvesting. However, there is no effort in planning land use in the tribal territory to either conserve this resource or provide alternatives to its utilization. The future of woody biomass resources in Botswana's rural-urban fringe is uncertain. The investigators recommend that a comprehensive policy for the development of the rural-urban fringe consider the importance of this resource. The neglect of this resource will have far-reaching implications on the livelihoods of residents as well as the environment in this zone.

  16. Environmental determinants of woody plant diversity at a regional scale in China.

    Directory of Open Access Journals (Sweden)

    Hong Qian

    Full Text Available Understanding what drives the geographic variation of species richness across the globe is a fundamental goal of ecology and biogeography. Environmental variables have been considered as drivers of global diversity patterns but there is no consensus among ecologists on what environmental variables are primary drivers of the geographic variation of species richness. Here, I examine the relationship of woody plant species richness at a regional scale in China with sixteen environmental variables representing energy availability, water availability, energy-water balance, seasonality, and habitat heterogeneity. I found that temperature seasonality is the best predictor of woody species richness in China. Other important environmental variables include annual precipitation, mean temperature of the coldest month, and potential evapotranspiration. The best model explains 85% of the variation in woody plant species richness at the regional scale in China.

  17. CHROMOSOMES OF WOODY SPECIES

    Directory of Open Access Journals (Sweden)

    Julio R Daviña

    2000-01-01

    Full Text Available Chromosome numbers of nine subtropical woody species collected in Argentina and Paraguay are reported. The counts tor Coutarea hexandra (2n=52, Inga vera subsp. affinis 2n=26 (Fabaceae and Chorisia speciosa 2n=86 (Bombacaceae are reported for the first time. The chromosome number given for Inga semialata 2n=52 is a new cytotype different from the previously reported. Somatic chromosome numbers of the other taxa studied are: Sesbania punicea 2n=12, S. virgata 2n=12 and Pilocarpus pennatifolius 2n=44 from Argentina

  18. Lidar-derived estimate and uncertainty of carbon sink in successional phases of woody encroachment

    Science.gov (United States)

    Sankey, Temuulen; Shrestha, Rupesh; Sankey, Joel B.; Hardgree, Stuart; Strand, Eva

    2013-01-01

    Woody encroachment is a globally occurring phenomenon that contributes to the global carbon sink. The magnitude of this contribution needs to be estimated at regional and local scales to address uncertainties present in the global- and continental-scale estimates, and guide regional policy and management in balancing restoration activities, including removal of woody plants, with greenhouse gas mitigation goals. The objective of this study was to estimate carbon stored in various successional phases of woody encroachment. Using lidar measurements of individual trees, we present high-resolution estimates of aboveground carbon storage in juniper woodlands. Segmentation analysis of lidar point cloud data identified a total of 60,628 juniper tree crowns across four watersheds. Tree heights, canopy cover, and density derived from lidar were strongly correlated with field measurements of 2613 juniper stems measured in 85 plots (30 × 30 m). Aboveground total biomass of individual trees was estimated using a regression model with lidar-derived height and crown area as predictors (Adj. R2 = 0.76, p 2. Uncertainty in carbon storage estimates was examined with a Monte Carlo approach that addressed major error sources. Ranges predicted with uncertainty analysis in the mean, individual tree, aboveground woody C, and associated standard deviation were 0.35 – 143.6 kg and 0.5 – 1.25 kg, respectively. Later successional phases of woody encroachment had, on average, twice the aboveground carbon relative to earlier phases. Woody encroachment might be more successfully managed and balanced with carbon storage goals by identifying priority areas in earlier phases of encroachment where intensive treatments are most effective.

  19. The potential impact of invasive woody oil plants on protected areas in China under future climate conditions.

    Science.gov (United States)

    Dai, Guanghui; Yang, Jun; Lu, Siran; Huang, Conghong; Jin, Jing; Jiang, Peng; Yan, Pengbo

    2018-01-18

    Biodiesel produced from woody oil plants is considered a green substitute for fossil fuels. However, a potential negative impact of growing woody oil plants on a large scale is the introduction of highly invasive species into susceptible regions. In this study, we examined the potential invasion risk of woody oil plants in China's protected areas under future climate conditions. We simulated the current and future potential distributions of three invasive woody oil plants, Jatropha curcas, Ricinus communis, and Aleurites moluccana, under two climate change scenarios (RCP2.6 and RCP8.5) up to 2050 using species distribution models. Protected areas in China that will become susceptible to these species were then identified using a spatial overlay analysis. Our results showed that by 2050, 26 and 41 protected areas would be threatened by these invasive woody oil plants under scenarios RCP2.6 and RCP8.5, respectively. A total of 10 unique forest ecosystems and 17 rare plant species could be potentially affected. We recommend that the invasive potential of woody oil plants be fully accounted for when developing forest-based biodiesel, especially around protected areas.

  20. Exploiting differential vegetation phenology for satellite-based mapping of semiarid grass vegetation in the southwestern United States and northern Mexico

    Science.gov (United States)

    Dye, Dennis G.; Middleton, Barry R.; Vogel, John M.; Wu, Zhuoting; Velasco, Miguel G.

    2016-01-01

    We developed and evaluated a methodology for subpixel discrimination and large-area mapping of the perennial warm-season (C4) grass component of vegetation cover in mixed-composition landscapes of the southwestern United States and northern Mexico. We describe the methodology within a general, conceptual framework that we identify as the differential vegetation phenology (DVP) paradigm. We introduce a DVP index, the Normalized Difference Phenometric Index (NDPI) that provides vegetation type-specific information at the subpixel scale by exploiting differential patterns of vegetation phenology detectable in time-series spectral vegetation index (VI) data from multispectral land imagers. We used modified soil-adjusted vegetation index (MSAVI2) data from Landsat to develop the NDPI, and MSAVI2 data from MODIS to compare its performance relative to one alternate DVP metric (difference of spring average MSAVI2 and summer maximum MSAVI2), and two simple, conventional VI metrics (summer average MSAVI2, summer maximum MSAVI2). The NDPI in a scaled form (NDPIs) performed best in predicting variation in perennial C4 grass cover as estimated from landscape photographs at 92 sites (R2 = 0.76, p landscapes of the Southwest, and potentially for monitoring of its response to drought, climate change, grazing and other factors, including land management. With appropriate adjustments, the method could potentially be used for subpixel discrimination and mapping of grass or other vegetation types in other regions where the vegetation components of the landscape exhibit contrasting seasonal patterns of phenology.

  1. When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation.

    Directory of Open Access Journals (Sweden)

    Sarah J Thompson

    Full Text Available Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012-2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall, percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall, and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm. Our findings suggest that increases in shrub cover and density will negatively

  2. Seed production of woody plants in conditions of environment pollution by metallurgical industry emissions

    Directory of Open Access Journals (Sweden)

    Z. V. Gritzay

    2011-10-01

    Full Text Available The influence of environment pollution by metallurgical industry emissions on woody plants bearing parameters was examined. The results obtained show the decrease of bearing rate, diminution of seeds, fruits and seed cells sizes in woody plants affected by technogenic emissions. Attenuation of the 1000 seeds’ weight was established. Incresing the amount of fruits with development deviations was ascertained. It was found aplasia and abnormal form of the samara fruit of ash and ailanthus trees, arcuation and narrowing of some parts of the catalpa fruitcases. Practical recommendations on using seeds’ sensitive parameters in biomonitoring of woody phytocenoses under technogenic stressful conditions are proposed.

  3. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Science.gov (United States)

    Yang, Fan; Wang, Yong; Chan, Zhulong

    2014-01-01

    The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well

  4. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available The establishment of riparian protection forests in the Three Gorges Reservoir (TGR is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ. Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress

  5. Post-fire vegetation recovery in Portugal based on spot/vegetation data

    Science.gov (United States)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2010-04-01

    A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

  6. Volatile organic emissions from the distillation and pyrolysis of vegetation

    Directory of Open Access Journals (Sweden)

    J. P. Greenberg

    2006-01-01

    Full Text Available Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa were heated from 30 to 300°C and volatile organic compound (VOC emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC/gC(CO2 measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  7. River flow and riparian vegetation dynamics - implications for management of the Yampa River through Dinosaur National Monument

    Science.gov (United States)

    Scott, Michael L; Friedman, Jonathan M.

    2018-01-01

    This report addresses the relation between flow of the Yampa River and occurrence of herbaceous and woody riparian vegetation in Dinosaur National Monument (DINO) with the goal of informing management decisions related to potential future water development. The Yampa River in DINO flows through diverse valley settings, from the relatively broad restricted meanders of Deerlodge Park to narrower canyons, including debris fan-affected reaches in the upper Yampa Canyon and entrenched meanders in Harding Hole and Laddie Park. Analysis of occurrence of all plant species measured in 1470 quadrats by multiple authors over the last 24 years shows that riparian vegetation along the Yampa River is strongly related to valley setting and geomorphic surfaces, defined here as active channel, active floodplain, inactive floodplain, and upland. Principal Coordinates Ordination arrayed quadrats and species along gradients of overall cover and moisture availability, from upland and inactive floodplain quadrats and associated xeric species like western wheat grass (Pascopyrum smithii), cheatgrass (Bromus tectorum), and saltgrass (Distichlis spicata) to active channel and active floodplain quadrats supporting more mesic species including sandbar willow (Salix exigua), wild licorice (Glycyrrhiza lepidota), and cordgrass (Spartina spp.). Indicator species analysis identified plants strongly correlated with geomorphic surfaces. These species indicate state changes in geomorphic surfaces, such as the conversion of active channel to floodplain during channel narrowing. The dominant woody riparian species along the Yampa River are invasive tamarisk (Tamarix ramosissima), and native Fremont cottonwood (Populus deltoides ssp. wislizenii), box elder (Acer negundo L. var. interius), and sandbar willow (Salix exigua). These species differ in tolerance of drought, salinity, inundation, flood disturbance and shade, and in seed size, timing of seed dispersal and ability to form root sprouts. These

  8. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple

    Directory of Open Access Journals (Sweden)

    Xinwei Guo

    2017-05-01

    Full Text Available Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs including microRNAs (miRNAs and small interfering RNAs (siRNAs are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL gene regulation, stress responses, and auxin and gibberellin (GA pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology.

  9. Predicting duff and woody fuel consumed by prescribed fire in the Northern Rocky Mountains

    Science.gov (United States)

    James K. Brown; Michael A. Marsden; Kevin C. Ryan; Elizabeth D. Reinhardt

    1985-01-01

    Relationships for predicting duff reduction, mineral soil exposure, and consumption of downed woody fuel were determined to assist in planning prescribed fires. Independent variables included lower and entire duff moisture contents, loadings of downed woody fuels, duff depth, National Fire-Danger Rating System 1,000-hour moisture content, and Canadian Duff Moisture...

  10. Vegetative rhythm of some woody species; Rythmes de vegetation de quelques especes ligneuses

    Energy Technology Data Exchange (ETDEWEB)

    Gagnaire, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-07-01

    In laboratory conditions from march 1963 to april 1964, variations of calcium absorption by roots and translocation speed towards aerial parts of young norway spruce (Picea excelsa) in hydroponic growing, present fixed stages in a vegetative cycle: 1. from early april until end may a rapid rising of minerals from roots to young parts of the tree, associated with a redistribution of calcium formerly fixed in tissues; 2. in June-July, an equilibrium in mineral exchanges between the different parts of the tree; 3. from early august to end of October, a pre-dormancy phase marked by a slowing of translocation; 4. in november-december, an absolute dormancy period; 5. from January to march, a post-dormancy phase in which root absorption and translocation to aerial parts recover. In outdoors conditions and for a determined climate these stages start and end on dates linked to species and variety: - in Grenoble, absolute dormancy starts in September for thuyas, early October for maple-trees, middle October for norway spruce and novembers for poplars. (authors) [French] De mars 1963 a avril 1964, les variations de l'absorption radiculaire des sels de calcium et de leur vitesse de transport vers les parties aeriennes de jeunes epiceas (Picea excelsa) en culture hydroponique, au laboratoire, montrent cinq phases distinctes dans un cycle vegetatif: 1. du debut avril a la fin mai, une phase de montee rapide des sels mineraux depuis les racines jusqu'aux parties jeunes de l'arbre, associee a une redistribution des sels de calcium deja fixes dans les tissus; 2. en juin, juillet une phase d'equilibre dans les echanges mineraux entre les differentes parties de l'arbre; 3. du debut aout a la fin octobre une phase de pre-dormance caracterisee par un ralentissement progressif de la vitesse de transport; 4. en novembre et decembre, une phase de dormance absolue; 5. de janvier a mars une phase de post-dormance au cours de laquelle l'absorption radiculaire et le transport vers les parties

  11. A phyt osociological classification of the vegetation of the Jack Scott Nature Reserve*

    Directory of Open Access Journals (Sweden)

    B. J. Coetzee

    1974-12-01

    Full Text Available The vegetation of the Jack Scott Nature Reserve in the Central Bankenveld Veld Type is classified chiefly by the Braun-Blanquet Table Method. Habitat features, physiognomy, total floristic composition, differentiating species, woody plants and prominent grasses and forbs are presented for each community. Characterizing habitat features, in order of importance for the communities, are: exposure, soil texture, geology, slope, aspect, degree of rockiness and previous ploughing. The classification correlates well with the major physiographic and climatic variation in the Reserve and generally does not cut across main physiognomic types. The communities are potentially homogeneous management units.

  12. HALOPHYTIC VEGETATION OF IRAN: TOWARDS A SYNTAXONOMICAL CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. AKHANI

    2004-05-01

    Full Text Available Iran with its diverse c1irnatic conditions and geologic and land use history support large areas of saline habitats and diverse halophytic flora. The halophytic diversity in not only enriched by the evolving of a large number of autochthonous Irano-Turanian elements, but also many of the halophytes of other phytochoria like Saharo-Arabian, Mediterranean and even Euro-Siberian elements are represented in Iran. Therefore most of the higher syntaxa of Euro-Mediterranean and Afro-Asian-al last partly-occur in Iran. Prior to a consolidated syntaxonomical system for the halophytic vegetation of Iran, major halophytic vegetation units of Iran are summarized and shown along salinity and moisture gradients. These include: (I: Mangrove communities (Avicennio-Sonneratietea. (2: Submerged aquatic plant communities (Ruppietea maritimae. (3: Annual obligatory hygro-halophytic communities on sea, lake and river marshes dominated by stem or leaf succulent C3 chenopods (Thero-Salicornietea. (4 Semi-woody or perennial halophytic communities on muddy or coastal salt flats dominated by stem succulent C3 chenopods (Salicornietea fruticosae. (5: Hydrophi!ous euryhalophytic rush communities: Phragmitetea australis. (6: Halophytic grassland and herbaceous perennial sedge communities belonging to genera Puccinellia and Juncus (Juncetea maritimi. (7: Salt marsh and riverine bruchwood communities dominated by salt-excreting halophytes (Tamaricetea ramosissimae, prov.. (8: Annua1 halophytic communities dominated by C4 chenopods in temporary moist and inundated, or disturbed salty soils (Climacopteretea crassae, prov.. (9: Halophytic shrubby. semi-woody or hemicrytophytic communities on salty and dry soils dominated by lcaf or stem succulent C4 chenopods (Haloxylo-Salsoletea tomentosae, prov.. (1O: Halophytic shrub communities, on salty and sandy coastal or margin of sabkhas with high water table dominated by Nitraria schoberi and Reaumuria fruticosa. (11. Psarno

  13. HALOPHYTIC VEGETATION OF IRAN: TOWARDS A SYNTAXONOMICAL CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. AKHANI

    2004-01-01

    Full Text Available Iran with its diverse c1irnatic conditions and geologic and land use history support large areas of saline habitats and diverse halophytic flora. The halophytic diversity in not only enriched by the evolving of a large number of autochthonous Irano-Turanian elements, but also many of the halophytes of other phytochoria like Saharo-Arabian, Mediterranean and even Euro-Siberian elements are represented in Iran. Therefore most of the higher syntaxa of Euro-Mediterranean and Afro-Asian-al last partly-occur in Iran. Prior to a consolidated syntaxonomical system for the halophytic vegetation of Iran, major halophytic vegetation units of Iran are summarized and shown along salinity and moisture gradients. These include: (I: Mangrove communities (Avicennio-Sonneratietea. (2: Submerged aquatic plant communities (Ruppietea maritimae. (3: Annual obligatory hygro-halophytic communities on sea, lake and river marshes dominated by stem or leaf succulent C3 chenopods (Thero-Salicornietea. (4 Semi-woody or perennial halophytic communities on muddy or coastal salt flats dominated by stem succulent C3 chenopods (Salicornietea fruticosae. (5: Hydrophi!ous euryhalophytic rush communities: Phragmitetea australis. (6: Halophytic grassland and herbaceous perennial sedge communities belonging to genera Puccinellia and Juncus (Juncetea maritimi. (7: Salt marsh and riverine bruchwood communities dominated by salt-excreting halophytes (Tamaricetea ramosissimae, prov.. (8: Annua1 halophytic communities dominated by C4 chenopods in temporary moist and inundated, or disturbed salty soils (Climacopteretea crassae, prov.. (9: Halophytic shrubby. semi-woody or hemicrytophytic communities on salty and dry soils dominated by lcaf or stem succulent C4 chenopods (Haloxylo-Salsoletea tomentosae, prov.. (1O: Halophytic shrub communities, on salty and sandy coastal or margin of sabkhas with high water table dominated by Nitraria schoberi and Reaumuria fruticosa. (11. Psarno

  14. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    Science.gov (United States)

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  15. Changes in the high-mountain vegetation of the Central Iberian Peninsula as a probable sign of global warming.

    Science.gov (United States)

    Sanz-Elorza, Mario; Dana, Elías D; González, Alberto; Sobrino, Eduardo

    2003-08-01

    Aerial images of the high summits of the Spanish Central Range reveal significant changes in vegetation over the period 1957 to 1991. These changes include the replacement of high-mountain grassland communities dominated by Festuca aragonensis, typical of the Cryoro-Mediterranean belt, by shrub patches of Juniperus communis ssp. alpina and Cytisus oromediterraneus from lower altitudes (Oro-Mediterranean belt). Climatic data indicate a shift towards warmer conditions in this mountainous region since the 1940s, with the shift being particularly marked from 1960. Changes include significantly higher minimum and maximum temperatures, fewer days with snow cover and a redistribution of monthly rainfall. Total yearly precipitation showed no significant variation. There were no marked changes in land use during the time frame considered, although there were minor changes in grazing species in the 19th century. It is hypothesized that the advance of woody species into higher altitudes is probably related to climate change, which could have acted in conjunction with discrete variations in landscape management. The pronounced changes observed in the plant communities of the area reflect the susceptibility of high-mountain Mediterranean species to environmental change.

  16. Lidar-derived estimate and uncertainty of carbon sink in successional phases of woody encroachment

    Science.gov (United States)

    Sankey, Temuulen; Shrestha, Rupesh; Sankey, Joel B.; Hardegree, Stuart; Strand, Eva

    2013-07-01

    encroachment is a globally occurring phenomenon that contributes to the global carbon sink. The magnitude of this contribution needs to be estimated at regional and local scales to address uncertainties present in the global- and continental-scale estimates, and guide regional policy and management in balancing restoration activities, including removal of woody plants, with greenhouse gas mitigation goals. The objective of this study was to estimate carbon stored in various successional phases of woody encroachment. Using lidar measurements of individual trees, we present high-resolution estimates of aboveground carbon storage in juniper woodlands. Segmentation analysis of lidar point cloud data identified a total of 60,628 juniper tree crowns across four watersheds. Tree heights, canopy cover, and density derived from lidar were strongly correlated with field measurements of 2613 juniper stems measured in 85 plots (30 × 30 m). Aboveground total biomass of individual trees was estimated using a regression model with lidar-derived height and crown area as predictors (Adj. R2 = 0.76, p < 0.001, RMSE = 0.58 kg). The predicted mean aboveground woody carbon storage for the study area was 677 g/m2. Uncertainty in carbon storage estimates was examined with a Monte Carlo approach that addressed major error sources. Ranges predicted with uncertainty analysis in the mean, individual tree, aboveground woody C, and associated standard deviation were 0.35 - 143.6 kg and 0.5 - 1.25 kg, respectively. Later successional phases of woody encroachment had, on average, twice the aboveground carbon relative to earlier phases. Woody encroachment might be more successfully managed and balanced with carbon storage goals by identifying priority areas in earlier phases of encroachment where intensive treatments are most effective.

  17. Vegetation of Eurasia from the last glacial maximum to present: Key biogeographic patterns

    Czech Academy of Sciences Publication Activity Database

    Binney, H.; Edwards, M.; Macias-Fauria, M.; Lozhkin, A.; Anderson, P.; Kaplan, J. O.; Andreev, A.; Bezrukova, E.; Blyakharchuk, T.; Jankovská, Vlasta; Khazina, E.; Krivonogov, S.; Kremenetski, K.; Nield, J.; Novenko, E.; Ryabogina, N.; Solovieva, N.; Willis, K.; Zernitskaya, V.

    2017-01-01

    Roč. 157, FEB 1 (2017), s. 80-97 ISSN 0277-3791 Institutional support: RVO:67985939 Keywords : Eurasia * vegetation * Late Quaternary Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.797, year: 2016

  18. Spatial modeling of potential woody biomass flow

    Science.gov (United States)

    Woodam Chung; Nathaniel Anderson

    2012-01-01

    The flow of woody biomass to end users is determined by economic factors, especially the amount available across a landscape and delivery costs of bioenergy facilities. The objective of this study develop methodology to quantify landscape-level stocks and potential biomass flows using the currently available spatial database road network analysis tool. We applied this...

  19. Monitoring programme on nitrates in vegetables and vegetable-based baby foods marketed in the Region of Valencia, Spain: levels and estimated daily intake.

    Science.gov (United States)

    Pardo-Marín, O; Yusà-Pelechà, V; Villalba-Martín, P; Perez-Dasí, J A

    2010-04-01

    This study was carried out to determine the current levels of nitrates in vegetables and vegetable-based baby foods (a total of 1150 samples) marketed in the Region of Valencia, Spain, over the period 2000-2008, and to estimate the toxicological risk associated with their intake. Average (median) levels of nitrate in lettuce, iceberg-type lettuce and spinach (1156, 798 and 1410 mg kg(-1) w/w, respectively) were lower than the maximum limits established by European Union legislation. Thirteen fresh spinach samples exceeded the regulatory limits. Median nitrate values in other vegetables for which a maximum limit has not been fixed by the European Commission were 196, 203, 1597, 96, 4474 and 2572 mg kg(-1) w/w (for potato, carrot, chard, artichoke, rucola and lamb's lettuce, respectively). The estimated nitrate daily intakes through vegetables consumption for adult, extreme consumers and children were found to be about 29%, 79.8% and 15.1%, respectively, of the acceptable daily intake (3.7 mg kg(-1)). The levels (median = 60.4 mg kg(-1) w/w) found in vegetable-based baby foods were, in all cases, lower the maximum level proposed by European Union legislation. The estimated nitrate daily intake through baby foods for infants between 0-1 and 1-2 years of age were 13% and 18%, respectively, of the acceptable daily intake.

  20. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees and Forest, Grass and Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. The Paleoecology of Vegetation on Pennsylvanian Basin Margins

    DEFF Research Database (Denmark)

    Bashforth, Arden Roy

    deposits are capped by log accumulations, many of which are overlain by abandoned channel mudstones.  It is proposed that flood sediment buildup and log jam development prompted avulsion and channel abandonment, thus providing some of the earliest evidence for the effects of large woody debris on fluvial...... settings.  Such landscapes were characterized by steep gradients and high-energy regimes due to their proximity to uplands, and the prevalence of coarse-grained sediment enhanced soil drainage and hindered peat accumulation. To help resolve the full spectrum of vegetation cover in tropical Euramerica...... on a fluvial megafan under strongly seasonal conditions, gigantic cordaitalean forests dominated the landscape, particularly alongside ephemeral channels.  Floodplains were largely dry and degraded, although pteridosperms, ferns, and lycopsids persisted around poorly drained depressions.  On the Nýrany Member...

  2. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  3. Recovery of South African fynbos vegetation following alien woody plant clearing and fire: implications for restoration

    CSIR Research Space (South Africa)

    Holmes, PM

    2000-12-01

    Full Text Available The recovery of fynbos vegetation after invasion by dense stands of alien trees, and clearing by either 'burn standing’,’ fell and burn', or 'fell, remove and burn' treatments, was investigated in two watersheds in the Western Cape Province, South...

  4. Influence of fire on dead woody material in forests of California and southwestern Oregon

    Science.gov (United States)

    Carl N. Skinner

    2002-01-01

    The frequent occurrence of fire in most forested areas of California and southwestern Oregon before this century has been well established. Likewise, the importance of dead woody material to various wildlife species as snags and downed logs has been well documented. It is unlikely that much large woody material survived fire long enough to decompose fully in fire...

  5. Effect of long-term understory prescribed burning on standing and down dead woody material in dry upland oak forests

    Science.gov (United States)

    Polo, John A.; Hallgren, S.W.; Leslie,, David M.

    2013-01-01

    Dead woody material, long ignored or viewed as a nuisance for forest management, has gained appreciation for its many roles in the forest including wildlife habitat, nutrient storage and cycling, energy for trophic webs, protection of soil, fuel for fire and carbon storage. The growing interest in managing dead woody material has created strong demand for greater understanding of factors controlling amounts and turnover. Prescribed burning, an important management tool, may have strong effects of dead woody material given fire’s capacity to create and consume dead woody material. We determined effects of long-term understory prescribed burning on standing and down woody material in upland oak forests in south-central North America. We hypothesized that as frequency of fire increased in these stands the amount of deadwood would decrease and the fine woody material would decrease more rapidly than coarse woody material. The study was conducted in forests dominated by post oak (Quercus stellata) and blackjack oak (Quercus marilandica) in wildlife management areas where understory prescribed burning had been practiced for over 20 years and the range of burn frequencies was 0 (unburned) fires per decade (FPD) to 4.6 FPD. The amount of deadwood was low compared with more productive forests in southeastern North America. The biomass (24.7 Mg ha-1) and carbon stocks (11.7 Mg ha-1) were distributed among standing dead (22%), coarse woody debris (CWD, dia. > 7.5 cm., 12%), fine woody debris (FWD, dia. prescribed burning influenced the amount and size distribution of standing and down dead woody material. There were two explanations for the lack of a detectable effect. First, a high incidence of severe weather including ice storms and strong winds that produce large amounts of deadwood intermittently in an irregular pattern across the landscape may preclude detecting a strong effect of understory prescribed burning. Second, fire suppression during the first one-half of the

  6. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Directory of Open Access Journals (Sweden)

    BRUNO H.P. ROSADO

    2013-09-01

    Full Text Available During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  7. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Science.gov (United States)

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  8. Analysis of remote sensing data for evaluation of vegetation resources

    Science.gov (United States)

    1970-01-01

    Research has centered around: (1) completion of a study on the use of remote sensing techniques as an aid to multiple use management; (2) determination of the information transfer at various image resolution levels for wildland areas; and (3) determination of the value of small scale multiband, multidate photography for the analysis of vegetation resources. In addition, a substantial effort was made to upgrade the automatic image classification and spectral signature acquisition capabilities of the laboratory. It was found that: (1) Remote sensing techniques should be useful in multiple use management to provide a first-cut analysis of an area. (2) Imagery with 400-500 feet ground resolvable distance (GRD), such as that expected from ERTS-1, should allow discriminations to be made between woody vegetation, grassland, and water bodies with approximately 80% accuracy. (3) Barley and wheat acreages in Maricopa County, Arizona could be estimated with acceptable accuracies using small scale multiband, multidate photography. Sampling errors for acreages of wheat, barley, small grains (wheat and barley combined), and all cropland were 13%, 11%, 8% and 3% respectively.

  9. Engineering developments for small-scale harvest, storage and combustion of woody crops in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Savoie, P.; Ouellet-Plamondon, C.; Morissette, R.; Preto, F. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    Although wood remains an important source of energy for cooking and heating in developing countries, it has been largely replaced by fossil fuels, nuclear energy and hydroelectric power in developed countries. Given the need to diversify sources of energy, wood energy is being revitalized in developed countries. This paper reported on a current research program on woody crops at Agriculture and Agri-Food Canada. The research involves the development of a woody crop harvester to collect small size trees in plantations as well as in natural growth. The harvested package is a small round bale that enables natural drying from about 50 per cent moisture at harvest, down to 30 and 20 per cent after 4 to 6 months of storage outside and under shelter, respectively. The combustion value of woody crops averaged 19.4 GJ/t on a dry matter basis with little variation. The woody crops can be pulverized into fine particles, dried artificially to 10 per cent moisture content and processed into pellets for combustion. In a practical trial, more than 7.5 MJ/t DM were needed to produce pellets without providing more energy than coarse wood chips. The rural applications for this biomass include heating community and farm buildings and drying crops. These applications can use locally grown woody crops such as willow, or forest residues such as branches and bark in the form of chips to replace fossil energy sources.

  10. Woody biomass production lags stem-girth increase by over one month in coniferous forests.

    Science.gov (United States)

    Cuny, Henri E; Rathgeber, Cyrille B K; Frank, David; Fonti, Patrick; Mäkinen, Harri; Prislan, Peter; Rossi, Sergio; Del Castillo, Edurne Martinez; Campelo, Filipe; Vavrčík, Hanuš; Camarero, Jesus Julio; Bryukhanova, Marina V; Jyske, Tuula; Gričar, Jožica; Gryc, Vladimír; De Luis, Martin; Vieira, Joana; Čufar, Katarina; Kirdyanov, Alexander V; Oberhuber, Walter; Treml, Vaclav; Huang, Jian-Guo; Li, Xiaoxia; Swidrak, Irene; Deslauriers, Annie; Liang, Eryuan; Nöjd, Pekka; Gruber, Andreas; Nabais, Cristina; Morin, Hubert; Krause, Cornelia; King, Gregory; Fournier, Meriem

    2015-10-26

    Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.

  11. Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa)

    Science.gov (United States)

    J. A. Hoff; Ned B. Klopfenstein; Geral I. McDonald; Jonalea R. Tonn; Mee-Sook Kim; Paul J. Zambino; Paul F. Hessburg; J. D. Rodgers; T. L. Peever; L. M. Carris

    2004-01-01

    The fungal community inhabiting large woody roots of healthy conifers has not been well documented. To provide more information about such communities, a survey was conducted using increment cores from the woody roots of symptomless Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) growing in dry forests...

  12. ESTRUTUTURA DA COMUNIDADE VEGETAL ARBÓREO-ARBUSTIVA DE UM SISTEMA AGROSSILVIPASTORIL, EM SOBRAL - CE

    Directory of Open Access Journals (Sweden)

    MÔNICA MATOSO CAMPANHA

    2011-01-01

    Full Text Available "Caatinga", dominant vegetation in Brazilian semiarid, has suffered severe degradation process, triggered, among other reasons, by the traditional agricultural and extractive activities. The need to conserve the environment and natural resources in agricultural and forestry activities, led to search for alternatives to conventional production. In this context, agroforestry systems, that integrate trees with crops and livestock, are an alternative operating sustainably. With the aim of studying the potential for preservation tree species of the "Caatinga" in an agrosilvopasture system in semiarid, in Sobral-CE, was evaluated the relatives density, frequency and dominance, the importance value index and the Shannon e Wiener index, of the woody component of this system. It was found that the vegetation management practices of trees and shrubs used in the system decrease density, and interfered in height and diameter distribution of individuals in relation to the original vegetation of the Caatinga. However, these practices were effective in preserving the wealth of flora species of trees and shrubs, similar to the area of native vegetation reserve. Cordia oncocalyx was the species with the highest number of individuals in the system, also showing highest importance value, followed by Mimosa caesalpiniifolia. The family Leguminosae was the most representative. The Shannon index shows that this agrosilvopasture system has the potential to promote an intermediate level of conservation among the "Caatinga" vegetation remnants and disturbed areas in this biome.

  13. Observations of vegetation induced breezes and their impact on convection

    Science.gov (United States)

    Garcia-Carreras, Luis; Parker, Douglas J.; Taylor, Christopher M.; Reeves, Claire; Murphy, Jennifer

    2010-05-01

    Aircraft observations over Benin during the early afternoon of 17 August 2006 are used to look at the impact of heterogeneities in vegetation cover, primarily between crop and forest/shrub, on the thermodynamic and dynamical properties of the planetary boundary layer (PBL). Isoprene, a biogenic organic compound emitted primarily by woody vegetation species, was measured and is used to link the vegetation patterns to the PBL properties. The aircraft observations show the presence of a persistent mesoscale organization of the winds persisting over two hours, controlling the pattern of cumulus congestus cloud in the area. The mesoscale flows are closely linked to temperature anomalies that mirror the vegetation patterns at the surface. These results are consistent with the presence of higher Bowen ratios over forested areas, associated with higher evapotranspiration and isoprene emissions, producing negative PBL temperature anomalies over the forested area compared to adjacent cropland. The temperature gradients that thus arise at vegetation boundaries are then sufficient to initiate vegetation breezes. The relationships between PBL temperatures and isoprene, linking the land-surface to the PBL, and PBL temperatures and winds are very significant for length-scales above 10 and 8km respectively. The convergence zones, and therefore clouds, associated with the land-induced mesoscale flows tend to occur on the southern edge of the warm temperature anomalies. This is attributed to the presence of a northerly synoptic flow, which strengthens the southerly parts of the mesoscale flow, as well as displacing the convergence zones southward. A visible satellite climatology for the whole season shows an enhancement of cloud over the cropland during the early afternoon, consistent with the presence of land-induced flows. These results suggest that the presence of these flows have a climatological impact on the initiation of convection in the region.

  14. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation

    NARCIS (Netherlands)

    Lammertsma, E.I.; de Boer, H.J.; Dekker, S.C.; Dilcher, D.L.; Lotter, A.F.; Wagner-Cremer, F.

    2011-01-01

    A principle response of C3 plants to increasing concentrations of atmospheric CO2 (CO2) is to reduce transpirational water loss by decreasing stomatal conductance (gs) and simultaneously increase assimilation rates. Via this adaptation, vegetation has the ability to alter hydrology and climate.

  15. Woody debris transport modelling by a coupled DE-SW approach

    Science.gov (United States)

    Persi, Elisabetta; Petaccia, Gabriella; Sibilla, Stefano

    2016-04-01

    The presence of wood in rivers is gaining more and more attention: on one side, the inclusion of woody debris in streams is emphasized for its ecological benefits; on the other hand, particular attention must be paid to its management, not to affect hydraulic safety. Recent events have shown that wood can be mobilized during floodings (Comiti et al. 2008, Lange and Bezzola 2006), aggravating inundations, in particular near urban areas. For this reason, the inclusion of woody debris influence on the prediction of flooded areas is an important step toward the reduction of hydraulic risk. Numerical modelling plays an important role to this purpose. Ruiz-Villanueva et al. (2014) use a two-dimensional numerical model to calculate the kinetics of cylindrical woody debris transport, taking into account also the hydrodynamic effects of wood. The model here presented couples a Discrete Element approach (DE) for the calculation of motion of a cylindrical log with the solution of the Shallow Water Equations (SW), in order to simulate woody debris transport in a two-dimensional stream. In a first step, drag force, added mass force and side force are calculated from flow and log velocities, assuming a reference area and hydrodynamic coefficients taken from literature. Then, the equations of dynamics are solved to model the planar roto-translation of the wooden cylinder. Model results and its physical reliability are clearly affected by the values of the drag and side coefficients, which in turn depend upon log submergence and angle towards the flow direction. Experimental studies to evaluate drag and side coefficients can be found for a submerged cylinder, with various orientations (Gippel et al. 1996; Hoang et al. 2015). To extend such results to the case of a floating (non-totally submerged) cylinder, the authors performed a series of laboratory tests whose outcomes are implemented in the proposed DE-SW model, to assess the effects of these values on the dynamic of woody

  16. [Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].

    Science.gov (United States)

    Romero-Saritama, José Miguel; Pérez-Rúuz, César

    2016-06-01

    The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary

  17. A molecular phylogenetic and fruit evolutionary analysis of the major groups of the paleotropical woody bamboos (Gramineae: Bambusoideae) based on nuclear ITS, GBSSI gene and plastid trnL-F DNA sequences.

    Science.gov (United States)

    Yang, Han-Qi; Yang, Jun-Bo; Peng, Zhen-Hua; Gao, Jian; Yang, Yu-Ming; Peng, Sheng; Li, De-Zhu

    2008-09-01

    This study presented the first molecular phylogenetic analysis of the major clades of woody bamboos of the Old World tropics based on nuclear and chloroplast sequences (ITS, GBSSI and trnL-F). Sequence data from 53 species, representing 17 paleotropical woody bamboo genera, were analyzed using the maximum parsimony and Bayesian inference methods. All examined ingroup taxa were clustered into two clades, i.e., the Bambusinae+Dinochloa clade and the Melocanninae clade. The former clade included Bambusa, Bonia, Dendrocalamus, Dendrocalamopsis, Dinochloa, Gigantochloa, Molecalamus, Neomicrocalamus, Neosinocalamus, Oxytenanthera s. str. (sensu stricto), Racemobambos and Thyrsostachys. The Melocanninae clade consisted of Cephalostachyum, Leptocanna (better treated as part of Cephalostachyum), Melocanna, Pseudostachyum and Schizostachyum s. str. The subtribe Racemobambosinae and tribes Dendrocalameae and Oxytenanthereae were not supported and may be better placed in subtribe Bambusinae. The ovary characters seemed to be good criteria to distinguish these two clades. The reconstruction of ancestral fruit characters indicated that the bacoid caryopsis, namely, fleshy or berry-like fruits, was found to be scattered in three lineages of the examined paleotropical woody bamboos. Fruit characters are thus not reliable indicators of phylogeny and bacoid caryopsis likely represents a specialization for particular ecological conditions.

  18. Impacts of Extreme Events on Phenology: Drought-Induced Changes in Productivity of Mixed Woody-Herbaceous Ecosystems

    Science.gov (United States)

    Rich, P. M.; Breshears, D. D.; White, A. B.

    2006-12-01

    Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "greenup" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody- herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional scale piñon pine mortality following an extended drought and the subsequent herbaceous greenup following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody-herbaceous ecosystems.

  19. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    Science.gov (United States)

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  20. Woody biomass phytoremediation of contaminated brownfield land

    Energy Technology Data Exchange (ETDEWEB)

    French, Christopher J. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)]. E-mail: n.m.dickinson@livjm.ac.uk; Putwain, Philip D. [Ecological Restoration Consultants (ERC), Ness Botanic Gardens, University of Liverpool, Ness, Cheshire CH64 (United Kingdom)

    2006-06-15

    Economic and environmental regeneration of post-industrial landscapes frequently involves some element of re-afforestation or tree planting. We report field trials that evaluate whether woody biomass production is compatible with managing residual trace element contamination in brownfield soils. Large-scale mapping of contamination showed a heterogenous dispersion of metals and arsenic, and highly localised within-site hotspots. Yields of Salix, Populus and Alnus were economically viable, showing that short-rotation coppice has a potentially valuable role in community forestry. Mass balance modelling demonstrated that phytoextraction potentially could reduce contamination hotspots of more mobile elements (Cd and Zn) within a 25-30-year life cycle of the crops. Cd and Zn in stems and foliage of Salix were 4-13 times higher than EDTA-extractable soil concentrations. Lability of other trace elements (As, Pb, Cu, Ni) was not increased 3 years after planting the coppice; woody biomass may provide an effective reduction of exposure (phytostabilisation) to these less mobile contaminants. - Field trials show short-rotation coppice provides effective risk management and remediation solutions to hotspots of residual metal and As contamination of brownfield land.

  1. Woody biomass phytoremediation of contaminated brownfield land

    International Nuclear Information System (INIS)

    French, Christopher J.; Dickinson, Nicholas M.; Putwain, Philip D.

    2006-01-01

    Economic and environmental regeneration of post-industrial landscapes frequently involves some element of re-afforestation or tree planting. We report field trials that evaluate whether woody biomass production is compatible with managing residual trace element contamination in brownfield soils. Large-scale mapping of contamination showed a heterogenous dispersion of metals and arsenic, and highly localised within-site hotspots. Yields of Salix, Populus and Alnus were economically viable, showing that short-rotation coppice has a potentially valuable role in community forestry. Mass balance modelling demonstrated that phytoextraction potentially could reduce contamination hotspots of more mobile elements (Cd and Zn) within a 25-30-year life cycle of the crops. Cd and Zn in stems and foliage of Salix were 4-13 times higher than EDTA-extractable soil concentrations. Lability of other trace elements (As, Pb, Cu, Ni) was not increased 3 years after planting the coppice; woody biomass may provide an effective reduction of exposure (phytostabilisation) to these less mobile contaminants. - Field trials show short-rotation coppice provides effective risk management and remediation solutions to hotspots of residual metal and As contamination of brownfield land

  2. SNAG AND LARGE WOODY DEBRIS DYNAMICS IN RIPARIAN FORESTS

    Science.gov (United States)

    Important components of riparian forests are snags and streamside large woody debris (LWD) because they are functional in maintaining water quality and providing habitat for numerous plants and animals. To effectively manage riparian forests, it is important to understand the dy...

  3. Comparative Analysis of Woody Plants Biomass on the Affected

    African Journals Online (AJOL)

    Nwokem et al.

    stands that were generated from the field using sample quadrats and measuring ... woody plants on the affected and restricted land management practices. F u ll L en .... divided into 6 strata that served as a guide to locate the quadrat samples.

  4. Assessment of Soil Seedbank Composition of Woody Species in ...

    African Journals Online (AJOL)

    Bheema

    Momona Ethiopian Journal of Science (MEJS), V6(1):25-44,2014. ©CNCS ... In present work, soil seedbank assessment of woody plant species was made in .... 1995; Azene Bekele, 2007) and NDA (Natural Database for Africa) software. 2.3.

  5. Woody Alleni komöödia Rakveres / Peeter Raudsepp

    Index Scriptorium Estoniae

    Raudsepp, Peeter, 1974-

    1999-01-01

    Rakvere Teatris esietendub 15. okt "Suveöö seksikomöödia", Woody Alleni filmistsenaariumi on näidendiks kirjutanud Jürgen Fischer, lavastab külalisena Rednar Annus, kunstnikud on Ene -Liis Semper ja Raoul Kurvitz, muusikaline kujundaja Tamur Tohver.

  6. Modeling Woody Biomass Procurement for Bioenergy Production at the Atikokan Generating Station in Northwestern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Thakur Upadhyay

    2012-12-01

    Full Text Available Efficient procurement and utilization of woody biomass for bioenergy production requires a good understanding of biomass supply chains. In this paper, a dynamic optimization model has been developed and applied to estimate monthly supply and procurement costs of woody biomass required for the Atikokan Generating Station (AGS in northwestern Ontario, based on its monthly electricity production schedule. The decision variables in the model are monthly harvest levels of two types of woody biomass, forest harvest residues and unutilized biomass, from 19,315 forest depletion cells (each 1 km2 for a one year planning horizon. Sixteen scenarios are tested to examine the sensitivity of the cost minimization model to changing economic and technological parameters. Reduction in moisture content and improvement of conversion efficiency showed relatively higher reductions in monthly and total costs of woody biomass feedstock for the AGS. The results of this study help in understanding and designing decision support systems for optimal biomass supply chains under dynamic operational frameworks.

  7. The influence of topographic variation on forest structure in two woody plant communities: A remote sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Ediriweera, S.; Danaher, T.; Pathirana, S.

    2016-07-01

    Aim of study: The study aimed to characterise variation in structural attributes of vegetation in relation to variations in topographic position using LIDAR data over landscapes. Area of study: The study was conducted in open canopy eucalypt-dominated forest (Richmond Range National Park-RRNP) and closed canopy subtropical rainforest (Border Ranges National Park-BRNP) in north-eastern New South Wales, Australia. Material and Methods: one metre resolution digital canopy height model (CHM) was extracted from the LIDAR data and used to estimate maximum overstorey height and crown area. LIDAR fractional cover representing the photosynthetic and non-photosynthetic component of canopy was calculated using LIDAR points aggregated into 50 m spatial bins. Potential solar insolation, Topographic Wetness Index (TWI), slope and the elevation were processed using LIDAR derived digital elevation models. Main results: No relationship was found between maximum overstorey height and insolation gradient in the BRNP. Maximum overstorey height decreased with increasing insolation in the RRNP (R2 0.45). Maximum overstorey height increased with increasing TWI in the RRNP. Average crown area decreased with increasing insolation in both study areas. LIDAR fractional cover decreased with increasing insolation (R2 0.54), and increased with increasing TWI (R2 0.57) in the RRNP. Research highlights: The characterization of structural parameters of vegetation in relation to the variation of the topography was possible in eucalyptus dominated open canopy forest. No reportable difference in variation of structural elements of vegetation was detected with topographic variation of subtropical rainforest. (Author)

  8. Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity

    Science.gov (United States)

    Stapanian, Martin A.; Mack, John; Adams, Jean V.; Gara, Brian; Micacchion, Mick

    2013-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas in the USA. Knowledge of the best predictors of VIBIs would enable management agencies to make better decisions regarding mitigation site selection and performance monitoring criteria. We use a novel statistical technique to develop predictive models for an established index of wetland vegetation integrity (Ohio VIBI), using as independent variables 20 indices and metrics of habitat quality, wetland disturbance, and buffer area land use from 149 wetlands in Ohio, USA. For emergent and forest wetlands, predictive models explained 61% and 54% of the variability, respectively, in Ohio VIBI scores. In both cases the most important predictor of Ohio VIBI score was a metric that assessed habitat alteration and development in the wetland. Of secondary importance as a predictor was a metric that assessed microtopography, interspersion, and quality of vegetation communities in the wetland. Metrics and indices assessing disturbance and land use of the buffer area were generally poor predictors of Ohio VIBI scores. Our results suggest that vegetation integrity of emergent and forest wetlands could be most directly enhanced by minimizing substrate and habitat disturbance within the wetland. Such efforts could include reducing or eliminating any practices that disturb the soil profile, such as nutrient enrichment from adjacent farm land, mowing, grazing, or cutting or removing woody plants.

  9. Vegetation Structure and Carbon Stocks of Two Protected Areas within the South-Sudanian Savannas of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Mohammad Qasim

    2016-09-01

    Full Text Available Savannas and adjacent vegetation types like gallery forests are highly valuable ecosystems contributing to several ecosystem services including carbon budgeting. Financial mechanisms such as REDD+ (Reduced Emissions from Deforestation and Forest Degradation can provide an opportunity for developing countries to alleviate poverty through conservation of its forestry resources. However, for availing such opportunities carbon stock assessments are essential. Therefore, a research study for this purpose was conducted at two protected areas (Nazinga Game Ranch and Bontioli Nature Reserve in Burkina Faso. Similarly, analysis of various vegetation parameters was also conducted to understand the overall vegetation structure of these two protected areas. For estimating above ground biomass, existing allometric equations for dry tropical woody vegetation types were used. Compositional structure was described by applying tree species and family importance indices. The results show that both sites collectively contain a mean carbon stock of 3.41 ± 4.98 Mg·C·ha−1. Among different savanna vegetation types, gallery forests recorded the highest mean carbon stock of 9.38 ± 6.90 Mg·C·ha−1. This study was an attempt at addressing the knowledge gap particularly on carbon stocks of protected savannas—it can serve as a baseline for carbon stocks for future initiatives such as REDD+ within these areas.

  10. Woody plants in agro-ecosystems of semi-arid regions

    NARCIS (Netherlands)

    Breman, H.; Kessler, J.J.

    1995-01-01

    A quantitative analysis of the role of woody plants in semi-arid regions, focusing on the Sahel and Sudan zones in West-Africa, is given for the assessment of their benefits in agro-sylvopastoral land-use systems with productive and sustainability objectives.

  11. Non-structural carbohydrates in woody plants compared among laboratories

    NARCIS (Netherlands)

    Quentin, Audrey G.; Pinkard, Elizabeth A.; Ryan, Michael G.; Tissue, David T.; Baggett, Scott L.; Adams, Henry D.; Maillard, Pascale; Marchand, Jacqueline; Landhäusser, Simon M.; Lacointe, André; Gibon, Yves; Anderegg, William R.L.; Asao, Shinichi; Atkin, Owen K.; Bonhomme, Marc; Claye, Caroline; Chow, Pak S.; Clément-Vidal, Anne; Davies, Noel W.; Dickman, Turin L.; Dumbur, Rita; Ellsworth, David S.; Falk, Kristen; Galiano, Lucía; Grünzweig, José M.; Hartmann, Henrik; Hoch, Günter; Hood, Sharon; Jones, Joanna E.; Koike, Takayoshi; Kuhlmann, Iris; Lloret, Francisco; Maestro, Melchor; Mansfield, Shawn D.; Martínez-Vilalta, Jordi; Maucourt, Mickael; McDowell, Nathan G.; Moing, Annick; Muller, Bertrand; Nebauer, Sergio G.; Niinemets, Ülo; Palacio, Sara; Piper, Frida; Raveh, Eran; Richter, Andreas; Rolland, Gaëlle; Rosas, Teresa; Joanis, Brigitte Saint; Sala, Anna; Smith, Renee A.; Sterck, Frank; Stinziano, Joseph R.; Tobias, Mari; Unda, Faride; Watanabe, Makoto; Way, Danielle A.; Weerasinghe, Lasantha K.; Wild, Birgit; Wiley, Erin; Woodruff, David R.

    2015-01-01

    Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent

  12. Expedient Prediction of the Fuel Properties of Carbonized Woody Biomass Based on Hue Angle

    Directory of Open Access Journals (Sweden)

    Yuta Saito

    2018-05-01

    Full Text Available Woody biomass co-firing-based power generation can reduce CO2 emissions from pulverized coal boilers. Carbonization of woody biomass increases its calorific value and grindability, thereby improving the co-firing ratio. Carbonized biomass fuel properties depend on moisture, size and shape of feedstock, and carbonization conditions. To produce carbonized biomass with stable fuel properties, the carbonization conditions should be set according to the desired fuel properties. Therefore, we examined color changes accompanying woody biomass carbonization and proposed using them for rapid evaluation of fuel properties. Three types of woody biomasses were carbonized at a test facility with a capacity of 4 tons/day, and the fuel properties of the obtained materials were correlated with their color defined by the L*a*b* model. When fixed carbon, an important fuel property for carbonization, was 25 wt % or less, we observed a strong negative correlation, regardless of the tree species, between the hue angle, hab, and fixed carbon. The hab and fixed carbon were correlated even when the fixed carbon exceeded 25 wt %; however, this correlation was specific to the tree species. These results indicate that carbonized biomass fuel properties such as fixed carbon can be estimated rapidly and easily by measuring hab.

  13. Do seedling functional groups reflect ecological strategies of woody plant species in Caatinga?

    Directory of Open Access Journals (Sweden)

    Tatiane Gomes Calaça Menezes

    2017-11-01

    Full Text Available ABSTRACT It is assumed that morphological traits of seedlings reflect different strategies in response to environmental conditions. The ecological significance of this has been widely documented in rainforests, where habitat structure and species interactions play an important role in community assembly. However, in seasonally dry ecosystems, where environmental filtering is expected to strongly influence community structure, this relationship is poorly understood. We investigated this relationship between functional groups of seedlings and life history traits and tested whether functional group predicts the ecological strategies employed by woody species to deal with the stressful conditions in seasonally dry ecosystems. Seedling functional groups, life history traits and traits that reflect ecological strategies for occupying seasonally dry environments were described for twenty-six plant species. Seedlings of species from the Caatinga vegetation exhibited a functional profile different from that observed in rainforests ecosystems. Phanerocotylar-epigeal seedlings were the most frequently observed groups, and had the largest range of ecological strategies related to dealing with seasonally dry environments, while phanerocotylar-hypogeal-reserve seedlings exhibited an increase in frequency with seasonality. We discuss these results in relation to those observed in other tropical forests and their ecological significance in seasonally dry environments.

  14. Post-fire vegetation recovery in Portugal based ewline on spot/vegetation data

    Directory of Open Access Journals (Sweden)

    C. Gouveia

    2010-04-01

    Full Text Available A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI, with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation

  15. Woody plant diversity and structure of shade-grown-coffee plantations in Northern Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Lorena Soto-Pinto

    2001-12-01

    Full Text Available Shade-grown coffee is an agricultural system that contains some forest-like characteristics. However, structure and diversity are poorly known in shade coffee systems. In 61 coffee-growers’ plots of Chiapas, Mexico, structural variables of shade vegetation and coffee yields were measured, recording species and their use. Coffee stands had five vegetation strata. Seventy seven woody species mostly used as wood were found (mean density 371.4 trees per hectare. Ninety percent were native species (40% of the local flora, the remaining were introduced species, mainly fruit trees/shrubs. Diametric distribution resembles that of a secondary forest. Principal Coordinates Analysis grouped plots in four classes by the presence of Inga, however the majority of plots are diverse. There was no difference in equitability among groups or coffee yields. Coffee yield was 835 g clean coffee per shrub, or ca. 1668 kg ha-1. There is a significant role of shade-grown coffee as diversity refuge for woody plants and presumably associated fauna, as well as an opportunity for shade-coffee growers to participate in the new biodiversity-friendly-coffee marketEl café bajo sombra es un sistema agrícola que contiene algunas características de los bosques. Sin embargo, las características estructurales y de diversidad de la sombra del café son poco conocidas. En 61 parcelas de productores del norte de Chiapas, Mexico, se midieron variables estructurales de la vegetación de sombra y los rendimientos de café, registrando las especies y sus usos. Los cafetales presentaron cinco estratos de vegetación. Se encontraron 77 especies leñosas, la mayoría de uso maderable (densidad promedio de 371.4 árboles por hectárea. Noventa por ciento fueron especies nativas (40% de la flora local, el porcentaje restante fueron especies introducidas, principalmente árboles o arbustos frutales. La distribución diamétrica se asemeja a la distribución típica de bosques secundarios

  16. Long-term effects of burning on woody plant species sprouting on the False thornveld of Eastern Cape

    CSIR Research Space (South Africa)

    Ratsele, C

    2010-11-01

    Full Text Available Sprouting allows woody plant species to persist in a site after a wide range of disturbances (e.g. prolonged fire), where opportunities for seedling establishment are limited. A study to investigate long-term effects of fire sprouting of woody...

  17. Woody tissue analysis using an element ratio technique (DRIS)

    Science.gov (United States)

    Kurt H. Riitters; L.F. Ohmann; D.F. Grigal

    1991-01-01

    The diagnosis and recommendation integrated system (DRIS) was used to describe the variation of 12 elements in woody tree tissue and balsam fir (Abies balsamae (L.) Mill.), sugar maple (Acer saccharum Marsh.), jack pine (Pinus banksiana Lamb.), red pine (Pinus resinosa alt.), and aspen (

  18. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    Science.gov (United States)

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  19. Vegetation development and native species establishment in reclaimed coal mine lands in Alberta : directions for reclamation planning

    Energy Technology Data Exchange (ETDEWEB)

    Longman, P. [Calgary Univ., AB (Canada). Faculty of Environmental Design

    2010-07-01

    This paper discussed a study undertaken to evaluate reclamation vegetation at Coal Valley Mine in Alberta with respect to expected vegetation changes over time, establishing a successional model of vegetation development, and factors contributing to the observed patterns. Most of the expected vegetation trends were evident, including lower grass cover and height, lower legume cover, a higher degree of native plant species richness, and the establishment of woody species. Four vegetation communities (2 graminoid-dominated and 2 conifer-dominated) were identified in the study, for which a possible successional model was constructed. Vegetation dynamics for agronomic grasses, legumes, and tree cover were discussed. Areas with Lodgepole Pine were found to have higher species richness and cover. Concerns were raised that the identified trends may not in fact supply the expected opportunities for native species establishment. In order to facilitate the establishment of native species and better manage reclamation vegetation development, the author recommended that a conifer overstory be established to increase native richness and native cover, and that more appropriate seeding mixes be developed as certain agronomic species are detrimental to long-term goals. The author also recommended that site-specific seed mixes be developed according to end land-use goals, that a planting program for native plants and shrubs be developed, and that a monitoring program be established to better inform future reclamation efforts. The recommendations were designed to bring reclamation efforts into line with reclamation goals. 12 refs., 4 tabs., 2 figs.

  20. Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States.

    Science.gov (United States)

    Swetnam, Tyson L; Gillan, Jeffrey K; Sankey, Temuulen T; McClaran, Mitchel P; Nichols, Mary H; Heilman, Philip; McVay, Jason

    2017-01-01

    Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor

  1. The influence of large woody debris and a bankfull flood on movement of adult resident coastal cutthroat trout (Oncorhynchus clarki) during fall and winter

    Science.gov (United States)

    Bret C. Harvey; Rodney J. Nakamoto; Jason L. White

    1999-01-01

    Abstract - To improve understanding of the significance of large woody debris to stream fishes, we examined the influence of woody debris on fall and winter movement by adult coastal cutthroat trout (Oncorhynchus clarki) using radiotelemetry. Fish captured in stream pools containing large woody debris moved less than fish captured in pools lacking large woody debris or...

  2. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. Quantifying Savanna Woody Cover in the Field and on Historical ...

    African Journals Online (AJOL)

    jed1z

    ... mapping woody cover on such imagery in bush encroachment studies are the use of traditional pixel-based ... cover by testing it against detailed field validation data. We then assess ..... Mexico', Remote Sensing of Environment, vol. 93, pp.

  4. Effects of vegetation structure on biomass accumulation in a Balanced Optimality Structure Vegetation Model (BOSVM v1.0

    Directory of Open Access Journals (Sweden)

    Z. Yin

    2014-05-01

    Full Text Available A myriad of interactions exist between vegetation and local climate for arid and semi-arid regions. Vegetation function, structure and individual behavior have large impacts on carbon–water–energy balances, which consequently influence local climate variability that, in turn, feeds back to the vegetation. In this study, a conceptual vegetation structure scheme is formulated and tested in the new Balanced Optimality Structure Vegetation Model (BOSVM to explore the importance of vegetation structure and vegetation adaptation to water stress on equilibrium biomass states. Surface energy, water and carbon fluxes are simulated for a range of vegetation structures across a precipitation gradient in West Africa and optimal vegetation structures that maximize biomass for each precipitation regime are determined. Two different strategies of vegetation adaptation to water stress are included. Under dry conditions vegetation tries to maximize the water use efficiency and leaf area index as it tries to maximize carbon gain. However, a negative feedback mechanism in the vegetation–soil water system is found as the vegetation also tries to minimize its cover to optimize the surrounding bare ground area from which water can be extracted, thereby forming patches of vertical vegetation. Under larger precipitation, a positive feedback mechanism is found in which vegetation tries to maximize its cover as it then can reduce water loss from bare soil while having maximum carbon gain due to a large leaf area index. The competition between vegetation and bare soil determines a transition between a "survival" state to a "growing" state.

  5. Sediment Retention Dynamics and Vegetation Along Three Tributaries of the Chesapeake Bay

    Science.gov (United States)

    Ross, K.; Ross, K.; Hupp, C.; Alexander, L.; Alexander, L.

    2001-12-01

    Coastal Plain riparian wetlands in the Mid-Atlantic United States are the last place for sediment and contaminant storage before reaching critical estuarine and marine environments. The deteriorating health of the Chesapeake Bay has been attributed in part to elevated sediment loads. The purpose of this study is to investigate the effects of channelization and urbanization on sediment deposition and geomorphic processes along the Pocomoke and Chickahominy Rivers and Dragon Run, three Coastal Plain tributaries. Floodplain microtopography was surveyed in 100 x 100 m grids at three characteristic reaches along each river and woody vegetation analyses were conducted. Floodplain suspended sediment concentrations and short and long-term sedimentation rates were estimated at each reach using single stage sediment sampler arrays, clay pads and dendrogeomorphic techniques, respectively. Site hydroperiod and flow characteristics were determined from USGS gaging station records, floodplain water level recorders, and field observations. Channelized floodplain reaches along the Pocomoke River are flooded less frequently, have lower mineral sedimentation rates (2 mm/yr to 6 mm/yr) and woody species diversity than the unchannelized reaches. Along the Chickahominy River, floodplain wetlands close to urban centers are flooded more frequently, but have shorter hydroperiods (3.5 days/yr compared to more than 45 days/yr), lower sedimentation rates (1.8 mm/yr to 6.8 mm/yr), and lower woody species diversity (0.51 to 1.95 on the Shannon-Weiner diversity index) than floodplains further downstream. Suspended sediment delivery and deposition rates are significantly influenced by floodplain hydroperiod duration and channel-floodplain connectivity. These results suggest that understanding floodplain sediment dynamics and geomorphic processes with respect to dominant watershed landuse patterns is critical for effective water quality management and restoration efforts.

  6. Modeling respiration from snags and coarse woody debris before and after an invasive gypsy moth disturbance

    Science.gov (United States)

    Heidi J. Renninger; Nicholas Carlo; Kenneth L. Clark; Karina V.R. Schäfer

    2014-01-01

    Although snags and coarse woody debris are a small component of ecosystem respiration, disturbances can significantly increase the mass and respiration from these carbon (C) pools. The objectives of this study were to (1) measure respiration rates of snags and coarse woody debris throughout the year in a forest previously defoliated by gypsy moths, (2) develop models...

  7. Sensitivity to zinc of Mediterranean woody species important for restoration.

    Science.gov (United States)

    Disante, Karen B; Fuentes, David; Cortina, Jordi

    2010-04-15

    Heavy metals have increased in natural woodlands and shrublands over the last several decades as a consequence of anthropogenic activities. However, our knowledge of the effects of these elements on woody species is scarce. In this study, we examined the responses of six Mediterranean woody species to increasing levels of zinc in hydroponic culture and discussed the possible implications for the restoration of contaminated sites. The species used, Pinus pinea L., Pinus pinaster Ait., Pinus halepensis Mill., Tetraclinis articulata (Vahl) Mast., Rhamnus alaternus L. and Quercus suber L. represent a climatic gradient from dry sub-humid to semi-arid conditions. Zinc concentrations in shoots ranged from 53 microg g(-1) in Q. suber to 382 microg g(-1) in T. articulata and were well below the levels found in roots. Zinc inhibited root elongation and root biomass and changed the root length distribution per diameter class, but the magnitude of the effects was species-specific. Only P. halepensis and Q. suber showed toxicity symptoms in aboveground parts. Species more characteristic from xeric environments (T. articulata, R. alaternus and P. halepensis) were more sensitive to zinc than species from mesic environments (Q. suber, P. pinaster and P. pinea). According to the Zn responses and bioaccumulation, Q. suber P. pinea and P. halepensis are the best candidates for field trials to test the value of woody species to restore contaminated sites. None of the species tested seemed suitable for phytoremediation. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation.

    Science.gov (United States)

    De Baerdemaeker, Niels J F; Salomón, Roberto Luis; De Roo, Linus; Steppe, Kathy

    2017-11-01

    Reassimilation of internal CO 2 via woody tissue photosynthesis has a substantial effect on tree carbon income and wood production. However, little is known about its role in xylem vulnerability to cavitation and its implications in drought-driven tree mortality. Young trees of Populus nigra were subjected to light exclusion at the branch and stem levels. After 40 d, measurements of xylem water potential, diameter variation and acoustic emission (AE) were performed in detached branches to obtain acoustic vulnerability curves to cavitation following bench-top dehydration. Acoustic vulnerability curves and derived AE 50 values (i.e. water potential at which 50% of cavitation-related acoustic emissions occur) differed significantly between light-excluded and control branches (AE 50,light-excluded  = -1.00 ± 0.13 MPa; AE 50,control  = -1.45 ± 0.09 MPa; P = 0.007) denoting higher vulnerability to cavitation in light-excluded trees. Woody tissue photosynthesis represents an alternative and immediate source of nonstructural carbohydrates (NSC) that confers lower xylem vulnerability to cavitation via sugar-mediated mechanisms. Embolism repair and xylem structural changes could not explain this observation as the amount of cumulative AE and basic wood density did not differ between treatments. We suggest that woody tissue assimilates might play a role in the synthesis of xylem surfactants for nanobubble stabilization under tension. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Early deterioration of coarse woody debris.

    Energy Technology Data Exchange (ETDEWEB)

    Tainter, Frank, H.; McMinn, James, W.

    1999-02-16

    Tainter, F.H., and J.W. McMinn. 1999. Early deterioration of coarse woody debris. In: Proc. Tenth Bien. South. Silv. Res. Conf. Shreveport, LA, February 16-18, 1999. Pp. 232-237 Abstract - Coarse woody debris (CWD) is an important structural component of southern forest ecosystems. CWD loading may be affected by different decomposition rates on sites of varying quality. Bolts of red oak and loblolly pine were placed on plots at each of three (hydric, mesic. and xerlc) sites at the Savannah River Site and sampled over a I6-week period. Major changes were in moisture content and nonstructural carbohydrate content (total carbohydrates, reducing sugars, and starch) of sapwood. Early changes in nonstructural carbohydrate levels following placement of the bolts were likely due to reallocation of these materials by sapwood parenchyma cells. These carbohydrates later formed pools increasingly metabolized by bacteria and invading fungi. Most prevalent fungi in sapwood were Ceratocysfis spp. in pine and Hypoxy/on spp. in oak. Although pine sapwood became blue stained and oak sapwood exhibited yellow soft decay with black zone lines, estimators of decay (specific gravity, sodium hydroxide solubility, and holocellulose content) were unchanged during the 16-week study period. A small effect of site was detected for starch content of sapwood of both species. Fungal biomass in sapwood of both species, as measured by ergosterol content, was detectable at week zero, increased somewhat by week three and increased significantly by week 16.

  10. Seasonal changes in quality of wastewater from fruit and vegetable industry

    Science.gov (United States)

    Puchlik, Monika; Ignatowicz, Katarzyna

    2017-11-01

    The paper aimed at evaluating the seasonal changes in quality of wastewater from facilities producing fruit and vegetable juices, processed and frozen products, and vegetable concentrates. The study revealed that wastewater from fruit and vegetable industry contain large amounts of organic substances expressed as BOD5 (minimum - 500 mgO2/dm3, maximum - 6 100 mgO2/dm3) and COD (minimum - 806 mg O2/dm3, maximum - 7 732 mg O2/dm3), while is deficient in nitrogen and phosphorus. Considerable seasonal oscillations in sewage load disposed by industry to sewerage, were observed. An increase of 50%-60% wastewater concentrations was found between June and October in 2013-2016 as compared to the remaining months.

  11. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

    2014-08-28

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  12. Preliminary study on space mutagenesis of mutagenesis of three species of woody plants

    International Nuclear Information System (INIS)

    Lu Chao; Yuan Cunquan; Li Yun; Xi Yang

    2010-01-01

    Dry seeds of three woody plants, Xanthoceras sorbifolia, Acer mono and Robiniap pseudoacacia, were carried into space by the return satellite for mutation breeding. The seed vigor,leaf pigments of seedlings, MDA contents and growth volume were analyzed. Compared with the earth control, the seed vigor of three woody plants were extremely improved by space-induced mutation, the seed germination rate, planting and survival rate of seedlings were all higher than those of earth control, and the MDA contents of Xanthoceras sorbifolia and Acer mono were declined. The leaf pigments content of the trees were all lower than those of the control, specially Robinia pseudoacacia and Acer mono, which were both significantly different from their control at 0.01 levels. The growth volume of the mutation group were inhibited in the first year; however, from the second year, the growth of Xanthoceras sorbifolia and Acer mono were faster than those of control, indicating that the space mutation can promote the seed vigor and seedling resistance of three woody plants. (authors)

  13. Simulating the productivity of desert woody shrubs in southwestern Texas

    Science.gov (United States)

    In the southwestern U.S., many rangelands have converted from native grasslands to woody shrublands dominated by creosotebush (Larrea tridentate) and honey mesquite (Prosopis glandulosa), threatening ecosystem health. Both creosotebush and mesquite have well-developed long root systems that allow t...

  14. Response of loblolly pine to complete woody and herbaceous control: projected yields and economic outcomes - the COMProject

    Science.gov (United States)

    James H. Miller; R.L. Busby; B.R. Zutter; S.M. Zedaker; M.B. Edwards; R.A. Newbold

    1995-01-01

    Abstract.Age-8 and -9 data from the 13 study plantations of the Competition Omission Monitoring Project (COMP) were used to project yields and derive economic outcomes for loblolly pine (Pinus taeda L.). COMP treatments were chop-burn, complete woody plant control, complete herbaceous plant control for 4 years, and complete woody...

  15. Assessing Extension's Ability to Promote Family Forests as a Woody Biomass Feedstock in the Northeast United States

    Science.gov (United States)

    Germain, Rene' H.; Ghosh, Chandrani

    2013-01-01

    The study reported here surveyed Extension educators' awareness and knowledge of woody biomass energy and assessed their desire and ability to reach out to family forest owners-a critical feedstock source. The results indicate Extension educators are aware of the potential of woody biomass to serve as a renewable source of energy. Respondents…

  16. Relative growth rates of three woody legumes: implications in the process of ecological invasion

    Directory of Open Access Journals (Sweden)

    J. A. Crisóstomo

    2007-03-01

    Full Text Available Acacia longifolia, an Australian leguminous tree, is one of the main invasive plant species in the coast of Portugal and a major threat to the native vegetation in the Reserva Natural das Dunas de São Jacinto. With the establishment of this exotic species, other native woody leguminous species such as Cytisus grandiflorus and Ulex europaeus have been displaced from their original areas. Several factors are involved in the process of biological invasion by exotic species. Plant physiology and development, characteristic of each species, can give certain advantages in the establishment and colonization of new areas. We tested if there are differences in the Relative Growth Rate (RGR of the exotic and native species because this could be relevant in the first stages of the invasion process. Our results showed that A. longifolia was the species with lowest RGR. Therefore, other factors apart from RGR might explain the invasion of coastal dunes by this species. We propose that A. longifolia might be a better competitor than the two native legumes and that this process might be mediated by the interaction with soil organisms.

  17. Peculiarities of the Woody Plants Re-Bloom

    OpenAIRE

    Opalko Olga Anatolievna; Opalko Anatoly Ivanovich

    2015-01-01

    The data of literary sources concerning the bloom of angiosperm plants and deviation in the development of a flower and inflorescence, in particular untimely flowering, was generalized; our observation results of some peculiarities of re-bloom of woody plants in the National Dendrological Park “Sofiyivka” of NAS of Ukraine (NDP “Sofiyivka”) were discussed. The flowering process was formed during a long-term evolution of a propagation system of angiosperm plants as a basis of fertilization and...

  18. PHYTOSOCIOLOGY AND STRUCTURAL CHARACTERIZATION OF WOODY REGENERATION FROM A REFORESTATION WITH NATIVE SPECIES IN SOUTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Michel Anderson Almeida Colmanetti

    2016-04-01

    Full Text Available ABSTRACT In Brazil, specifically in São Paulo State, there are guidelines based on the high diversity of tropical forests that instructs the restoration projects in the state (current SMA 32/2014. The main goal of this study was verify the importance and effectiveness of the high diversity of arboreal species originated from a reforestation, and its influence in a woody regenerating composition. We developed a phytosociologic study in a woody regenerating stratum of a nine year old reforestation at a Private Reserve of Natural Heritage (RPPN, in Mogi-Guaçu, São Paulo State. All specimens with height > 30 cm and Diameter at Breast Height (DBH < 5 cm were evaluated. The woody regenerating diversity was smaller than the overstory diversity and the species composition was similar to the overstory. The Simpson index (1-D was 0.85, Shannon index (H' was 2.46 and the Pielou index (J' was 0.60. The zoochoric dispersion syndrome was major among the species. Our results suggest that the use of high diversity of native seedlings in a reforestation leads to high diversity of species in woody regeneration stratum, after one decade of planting.

  19. Down woody materials as an indicator of wildlife habitat, fuels, and carbon stocks of the United States

    Science.gov (United States)

    Christopher W. Woodall

    2007-01-01

    Why Are Down Woody Materials Important? The down woody materials (DWM) indicator is used to estimate the quantity of deadorganic material (resulting from plant mortality and leaf turnover) in forest ecosystems of the United States. The DWM indicator, coupled with other components of the enhanced Forest Inventory and Analysis (FIA) program, can indicate the...

  20. Mapping invasive species and spectral mixture relationships with neotropical woody formations in southeastern Brazil

    Science.gov (United States)

    Amaral, Cibele H.; Roberts, Dar A.; Almeida, Teodoro I. R.; Souza Filho, Carlos R.

    2015-10-01

    Biological invasion substantially contributes to the increasing extinction rates of native vegetative species. The remote detection and mapping of invasive species is critical for environmental monitoring. This study aims to assess the performance of a Multiple Endmember Spectral Mixture Analysis (MESMA) applied to imaging spectroscopy data for mapping Dendrocalamus sp. (bamboo) and Pinus elliottii L. (slash pine), which are invasive plant species, in a Brazilian neotropical landscape within the tropical Brazilian savanna biome. The work also investigates the spectral mixture between these exotic species and the native woody formations, including woodland savanna, submontane and alluvial seasonal semideciduous forests (SSF). Visible to Shortwave Infrared (VSWIR) imaging spectroscopy data at one-meter spatial resolution were atmospherically corrected and subset into the different spectral ranges (VIS-NIR1: 530-919 nm; and NIR2-SWIR: 1141-2352 nm). The data were further normalized via continuum removal (CR). Multiple endmember selection methods, including Interactive Endmember Selection (IES), Endmember average root mean square error (EAR), Minimum average spectral angle (MASA) and Count-based (CoB) (collectively called EMC), were employed to create endmember libraries for the targeted vegetation classes. The performance of the MESMA was assessed at the pixel and crown scales. Statistically significant differences (α = 0.05) were observed between overall accuracies that were obtained at various spectral ranges. The infrared region (IR) was critical for detecting the vegetation classes using spectral data. The invasive species endmembers exhibited spectral patterns in the IR that were not observed in the native formations. Bamboo was characterized as having a high green vegetation (GV) fraction, lower non-photosynthetic vegetation (NPV) and a low shade fraction, while pine exhibited higher NPV and shade fractions. The invasive species showed a statistically

  1. Validation of leaf ozone symptoms in natural vegetation using microscopical methods

    International Nuclear Information System (INIS)

    Vollenweider, P.; Ottiger, M.; Guenthardt-Goerg, M.S

    2003-01-01

    Integration of markers of oxidative stress, from the subcellular to the leaf and needle level, proved to be a useful tool for the differential diagnosis and validation of ozone injury. - Ozone injury to natural vegetation is being increasingly surveyed throughout the northern hemisphere. There exists a growing list of species showing visible 'ozone-like' symptoms which needs to be validated. This study presents the results from a test survey of ozone injury to forest vegetation in the light exposed sites of five Swiss level II plots, for the new ICP-Forests protocol. With AOT40 from 14 to 28 ppm·h in 2000, ten out of 49 woody plant species displayed typical symptoms, and four showed untypical symptoms. Symptom origin was investigated in nine and validated in seven species, using morphological, histological and cellular markers of oxidative stress and ozone-induced plant response. Independent of taxonomic position, ozone effects were characterized by the induction of oxidative stress in the mesophyll resulting in discrete and light-dependent hypersensitive-like responses and in accelerated cell senescence. The presented combination of cellular and morphological markers allows differential diagnosis of visible ozone injury

  2. Stable carbon isotope analysis of fluvial sediment fluxes over two contrasting C(4) -C(3) semi-arid vegetation transitions.

    Science.gov (United States)

    Puttock, Alan; Dungait, Jennifer A J; Bol, Roland; Dixon, Elizabeth R; Macleod, Christopher J A; Brazier, Richard E

    2012-10-30

    Globally, many drylands are experiencing the encroachment of woody vegetation into grasslands. These changes in ecosystem structure and processes can result in increased sediment and nutrient fluxes due to fluvial erosion. As these changes are often accompanied by a shift from C(4) to C(3) vegetation with characteristic δ(13) C values, stable isotope analysis provides a promising mechanism for tracing these fluxes. Input vegetation, surface sediment and fluvially eroded sediment samples were collected across two contrasting C(4) -C(3) dryland vegetation transitions in New Mexico, USA. Isotope ratio mass spectrometric analyses were performed using a Carlo Erba NA2000 analyser interfaced to a SerCon 20-22 isotope ratio mass spectrometer to determine bulk δ(13) C values. Stable isotope analyses of contemporary input vegetation and surface sediments over the monitored transitions showed significant differences (p fluvially eroded sediment from each of the sites, with no significant variation between surface sediment and eroded sediment values. The significant differences in bulk δ(13) C values between sites were dependent on vegetation input. Importantly, these values were robustly expressed in fluvially eroded sediments, suggesting that stable isotope analysis is suitable for tracing sediment fluxes. Due to the prevalent nature of these dryland vegetation transitions in the USA and globally, further development of stable isotope ratio mass spectrometry has provided a valuable tool for enhanced understanding of functional changes in these ecosystems. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Selected trace metal levels in common vegetables grown in NWFP, Pakistan

    International Nuclear Information System (INIS)

    Masud, K.; Jaffar, M.

    1998-01-01

    Seventeen vegetables procured from local markets of Peshawar and its suburbs were analyzed using wet digestion atomic absorption method for Fe, Pb, As, Hg, Cd, Cr, and Ni. The families investigated were: Cucurbitaceae, Solanaceae, Cruciferae, Liliaceae, Araceae, Leguminosae, Malvaceae, Umbelliferae and Zingiberaceae. The heavy metal data are reported at 99%(- + 2S) confidence level for triplicate measurements on sub samples of a given sample with an overall reproducibility of 2% compared with standard material samples. Comparison of averages through t-test indicates that each vegetable group is distinctly different from the other in terms of metal content. Maximum iron was present in garlic, at 4.585 mu g/g, dry weight (edible part-stem) of the Liliacease family. Arsenic was found to be below detection limit in all the vegetable groups. Lead levels were quite low, maximum concentration (0.0200 mu g/g, dry weight) was found in karaila (edible part-fruit). Mercury levels were relatively higher, with maximum concentration (2.590 mu g/g, dry weight) in gem (edible part-stem). The levels of nickel were moderately higher, being maximum (2.375 mu g/g dry weight) in karaila. The overall content of trace metals appeared to be within laid down internationally for safe human consumption, with only a few exceptions. (author)

  4. The assessment of data mining algorithms for modelling Savannah woody cover using multi-frequency (X-, C- and L-band) synthetic aperture radar (SAR) datasets

    CSIR Research Space (South Africa)

    Naidoo, L

    2014-07-01

    Full Text Available The woody component in African Savannahs provides essential ecosystem services such as fuel wood and construction timber to large populations of rural communities. Woody canopy cover (i.e. the percentage area occupied by woody canopy or CC) is a key...

  5. Estimates of Down Woody Materials in Eastern US Forests

    Science.gov (United States)

    David C. Chojnacky; Robert A. Mickler; Linda S. Heath; Christopher W. Woodall

    2004-01-01

    Down woody materials (WVMs) are an important part of forest ecosystems for wildlife habitat, carbon storage, structural diversity, wildfire hazard, and other large-scale ecosystem processes. To better manage forests for DWMs, available and easily accessible data on DWM components are needed. We examined data on DWMs, collected in 2001 by the US Department of...

  6. Effects of competition and herbivory over woody seedling growth in a temperate woodland trump the effects of elevated CO2.

    Science.gov (United States)

    Collins, L; Boer, M M; de Dios, V Resco; Power, S A; Bendall, E R; Hasegawa, S; Hueso, R Ochoa; Nevado, J Piñeiro; Bradstock, R A

    2018-04-27

    A trend of increasing woody plant density, or woody thickening, has been observed across grassland and woodland ecosystems globally. It has been proposed that increasing atmospheric [CO 2 ] is a major driver of broad scale woody thickening, though few field-based experiments have tested this hypothesis. Our study utilises a Free Air CO 2 Enrichment experiment to examine the effect of elevated [CO 2 ] (eCO 2 ) on three mechanisms that can cause woody thickening, namely (i) woody plant recruitment, (ii) seedling growth, and (iii) post-disturbance resprouting. The study took place in a eucalypt-dominated temperate grassy woodland. Annual assessments show that juvenile woody plant recruitment occurred over the first 3 years of CO 2 fumigation, though eCO 2 did not affect rates of recruitment. Manipulative experiments were established to examine the effect of eCO 2 on above-ground seedling growth using transplanted Eucalyptus tereticornis (Myrtaceae) and Hakea sericea (Proteaceae) seedlings. There was no positive effect of eCO 2 on biomass of either species following 12 months of exposure to treatments. Lignotubers (i.e., resprouting organs) of harvested E. tereticornis seedlings that were retained in situ for an additional year were used to examine resprouting response. The likelihood of resprouting and biomass of resprouts increased with lignotuber volume, which was not itself affected by eCO 2 . The presence of herbaceous competitors and defoliation by invertebrates and pathogens were found to greatly reduce growth and/or resprouting response of seedlings. Our findings do not support the hypothesis that future increases in atmospheric [CO 2 ] will, by itself, promote woody plant recruitment in eucalypt-dominated temperate grassy woodlands.

  7. A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height

    Science.gov (United States)

    Katherine A. McCulloh; Daniel M. Johnson; Joshua Petitmermet; Brandon McNellis; Frederick C. Meinzer; Barbara Lachenbruch; Nathan Phillips

    2015-01-01

    The physiological mechanisms underlying the short maximum height of shrubs are not understood. One possible explanation is that differences in the hydraulic architecture of shrubs compared with co-occurring taller trees prevent the shrubs from growing taller. To explore this hypothesis, we examined various hydraulic parameters, including vessel lumen diameter,...

  8. Managing coarse woody debris in forests of the Rocky Mountains

    Science.gov (United States)

    Russell T. Graham; Alan E. Harvey; Martin F. Jurgensen; Theresa B. Jain; Jonalea R. Tonn; Deborah S. Page-Dumroese

    1994-01-01

    Recommendations for managing coarse woody debris after timber harvest were developed for 14 habitat types, ranging from ponderosa pine (Pinus ponderosa) habitat types of Arizona to subalpine fir (Abies lasiocarpa) habitat types of western Montana. Ectomycorrhizae were used as a bioindicator of healthy, productive forest soils....

  9. Leaf surface anatomy in some woody plants from northeastern Mexico

    International Nuclear Information System (INIS)

    Maiti, R.; Rodriguez, H.G.; Balboa, P.C.R.; Kumari, A

    2016-01-01

    Studies on leaf surface anatomy of woody plants and its significance are rare. The present study was undertaken in the Forest Science Faculty Experimental Research Station, UANL, Mexico, with objectives to determine the variability in leaf surface anatomy in the woody plants of the Tamaulipan thornscrub and its utility in taxonomy and possible adaptation to the prevailing semiarid conditions. The results show the presence of large variability in several leaf anatomical traits viz., waxy leaf surface, type of stomata, its size, and distribution. The species have been classified on the basis of various traits which can be used in species delimitation and adaptation to the semiarid condition such as waxy leaf surface, absence sparse stomata on the leaf surface, sunken stomata. The species identified as better adapters to semi-arid environments on the basis of the presence and absence of stomata on both adaxial and abaxial surface viz., Eysenhardtia texana, Parkinsonia texana, Gymnosperma glutinosum, Celtis laevigata, Condalia hookeri and Karwinskia humboldtiana. (author)

  10. Absorption of some mineral salts by root system of different woody species and accumulation over a whole vegetative cycle (1963)

    International Nuclear Information System (INIS)

    Gagnaire, J.; Gerard, J.M.

    1963-01-01

    The concentration power of plant tissues and the translocation speed of mineral salts are considerably varying with the absorbed salt, the botanical species, the considered tissue and the part of the vegetative cycle. In Grenoble, with Picea excelsa, the 'true dormancy' is short (half-november, end of december). It is accompanied by a pre-dormancy period (October, half-november) and a post dormancy period (January, february, march). In vegetative period, Picea excelsa leaves are less concentrating mineral salt than Acer campestris leaves (coefficient 2 for calcium - 3 for phosphates) and Populus nigra leaves (coefficient 3 for calcium, coefficient 5 for phosphates). (author) [fr

  11. Dynamic variation in sapwood specific conductivity in six woody species

    Science.gov (United States)

    Jean-Christophe Domec; Frederick C. Meinzer; Barbara Lachenbruch; Johann Housset

    2008-01-01

    Our goals were to quantify how non-embolism inducing pressure gradients influence trunk sapwood specific conductivity (ks) and to compare the impacts of constant and varying pressure gradients on ks with KCl and H20 as the perfusion solutions. We studied six woody species (three conifers and three...

  12. Cadmium accumulation and its effect on the in vitro growth of woody fleabane and mycorrhized white birch

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.; Bertrand, A.; Casares, A. [Departamento de Biologia de Organismos y Sistemas, Oviedo University, Catedratico Rodrigo Uria s/n, 33071 Oviedo (Spain); Garcia, R. [Departamento de Quimica Fisica y Analitica, Oviedo University, Julian Claveria s/n, 33071 Oviedo (Spain); Gonzalez, A. [Departamento de Biologia de Organismos y Sistemas, Oviedo University, Catedratico Rodrigo Uria s/n, 33071 Oviedo (Spain)], E-mail: aidag@uniovi.es; Tames, R.S. [Departamento de Biologia de Organismos y Sistemas, Oviedo University, Catedratico Rodrigo Uria s/n, 33071 Oviedo (Spain)

    2008-04-15

    The effect of Cd on woody fleabane (Dittrichia viscosa (L.) Greuter) and white birch (Betula celtiberica Rothm. and Vasc.) was examined. Woody fleabane and white birch were grown in vitro in Murashige, T., Skoog, F., [1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-479] (MS) plus Cd (10 mg Cd kg{sup -1}) and except for root length in white birch, plant development was inhibited when Cd was added. Cd accumulation in above-ground tissues showed differences among clones, reaching 1300 and 463 mg Cd kg{sup -1} dry wt. in selected clones of woody fleabane and white birch, respectively. Tolerance of Paxillus filamentosus (Scop) Fr. to Cd was also examined before mycorrhization. Plants of mycorrhized white birch grown in the presence of Cd had a better development and accumulated more Cd in their shoots than the non-mycorrhized ones. The use of selected clones of woody fleabane and the mycorrhization of white birch enhance extraction efficiency from contaminated soils in phytoremediation programs. - The high accumulation of Cd observed in selected clones of Dittrichia viscosa and mycorrhized Betula celtiberica grown in vitro implies a potential application for phytoextraction.

  13. Optique moderne et post-moderne dans la composition d'images transculturelles dans trois films de Woody Allen

    Directory of Open Access Journals (Sweden)

    Nadia Fuchs

    2010-12-01

    Full Text Available Avec le personnage récurrent juif new-yorkais névrosé plus ou moins autobiographique, les films de Woody Allen ont créé, volontairement ou pas, leur propre mythologie et un genre à part entière composé de codes que le spectateur décrypte instantanément. Pourtant, Woody Allen est surtout un cinéaste post-moderne, analysant et déconstruisant les simulacres de son époque. Il est ainsi un passeur d'images retraçant l'histoire des arts modernes des XXe et XXIe siècles et de leurs stratégies énonciatives et réceptives.With the recurrent persona of the neurotic and more or less autobiographical Jewish New Yorker, Woody Allen's films have created, willingly or not, their own mythology and a specific genre made up of codes readily accessible to the spectator. However, Woody Allen is more than anything else a postmodern filmmaker who analyses and deconstructs the simulacra of his time. He is thus a conveyor of images which retrace the history of modern art of the XXth and XXIth centuries, and of their strategies of enunciation and reception.

  14. Woody debris along an upland chromosequence in boreal Manitoba and its impact on long-term carbon storage

    Energy Technology Data Exchange (ETDEWEB)

    Manies, K. L.; Harden, J. W. [US Geological Survey, Menlo Park, CA (United States); Bond-Lamberty, B. P. [University of Wisconsin, Dept. of Forest Ecology and Management, Madison, WI (United States); O' Neill, K. P. [USDA Agricultural Research Service, Appalachian Farming Systems Research Center, Beaver, WV (United States)

    2005-02-01

    The amount of standing dead and downed woody debris along an upland chromosequence was measured in an effort to investigate the role of fire-killed woody debris as a source of soil carbon in black spruce stands in Manitoba. Based on the measurement data and existing primary production values, a mass balance model was used to assess the potential impact of fire-killed wood on long-term carbon storage at this site. Long-term carbon was represented by the amount of carbon stored in deeper soil organic layers, persisting over millenia. Between 10 and 60 per cent of the deep-soil carbon was estimated to have been derived from wood biomass. The actual amount appears to be most affected by fire return interval, decay rate of wood, the amount of net primary production, and the decay rate of the post-fire carbon pool. Although the model was less sensitive to fire consumption rates and to rates at which standing dead wood becomes woody debris, all model runs clearly established that woody debris plays an important role in long-term carbon storage in this area. 53 refs., 4 tabs., 4 figs.

  15. Flowering of Woody Bamboo in Tissue Culture Systems

    Directory of Open Access Journals (Sweden)

    Jin-Ling Yuan

    2017-09-01

    Full Text Available Flowering and subsequent seed set are not only normal activities in the life of most plants, but constitute the very reason for their existence. Woody bamboos can take a long time to flower, even over 100 years. This makes it difficult to breed bamboo, since flowering time cannot be predicted and passing through each generation takes too long. Another unique characteristic of woody bamboo is that a bamboo stand will often flower synchronously, both disrupting the supply chain within the bamboo industry and affecting local ecology. Therefore, an understanding of the mechanism that initiates bamboo flowering is important not only for biology research, but also for the bamboo industry. Induction of flowering in vitro is an effective way to both shorten the flowering period and control the flowering time, and has been shown for several species of bamboo. The use of controlled tissue culture systems allows investigation into the mechanism of bamboo flowering and facilitates selective breeding. Here, after a brief introduction of flowering in bamboo, we review the research on in vitro flowering of bamboo, including our current understanding of the effects of plant growth regulators and medium components on flower induction and how in vitro bamboo flowers can be used in research.

  16. Phenological characteristics of the main vegetation types on the Tibetan Plateau based on vegetation and water indices

    International Nuclear Information System (INIS)

    Peng, D L; Huang, W J; Zhou, B; Li, C J; Wu, Y P; Yang, X H

    2014-01-01

    Plant phenology is considered one of the most sensitive and easily observable natural indicators of climate change, though few studies have focused on the heterogeneities of phenology across the different vegetation types. In this study, we tried to find the phenological characteristics of the main vegetation types on the Tibetan Plateau. MCD12Q1 images over the Tibetan Plateau from 2001 to 2010 were used to extract the main vegetation types. The Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI) were calculated using surface reflectance values from the blue, red, near-infrared, short-wave infrared (SWIR) 6 (for LSIW6), and SWIR7 (for LSIW7) bands derived from MOD09A1 and used to explore the phenological characteristics of the main vegetation types on the Tibetan Plateau. The results showed that there were eight constant vegetation types on the Tibetan Plateau from 2001 to 2010 demonstrating multiple phenological characteristics. Evergreen needleleaf forest, evergreen broadleaf forest, and permanent wetland had the minimum NDVI values during the summer season, while open shrubland and grassland had the maximum NDVI/EVI values during this period. NDVI and EVI of cropland/natural vegetation had two peaks for their seasonal variations. EVI showed a more significant correlation with LSWI6/LSWI7 than NDVI. Compared to LSWI7, larger EVI values occurred in evergreen needleleaf forest, evergreen broadleaf forest, mixed forest, and permanent wetland, while smaller values occurred in shrubland and barren or sparsely vegetated cover, and nearly equal values occurred in grassland and cropland

  17. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: an example at corn fields in western Mexico.

    Science.gov (United States)

    Chen, Pei-Yu; Fedosejevs, Gunar; Tiscareño-López, Mario; Arnold, Jeffrey G

    2006-08-01

    Although several types of satellite data provide temporal information of the land use at no cost, digital satellite data applications for agricultural studies are limited compared to applications for forest management. This study assessed the suitability of vegetation indices derived from the TERRA-Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and SPOT-VEGETATION (VGT) sensor for identifying corn growth in western Mexico. Overall, the Normalized Difference Vegetation Index (NDVI) composites from the VGT sensor based on bi-directional compositing method produced vegetation information most closely resembling actual crop conditions. The NDVI composites from the MODIS sensor exhibited saturated signals starting 30 days after planting, but corresponded to green leaf senescence in April. The temporal NDVI composites from the VGT sensor based on the maximum value method had a maximum plateau for 80 days, which masked the important crop transformation from vegetative stage to reproductive stage. The Enhanced Vegetation Index (EVI) composites from the MODIS sensor reached a maximum plateau 40 days earlier than the occurrence of maximum leaf area index (LAI) and maximum intercepted fraction of photosynthetic active radiation (fPAR) derived from in-situ measurements. The results of this study showed that the 250-m resolution MODIS data did not provide more accurate vegetation information for corn growth description than the 500-m and 1000-m resolution MODIS data.

  18. Microbial Contamination of Raw Vegetables in Ahvaz, Iran during 2014-2015

    Directory of Open Access Journals (Sweden)

    Abdol Kazem Neisi

    2016-07-01

    Full Text Available Background & Aims of the Study: Vegetables are useful for humans as they contain minerals, vitamins, fiber and other nutrients. Eating raw vegetables are a nutritional habit in Iranian families. Raw eating vegetables is the main source of parasitic infections. The aim of this study was to determine microbial contamination of raw vegetables in Ahvaz, Iran during 2014-2015. Materials and Methods: In this study, 20 samples collected from markets of Ahvaz. Average weight of collecting raw vegetables was 1 to 2 kilograms. Then, raw vegetables were washed by 4 to 5 liter tap water. For parasitic ova washed water leaved for 24 hours for sedimentation and then the supernatant poured and about 50 to 100 milliliter of settled water transferred to 15 ml centrifugal tubes. After centrifugation, pellet floated and finally parasitic ova were observed microscopically (corrected Bailenger method. The multiple tube method used for Coliform bacteria (Total & Faecal examination. Results: Maximum Coliform bacteria was in Kootabdullah samples (total Coliform was 25893319.52 MPN/100ml and Fecal Coliform was 15054572.83 MPN/100ml. Maximum Ascaris ova in Hamidieh was 43.3 per liter and Sheiban 36.66 per litter. Conclusion: Microbial contamination of raw vegetables, especially in Kootabdullah, possibly was due to Karoon river water pollution by sewage discharge of Ahvaz city, and also in Hamidieh possibly due to Karkheh river water pollution by sewage discharge of Hamidieh city. Thus, sewage treatment of these cities before discharging in rivers is necessary.

  19. First steps in studying the origins of secondary woodiness in Begonia (Begoniaceae): combining anatomy, phylogenetics, and stem transcriptomics

    Science.gov (United States)

    Catherine Kidner; Andrew Groover; Daniel C. Thomas; Katie Emelianova; Claudia Soliz-Gamboa; Frederic Lens

    2015-01-01

    Since Darwin's observation that secondary woodiness is common on islands, the evolution of woody plants from herbaceous ancestors has been documented in numerous angiosperm groups. However, the evolutionary processes that give rise to this phenomenon are poorly understood. To begin addressing this we have used a range of approaches to study the anatomical and...

  20. Influence of canopy closure and shrub coverage on travel along coarse woody debris by Eastern chipmunks (Tamias striatus)

    Science.gov (United States)

    Patrick A. Zollner; Kevin J. Crane

    2003-01-01

    We investigated relationships between canopy closure, shrub cover and the use of coarse woody debris as a travel path by eastern chipmunks (Tamias striatus) in the north central United States. Fine scale movements of chipmunks were followed with tracking spools and the percentage of each movement path directly along coarse woody debris was recorded...

  1. A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.H.

    1999-11-24

    To perform a statistically rigorous meta-analysis of research results on the response by herbaceous vegetation to increased atmospheric CO{sub 2} levels, a multiparameter database of responses was compiled from the published literature. Seventy-eight independent CO{sub 2}-enrichment studies, covering 53 species and 26 response parameters, reported mean response, sample size, and variance of the response (either as standard deviation or standard error). An additional 43 studies, covering 25 species and 6 response parameters, did not report variances. This numeric data package accompanies the Carbon Dioxide Information Analysis Center's (CDIAC's) NDP-072, which provides similar information for woody vegetation. This numeric data package contains a 30-field data set of CO{sub 2}-exposure experiment responses by herbaceous plants (as both a flat ASCII file and a spreadsheet file), files listing the references to the CO{sub 2}-exposure experiments and specific comments relevant to the data in the data sets, and this documentation file (which includes SAS{reg_sign} and Fortran codes to read the ASCII data file). The data files and this documentation are available without charge on a variety of media and via the Internet from CDIAC.

  2. THE DEPENDENCE OF THE ROOTING OF CUTTINGS OF LAVENDER ON THE TIMING OF PROPAGATION AND THE AGE OF THE MOTHER PLANTS

    OpenAIRE

    Skipor O. B.; Zolotilov V. A.; Zolotilova O. M.

    2015-01-01

    The article is concerned with the features of Lavandula’s angustifolia vegetative propagation with methods of the propagation by herbaceous cuttings and of the annual woody cutting. The dependence of Lavandula’s varieties Sineva and Vdala rooting of cutting and the cutting grafting period and the age of the mother plantation was established. In the fixed years, the rooting rate of cuttings is 58-67%. The maximum annual hardwood cuttings rooting was observed from the fifth to the seventh year ...

  3. Coarse woody debris metrics in a California oak woodland

    Science.gov (United States)

    William D. Tietje; Michael A. Hardy; Christopher C. Yim

    2015-01-01

    Little information is available on the metrics of coarse woody debris (CWD) in California oak woodland, most notably at the scale of the stand and woodland type. In a remote part of the National Guard Post, Camp Roberts, that has not burned in over a half century, we tallied 314 pieces of CWD in a blue oak (Quercus douglasii)-coast live oak (

  4. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbies, Mark [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Volk, Timothy [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Abrahamson, Lawrence [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Shuren, Richard [GreenWood Resources, Inc., Portland, OR (United States); Stanton, Brian [GreenWood Resources, Inc., Portland, OR (United States); Posselius, John [Case New Holland, New Holland, PA (United States); McArdle, Matt [Mesa Reduction Engineering and Processing, Inc., Auburn, NY (United States); Karapetyan, Samvel [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Patel, Aayushi [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Shi, Shun [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States); Zerpa, Jose [State Univ. of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, NY (United States)

    2014-10-03

    Biomass for biofuels, bioproducts and bioenergy can be sourced from forests, agricultural crops, various residue streams, and dedicated woody or herbaceous crops. Short rotation woody crops (SRWC), like willow and hybrid poplar, are perennial cropping systems that produce a number of environmental and economic development benefits in addition to being a renewable source of biomass that can be produced on marginal land. Both hybrid poplar and willow have several characteristics that make them an ideal feedstock for biofuels, bioproducts, and bioenergy; these include high yields that can be obtained in three to four years, ease of cultivar propagation from dormant cuttings, a broad underutilized genetic base, ease of breeding, ability to resprout after multiple harvests, and feedstock composition similar to other sources of woody biomass. Despite the range of benefits associated with SRWC systems, their deployment has been restricted by high costs, low market acceptance associated with inconsistent chip quality (see below for further explanation), and misperceptions about other feedstock characteristics (see below for further explanation). Harvesting of SRWC is the largest single cost factor (~1/3 of the final delivered cost) in the feedstock supply system. Harvesting is also the second largest input of primary fossil energy in the system after commercial N fertilizer, accounting for about one third of the input. Therefore, improving the efficiency of the harvesting system has the potential to reduce both cost and environmental impact. At the start of this project, we projected that improving the overall efficiency of the harvesting system by 25% would reduce the delivered cost of SRWC by approximately $0.50/MMBtu (or about $7.50/dry ton). This goal was exceeded over the duration of this project, as noted below.

  5. The vegetation of Yucca Mountain: Description and ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-29

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

  6. The vegetation of Yucca Mountain: Description and ecology

    International Nuclear Information System (INIS)

    1996-01-01

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot

  7. Proximate composition, minerals and vitamins content of selected vegetables grown in Peshawar

    International Nuclear Information System (INIS)

    Bangash, J.A.; Arif, M.; Khan, M.A.; Khan, F.; Amin-ur-Rrahma; Hussain, I.

    2011-01-01

    Ten vegetables namely Pot purslane, Spinach, Turnip, Garlic, Mustard (Sarson), Radish, Bitter gourd, Lady finger, Bath sponge and Brinjal were analyzed for their proximate composition, vitamin and mineral contents to evaluate their importance in human nutrition. The results showed that almost all vegetables contain appreciable amount of essential nutrients. The maximum content of moisture, carbohydrate, crude protein, crude fat, crude fiber, and ash recorded in these vegetables was (92.50 %, 26.88 %, 5.0%, 0.40%, 1.4% and 1.9%), respectively, with a minimum content (66.80 %, 3.91 %, 0.7%, 0.08%, 0.4% and 0.38%), respectively. Maximum concentration of macro minerals K, Ca, Mg, and Na, observed was (400, 210, 109, and 55) mg/100 g, respectively, with a minimum concentration (26, 15, 17, and 10) mg/100 g, respectively. Maximum concentration of micro minerals Fe, Cu, Zn, Mn and Cr observed was (29, 0.33, 3.05, 1.70, and 0.36) mg/100 g with a minimum concentration (2, 0.05, 0.43, 0.21, and 0.06) mg/100 g, respectively. Maximum concentration of water soluble vitamins i.e. thiamine, riboflavin, niacin and ascorbic acid recorded was (0.280, 0.190, 0.69, and 65) mg/100 g with a minimum concentration (0.011, 0.015, 0.23, and 4.00) mg/100 g, respectively. From this study it can be concluded that consumption of vegetables in different combinations could provide a reasonable daily recommended amount of essential nutrients for the maintenance of healthy life and normal body functioning. (author)

  8. Exotic woody plant invaders of the Transvaal

    Directory of Open Access Journals (Sweden)

    L. Henderson

    1984-12-01

    Full Text Available The frequency and abundance o ;f exotic, woody plant invaders were recorded in 60% of the quarter degree squares in the study area. Sixty-one invaders were encountered o f which the most important and aggressive were Acacia dealbaia, Populus spp.,  Melia azedarach, Opuntia ficus-indica, Salix babylonica and  Acacia mearnsii. Invasion patterns are discussed and an attempt is made to correlate distribution with environmental factors. Attention is drawn to the areas of greatest invasion and the areas that are liable to show the greatest expansion in the future.

  9. In vitro determination of oxidation of atmospheric tritium gas in vegetation and soil in Ibaraki and Gifu, Japan

    International Nuclear Information System (INIS)

    Ichimasa, Michiko; Ichimasa, Yusuke; Suzuki, Masatomo; Obayashi, Haruo; Sakuma, Youichi

    1999-01-01

    To quantify the rate of oxidation of tritium gas (referred to as HT) to tritiated water in the environment, various woody and herbaceous plant leaves and roots, mosses and lichens taken from a forest and fields in Ibaraki prefecture, and a forest in Toki, Gifu prefecture, were investigated as to their ability to oxidize atmospheric HT in vitro experiments. The HT oxidation activity in vegetation was compared with that in the surrounding surface soil (0-5 cm in depth). The rate of oxidation of HT in woody plant leaves including pine needles was extremely low, only about 1/10000-1/1000 that in the surface soil, as well as in herbaceous plant leaves with some exceptions (Phalaris arundinacea and Vaccinium smallii), whereas the rate in mosses and lichens was 50-500 times that in pine needles. The HT oxidation activity in roots of several plants including Phalaris arundinacea, Pieris japonica and Lespedeza homoloba was quite high and comparable to that in the surrounding surface soil. These results suggest that mosses, lichens and the leaves or roots of particular plants with high HT oxidation activity can be used to monitor the accidental release of HT into the environment. (author)

  10. The effect of clay amendment on substrate properties and growth of woody plants

    Directory of Open Access Journals (Sweden)

    Tomáš Meisl

    2012-01-01

    Full Text Available This work deals with the effect of two clay products differing in particle size distribution on properties of growing substrate and on growth of containerized woody plants in substrates amended with these clay products. Fine and coarse clay were added to a peat substrate, each at two rates. The peat substrate without clay was used as a control. The substrates were tested in experiments with two woody ornamentals (Thuja occidentalis ’Smaragd’ and Prunus cistena. Chemical and physical properties of the substrates were measured according to European Standards before planting. Proportion of water categories differing in availability to the plants were calculated from retention curves measured on the sand box. Properties of substrates in containers with and without plants were evaluated in the same way at the end of the culture. Clay addition changed chemical and physical properties of the tested substrates in terms: available nutrients content, particle density, bulk density, total pore volume, easy available water, water buffering capacity, air capacity, and shrinkage. The effect of fine clay was much stronger. In comparison with the clear effect of clay addition on the substrate chemical and physical properties, the effect on the growth and quality of model woody plants was not so explicit.

  11. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function.

    Science.gov (United States)

    Soler, Marçal; Camargo, Eduardo Leal Oliveira; Carocha, Victor; Cassan-Wang, Hua; San Clemente, Hélène; Savelli, Bruno; Hefer, Charles A; Paiva, Jorge A Pinto; Myburg, Alexander A; Grima-Pettenati, Jacqueline

    2015-06-01

    The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  12. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    Science.gov (United States)

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  13. Resource potential for renewable energy generation from co-firing of woody biomass with coal in the Northern U.S.

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Past studies have established measures of co-firing potential at varying spatial scales to assess opportunities for renewable energy generation from woody biomass. This study estimated physical availability, within ecological and public policy constraints, and associated harvesting and delivery costs of woody biomass for co-firing in selected power plants of the...

  14. Effects of geographical extent on the determinants of woody plant diversity

    DEFF Research Database (Denmark)

    Wang, Zhiheng; Rahbek, Carsten; Fang, Jingyun

    2012-01-01

    the quantitative effects of geographical extent are rarely tested. Here, using distribution maps of 11,405 woody species found in China and associated environmental data to the domain, we investigated the influence of geographical extent on the determinants of species richness patterns. Our results revealed...

  15. Biofuel manufacturing from woody biomass: effects of sieve size used in biomass size reduction.

    Science.gov (United States)

    Zhang, Meng; Song, Xiaoxu; Deines, T W; Pei, Z J; Wang, Donghai

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes.

  16. Carbon Flux of Down Woody Materials in Forests of the North Central United States

    International Nuclear Information System (INIS)

    Woodall, C.W.

    2010-01-01

    Across large scales, the carbon (C) flux of down woody material (DWM) detrital pools has largely been simulated based on forest stand attributes (e.g., stand age and forest type). The annual change in forest DWM C stocks and other attributes (e.g., size and decay class changes) was assessed using a forest inventory in the north central United States to provide an empirical assessment of strategic-scale DWM C flux. Using DWM inventory data from the USDA Forest Service's Forest Inventory and Analysis program, DWM C stocks were found to be relatively static across the study region with an annual flux rate not statistically different from zero. Mean C flux rates across the study area were -0.25, -0.12, -0.01, and -0.04 (Mg/ha/yr) for standing live trees, standing dead trees, coarse woody debris, and fine woody debris, respectively. Flux rates varied in their both magnitude and status (emission/sequestration) by forest types, latitude, and DWM component size. Given the complex dynamics of DWM C flux, early implementation of inventory re measurement, and relatively low sample size, numerous future research directions are suggested.

  17. Stress Coefficients for Soil Water Balance Combined with Water Stress Indicators for Irrigation Scheduling of Woody Crops

    Directory of Open Access Journals (Sweden)

    Maria Isabel Ferreira

    2017-06-01

    Full Text Available There are several causes for the failure of empirical models to estimate soil water depletion and to calculate irrigation depths, and the problem is particularly critical in tall, uneven, deficit irrigated (DI crops in Mediterranean climates. Locally measured indicators that quantify water status are useful for addressing those causes and providing feed-back information for improving the adequacy of simple models. Because of their high aerodynamic resistance, the canopy conductance of woody crops is an important factor in determining evapotranspiration (ET, and accurate stress coefficient (Ks values are needed to quantify the impact of stomatal closure on ET. A brief overview of basic general principles for irrigation scheduling is presented with emphasis on DI applications that require Ks modelling. The limitations of existing technology related to scheduling of woody crops are discussed, including the shortcomings of plant-based approaches. In relation to soil water deficit and/or predawn leaf water potential, several woody crop Ks functions are presented in a secondary analysis. Whenever the total and readily available water data were available, a simple Ks model was tested. The ultimate aim of this discussion is to illustrate the central concept: that a combination of simple ET models and water stress indicators is required for scheduling irrigation of deep-rooted woody crops.

  18. Transfer of Virtual Water of Woody Forest Products from China

    Directory of Open Access Journals (Sweden)

    Kaisheng Luo

    2018-02-01

    Full Text Available Global freshwater resources are under increasing pressure. It is reported that international trade of water-intensive products (the so-called virtual water trade can be used to ease global water pressure. In spite of the significant amount of international trade of woody forest products, virtual water of woody forest products (VWWFP and the corresponding international trade are largely ignored. However, virtual water research has progressed steadily. This study maps VWWFP and statistically analyzes China’s official data for the period 1993–2014. The results show a rapid increase in the trend of VWWFP flow from China, reaching 7.61 × 1012 m3 or 3.48 times annual virtual water trade for agricultural products. The export and import volumes of China are respectively 1.27 × 1012 m3 and 6.34 × 1012 m3 for 1993–2014. China imported a total of 5.07 × 1012 m3 of VWWFP in 1993–2014 to lessen domestic water pressure, which is five times the annual water transfer via China’s South–North Water Transfer project. Asia and Europe account for the highest contribution (50.52% to China’s import. Other contributors include the Russian Federation (16.63%, Indonesia (13.45%, Canada (13.41%, the United States of America (9.60%, Brazil (7.23% and Malaysia (6.33%. China mainly exports VWWFP to Asia (47.68%, North America (23.24%, and Europe (20.01%. The countries which export the highest amount of VWWFP include the United States of America, Japan, Republic of Korea and Canada. Then the countries which import the highest amount of VWWFP include the Russian Federation, Canada, United States of America, and Brazil. The VWWFP flow study shows an obvious geographical distribution that is driven by proximity and traffic since transportation cost of woody forest products could be significant.

  19. New options for conversion of vegetable oils to alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Kara, H. [Selcuk University, Konya (Turkey). Department of Chemical Engineering

    2006-05-15

    Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K. (author)

  20. A century of woody plant encroachment in the dry Kimberley ...

    African Journals Online (AJOL)

    We used aerial and fixed-point repeat ground photographs, including historical photographs taken at the time of the Second Anglo-Boer War of 1899–1902, to assess the scale and timing of woody plant encroachment in the dry savannas near Kimberley in South Africa (mean annual rainfall = 300–400 mm). There were ...

  1. A distance limited method for sampling downed coarse woody debris

    Science.gov (United States)

    Jeffrey H. Gove; Mark J. Ducey; Harry T. Valentine; Michael S. Williams

    2012-01-01

    A new sampling method for down coarse woody debris is proposed based on limiting the perpendicular distance from individual pieces to a randomly chosen sample point. Two approaches are presented that allow different protocols to be used to determine field measurements; estimators for each protocol are also developed. Both protocols are compared via simulation against...

  2. Optimization of lamp spectrum for vegetable growth

    Energy Technology Data Exchange (ETDEWEB)

    Prikupets, L.B.; Tikhomirov, A.A. [Institute of Biophysics, Krasnoyarsk (Russian Federation)

    1994-12-31

    Commmercial light sources were evaluated as to the optimum conditions for the production of tomatoes and cucumbers. Data is presented which corresponds to the maximum productivity and optimal spectral ratios. It is suggested that the commercial light sources evaluated were not efficient for the growing of the vegetables.

  3. Calibration of the maximum carboxylation velocity (Vcmax using data mining techniques and ecophysiological data from the Brazilian semiarid region, for use in Dynamic Global Vegetation Models

    Directory of Open Access Journals (Sweden)

    L. F. C. Rezende

    Full Text Available Abstract The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2 were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR, and data mining techniques as the Classification And Regression Tree (CART and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga.

  4. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    Science.gov (United States)

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  5. Fuel Load (FL)

    Science.gov (United States)

    Duncan C. Lutes; Robert E. Keane

    2006-01-01

    The Fuel Load method (FL) is used to sample dead and down woody debris, determine depth of the duff/ litter profile, estimate the proportion of litter in the profile, and estimate total vegetative cover and dead vegetative cover. Down woody debris (DWD) is sampled using the planar intercept technique based on the methodology developed by Brown (1974). Pieces of dead...

  6. Expected international demand for woody and herbaceous feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  7. Classification and mapping of the composition and structure of dry woodland and savanna in the eastern Okavango Delta

    Directory of Open Access Journals (Sweden)

    Michelle J. Tedder

    2013-02-01

    Full Text Available The dry woodland and savanna regions of the Okavango Delta form a transition zone between the Okavango Swamps and the Kalahari Desert and have been largely overlooked in terms of vegetation classification and mapping. This study focused on the species composition and height structure of this vegetation, with the aim of identifying vegetation classes and providing a vegetation map accompanied by quantitative data. Two hundred and fifty-six plots (50 m × 50 m were sampled and species cover abundance, total cover and structural composition were recorded. The plots were classified using agglomerative, hierarchical cluster analysis using group means and Bray-Curtis similarity and groups described using indicator species analysis. In total, 23 woody species and 28 grass species were recorded. Acacia erioloba and Colophospermum mopane were the most common woody species, whilst Urochloa mossambicensis, Panicum maximum, Dactyloctenium gigantiumand Eragrostis lehmanniana were the most widespread grasses. Eleven vegetation types were identified, with the most widespread being Short mixed mopane woodland, Tall mopane woodland and Tall mixed mopane woodland, covering 288.73 km2 (28%, 209.14 km2 (20% and 173.30 km2 (17% of the area, respectively. Despite their extensive area, these three vegetation types were the least species-rich, whilst Palm thornveld, Short mixed broadleaf woodland and Open mixed Acacia woodland were the most taxonomically variable. By contrast, Closed mixed Acacia woodland and Closed Acacia–Combretum woodland had the most limited distribution, accounting for less than 1% of the mapped area each.Conservation implications: The dry woodland and savanna vegetation of the Okavango Delta comprises a much wider suite of plant communities than the Acacia-dominated and Mopane-dominated classifications often used. This classification provided a more detailed understanding of this vegetation and essential background information for monitoring

  8. Effects of alien woody plant invasion on the birds of Mountain ...

    African Journals Online (AJOL)

    The density, biomass, species richness and composition of birds in plots in two Mountain Fynbos plant-species assemblages (Tall Mixed Fynbos and Restionaceous Tussock Marsh), infested with alien woody plants (mainly Australian Acacia spp.) at the Cape of Good Hope Nature Reserve, South Africa, were compared ...

  9. Changes in bird community composition in response to growth changes in short-rotation woody crop planting

    International Nuclear Information System (INIS)

    Tolbert, V.R.; Hanowski, J.; Schiller, A.; Hoffman, W.; Christian, D.; Lindberg, J.

    1997-01-01

    Hybrid poplar established as intensively managed short-rotation woody crops (SRWC) on former agricultural lands can provide habitat for wildlife. Studies of bird use of SRWC for nesting and during fall migration have shown that the numbers and kinds of breeding birds using mature plantings of hybrid poplar are similar to natural forested lands. In Minnesota, the number of species of breeding birds using habitat provided by clonal-trial plantings and young larger-scale plantings (12-64 ha) of hybrid poplar were initially most similar to those using grasslands and row-crops. As the plantings approached canopy closure, successional species became predominant. In the Pacific Northwest, breeding bird composition and density were very similar for mature plantings and forested areas; however, fall migrants were found primarily in forested areas. In the Southeast, preliminary comparisons of breeding bird use of plantings of sweetgum and sycamore with naturally regenerating forests of different ages and sizes and vegetation structure are showing no size effect on use. As with hybrid poplar, species use of the more mature plantings of sweetgum and sycamore was most similar to that of natural forests. (author)

  10. Prescribed Burning and Clear-Cutting Effects on Understory Vegetation in a Pinus canariensis Stand (Gran Canaria

    Directory of Open Access Journals (Sweden)

    José Ramón Arévalo

    2014-01-01

    Full Text Available Prescribed fires are a powerful tool for reducing fire hazards by decreasing amounts of fuel. The main objective is to analyze the effects of prescribed burning on the understory vegetation composition as well as on the soil characteristics of a reforested stand of Pinus canariensis. The study attempts to identify the effects of the preburning treatment of cutting understory vegetation on the floristic parameters of the vegetation community. This study was carried out for two years following a prescribed fire in a Canarian pine stand. Cutting and burning treatment affected species composition and increased diversity. Burnt and cut plots were characterized by a diverse array of herbaceous species and by a lower abundance of Teline microphylla (endemic legume, although burning apparently induced its germination. Cut treatment was more consistently differentiated from the control plots than burnt treatment. Soil K decreased after both treatments, pH slightly decreased after cutting, while P and Ca increased after fire. From an ecological point of view, prescribed burning is a better management practice than cutting the woody species of the understory. However, long-term studies would be necessary to evaluate the effects of fire intensity, season and frequency in which the prescribed burning is applied.

  11. Prescribed burning and clear-cutting effects on understory vegetation in a Pinus canariensis stand (Gran Canaria).

    Science.gov (United States)

    Arévalo, José Ramón; Fernández-Lugo, Silvia; García-Domínguez, Celia; Naranjo-Cigala, Agustín; Grillo, Federico; Calvo, Leonor

    2014-01-01

    Prescribed fires are a powerful tool for reducing fire hazards by decreasing amounts of fuel. The main objective is to analyze the effects of prescribed burning on the understory vegetation composition as well as on the soil characteristics of a reforested stand of Pinus canariensis. The study attempts to identify the effects of the preburning treatment of cutting understory vegetation on the floristic parameters of the vegetation community. This study was carried out for two years following a prescribed fire in a Canarian pine stand. Cutting and burning treatment affected species composition and increased diversity. Burnt and cut plots were characterized by a diverse array of herbaceous species and by a lower abundance of Teline microphylla (endemic legume), although burning apparently induced its germination. Cut treatment was more consistently differentiated from the control plots than burnt treatment. Soil K decreased after both treatments, pH slightly decreased after cutting, while P and Ca increased after fire. From an ecological point of view, prescribed burning is a better management practice than cutting the woody species of the understory. However, long-term studies would be necessary to evaluate the effects of fire intensity, season and frequency in which the prescribed burning is applied.

  12. Flow-sediment-large woody debris interplay: Introducing an appropriately scaled laboratory experiment

    Science.gov (United States)

    Friedrich, H.; Spreitzer, G.; Tunnicliffe, J. F.

    2017-12-01

    The morphology of steep (>0.01 m/m) forested streams is governed not only by water-sediment interplay, but also by accumulations of coarse and fine organic debris. In this project we look at the jamming dynamics (formation, persistence and hydraulic feedbacks) of large woody debris with the help of scaled laboratory experiments. In New Zealand, the recruitment of wood from both natural tree-fall and forest harvesting has led to obstruction of culverts, bridges and other river constrictions. Understanding the dynamics of jam formation and persistence is important for harvest practice guidelines, management of sediment accumulation, as well as establishing impacts to habitat and infrastructure. In this study, we provide the context of our work, present our experimental setup for studying the complex flow-sediment-wood interactions and present some initial results. In our experimental setup, we varied feed rates of sediment and organic fine material in order to establish concentration thresholds for jam formation, and development of sediment retention capacity upstream of the jam. Large woody debris accumulation is studied for different blocking scenarios, and the effect on sediment transport is measured. Sediment quantities and changes in channel bed morphology upstream of the critical cross section are evaluated, together with resulting backwater effects, and associated energy losses. In the long term, our results will inform our understanding of the processes that take place from the mobilization of woody debris to accumulation.

  13. Determination of native woody landscape plants in Bursa and Uludag

    African Journals Online (AJOL)

    Around Bursa and Uludag is a wide range of native woody plants of which are commonly used for landscape planning. The present study pointed out a total of 72 plant species, consisting of 36 trees, 32 shrubs, 7 treelets and 4 climber groups, around the region which are notified to be suitable for rural and urban planning ...

  14. Is woody residue part of your plan for sustainable forestry?

    Science.gov (United States)

    Deborah Page-Dumroese

    2010-01-01

    The answer to the title question should be "yes"! Currently, there is a lot of chatter about sustainable forestry and alternative fuels, including conversion of wood to bioenergy. At first glance it may seem like there is a conflict - how can removal of woody biomass be sustainable? Whether you are a small woodlot owner doing sustainable harvesting, looking...

  15. Large woody debris budgets in the Caspar Creek Experimental Watersheds

    Science.gov (United States)

    Sue Hilton

    2012-01-01

    Monitoring of large woody debris (LWD) in the two mainstem channels of the Caspar Creek Experimental Watersheds since 1998, combined with older data from other work in the watersheds, gives estimates of channel wood input rates, survival, and outputs in intermediate-sized channels in coastal redwood forests. Input rates from standing trees for the two reaches over a 15...

  16. Carbon in down woody materials of eastern U.S. forests

    Science.gov (United States)

    David C. Chojnacky; Robert A. Mickler; Linda S. Heath

    2003-01-01

    To better manage global carbon storage and other ecosystem processes, there is a need for accessible carbon data on components of down woody materials (DWM) in forests. We examined the feasibility of linking available data on DWM to the U.S. Department of Agriculture (USDA) Forest Inventory Analysis (FIA) database, which covers the nation's forest lands. We...

  17. Modeling population dynamics and woody biomass of Alaska coastal forest

    Science.gov (United States)

    Randy L. Peterson; Jingjing Liang; Tara M. Barrett

    2014-01-01

    Alaska coastal forest, 6.2 million ha in size, has been managed in the past mainly through clearcutting. Declining harvest and dwindling commercial forest resources over the past 2 decades have led to increased interest in management of young-growth stands and utilization of woody biomass for bioenergy. However, existing models to support these new management systems...

  18. A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs

    Science.gov (United States)

    Normand, Signe; Randin, Christophe; Ohlemüller, Ralf; Bay, Christian; Høye, Toke T.; Kjær, Erik D.; Körner, Christian; Lischke, Heike; Maiorano, Luigi; Paulsen, Jens; Pearman, Peter B.; Psomas, Achilleas; Treier, Urs A.; Zimmermann, Niklaus E.; Svenning, Jens-Christian

    2013-01-01

    Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates. PMID:23836785

  19. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Voelker, Steven L.; Brooks, J. Renée; Meinzer, Frederick C.; Anderson, Rebecca D.; Bader, Martin K.-F.; Battipaglia, Giovanna; Becklin, Katie M.; Beerling, David; Bert, Didier; Betancourt, Julio L.; Dawson, Todd E.; Domec, Jean-Christophe; Guyette, Richard P.; Körner, Christian; Leavitt, Steven W.; Linder, Sune; Marshall, John D.; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina P.; Plumpton, Heather J.; Pregitzer, Kurt S.; Saurer, Matthias; Smith, Andrew R.; Siegwolf, Rolf T.W.; Stambaugh, Michael C.; Talhelm, Alan F.; Tardif, Jacques C.; Van De Water, Peter K.; Ward, Joy K.; Wingate, Lisa

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2(ca − ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca. To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca-induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca − ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.

  20. Mapping invasive woody species in coastal dunes in the Netherlands: a remote sensing approach using LIDAR and high-resolution aerial photographs

    NARCIS (Netherlands)

    Hantson, W.P.R.; Kooistra, L.; Slim, P.A.

    2012-01-01

    Questions Does remote sensing improve classification of invasive woody species in dunes, useful for shrub management? Does additional height information and an object-based classifier increase woody species classification accuracy? Location The dunes of Vlieland, one of the Wadden Sea Islands, the

  1. Vegetation history since the last glacial maximum in the Ozark highlands (USA): A new record from Cupola Pond, Missouri

    Science.gov (United States)

    Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.

    2017-08-01

    The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.

  2. Timing and abundance of flowering and fruiting of woody plants in the Hørsholm Arboretum

    DEFF Research Database (Denmark)

    Leverenz, Jerry

    The Arboretum in Hørsholm has an extensive collection of woody plant species of known origin. There are approximately 2200 woody plant taxa in the collection, representing 295 genera and 101 plant families. This collection is used to study how plants from different parts of the world thrive...... flowers (pollen) and fruit (seed) in order to have a clearer understanding of the negative results. As a first step we have begun to record if, and when, the taxa in the collection produce flowers (and thus pollen), and fruits (and thereby seed). In this Working Paper we present and analyse the results...

  3. Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus

    Science.gov (United States)

    Suzanne Gerttula; Matthew S. Zinkgraf; Gloria K. Muday; Daniel R. Lewis; Farid M. Ibatullin; Harry Brumer; Foster Hart; Shawn D. Mansfield; Vladimir Filkov; Andrew Groover

    2015-01-01

    Angiosperm trees reorient their woody stems by asymmetrically producing a specialized xylem tissue, tension wood, which exerts a strong contractile force resulting in negative gravitropism of the stem. Here, we show, in Populus trees, that initial gravity perception and response occurs in specialized cells through sedimentation of starch-filled...

  4. Vegetation description and phytoclimatic gradients of subtropical forests of nandiar khuwar catchment district battagram

    International Nuclear Information System (INIS)

    Haq, F.; Iqbal, Z.; Ahmad, H.

    2015-01-01

    This paper communicates an analytical exploration of the vegetational profile in the subtropical zone of Nandiar Khuwar catchment area, District Battagrtam, Pakistan. On the basis of physiognomy of vegetation the study area was divided into 16 stands. Six plant communities were recognized by TWINSPAN classification. Among biological spectrum nanophanerophytes was dominated with 36 species and leaf size spectra were dominated by microphyll contributing 63 species. Similarity index was maximum (33.61) between Pinus, Micromeria, Rubus community and Pinus, Rubus, Cynodon community. In Bray-Curtis ordination the maximum ordination scores were recorded for axis 2 (0.921). The gradient length was maximum (3.35) for axis 1 with eigenvalue 0.50. Total variance (inertia) in the species data were 2.92, explanatory variables account for 100%. Among environmental variables the maximum positive strength were recorded for altitude (0.818) and Phosphorous (0.801) while maximum negative strength were recorded for wind speed (-0.864), barometric pressure (-0.825) and temperature (-0.820). (author)

  5. Experimental tree removal in tallgrass prairie: variable responses of flora and fauna along a woody cover gradient.

    Science.gov (United States)

    Alford, Aaron L; Hellgren, Eric C; Limb, Ryan; Engle, David M

    2012-04-01

    Woody plant encroachment is a worldwide phenomenon in grassland and savanna systems whose consequence is often the development of an alternate woodland state. Theoretically, an alternate state may be associated with changes in system state variables (e.g., species composition) or abiotic parameter shifts (e.g., nutrient availability). When state-variable changes are cumulative, such as in woody plant encroachment, the probability of parameter shifts increases as system feedbacks intensify over time. Using a Before-After Control-Impact (BACI) design, we studied eight pairs of grassland sites undergoing various levels of eastern redcedar (Juniperus virginiana) encroachment to determine whether responses of flora and fauna to experimental redcedar removal differed according to the level of pretreatment redcedar cover. In the first year after removal, herbaceous plant species diversity and evenness, woody plant evenness, and invertebrate family richness increased linearly with pretreatment redcedar cover, whereas increases in small-mammal diversity and evenness were described by logarithmic trends. In contrast, increases in woody plant diversity and total biomass of terrestrial invertebrates were accentuated at levels of higher pretreatment cover. Tree removal also shifted small-mammal species composition toward a more grassland-associated assemblage. During the second year postremoval, increases in herbaceous plant diversity followed a polynomial trend, but increases in most other metrics did not vary along the pretreatment cover gradient. These changes were accompanied by extremely high growing-season precipitation, which may have homogenized floral and faunal responses to removal. Our results demonstrate that tree removal increases important community metrics among grassland flora and fauna within two years, with some responses to removal being strongly influenced by the stage of initial encroachment and modulated by climatic variability. Our results underscore the

  6. Peculiarities of the Woody Plants Re-Bloom

    Directory of Open Access Journals (Sweden)

    Opalko Olga Anatolievna

    2015-09-01

    Full Text Available The data of literary sources concerning the bloom of angiosperm plants and deviation in the development of a flower and inflorescence, in particular untimely flowering, was generalized; our observation results of some peculiarities of re-bloom of woody plants in the National Dendrological Park “Sofiyivka” of NAS of Ukraine (NDP “Sofiyivka” were discussed. The flowering process was formed during a long-term evolution of a propagation system of angiosperm plants as a basis of fertilization and further fruit and seed development. As a result of vernalization and photoperiodism reactions, flowering (under regular conditions occurs in the most favorable period for pollination and fertilization of every plant. However, various deviations, in particular, the untimely (most frequently double, sometimes three- and four-fold flowering occurs in this perfect process of generative organ formation of angiosperm plants. An increased number of reports about re-bloom (at the end of summer – at the beginning of fall of the representatives of various woody plant species whose flowers usually blossom in May-June prompts the analysis of the available information concerning the mechanisms of flowering and the causes which lead to deviation of flowering processes. Flowering of the woody plant representatives of the collection fund of the NDP “Sofiyivka” was studied; statistics about re-bloom in different cities of Ukraine were monitored. The classification of re-bloom facts was carried out according to V.L. Vitkovskiy (1984. Although this classification has mostly a stated nature, it was good enough when being formulated and, with certain conditions, it can be applied nowadays. Accordingly, using this classification, abnormal cases can include facts of early summer-fall flowering and early winter flowering. A late spring flowering can be adaptive response of damaged plants to exogenous stresses, due to which the probability of sexual propagation remains

  7. Trends in landscape and vegetation change and implications for the Santa Cruz Watershed

    Science.gov (United States)

    Villarreal, Miguel; Norman, Laura M.; Webb, Robert H.; Turner, Raymond M.

    2013-01-01

    Monitoring and characterizing the interactive effects of land use and climate on land surface processes is a primary focus of land change science, and of particular concern in arid Wells Distribution in Shallow Groundwater Areas Pumping Trends Increase Streamflow Extent Declines 27 environments where both landscapes and livelihoods can be impacted by short-term climate variability. Using a multi-observational approach to land-change analysis that included landownership data as a proxy for land-use practices, multitemporal land-cover maps, and repeat photography dating to the late 19th century, we examine changing spatial and temporal distributions of two vegetation types with high conservation value in the southwestern United States: grasslands and riparian vegetation. Our study area is the bi-national Santa Cruz Watershed, a topographically complex watershed that straddles the Sonoran Desert and the Madrean Archipelago Ecoregions. In this presentation we focus on historical changes in vegetation and land use in grasslands and riparian areas of the Madrean Ecoregion (San Raphael Valley, Cienega Creek, Sonoita), and compare changes in these areas to changes in the warmer and drier Sonoran Ecoregion. Analysis of historical photography confirms major 20th century vegetation shifts documented in other research: woody plant encroachment, desertification of grasslands, and changing riparian and xeroriparian vegetation occurred in both ecoregions following human settlement. However, vegetation changes over the past decade appear to be more subtle and some of the past trajectories appear to be reversing; most notable are recent mesquite declines in xeroriparian and upland areas, and changes from shrubland to grassland area in the Madrean ecoregion. Land cover changes were temporally variable, reflecting broad climate changes. The most dynamic cover changes occurred during the period from 1989 to 1999, a period with two intense droughts. The degree of vegetation change

  8. Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar

    Science.gov (United States)

    Chen, Qi

    2015-08-01

    Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical component for understanding the global C cycle and mitigating climate change. However, the importance of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of this study are to understand the differences and relationships among three national-scale allometric methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest, USA were used to predict woody AGB estimated from the different allometric methods. It was found that the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable stem biomass on merchantable stem biomass. This study also argues that it is important to characterize the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction errors.

  9. Heavy metals and metalloid content in vegetables and soil collected from the gardens of Zagreb, Croatia.

    Science.gov (United States)

    Puntarić, Dinko; Vidosavljević, Domagoj; Gvozdić, Vlatka; Puntarić, Eda; Puntarić, Ida; Mayer, Dijana; Bosnir, Jasna; Lasić, Dario; Jergović, Matijana; Klarić, Ivana; Vidosavljević, Marina; Krivdić, Ivancica

    2013-09-01

    Aim of this study was to determine concentration of Pb, Cd, As and Hg in green leafy vegetables and soil in the urban area of Zagreb, Croatia and to determine if there is a connection between the contamination of soil and vegetables. Green leafy vegetables and soil samples were taken from the gardens located in the outskirts of the city. Concentrations of Pb, Cd, As and Hg were determined by atomic absorption spectrometry; showing that average concentrations of metals and metalloids in vegetables and in soil, regardless of the location of sampling were below the maximum allowed concentration (MAC). The analysis determined that metal concentrations in only nine vegetable samples (9%) were above maximum allowed values prescribed by national and European legislation (three with higher concentrations of Pb, one with a higher concentration of Cd and five with higher concentrations of Hg). Concentrations of contaminants present in the analysed samples, in general, are lower than the ones published in similar studies. The final distribution and concentration of contaminants in vegetables of Zagreb, besides industry and traffic, is affected by the dominant wind direction.

  10. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.

    Science.gov (United States)

    Liu, Shijie

    2010-01-01

    The conversion of biomass to chemicals and energy is imperative to sustaining our way of life as known to us today. Fossil chemical and energy sources are traditionally regarded as wastes from a distant past. Petroleum, natural gas, and coal are not being regenerated in a sustainable manner. However, biomass sources such as algae, grasses, bushes and forests are continuously being replenished. Woody biomass represents the most abundant and available biomass source. Woody biomass is a reliably sustainable source of chemicals and energy that could be replenished at a rate consistent with our needs. The biorefinery is a concept describing the collection of processes used to convert biomass to chemicals and energy. Woody biomass presents more challenges than cereal grains for conversion to platform chemicals due to its stereochemical structures. Woody biomass can be thought of as comprised of at least four components: extractives, hemicellulose, lignin and cellulose. Each of these four components has a different degree of resistance to chemical, thermal and biological degradation. The biorefinery concept proposed at ESF (State University of New York - College of Environmental Science and Forestry) aims at incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. The emphasis of this work is on the kinetics of hot-water extraction, filling the gap in the fundamental understanding, linking engineering developments, and completing the first step in the biorefinery processes. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers and acetic acid in the extract are the major components having the greatest potential value for development. Extraction/hydrolysis involves at least 16 general reactions that could

  11. Dendrochronological dating of large woody debris on the example of Morávka River and Černá Opava River

    Directory of Open Access Journals (Sweden)

    Michal Rybníček

    2010-01-01

    Full Text Available Woody debris is an inseparable part of natural river channels. In a river ecosystem it affects the hydraulic, hydrological and morphological properties of the channel, and it is also of a biological significance. However, besides the positive effects, the woody debris can also have a negative impact, e.g. the reduction of the flow profile capacity or the destruction of waterside buildings. With the de­ve­lop­ment of log floating and timber trade, the woody debris started to be removed from the channels. Currently, within the process of stream revitalization, woody debris is being artificially placed into ri­vers. This paper deals with the possible dendrochronological dating of large woody debris (LWD and wood jams in the river channel and the riparian zone. Two sites have been chosen for the research, the Morávka River and the Černá Opava River. These sites have been chosen because of two dif­fe­rent types of riparian stands. The banks of the Morávka River are a soft wood floodplain forest (350 m ASL; the Černá Opava River has stands with nearly a hundred percent proportion of spruce (600 m ASL. The results of the research show that the species with diffuse-porous wood structure are very hard to date on the basis of Pressler borer cores. On the other hand, the sites with softwood species are easi­ly datable, especially if the trunks contain more than 40 tree-rings. At these sites it is possible to use the dendrochronological dating for the establishment of the temporal dynamics of the woody debris input in the river ecosystem.

  12. Woody Debris: Denitrification Hotspots and N2O Production in Fluvial Systems

    Science.gov (United States)

    The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and control nitrous oxide (N2O) production. We examined the effects of ...

  13. Drivers of Global Vegetation Biomass Trends between 1988 and 2008

    KAUST Repository

    McCabe, Matthew; Liu, Yi; Evans, Jason; De Jeu, Richard; van Dijk, Albert

    2013-01-01

    Vegetation optical depth (VOD) is an indicator of the vegetation water content of both woody and leaf components in terrestrial biomass as derived from passive microwave observations. VOD is distinctly different from products derived from optical remote sensing: it is less prone to saturation in dense canopy; is sensitive to both photosynthetic and non-photosynthetic biomass; is less affected by atmospheric conditions; and is of coarser spatial resolution. Here, VOD retrievals from a series of sensors are blended to produce a time series from 1988 through to 2008, and a global analysis is undertaken to quantify and attribute global VOD trends over the same period. We conduct Mann-Kendall linear trend tests on annual average VOD to identify regions of significant change. Patterns for these regions were evaluated against independent datasets to diagnose the underlying cause of the observed trends. Results indicate that: (1) over grassland and shrubland, VOD patterns correspond strongly to temporal precipitation patterns; (2) over croplands, annual average VOD shows a general increase that corresponds to reported crop yield patterns and can be attributed to a combination of precipitation patterns and agricultural improvement; (3) over humid tropical forest, the spatial pattern of VOD decline agrees well with deforestation patterns identified in previous studies; and (4) over boreal forests, regional VOD declines can be attributed to a combination of fires and logging. We conclude that VOD can be used to estimate and interpret global changes in total above ground vegetation biomass. We expect that this new observationally based remote sensing data source will be of considerable interest to hydrological, agricultural, climate change and carbon cycle studies, and provide new insights into these and related process investigations.

  14. Drivers of Global Vegetation Biomass Trends between 1988 and 2008

    KAUST Repository

    McCabe, Matthew

    2013-12-01

    Vegetation optical depth (VOD) is an indicator of the vegetation water content of both woody and leaf components in terrestrial biomass as derived from passive microwave observations. VOD is distinctly different from products derived from optical remote sensing: it is less prone to saturation in dense canopy; is sensitive to both photosynthetic and non-photosynthetic biomass; is less affected by atmospheric conditions; and is of coarser spatial resolution. Here, VOD retrievals from a series of sensors are blended to produce a time series from 1988 through to 2008, and a global analysis is undertaken to quantify and attribute global VOD trends over the same period. We conduct Mann-Kendall linear trend tests on annual average VOD to identify regions of significant change. Patterns for these regions were evaluated against independent datasets to diagnose the underlying cause of the observed trends. Results indicate that: (1) over grassland and shrubland, VOD patterns correspond strongly to temporal precipitation patterns; (2) over croplands, annual average VOD shows a general increase that corresponds to reported crop yield patterns and can be attributed to a combination of precipitation patterns and agricultural improvement; (3) over humid tropical forest, the spatial pattern of VOD decline agrees well with deforestation patterns identified in previous studies; and (4) over boreal forests, regional VOD declines can be attributed to a combination of fires and logging. We conclude that VOD can be used to estimate and interpret global changes in total above ground vegetation biomass. We expect that this new observationally based remote sensing data source will be of considerable interest to hydrological, agricultural, climate change and carbon cycle studies, and provide new insights into these and related process investigations.

  15. Knots Untie: Molecular Determinants Involved in Knot Formation Induced by Pseudomonas savastanoi in Woody Hosts

    Directory of Open Access Journals (Sweden)

    Eloy Caballo-Ponce

    2017-06-01

    Full Text Available The study of the molecular basis of tree diseases is lately receiving a renewed attention, especially with the emerging perception that pathogens require specific pathogenicity and virulence factors to successfully colonize woody hosts. Pathosystems involving woody plants are notoriously difficult to study, although the use of model bacterial strains together with genetically homogeneous micropropagated plant material is providing a significant impetus to our understanding of the molecular determinants leading to disease. The gammaproteobacterium Pseudomonas savastanoi belongs to the intensively studied Pseudomonas syringae complex, and includes three pathogenic lineages causing tumorous overgrowths (knots in diverse economically relevant trees and shrubs. As it occurs with many other bacteria, pathogenicity of P. savastanoi is dependent on a type III secretion system, which is accompanied by a core set of at least 20 effector genes shared among strains isolated from olive, oleander, and ash. The induction of knots of wild-type size requires that the pathogen maintains adequate levels of diverse metabolites, including the phytohormones indole-3-acetic acid and cytokinins, as well as cyclic-di-GMP, some of which can also regulate the expression of other pathogenicity and virulence genes and participate in bacterial competitiveness. In a remarkable example of social networking, quorum sensing molecules allow for the communication among P. savastanoi and other members of the knot microbiome, while at the same time are essential for tumor formation. Additionally, a distinguishing feature of bacteria from the P. syringae complex isolated from woody organs is the possession of a 15 kb genomic island (WHOP carrying four operons and three other genes involved in degradation of phenolic compounds. Two of these operons mediate the catabolism of anthranilate and catechol and, together with another operon, are required for the induction of full-size tumors

  16. Vermicomposting of Vegetable Wastes Using Cow Dung

    Directory of Open Access Journals (Sweden)

    K. Muthukumaravel

    2008-01-01

    Full Text Available Municipal solid wastes are mainly from domestic and commercial areas containing recyclable toxic substances, compostable organic matter and others. With rapid increase in population, the generation of municipal solid wastes has increased several folds during last few years. Disposal of solid wastes can be done by methods like land filling, incineration, recycling, conversion into biogas, disposal into sea and composting. Vermicomposting is one of the recycling technologies which will improve the quality of the products. The present study aims to find out the possibility of utilization of vegetable wastes for vermiculture. Earthworm Megascolex mauritii cultured in plastic trays (45 x 30 x 30 cm containing soil alone (control (T1, soil + cow dung (T2, soil + vegetable waste (T3 and soil + vegetable waste + cow dung (T4 for 60 days. Nutrient values were determined from the compost and compared with that of the control. From these results, it was found that NPK values were maximum in compost obtained from vegetable waste with the use of cow dung.

  17. Estimation for sparse vegetation information in desertification region based on Tiangong-1 hyperspectral image.

    Science.gov (United States)

    Wu, Jun-Jun; Gao, Zhi-Hai; Li, Zeng-Yuan; Wang, Hong-Yan; Pang, Yong; Sun, Bin; Li, Chang-Long; Li, Xu-Zhi; Zhang, Jiu-Xing

    2014-03-01

    In order to estimate the sparse vegetation information accurately in desertification region, taking southeast of Sunite Right Banner, Inner Mongolia, as the test site and Tiangong-1 hyperspectral image as the main data, sparse vegetation coverage and biomass were retrieved based on normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), combined with the field investigation data. Then the advantages and disadvantages between them were compared. Firstly, the correlation between vegetation indexes and vegetation coverage under different bands combination was analyzed, as well as the biomass. Secondly, the best bands combination was determined when the maximum correlation coefficient turned up between vegetation indexes (VI) and vegetation parameters. It showed that the maximum correlation coefficient between vegetation parameters and NDVI could reach as high as 0.7, while that of SAVI could nearly reach 0.8. The center wavelength of red band in the best bands combination for NDVI was 630nm, and that of the near infrared (NIR) band was 910 nm. Whereas, when the center wavelength was 620 and 920 nm respectively, they were the best combination for SAVI. Finally, the linear regression models were established to retrieve vegetation coverage and biomass based on Tiangong-1 VIs. R2 of all models was more than 0.5, while that of the model based on SAVI was higher than that based on NDVI, especially, the R2 of vegetation coverage retrieve model based on SAVI was as high as 0.59. By intersection validation, the standard errors RMSE based on SAVI models were lower than that of the model based on NDVI. The results showed that the abundant spectral information of Tiangong-1 hyperspectral image can reflect the actual vegetaion condition effectively, and SAVI can estimate the sparse vegetation information more accurately than NDVI in desertification region.

  18. Field results for line intersect distance sampling of coarse woody debris

    Science.gov (United States)

    David L. R. Affleck

    2009-01-01

    A growing recognition of the importance of downed woody materials in forest ecosystem processes and global carbon budgets has sharpened the need for efficient sampling strategies that target this resource. Often the aggregate volume, biomass, or carbon content of the downed wood is of primary interest, making recently developed probability proportional-to-volume...

  19. A Plumber's-Eye View of Xylem Water Transport in Woody Plants

    Science.gov (United States)

    Martinez-Vilalta, Jordi; Pinol, Josep

    2004-01-01

    We present a practical for university-level students aimed at measuring and comparing xylem hydraulic properties of co-existing plant species. After sampling branches of several woody species in the field, their main hydraulic properties were measured using a simple set-up. Hydraulic conductivity ("K[subscript h]") was calculated as the ratio…

  20. Invertebrates Associated with Coarse Woody Debris in Streams, Upland Forests, and Wetlands: A Review

    Science.gov (United States)

    A. Braccia; D.P. Batzer

    1999-01-01

    We reviewed literature on the inbvertebrate groups associated with coarse woody debris in forests, streams, and wetlands, and contrasted patterns of invertebrate community development and wood decomposition among ecosystems.

  1. William L Finley - Woody Vegetation Removal

    Data.gov (United States)

    Department of the Interior — The initial project was targeted for ‘hidden prairies’ along Muddy Creek. With the loss of the supervisory biologist position, the focus of this project was changed...

  2. Characterization of Heavy Metals in Vegetables Using Inductive ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... Cauliflower and Onion showed high amount of Pb. On the other hand, Cucumber and Cauliflower registered maximum content of Zn. The heavy metal concentration in vegetables was within the prescribed safety limits except Fe owing to iron-rich soil of the ...

  3. Vegetation history since the last glacial maximum in the Ozark highlands (USA): A new record from Cupola Pond, Missouri

    Science.gov (United States)

    Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.

    2017-01-01

    The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.

  4. Vegetation-induced turbulence influencing evapotranspiration-soil moisture coupling: Implications for semiarid regions

    Science.gov (United States)

    Haghighi, E.; Kirchner, J. W.; Entekhabi, D.

    2016-12-01

    The relationship between soil moisture and evapotranspiration (ET) fluxes is an important component of land-atmosphere interactions controlling hydrology-climate feedback processes. Important as this relationship is, it remains empirical and physical mechanisms governing its dynamics are insufficiently studied. This is particularly of importance for semiarid regions (currently comprising about half of the Earth's land surface) where the shallow surface soil layer is the primary source of ET and direct evaporation from bare soil is likely a large component of the total flux. Hence, ET-soil moisture coupling in these regions is hypothesized to be strongly influenced by soil evaporation and associated mechanisms. Motivated by recent progress in mechanistic modeling of localized heat and mass exchange rates from bare soil surfaces covered by cylindrical bluff-body elements, we developed a physically based ET model explicitly incorporating coupled impacts of soil moisture and vegetation-induced turbulence in the near-surface region. Model predictions of ET and its partitioning were in good agreement with measured data and suggest that the strength and nature of ET-soil moisture interactions in sparsely vegetated areas are strongly influenced by aerodynamic (rather than radiative) forcing namely wind speed and near-surface turbulence generation as a function of vegetation type and cover fraction. The results demonstrated that the relationship between ET and soil moisture varies from a nonlinear function (the dual regime behavior) to a single moisture-limited regime (linear relationship) by increasing wind velocity and enhancing turbulence generation in the near-surface region (small-scale woody vegetation species of low cover fraction). Potential benefits of this study for improving accuracy and predictive capabilities of remote sensing techniques when applied to semiarid environments will also be discussed.

  5. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling.

    Directory of Open Access Journals (Sweden)

    Veronika Braunisch

    Full Text Available In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L. in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1 identified and located the six predominant treeline vegetation types; 2 modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3 simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2 and (3 to 4 locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix, Rhododendron-dominated, Juniperus-dominated and mixed heathland were predicted with high accuracy (AUC >0.9. Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29% would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2% and Alnus viridis (4.8%. The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the

  6. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling.

    Science.gov (United States)

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2016-01-01

    In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1) identified and located the six predominant treeline vegetation types; 2) modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2) and (3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-dominated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29%) would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%) and Alnus viridis (4.8%). The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the spatial

  7. Nesting ecology of grassland birds following a wildfire in the southern Great Plains

    Science.gov (United States)

    Roberts, Anthony J.; Boal, Clint W.; Whitlaw, Heather A.

    2017-01-01

    We studied the response of nesting grassland birds occupying short-grass and mixed-grass prairie sites 2 and 3 y following two, large-scale wildfires that burned ≥360,000 ha in the Texas Panhandle in March 2006. Nest success was greater on burned plots compared to unburned plots, though this varied by species and year. Woody vegetation cover was greater around nests on unburned plots compared to burned plots for Cassin's sparrow (Peucaea cassinii) and lark sparrow (Chondestes grammacus). Cassin's sparrows and lark sparrows nested in more-woody vegetation than did grasshopper sparrows (Ammodramus savannarum), and woody vegetation was reduced following the wildfires. The wildfires appear to have had few if any negative influences on the avian community 3 years postfire. This may be due to grassland breeding birds being adapted to landscapes in which, historically, periodic disturbance (e.g., wildfire, intensive grazing by bison [Bison bison]) resulted in vegetation heterogeneity.

  8. Trees, Shrubs, and Woody Vines of the Bluff Experimental Forest, Warren County, Mississippi

    Science.gov (United States)

    Robert L. Johnson; Elbert L. Little

    1967-01-01

    Nearly 100 species of trees, shrubs, and woody vines grow naturally on the 450-acre Bluff Experimental Forest in west-central Mississippi. This publication lists the plants and provides information on silvical characteristics of the tree species.

  9. Vegetation change and terrestrial carbon storage in eastern Asia during the Last Glacial Maximum as indicated by a new pollen record from central Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Liew, P.M.; Kuo, C.M.; Huang, S.Y.; Tseng, M.H. [Geological Department, National Taiwan Univ. 245, Chou-shan Rd., Taipei (Taiwan, Province of China)

    1998-05-01

    Last Glacial Maximum (LGM) carbon storage in eastern Asia is a key issue for understanding the sinks and sources of paleocarbon. Palynological data with good time constraint for the LGM in a peat bog from a site at 650 m above mean sea level in central Taiwan, together with data from low-lying deltaic and basin deposits of Taiwan and South China, increase our understanding about vegetational evolution and possible terrestrial carbon storage in this area and probably eastern Asia. Contrasting to today`s Machilus-Castanopsis forest zone around the peat bog, the vegetation before the LGM was dominated by Alnus, a relatively xerophytic element in Taiwan. An increase in herbs and decrease in spores during the LGM is recognized when compared with Holocene and modern assemblages. A less humid interval dominated by herbs (>50%) occurred between 21 and 15.8 ka. Basin deposits in northern Taiwan and deltaic deposits in central Taiwan show that during the LGM Artemisia, Umbelliferae and Gramineae were the main components contrasting with the Pinus or Cyclobalanopsis-dominant assemblages in the rest of the last glacial. Thus, less humid conditions lasted about 5000 to 6000 years in the LGM even on this very humid island. This may also be true in eastern Asia where a large area of the widely exposed continental shelf may have been occupied by grasslands and the uplands of South China were occupied by less dense coniferous or temperate forests during the LGM in contrast to the modern subtropical forest. This scenario improves our understanding of the terrestrial paleocarbon storage

  10. Vegetation change and terrestrial carbon storage in eastern Asia during the Last Glacial Maximum as indicated by a new pollen record from central Taiwan

    Science.gov (United States)

    Liew, P. M.; Kuo, C. M.; Huang, S. Y.; Tseng, M. H.

    1998-05-01

    Last Glacial Maximum (LGM) carbon storage in eastern Asia is a key issue for understanding the sinks and sources of paleocarbon. Palynological data with good time constraint for the LGM in a peat bog from a site at 650 m above mean sea level in central Taiwan, together with data from low-lying deltaic and basin deposits of Taiwan and South China, increase our understanding about vegetational evolution and possible terrestrial carbon storage in this area and probably eastern Asia. Contrasting to today's Machilus-Castanopsis forest zone around the peat bog, the vegetation before the LGM was dominated by Alnus, a relatively xerophytic element in Taiwan. An increase in herbs and decrease in spores during the LGM is recognized when compared with Holocene and modern assemblages. A less humid interval dominated by herbs (>50%) occurred between 21 and 15.8 ka. Basin deposits in northern Taiwan and deltaic deposits in central Taiwan show that during the LGM Artemisia, Umbelliferae and Gramineae were the main components contrasting with the Pinus or Cyclobalanopsis-dominant assemblages in the rest of the last glacial. Thus, less humid conditions lasted about 5000 to 6000 years in the LGM even on this very humid island. This may also be true in eastern Asia where a large area of the widely exposed continental shelf may have been occupied by grasslands and the uplands of South China were occupied by less dense coniferous or temperate forests during the LGM in contrast to the modern subtropical forest. This scenario improves our understanding of the terrestrial paleocarbon storage.

  11. Transpirational drying and costs for transporting woody biomass - a preliminary review

    Science.gov (United States)

    Bryce J. Stokes; Bryce J. McDonaStokes; Timothy P. McDonald; Tyrone Kelley

    1993-01-01

    High transport costs arc a factor to consider in the use of forest residues for fuel. Costs can be reduced by increasing haul capacities, reducing high moisture contents, and improving trucking efficiency. The literature for transpirational drying and the economics of hauling woody biomass is summarized here. Some additional, unpublished roundwood and chipdrying test...

  12. The toughness of secondary cell wall and woody tissue

    OpenAIRE

    Lucas, P. W.; Tan, H. T. W.; Cheng, P. Y.

    1997-01-01

    The 'across grain' toughness of 51 woods has been determined on thin wet sections using scissors. The moisture content of sections and the varying sharpness of the scissor blades had little effect on the results. In thin sections (less than 0.6mm), toughness rose linearly with section thickness. The intercept toughness at zero thickness, estimated from regression analysis, was proportional to relative density, consistent with values reported for non-woody plant tissues. Extrapolation of the i...

  13. Juice blends--a way of utilization of under-utilized fruits, vegetables, and spices: a review.

    Science.gov (United States)

    Bhardwaj, Raju Lal; Pandey, Shruti

    2011-07-01

    The post-harvest shelf life of maximum of fruits and vegetables is very limited due to their perishable nature. In India more then 20-25 percent of fruits and vegetables are spoiled before utilization. Despite being the world's second largest producer of fruits and vegetables, in India only 1.5 percent of the total fruits and vegetables produced are processed. Maximum amounts of fruit and vegetable juices turn bitter after extraction due to conversion of chemical compounds. In spite of being under utilized, the utilization of highly nutritive fruits and vegetables is very limited due to high acidity, astringency, bitterness, and some other factors. While improving flavor, palatability, and nutritive and medicinal value of various fruit juices such as aonla, mango, papaya, pineapple, citrus, ber, pear, apple, watermelon, and vegetables including bottle gourd, carrot, beet root, bitter gourd, medicinal plants like aloe vera and spices can also be used for juice blending. All these natural products are valued very highly for their refreshing juice, nutritional value, pleasant flavor, and medicinal properties. Fruits and vegetables are also a rich source of sugars, vitamins, and minerals. However, some fruits and vegetables have an off flavor and bitterness although they are an excellent source of vitamins, enzymes, and minerals. Therefore, blending of two or more fruit and vegetable juices with spices extract for the preparation of nutritive ready-to-serve (RTS), beverages is thought to be a convenient and economic alternative for utilization of these fruits and vegetables. Moreover, one could think of a new product development through blending in the form of a natural health drink, which may also serve as an appetizer. The present review focuses on the blending of fruits, under-utilized fruits, vegetables, medicinal plants, and spices in appropriate proportions for the preparation of natural fruit and vegetable based nutritive beverages.

  14. Descriptive sensory analysis of marinated and non-marinated woody breast fillet portions

    Science.gov (United States)

    The woody breast (WB) myopathy influences muscle composition and texture characteristics in broiler breast meat. It is unknown if marination lessens the negative influence of WB on meat quality or if WB effects are uniform throughout the Pectoralis major. The objective of this study was to determi...

  15. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils

    NARCIS (Netherlands)

    Magnússon, R.Í.; Tietema, A.; Cornelissen, J.H.C.; Hefting, M.M.; Kalbitz, K.

    2016-01-01

    Worldwide, forests have absorbed around 30% of global anthropogenic emissions of carbon dioxide (CO2) annually, thereby acting as important carbon (C) sinks. It is proposed that leaving large fragments of dead wood, coarse woody debris (CWD), in forest ecosystems may contribute to the forest C sink

  16. Modeling and Optimization of Woody Biomass Harvest and Logistics in the Northeastern United States

    Science.gov (United States)

    Hartley, Damon S.

    World energy consumption is at an all-time high and is projected to continue growing for the foreseeable future. Currently, much of the energy that is produced comes from non-renewable fossil energy sources, which includes the burden of increased greenhouse gas emissions and the fear of energy insecurity. Woody biomass is being considered as a material that can be utilized to reduce the burden caused by fossil energy. While the technical capability to convert woody biomass to energy has been known for a long period of time, the cost of the feedstock has been considered too costly to be implemented in a large commercial scale. Increasing the use of woody biomass as an energy source requires that the supply chains are setup in a way that minimizes cost, the locational factors that lead to development are understood, the facilities are located in the most favorable locations and local resource assessments can be made. A mixed integer linear programming model to efficiently configure woody biomass supply chain configurations and optimize the harvest, extraction, transport, storage and preprocessing of the woody biomass resources to provide the lowest possible delivered price. The characteristics of woody biomass, such as spatial distribution and low bulk density, tend to make collection and transport difficult as compared to traditional energy sources. These factors, as well as others, have an adverse effect on the cost of the feedstock. The average delivered cost was found to be between 64.69-98.31 dry Mg for an annual demand of 180,000 dry Mg. The effect of resource availability and required demand was examined to determine the impact that each would have on the total cost. The use of woody biomass for energy has been suggested as a way to improve rural economies through job creation, reduction of energy costs and regional development. This study examined existing wood using bio-energy facilities in the northeastern United States to define the drivers of

  17. Effect of downed woody debris on small mammal anti-predator behavior

    Science.gov (United States)

    Travis M. Hinkelman; John L. Orrock; Susan C Loeb

    2011-01-01

    Anti-Predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs, but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used giving-up densities to quantify...

  18. Controlling coarse woody debris inventory quality: taper and relative size methods

    Science.gov (United States)

    C.W. Woodall; J.A. Westfall

    2008-01-01

    Accurately measuring the dimensions of coarse woody debris (CWD) is critical for ensuring the quality of CWD estimates and, hence, for accurately estimating forest ecosystem attributes (e.g., CWD carbon stocks). To improve the quality of CWD dimensional measurements, the distribution of taper (ratio of change in diameter and length) and relative size (RS; ratio of...

  19. Vest-Woodi müük lisab globaalsust / Aarne Mäe

    Index Scriptorium Estoniae

    Mäe, Aarne, 1967-

    2005-01-01

    Vest-Wood Grupi omanikfirma Door Holding ja ameeriklaste Jeld-Wen jõudsid kokkuleppele Euroopa suurima uksetootja ning turustja Vest-Woodi müügi suhtes. Plaanide kohaselt jätkab ettevõte iseseisvat tegutsemist, kasutades seniseid tootebrände ning peakontor jääb Taani Logstorisse. Vt. samas: Firma müük Rakvere tehasele muudatusi ei too

  20. Relationship of coarse woody debris to arthropod Availability for Red-Cockaded Woodpeckers and other bark-foraging birds on loblolly pine boles.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.

    2008-04-01

    Abstract This study determined if short-term removal of coarse woody debris would reduce prey available to red-cockaded woodpeckers (Picoides borealis Vieillot) and other bark-foraging birds at the Savannah River Site in Aiken and Barnwell counties, SC. All coarse woody debris was removed from four 9-ha plots of mature loblolly pine (Pinus taeda L.) in 1997 and again in 1998. We sampled arthropods in coarse woody debris removal and control stands using crawl traps that captured arthropods crawling up tree boles, burlap bands wrapped around trees, and cardboard panels placed on the ground. We captured 27 orders and 172 families of arthropods in crawl traps whereas 20 arthropod orders were observed under burlap bands and cardboard panels. The most abundant insects collected from crawl traps were aphids (Homoptera: Aphididae) and ants (Hymenoptera: Forrnicidae). The greatest biomass was in the wood cockroaches (Blattaria: Blattellidae), caterpillars (Lepidoptera) in the Family Noctuidae, and adult weevils (Coleoptera: Curculionidae). The most common group observed underneath cardboard panels was lsoptera (termites), and the most common taxon under burlap bands was wood cockroaches. Overall, arthropod abundance and biomass captured in crawl traps was similar in control and removal plots. In contrast, we observed more arthropods under burlap bands (mean & SE; 3,021.5 k 348.6, P= 0.03) and cardboard panels (3,537.25 k 432.4, P= 0.04) in plots with coarse woody debris compared with burlap bands (2325 + 171.3) and cardboard panels (2439.75 + 288.9) in plots where coarse woody debris was removed. Regression analyses showed that abundance beneath cardboard panels was positively correlated with abundance beneath burlap bands demonstrating the link between abundance on the ground with that on trees. Our results demonstrate that short-term removal of coarse woody debris from pine forests reduced overall arthropod availability to bark-foraging birds.

  1. Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data

    Science.gov (United States)

    Higginbottom, Thomas P.; Symeonakis, Elias; Meyer, Hanna; van der Linden, Sebastian

    2018-05-01

    Increasing attention is being directed at mapping the fractional woody cover of savannahs using Earth-observation data. In this study, we test the utility of Landsat TM/ ETM-based spectral-temporal variability metrics for mapping regional-scale woody cover in the Limpopo Province of South Africa, for 2010. We employ a machine learning framework to compare the accuracies of Random Forest models derived using metrics calculated from different seasons. We compare these results to those from fused Landsat-PALSAR data to establish if seasonal metrics can compensate for structural information from the PALSAR signal. Furthermore, we test the applicability of a statistical variable selection method, the recursive feature elimination (RFE), in the automation of the model building process in order to reduce model complexity and processing time. All of our tests were repeated at four scales (30, 60, 90, and 120 m-pixels) to investigate the role of spatial resolution on modelled accuracies. Our results show that multi-seasonal composites combining imagery from both the dry and wet seasons produced the highest accuracies (R2 = 0.77, RMSE = 9.4, at the 120 m scale). When using a single season of observations, dry season imagery performed best (R2 = 0.74, RMSE = 9.9, at the 120 m resolution). Combining Landsat and radar imagery was only marginally beneficial, offering a mean relative improvement of 1% in accuracy at the 120 m scale. However, this improvement was concentrated in areas with lower densities of woody coverage (continue to exploit the Landsat archive, but should aim to use multi-seasonal derived information. When the coarser 120 m pixel scale is adequate, integration of Landsat and SAR data should be considered, especially in areas with lower woody cover densities. The use of multiple seasonal compositing periods offers promise for large-area mapping of savannahs, even in regions with a limited historical Landsat coverage.

  2. Survival, reproduction, and recruitment of woody plants after 14 years on a reforested landfill

    Science.gov (United States)

    Robinson, George R.; Handel, Steven N.; Schmalhofer, Victoria R.

    1992-03-01

    With the advent of modern sanitary landfill closure techniques, the opportunity exists for transforming municipal landfills into urban woodlands. While costs of fullscale reforestation are generally prohibitive, a modest planting of clusters of trees and shrubs could initiate or accelerate population expansions and natural plant succession from open field to diverse forest. However, among woody species that have been screened for use on landfills, these ecological potentials have not yet been investigated. We examined a 14-yr-old landfill plantation in New Jersey, USA, established to test tolerance of 19 species of trees and shrubs to landfill environments. We measured survivorship, reproduction, and recruitment within and around the experimental installation. Half of the original 190 plants were present, although survival and growth rates varied widely among species. An additional 752 trees and shrubs had colonized the plantation and its perimeter, as well as 2955 stems of vines. However, the great majority (>95%) of woody plants that had colonized were not progeny of the planted cohort, but instead belonged to 18 invading species, mostly native, bird-dispersed, and associated with intermediate stages of secondary plant succession. Based on this evidence, we recommend that several ecological criteria be applied to choices of woody species for the restoration of municipal landfills and similar degraded sites, in order to maximize rapid and economical establishment of diverse, productive woodlands.

  3. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    Science.gov (United States)

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  4. A Computer-Based Simulation for Teaching Heat Transfer across a Woody Stem

    Science.gov (United States)

    Maixner, Michael R.; Noyd, Robert K.; Krueger, Jerome A.

    2010-01-01

    To assist student understanding of heat transfer through woody stems, we developed an instructional package that included an Excel-based, one-dimensional simulation model and a companion instructional worksheet. Guiding undergraduate botany students to applying principles of thermodynamics to plants in nature is fraught with two main obstacles:…

  5. Alkaline hemp woody core pulping : impregnation characteristics, kinetic modelling and papermaking qualities

    NARCIS (Netherlands)

    Groot, de B.

    1998-01-01

    The aim of this thesis is to elucidate alkaline processing of hemp woody core, supporting the development and optimization of an efficient and non-polluting pulping process. This study has been a constituent of an integral programme to study fibre hemp.

    It is known that

  6. Relative role of contemporary environment versus history in shaping diversity patterns of China's woody plants

    DEFF Research Database (Denmark)

    Wang, Zhiheng; Fang, Jingyun; Tang, Zhiyao

    2012-01-01

    What determines large-scale patterns of species diversity is a central and controversial topic in biogeography and ecology. In this study, we compared the effects of contemporary environment and historical contingencies on species richness patterns of woody plants in China, using fine-resolution ......-plant species richness across China, while historical contingencies generate regional deviations from this trend. Our findings imply that both species diversity and regional evolutionary and ecological histories should be taken into account for future nature conservation......., and the Tibetan Plateau, perhaps reflecting their special geological features and history. Nevertheless, partial regression indicated that historical effects were less important relative to contemporary environment. In conclusion, contemporary environment (notably climate) determines the general trend in woody...

  7. On the global relationships between photosynthetic water-use efficiency, leaf mass per unit area and atmospheric demand in woody and herbaceous plants

    Science.gov (United States)

    Letts, M. G.; Fox, T. A.; Gulias, J.; Galmes, J.; Hikosaka, K.; Wright, I.; Flexas, J.; Awada, T.; Rodriguez-Calcerrada, J.; Tobita, H.

    2013-12-01

    A global dataset was compiled including woody and herbaceous C3 species from forest, Mediterranean and grassland-shrubland ecosystems, to elucidate the dependency of photosynthetic water-use efficiency on vapour pressure deficit (D) and leaf traits. Mean leaf mass per unit area (LMA) was lower and mass-based leaf nitrogen content (Nmass) was higher in herbaceous species. Higher mean stomatal conductance (gs), transpiration rate (E) and net CO2 assimilation rate under light saturating conditions (Amax) were observed in herbs, but photosynthetic and intrinsic water-use efficiencies (WUE = Amax/E and WUEi = Amax/gs) were lower than in woody plants. Woody species maintained stricter stomatal regulation of water loss at low D, resulting in a steeper positive and linear relationship between log D and log E. Herbaceous species possessed very high gs at low D, resulting in higher ratio of substomatal to atmospheric CO2 concentrations (ci/ca) and E, but lower WUE and WUEi than woody plants, despite higher Amax. The lower WUE and higher rates of gas exchange were most pronounced in herbs with low LMA and high Nmass. Photosynthetic water use also differed between species from grassland-shrubland and Mediterranean or forest environments. Water-use efficiency showed no relationship with either D or LMA in grassland-shrubland species, but showed a negative relationship with D in forest and chaparral. The distinct photosynthetic water-use of woody and herbaceous plants is consistent with the opportunistic growth strategy of herbs and the more conservative growth strategy of woody species. Further research is recommended to examine the implications of these functional group and ecosystem differences in the contexts of climate and atmospheric change.

  8. Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.N.; Zeng, D.H.; Chen, F.S. [Chinese Academy of Science, Shenyang (China). Inst. of Applied Ecology

    2005-07-01

    Total concentration of heavy metals (Cd, Cr, Cu, Fe, Pb, Ni, Mn and Zn) was estimated in the redeveloping soil of mine spoil under 5-yr old plantations of four woody species namely: Albizia lebbeck, Albizia procera, Tectona grandis and Dendrocalamus strictus. The data recorded in the present study were compared with other unplanted coal mine spoil colliery, which was around to the study site and adjoining area of dry tropical forest. Among all the heavy metals, the maximum concentration was found for Fe and minimum for Cd. However, among all four species, total concentrations of these heavy metals were recorded maximally in the plantation plots of T. grandis except for Fe, while minimally in A. lebbeck except for Zn, whereas, the maximum concentration of Fe and Zn was in the plantation plots of D. strictus and A. procera. Statistical analysis revealed significant differences due to species for all the heavy metals except Cu. Among four species, A. lebbeck, A. procera and D. strictus showed more efficient for reducing heavy metal concentrations whereas T. grandis was not more effective to reduce heavy metal concentrations in redeveloping soil of mine spoil.

  9. Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India.

    Science.gov (United States)

    Singh, Anand N; Zeng, De-hui; Chen, Fu-sheng

    2005-01-01

    Total concentration of heavy metals (Cd, Cr, Cu, Fe, Pb, Ni, Mn and Zn) was estimated in the redeveloping soil of mine spoil under 5-yr old plantations of four woody species namely: Albizia lebbeck, Albizia procera, Tectona grandis and Dendrocalamus strictus. The data recorded in the present study were compared with other unplanted coal mine spoil colliery, which was around to the study site and adjoining area of dry tropical forest. Among all the heavy metals, the maximum concentration was found for Fe and minimum for Cd. However, among all four species, total concentrations of these heavy metals were recorded maximally in the plantation plots of T. grandis except for Fe, while minimally in A. lebbeck except for Zn, whereas, the maximum concentration of Fe and Zn was in the plantation plots of D. strictus and A. procera. Statistical analysis revealed significant differences due to species for all the heavy metals except Cu. Among four species, A. lebbeck, A. procera and D. strictus showed more efficient for reducing heavy metal concentrations whereas T. grandis was not more effective to reduce heavy metal concentrations in redeveloping soil of mine spoil.

  10. Evaluation of Production and Carbon Benefit of Different Vegetables

    Directory of Open Access Journals (Sweden)

    HU Liang

    2016-01-01

    Full Text Available This study analyzed environmental and economic benefits of 8 types of vegetables in 4 different farms over 3 years. The specific results were as follows:(1The input-output ratio and carbon footprint of organic production mode was 18.5% and 87.4% of that of pollution-free mode, respectively; (2Fertilizer and power consumption was the main source of carbon emissions, accounting for 58.76% and 16.67% of total carbon emissions, respectively; (3There were positive correlations between N fertilizer and both carbon emissions and carbon footprint. In other words, higher use of N fertilizer resulted in higher carbon emissions and carbon footprint; (4 When organic fertilizers use reached 122 352 kg·hm-2, the crop production could reach the maximum under organic mode. Under the mode of pollution-free production, when agricultural chemicals input reached 20 103 yuan·hm-2, leafy vegetable production could reach the maximum. Therefore, to increase production and reduce carbon emissions in the process of vegetable production, the main approach was to use organic mode, increase the quantity of organic fertilizer, instead of the use of inorganic N fertilizer and other agricultural chemicals and establish water-saving irrigation system for electricity efficiency.

  11. Regenerating Longleaf Pine on Hydric Soils: Short- and Long-term Effects on Native Ground-Layer Vegetation

    Science.gov (United States)

    2009-06-16

    was completed in August 2003. The chop treatment was done with a 2.4 m Lucas Drum Chopper, pulled by a TD15 Dresser crawler tractor (Cohen and... crossing in the middle of the plot. A total of 600 pyrometers (25 x 8 treatments x 3 blocks) were installed. In this report the data generated...Hypericum hypericoides St. Andrew’s cross woody/woody hyphyp Hypericum reductum Atlantic St. Johnswort woody/woody hypred Hypericum spp. St

  12. The role of large woody debris in modulating the dispersal of a post-fire sediment pulse

    Science.gov (United States)

    Short, Lauren E.; Gabet, Emmanuel J.; Hoffman, Daniel F.

    2015-10-01

    In 2001, a series of post-fire debris flows brought 30,000 m3 of sediment, deposited as fans, to the narrow valley floor of Sleeping Child Creek in western Montana (USA). In 2005, pebble-counts and surveys of the channel in proximity to six of the debris flow fans documented a regular sequence of fine-grained aggradation upstream of the fans, incision through the fans, and coarse-grained aggradation downstream of the fans. These measurements were repeated in 2012. We found that the delivery of large woody debris (LWD) over the intervening 7 years has been a dominant factor in the disposition of the debris-flow material. The amount of LWD in the study reach has increased by as much as 50% in the areas with a high burn severity, leading to the formation of large logjams that interrupt the flow of sediment along the streambed. Nearly all of the surveyed reaches have aggraded since 2005, including those that had initially begun incising through the debris flow deposits, and the streambed has become generally finer. We hypothesize that, over the next few decades, debris flow sediment not colonized and anchored by riparian vegetation will trickle out of the affected reaches as the logjams slowly degrade.

  13. Woody crops conference 2013; Agrarholz-Kongress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Within the Guelzow expert discussions at 19th and 20th February 2013 in Berlin (Federal Republic of Germany) the following lectures were held: (1) Research funding of the BMELV in the field of the production of woody crops (Andreas Schuette); (2) ELKE - Development of extensive concepts of land use for the production of renewable raw materials as possible compensatory measures and substitute measures (Frank Wegener); (3) Knowledge transfer to the realm of practice, experiences of the DLG (Frank Setzer); (4) Results of the tests with fast growing tree species after 18 years of cultivation in Guelzow (Andreas Gurgel); (5) Latest findings on the production of woody crops in Brandenburg (D. Murach); (6) Phytosanitary situation in short-rotation coppices in Germany - Current state of knowledge and prognoses for the future (Christiane Helbig); (7) Evaluation of alternative delivery procedures in short-rotation coppices (Janine Schweier); (8) With a short-rotation coppice shredder through Germany (Wolfram Kudlich); (9) Changes of land-use of traditional crops rotation systems to short-rotation coppices consisting of poplar trees and willow trees, which sites are suitable? - Selected results from the ProLoc association (Martin Hofmann); (10) Cultivation of populus tremula for short-rotation coppices at agricultural areas (Mirko Liesebach); (11) Investigations of the resistance behaviour of newly developed black poplar clones and balsam poplar clones against the poplar leave rust Melampsora larici-populina (Christina Fey-Wagner); (12) A agri-forestry system for ligneous energy production in the organic farming - First results from cultivation experiments in Bavaria (Klaus Wiesinger); (13) Implementation of agri-forestry systems with energy wood in the rural area - the project AgroForstEnergie (Armin Vetter); (14) Impact of agroforestry land utilization on microclimate, soil fertility and quality of water (Christian Boehm).

  14. Woody plant diversity in sacred forests and fallows in Chiang Mai, Thailand

    DEFF Research Database (Denmark)

    Junsongduang, A.; Balslev, Henrik; Jampeetong, Arunothai

    2014-01-01

    All woody plant and seedling diversity was compared in a Karen and a Lawa hill-tribe village in northern Thailand in four different habitats: sacred forests and fallow fields of three ages derived from rotational shifting cultivation (young fallows, 1–2 years old; medium-age fallow, 3-4 years old...

  15. Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna

    Directory of Open Access Journals (Sweden)

    Victor Onyango Odipo

    2016-11-01

    volume scattering of woody vegetation along river valleys and streams. The AGB change analysis showed 32 ha (3.5% of the 900 ha experienced AGB loses above an average of 5 t/ha per annum, which can mainly be attributed to the falling of trees by mega herbivores such as elephants. The study concludes that SAR data, especially L-band SAR, can be used in the detection of small changes in savanna vegetation over time.

  16. Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?

    Directory of Open Access Journals (Sweden)

    E. M. Veenendaal

    2015-05-01

    Full Text Available Through interpretations of remote-sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands located mostly within zones of transition (where both vegetation types occur in close proximity in Africa, South America and Australia. Woody plant leaf area index variation was related to tree canopy cover in a similar way for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the relative contribution of middle and lower strata of woody vegetation. Herbaceous layer cover declined as woody cover increased. This pattern of understorey grasses and herbs progressively replaced by shrubs as the canopy closes over was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna–forest-species discontinuum is observed compared to that inferred when trees of a basal diameter > 0.1 m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy-cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater amount of above-ground biomass than in South America. Up to three times as much above-ground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna–forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, consistent across all three

  17. Growth and foliar nitrogen concentrations of interplanted native woody legumes and pecan

    Science.gov (United States)

    J.W. Van Sambeek; Nadia E. Navarrete-Tindall; Kenneth L. Hunt

    2008-01-01

    The interplanting and underplanting of nodulated nitrogen-fixing plants in tree plantings can increase early growth and foliage nitrogen content of hardwoods, especially black walnut and pecan. Recent studies have demonstrated that some non-nodulated woody legumes may be capable of fixing significant levels of atmospheric nitrogen. The following nine nurse crop...

  18. Automated detection of branch dimensions in woody skeletons of leafless fruit tree canopies

    NARCIS (Netherlands)

    Bucksch, A.; Fleck, S.

    2009-01-01

    Light driven physiological processes of tree canopies need to be modelled based on detailed 3Dcanopy structure – we explore the possibilities offered by terrestrial LIDAR to automatically represent woody skeletons of leafless trees as a basis for adequate models of canopy structure. The automatic

  19. Assessing vegetation structure and ANPP dynamics in a grassland-shrubland Chihuahuan ecotone using NDVI-rainfall relationships

    Science.gov (United States)

    Moreno-de las Heras, M.; Diaz-Sierra, R.; Turnbull, L.; Wainwright, J.

    2015-01-01

    Climate change and the widespread alteration of natural habitats are major drivers of vegetation change in drylands. A classic case of vegetation change is the shrub-encroachment process that has been taking place over the last 150 years in the Chihuahuan Desert, where large areas of grasslands dominated by perennial grass species (black grama, Bouteloua eriopoda, and blue grama, B. gracilis) have transitioned to shrublands dominated by woody species (creosotebush, Larrea tridentata, and mesquite, Prosopis glandulosa), accompanied by accelerated water and wind erosion. Multiple mechanisms drive the shrub-encroachment process, including exogenous triggering factors such as precipitation variations and land-use change, and endogenous amplifying mechanisms brought about by soil erosion-vegetation feedbacks. In this study, simulations of plant biomass dynamics with a simple modelling framework indicate that herbaceous (grasses and forbs) and shrub vegetation in drylands have different responses to antecedent precipitation due to functional differences in plant growth and water-use patterns, and therefore shrub encroachment may be reflected in the analysis of landscape-scale vegetation-rainfall relationships. We analyze the structure and dynamics of vegetation at an 18 km2 grassland-shrubland ecotone in the northern edge of the Chihuahuan Desert (McKenzie Flats, Sevilleta National Wildlife Refuge, NM, USA) by investigating the relationship between decade-scale (2000-2013) records of medium-resolution remote sensing of vegetation greenness (MODIS NDVI) and precipitation. Spatial evaluation of NDVI-rainfall relationship at the studied ecotone indicates that herbaceous vegetation shows quick growth pulses associated with short-term (previous 2 months) precipitation, while shrubs show a slow response to medium-term (previous 5 months) precipitation. We use these relationships to (a) classify landscape types as a function of the spatial distribution of dominant vegetation

  20. Comparison of vitrified and unvitrified Eocene woody tissues by TMAH thermochemolysis – implications for the early stages of the formation of vitrinite

    Directory of Open Access Journals (Sweden)

    Huggett William W

    2006-10-01

    Full Text Available Abstract Samples of vitrified and unvitrified Eocene woody plant tissues collected from the Fossil Forest site, Geodetic Hills, Axel Heiberg Island, have been characterized by TMAH thermochemolysis. All samples are gymnosperm-derived, are of very low maturity and all share the same post-depositional geologic history. Differences in the distributions of products observed from vitrified and unvitrified samples suggest that vitrification of woody tissue is associated with modification of the lignin C3 side chain, following loss of all or most of the carbohydrate present in the precursor woody tissues. The key driver of vitrification appears to be physical compression of the tissue following biological removal of cellulosic materials.

  1. Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen)

    Science.gov (United States)

    Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello

    2013-01-01

    Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.

  2. Effect of Phosphate levels on vegetables irrigated with wastewater

    Science.gov (United States)

    Oladeji, S. O.; Saeed, M. D.

    2018-04-01

    This study examined accumulation of phosphate ions in wastewater and vegetables through man-made activities. Phosphate level was determined in wastewater and vegetables collected on seasonal basis along Kubanni stream in Zaria using UV/Visible and Smart Spectro Spectrophotometers for their analyses. Results obtained show that phosphate concentrations ranged from 3.85 – 42.33 mg/L in the first year and 15.60 – 72.80 mg/L in the second year for wastewater whereas the vegetable had levels of 3.80 – 23.65 mg/kg in the year I and 7.48 – 27.15 mg/kg in the year II. Further statistical tests indicated no significant difference in phosphate levels across the locations and seasons for wastewater and vegetables evaluated. Correlation results for these two years indicated negative (r = -0.062) relationship for wastewater while low (r = 0.339) relationship noticed for vegetables planted in year I to that of year II. Phosphate concentrations obtained in this study was higher than Maximum Contaminant Levels set by Standard Organization such as WHO and FAO for wastewater whereas vegetables of the sampling sites were not contaminated with phosphate ions. Irrigating farmland with untreated wastewater has negative consequence on the crops grown with it.

  3. FY 1998 report on the results of R and D projects by local consortiums for immediate effects. Development of woody ceramics and application to building parts; 1998 nendo woody ceramics no sosei to kenchiku buzai nado eno oyo seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D project has been implemented for developing materials for, e.g., light, highly heat-insulating and energy-saving type building parts (e.g., roofing tiles and tiles), and light tableware having warmness of wood. The stock materials for china and porcelain, roofing tile clay, tiles and cement are dispersed with hollow microcapsules as the filler, which are of glassy balloons thermally treated to be highly functional, in order to develop superlight, highly heat insulating and high-strength materials. For development of the woody ceramic materials, the microcapsules are investigated for size, thickness, thermal shrinkage, fusibility, compressive stress, reinforcing mechanisms, and monodispersibility. Also investigated are optimization of material formability, development of commercial ceramics and evaluation of their marketability, decoration techniques, antimicrobial membrane materials and their immobilization techniques, development of antimicrobial ceramic tiles, evaluation of the antimicrobial membranes, evaluation of resistance to microwaves, and so on. The efforts are also directed to researches on fundamental techniques for woody tile clay, and R and D of the application techniques and products of the woody cement. (NEDO)

  4. Forest operations and woody biomass logistics to improve efficiency, value, and sustainability

    Science.gov (United States)

    Nathaniel Anderson; Dana Mitchell

    2016-01-01

    This paper reviews the most recent work conducted by scientists and engineers of the Forest Service of the US Department of Agriculture (USDA) in the areas of forest operations and woody biomass logistics, with an emphasis on feedstock supply for emerging bioenergy, biofuels, and bioproducts applications. This work is presented in the context of previous...

  5. Case studies on sugar production from underutilized woody biomass using sulfite chemistry

    Science.gov (United States)

    J.Y. Zhu; M. Subhosh Chandra; Roland Gleisner; William Gilles; Johnway Gao; Gevan Marrs; Dwight Anderson; John Sessions

    2015-01-01

    We examined two case studies to demonstrate the advantages of sulfite chemistry for pretreating underutilized woody biomass to produce sugars through enzymatic saccharification. In the first case study, we evaluated knot rejects from a magnesium-basedsulfite mill for direct enzymatic sugar production.We found that the sulfite mill rejects are an excellent feedstock for...

  6. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    Science.gov (United States)

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  7. 75 FR 76695 - Request for Proposals for 2011 Woody Biomass Utilization Grant Program

    Science.gov (United States)

    2010-12-09

    ... from forest restoration activities, such as wildfire hazardous fuel treatments, insect and disease... INFORMATION: To address the goals of Public Law 110-234, Food, Conservation, and Energy Act of 2008, Rural... are: Promote projects that target and help remove economic and market barriers to using woody biomass...

  8. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar

    Science.gov (United States)

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632

  9. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    Directory of Open Access Journals (Sweden)

    Sumalika Biswas

    Full Text Available Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas and woody savannas (non-protected areas. The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  10. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    Science.gov (United States)

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  11. Simulating sub-Milankovitch climate variations associated with vegetation dynamics

    Directory of Open Access Journals (Sweden)

    E. Tuenter

    2007-01-01

    Full Text Available Climate variability at sub-Milankovitch periods (between 2 and 15 kyr is studied in a set of transient simulations with a coupled atmosphere/ocean/vegetation model of intermediate complexity (CLIMBER-2. Focus is on the region influenced by the African and Asian summer monsoon. Pronounced variations at periods of about 10 kyr (Asia and Africa and about 5 kyr (Asia are found in the monsoonal runoff in response to the precessional forcing. In the model this is due to the following mechanism. For low summer insolation (precession maximum precipitation is low and desert expands at the expense of grass, while for high insolation (precession minimum precipitation is high and the tree fraction increases also reducing the grass fraction. This induces sub-Milankovitch variations in the grass fraction and associated variations in the water holding capacity of the soil. The runoff does not exhibit sub-Milankovitch variability when vegetation is kept fixed. High-latitude vegetation also exhibits sub-Milankovitch variability under both obliquity and precessional forcing. We thus hypothesize that sub-Milankovitch variability can occur due to the dynamic response of the vegetation. However, this mechanism should be further tested with more sophisticated climate/vegetation models.

  12. Identification of putative orthologous genes for the phylogenetic reconstruction of temperate woody bamboos (Poaceae: Bambusoideae).

    Science.gov (United States)

    Zhang, Li-Na; Zhang, Xian-Zhi; Zhang, Yu-Xiao; Zeng, Chun-Xia; Ma, Peng-Fei; Zhao, Lei; Guo, Zhen-Hua; Li, De-Zhu

    2014-09-01

    The temperate woody bamboos (Arundinarieae) are highly diverse in morphology but lack a substantial amount of genetic variation. The taxonomy of this lineage is intractable, and the relationships within the tribe have not been well resolved. Recent studies indicated that this tribe could have a complex evolutionary history. Although phylogenetic studies of the tribe have been carried out, most of these phylogenetic reconstructions were based on plastid data, which provide lower phylogenetic resolution compared with nuclear data. In this study, we intended to identify a set of desirable nuclear genes for resolving the phylogeny of the temperate woody bamboos. Using two different methodologies, we identified 209 and 916 genes, respectively, as putative single copy orthologous genes. A total of 112 genes was successfully amplified and sequenced by next-generation sequencing technologies in five species sampled from the tribe. As most of the genes exhibited intra-individual allele heterozygotes, we investigated phylogenetic utility by reconstructing the phylogeny based on individual genes. Discordance among gene trees was observed and, to resolve the conflict, we performed a range of analyses using BUCKy and HybTree. While caution should be taken when inferring a phylogeny from multiple conflicting genes, our analysis indicated that 74 of the 112 investigated genes are potential markers for resolving the phylogeny of the temperate woody bamboos. © 2014 John Wiley & Sons Ltd.

  13. A Global Database of Field-observed Leaf Area Index in Woody Plant Species, 1932-2011

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides global leaf area index (LAI) values for woody species. The data are a compilation of field-observed data from 1,216 locations...

  14. EFFECTIVENESS OF LARGE WOODY DEBRIS IN STREAM REHABILITATION PROJECTS IN URBAN BASINS. (R825284)

    Science.gov (United States)

    Urban stream rehabilitation projects commonly include log placement to establish the types of habitat features associated with large woody debris (LWD) in undisturbed streams. Six urban in-stream rehabilitation projects were examined in the Puget Sound Lowland of western Washi...

  15. Woody debris volume depletion through decay: Implications for biomass and carbon accounting

    Science.gov (United States)

    Shawn Fraver; Amy M. Milo; John B. Bradford; Anthony W. D’Amato; Laura Kenefic; Brian J. Palik; Christopher W. Woodall; John Brissette

    2013-01-01

    Woody debris decay rates have recently received much attention because of the need to quantify temporal changes in forest carbon stocks. Published decay rates, available for many species, are commonly used to characterize deadwood biomass and carbon depletion. However, decay rates are often derived from reductions in wood density through time, which when used to model...

  16. Status of exotic woody species in big cypress national preserve. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, L.H.

    1983-12-01

    The current status of exotic woody plants in Big Cypress National Preserve is documented. A map of the distribution of principal pest species, Melaleuca quinquenervia, Schinus terebinthifolius, and Casuarina sp., is presented. Prognoses of population increases of these problem species are determined utilizing the current distributions and assessing environmental conditions. Some potential problem species are also identified.

  17. Invasive alien woody plants of the northern Cape

    Directory of Open Access Journals (Sweden)

    L. Henderson

    1991-10-01

    Full Text Available The frequency and abundance of invasive alien woody plants were recorded along roadsides and at watercourse crossings in 31% (90/286 of the quarter degree squares in the study area. The survey yielded 23 species of which the most prominent invaders were Prosopis spp. The most prominent remaining species were: Opuntia ficus-indica, Nicotiana glauca and Melia azedarach. The greatest abundance and diversity of alien invader plants were recorded near human settlements. More than half of the total recorded species have invaded perennial riverbanks. The episodic Molopo and Kuruman Rivers have been invaded almost exclusively by  Prosopis spp., which in places have formed extensive stands.

  18. A Global Database of Field-observed Leaf Area Index in Woody Plant Species, 1932-2011

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides global leaf area index (LAI) values for woody species. The data are a compilation of field-observed data from 1,216 locations obtained from...

  19. Synopsis: the role of prescribed burning in regenerating Quercus macrocarpa and associated woody plants in stringer woodlands in the Black Hills, South Dakota

    Science.gov (United States)

    Carolyn Hull Sieg; Henry A. Wright

    1998-01-01

    Poor tree reproduction, sparse shrub cover, and increasing amounts of exotic species such as Kentucky bluegrass (Poa pratensis) are common problems in woody draws in the Northern Great Plains. Although the historic role of fire in maintaining woody draws is unclear, it is likely that these woodlands burned periodically, especially in dry years on hot...

  20. Water-use strategies of six co-existing Mediterranean woody species during a summer drought

    NARCIS (Netherlands)

    Quero, J.L.; Sterck, F.J.; Martínez-Vilalta, J.; Villar, R.

    2011-01-01

    Drought stress is known to limit plant performance in Mediterranean-type ecosystems. We have investigated the dynamics of the hydraulics, gas exchange and morphology of six co-existing Mediterranean woody species growing under natural field conditions during a drought that continued during the