WorldWideScience

Sample records for maximum waste loading

  1. Utilization of small-angle neutron scattering to decide the maximum loading of nuclear waste in cement matrix

    International Nuclear Information System (INIS)

    Das, Avik; Mazumder, S.; Sen, D.; Yalmali, V.; Shah, J.G.

    2014-01-01

    Nuclear power plants generate many kinds of hazardous nuclear waste which are needed to be disposed in an eco-friendly manner. Many different waste incarceration techniques have been adapted for managing the nuclear waste of different category of radioactivity. Immobilisation of low and intermediate level radioactive wastes in cement matrix is one of the widely used and cost-effective techniques in waste management. However, loading of nuclear waste in cement matrix can alter the mesoscopic structure of the hydrated cement and hence, it is very important to set the maximum limit of waste loading in cement for providing proper physical isolation to the nuclear waste

  2. Waste Load Allocation Based on Total Maximum Daily Load Approach Using the Charged System Search (CSS Algorithm

    Directory of Open Access Journals (Sweden)

    Elham Faraji

    2016-03-01

    Full Text Available In this research, the capability of a charged system search algorithm (CSS in handling water management optimization problems is investigated. First, two complex mathematical problems are solved by CSS and the results are compared with those obtained from other metaheuristic algorithms. In the last step, the optimization model developed by the CSS algorithm is applied to the waste load allocation in rivers based on the total maximum daily load (TMDL concept. The results are presented in Tables and Figures for easy comparison. The study indicates the superiority of the CSS algorithm in terms of its speed and performance over the other metaheuristic algorithms while its precision in water management optimization problems is verified.

  3. Maximum allowable load on wheeled mobile manipulators

    International Nuclear Information System (INIS)

    Habibnejad Korayem, M.; Ghariblu, H.

    2003-01-01

    This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy

  4. MEASUREMENT OF WASTE LOADING IN SALTSTONE

    International Nuclear Information System (INIS)

    Harbour, J; Vickie Williams, V

    2008-01-01

    demonstrated the quantitative impact of WL on the number of cells (each Saltstone vault contains two cells) required to disposition all of the ∼100 million gallons of DSS available in the tanks. This calculation revealed that the number of cells required over the range of 0.48 to 0.62 w/cm ratio (equivalent to a WL range of 591 to 666 mL/L) varies from 65 to 57 cells (33 to 29 vaults). The intent of this oversimplified example was to show the range of variation in vaults expected due to w/cm ratio rather than to estimate the actual number of vaults required. There is a tradeoff between the waste loading and the processing and performance properties of Saltstone. The performance properties improve in general as the w/cm ratio decreases whereas the waste loading is reduced at lower w/cm ratios resulting in a larger number of Saltstone vaults. The final performance and processing requirements of Saltstone will determine the maximum waste loading achievable

  5. Environmental Monitoring, Water Quality - Total Maximum Daily Load (TMDL)

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The Clean Water Act Section 303(d) establishes the Total Maximum Daily Load (TMDL) program. The purpose of the TMDL program is to identify sources of pollution and...

  6. Water Quality Assessment and Total Maximum Daily Loads Information (ATTAINS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Assessment TMDL Tracking And Implementation System (ATTAINS) stores and tracks state water quality assessment decisions, Total Maximum Daily Loads...

  7. High level waste at Hanford: Potential for waste loading maximization

    International Nuclear Information System (INIS)

    Hrma, P.R.; Bailey, A.W.

    1995-09-01

    The loading of Hanford nuclear waste in borosilicate glass is limited by phase-related phenomena, such as crystallization or formation of immiscible liquids, and by breakdown of the glass structure because of an excessive concentration of modifiers. The phase-related phenomena cause both processing and product quality problems. The deterioration of product durability determines the ultimate waste loading limit if all processing problems are resolved. Concrete examples and mass-balance based calculations show that a substantial potential exists for increasing waste loading of high-level wastes that contain a large fraction of refractory components

  8. Calculation of projected waste loads for transuranic waste management alternatives

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1995-01-01

    The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTEunderscoreMGMT computational model. WASTEunderscoreMGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives

  9. Maximum surface level and temperature histories for Hanford waste tanks

    International Nuclear Information System (INIS)

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-01-01

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data

  10. Maximum thermal loading test of BWR fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Yoshitaka; Yoshimura, Kunihiro; Nakamura, Satoshi; Ishizuka, Takao.

    1987-01-01

    Various proving tests on the reliability of nuclear power plants have been conducted at the Nuclear Power Engineering Test Center and at the Japan Power Plant Engineering and Inspection Corporation. The tests were initiated at the request of the Ministry of International Trade and Industry (MITI). Toshiba undertook one of the proving tests on the reliability of nuclear fuel assembly; the maximum thermal loading test of BWR fuel assembly from the Nuclear Power Engineering Test Center. These tests are part of the proving tests mentioned above, and their purpose is to confirm the reliability of the thermal hydraulic engineering techniques. Toshiba has been engaged for the past nine years in the design, fabrication and testing of the equipment. For the project, a test model fuel assembly was used to measure the critical power of the BWR fuel assembly and the void and fluidity of the coolant. From the test results, it has been confirmed that the heat is transferred safely from the fuel assembly to the coolant in the BWR nuclear power plant. In addition, the propriety and reliability of the thermal hydraulic engineering techniques for the fuel assembly have been proved. (author)

  11. High Level Waste (HLW) Processing Experience with Increased Waste Loading

    International Nuclear Information System (INIS)

    JANTZEN, CAROL

    2004-01-01

    The Defense Waste Processing Facility (DWPF) Engineering requested characterization of glass samples that were taken after the second melter had been operational for about 5 months. After the new melter had been installed, the waste loading had been increased to about 38 weight percentage after a new quasicrystalline liquidus model had been implemented. The DWPF had also switched from processing with refractory Frit 200 to a more fluid Frit 320. The samples were taken after DWPF observed very rapid buildup of deposits in the upper pour spout bore and on the pour spout insert while processing the high waste loading feedstock. These samples were evaluated using various analytical techniques to determine the cause of the crystallization. The pour stream sample was homogeneous, amorphous, and representative of the feed batch from which it was derived. Chemical analysis of the pour stream sample indicated that a waste loading of 38.5 weight per cent had been achieved. The data analysis indicated that surface crystallization, induced by temperature and oxygen fugacity gradients in the pour spout, caused surface crystallization to occur in the spout and on the insert at the higher waste loadings even though there was no crystallization in the pour stream

  12. Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model

    Science.gov (United States)

    Granato, Gregory; Jones, Susan Cheung

    2017-01-01

    The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.

  13. Testing waste forms containing high radionuclide loadings

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Neilson, R.M. Jr.; Rogers, R.D.

    1986-01-01

    The Low-Level Waste Data Base Development - EPICOR-II Resin/Liner Investigation Program funded by the US Nuclear Regulatory Commission (NRC) is obtaining information on radioactive waste during NRC-prescribed tests and in a disposal environment. This paper describes the resin solidification task of that program, including the present status and results to date. An unusual aspect of this investigation is the use of commercial grade, ion exchange resins that have been loaded with over five times the radioactivity normally seen in a commercial application. That dramatically increases the total radiation dose to the resins. The objective of the resin solidification task is to determine the adequacy of test procedures specified by NRC for ion exchange resins having high radionuclide loadings

  14. Waste acceptance and waste loading for vitrified Oak Ridge tank waste

    International Nuclear Information System (INIS)

    Harbour, J.R.; Andrews, M.K.

    1997-01-01

    The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC''s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC

  15. Projected transuranic waste loads requiring treatment, storage, and disposal

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.

    1996-01-01

    This paper provides information on the volume of TRU waste loads requiring treatment, storage, and disposal at DOE facilities for three siting configurations. Input consisted of updated inventory and generation data from. Waste Isolation Pilot plant Transuranic Waste Baseline Inventory report. Results indicate that WIPP's design capacity is sufficient for the CH TRU waste found throughout the DOE Complex

  16. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    International Nuclear Information System (INIS)

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-01-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt

  17. Investigation of the maximum load alleviation potential using trailing edge flaps controlled by inflow data

    DEFF Research Database (Denmark)

    Fischer, Andreas; Aagaard Madsen, Helge

    2014-01-01

    The maximum fatigue load reduction potential when using trailing edge flaps on mega-watt wind turbines was explored. For this purpose an ideal feed forward control algorithm using the relative velocity and angle of attack at the blade to control the loads was implemented. The algorithm was applied...... to time series from computations with the aeroelastic code HAWC2 and to measured time series. The fatigue loads could be reduced by 36% in the computations if the in flow sensor was at the same position as the blade load. The decrease of the load reduction potential when the sensor was at a distance from...... the blade load location was investigated. When the algorithm was applied to measured time series a load reduction of 23% was achieved which is still promissing, but significantly lower than the value achieved in computations....

  18. The effect of vitrification technology on waste loading

    International Nuclear Information System (INIS)

    Hrma, P.R.; Smith, P.A.

    1994-08-01

    Radioactive wastes on the Hanford Site are going to be permanently disposed of by incorporation into a durable glass. These wastes will be separated into low and high-level portions, and then vitrified. The low-level waste (LLW) is water soluble. Its vitrifiable part (other than off-gas) contains approximately 80 wt% Na 2 O, the rest being Al 2 O 3 , P 2 O 5 , K 2 O, and minor components. The challenge is to formulate durable LLW glasses with as high Na 2 O content as possible by optimizing the additions of SiO 2 , Al 2 O 3 , B 2 O 3 , CaO, and ZrO 2 . This task will not be simple, considering the non-linear and interactive nature of glass properties as a function of composition. Once developed, the LLW glass, being similar in composition to commercial glasses, is unlikely to cause major processing problems, such as crystallization or molten salt segregation. For example, inexpensive LLW glass can be produced in a high-capacity Joule-heated melter with a cold cap to minimize volatilization. The high-level waste (HLW) consists of water-insoluble sludge (Fe 2 O 3 , Al 2 O 3 , ZrO 2 , Cr 2 O 3 , NiO, and others) and a substantial water-soluble residue (Na 2 O). Most of the water-insoluble components are refractory; i.e., their melting points are above the glass melting temperature. With regard to product acceptability, the maximum loading of Hanford HLW in the glass is limited by product durability, not by radiolytic heat generation. However, this maximum may not be achievable because of technological constraints imposed by melter feed rheology, frit properties, and glass melter limits. These restrictions are discussed in this paper. 38 refs

  19. Waste Load Allocation for Conservative Substances to Protect Aquatic Organisms

    Science.gov (United States)

    Hutcheson, M. R.

    1992-01-01

    A waste load allocation process is developed to determine the maximum effluent concentration of a conservative substance that will not harm fish and wildlife propagation. If this concentration is not exceeded in the effluent, the acute toxicity criterion will not be violated in the receiving stream, and the chronic criterion will not be exceeded in the zone of passage, defined in many state water quality standards to allow the movement of aquatic organisms past a discharge. Considerable simplification of the concentration equation, which is the heart of any waste load allocation, is achieved because it is based on the concentration in the receiving stream when the concentration gradient on the zone of passage boundary is zero. Consequently, the expression obtained for effluent concentration is independent of source location or stream morphology. Only five independent variables, which are routinely available to regulatory agencies, are required to perform this allocation. It aids in developing permit limits which are protective without being unduly restrictive or requiring large expenditures of money and manpower on field investigations.

  20. Influence of Thread Root Radius on Maximum Local Stresses at Large Diameter Bolts under Axial Loading

    Directory of Open Access Journals (Sweden)

    Cojocaru Vasile

    2014-06-01

    Full Text Available In the thread root area of the threaded bolts submitted to axial loading occur local stresses, higher that nominal stresses calculated for the bolts. These local stresses can generate failure and can reduce the fatigue life of the parts. The paper is focused on the study of the influence of the thread root radius on the maximum local stresses. A large diameter trapezoidal bolt was subjected to a static analysis (axial loading using finite element simulation.

  1. Determination of the wind power systems load to achieve operation in the maximum energy area

    Science.gov (United States)

    Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.

    2018-01-01

    This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.

  2. Pressurizer /Auxiliary Spray Piping Stress Analysis For Determination Of Lead Shielding Maximum Allow Able Load

    International Nuclear Information System (INIS)

    Setjo, Renaningsih

    2000-01-01

    Piping stress analysis for PZR/Auxiliary Spray Lines Nuclear Power Plant AV Unit I(PWR Type) has been carried out. The purpose of this analysis is to establish a maximum allowable load that is permitted at the time of need by placing lead shielding on the piping system on class 1 pipe, Pressurizer/Auxiliary Spray Lines (PZR/Aux.) Reactor Coolant Loop 1 and 4 for NPP AV Unit one in the mode 5 and 6 during outage. This analysis is intended to reduce the maximum amount of radiation dose for the operator during ISI ( In service Inspection) period.The result shown that the maximum allowable loads for 4 inches lines for PZR/Auxiliary Spray Lines is 123 lbs/feet

  3. Simplified method of checking the observance of maximum permissible activity of waste forms to be placed in the Konrad shaft for final waste storage

    International Nuclear Information System (INIS)

    Berg, H.P.; Piefke, F.

    1986-10-01

    The requirements to be met by waste forms destined for final storage in the Konrad shaft among others define maximum permissible activity levels which have been determined from the various parts of the safety analyses. For waste forms with very low activity levels, it is suitable to compile all the very specific requirements in one checking list, and to perform the checking as simply as adequate. On the basis of the compilation of requirements defined for normal operation of the storage facility, hypothetical accidents, thermal loads affecting the host rock, and criticality safety, the maximum permissible activities are derived that are to be checked by the simplified control measures explained. The report explains the computer programs for the ANKONA code. (orig.) [de

  4. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton.

    Science.gov (United States)

    Hu, Xiaoyue; Li, Jing Xian; Hong, Youlian; Wang, Lin

    2015-01-01

    Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton. Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements. The maximum force (MF) on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = -2.88 to -0.04%BW). The MF and peak pressures (PP) on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = -3.62 to -0.02%BW; PP, p = 0.048, 95% CI = -37.63 to -0.16 KPa) and left-forward lunge (MF, p = 0.015, 95% CI = -4.39 to -0.38%BW; PP, p = 0.008, 95% CI = -47.76 to -5.91 KPa). These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players.

  5. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton.

    Directory of Open Access Journals (Sweden)

    Xiaoyue Hu

    Full Text Available Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton.Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements.The maximum force (MF on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = -2.88 to -0.04%BW. The MF and peak pressures (PP on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = -3.62 to -0.02%BW; PP, p = 0.048, 95% CI = -37.63 to -0.16 KPa and left-forward lunge (MF, p = 0.015, 95% CI = -4.39 to -0.38%BW; PP, p = 0.008, 95% CI = -47.76 to -5.91 KPa.These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players.

  6. Testing waste forms containing high radionuclide loadings

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Neilson, R.M. Jr.; Rogers, R.D.

    1986-01-01

    The Low-Level Waste Data Base Development - EPICOR-II Resin/Liner Investigation Program of the US Nuclear Regulatory Commission (NRC) is obtaining information on radioactive waste during NRC-prescribed tests and in a disposal environment. This paper describes the resin solidification task of that program, including the present status and results to date

  7. Maximum power point tracker for portable photovoltaic systems with resistive-like load

    Energy Technology Data Exchange (ETDEWEB)

    De Cesare, G.; Caputo, D.; Nascetti, A. [Department of Electronic Engineering, University of Rome La Sapienza via Eudossiana, 18 00184 Rome (Italy)

    2006-08-15

    In this work we report on the design and realization of a maximum power point tracking (MPPT) circuit suitable for low power, portable applications with resistive load. The design rules included cost, size and power efficiency considerations. A novel scheme for the implementation of the control loop of the MPPT circuit is proposed, combining good performance with compact design. The operation and performances were simulated at circuit schematic level with simulation program with integrated circuit emphasis (SPICE). The improved operation of a PV system using our MPPT circuit was demonstrated using a purely resistive load. (author)

  8. Maximum attainable power density and wall load in tokamaks underlying reactor relevant constraints

    International Nuclear Information System (INIS)

    Borrass, K.; Buende, R.

    1979-09-01

    The characteristic data of tokamaks optimized with respect to their power density or wall load are determined. Reactor relevant constraints are imposed, such as a fixed plant net power output, a fixed blanket thickness and the dependence of the maximum toroidal field on the geometry and conductor material. The impact of finite burn times is considered. Various scaling laws of the toroidal beta with the aspect ratio are discussed. (orig.) 891 GG/orig. 892 RDG [de

  9. Variable Parameter Nonlinear Control for Maximum Power Point Tracking Considering Mitigation of Drive-train Load

    Institute of Scientific and Technical Information of China (English)

    Zaiyu; Chen; Minghui; Yin; Lianjun; Zhou; Yaping; Xia; Jiankun; Liu; Yun; Zou

    2017-01-01

    Since mechanical loads exert a significant influence on the life span of wind turbines, the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking(MPPT) controller.Moreover, a trade-off between the efficiency of wind energy extraction and the load level of drive-train shaft becomes a key issue. However, for the existing control strategies based on nonlinear model of wind turbines, the MPPT efficiencies are improved at the cost of the intensive fluctuation of generator torque and significant increase of transient load on drive train shaft. Hence, in this paper, a nonlinear controller with variable parameter is proposed for improving MPPT efficiency and mitigating transient load on drive-train simultaneously. Then,simulations on FAST(Fatigue, Aerodynamics, Structures, and Turbulence) code and experiments on the wind turbine simulator(WTS) based test bench are presented to verify the efficiency improvement of the proposed control strategy with less cost of drive-train load.

  10. Variable Parameter Nonlinear Control for Maximum Power Point Tracking Considering Mitigation of Drive-train Load

    Institute of Scientific and Technical Information of China (English)

    Zaiyu Chen; Minghui Yin; Lianjun Zhou; Yaping Xia; Jiankun Liu; Yun Zou

    2017-01-01

    Since mechanical loads exert a significant influence on the life span of wind turbines,the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking (MPPT) controller.Moreover,a trade-off between the efficiency of wind energy extraction and the load level of drive-train shaft becomes a key issue.However,for the existing control strategies based on nonlinear model of wind turbines,the MPPT efficiencies are improved at the cost of the intensive fluctuation of generator torque and significant increase of transient load on drive train shaft.Hence,in this paper,a nonlinear controller with variable parameter is proposed for improving MPPT efficiency and mitigating transient load on drive-train simultaneously.Then,simulations on FAST (Fatigue,Aerodynamics,Structures,and Turbulence) code and experiments on the wind turbine simulator (WTS) based test bench are presented to verify the efficiency improvement of the proposed control strategy with less cost of drive-train load.

  11. Abdominal crunch exercise analysis performed with maximum and submaximum loads: An electromyographic study

    Directory of Open Access Journals (Sweden)

    M.L. Moura

    2011-01-01

    Full Text Available The purpose of this study was to verify the electromyographic activity of the rectus abdominis and obliquus externus abdominis during abdominal crunch exercise performed with maximum and submaximum loads. Thirteen male and female university students participated in this investigation (18-23 years old. The subjects completed abdominal crunch exercise until exhaustion with 20, 40, 60 and 80% of the maximum load. The root-mean-square (RMS from electromyography activity of the rectus abdominis and obliquus externus muscles from the first and last three repetitions from each workload performed was analyzed. RMS for the last repetitions increased in relation to the first repetitions for the 20% workload, first two repetitions on 40% workload and first repetition on the 80% workload. There was no difference for the 60% workload. Results showed that external load on abdominal crunch exercise might be an alternative to increase intensity while performing abdominal crunch exercise, which on its turn can be a practical tool for subjects that aim to increase abdominal strength level.

  12. Towards optimization of nuclear waste glass: Constraints, property models, and waste loading

    International Nuclear Information System (INIS)

    Hrma, P.

    1994-04-01

    Vitrification of both low- and high-level wastes from 177 tanks at Hanford poses a great challenge to glass makers, whose task is to formulate a system of glasses that are acceptable to the federal repository for disposal. The enormous quantity of the waste requires a glass product of the lowest possible volume. The incomplete knowledge of waste composition, its variability, and lack of an appropriate vitrification technology further complicates this difficult task. A simple relationship between the waste loading and the waste glass volume is presented and applied to the predominantly refractory (usually high-activity) and predominantly alkaline (usually low-activity) waste types. Three factors that limit waste loading are discussed, namely product acceptability, melter processing, and model validity. Glass formulation and optimization problems are identified and a broader approach to uncertainties is suggested

  13. Bayesian modeling of the assimilative capacity component of nutrient total maximum daily loads

    Science.gov (United States)

    Faulkner, B. R.

    2008-08-01

    Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a total maximum daily load (TMDL) load capacity is developed and applied. The joint distribution of nutrient retention metrics from a literature review of 495 measurements was used for Monte Carlo sampling with a process transfer function for nutrient attenuation. Using the resulting histograms of nutrient retention, reference prior distributions were developed for sites in which some of the metrics contributing to the transfer function were measured. Contributing metrics for the prior include stream discharge, cross-sectional area, fraction of storage volume to free stream volume, denitrification rate constant, storage zone mass transfer rate, dispersion coefficient, and others. Confidence of compliance (CC) that any given level of nutrient retention has been achieved is also determined using this approach. The shape of the CC curve is dependent on the metrics measured and serves in part as a measure of the information provided by the metrics to predict nutrient retention. It is also a direct measurement, with a margin of safety, of the fraction of export load that can be reduced through changing retention metrics. For an impaired stream in western Oklahoma, a combination of prior information and measurement of nutrient attenuation was used to illustrate the proposed approach. This method may be considered for TMDL implementation.

  14. Thermoelectric automotive waste heat energy recovery using maximum power point tracking

    International Nuclear Information System (INIS)

    Yu Chuang; Chau, K.T.

    2009-01-01

    This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC-DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Both analysis and experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.

  15. An Optimization Waste Load Allocation Model in River Systems

    Science.gov (United States)

    Amirpoor Daylami, A.; jarihani, A. A.; Aminisola, K.

    2012-04-01

    In many river systems, increasing of the waste discharge leads to increasing pollution of these water bodies. While the capacity of the river flow for pollution acceptance is limited and the ability of river to clean itself is restricted, the dischargers have to release their waste into the river after a primary pollution treatment process. Waste Load Allocation as a well-known water quality control strategy is used to determine the optimal pollutant removal at a number of point sources along the river. This paper aim at developing a new approach for treatment and management of wastewater inputs into the river systems, such that water quality standards in these receiving waters are met. In this study, inspired by the fact that cooperation among some single point source waste dischargers can lead to a more waste acceptance capacity and/or more optimum quality control in a river, an efficient approach was implemented to determine both primary waste water treatment levels and/or the best releasing points of the waste into the river. In this methodology, a genetic algorithm is used as an optimization tool to calculate optimal fraction removal levels of each one of single or shared discharger. Besides, a sub-model embedded to optimization model was used to simulate water quality of the river in each one of discharging scenarios based on the modified Streeter and Phelps quality equations. The practical application of the model is illustrated with a case study of the Gharesoo river system in west of Iran.

  16. Areal thermal loading recommendations for nuclear waste repositories in salt

    International Nuclear Information System (INIS)

    Russell, J.E.

    1979-06-01

    This document gives a wider understanding of the history of the recommended thermal loadings in salt for both high-level waste (HLW) from fresh UO 2 -fueled, light-water reactors (LWR) with no recycle and spent unreprocessed fuel (SURF) from LWRs. Aspects of the current recommendations that need further study are identified. Finally, an interim set of design thermal-loading recommendations are given that have a common rationale of satisfying performance limits within our current state of knowledge. These recommendations are made on a generic rather than a site-specific basis. 11 figures, 5 tables

  17. STRUCTURAL CALCULATION OF AN EMPLACEMENT PALLET STATICALLY LOADED BY A WASTE PACKAGE

    International Nuclear Information System (INIS)

    S. Mastilovic

    2000-01-01

    The purpose of this calculation is to determine the structural response of the emplacement pallet (EP) subjected to static load from the mounted waste package (WP). The scope of this document is limited to reporting the calculation results in terms of stress intensity magnitudes. This calculation is associated with the waste emplacement systems design; calculations are performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element solutions are performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The results of these calculations are provided in terms of maximum stress intensity magnitudes

  18. Using spatially detailed water-quality data and solute-transport modeling to improve support total maximum daily load development

    Science.gov (United States)

    Walton-Day, Katherine; Runkel, Robert L.; Kimball, Briant A.

    2012-01-01

    Spatially detailed mass-loading studies and solute-transport modeling using OTIS (One-dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass-loading data collected during low-flow from Cement Creek (a low-pH, metal-rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL-recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53-63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse-source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse-source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.

  19. Test plan: Effects of phase separation on waste loading for high level waste glasses

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    As part of the Tanks Focus Area's (TFA) effort to increase waste loading for high-level waste (HLW) vitrification at various facilities in the Department of Energy (DOE) complex, the occurrence of phase separation in waste glasses spanning the Savannah River Site (SRS) and Idaho National Engineering and Environmental Laboratory (INEEL) composition ranges were studied during FY99. The type, extent, and impact of phase separation on glass durability for a series of HLW glasses, e.g., SRS-type and INEEL-type, were examined

  20. Economic total maximum daily load for watershed-based pollutant trading.

    Science.gov (United States)

    Zaidi, A Z; deMonsabert, S M

    2015-04-01

    Water quality trading (WQT) is supported by the US Environmental Protection Agency (USEPA) under the framework of its total maximum daily load (TMDL) program. An innovative approach is presented in this paper that proposes post-TMDL trade by calculating pollutant rights for each pollutant source within a watershed. Several water quality trading programs are currently operating in the USA with an objective to achieve overall pollutant reduction impacts that are equivalent or better than TMDL scenarios. These programs use trading ratios for establishing water quality equivalence among pollutant reductions. The inbuilt uncertainty in modeling the effects of pollutants in a watershed from both the point and nonpoint sources on receiving waterbodies makes WQT very difficult. A higher trading ratio carries with it increased mitigation costs, but cannot ensure the attainment of the required water quality with certainty. The selection of an applicable trading ratio, therefore, is not a simple process. The proposed approach uses an Economic TMDL optimization model that determines an economic pollutant reduction scenario that can be compared with actual TMDL allocations to calculate selling/purchasing rights for each contributing source. The methodology is presented using the established TMDLs for the bacteria (fecal coliform) impaired Muddy Creek subwatershed WAR1 in Rockingham County, Virginia, USA. Case study results show that an environmentally and economically superior trading scenario can be realized by using Economic TMDL model or any similar model that considers the cost of TMDL allocations.

  1. Soil load above Hanford waste storage tanks (2 volumes)

    International Nuclear Information System (INIS)

    Pianka, E.W.

    1995-01-01

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs

  2. The effects of load drop, uniform load and concentrated loads on waste tanks

    International Nuclear Information System (INIS)

    Marusich, R.M. Westinghouse Hanford

    1996-01-01

    This document provides the supporting calculations performed by others specifically for the TWRS FSAR and more detailed summaries of the important references issued in the past regarding the effects of various loads

  3. An ecological function and services approach to total maximum daily load (TMDL) prioritization.

    Science.gov (United States)

    Hall, Robert K; Guiliano, David; Swanson, Sherman; Philbin, Michael J; Lin, John; Aron, Joan L; Schafer, Robin J; Heggem, Daniel T

    2014-04-01

    Prioritizing total maximum daily load (TMDL) development starts by considering the scope and severity of water pollution and risks to public health and aquatic life. Methodology using quantitative assessments of in-stream water quality is appropriate and effective for point source (PS) dominated discharge, but less so in watersheds with mostly nonpoint source (NPS) related impairments. For NPSs, prioritization in TMDL development and implementation of associated best management practices should focus on restoration of ecosystem physical functions, including how restoration effectiveness depends on design, maintenance and placement within the watershed. To refine the approach to TMDL development, regulators and stakeholders must first ask if the watershed, or ecosystem, is at risk of losing riparian or other ecologically based physical attributes and processes. If so, the next step is an assessment of the spatial arrangement of functionality with a focus on the at-risk areas that could be lost, or could, with some help, regain functions. Evaluating stream and wetland riparian function has advantages over the traditional means of water quality and biological assessments for NPS TMDL development. Understanding how an ecosystem functions enables stakeholders and regulators to determine the severity of problem(s), identify source(s) of impairment, and predict and avoid a decline in water quality. The Upper Reese River, Nevada, provides an example of water quality impairment caused by NPS pollution. In this river basin, stream and wetland riparian proper functioning condition (PFC) protocol, water quality data, and remote sensing imagery were used to identify sediment sources, transport, distribution, and its impact on water quality and aquatic resources. This study found that assessments of ecological function could be used to generate leading (early) indicators of water quality degradation for targeting pollution control measures, while traditional in-stream water

  4. New England SPARROW Water-Quality Modeling to Assist with the Development of Total Maximum Daily Loads in the Connecticut River Basin

    Science.gov (United States)

    Moore, R. B.; Robinson, K. W.; Simcox, A. C.; Johnston, C. M.

    2002-05-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEWIPCC), is currently preparing a water-quality model, called SPARROW, to assist in the regional total maximum daily load (TMDL) studies in New England. A model is required to provide estimates of nutrient loads and confidence intervals at unmonitored stream reaches. SPARROW (Spatially Referenced Regressions on Watershed Attributes) is a spatially detailed, statistical model that uses regression equations to relate total phosphorus and nitrogen (nutrient) stream loads to pollution sources and watershed characteristics. These statistical relations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW model is based on a hydrologic network of 42,000 stream reaches and associated watersheds. Point source data are derived from USEPA's Permit Compliance System (PCS). Information about nonpoint sources is derived from data such as fertilizer use, livestock wastes, and atmospheric deposition. Watershed characteristics include land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. Preliminary SPARROW results are expected in Spring 2002. The New England SPARROW model is proposed for use in the TMDL determination for nutrients in the Connecticut River Basin, upstream of Connecticut. The model will be used to estimate nitrogen loads from each of the upstream states to Long Island Sound. It will provide estimates and confidence intervals of phosphorus and nitrogen loads, area-weighted yields of nutrients by watershed, sources of nutrients, and the downstream movement of nutrients. This information will be used to (1) understand ranges in nutrient levels in surface waters, (2) identify the environmental factors that affect nutrient levels in streams, (3) evaluate monitoring efforts for better determination of

  5. 76 FR 549 - Clean Water Act Section 303(d): Notice for the Establishment of the Total Maximum Daily Load...

    Science.gov (United States)

    2011-01-05

    ... Establishment of the Total Maximum Daily Load (TMDL) for the Chesapeake Bay AGENCY: Environmental Protection... that when met will assure the attainment and maintenance of all applicable water quality standards for... productive estuaries in the world. Despite significant efforts by federal, state, and local governments and...

  6. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...

  7. Fuzzy Simulation-Optimization Model for Waste Load Allocation

    Directory of Open Access Journals (Sweden)

    Motahhare Saadatpour

    2006-01-01

    Full Text Available This paper present simulation-optimization models for waste load allocation from multiple point sources which include uncertainty due to vagueness of the parameters and goals. This model employs fuzzy sets with appropriate membership functions to deal with uncertainties due to vagueness. The fuzzy waste load allocation model (FWLAM incorporate QUAL2E as a water quality simulation model and Genetic Algorithm (GA as an optimization tool to find the optimal combination of the fraction removal level to the dischargers and pollution control agency (PCA. Penalty functions are employed to control the violations in the system.  The results demonstrate that the goal of PCA to achieve the best water quality and the goal of the dischargers to use the full assimilative capacity of the river have not been satisfied completely and a compromise solution between these goals is provided. This fuzzy optimization model with genetic algorithm has been used for a hypothetical problem. Results demonstrate a very suitable convergence of proposed optimization algorithm to the global optima.

  8. Conceptual model to determine maximum activity of radioactive waste in near-surface disposal facilities

    International Nuclear Information System (INIS)

    Iarmosh, I.; Olkhovyk, Yu.

    2016-01-01

    For development of the management strategy for radioactive waste to be placed in near - surface disposal facilities (NSDF), it is necessary to justify long - term safety of such facilities. Use of mathematical modelling methods for long - term forecasts of radwaste radiation impact and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of radwaste to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chornobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of "9"0 Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed

  9. Equitable fund allocation, an economical approach for sustainable waste load allocation.

    Science.gov (United States)

    Ashtiani, Elham Feizi; Niksokhan, Mohammad Hossein; Jamshidi, Shervin

    2015-08-01

    This research aims to study a novel approach for waste load allocation (WLA) to meet environmental, economical, and equity objectives, simultaneously. For this purpose, based on a simulation-optimization model developed for Haraz River in north of Iran, the waste loads are allocated according to discharge permit market. The non-dominated solutions are initially achieved through multiobjective particle swarm optimization (MOPSO). Here, the violation of environmental standards based on dissolved oxygen (DO) versus biochemical oxidation demand (BOD) removal costs is minimized to find economical total maximum daily loads (TMDLs). This can save 41% in total abatement costs in comparison with the conventional command and control policy. The BOD discharge permit market then increases the revenues to 45%. This framework ensures that the environmental limits are fulfilled but the inequity index is rather high (about 4.65). For instance, the discharge permit buyer may not be satisfied about the equity of WLA. Consequently, it is recommended that a third party or institution should be in charge of reallocating the funds. It means that the polluters which gain benefits by unfair discharges should pay taxes (or funds) to compensate the losses of other polluters. This intends to reduce the costs below the required values of the lowest inequity index condition. These compensations of equitable fund allocation (EFA) may help to reduce the dissatisfactions and develop WLA policies. It is concluded that EFA in integration with water quality trading (WQT) is a promising approach to meet the objectives.

  10. Site Specific Waste Management Instructions for loading and shipment of category 3 investigation derived waste to ERDF

    International Nuclear Information System (INIS)

    Corriveau, C.E.; Wolf, D.M.

    1996-08-01

    This Site Specific Waste Management Instruction (SSWMI) provides guidance for management of containerized investigation-derived waste being loaded and transported to the Environmental Restoration Disposal Facility. The SSWMI outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements. Additional guidance for waste packaging, marking, labeling and shipping is provided (US DOT rules in 49 CFR have precedence)

  11. Mobile loading transuranic waste at small quantity sites in the Department of Energy complex-10523

    International Nuclear Information System (INIS)

    Carter, Mitch; Howard, Bryan; Weyerman, Wade; Mctaggart, Jerri

    2009-01-01

    Los Alamos National Laboratory, Carlsbad Office (LANL-CO), operates mobile loading operations for all of the large and small quantity transuranic (TRU) waste sites in the Department of Energy (DOE) complex. The mobile loading team performs loading and unloading evolutions for both contact handled (CH) and remote handled (RH) waste. For small quantity sites, many of which have yet to remove their TRU waste, the mobile loading team will load shipments that will ship to Idaho National Laboratory, a centralization site, or ship directly to the Waste Isolation Pilot Plant (WIPP). For example, Argonne National Laboratory and General Electric Vallecitos Nuclear Center have certified programs for RH waste so they will ship their RH waste directly to WIPP. Many of the other sites will ship their waste to Idaho for characterization and certification. The Mobile Loading Units (MLU) contain all of the necessary equipment needed to load CH and RH waste into the appropriate shipping vessels. Sites are required to provide additional equipment, such as cranes, fork trucks, and office space. The sites are also required to provide personnel to assist in the shipping operations. Each site requires a site visit from the mobile loading team to ensure that all of the necessary site equipment, site requirements and space for shipping can be provided. The mobile loading team works diligently with site representatives to ensure that all safety and regulatory requirements are met. Once the waste is ready and shipping needs are met, the mobile loading team can be scheduled to ship the waste. The CH MLU is designed to support TRUPACT-II and HalfPACT loading activities wherever needed within the DOE complex. The team that performs the mobile loading operation has obtained national certification under DOE for TRUPACT-II and HalfPACT loading and shipment certification. The RH MLU is designed to support removable lid canister (RLC) and RH-72B cask loading activities wherever needed within the DOE

  12. Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2011-01-01

    This paper focuses on criterion functions for gradient based optimization of the buckling load of laminated composite structures considering different types of buckling behaviour. A local criterion is developed, and is, together with a range of local and global criterion functions from literature......, benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...... solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization. © 2010 Springer-Verlag....

  13. Experimental application of the "total maximum daily load" approach as a tool for WFD implementation in temporary rivers

    Science.gov (United States)

    Lo Porto, A.; De Girolamo, A. M.; Santese, G.

    2012-04-01

    In this presentation, the experience gained in the first experimental use in the UE (as far as we know) of the concept and methodology of the "Total Maximum Daily Load" (TMDL) is reported. The TMDL is an instrument required in the Clean Water Act in U.S.A for the management of water bodies classified impaired. The TMDL calculates the maximum amount of a pollutant that a waterbody can receive and still safely meet water quality standards. It permits to establish a scientifically-based strategy on the regulation of the emission loads control according to the characteristic of the watershed/basin. The implementation of the TMDL is a process analogous to the Programmes of Measures required by the WFD, the main difference being the analysis of the linkage between loads of different sources and the water quality of water bodies. The TMDL calculation was used in this study for the Candelaro River, a temporary Italian river, classified impaired in the first steps of the implementation of the WFD. A specific approach based on the "Load Duration Curves" was adopted for the calculation of nutrient TMDLs due to the more robust approach specific for rivers featuring large changes in river flow compared to the classic approach based on average long term flow conditions. This methodology permits to establish the maximum allowable loads across to the different flow conditions of a river. This methodology enabled: to evaluate the allowable loading of a water body; to identify the sources and estimate their loads; to estimate the total loading that the water bodies can receives meeting the water quality standards established; to link the effects of point and diffuse sources on the water quality status and finally to individuate the reduction necessary for each type of sources. The loads reductions were calculated for nitrate, total phosphorus and ammonia. The simulated measures showed a remarkable ability to reduce the pollutants for the Candelaro River. The use of the Soil and

  14. Pressure transmission area and maximum pressure transmission of different thermoplastic resin denture base materials under impact load.

    Science.gov (United States)

    Nasution, Hubban; Kamonkhantikul, Krid; Arksornnukit, Mansuang; Takahashi, Hidekazu

    2018-01-01

    The purposes of the present study were to examine the pressure transmission area and maximum pressure transmission of thermoplastic resin denture base materials under an impact load, and to evaluate the modulus of elasticity and nanohardness of thermoplastic resin denture base. Three injection-molded thermoplastic resin denture base materials [polycarbonate (Basis PC), ethylene propylene (Duraflex), and polyamide (Valplast)] and one conventional heat-polymerized acrylic resin (PMMA, SR Triplex Hot) denture base, all with a mandibular first molar acrylic resin denture tooth set in were evaluated (n=6). Pressure transmission area and maximum pressure transmission of the specimens under an impact load were observed by using pressure-sensitive sheets. The modulus of elasticity and nanohardness of each denture base (n=10) were measured on 15×15×15×3mm 3 specimen by using an ultramicroindentation system. The pressure transmission area, modulus of elasticity, and nanohardness data were statistically analyzed with 1-way ANOVA, followed by Tamhane or Tukey HSD post hoc test (α=.05). The maximum pressure transmission data were statistically analyzed with Kruskal-Wallis H test, followed by Mann-Whitney U test (α=.05). Polymethyl methacrylate showed significantly larger pressure transmission area and higher maximum pressure transmission than the other groups (Pelasticity and nanohardness among the four types of denture bases (Pelasticity and nanohardness of each type of denture base were demonstrated. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. Loading pattern optimization with maximum utilization of discharging fuel employing adaptively constrained discontinuous penalty function

    International Nuclear Information System (INIS)

    Park, T. K.; Joo, H. G.; Kim, C. H.

    2010-01-01

    In order to find the most economical loading pattern (LP) considering multi-cycle fuel loading, multi-objective fuel LP optimization problems are examined by employing an adaptively constrained discontinuous penalty function (ACDPF) method. This is an improved method to simplify the complicated acceptance logic of the original DPF method in that the stochastic effects caused by the different random number sequence can be reduced. The effectiveness of the multi-objective simulated annealing (SA) algorithm employing ACDPF is examined for the reload core LP of Cycle 4 of Yonggwang Nuclear Unit 4. Several optimization runs are performed with different numbers of objectives consisting of cycle length and average burnup of fuels to be discharged or reloaded. The candidate LPs obtained from the multi-objective optimization runs turn out to be better than the reference LP in the aspects of cycle length and utilization of given fuels. It is note that the proposed ACDPF based MOSA algorithm can be a practical method to obtain an economical LP considering multi-cycle fuel loading. (authors)

  16. Model of analysis of maximum loads in wind generators produced by extreme winds

    International Nuclear Information System (INIS)

    Herrera – Sánchez, Omar; Schellong, Wolfgang; González – Fernández, Vladimir

    2010-01-01

    The use of the wind energy by means of the wind turbines in areas of high risk of occurrence of Hurricanes comes being an important challenge for the designers of wind farm at world for some years. The wind generator is not usually designed to support this type of phenomena, for this reason the areas of high incidence of tropical hurricanes of the planning are excluded, that which, in occasions disables the use of this renewable source of energy totally, either because the country is very small, or because it coincides the area of more potential fully with that of high risk. To counteract this situation, a model of analysis of maxims loads has been elaborated taken place the extreme winds in wind turbines of great behavior. This model has the advantage of determining, in a chosen place, for the installation of a wind farm, the micro-areas with higher risk of wind loads above the acceptable for the standard classes of wind turbines. (author)

  17. Measurement of in-bore side loads and comparison to first maximum yaw

    Directory of Open Access Journals (Sweden)

    Donald E. Carlucci

    2016-04-01

    Full Text Available In-bore yaw of a projectile in a gun tube has been shown to result in range loss if the yaw is significant. An attempt was made to determine if relationships between in-bore yaw and projectile First Maximum Yaw (FMY were observable. Experiments were conducted in which pressure transducers were mounted near the muzzle of a 155 mm cannon in three sets of four. Each set formed a cruciform pattern to obtain a differential pressure across the projectile. These data were then integrated to form a picture of what the overall pressure distribution was along the side of the projectile. The pressure distribution was used to determine a magnitude and direction of the overturning moment acting on the projectile. This moment and its resulting angular acceleration were then compared to the actual first maximum yaw observed in the test. The degree of correlation was examined using various statistical techniques. Overall uncertainty in the projectile dynamics was between 20% and 40% of the mean values of FMY.

  18. Reliability of the Load-Velocity Relationship Obtained Through Linear and Polynomial Regression Models to Predict the One-Repetition Maximum Load.

    Science.gov (United States)

    Pestaña-Melero, Francisco Luis; Haff, G Gregory; Rojas, Francisco Javier; Pérez-Castilla, Alejandro; García-Ramos, Amador

    2017-12-18

    This study aimed to compare the between-session reliability of the load-velocity relationship between (1) linear vs. polynomial regression models, (2) concentric-only vs. eccentric-concentric bench press variants, as well as (3) the within-participants vs. the between-participants variability of the velocity attained at each percentage of the one-repetition maximum (%1RM). The load-velocity relationship of 30 men (age: 21.2±3.8 y; height: 1.78±0.07 m, body mass: 72.3±7.3 kg; bench press 1RM: 78.8±13.2 kg) were evaluated by means of linear and polynomial regression models in the concentric-only and eccentric-concentric bench press variants in a Smith Machine. Two sessions were performed with each bench press variant. The main findings were: (1) first-order-polynomials (CV: 4.39%-4.70%) provided the load-velocity relationship with higher reliability than second-order-polynomials (CV: 4.68%-5.04%); (2) the reliability of the load-velocity relationship did not differ between the concentric-only and eccentric-concentric bench press variants; (3) the within-participants variability of the velocity attained at each %1RM was markedly lower than the between-participants variability. Taken together, these results highlight that, regardless of the bench press variant considered, the individual determination of the load-velocity relationship by a linear regression model could be recommended to monitor and prescribe the relative load in the Smith machine bench press exercise.

  19. Hierarchical Load Tracking Control of a Grid-connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    DEFF Research Database (Denmark)

    Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu

    2015-01-01

    efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active...... power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model......Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject...

  20. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads

    Science.gov (United States)

    Marián, Vanderka; Katarína, Longová; Dávid, Olasz; Matúš, Krčmár; Simon, Walker

    2016-01-01

    The purpose of the study was to determine the effects of 8 weeks of jump squat training on isometric half squat maximal force production (Fmax) and rate of force development over 100ms (RFD100), countermovement jump (CMJ) and squat jump (SJ) height, and 50 m sprint time in moderately trained men. Sixty eight subjects (~21 years, ~180 cm, ~75 kg) were divided into experimental (EXP; n = 36) and control (CON, n = 32) groups. Tests were completed pre-, mid- and post-training. EXP performed jump squat training 3 times per week using loads that allowed all repetitions to be performed with ≥90% of maximum average power output (13 sessions with 4 sets of 8 repetitions and 13 sessions with 8 sets of 4 repetitions). Subjects were given real-time feedback for every repetition during the training sessions. Significant improvements in Fmax from pre- to mid- (Δ ~14%, psquats with loads that allow repetitions to be performed ≥90% of maximum average power output can simultaneously improve several different athletic performance tasks in the short-term. Key points Jump squat exercise is one of many exercises to develop explosive strength that has been the focus of several researches, while the load used during the training seem to be an important factor that affects training outcomes. Experimental group improved performance in all assessed parameters, such as Fmax, RFD100, CMJ, SJ and 50 m sprint time. However, improvements in CMJ and SJ were recorded after the entire power training period and thereafter plateau occurred. The portable FitroDyne could serve as a valuable device to individualize the load that maximizes mean power output and visual feedback can be provided to athletes during the training. PMID:27803628

  1. Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate.

    Science.gov (United States)

    Agyeman, Fred O; Tao, Wendong

    2014-01-15

    This study was to comprehensively evaluate the effects of food waste particle size on co-digestion of food waste and dairy manure at organic loading rates increased stepwise from 0.67 to 3 g/L/d of volatile solids (VS). Three anaerobic digesters were fed semi-continuously with equal VS amounts of food waste and dairy manure. Food waste was ground to 2.5 mm (fine), 4 mm (medium), and 8 mm (coarse) for the three digesters, respectively. Methane production rate and specific methane yield were significantly higher in the digester with fine food waste. Digestate dewaterability was improved significantly by reducing food waste particle size. Specific methane yield was highest at the organic loading rate of 2g VS/L/d, being 0.63, 0.56, and 0.47 L CH4/g VS with fine, medium, and coarse food waste, respectively. Methane production rate was highest (1.40-1.53 L CH4/L/d) at the organic loading rate of 3 g VS/L/d. The energy used to grind food waste was minor compared with the heating value of the methane produced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading

    Directory of Open Access Journals (Sweden)

    M. A. García-Sánchez

    2016-07-01

    Full Text Available Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most

  3. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    Science.gov (United States)

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical

  4. Development of total maximum daily loads for bacteria impaired watershed using the comprehensive hydrology and water quality simulation model.

    Science.gov (United States)

    Kim, Sang M; Brannan, Kevin M; Zeckoski, Rebecca W; Benham, Brian L

    2014-01-01

    The objective of this study was to develop bacteria total maximum daily loads (TMDLs) for the Hardware River watershed in the Commonwealth of Virginia, USA. The TMDL program is an integrated watershed management approach required by the Clean Water Act. The TMDLs were developed to meet Virginia's water quality standard for bacteria at the time, which stated that the calendar-month geometric mean concentration of Escherichia coli should not exceed 126 cfu/100 mL, and that no single sample should exceed a concentration of 235 cfu/100 mL. The bacteria impairment TMDLs were developed using the Hydrological Simulation Program-FORTRAN (HSPF). The hydrology and water quality components of HSPF were calibrated and validated using data from the Hardware River watershed to ensure that the model adequately simulated runoff and bacteria concentrations. The calibrated and validated HSPF model was used to estimate the contributions from the various bacteria sources in the Hardware River watershed to the in-stream concentration. Bacteria loads were estimated through an extensive source characterization process. Simulation results for existing conditions indicated that the majority of the bacteria came from livestock and wildlife direct deposits and pervious lands. Different source reduction scenarios were evaluated to identify scenarios that meet both the geometric mean and single sample maximum E. coli criteria with zero violations. The resulting scenarios required extreme and impractical reductions from livestock and wildlife sources. Results from studies similar to this across Virginia partially contributed to a reconsideration of the standard's applicability to TMDL development.

  5. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  6. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  7. Hydrothermal modeling for the efficient design of thermal loading in a nuclear waste repository

    International Nuclear Information System (INIS)

    Cho, Won-Jin; Kim, Jin-Seop; Choi, Heui-Joo

    2014-01-01

    Highlights: • Three-dimensional hydrothermal modeling for HLW repository is performed. • The model reduces the peak temperature in the repository by about 10 °C. • Decreasing the tunnel distance is more efficient to improve the disposal density. • The EDZ surrounding the deposition hole increases the peak temperature. • The peak temperature for the double-layer repository remains below the limit. - Abstract: The thermal analysis of a geological repository for nuclear waste using the three-dimensional hydrothermal model is performed. The hydrothermal model reduces the maximum peak temperature in the repository by about 10 °C compared to the heat conduction model with constant thermal conductivities. Decreasing the tunnel distance is more efficient than decreasing the deposition hole spacing to improve the disposal density for a given thermal load. The annular excavation damaged zone surrounding the deposition hole has a considerable effect on the peak temperature. The possibility of double-layer repository is analyzed from the viewpoint of the thermal constraints of the repository. The maximum peak temperature for the double-layer repository is slightly higher than that for the single-layer repository, but remains below the temperature limit

  8. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    International Nuclear Information System (INIS)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad

    2015-01-01

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  9. Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system

    Science.gov (United States)

    Chen, Xiaohang; Wang, Yuan; Cai, Ling; Zhou, Yinghui

    2015-10-01

    Based on the current models of phosphoric acid fuel cells (PAFCs) and thermoelectric generators (TGs), a new hybrid system is proposed, in which the effects of multi-irreversibilities resulting from the activation, concentration, and ohmic overpotentials in the PAFC, Joule heat and heat leak in the TG, finite-rate heat transfer between the TG and the heat reservoirs, and heat leak from the PAFC to the environment are taken into account. Expressions for the power output and efficiency of the PAFC, TG, and hybrid system are analytically derived and directly used to discuss the performance characteristics of the hybrid system. The optimal relationship between the electric currents in the PAFC and TG is obtained. The maximum power output is numerically calculated. It is found that the maximum power output density of the hybrid system will increase about 150 Wm-2, compared with that of a single PAFC. The problem how to optimally match the load resistances of two subsystems is discussed. Some significant results for practical hybrid systems are obtained.

  10. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    Energy Technology Data Exchange (ETDEWEB)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  11. Properties of vitrified rocky flats TRUW with different waste loadings

    International Nuclear Information System (INIS)

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Miley, D.V.; Erickson, A.W.; Farnsworth, R.N.; Larsen, E.D.

    1994-01-01

    Leach rates, phase structures, and mechanical properties of simulated Rocky Flats Plant 1st and 2nd slate sludge vitrified in an arc melter are described as a function of waste to soil fraction and method of devitrification to produce the glass-ceramic waste form. Volatile, hazardous, and transuranic (TRU) surrogate metals were added to assess dissolution effects. Zirconia and titania were also added to confirm their ability as transuranic-surrogate getters

  12. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    Science.gov (United States)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  13. PMF (probable maximum flood) study for Nevada Nuclear Waste Storage Investigation Project

    International Nuclear Information System (INIS)

    Bullard, K.L.

    1986-01-01

    This document estimates the risk of flooding in the high-level radioactive waste depository proposed for the Yucca Mountain of Nevada. Described are the general features of the proposed site, the drainage pattern of the surrounding area, the historical pattern of precipitation, and an estimate of future precipitation trends. Information from this report will be used in decisions on flood protection construction at this facility. 10 refs., 61 figs., 42 tabs

  14. The importance of thermal loading conditions to waste package performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-10-01

    Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period

  15. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads

    Directory of Open Access Journals (Sweden)

    Vanderka Marián, Longová Katarína, Olasz Dávid, Krčmár Matúš, Walker Simon

    2016-09-01

    Full Text Available The purpose of the study was to determine the effects of 8 weeks of jump squat training on isometric half squat maximal force production (Fmax and rate of force development over 100ms (RFD100, countermovement jump (CMJ and squat jump (SJ height, and 50 m sprint time in moderately trained men. Sixty eight subjects (~21 years, ~180 cm, ~75 kg were divided into experimental (EXP; n = 36 and control (CON, n = 32 groups. Tests were completed pre-, mid- and post-training. EXP performed jump squat training 3 times per week using loads that allowed all repetitions to be performed with ≥90% of maximum average power output (13 sessions with 4 sets of 8 repetitions and 13 sessions with 8 sets of 4 repetitions. Subjects were given real-time feedback for every repetition during the training sessions. Significant improvements in Fmax from pre- to mid- (Δ ~14%, p<0.001, and from mid- to post-training (Δ ~4%, p < 0.001 in EXP were observed. In CON significantly enhanced Fmax from pre- to mid-training (Δ ~3.5%, p < 0.05 was recorded, but no other significant changes were observed in any other test. In RFD100 significant improvements from pre- to mid-training (Δ ~27%, p < 0.001, as well as from mid- to post-training (Δ ~17%, p < 0.01 were observed. CMJ and SJ height were significantly enhanced from pre- to mid-training (Δ ~10%, ~15%, respectively, p < 0.001 but no further changes occurred from mid- to post-training. Significant improvements in 50 m sprint time from pre- to mid-training (Δ -1%, p < 0.05, and from mid- to post-training (Δ -1.9%, p < 0.001 in EXP were observed. Furthermore, percent changes in EXP were greater than changes in CON during training. It appears that using jump squats with loads that allow repetitions to be performed ≥90% of maximum average power output can simultaneously improve several different athletic performance tasks in the short-term.

  16. Waste Load Allocation for Whole Effluent Toxicity to Protect Aquatic Organisms

    Science.gov (United States)

    Hutcheson, M. R.

    1992-11-01

    A process is developed to determine a waste load allocation that will implement the narrative criteria for fish and wildlife propagation found in states' water quality standards. The waste load allocation to implement the narrative chronic criterion is determined to be percent effluent at a location in the receiving stream, as opposed to an effluent concentration derived from the numerical waste load allocation process. A typical narrative chronic criterion is "receiving streams shall not exhibit chronic toxicity outside the mixing zone," while a typical numerical chronic criterion is "receiving stream concentration shall not exceed 0.005 μg/L of chlordane outside the mixing zone." Toxicity tests are used to implement narrative criteria, while compliance with numerical criteria involves concentration measurements. It is shown that the appropriate percent effluent is inversely proportional to the dilution factor for chronic toxicity. An appropriate waste load allocation to implement the narrative acute criterion is 100% effluent. Waste load allocation for whole effluent toxicity is feasible. The required independent variables are available to regulatory agencies, and toxicity testing has become routine.

  17. Waste forms based on Cs-loaded silicotitanates

    International Nuclear Information System (INIS)

    Balmer, M.L.; Bunker, B.C.

    1995-04-01

    Silicotitanate ion exchange materials are being considered for removal of radioactive Cs and Sr from tank wastes at the Hanford site. The phase evolution as a function of heat treatment temperature for several sol gel derived compositions within the Cs 2 O-SiO 2 -TiO 2 system was investigated, in order to determine if an adequate waste form can be achieved by direct thermal conversion. The Cs leach rates and Cs loss during heat treatment of select materials were measured. Some compositions which contain large amounts of Ti melt to form a glass with reasonably low aqueous leach rates. A new Cs-silicotitanate material with a structure isomorphous to pollucite was discovered. This material forms at low temperatures (700--800 C) where Cs volatility is negligible. The silicotitanate-pollucite exhibits extremely low leach rates (1.42 g/m 2 day ) at 90 C, and has been identified as a promising waste form for Cs containment

  18. Maximum flood hazard assessment for OPG's deep geologic repository for low and intermediate level waste

    International Nuclear Information System (INIS)

    Nimmrichter, P.; McClintock, J.; Peng, J.; Leung, H.

    2011-01-01

    Ontario Power Generation (OPG) has entered a process to seek Environmental Assessment and licensing approvals to construct a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW) near the existing Western Waste Management Facility (WWMF) at the Bruce nuclear site in the Municipality of Kincardine, Ontario. In support of the design of the proposed DGR project, maximum flood stages were estimated for potential flood hazard risks associated with coastal, riverine and direct precipitation flooding. The estimation of lake/coastal flooding for the Bruce nuclear site considered potential extreme water levels in Lake Huron, storm surge and seiche, wind waves, and tsunamis. The riverine flood hazard assessment considered the Probable Maximum Flood (PMF) within the local watersheds, and within local drainage areas that will be directly impacted by the site development. A series of hydraulic models were developed, based on DGR project site grading and ditching, to assess the impact of a Probable Maximum Precipitation (PMP) occurring directly at the DGR site. Overall, this flood assessment concluded there is no potential for lake or riverine based flooding and the DGR area is not affected by tsunamis. However, it was also concluded from the results of this analysis that the PMF in proximity to the critical DGR operational areas and infrastructure would be higher than the proposed elevation of the entrance to the underground works. This paper provides an overview of the assessment of potential flood hazard risks associated with coastal, riverine and direct precipitation flooding that was completed for the DGR development. (author)

  19. Characterization and testing of a 238Pu loaded ceramic waste form

    International Nuclear Information System (INIS)

    Johnson, S. G.

    1998-01-01

    This paper will describe the preparation and progress of the effort at Argonne National Laboratory-West to produce ceramic waste forms loaded with 238 Pu. The purpose of this study is to determine the extent of damage, if any, that alpha decay events will play over time to the ceramic waste form under development at Argonne. The ceramic waste form is glass-bonded sodalite. The sodalite is utilized to encapsulate the fission products and transuranics which are present in a chloride salt matrix which results from a spent fuel conditioning process. 238 Pu possesses approximately 250 times the specific activity of 239 Pu and thus allows for a much shorter time frame to address the issue. In preparation for production of 238 Pu loaded waste forms 239 Pu loaded samples were produced. Data is presented for samples produced with typical reactor grade plutonium. X-ray diffraction, scanning electron micrographs and durability test results will be presented. The ramifications for the production of the 238 Pu loaded samples will be discussed

  20. Nuclear heat-load limits for above-grade storage of solid transuranium wastes

    International Nuclear Information System (INIS)

    Clontz, B.G.

    1978-06-01

    Nuclear safety and heat load limits were established for above-grade storage of transuranium (TRU) wastes. Nuclear safety limits were obtained from a study by J.L. Forstner and are summarized. Heat load limits are based on temperature calculations for TRU waste drums stored in concrete containers (hats), and results are summarized. Waste already in storage is within these limits. The limiting factors for individual drum heat load limits were (1) avoidance of temperatures in excess of 190 0 F (decomposition temperature of anion resin) when anion resin is present in a concrete hat, and (2) avoidance of temperatures in excess of 450 0 F (ignition temperature of paper) at any point inside a waste drum. The limiting factor for concrete had heat load limits was avoidance of temperatures in excess of 265 0 F (melt point of high density polyethylene) at the drum liners. A temperature profile for drums and hats filled to recommended limits is shown. Equations and assumptions used were conservative

  1. Side loading vault system and method for the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Meess, D.C.; Jones, B.J.; Mello, R.M.; Weiss, T.G. Jr.; Wright, J.B.

    1990-01-01

    This patent describes a method for the disposal of hazardous radioactive waste. It comprises: constructing a floor slab in the earth; constructing an elongated wall assembly over the floor slab having sidewalls and a front wall and a back wall at either end the side walls being longer than the front and back walls; providing an accessway in the front wall; constructing a ceiling slab over the wall assembly that is supported at least in part by the wall assembly to form a vault cell; inspecting the vault cell for structural defects, introducing hazardous radioactive waste through the accessway in the front wall and loading the cell with the waste from the back wall to the front wall in rows, each of which is substantially parallel to the back wall to minimize radiation exposure to workers loading the cell, and closing the accessway of the vault cell by constructing a removable wall structure within the accessway

  2. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-02-01

    Full Text Available The Organic Rankine Cycle (ORC has been proved a promising technique to exploit waste heat from Internal Combustion Engines (ICEs. Waste heat recovery systems have usually been designed based on engine rated working conditions, while engines often operate under part load conditions. Hence, it is quite important to analyze the off-design performance of ORC systems under different engine loads. This paper presents an off-design Medium Cycle/Organic Rankine Cycle (MC/ORC system model by interconnecting the component models, which allows the prediction of system off-design behavior. The sliding pressure control method is applied to balance the variation of system parameters and evaporating pressure is chosen as the operational variable. The effect of operational variable and engine load on system performance is analyzed from the aspects of energy and exergy. The results show that with the drop of engine load, the MC/ORC system can always effectively recover waste heat, whereas the maximum net power output, thermal efficiency and exergy efficiency decrease linearly. Considering the contributions of components to total exergy destruction, the proportions of the gas-oil exchanger and turbine increase, while the proportions of the evaporator and condenser decrease with the drop of engine load.

  3. The influence of geological loading on the structural integrity of an underground nuclear waste repository

    International Nuclear Information System (INIS)

    Jakeman, N.

    1985-08-01

    Stresses are developed in underground nuclear waste repositories as a result of applied loads from geological movements caused by the encroachment of ice sheets or seismic activity for example. These stresses may induce fracturing of the waste matrix, repository vault and nearfield host geology. This fracturing will enhance the advective flow and allow more-rapid transfer of radionuclides from their encapsulation through the repository barriers and nearfield host rock. Geological loads may be applied either gradually as in crustal folding or encroachment of ice sheets, or rapidly as in the case of seismic movements. The analysis outlined in this report is conducted with a view to including the effects of geological loading in a probabilistic repository site assessment computer code such as SYVAC. (author)

  4. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... continuously estimate load level (for example, the feed rate of municipal solid waste or refuse-derived fuel... municipal waste combustion unit? 62.15265 Section 62.15265 Protection of Environment ENVIRONMENTAL... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units...

  5. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  6. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Wang Wei; Shi Yunchun; Zheng Lei [School of Environment, Tsinghua University, Beijing 100084 (China); Gao Xingbao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Qiao Wei [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhou Yingjun [Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540 (Japan)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  7. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    International Nuclear Information System (INIS)

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-01-01

    Highlights: ► Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. ► System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m 3 d) −1 were analyzed. ► A maximum methane production rate of 2.94 m 3 (m 3 d) −1 was achieved at OLR of 8.0 kg VS (m 3 d) −1 and HRT of 15d. ► With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. ► The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2–8.0 kg volatile solid (VS) (m 3 d) −1 , with VS reduction rates of 61.7–69.9%, and volumetric biogas production of 0.89–5.28 m 3 (m 3 d) −1 . A maximum methane production rate of 2.94 m 3 (m 3 d) −1 was achieved at OLR of 8.0 kg VS (m 3 d) −1 and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m 3 d) −1 . This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  8. Effects of squat lift training and free weight muscle training on maximum lifting load and isolinetic peak torque of young adults without impairments.

    Science.gov (United States)

    Yeung, S S; Ng, G Y

    2000-06-01

    Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.

  9. Total maximum allocated load calculation of nitrogen pollutants by linking a 3D biogeochemical-hydrodynamic model with a programming model in Bohai Sea

    Science.gov (United States)

    Dai, Aiquan; Li, Keqiang; Ding, Dongsheng; Li, Yan; Liang, Shengkang; Li, Yanbin; Su, Ying; Wang, Xiulin

    2015-12-01

    The equal percent removal (EPR) method, in which pollutant reduction ratio was set as the same in all administrative regions, failed to satisfy the requirement for water quality improvement in the Bohai Sea. Such requirement was imposed by the developed Coastal Pollution Total Load Control Management. The total maximum allocated load (TMAL) of nitrogen pollutants in the sea-sink source regions (SSRs) around the Bohai Rim, which is the maximum pollutant load of every outlet under the limitation of water quality criteria, was estimated by optimization-simulation method (OSM) combined with loop approximation calculation. In OSM, water quality is simulated using a water quality model and pollutant load is calculated with a programming model. The effect of changes in pollutant loads on TMAL was discussed. Results showed that the TMAL of nitrogen pollutants in 34 SSRs was 1.49×105 ton/year. The highest TMAL was observed in summer, whereas the lowest in winter. TMAL was also higher in the Bohai Strait and central Bohai Sea and lower in the inner area of the Liaodong Bay, Bohai Bay and Laizhou Bay. In loop approximation calculation, the TMAL obtained was considered satisfactory for water quality criteria as fluctuation of concentration response matrix with pollutant loads was eliminated. Results of numerical experiment further showed that water quality improved faster and were more evident under TMAL input than that when using the EPR method

  10. IMPACT OF REDUCING THE 100 C LIQUIDUS TEMPERATURE OFFSET ON WASTE LOADING TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.; Edwards, T.

    2010-11-11

    The objective of this report is to assess the potential impact of reducing conservatism in the implementation of the current liquidus temperature (TL) model in the Product Composition Control System (PCCS) on the ability to target higher waste loadings (WLs) for future sludge batches. No changes to the TL model or the associated uncertainties (model or measurement) are proposed, rather only changes in the magnitude of the offset used between the nominal melt pool temperature (1150 C) and the Property Acceptance Region (PAR) value (1050 C). This strategy is consistent with that outlined and initially assessed by Brown et al. (2001). In that report, the authors stated even a fairly conservative change in this safety factor could have a significant impact on waste loading. The results of this study clearly indicate that the implementation of an 1100 C TL PAR criterion (which translates into a reduction in the TL offset from 100 C to 50 C) can have significantly positive impacts on the ability to gain access to WLs exceeding 45%. This is especially true for those frit and sludge systems that are TL limited using the current 1050 C TL criterion, and are not limited by a second constraint (such as viscosity, nepheline, or durability) until much higher WLs. Examples of various glass forming systems are provided that are currently limited to maximum WLs in the mid-40s, but could be processed in the lower 50s through implementation of this new strategy. One example is in the Sludge Batch 10 (SB10) system, where for a specific glass forming system the projected operating window of 38-41% WL (using the current constraints) became 38-52% WL with the use of an 1100 C TL PAR value. This change both provided access to significantly higher WLs, and transitioned a once infeasible flowsheet to a system that could potentially be processed in the Defense Waste Processing Facility (DWPF). This potential change in the TL constraint also provides access to frit compositions (or glass

  11. Optimised anaerobic treatment of house-sorted biodegradable waste and slaughterhouse waste in a high loaded half technical scale digester.

    Science.gov (United States)

    Resch, C; Grasmug, M; Smeets, W; Braun, R; Kirchmayr, R

    2006-01-01

    Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.

  12. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The study of the ''Admissible thermal loading in geological formations and its consequence on radioactive waste disposal methods'' comprises four volumes: Volume 1. ''Synthesis report'' (English/French text). Volume 2. Granite formations (French text). Volume 3. Salt formations (German text). Volume 4. Clay formations (French text). The present ''synthesis report'' brings together the formation produced by the three specific studies dealing with granite, salt and clay

  13. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The thermal loading in salt formation is studied for the disposal of high-level radioactive waste embedded in glass. Temperature effect on glass leaching, stability of gel layer on glass surface, quantity of leaching solution available in the borehole and corrosion resistance of materials used for containers are examined. The geological storage medium must satisfy particularly complex requirements: stratigraphy, brine migration, permeability, fissuring, mechanical strength, creep, thermal expansion, cavity structure ..

  14. Microbial Community in a Biofilter for Removal of Low Load Nitrobenzene Waste Gas.

    Directory of Open Access Journals (Sweden)

    Jian Zhai

    Full Text Available To improve biofilter performance, the microbial community of a biofilter must be clearly defined. In this study, the performance of a lab-scale polyurethane biofilter for treating waste gas with low loads of nitrobenzene (NB (< 20 g m-3 h-1 was investigated when using different empty bed residence times (EBRT (64, 55.4 and 34 s, respectively. In addition, the variations of the bacterial community in the biofilm on the longitudinal distribution of the biofilters were analysed by using Illumina MiSeq high-throughput sequencing. The results showed that NB waste gas was successfully degraded in the biofilter. High-throughput sequencing data suggested that the phylum Actinobacteria and genus Rhodococcus played important roles in the degradation of NB. The variations of the microbial community were attributed to the different intermediate degradation products of NB in each layer. The strains identified in this study were potential candidates for purifying waste gas effluents containing NB.

  15. High-solids loading enzymatic hydrolysis of waste papers for biofuel production

    International Nuclear Information System (INIS)

    Wang, Lei; Templer, Richard; Murphy, Richard J.

    2012-01-01

    Highlights: ► Waste papers have great potential as a feedstock for bioethanol production. ► A wet blending step would significantly enhance enzymatic hydrolysis efficiency. ► High-solids loading saccharification was performed successfully on waste papers. ► Saccharification data were from four types of paper and two enzyme alternatives. ► Enzymatic hydrolysis kinetic models were validated by experimental data. -- Abstract: Waste papers (newspaper, office paper, magazines and cardboard in this study) with 50–73% (w/w oven dry weight) carbohydrate contents have considerable potential as raw materials for bioethanol production. A particle size reduction step of wet blending prior to enzymatic hydrolysis of newspaper was found to increase the glucan conversion efficiency by up to 10%. High-solids loading hydrolysis at 15% (w/w) of four types of paper using two enzyme alternatives, Celluclast 1.5L supplemented with Novozyme 188 and Cellic Ctec 1 (Novozymes A/S, Demark), at various enzyme concentrations were successfully performed in a lab-scale overhead-stirred reactor. This work has identified the relative saccharification performance for the four types of paper and shows office paper and cardboard to be more suitable for producing bioethanol than newspaper or magazine paper. The experimental data were also very well described by a modified, simple three parameter glucan and xylan hydrolysis model. These findings provide the possibility for incorporating this validated kinetic model into process designs required for commercial scale bioethanol production from waste paper resources.

  16. 75 FR 26956 - Clean Water Act Section 303(d): Availability of Los Angeles Area Lakes Total Maximum Daily Loads...

    Science.gov (United States)

    2010-05-13

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9146-6] Clean Water Act Section 303(d): Availability of Los...: Notice of availability. SUMMARY: This action announces the availability of EPA proposed total maximum... nutrient, mercury, chlordane, dieldrin, DDT, PCB, and trash impairments pursuant to Clean Water Act Section...

  17. Review of revised Klamath River Total Maximum Daily Load models from Link River Dam to Keno Dam, Oregon

    Science.gov (United States)

    Rounds, Stewart A.; Sullivan, Annett B.

    2013-01-01

    Flow and water-quality models are being used to support the development of Total Maximum Daily Load (TMDL) plans for the Klamath River downstream of Upper Klamath Lake (UKL) in south-central Oregon. For riverine reaches, the RMA-2 and RMA-11 models were used, whereas the CE-QUAL-W2 model was used to simulate pooled reaches. The U.S. Geological Survey (USGS) was asked to review the most upstream of these models, from Link River Dam at the outlet of UKL downstream through the first pooled reach of the Klamath River from Lake Ewauna to Keno Dam. Previous versions of these models were reviewed in 2009 by USGS. Since that time, important revisions were made to correct several problems and address other issues. This review documents an assessment of the revised models, with emphasis on the model revisions and any remaining issues. The primary focus of this review is the 19.7-mile Lake Ewauna to Keno Dam reach of the Klamath River that was simulated with the CE-QUAL-W2 model. Water spends far more time in the Lake Ewauna to Keno Dam reach than in the 1-mile Link River reach that connects UKL to the Klamath River, and most of the critical reactions affecting water quality upstream of Keno Dam occur in that pooled reach. This model review includes assessments of years 2000 and 2002 current conditions scenarios, which were used to calibrate the model, as well as a natural conditions scenario that was used as the reference condition for the TMDL and was based on the 2000 flow conditions. The natural conditions scenario included the removal of Keno Dam, restoration of the Keno reef (a shallow spot that was removed when the dam was built), removal of all point-source inputs, and derivation of upstream boundary water-quality inputs from a previously developed UKL TMDL model. This review examined the details of the models, including model algorithms, parameter values, and boundary conditions; the review did not assess the draft Klamath River TMDL or the TMDL allocations

  18. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  19. Optimization of waste loading in high-level glass in the presence of uncertainty

    International Nuclear Information System (INIS)

    Hoza, M.; Fann, G.I.; Hopkins, D.F.

    1995-02-01

    Hanford high-level liquid waste will be converted into a glass form for long-term storage. The glass must meet certain constraints on its composition and properties in order to have desired properties for processing (e.g., electrical conductivity, viscosity, and liquidus temperature) and acceptable durability for long-term storage. The Optimal Waste Loading (OWL) models, based on rigorous mathematical optimization techniques, have been developed to minimize the number of glass logs required and determine glass-former compositions that will produce a glass meeting all relevant constraints. There is considerable uncertainty in many of the models and data relevant to the formulation of high-level glass. In this paper, we discuss how we handle uncertainty in the glass property models and in the high-level waste composition to the vitrification process. Glass property constraints used in optimization are inequalities that relate glass property models obtained by regression analysis of experimental data to numerical limits on property values. Therefore, these constraints are subject to uncertainty. The sampling distributions of the regression models are used to describe the uncertainties associated with the constraints. The optimization then accounts for these uncertainties by requiring the constraints to be satisfied within specified confidence limits. The uncertainty in waste composition is handled using stochastic optimization. Given means and standard deviations of component masses in the high-level waste stream, distributions of possible values for each component are generated. A series of optimization runs is performed; the distribution of each waste component is sampled for each run. The resultant distribution of solutions is then statistically summarized. The ability of OWL models to handle these forms of uncertainty make them very useful tools in designing and evaluating high-level waste glasses formulations

  20. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    Science.gov (United States)

    Furbish, David; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan

    2016-01-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  1. Effect of error in crack length measurement on maximum load fracture toughness of Zr-2.5Nb pressure tube material

    International Nuclear Information System (INIS)

    Bind, A.K.; Sunil, Saurav; Singh, R.N.; Chakravartty, J.K.

    2016-03-01

    Recently it was found that maximum load toughness (J max ) for Zr-2.5Nb pressure tube material was practically unaffected by error in Δ a . To check the sensitivity of the J max to error in Δ a measurement, the J max was calculated assuming no crack growth up to the maximum load (P max ) for as received and hydrogen charged Zr-2.5Nb pressure tube material. For load up to the P max , the J values calculated assuming no crack growth (J NC ) were slightly higher than that calculated based on Δ a measured using DCPD technique (JDCPD). In general, error in the J calculation found to be increased exponentially with Δ a . The error in J max calculation was increased with an increase in Δ a and a decrease in J max . Based on deformation theory of J, an analytic criterion was developed to check the insensitivity of the J max to error in Δ a . There was very good linear relation was found between the J max calculated based on Δ a measured using DCPD technique and the J max calculated assuming no crack growth. This relation will be very useful to calculate J max without measuring the crack growth during fracture test especially for irradiated material. (author)

  2. An inventory model of purchase quantity for fully-loaded vehicles with maximum trips in consecutive transport time

    Directory of Open Access Journals (Sweden)

    Chen Pоуu

    2013-01-01

    Full Text Available Products made overseas but sold in Taiwan are very common. Regarding the cross-border or interregional production and marketing of goods, inventory decision-makers often have to think about how to determine the amount of purchases per cycle, the number of transport vehicles, the working hours of each transport vehicle, and the delivery by ground or air transport to sales offices in order to minimize the total cost of the inventory in unit time. This model assumes that the amount of purchases for each order cycle should allow all rented vehicles to be fully loaded and the transport times to reach the upper limit within the time period. The main research findings of this study included the search for the optimal solution of the integer planning of the model and the results of sensitivity analysis.

  3. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    International Nuclear Information System (INIS)

    JULYK, L.J.

    1999-01-01

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant

  4. Synchronized Pulsed dc - dc Converter as Maximum Power Position Tracker with Wide Load and Insolation Variation for Stand Alone PV System

    International Nuclear Information System (INIS)

    Hardik, P. Desai; Ranjan Maheshwari

    2011-01-01

    This paper investigates the interest focused on employing parallel connected dc-dc converter with high tracking effectiveness under wide variation in environmental conditions (Insolation) and wide load variation. dc-dc converter is an essential part of the stand alone PV system. Paper also presents an approach on how duty cycle for maximum power position (MPP) is adjusted by taking care of varying load conditions and without iterative steps. Synchronized PWM pulses are employed for the converter. High tracking efficiency is achieved with continuous input and inductor current. In this approach, the converter can he utilized in buck as well in boost mode. The PV system simulation was verified and experimental results were in agreement to the presented scheme. (authors)

  5. Loading and transport of high-active waste (HAW) with the TN85 flask in 2008

    International Nuclear Information System (INIS)

    Rys, Michael; Horn, Thomas; Graf, Wilhelm; Bonface, Jean-Michael

    2009-01-01

    As a part of the operation of nuclear power plants, it is essential to safely manage the radioactive waste. With new developments in science and technology, it is a dynamic process to adapt procedures, equipment and flasks to be used in the future. This is a task for specialists - a task for GNS Gesellschaft fuer Nuklear-Service mbH and for TN International. Until 1994 reprocessing of spent fuel from German nuclear power plants was mandatory for the Utilities (EVU) in Germany. Basis for the reprocessing was the German Atomic Act. The German Utilities concluded contracts on reprocessing with Compagnie Generale des Matieres Nucleaires (COGEMA, now AREVA NC) in France and British Nuclear Fuels plc (BNFL, now INS) in England. The total amount to be reprocessed comes to 5309 t HM contracted to AREVA NC and 768 t HM contracted to INS. The waste generated from reprocessing - or an equivalent amount of radioactive material - has to be returned to the country of origin. In 1979 already an exchange of notes took place between the German and the French government with the obligation of both sides to enable and support the return of reprocessing residues or equivalents. The return of high-active waste (HAW) from France has started in 1996 with the first attribution of 28 glass canisters (one flask) to German Utilities by AREVA NC. Until 2007, 75 flasks loaded with vitrified residue (VR) canisters have been transported to Gorleben. For these transports CASTOR registered HAW 20/28 CG flasks have been used. This presentation will give some background information about the last HAW transport in 2008 with the new flask generation of the type TN85. It will also describe the assembly of the new flask, the preparation of the flask for the loading campaign as well as the loading procedure. (orig.)

  6. Loading and transport of high-active waste (HAW) with the TN85 flask in 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rys, Michael; Horn, Thomas; Graf, Wilhelm [GNS Gesellschaft fuer Nuklear-Service mbH (Germany); Bonface, Jean-Michael [TN International, Montigny-le-Bretonneux (France)

    2009-07-01

    As a part of the operation of nuclear power plants, it is essential to safely manage the radioactive waste. With new developments in science and technology, it is a dynamic process to adapt procedures, equipment and flasks to be used in the future. This is a task for specialists - a task for GNS Gesellschaft fuer Nuklear-Service mbH and for TN International. Until 1994 reprocessing of spent fuel from German nuclear power plants was mandatory for the Utilities (EVU) in Germany. Basis for the reprocessing was the German Atomic Act. The German Utilities concluded contracts on reprocessing with Compagnie Generale des Matieres Nucleaires (COGEMA, now AREVA NC) in France and British Nuclear Fuels plc (BNFL, now INS) in England. The total amount to be reprocessed comes to 5309 t HM contracted to AREVA NC and 768 t HM contracted to INS. The waste generated from reprocessing - or an equivalent amount of radioactive material - has to be returned to the country of origin. In 1979 already an exchange of notes took place between the German and the French government with the obligation of both sides to enable and support the return of reprocessing residues or equivalents. The return of high-active waste (HAW) from France has started in 1996 with the first attribution of 28 glass canisters (one flask) to German Utilities by AREVA NC. Until 2007, 75 flasks loaded with vitrified residue (VR) canisters have been transported to Gorleben. For these transports CASTOR {sup registered} HAW 20/28 CG flasks have been used. This presentation will give some background information about the last HAW transport in 2008 with the new flask generation of the type TN85. It will also describe the assembly of the new flask, the preparation of the flask for the loading campaign as well as the loading procedure. (orig.)

  7. Above and below boiling thermal loading strategies for large waste packages

    International Nuclear Information System (INIS)

    Smith, M.L.

    1994-01-01

    A simplified repository thermal model was developed with the Mathcad computer code which indicates that large waste packages may be compatible with both above and below boiling repository thermal loading strategies. Minimum spent fuel decay time of at least 20 to 30 years was shown to be important for both thermal loading strategies. Constant isothermal boundary conditions are assumed at the ground surface (296 K) and 305 meters below the water table (309.7 K) with a uniform temperature change of 1.55 10 -2 K/meter. Homogeneous tuff properties are assumed: conductivity (2.1 watt/m-k); density (2.22 gm/cm 3 ); and thermal capacitance (2.17 joule/cm 3 K). Based on these properties, the tuff thermal diffusion coefficient is 9.68 x 10 -7 m 2 /sec

  8. Method of estimating maximum VOC concentration in void volume of vented waste drums using limited sampling data: Application in transuranic waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Connolly, M.J.

    1995-01-01

    A test program has been conducted at the Idaho National Engineering Laboratory to demonstrate that the concentration of volatile organic compounds (VOCs) within the innermost layer of confinement in a vented waste drum can be estimated using a model incorporating diffusion and permeation transport principles as well as limited waste drum sampling data. The model consists of a series of material balance equations describing steady-state VOC transport from each distinct void volume in the drum. The primary model input is the measured drum headspace VOC concentration. Model parameters are determined or estimated based on available process knowledge. The model effectiveness in estimating VOC concentration in the headspace of the innermost layer of confinement was examined for vented waste drums containing different waste types and configurations. This paper summarizes the experimental measurements and model predictions in vented transuranic waste drums containing solidified sludges and solid waste

  9. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cooley, Scott K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-24

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer

  10. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    International Nuclear Information System (INIS)

    Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.; Crum, Jarrod V.

    2015-01-01

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO 3 , has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO 3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO 3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The experimental

  11. An assessment of potential risk resulting from a maximum credible accident scenario at the proposed explosive waste storage facility (EWSF)

    International Nuclear Information System (INIS)

    Otsuki, K.; Harrach, R.; Berger, R.

    1992-10-01

    Lawrence Livermore National Laboratory (LLNL) proposes to build, permit, and operate a storage facility for explosive wastes at LLNL's Explosive Test Site, Site 300. The facility would consist of four existing magazines, four new magazettes (small concrete vaults), and a new prefabricated metal building. Ash from on-site treatment of explosive waste would also be stored in the prefabricated metal building prior to sampling analysis, and shipment. The magazettes would be installed at each magazine-and would provide segregated storage for explosive waste types including detonators, actuators, and other initiating devices. The proposed facility would be used to store explosive wastes generated by the Hydrotest and Explosive Development Programs at LLNL prior to treatment on-site or shipment to permitted, commercial, off-site treatment facilities. Explosive wastes to be stored in the proposed facility represent a full spectrum of Department of Energy (DOE) and LLNL explosive wastes. This document identifies and evaluates the risk to human health and the environment associated with the operation of the proposed EWSF

  12. Development of Waste Load Allocation Strategiesin Rivers Using Social Choice Approach

    Directory of Open Access Journals (Sweden)

    mohammad amin zolfagharipour

    2015-01-01

    Full Text Available In this paper, river water quality management was implemented to minimize the costs of environmental protection and to meet the environmental water quality requirements. For this purpose, the social choice approach was adopted to consider the role of wastewater dischargers in the decision-making process and to increase the applicability of the proposed waste load allocation programs. Firstly, different wastewater treatment scenarios were identified for each water pollutant and treatment alternatives which are combinations of treatment scenarios were defined. For each treatment alternative, penalties due to violations of river water quality standards were then calculated using the qualitative simulation model (Qual2kw and each discharger was assumed to prioritize the treatment alternatives based on the treatment costs and the fines defined for water quality standard violations. Finally, using different social choice methods, the most preferred treatment alternative was identified. In order to reduce costs and to encourage dischargers to participate in river water quality protection programs, the most preferred treatment alternative was exchanged among the dischargers as an initial discharge permit using the extended trading-ratio system (ETRS. The results of applying the proposed model to a case study, the Zarjub River located in north Iran, showed the model’s efficiency in developing river waste load allocation strategies.

  13. The Impact of Waste Loading on Viscosity in the Frit 418-SB3 System

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    In this report, data are provided to gain insight into the potential impact of a lower viscosity glass on melter stability (i.e., pressure spikes, cold cap behavior) and/or pour stream stability. High temperature viscosity data are generated for the Frit 418-SB3 system as a function of waste loading (from 30 to 45 percent) and compared to similar data from other systems that have been (or are currently being) processed through the Defense Waste Processing Facility (DWPF) melter. The data are presented in various formats to potentially align the viscosity data with physical observations at various points in the melter system or critical DWPF processing unit operations. The expectations is that the data will be provided adequate insight into the vitrification parameters which might evolve into working solutions as DWPF strives to maximize waste throughput. This report attempts to provide insight into a physical interpretation of the data from a DWPF perspective. The theories present ed are certainly not an all inclusive list and the order in which they are present does imply a ranking, probability, or likelihood that the proposed theory is even plausible. The intent of this discussion is to provide a forum in which the viscosity data can be discussed in relation to possible mechanisms which could potentially lead to a workable solution as discussed in relation to possible solution as higher overall attainment is striven for during processing of the current or future sludge batches

  14. Real-Time Monitoring of Low-Level Mixed-Waste Loading during Polyethylene Microencapsulation using Transient Infrared Spectroscopy

    International Nuclear Information System (INIS)

    Jones, Roger W.; Kalb, Paul D.; McClelland, John F.; Ochiai, Shukichi

    1999-01-01

    In polyethylene microencapsulation, low-level mixed waste (LLMW) is homogenized with molten polyethylene and extruded into containers, resulting in a lighter, lower-volume waste form than cementation and grout methods produce. Additionally, the polyethylene-based waste form solidifies by cooling, with no risk of the waste interfering with cure, as may occur with cementation and grout processes. We have demonstrated real-time monitoring of the polyethylene encapsulation process stream using a noncontact device based on transient infrared spectroscopy (TIRS). TIRS can acquire mid-infrared spectra from solid or viscous liquid process streams, such as the molten, waste-loaded polyethylene stream that exits the microencapsulation extruder. The waste loading in the stream was determined from the TIRS spectra using partial least squares techniques. The monitor has been demonstrated during the polyethylene microencapsulation of nitrate-salt LLMW and its surrogate, molten salt oxidation LLMW and its surrogate, and flyash. The monitor typically achieved a standard error of prediction for the waste loading of about 1% by weight with an analysis time under 1 minute

  15. Contribution to the study of maximum levels for liquid radioactive waste disposal into continental and sea water. Treatment of some typical samples

    International Nuclear Information System (INIS)

    Bittel, R.; Mancel, J.

    1968-10-01

    The most important carriers of radioactive contamination of man are the whole of foodstuffs and not only ingested water or inhaled air. That is the reason why, in accordance with the spirit of the recent recommendations of the ICRP, it is proposed to substitute the idea of maximum levels of contamination of water to the MPC. In the case of aquatic food chains (aquatic organisms and irrigated foodstuffs), the knowledge of the ingested quantities and of the concentration factors food/water permit to determinate these maximum levels, or to find out a linear relation between the maximum levels in the case of two primary carriers of contamination (continental and sea waters). The notion of critical food-consumption, critical radioelements and formula of waste disposal are considered in the same way, taking care to attach the greatest possible importance to local situations. (authors) [fr

  16. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong

    2016-12-01

    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m 3 d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m 3 d) and 32kgCOD/(m 3 d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Intramural Injection with Botulinum Toxin Type A in Piglet Esophagus. The Influencer on Maximum Load and Elongation: A Dose Response Study.

    Science.gov (United States)

    Ellebæk, Mark Bremholm; Qvist, Niels; Schrøder, Henrik Daa; Rasmussen, Lars

    2016-06-01

    Introduction The treatment of esophageal atresia (OA) is challenging. The main goal is to achieve primary anastomosis. We have previously demonstrated in a pig model that intramural injection of botulinum toxin type A (BTX-A) resulted in significant elongation of the esophagus during tensioning until bursting point. The objectives of the present study were to investigate the influence of different amounts of intramural BTX-A on the stretch-tension characteristics and histological changes of the esophagus in piglets. Materials and Methods A total of 52 piglets were randomized to four groups receiving 2, 4, or 8 units/kg of BTX-A or isotonic saline (placebo). After a 1-hour of rest the esophagus was harvested and subjected to a stretch-tension test and histological examination to assess changes in the density of presynaptic vesicles in the nerve cells. Results Overall, 9 of the 52 animals were excluded from analysis due to problems with the stretch-tension test or death from anesthesia. The maximum loads were higher in the BTX-A groups (2 units/kg: +2.1 N; 4 units/kg: +1.3 N; 8 units/kg: +1.9 N) than the placebo (p = 0.046). There were no significant differences in percentage elongation, or histology. Conclusions This study demonstrated that injection of 2 units/kg BTX-A into a nonanastomosed esophageal wall resulted in a modest increase in the maximum load achieved before bursting; this may be due to the muscle-relaxant effect of BTX-A. BTX-A injection produced no significant effects on elongation or esophageal histology. The clinical usefulness of BTX-A in treatment of OA is still unclear. Georg Thieme Verlag KG Stuttgart · New York.

  18. Loading, moving, and shipping radioactive waste in reusable radioactive material containers

    International Nuclear Information System (INIS)

    Schillinger, F.J.; Mohr, J.A.

    1993-01-01

    While the dismantlement of systems and components at the Shoreham Nuclear Power Plant was a monumental task, the loading, movement, temporary storage, and shipping of over 2 1/2 million pounds of contaminated and/or activated material was nearly as difficult. Close coordination and teamwork between such diverse groups as craft labor, health physics, radiation controls, trucking companies and waste volume reducers were crucial elements in performing this work safely, cost effectively, and with particular attention to the station's very aggressive ALARA (As Low As Reasonably Achievable) goals. This paper discusses the actual work that was involved from the time the contaminated component was removed from its location in the plant through actual shipment offsite

  19. Optimal Waste Load Allocation Using Multi-Objective Optimization and Multi-Criteria Decision Analysis

    Directory of Open Access Journals (Sweden)

    L. Saberi

    2016-10-01

    Full Text Available Introduction: Increasing demand for water, depletion of resources of acceptable quality, and excessive water pollution due to agricultural and industrial developments has caused intensive social and environmental problems all over the world. Given the environmental importance of rivers, complexity and extent of pollution factors and physical, chemical and biological processes in these systems, optimal waste-load allocation in river systems has been given considerable attention in the literature in the past decades. The overall objective of planning and quality management of river systems is to develop and implement a coordinated set of strategies and policies to reduce or allocate of pollution entering the rivers so that the water quality matches by proposing environmental standards with an acceptable reliability. In such matters, often there are several different decision makers with different utilities which lead to conflicts. Methods/Materials: In this research, a conflict resolution framework for optimal waste load allocation in river systems is proposed, considering the total treatment cost and the Biological Oxygen Demand (BOD violation characteristics. There are two decision-makers inclusive waste load discharges coalition and environmentalists who have conflicting objectives. This framework consists of an embedded river water quality simulator, which simulates the transport process including reaction kinetics. The trade-off curve between objectives is obtained using the Multi-objective Particle Swarm Optimization Algorithm which these objectives are minimization of the total cost of treatment and penalties that must be paid by discharges and a violation of water quality standards considering BOD parameter which is controlled by environmentalists. Thus, the basic policy of river’s water quality management is formulated in such a way that the decision-makers are ensured their benefits will be provided as far as possible. By using MOPSO

  20. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    Every granite formation possesses, the following main characteristics: presence of fissures; physico-chemical alterability; presence of internal or peripheral heterogeneities. From samples at ambient temperature, sound granite is found to have the properties of a hard, elastic rock with a relatively low thermal conductivity. Its natural permeability is low or very low, and most of the percolating water passes through fissures affecting the rock mass. In this report are examined: effects of heat on cavity stability, mechanical interaction between conditioned wastes and the geological environment, effects on the stability of infilling materials, heat effects on the host rock and underground water, assessment of the permissible thermal load and design of the storage facility

  1. Influence of the Metal Volume Fraction on the maximum deflection and impact load of GLARE plates subjected to low velocity impact

    Science.gov (United States)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  2. Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1: Maximum possible fire loss (MPFL) decontamination and cleanup estimates. Revision 1

    International Nuclear Information System (INIS)

    Hinkle, A.W.; Jacobsen, P.H.; Lucas, D.R.

    1994-01-01

    Project W-026, Waste Receiving and Processing (WRAP) Facility Module 1, a 1991 Line Item, is planned for completion and start of operations in the spring of 1997. WRAP Module 1 will have the capability to characterize and repackage newly generated, retrieved and stored transuranic (TRU), TRU mixed, and suspect TRU waste for shipment to the Waste isolation Pilot Plant (WIPP). In addition, the WRAP Facility Module 1 will have the capability to characterize low-level mixed waste for treatment in WRAP Module 2A. This report documents the assumptions and cost estimates for decontamination and clean-up of a maximum possible fire loss (MPFL) as defined by DOE Order 5480.7A, FIRE PROTECTION. The Order defines MPFL as the value of property, excluding land, within a fire area, unless a fire hazards analysis demonstrates a lesser (or greater) loss potential. This assumes failure of both automatic fire suppression systems and manual fire fighting efforts. Estimates were developed for demolition, disposal, decontamination, and rebuilding. Total costs were estimated to be approximately $98M

  3. Temperature loading and rocks mechanics at final storage of radioactive waste

    International Nuclear Information System (INIS)

    Leijon, B.; Stephansson, O.

    1979-01-01

    This report describes the rock mechanical effects - in the far field - from the thermal loading at a final storage of radioactive waste in crystalline rocks. The stress distribution of a two-storey storage is described in more details. The temperature rise in a final storage of radiactive waste will create thermal stresses which may cause a failure of the rock mass, and thereby an increase of its permeability. However, the state of stress in the Earth's crust is able to neutralize the thermal stresses. By this analysis we have been able to demonstrate that the thermal stresses due to heat conduction from the final storage are compensated by the state of stress in the upper part of the crust. The absolute stress, which is the superposition of thermal stress and virgin rock stress, is in all cases found to be below the limit of failure due to frictional resistance between surfaces of constituent blocks in the rock mass. Failure by sliding friction is the most conservative failure criterion for a rock mass. (author)

  4. Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts

    Science.gov (United States)

    Al-asadi, M.; Miskolczi, N.

    2018-05-01

    In this work the pyrolysis of polyethylene terephthalate (PET) containing real waste plastic was investigated using different Ni loaded catalysts: Ni/ZSM-5, Ni/y-zeolite, Ni/β-zeolite and Ni/natural zeolite (clinoptilolite). Raw materials were pyrolyzed in a horizontal tubular reactor between 600 and 900°C using 10% of catalysts. It was found, that both temperature increasing and catalysts presence can increase the gas yields, however owing to gasification reactions, the pyrolysis oil yield decreased with increasing temperature. Ni/y-zeolite catalyst had the most benefit in gas yield increasing at low temperature; however Ni/ZSM-5 showed advanced property in gas yield increasing at high temperature. Gases contained hydrogen, carbon oxides and hydrocarbons, which composition was significantly affected by catalysts. Ni loaded zeolites favoured to the formation of hydrogen and branched hydrocarbons; furthermore the concentrations of both CO and CO2 were also increased as function of elevated temperature. That phenomenon was attributed to the further decomposition of PET, especially to the side chain scission reactions. Owing to the Boudouard reaction, the ratio of CO2/CO can increased with temperature. Pyrolysis oils were the mixtures of n-saturated, n-unsaturated, branched, oxygen free aromatics and oxygenated hydrocarbons. Temperature increasing has a significant effect to the aromatization and isomerization reactions, while the catalysts can efficiently decreased the concentration of oxygen containing compounds.

  5. Chassis loading investigation of two-shaft shredder for construction waste management

    Directory of Open Access Journals (Sweden)

    Vatskicheva Malina

    2017-01-01

    Full Text Available Recycling industry development need cracked materials with different composition and characteristics. New constructions shredders creation, their engineering design, development through adequate mechanical-mathematical models and practical realization determines the actuality of this paper. The materials crushing for recycling solves important environmental tasks related to environmental protection. The two-shaft hydraulic shredder realized the first and the second stage from the crushing (disintegration process. Disintegration as part of the recycling process can be successfully applied to the domestic and industrial waste processing, singleand multi-component materials crushing, and to secondary raw materials grinding. The paper is dedicated to the emerging loading of the two-shaft shredder chassis and the resulting calculations and verifications. In the present work has been performed a modeling study of the chassis for such type of shredder for concrete, rubber, plastic and wood crushing. The studies of the mechanical load and behaviour of the chassis have been conducted. The equations characterizing the mechanical processes in the working conditions by the finite element method are solved. For this purpose has been generated a chassis three-dimensional geometrical model, which has been discretized to a planned network of finite elements in the ANSYS MECHANICAL APDL programming environment.

  6. Position paper: Live load design criteria for Project W-236A Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Giller, R.A.

    1995-01-01

    The purpose of this paper is to discuss the live loads applied to the underground storage tanks of the Multi Function Waste Tank Facility, and to provide the basis for Project W-236A live load criteria. Project 236A provides encompasses building a Weather Enclosure over the two underground storage tanks at the 200-West area. According to the Material Handling Study, the Groves AT 1100 crane used within the Weather Enclosure will have a gross vehicle weight of 66.5 tons. Therefore, a 100-ton concentrated live load is being used for the planning of the construction of the Weather Enclosure

  7. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency.

    Science.gov (United States)

    Li, Qian; Li, Hao; Wang, Gaojun; Wang, Xiaochang

    2017-08-01

    A continuously stirred tank reactor (CSTR) with a high feeding frequency (HFF) of once every 15min was employed in order to ease the loading shock frequently occurred in digester with a low feeding frequency. The effects of the organic loading rate (OLR) and temperature on the co-digestion of food waste and waste activated sludge was evaluated in a 302-day long-term experiment. Due to the high hydrolysis rate, the maximum CH 4 yield in a thermophilic reactor was 407mL CH 4 /gVS added , a value that was significantly higher than the 350mL CH 4 /gVS added that occurred in a mesophilic reactor. Although the alkalinity declined when HRT was shorted than 10d, caused by the decrease of conversion ratio from protein to ammonium, the increase of specific methanogenic activity helped HFF system to achieve stable performance at an OLR of 11.2 (HRT 7.5d) and 30.2gVS/L/d (HRT 3d) under mesophilic and thermophilic conditions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. CASTOR registered HAW28M - a high heat load cask for transport and storage of vitrified high level waste containers

    International Nuclear Information System (INIS)

    Vossnacke, A.; Klein, K.; Kuehne, B.

    2004-01-01

    Within the German return programme for vitrified high level waste (HLW) from reprocessing at COGEMA and BNFL up to now 39 casks loaded with 28 containers each were transported back to Germany and are stored in the Interim Storage Facility Gorleben (TBL-G) for up to 40 years. For transport and storage in all but one case the GNB casks CASTOR registered HAW 20/28 CG have been used. This cask type is designed to accommodate 20 or 28 HLW containers with a total thermal power of 45 kW maximum. In the near future, among the high level waste, which has to be returned to Germany, there will be an increasing number of containers of which the heat capacity and radioactive inventory will exceed the technical limits of the CASTOR registered HAW 20/28 CG. Therefore GNB has started the development of a new cask generation, named CASTOR registered HAW28M, meeting these future requirements. The CASTOR registered HAW28M is especially developed for the transport of vitrified residues from France and Great Britain to Germany. It complies with the international regulations for type B packages according to IAEA (International Atomic Energy Agency). It is thus guaranteed that even in case of any accident the cask body and the lid system remain functional and the safe confinement of the radioactive contents remains intact during transport. The CASTOR registered HAW28M fulfills not only the requirements for transport but also the acceptance criteria of interim storage: radiation shielding, heat dissipation, safe confinement under both normal and hypothetical accident conditions. Storage buildings such as the TBL-G simply support the safety functions of the cask. The challenge for the development results from higher requirements of the technical specification, particularly related to fuel which is reprocessed. As a consequence of the reprocessing of fuel with increased enrichment and burn up, higher heat capacity and sophisticated shielding measures have to be considered. For the CASTOR

  9. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayanan, A., E-mail: arvinda@barc.gov.in [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ambashta, R.D., E-mail: aritu@barc.gov.in [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ajithkumar, T. [Applied Catalysis Unit, National Chemical Laboratory, Pune 411008 (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Wattal, P.K. [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-15

    Sodium zirconium phosphate (NZP) ceramics have been prepared using conventional sintering and hot isostatic pressing (HIP) routes. The structure of NZP ceramics, prepared using the HIP route, has been compared with conventionally sintered NZP using a combination of X-ray diffraction (XRD) and ({sup 31}P and {sup 23}Na) nuclear magnetic resonance (NMR) spectroscopy techniques. It is observed that NZP with no waste loading is aggressive toward the steel HIP-can during hot isostatic compaction and significant fraction of cations from the steel enter the ceramic material. Waste loaded NZP samples (10 wt% simulated FBR waste) show significantly low can-interaction and primary NZP phase is evident in this material. Upon exposure of can-interacted and waste loaded NZP to boiling water and steam, {sup 31}P NMR does not detect any major modifications in the network structure. However, the {sup 23}Na NMR spectra indicate migration of Na{sup +} ions from the surface and possible re-crystallization. This is corroborated by Small-Angle Neutron Scattering (SANS) data and Scanning Electron Microscopy (SEM) measurements carried out on these samples.

  10. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1994-01-01

    The Waste Receiving and Processing (WRAP) Facility is being designed for construction in the north end of the Central Waste Complex. The WRAP Facility will receive, store, and process radioactive solid waste of both transuranic (TRU) and mixed waste (mixed radioactive-chemical waste) categories. Most of the waste is in 208-L (55-gal) steel drums. Other containers such as wood and steel boxes, and various sized drums will also be processed in the facility. The largest volume of waste and the type addressed in this report is TRU in 208-L (55-gal) drums that is scheduled to be processed in the Waste Receiving and Processing Facility Module 1 (WRAP 1). Half of the TRU waste processed by WRAP 1 is expected to be retrieved stored waste and the other half newly generated waste. Both the stored and new waste will be processed to certify it for permanent storage in the Waste Isolation Pilot Plant (WIPP) or disposal. The stored waste will go through a process of retrieval, examination, analysis, segregation, repackaging, relabeling, and documentation before certification and WIPP shipment. Newly generated waste should be much easier to process and certify. However, a substantial number of drums of both retrievable and newly generated waste will require temporary storage and handling in WRAP. Most of the TRU waste is combustible or has combustible components. Therefore, the presence of a substantial volume of drummed combustible waste raises concern about fire safety in WRAP and similar waste drum storage facilities. This report analyzes the fire related characteristics of the expected WRAP TRU waste stream

  11. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-06-01

    The increasing food waste production calls for developing efficient technologies for its treatment. Anaerobic processes provide an effective waste valorization. The influence of the initial substrate load on the performance of batch dry anaerobic co-digestion reactors treating food waste and cardboard was investigated. The load was varied by modifying the substrate to inoculum ratio (S/X), the total solids content and the co-digestion proportions. The results showed that the S/X was a crucial parameter. Within the tested values (0.25, 1 and 4gVS·gVS -1 ), only the reactors working at 0.25 produced methane. Methanosarcina was the main archaea, indicating its importance for efficient methanogenesis. Acidogenic fermentation was predominant at higher S/X, producing hydrogen and other metabolites. Higher substrate conversions (≤48%) and hydrogen yields (≤62mL·gVS -1 ) were achieved at low loads. This study suggests that different value-added compounds can be produced in dry conditions, with the initial substrate load as easy-to-control operational parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Analysis of waste-load assimilative capacity of the Yampa River, Steamboat Springs to Hayden, Routt County, Colorado

    Science.gov (United States)

    Bauer, Daniel P.; Steele, Timothy Doak; Anderson, Richard D.

    1978-01-01

    An analysis of the waste-load assimilative capacity of the Yampa River from Steamboat Springs to Hayden, Colo., a distance of 38 miles, was made during September 1975 to obtain information on the effects of projected waste loadings on this stream reach. Simulations of effects of waste loadings on streamflow quality were made using a steady-state water-quality model. The simulations were based on 7-day low-flow values with a 10-year recurrence interval and population projections for 2010. Model results for December and September streamflow conditions indicated that the recommended 1978 Colorado and 1976 U.S. Environmental Protection Agency water-quality standard of 0.02 milligram per liter for nonionized ammonia concentration would be exceeded. Model simulations also included the effect of a flow augmentation of 20 cubic feet per second from a proposed upstream reservoir. The permissible ammonia loading in the study reach could be increased approximately 25 percent with this amount of flow augmentation. Simulations of concentrations of dissolved oxygen, fecal-coliform bacteria, and nitrate nitrogen indicated that the State 's water-quality goals proposed for 1978, 1983, or 1985 would not be exceeded. (Woodard-USGS)

  13. Developing a methodology for real-time trading of water withdrawal and waste load discharge permits in rivers.

    Science.gov (United States)

    Soltani, Maryam; Kerachian, Reza

    2018-04-15

    In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A field studies and modeling approach to develop organochlorine pesticide and PCB total maximum daily load calculations: Case study for Echo Park Lake, Los Angeles, CA

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, V.R., E-mail: vrvasquez@ucla.edu [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Curren, J., E-mail: janecurren@yahoo.com [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Lau, S.-L., E-mail: simlin@ucla.edu [Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Stenstrom, M.K., E-mail: stenstro@seas.ucla.edu [Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Suffet, I.H., E-mail: msuffet@ucla.edu [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States)

    2011-09-01

    Echo Park Lake is a small lake in Los Angeles, CA listed on the USA Clean Water Act Section 303(d) list of impaired water bodies for elevated levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in fish tissue. A lake water and sediment sampling program was completed to support the development of total maximum daily loads (TMDL) to address the lake impairment. The field data indicated quantifiable levels of OCPs and PCBs in the sediments, but lake water data were all below detection levels. The field sediment data obtained may explain the contaminant levels in fish tissue using appropriate sediment-water partitioning coefficients and bioaccumulation factors. A partition-equilibrium fugacity model of the whole lake system was used to interpret the field data and indicated that half of the total mass of the pollutants in the system are in the sediments and the other half is in soil; therefore, soil erosion could be a significant pollutant transport mode into the lake. Modeling also indicated that developing and quantifying the TMDL depends significantly on the analytical detection level for the pollutants in field samples and on the choice of octanol-water partitioning coefficient and bioaccumulation factors for the model. - Research highlights: {yields} Fugacity model using new OCP and PCB field data supports lake TMDL calculations. {yields} OCP and PCB levels in lake sediment were found above levels for impairment. {yields} Relationship between sediment data and available fish tissue data evaluated. {yields} Model provides approximation of contaminant sources and sinks for a lake system. {yields} Model results were sensitive to analytical detection and quantification levels.

  15. The comparison of DYNA3D to approximate solutions for a partially- full waste storage tank subjected to seismic loading

    International Nuclear Information System (INIS)

    Zaslawsky, M.; Kennedy, W.N.

    1992-01-01

    Mathematical solutions to the problem consisting of a partially-full waste tank subjected to seismic loading, embedded in soil, is classically difficult in that one has to address: soil-structure interaction, fluid-structure interaction, non-linear behavior of material, dynamic effects. Separating the problem and applying numerous assumptions will yield approximate solutions. This paper explores methods for generating these solutions accurately

  16. Corrosion tests with uranium- and plutonium-loaded ceramic waste forms

    International Nuclear Information System (INIS)

    Morss, L. R.; Johnson, S. G.; Ebert, W. L.; DiSanto, T.; Frank, S. M.; Holly, J. L.; Kropf, A. J.; Mertz, C. J.; O'Holleran, T. P.; Richmann, M. K.; Sinkler, W.; Tsai, Y.; Warren, A. R.; Noy, M.

    2003-01-01

    Tests were conducted with ceramic waste form (CWF) materials that contained small amounts of uranium and plutonium to study their release behavior as the CWF corroded. Materials made using the hot isostatic press (HIP) and pressureless consolidation (PC) methods were examined and tested. Four different materials were made using the HIP method with two salts having different U:Pu mole ratios and two zeolite reagents having different residual water contents. Tests with the four HIP U,Pu-loaded CWF materials were conducted at 90 and 120 C, at CWF-to-water mass ratios of 1:10 and 1:20, and for durations between 7 and 365 days. Materials made using two PC processing conditions were also tested. Tests with the two PC U,Pu-loaded CWF materials were conducted at 90 and 120 C, at a CWF-to-water mass ratio of 1:10, and for durations between 7 and 182 days. The releases of matrix elements, U, and Pu in tests conducted under different test conditions and with different materials are compared to evaluate the effects of composition and processing conditions on the release behavior of U and Pu and the chemical durabilities of the different materials. The distributions of released elements among the fractions that were dissolved, in colloidal form in the solution, and fixed to test vessel walls were measured and compared. Characterization of Pu-bearing colloidal particles recovered from the test solutions using solids analysis techniques are also reported. The principal findings from this study are: (1) The release of U and Pu is about 10X less than the release of Si and 50X less than the release of B under all test conditions. This implies that U and Pu are in a phase that is less soluble than the sodalite and binder glass matrix. (2) Almost all of the plutonium that is released from U,Pu-loaded CWF is present either as colloidal-sized particles in the size range between 5 and 100 nm in the test solution (about 15% of the total) or becomes fixed on stainless steel test vessel

  17. Accident analysis of railway transportation of low-level radioactive and hazardous chemical wastes: Application of the /open quotes/Maximum Credible Accident/close quotes/ concept

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, E.; McLean, R.B.

    1988-09-01

    The maximum credible accident (MCA) approach to accident analysis places an upper bound on the potential adverse effects of a proposed action by using conservative but simplifying assumptions. It is often used when data are lacking to support a more realistic scenario or when MCA calculations result in acceptable consequences. The MCA approach can also be combined with realistic scenarios to assess potential adverse effects. This report presents a guide for the preparation of transportation accident analyses based on the use of the MCA concept. Rail transportation of contaminated wastes is used as an example. The example is the analysis of the environmental impact of the potential derailment of a train transporting a large shipment of wastes. The shipment is assumed to be contaminated with polychlorinated biphenyls and low-level radioactivities of uranium and technetium. The train is assumed to plunge into a river used as a source of drinking water. The conclusions from the example accident analysis are based on the calculation of the number of foreseeable premature cancer deaths the might result as a consequence of this accident. These calculations are presented, and the reference material forming the basis for all assumptions and calculations is also provided.

  18. Accident analysis of railway transportation of low-level radioactive and hazardous chemical wastes: Application of the /open quotes/Maximum Credible Accident/close quotes/ concept

    International Nuclear Information System (INIS)

    Ricci, E.; McLean, R.B.

    1988-09-01

    The maximum credible accident (MCA) approach to accident analysis places an upper bound on the potential adverse effects of a proposed action by using conservative but simplifying assumptions. It is often used when data are lacking to support a more realistic scenario or when MCA calculations result in acceptable consequences. The MCA approach can also be combined with realistic scenarios to assess potential adverse effects. This report presents a guide for the preparation of transportation accident analyses based on the use of the MCA concept. Rail transportation of contaminated wastes is used as an example. The example is the analysis of the environmental impact of the potential derailment of a train transporting a large shipment of wastes. The shipment is assumed to be contaminated with polychlorinated biphenyls and low-level radioactivities of uranium and technetium. The train is assumed to plunge into a river used as a source of drinking water. The conclusions from the example accident analysis are based on the calculation of the number of foreseeable premature cancer deaths the might result as a consequence of this accident. These calculations are presented, and the reference material forming the basis for all assumptions and calculations is also provided

  19. Integrated waste load allocation for river water pollution control under uncertainty: a case study of Tuojiang River, China.

    Science.gov (United States)

    Xu, Jiuping; Hou, Shuhua; Yao, Liming; Li, Chaozhi

    2017-07-01

    This paper presents a bi-level optimization waste load allocation programming model under a fuzzy random environment to assist integrated river pollution control. Taking account of the leader-follower decision-making in the water function zones framework, the proposed approach examines the decision making feedback relationships and conflict coordination between the river basin authority and the regional Environmental Protection Agency (EPA) based on the Stackelberg-Nash equilibrium strategy. In the pollution control system, the river basin authority, as the leader, allocates equitable emissions rights to different subareas, and the then subarea EPA, as the followers, reallocates the limited resources to various functional zones to minimize pollution costs. This research also considers the uncertainty in the water pollution management, and the uncertain input information is expressed as fuzzy random variables. The proposed methodological approach is then applied to Tuojiang River in China and the bi-level linear programming model solutions are achieved using the Karush-Kuhn-Tucker condition. Based on the waste load allocation scheme results and various scenario analyses and discussion, some operational policies are proposed to assist decision makers (DMs) cope with waste load allocation problem for integrated river pollution control for the overall benefits.

  20. Sediment filtration can reduce the N load of the waste water discharge - a full-scale lake experiment

    Science.gov (United States)

    Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja

    2016-04-01

    European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.

  1. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS, TEST PLAN 09T1690-1

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Pegg, I.L.; Joseph, I.

    2009-01-01

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and

  2. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  3. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    Science.gov (United States)

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of

  4. Multi-objective models of waste load allocation toward a sustainable reuse of drainage water in irrigation.

    Science.gov (United States)

    Allam, Ayman; Tawfik, Ahmed; Yoshimura, Chihiro; Fleifle, Amr

    2016-06-01

    The present study proposes a waste load allocation (WLA) framework for a sustainable quality management of agricultural drainage water (ADW). Two multi-objective models, namely, abatement-performance and abatement-equity-performance, were developed through the integration of a water quality model (QAUL2Kw) and a genetic algorithm, by considering (1) the total waste load abatement, and (2) the inequity among waste dischargers. For successfully accomplishing modeling tasks, we developed a comprehensive overall performance measure (E wla ) reflecting possible violations of Egyptian standards for ADW reuse in irrigation. This methodology was applied to the Gharbia drain in the Nile Delta, Egypt, during both summer and winter seasons of 2012. Abatement-performance modeling results for a target of E wla = 100 % corresponded to the abatement ratio of the dischargers ranging from 20.7 to 75.6 % and 29.5 to 78.5 % in summer and in winter, respectively, alongside highly shifting inequity values. Abatement-equity-performance modeling results for a target of E wla = 90 % unraveled the necessity of increasing treatment efforts in three out of five dischargers during summer, and four out of five in winter. The trade-off curves obtained from WLA models proved their reliability in selecting appropriate WLA procedures as a function of budget constraints, principles of social equity, and desired overall performance level. Hence, the proposed framework of methodologies is of great importance to decision makers working toward a sustainable reuse of the ADW in irrigation.

  5. Large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading.

    Science.gov (United States)

    Kavazanjian, Edward; Gutierrez, Angel

    2017-10-01

    A large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading was conducted to help validate a numerical model for performance based design of geomembrane liner systems. The test was conducted using the 240g-ton centrifuge at the University of California at Davis under the U.S. National Science Foundation Network for Earthquake Engineering Simulation Research (NEESR) program. A 0.05mm thin film membrane was used to model the liner. The waste was modeled using a peat-sand mixture. The side slope membrane was underlain by lubricated low density polyethylene to maximize the difference between the interface shear strength on the top and bottom of the geomembrane and the induced tension in it. Instrumentation included thin film strain gages to monitor geomembrane strains and accelerometers to monitor seismic excitation. The model was subjected to an input design motion intended to simulate strong ground motion from the 1994 Hyogo-ken Nanbu earthquake. Results indicate that downdrag waste settlement and seismic loading together, and possibly each phenomenon individually, can induce potentially damaging tensile strains in geomembrane liners. The data collected from this test is publically available and can be used to validate numerical models for the performance of geomembrane liner systems. Published by Elsevier Ltd.

  6. 241-AY/AZ waste storage tanks: Supplemental gravity load analysis. Volume 1

    International Nuclear Information System (INIS)

    Baliga, R.

    1994-01-01

    An analysis of the 241SY tanks performed by ADVENT(1994b) to resolve dome overload issues indicated that the tank can sustain the dome loads resulting from additional soil overburden depth, increased soil density, and increased concentrated load. Similar issues exist for the 241AY/AZ tanks and therefore, an interim analysis of the 241AY/AZ tanks is presented herein. The scope of this effort is to review and compare all design drawings pertaining to the 241AY and 241AZ tanks with those pertaining to the 241SY tanks; to modify the axisymmetric model of the 241SY tanks to represent the 241AY/AZ tanks; and to evaluate the effect of additional dome load on the 241AY/AZ tanks by performing a structural analysis for gravity loads (dead load + live load). ADVENTS's additional scope of work is to perform a qualitative evaluation of the 241AY/AZ tanks for seismic and thermal loadings (Vollert 1982 and Blume 1971). This qualitative evaluation does not include any detailed finite element analysis of the tanks. The following design-based gravity loading conditions are used in this interim analysis of the 241AY/AZ tanks to determine a baseline for the tank stresses or section loads

  7. Property of filler-loaded magnetic ferrite from plastic waste bottle used to treat municipal domestic sewage.

    Science.gov (United States)

    Zhao, Ru-Jin; Gong, Li-Ying; Zhu, Hai-Dong; Liu, Qiao; Xu, Li-Xia; Lu, Lu; Yang, Qi-Zhi

    2018-06-01

    The present work investigates the properties of self-made magnetic filler from plastic waste bottle and explores a new technology approach of waste plastic resource utilization. The magnetic filler was prepared by air plasma modification and loading magnetic ferrite on the plastic strip from waste plastic bottle. The surface properties of magnetic filler were characterized by Atomic Force Microscope (AFM), contact angle system and Fourier Transform Infrared (FTIR). AFM images of original and modified plastic strip showed that low-temperature plasma treatment markedly increased the surface roughness of plastic strip. The mean roughness (Ra) of plastic strip rose from 1.116 to 5.024 nm. FTIR spectra indicated that a lot of polar oxygenic groups were introduced onto the surface of plastic by plasma modification. Modification by low-temperature plasma increased the hydrophilicity of plastic strip surface. When treatment time is 40 s, water contact angle of plastic strip surface reduced from 78.2° of original plastic strip to 25.3°. When used in bioreactor, magnetic filler had very favorable microenvironment for microorganism growth. Magnetic filler was more efficient for removing chemical oxygen demand (COD) and [Formula: see text] in sewage than nonmagnetic filler. The resource utilization of plastic wastes will become reality if the magnetic filler is applied widely.

  8. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste.

    Science.gov (United States)

    Gou, Chengliu; Yang, Zhaohui; Huang, Jing; Wang, Huiling; Xu, Haiyin; Wang, Like

    2014-06-01

    Anaerobic co-digestion of waste activated sludge and food waste was investigated semi-continuously using continuously stirred tank reactors. Results showed that the performance of co-digestion system was distinctly influenced by temperature and organic loading rate (OLR) in terms of gas production rate (GPR), methane yield, volatile solids (VS) removal efficiency and the system stability. The highest GPR at 55 °C was 1.6 and 1.3 times higher than that at 35 and 45 °C with the OLR of 1 g VSL(-1)d(-1), and the corresponding average CH₄ yields were 0.40, 0.26 and 0.30 L CH₄ g(-1)VSadded, respectively. The thermophilic system exhibited the best load bearing capacity at extremely high OLR of 7 g VSL(-1)d(-1), while the mesophilic system showed the best process stability at low OLRs (< 5 g VSL(-1)d(-1)). Temperature had a more remarkable effect on the richness and diversity of microbial populations than the OLR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Heat removal characteristics of waste storage tanks. Revision 1

    International Nuclear Information System (INIS)

    Kummerer, M.

    1995-10-01

    A topical report that examines the relationship between tank heat load and maximum waste temperatures. The passive cooling response of the tanks is examined, and loss of active cooling in ventilated tanks is investigated

  10. Dietary carbohydrate composition can change waste production and biofilter load in recirculating aquaculture systems

    NARCIS (Netherlands)

    Meriac, A.; Eding, E.H.; Schrama, J.W.; Kamstra, A.; Verreth, J.A.J.

    2014-01-01

    This study investigated the effect of dietary carbohydrate composition on the production, recovery and degradability of fecal waste from rainbow trout (Oncorhynchus mykiss) in recirculating aquaculture systems (RAS). Dietary carbohydrate composition was altered by substituting starch with non-starch

  11. Separation of palladium from high-level waste using metal ferro cyanide loaded resins

    International Nuclear Information System (INIS)

    Valsala, T.P.; Joseph, Annie; Yeotikar, R.G.

    2005-01-01

    High-level waste (HLW) is generated during reprocessing of spent fuel. HLW contains corrosion products, unextracted actinides, process chemicals and fission products. A recent trend is there to consider waste as a source of wealth. Among the fission products separation and recovery of platinum group metals have gained great attention. HLW is a good source of palladium of the platinum group metal. The present study shows the feasibility of ion exchange separation of Pd from HLW. (author)

  12. Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste: effect of hydraulic retention time and loading.

    Science.gov (United States)

    Salminen, Esa A; Rintala, Jukka A

    2002-07-01

    We studied the effect of hydraulic retention time (HRT) and loading on anaerobic digestion of poultry slaughterhouse wastes, using semi-continuously fed, laboratory-scale digesters at 31 degrees C. The effect on process performance was highly significant: Anaerobic digestion appeared feasible with a loading of up to 0.8 kg volatile solids (VS)/m3 d and an HRT of 50-100 days. The specific methane yield was high, from 0.52 to 0.55 m3/kg VS(added). On the other hand, at a higher loading, in the range from 1.0 to 2.1 kg VS/m3 d, and a shorter HRT, in the range from 25 to 13 days, the process appeared inhibited and/or overloaded, as indicated by the accumulation of volatile fatty acids and long-chain fatty acids and the decline in the methane yield. However, the inhibition was reversible. The nitrogen in the feed, ca. 7.8% of total solids (TS), was organic nitrogen with little ammonia present, whereas in the digested material ammonia accounted for 52-67% (up to 3.8 g/l) of total nitrogen. The TS and VS removals amounted to 76% and 64%, respectively. Our results show that on a continuous basis under the studied conditions and with a loading of up to 0.8 kg VS/m3 d metric ton (wet weight) of the studied waste mixture could yield up to 140 m3 of methane.

  13. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    International Nuclear Information System (INIS)

    Solli, Linn; Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-01-01

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS −1 , obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids

  14. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    Energy Technology Data Exchange (ETDEWEB)

    Solli, Linn, E-mail: linn.solli@bioforsk.no; Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-08-15

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS{sup −1}, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.

  15. Method to support Total Maximum Daily Load development using hydrologic alteration as a surrogate to address aquatic life impairment in New Jersey streams

    Science.gov (United States)

    Kennen, Jonathan G.; Riskin, Melissa L.; Reilly, Pamela A.; Colarullo, Susan J.

    2013-01-01

    More than 300 ambient monitoring sites in New Jersey have been identified by the New Jersey Department of Environmental Protection (NJDEP) in its integrated water-quality monitoring and assessment report (that is, the 305(b) Report on general water quality and 303(d) List of waters that do not support their designated uses) as being impaired with respect to aquatic life; however, no unambiguous stressors (for example, nutrients or bacteria) have been identified. Because of the indeterminate nature of the broad range of possible impairments, surrogate measures that more holistically encapsulate the full suite of potential environmental stressors need to be developed. Streamflow alteration resulting from anthropogenic changes in the landscape is one such surrogate. For example, increases in impervious surface cover (ISC) commonly cause increases in surface runoff, which can result in “flashy” hydrology and other changes in the stream corridor that are associated with streamflow alteration. The NJDEP has indicated that methodologies to support a hydrologically based Total Maximum Daily Load (hydro-TMDL) need to be developed in order to identify hydrologic targets that represent a minimal percent deviation from a baseline condition (“minimally altered”) as a surrogate measure to meet criteria in support of designated uses. The primary objective of this study was to develop an applicable hydro-TMDL approach to address aquatic-life impairments associated with hydrologic alteration for New Jersey streams. The U.S. Geological Survey, in cooperation with the NJDEP, identified 51 non- to moderately impaired gaged streamflow sites in the Raritan River Basin for evaluation. Quantile regression (QR) analysis was used to compare flow and precipitation records and identify baseline hydrographs at 37 of these sites. At sites without an appropriately long period of record (POR) or where a baseline hydrograph could not be identified with QR, a rainfall-runoff model was used

  16. Management of cesium loaded AMP- Part I preparation of 137Cesium concentrate and cementation of secondary wastes

    International Nuclear Information System (INIS)

    Singh, I.J.; Sathi Sasidharan, N.; Yalmali, Vrunda S.; Deshingkar, D.S.; Wattal, P.K.

    2005-11-01

    Separation of 137 cesium from High Level Waste can be achieved by use of composite-AMP, an engineered form of Ammonium Molybdo-Phosphate(AMP). Direct vitrification of cesium loaded composite AMP in borosilicate glass matrix leads to separation of water soluble molybdate phase. A proposed process describes two different routes of selective separation of molybdates and phosphate to obtain solutions of cesium concentrates. Elution of 137 Cesium from composite-AMP by decomposing it under flow conditions using saturated barium hydroxide was investigated. This method leaves molybdate and phosphate embedded in the column but only 70% of total cesium loaded on column could be eluted. Alternatively composite-AMP was dissolved in sodium hydroxide and precipitation of barium molybdate-phosphate from the resultant solution, using barium nitrate was investigated by batch methods. The precipitation technique gave over 99.9% of 137 Cesium activity in solutions, free of molybdates and phosphates, which is ideally suited for immobilization in borosilicate glass matrix. Detailed studies were carried out to immobilize secondary waste of 137 Cesium contaminated barium molybdate-phosphate precipitates in the slag cement matrix using vermiculite and bentonite as admixtures. The cumulative fraction of 137 Cs leached from the cement matrix blocks was 0.05 in 140 days while the 137 Cs leach rate was 0.001 gm/cm 2 /d. (author)

  17. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review.

    Science.gov (United States)

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2017-06-01

    Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    For the final disposal of conditioned radioactive wastes clay formations have plasticity, low permeability and high sorption capacity in their favour. Their disadvantage lies in their thermal conductivity and moisture content. The aim of this document is to take stock of the state of the art pertaining to the thermal phenomena linked to the dispoasl of conditioned radioactive wastes. The study, limited to normal, non-accident operating conditions, considers vitrified wastes cast in metal containers and disposal of in an underground infrastructure built in clay. The composition and characteristics of clays can vary widely between formations and even between sites, since the nature and content of argillaceous and other minerals depend on age, sedimentation conditions, depth, origin of the sediments, etc. This study is therefore limited to a specific clay in a specific deposit, i.e., the Boom clay located at Mol beneath the CEN/SCK establishment

  19. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    Energy Technology Data Exchange (ETDEWEB)

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.

  20. A theoretical and numerical consideration of rock mass behaviour under thermal loading of radioactive waste repository

    International Nuclear Information System (INIS)

    Reivinen, M.; Freund, J.; Eloranta, E.

    1996-08-01

    The aim of the study is to model the geodynamic response of a ground rock block under horizontal stresses and also consider the thermal fields and deformations, especially on the ground surface, caused by the heat produced by nuclear waste. (12 refs.)

  1. Parasitic helminth load in urban waste-water of Kenitra City, Morocco

    African Journals Online (AJOL)

    Waste-waters of Kenitra City are rejected without any preliminary treatment in the receiving medium (Sebou River, Fouarat Lake). A small fraction is used to irrigate crops in the peri-urban area of Kenitra City. The parasitological characterization revealed an average parasitic helminth egg concentration of 25.07 per liter ...

  2. Vehicle Exhaust Waste Heat Recovery Model with Integrated Thermal Load Leveling

    Science.gov (United States)

    2015-08-01

    backpressure can decrease engine power by ~1% per inch Hg.27 A specific exhaust heat exchanger design would need to take this effect into account...Materials. 2009;39:2142–2148. 4. Sprouse III C, Depcik C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery...Adams TG. Effect of exhaust system design on engine performance. 1980. SAE Technical Paper No. 800319. 16 1 DEFENSE TECHNICAL

  3. Load Absorption Characteristics of Tyre Production Waste Rubber for Playground Floor Systems

    Directory of Open Access Journals (Sweden)

    Abdul Ghani A.N.

    2014-01-01

    Full Text Available The floor surfaces where slides and swings are placed in parks and playrooms should be soft and thick to ensure that whenever a child falls, the surface can withstand the impact and minimize injuries to the child. Shredded tyres from waste tyres or waste rubber from tyre manufacturing could become beneficial as shock absorber material which can be used as a playground floor. In this study, rubber cubes and rubber pads with 5%, 8% and 10% SBR mixes were prepared for mechanical testing. Two types of floor design surfaces with and without plywood on the surface were assembled for the shock test. Gmax and HIC of this waste rubber flooring system were investigated using the compression test for the rubber cube and the drop test for the rubber pad. The criteria of general protection standards are 200g for optimum acceleration and 1000 for HIC. The Gmax and HIC results indicated that the material and system could ensure a safe fall from up to 1.0m height.

  4. Fate of high loads of ammonia in a pond and wetland downstream from a hazardous waste disposal site.

    Science.gov (United States)

    Cutrofello, Michele; Durant, John L

    2007-07-01

    Halls Brook (eastern Massachusetts, USA) is a significant source of total dissolved ammonia (sum of NH(3) and NH(4)(+); (NH(3))(T)) to the Aberjona River, a water body listed for NH(3) impairment on the Clean Water Act section 303(d) list. We hypothesized (1) that (NH(3))(T) in Halls Brook derived from a hazardous waste site via groundwater discharging to a two-basin pond that feeds the brook; and (2) that transport of (NH(3))(T) to the Aberjona River was controlled by lacustrine and wetland processes. To test these hypotheses we measured (NH(3))(T) levels in the brook, the pond, and a wetlands directly downstream of the pond during both dry and wet weather over a ten month period. In addition, we analyzed sediment cores and nitrogen isotopes, and performed mass balance calculations. Groundwater discharge from beneath the hazardous waste site was the major source of (NH(3))(T) (20-67 kg d(-1)) and salinity to the north basin of the pond. The salty bottom waters of the north basin were anoxic on all sampling dates, and exhibited relatively stable (NH(3))(T) concentrations between 200 and 600 mg Nl(-1). These levels were >100-times higher than typical background levels, and 8-24-times above the acute effects level for (NH(3))(T) toxicity. Bottom waters from the north basin continuously spill over into the south basin contributing approximately 50% of the (NH(3))(T) load entering this basin. The remainder comes from Halls Brook, which receives (NH(3))(T) loadings from as yet unknown sources upstream. During storm events up to 50% of the mass of (NH(3))(T) was flushed from the south basin and into the wetlands. The wetlands acted as a (NH(3))(T) sink in dry weather in the growing season and a discharge-dependent (NH(3))(T) source to the Aberjona River during rainstorms.

  5. Experimental study of reactor waste lixiviation depending on waste loading Task 3 Characterization of radioactive waste forms A series of final reports (1985-89) No. 8

    International Nuclear Information System (INIS)

    Saas, A.; Girard, J.

    1991-01-01

    This study on the lixiviation of reactor wastes has been in progress since August 1988. The production of inactive samples and studies on their lixiviation, of which the results are presented, have been carried out by EDF (Electricite de France). The CEA (Commissariat a l'energie atomique) produced the active samples for which the results of lixiviation studies are available. The full-scale active packages have been manufactured and an indication of first values for lixiviation on these is given at 180 days. The main conclusions concerning lixiviation mechanisms are given

  6. Characterization of a glass-bonded ceramic waste form loaded with U and Pu

    International Nuclear Information System (INIS)

    Sinkler, W.; O'Holleran, T. P.; Frank, S. M.; Richmann, M. K.; Johnson, S. G.

    1999-01-01

    This paper presents microscopic characterization of four samples of a ceramic waste form (CWF) developed for disposal of actinide-containing electrorefiner salts. The four samples were prepared to investigate the influence of water content and the Pu:U ratio on CWF microstructure and performance. While the overall phase content is not strongly influenced by either variable, the presence of water in the initial zeolite has a detectable effect on CWF microstructure. It is found to influence the distribution of the major actinide host phase, a (U,Pu)O 2 mixed oxide

  7. Sample loading for C-14 measurement in the simulated organic solvent waste from a CANDU Nuclear Power Plant

    International Nuclear Information System (INIS)

    Dianu, Magdalena; Podina, C.; Nita, Valentina

    2005-01-01

    Full text: Sample preparation is a critical step in obtaining accurate results in scintillation counting. Standard (22 ml) glass and plastic vials were used in these experiments. The preliminary research was conducted using glass vials to allow visual verification that a homogeneous solution is obtained at the desired cocktail/sample ratio. Then, the research was moved into plastic vials to reduce backgrounds and improve the counting rate. Samples were counted in a Model 2100 TR Packard TRI-CARB liquid scintillation analyzer. The paper mainly contains: - Composition and data about liquid scintillation cocktails used (tables); - Characterization of radioactive waste - organic solvent contaminated with C-14; - Sample loading (tables); - Efficiency vs Sample Loading - for each cocktail used. Organic solvent sample volumes were added to the vials in 0.5 ml increments from 1 ml to 2 ml. Then, the liquid scintillation cocktail was added so that the sample-cocktail volume was 20 ml. Each vial was shaken vigorously for several seconds after each addition to ensure homogeneity and count. Blank vials were prepared using C-14-free organic solvent samples in the same sample-cocktail proportions. After at least two hours, the samples and blank vials were counted for ten minutes, using a Packard counter. (authors)

  8. Influence of Poly-(L-Lactic Acid Nanofiber Functionalization on Maximum Load, Young's Modulus, and Strain of Nanofiber Scaffolds Before and After Cultivation of Osteoblasts: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Jürgen Paletta

    2009-01-01

    Full Text Available The aim of this study was to characterize the influence of functionalization of synthetic poly-(L-lactic acid (PLLA nanofibers on mechanical properties such as maximum load, elongation, and Young's modulus. Furthermore, the impact of osteoblast growth on the various nanofiber scaffolds stability was determined. Nanofiber matrices composed of PLLA, PLLA-collagen, or BMP-2–incorporated PLLA were produced from different solvents by electrospinning. Standardized test samples of each nanofiber scaffold were subjected to failure protocol before or after incubation in the presence of osteoblasts over a period of 22 days under osteoinductive conditions. PLLA nanofibers electrospun from hexafluoroisopropanol (HFIP showed a higher strain and tended to have increased maximum loads and Young's modulus compared to PLLA fibers spun from dichloromethane. In addition, they had a higher resistance during incubation in the presence of cells. Functionalization by incorporation of growth factors increased Young's modulus, independent of the solvent used. However, the incorporation of growth factors using the HFIP system resulted in a loss of strain. Similar results were observed when PLLA was blended with different ratios of collagen. Summarizing the results, this study indicates that different functionalization strategies influence the mechanical stability of PLLA nanofibers. Therefore, an optimization of nanofibers should not only account for the optimization of biological effects on cells, but also has to consider the stability of the scaffold.

  9. Flexible fermentation of organically loaded industrial waste waters using a beverage manufacturer as an example; Flexible Vergaerung organisch belasteter Industrie-Abwaesser am Beispiel eines Getraenkeherstellers

    Energy Technology Data Exchange (ETDEWEB)

    Ganagin, Waldemar; Loewen, Achim; Nelles, Michael [HAWK Hochschule fuer Angewandte Wissenschaft und Kunst Hildesheim/Holzminden/Goettingen, Goettingen (Germany). Fachgebiet Nachhaltige Energie- und Umwelttechnik (NEUTec)

    2013-10-01

    Industrial organic waste water is usually treated directly in an own or public sewage treatment plant which is highly cost-intensive. The anaerobic digestion of those waste waters is sometimes difficult to control. HAWK is working in a project about this topic, where a fixed bed reactor is investigated for the operation as a flexible plant. For this reason a semi-industrial pilot plant was developed and the capability will be tested on several sites. The gas production ought to run according to the companies demands and is integrated in the operation and processes. This flexible plant is specifically designed to deal with small amounts of waste water with low organic components and even sometimes discontinuously loads. This process is tested in a beverage factory. The reactor was implemented in the existing infrastructure and their waste water is treated. The assessment of the measurements shows, that the fixed bed reactor can handle the organic compounds of the waste water very well and reduce them significantly. Even fluctuating loads and a low organic concentration do not harm the process. The effect of power generation is an additional benefit for this system This innovative approach with low energy input and additional profit from the power sale makes the waste water treatment on site as a real alternative to the conventional treatment. (orig.)

  10. Assessment of co-composting process with high load of an inorganic industrial waste.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida J; Reis, Marco S; Quinta-Ferreira, Rosa

    2017-01-01

    This study aims to investigate the co-composting of an inorganic industrial waste (eggshell - ES) in very high levels (up to 60% w/w). Since composting is a process in which solid, liquid and gaseous phases interact in a very complex way, there is a need to shed light on statistical tools that can unravel the main relationships structuring the variability associated to this process. In this study, PCA and data visualisation were used with that purpose. The co-composting tests were designed with increasing quantities of ES (0, 10, 20, 30 and 60%ES w/w) mixed with industrial potato peel and rice husks. Principal component analysis showed that physical properties like free air space, bulk density and moisture are the most relevant variables for explaining the variability due to ES content. On the other hand, variability in time dynamics is mostly driven by some chemical and phytoxicological parameters, such as organic matter decay and nitrate content. Higher ES incorporation (60% ES) enhanced the initial biological activity of the mixture, but the higher bulk density and lower water holding capacity had a negative effect on the aerobic biological activity as the process evolved. Nevertheless, pathogen-killing temperatures (>70°C for 11h) were attained. All the final products obtained after 90days were stable and non-phytotoxic. This work proved that valorisation of high amounts of eggshell by co-composting is feasible, but prone to be influenced by the physical properties of the mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Safety Analysis of 'Older/Aged' Handling and Transportation Equipment for Heavy Loads, Radioactive Waste and Materials in Accordance with German Nuclear Standards KTA 3902, 3903 and 3905

    International Nuclear Information System (INIS)

    Macias, P.; Prucker, E.; Stang, W.

    2006-01-01

    The purpose of this paper is to present a general safety analysis of important handling and transportation processes and their related equipment ('load chains' consisting of cranes, load-bearing equipment and load-attaching points). This project was arranged by the responsible Bavarian ministry for environment, health and consumer protection (StMUGV) in agreement with the power plant operators of all Bavarian nuclear power plants to work out potential safety improvements. The range of the equipment (e.g. reactor building, crane, refuelling machine, load-bearing equipment and load-attaching points) covers the handling and transportation of fuel elements (e. g. with fuel flasks), heavy loads (e.g. reactor pressure vessel closure head, shielding slabs) and radioactive materials and waste (e.g. waste flasks, control elements, fuel channels, structure elements). The handling equipment was subjected to a general safety analysis taking into account the ageing of the equipment and the progress of standards. Compliance with the current valid requirements of the state of science and technology as required by German Atomic Act and particularly of the nuclear safety KTA-standards (3902, 3903 and 3905) was examined. The higher protection aims 'safe handling and transportation of heavy loads and safe handling of radioactive materials and waste' of the whole analysis are to avoid a criticality accident, the release of radioactivity and inadmissible effects on important technical equipment and buildings. The scope of the analysis was to check whether these protection aims were fulfilled for all important technical handling and transportation processes. In particularly the design and manufacturing of the components and the regulations of the handling itself were examined. (authors)

  12. CASTOR {sup registered} HAW28M - a high heat load cask for transport and storage of vitrified high level waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Vossnacke, A.; Klein, K.; Kuehne, B. [GNS Gesellschaft fuer Nuklear-Service mbH/GNB, Essen (Germany)

    2004-07-01

    Within the German return programme for vitrified high level waste (HLW) from reprocessing at COGEMA and BNFL up to now 39 casks loaded with 28 containers each were transported back to Germany and are stored in the Interim Storage Facility Gorleben (TBL-G) for up to 40 years. For transport and storage in all but one case the GNB casks CASTOR {sup registered} HAW 20/28 CG have been used. This cask type is designed to accommodate 20 or 28 HLW containers with a total thermal power of 45 kW maximum. In the near future, among the high level waste, which has to be returned to Germany, there will be an increasing number of containers of which the heat capacity and radioactive inventory will exceed the technical limits of the CASTOR {sup registered} HAW 20/28 CG. Therefore GNB has started the development of a new cask generation, named CASTOR {sup registered} HAW28M, meeting these future requirements. The CASTOR {sup registered} HAW28M is especially developed for the transport of vitrified residues from France and Great Britain to Germany. It complies with the international regulations for type B packages according to IAEA (International Atomic Energy Agency). It is thus guaranteed that even in case of any accident the cask body and the lid system remain functional and the safe confinement of the radioactive contents remains intact during transport. The CASTOR {sup registered} HAW28M fulfills not only the requirements for transport but also the acceptance criteria of interim storage: radiation shielding, heat dissipation, safe confinement under both normal and hypothetical accident conditions. Storage buildings such as the TBL-G simply support the safety functions of the cask. The challenge for the development results from higher requirements of the technical specification, particularly related to fuel which is reprocessed. As a consequence of the reprocessing of fuel with increased enrichment and burn up, higher heat capacity and sophisticated shielding measures have to be

  13. Hydrogen generation during melter feed preparation of Tank 42 sludge and salt washed loaded CST in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Daniel, W.E.

    1999-01-01

    The main objective of these scoping tests was to measure the rate of hydrogen generation in a series of experiments designed to duplicate the expected SRAT and SME processing conditions in laboratory scale vessels. This document details the testing performed to determine the maximum hydrogen generation expected with a coupled flowsheet of sludge, loaded CST [crystalline silicotitanate], and frit

  14. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate.

    Science.gov (United States)

    Jiang, Jianguo; Zhang, Yujing; Li, Kaimin; Wang, Quan; Gong, Changxiu; Li, Menglu

    2013-09-01

    The effects of pH, temperature, and organic loading rate (OLR) on the acidogenesis of food waste have been determined. The present study investigated their effects on soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), volatile solids (VS), and ammonia nitrogen (NH4(+)-N). Both the concentration and yield of VFAs were highest at pH 6.0, acetate and butyrate accounted for 77% of total VFAs. VFAs concentration and the VFA/SCOD ratio were highest, and VS levels were lowest, at 45 °C, but the differences compared to the values at 35 °C were slight. The concentrations of VFAs, SCOD, and NH4(+)-N increased as OLR increased, whereas the yield of VFAs decreased from 0.504 at 5 g/Ld to 0.306 at 16 g/Ld. Acetate and butyrate accounted for 60% of total VFAs. The percentage of acetate and valerate increased as OLR increased, whereas a high OLR produced a lower percentage of propionate and butyrate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Magnetic Solid Phase Extraction and Removal of Five Cationic Dyes from Aqueous Solution Using Magnetite Nanoparticle Loaded Platanusorientalis Waste Leaves

    Directory of Open Access Journals (Sweden)

    Elaheh Madrakian

    2016-12-01

    Full Text Available This paper reports on synthesis of a magnetic adsorbent for wastewater treatment purposes. In this regard, platanus orientalis waste leaves were chosen as a cheap material for preparing the magnetic adsorbent by loading magnetite nanoparticles on it. The synthesized adsorbent was characterized using scanning electron microscope and X-ray diffractometer. Then, it was used for magnetic solid phase extraction and removal of five cationic dyes including methyl violet (MV, methylene blue (MB, malachite green (MG, crystal violet (CV, and neutral red (NR from aqueous solution as a model application. Different important factors affecting the adsorption process were optimized, and the results showed that under the optimized conditions (pH 10 for CV, MV, MB, and MG; pH 6 for NR; adsorbent dosage, 20 mg; agitation time, 25 min efficient removal of the investigated dyes (adsorption capacities between of 89-133 mg g-1 is achievable using the synthesized adsorbent. Furthermore, the reusability experiments showed that the adsorbent could be reused at least ten cycles without any significant loss in its sorption behavior.

  16. Optimization of waste water discharge and waste water cleaning on the basis of measurements of the organic pollutant load; Optimierung von Abwasserableitung und Abwasserreinigung durch Messung der organischen Abwasserbelastung

    Energy Technology Data Exchange (ETDEWEB)

    Haeck, M. [Dr. Bruno Lange GmbH Berlin, Duesseldorf (Germany)

    1999-07-01

    The spectral absorption coefficient (SAC) is a sum parameter for describing the organic pollutant load of waste water. It is based on a purely physical measuring technique and can be monitored continuously and directly in the medium by means of the described UV process probe. From this arise numerous opportunities for optimizing waste water discharge and cleaning. (orig.) [German] Der spektrale Absorptionskoeffizient (SAK) ist ein Summenparameter zur Beschreibung der organischen Abwasserbelastung. Er basiert auf einem rein physikalischen Messverfahren und kann mit der hier vorgestellten UV-Prozess-Sonde kontinuierlich und direkt im Medium erfasst werden. Daraus ergeben sich zahlreiche Moeglichkeiten zur Optimierung von Abwasserableitung und -reinigung. (orig.)

  17. Resistencia de dientes restaurados con postes prefabricados ante cargas de máxima intercuspidación, masticación y bruxismo Resistance of teeth restored with prefabricated posts to maximum intercuspidation loads, mastication and bruxism

    Directory of Open Access Journals (Sweden)

    Santiago Correa Vélez

    2013-03-01

    teeth restored with prefabricated posts to maximum static intercuspidation loads, cyclical mastication loads and bruxism, and analyze the effect of periodontal loss on resistance by restorations. Methods: using the finite element method, an in vitro study was conducted of teeth with periodontal loss rehabilitated with prefabricated glass fiber, carbon and titanium posts. Reconstruction of the teeth was based on tomographic images from a periodontically healthy patient. Results: it was shown that rehabilitations did not tend to yield to static loads, irrespective of post material or the degree of periodontal loss. For bruxism and 4 mm periodontal loss, dentin durability was 60 000 cycles, irrespective of post material. For mastication loads and a healthy periodont, dentin failure occurs at 100 000 cycles with titanium posts, 200 000 cycles with carbon fiber posts, and 1 100 000 cycles with glass fiber posts. For 2 mm periodontal loss, dentin durability decreased to 4 000 cycles with titanium posts, 5 000 cycles with carbon fiber posts, and 7 000 cycles with glass fiber posts. For 4 mm periodontal loss, dentin durability is estimated at 1 000 cycles, irrespective of post material. Conclusions: restorations with glass fiber, carbon and titanium prefabricated posts do not yield to maximum static intercuspidation loads, irrespective of the degree of periodontal loss. Prefabricated posts exhibit endless resistance to cyclic loads. Dentin is the structure most severely affected by such events.

  18. Wastes

    International Nuclear Information System (INIS)

    Bovard, Pierre

    The origin of the wastes (power stations, reprocessing, fission products) is determined and the control ensuring the innocuity with respect to man, public acceptance, availability, economics and cost are examined [fr

  19. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  20. Loading, transport and storage of casks of the type CASTOR registered HAW28M in the frame of vitrified high-level waste repatriation from France

    International Nuclear Information System (INIS)

    Horn, Thomas; Graf, Wilhelm; Gosch-Warning, Michaela

    2011-01-01

    Until 2005 the German nuclear power plant operators have contracts with AREVA NC (former COGEMA) and NDA (former BNFL) concerning the reprocessing of spent fuel elements. The reprocessed and vitrified radioactive waste has to be repatriated to Germany. Due to the reprocessing of spent fuel elements with increased burnup and the repatriation after shorter cooling time the total activity and the Cm-244 content of the high-level-waste coquilles have increased since 2008. Consequently the heat output has increased to 2 kW/coquille. Therefore the new transport cask type CASTOR registered HAW28M was developed. The authors describe the design of the casks, the licensing according to the German transport regulations, loading procedures, radiation measurements and shipment completion. In autumn 2011 the repatriation of vitrified high-level waste from France is supposed to be completed with the transport of eleven CASTOR registered HAW28M.

  1. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, Browns Hole, Utah

    Science.gov (United States)

    Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry

    2012-01-01

    During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.

  2. A proposal to improve e-waste collection efficiency in urban mining: Container loading and vehicle routing problems - A case study of Poland.

    Science.gov (United States)

    Nowakowski, Piotr

    2017-02-01

    Waste electrical and electronic equipment (WEEE), also known as e-waste, is one of the most important waste streams with high recycling potential. Materials used in these products are valuable, but some of them are hazardous. The urban mining approach attempts to recycle as many materials as possible, so efficiency in collection is vital. There are two main methods used to collect WEEE: stationary and mobile, each with different variants. The responsibility of WEEE organizations and waste collection companies is to assure all resources required for these activities - bins, containers, collection vehicles and staff - are available, taking into account cost minimization. Therefore, it is necessary to correctly determine the capacity of containers and number of collection vehicles for an area where WEEE need to be collected. There are two main problems encountered in collection, storage and transportation of WEEE: container loading problems and vehicle routing problems. In this study, an adaptation of these two models for packing and collecting WEEE is proposed, along with a practical implementation plan designed to be useful for collection companies' guidelines for container loading and route optimization. The solutions are presented in the case studies of real-world conditions for WEEE collection companies in Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Bullard, K.L.

    1994-01-01

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ''worst possible case'' flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services's Hydrometeorological Report No. 49 (HMR 49)

  4. Mechanical load on the low back and shoulders during pushing and pulling of two-wheeled waste containers compared with lifting and carrying of bags and bins.

    Science.gov (United States)

    Schibye, B; Søgaard, K; Martinsen, D; Klausen, K

    2001-08-01

    Compare the mechanical load on the low back and shoulders during pushing and pulling a two-wheeled container with the load during lifting and carrying the same amount of waste. Only little is known about risk factors and mechanical loads during push/pull operations. A complete 2(3) factor push/pull experiment. A two-wheeled container with 25 or 50 kg was pushed in front of and pulled behind the body by seven waste collectors. Further, the same subjects lifted and carried a paper bag and a dustbin both loaded with 7 and 25 kg. All operations were video recorded and the push/pull force was measured by means of a three-dimensional force transducer. Peak Motus and Watbak software were used for digitising and calculation of torque at L4/L5 and the shoulder joints and compression and shear forces at L4/L5. During pushing and pulling the compression at L4/L5 is from 605 to 1445 N. The extension torque at L4/L5 produced by the push/pull force is counteracted by the forward leaning of the upper body. The shear force is below 202 N in all situations. The torque at the shoulders is between 1 and 38 Nm. In the present experiments the torques at the low back and the shoulders are low during pushing and pulling. No relation exists between the size of the external force and the torque at the low back and the shoulder. Pushing and pulling are common in many workplaces and have often replaced lifting and carrying situations. This has emphasised the need for more knowledge of the internal mechanical load on the body during these activities.

  5. Vitrification Studies with DOE Low-Level Mixed Waste Wastewater Treatment Sludges

    International Nuclear Information System (INIS)

    Cicero, C.A.; Andrews, M.K.; Bickford, D.F.; Hewlett, K.J.; Bennert, D.M.; Overcamp, T.J.

    1995-01-01

    Vitrification studies with simulated Low Level Mixed Waste (LLMW) sludges were performed at the Savannah River Technology Center (SRTC). These studies focused on finding the optimum glass compositions for four simulated LLMW wastewater treatment sludges and were based on both crucible-scale and pilot-scale studies. Optimum compositions were determined based on the maximum waste loading achievable without sacrificing glass integrity

  6. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 20. Thermo-mechanical stress analysis and development of thermal loading guidelines

    International Nuclear Information System (INIS)

    1978-04-01

    This volume is one of a 23-volume series which supplements a Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel, and uranium-only recycling. The thermo-mechanical analysis of proposed preconceptual repositories in granite, shale and basalt have been undertaken. The analysis, was conducted on three different levels of scale (i) Very Near Field (canister scale), (ii) Near Field (excavation scale) and (iii) Far Field (regional scale) studies. Three numerical methods were used to undertake the thermo-mechanical calculations; namely, the finite element method for thermal stress analysis, the boundary element method for thermal and thermal stress analysis and the semi-analytical method also for thermal and thermal stresses analysis. From the thermo-mechanical studies with simplifying assumptions on rock mass behavior where applicable, recommendations for areal thermal loadings to assure retrievability of the canisters and long term safety of the repository are given

  7. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane.

    Science.gov (United States)

    Sarkar, Omprakash; Venkata Mohan, S

    2017-10-01

    Application of pre-aeration (AS) to waste prior to feeding was evaluated on acidogenic process in a semi-pilot scale biosystem for the production of biobased products (biohydrogen, volatile fatty acids (VFA) and biohythane) from food waste. Oxygen assisted in pre-hydrolysis of waste along with the suppression of methanogenic activity resulting in enhanced acidogenic product formation. AS operation resulted in 97% improvement in hydrogen conversion efficiency (HCE) and 10% more VFA production than the control. Increasing the organic load (OL) of food waste in association with AS application improved the productivity. The application of AS also influenced concentration and composition of fatty acid. Highest fraction of acetic (5.3g/l), butyric (0.7g/l) and propionic acid (0.84g/l) was achieved at higher OL (100g COD/l) with good degree of acidification (DOA). AS strategy showed positive influence on biofuel (biohydrogen and biohythane) production along with the biosynthesis of short chain fatty acids functioning as a low-cost pretreatment strategy in a single stage bioprocess. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Parametric study of the effects of thermal environment on a waste package for a tuff repository

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, J K; Sundberg, W D; Krumhansl, J L [Sandia National Laboratories Albuquerque, NM, (USA)

    1982-12-31

    The thermal environment has been modeled in a simple reference waste package in a tuff repository for a variety of variables. The waste package was composed of the waste form, canister, overpack and backfill. The emplacement hole was 122cm dia. Waste forms used in the calculations were commercial high level waste (CHLW) and spent fuel (SF). Canister loadings varied from 50 to 100 kW/acre. Primary attention was focused on the backfill behavior in the thermal and chemical environment. Results are related to the maximum temperature calculated for the backfill. These calculations raise serious concerns about the effectiveness of the backfill within the context of the total waste package.

  9. A step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy and minimization of gate fee.

    Science.gov (United States)

    Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos

    2017-06-23

    This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.

  10. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    International Nuclear Information System (INIS)

    Ebert, W. L.; Snyder, C. T.; Frank, Steven; Riley, Brian

    2016-01-01

    This report describes the scientific basis underlying the approach being followed to design and develop ''advanced'' glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na_2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl- in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste

  11. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease

  12. Environmental assessment for DOE permission for the off-loading and transportation of commercial low-level radioactive waste across the Savannah River Site

    International Nuclear Information System (INIS)

    1997-10-01

    The Department of Energy (DOE) prepared this Environmental Assessment (EA) to assess the potential environmental impacts associated with DOE allowing Chem-Nuclear Systems, L.L.C. (CNS) to off-load and transport low-level radioactive waste (LLW) packages across the Savannah River Site (SRS), located near Aiken, South Carolina, to the nearby CNS facility. The proposed action entails DOE granting permission to CNS to use SRS for landing shipping barges at the existing SRS boat ramp and off-loading trailered LLW packages for transportation across SRS to the CNS facility. Project activities would include modification of the SRS boat ramp on the Savannah River, as needed for off-loading activities, and construction of a bridge across Lower Three Runs. The proposed action also encompasses any similar future off-loading and transportation activities for LLW en route to the CNS facility. The National Environmental Policy Act requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an Environmental Impact Statement (EIS)

  13. Modified sulfur cement solidification of low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  14. Modified sulfur cement solidification of low-level wastes

    International Nuclear Information System (INIS)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended

  15. Polyethylene solidification of low-level wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1985-02-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive waste in polyethylene. Waste streams selected for this study included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment. Waste form property tests included water immersion, deformation under compressive load, thermal cycling and radionuclide leaching. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash, and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported. 37 refs., 33 figs., 22 tabs

  16. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  17. Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines

    Directory of Open Access Journals (Sweden)

    Xuan Wang

    2016-07-01

    Full Text Available The Organic Rankine Cycle (ORC is regarded as a suitable way to recover waste heat from gaseous fuel internal combustion engines. As waste heat recovery systems (WHRS have always been designed based on rated working conditions, while engines often work under part-load conditions, it is quite significant to analyze the part-load performance and corresponding operation strategy of ORC systems. This paper presents a dynamic model of ORC with a medium cycle used for a large gaseous fuel engine and analyzes the effect of adjustable parameters on the system performance, giving effective control directions under various conditions. The results indicate that the intermediary fluid mass flow rate has nearly no effect on the output power and thermal efficiency of the ORC, while the mass flow rate of working fluid has a great effect on them. In order to get a better system performance under different working conditions, the system should be operated with the working fluid mass flow rate as large as possible, but with a slight degree of superheating. Then, with the control of constant superheat degree at the end of the heating process, the performance of the combined system that consists of ORC and the engine at steady state under seven typical working conditions is also analyzed. The results indicate that the energy-saving effect of WHRS becomes worse and worse as the working condition decreases. Especially at 40% working condition the WHRS nearly has no energy-saving effect anymore.

  18. Development Of High Waste-Loading HLW Glasses For High Bismuth Phosphate Wastes, VSL-12R2550-1, Rev 0

    International Nuclear Information System (INIS)

    Kruger, A. A.; Pegg, Ian L.; Gan, Hao; Kot, Wing K.

    2012-01-01

    This report presents results from tests with new glass formulations that have been developed for several high Bi-P HLW compositions that are expected to be processed at the WTP that have not been tested previously. WTP HLW feed compositions were reviewed to select waste batches that are high in Bi-P and that are reasonably distinct from the Bi-limited waste that has been tested previously. Three such high Bi-P HLW compositions were selected for this work. The focus of the present work was to determine whether the same type of issues as seen in previous work with high-Bi HLW will be seen in HLW with different concentrations of Bi, P and Cr and also whether similar glass formulation development approaches would be successful in mitigating these issues. New glass compositions were developed for each of the three representative Bi-P HLW wastes and characterized with respect to key processing and product quality properties and, in particular, those relating to crystallization and foaming tendency

  19. Development Of High Waste-Loading HLW Glasses For High Bismuth Phosphate Wastes, VSL-12R2550-1, Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-12-13

    This report presents results from tests with new glass formulations that have been developed for several high Bi-P HLW compositions that are expected to be processed at the WTP that have not been tested previously. WTP HLW feed compositions were reviewed to select waste batches that are high in Bi-P and that are reasonably distinct from the Bi-limited waste that has been tested previously. Three such high Bi-P HLW compositions were selected for this work. The focus of the present work was to determine whether the same type of issues as seen in previous work with high-Bi HLW will be seen in HLW with different concentrations of Bi, P and Cr and also whether similar glass formulation development approaches would be successful in mitigating these issues. New glass compositions were developed for each of the three representative Bi-P HLW wastes and characterized with respect to key processing and product quality properties and, in particular, those relating to crystallization and foaming tendency.

  20. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading

  1. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  2. Thermoelastic/plastic analysis of waste-container sleeve: III. Influence of salt strength on sleeve loading. Technical memorandum report (RSI-0018)

    International Nuclear Information System (INIS)

    Pariseau, W.G.

    1975-01-01

    Three combinations of salt tensile, compressive and shear strength in linear and nonlinear yield conditions used in the axially symmetric, large displacement thermoelastic/plastic waste-container/sleeve loading estimates show no influence on the analysis. The salt remains elastic throughout the excavation and subsequent 10 year heating period. Tensile stresses are not observed, tensile strength is thus not important to the analysis even at 10 percent of the compressive strength value. Although strictly applicable only to the conditions of the analyses reported here, the capability for incorporating arbitrary strength combinations in linear or non-linear yield conditions is demonstrated. Computer plots of principal stresses and displacement fields at various stages of the excavation and heating simulation aid in the visualization of repository concept mechanics and show the possible need for additional mesh refinement for more precise stress information

  3. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  4. Sample loading for C-14 measurement in the simulated organic solvent waste from a CANDU Nuclear Power Plant

    International Nuclear Information System (INIS)

    Dianu, Magdalena; Dobrin, Relu; Podina, Corneliu

    2005-01-01

    The paper evaluates the performance of two commercially available liquid scintillation cocktails designed for counting nonaqueous (organic) samples. To choose a suitable scintillation cocktail is not always easy because many cocktails are available on the market. The efficiency, sample loading, sample type are all important variables that help determine the suitability of a liquid scintillation cocktail for C-14 measurement. Samples were counted in a 2100 TRI-CARB Packard Model liquid scintillation analyzer. (authors)

  5. WASTES: a waste management logistics/economics model

    International Nuclear Information System (INIS)

    McNair, G.W.; Shay, M.R.; Fletcher, J.F.; Cashwell, J.W.

    1985-01-01

    The WASTES logistics model is a simulation language based model for analyzing the logistic flow of spent fuel/nuclear waste throughout the waste management system. The model tracks the movement of spent fuel/nuclear waste from point of generation to final destination. The model maintains inventories of spent fuel/nuclear waste at individual reactor sites as well as at various facilities within the waste management system. A maximum of 14 facilities may be utilized within a single run. These 14 facilities may include any combination of the following facilities: (1) federal interim storage (FIS), (2) reprocessing (REP), (3) monitored retrievable storage (MRS), (4) geological disposal facilities (GDF). The movement of spent fuel/nuclear waste between these facilities is controlled by the user specification of loading and unloading rates, annual and maximum capacities and commodity characteristics (minimum age or heat constraints) for each individual facility. In addition, the user may specify varying levels of priority on the spent fuel/nuclear waste that will be eligible for movement within a given year. These levels of priority allow the user to preferentially move spent fuel from reactor sites that are experiencing a loss of full-core-reserve (FCR) margin in a given year or from reactors that may be in the final stages of decommissioning. The WASTES model utilizes the reactor specific data available from the PNL spent fuel database. This database provides reactor specific information on items such as spent fuel basin size, reactor location, and transportation cask preference (i.e., rail or truck cask). In addition, detailed discharge data is maintained that provides the number of assemblies, metric tons, and exposure for both historic and projected discharges at each reactor site

  6. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    Science.gov (United States)

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  7. Proceedings of the 11. Banska Stiavnica Days 2009. Peaceful use of nuclear energy. Application of nuclear technologies and determination of radionuclides in the environment. Environmental load and municipal wastes

    International Nuclear Information System (INIS)

    Seliga, M.; Sebesta, P.

    2009-10-01

    Scientific conference deals with problems in environmental sciences and radio-environmental sciences. The conference proceeded in two sections: (I) Nuclear technologies; (II) Municipal wastes and environmental load. Fifty-seven participants took part in conference. Twenty-eight lectures were presented. Proceedings contain nineteen papers and thirteen presentations, which deal with the scope of INIS..

  8. Proceedings of the 10. Banska Stiavnica Days 2008. Peaceful use of atomic energy. Application of nuclear technologies and determination of radionuclides in the environment. Environmental load and municipal wastes

    International Nuclear Information System (INIS)

    Seliga, M.; Sebesta, P.

    2008-10-01

    Scientific conference deals with problems in environmental sciences and radio-environmental sciences. The conference proceeded in two sections: (I) Nuclear technologies; (II) Municipal wastes and environmental load. Fifty participants took part in conference. Twenty-four lectures and two posters were presented. Proceedings contain twenty-six papers all papers deals with the scope of INIS

  9. Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene.

    Science.gov (United States)

    Wang, Lin; Yuan, Liyong; Chen, Ke; Zhang, Yujuan; Deng, Qihuang; Du, Shiyu; Huang, Qing; Zheng, Lirong; Zhang, Jing; Chai, Zhifang; Barsoum, Michel W; Wang, Xiangke; Shi, Weiqun

    2016-06-29

    Efficient nuclear waste treatment and environmental management are important hurdles that need to be overcome if nuclear energy is to become more widely used. Herein, we demonstrate the first case of using two-dimensional (2D) multilayered V2CTx nanosheets prepared by HF etching of V2AlC to remove actinides from aqueous solutions. The V2CTx material is found to be a highly efficient uranium (U(VI)) sorbent, evidenced by a high uptake capacity of 174 mg g(-1), fast sorption kinetics, and desirable selectivity. Fitting of the sorption isotherm indicated that the sorption followed a heterogeneous adsorption model, most probably due to the presence of heterogeneous adsorption sites. Density functional theory calculations, in combination with X-ray absorption fine structure characterizations, suggest that the uranyl ions prefer to coordinate with hydroxyl groups bonded to the V-sites of the nanosheets via forming bidentate inner-sphere complexes.

  10. Stripping study of U(VI) from loaded TBP/n-paraffin using ammonium nitrate bearing waste as strippant

    International Nuclear Information System (INIS)

    Shrishma Paik; Biswas, S.; Bhattacharya, S.; Roy, S.B.

    2013-01-01

    Stripping studies of U(VI) from loaded solvent TBP/n-paraffin was carried out using ammonium nitrate solution as strippant. Effects of various stripping parameters such as concentration of ammonium nitrate solution, U(VI) concentration in organic phase, initial pH of strippant, temperature etc. have been investigated in detail. Kinetics of the stripping process by ammonium nitrate was found to be slower than that of stripping with water. It was observed that with the increase in ammonium nitrate concentration in aqueous solution, stripping of U(VI) decreased. With the increase in U(VI) loading in the organic phase, there was an increase in uranium stripping for ammonium nitrate whereas for distilled water it becomes reverse. With the increase in pH of the aqueous ammonium nitrate solution, stripping increased up to a certain pH of 8.5 and after that precipitation of uranium started. Increase in temperature of the biphasic system shows an enhancing effect of U(VI) stripping. Evaluation of thermodynamic data such as ΔH indicated that the process is endothermic. Based on the optimized conditions, McCabe-Thiele diagram was constructed for U(VI) stripping using ammonium nitrate solution at room temperature. (author)

  11. Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates.

    Science.gov (United States)

    Kong, Xin; Wei, Yonghong; Xu, Shuang; Liu, Jianguo; Li, Huan; Liu, Yili; Yu, Shuyao

    2016-07-01

    Excessive acidification occurs frequently in food waste (FW) anaerobic digestion (AD) due to the high carbon-to-nitrogen ratio of FW. In this study, zero-valent iron (ZVI) was applied to prevent the excessive acidification. All of the control groups, without ZVI addition (pH∼5.3), produced little methane (CH4) and had high volatile fatty acids/bicarbonate alkalinity (VFA/ALK). By contrast, at OLR of 42.32gVS/Lreactor, the pH of effluent from the reactors with 0.4g/gVSFWadded of ZVI increased to 7.8-8.2, VFA/ALK decreased to <0.1, and the final CH4 yield was ∼380mL/gVSFWadded, suggesting inhibition of excessive acidification. After adding powdered or scrap metal ZVI to the acidogenic reactors, the fractional content of butyric acid changed from 30-40% to 0%, while, that of acetic acid increased. These results indicate that adding ZVI to FW digestion at high OLRs could eliminate excessive acidification by promoting butyric acid conversion and enhancing methanogen activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Peeler, D.K.; Gilliam, T.M.; Bleier, A.; Spence, R.D.

    1996-01-01

    Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC's Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ''proof-of-principle'' demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings

  13. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  14. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  15. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  16. Maximum power demand cost

    International Nuclear Information System (INIS)

    Biondi, L.

    1998-01-01

    The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it

  17. High-loading-substrate enzymatic hydrolysis of palm plantation waste followed by unsterilized-mixed-culture fermentation for bio-ethanol production

    Science.gov (United States)

    Bardant, Teuku Beuna; Winarni, Ina; Sukmana, Hadid

    2017-01-01

    It was desired to obtain a general formula for producing bio-ethanol from any part of lignocelluloses wastes that came from palm oil industries due to its abundance. Optimum condition that obtained by using RSM for conducting high-loading-substrate enzymatic hydrolysis of palm oil empty fruit bunch was applied to palm oil trunks and then followed by unsterilized fermentation for producing bio-ethanol. From several optimized conditions investigated, the resulted ethanol concentration could reach 7.92 %v by using 36.5 %w of palm oil trunks but the results were averagely 2.46 %v lower than palm oil empty fruit bunch. The results was statistically compared and showed best correlative coefficient at 0.808 (in scale 0-1) which support the conclusion that the optimum condition for empty fruit bunch and trunks are similar. Utilization of mixed-culture yeast was investigated to produce ethanol from unsterilized hydrolysis product but the improvement wasn't significant compares to single culture yeast.

  18. Optimisation of single-phase dry-thermophilic anaerobic digestion under high organic loading rates of industrial municipal solid waste: population dynamics.

    Science.gov (United States)

    Zahedi, S; Sales, D; Romero, L I; Solera, R

    2013-10-01

    Different high feed organic loading rates (OLRs) (from 5.7 g to 46.0 g TVS/l/d) or hydraulic retention times (HRTs) (from 15 d to 2 d) in single-phase dry-thermophilic anaerobic digestion (AD) of organic fraction municipal solid waste (OFMSW) were investigated. The specific gas production (SGP) values (0.25-0.53 m(3)/kg TVS) and the percentages of Eubacteria, Archaea, H2-utilising methanogens (HUMs) and acetate-utilising methanogens (AUMs) were stable within the ranges 80.2-91.1%, 12.4-18.5%, 4.4-9.8% and 5.5-10.9%, respectively. A HUM/AUM ratio greater than 0.7 seems to be necessary to maintain very low partial pressures of H2 required for dry AD process. Increasing OLR resulted in an increase in all the populations, except for propionate-utilising acetogens (PUAs). Optimal conditions were obtained at 3d HRT (OLR=30.7 g TVS/l/d), which is lower than the doubling time of acetogens and methanogens. The methane production (MP) was clearly higher than those reported in AD of OFMSW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Low-risk alternative waste forms for problematic high-level and long-lived nuclear wastes

    International Nuclear Information System (INIS)

    Stewart, M.W.A.; Begg, B.D.; Moricca, S.; Day, R.A.

    2006-01-01

    Full text: The highest cost component the nuclear waste clean up challenge centres on high-level waste (HLW) and consequently the greatest opportunity for cost and schedule savings lies with optimising the approach to HLW cleanup. The waste form is the key component of the immobilisation process. To achieve maximum cost savings and optimum performance the selection of the waste form should be driven by the characteristics of the specific nuclear waste to be immobilised, rather than adopting a single baseline approach. This is particularly true for problematic nuclear wastes that are often not amenable to a single baseline approach. The use of tailored, high-performance, alternative waste forms that include ceramics and glass-ceramics, coupled with mature process technologies offer significant performance improvements and efficiency savings for a nuclear waste cleanup program. It is the waste form that determines how well the waste is locked up (chemical durability), and the number of repository disposal canisters required (waste loading efficiency). The use of alternative waste forms for problematic wastes also lowers the overall risk by providing high performance HLW treatment alternatives. The benefits tailored alternative waste forms bring to the HLW cleanup program will be briefly reviewed with reference to work carried out on the following: The HLW calcines at the Idaho National Laboratory; SYNROC ANSTO has developed a process utilising a glass-ceramic combined with mature hot-isostatic pressing (HIP) technology and has demonstrated this at a waste loading of 80 % and at a 30 kg HIP scale. The use of this technology has recently been estimated to result in a 70 % reduction in waste canisters, compared to the baseline borosilicate glass technology; Actinide-rich waste streams, particularly the work being done by SYNROC ANSTO with Nexia Solutions on the Plutonium-residues wastes at Sellafield in the UK, which if implemented is forecast to result in substantial

  20. Durability of incinerator ash waste encapsulated in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Pietrzak, R.; Colombo, P.

    1991-01-01

    Waste form stability under anticipated disposal conditions is an important consideration for ensuring continued isolation of contaminants from the accessible environment. Modified sulfur cement is a relatively new material and has only recently been applied as a binder for encapsulation of mixed wastes. Little data are available concerning its long-term durability. Therefore, a series of property evaluation tests for both binder and waste-binder combinations have been conducted to examine potential waste form performance under storage and disposal conditions. These tests include compressive strength, biodegradation, radiation stability, water immersion, thermal cycling, and leaching. Waste form compressive strength increased with ash waste loadings to 30.5 MPa at a maximum incinerator ash loading of 43 wt %. Biodegradation testing resulted in no visible microbial growth of either bacteria or fungi. Initial radiation stability testing did not reveal statistically significant deterioration in structural integrity. Results of 90 day water immersion tests were dependent on the type of ash tested. There were no statistically significant changes in compressive strength detected after completion of thermal cycle testing. Radionuclides from ash waste encapsulated in modified sulfur cement leached between 5 and 8 orders of magnitude slower than the leach index criterion established by the Nuclear Regulatory Commission (NRC) for low-level radioactive waste. Modified sulfur cement waste forms containing up to 43 wt % incinerator fly ash passed EPA Toxicity Characteristic Leaching Procedure (TCLP) criteria for lead and cadmium leachability. 11 refs., 2 figs., 5 tabs

  1. Polyethylene encapsulation of mixed wastes: Scale-up feasibility

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H.; Colombo, P.

    1991-01-01

    A polyethylene process for the improved encapsulation of radioactive, hazardous, and mixed wastes have been developed at Brookhaven National Laboratory (BNL). Improvements in waste loading and waste form performance have been demonstrated through bench-scale development and testing. Maximum waste loadings of up to 70 dry wt % mixed waste nitrate salt were achieved, compared with 13--20 dry wt % using conventional cement processes. Stability under anticipated storage and disposal conditions and compliance with applicable hazardous waste regulations were demonstrated through a series of lab-scale waste form performance tests. Full-scale demonstration of this process using actual or surrogate waste is currently planned. A scale-up feasibility test was successfully conducted, demonstrating the ability to process nitrate salts at production rates (up to 450 kg/hr) and the close agreement between bench- and full-scale process parameters. Cored samples from the resulting pilot-scale (114 liter) waste form were used to verify homogeneity and to provide additional specimens for confirmatory performance testing

  2. Radium bearing waste disposal

    International Nuclear Information System (INIS)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-01-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach

  3. Maximum gain of Yagi-Uda arrays

    DEFF Research Database (Denmark)

    Bojsen, J.H.; Schjær-Jacobsen, Hans; Nilsson, E.

    1971-01-01

    Numerical optimisation techniques have been used to find the maximum gain of some specific parasitic arrays. The gain of an array of infinitely thin, equispaced dipoles loaded with arbitrary reactances has been optimised. The results show that standard travelling-wave design methods are not optimum....... Yagi–Uda arrays with equal and unequal spacing have also been optimised with experimental verification....

  4. Modelo de análisis de cargas máximas en aerogeneradores producidas por vientos extremos // Model of analysis of maximum loads in wind generators produced by extreme winds.

    Directory of Open Access Journals (Sweden)

    Omar Herrera - Sánchez

    2010-05-01

    renewable source of energy totally, either because the country isvery small, or because it coincides the area of more potential fully with that of high risk. To counteractthis situation, a model of analysis of maxims loads has been elaborated taken place the extremewinds in wind turbines of great behavior. This model has the advantage of determining, in a chosenplace, for the installation of a wind farm, the micro-areas with higher risk of wind loads above theacceptable for the standard classes of wind turbines.Key words: Wind turbines, wind loads, modeling of wind farm.

  5. An Evaluation of Liquidus Temperature as a Function of Waste Loading for a Tank 42 ''Sludge Only''/Frit 200 Flowsheet

    International Nuclear Information System (INIS)

    Peeler, D.

    1999-01-01

    'The waste glass produced in the SRS Defense Waste Processing Faiclity (DWPF) process must comply with Waste Acceptance Product Specifications (WAPS) and process control requirements by demonstrating, to a high degree of confidence, that melter feed will produce glass satisfying all quality and processing requirements.'

  6. Modeling and Performance of Waste Tires as Media in Fixed Bed Sequence Batch Reactor

    Directory of Open Access Journals (Sweden)

    Zahra Derakhshan

    2016-12-01

    Results: The maximum removal efficiencies of dissolved chemical oxygen demand for FBSBR and SBR reactors were 98.3 % and 97.9 %, respectively. In addition, Stover-Kincannon model provided a very suitable fitness (R2   > 0.99 for loading the bioreactor FBSBR. Conclusion: According to the results, not only waste tires can be reused, but also these wastes can be employed as a proper biological bed in wastewater refineries to improve their efficiency.

  7. Maximum likely scale estimation

    DEFF Research Database (Denmark)

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

    2005-01-01

    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  8. Robust Maximum Association Estimators

    NARCIS (Netherlands)

    A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)

    2017-01-01

    textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation

  9. Advanced Conversion of Organic Waste into Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Offenbacher, Elmar [BDI-BioEnergy International AG, Grambach/Graz (Austria)

    2012-11-01

    Day by day, every human generates significant amounts of organic waste that most of the time ends on landfills. Disposing of organic residues is not just a waste of energy resources but also a burden to the environment as anthropogenic emissions of greenhouse gases are produced. In contrast to waste combustion that can't generate any energy out of organic waste but the contrary, anaerobic digestion is the most suitable technology for the sustainable and efficient conversion of all kind of organic waste into valuable biogas. Biogas generated from organic waste typically consists of 55-60% methane (CH{sub 4}) and provides an energy content of more than 20 MJ/Nm{sup 3}. The average biogas yield is around 150 Nm{sup 3} per ton of organic waste that can be converted into 350 kW of electricity plus the same amount of process heat. In other words a typical household could recover about one twentieth of its power consumption just out of the organic waste it is producing. Anaerobic digestion significantly reduces the amount of waste going to landfill as well as the uncontrolled emissions of methane. The BDI High Load Hybrid Reactor merges the core concepts of CSTR and UASB fermenters while providing a two phase anaerobic digestion system. The first process step accommodates hydrolysis and acidification to break down the complex organic molecules into simple sugars, amino acids, and fatty acids under acid conditions. In the second stage acetic acids are finally converted into methane (CH{sub 4}), carbon dioxide (CO{sub 2}) and water. This two-phase concept ensures maximum yield of biogas generated, paired with high loading rates and feedstock flexibility.

  10. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  11. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the second part of a report of a preliminary study for AECL. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) geotechnical assessment, 2) hydrogeology and waste containment, 3) thermal loading and 4) rock mechanics. (author)

  12. Preparing, Loading and Shipping Irradiated Metals in Canisters Classified as Remote-Handled (RH) Low-Level Waste (LLW) From Oak Ridge National Laboratory (ORNL) to the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    McClelland, B.C.; Moore, T.D.

    2006-01-01

    Irradiated metals, classified as remote-handled low-level waste generated at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, were containerised in various sized canisters for long-term storage. The legacy waste canisters were placed in below-grade wells located at the 7827 Facility until a pathway for final disposal at the Nevada Test Site (NTS) could be identified and approved. Once the pathway was approved, WESKEM, LLC was selected by Bechtel Jacobs Company, LLC to prepare, load, and ship these canisters from ORNL to the NTS. This paper details some of the technical challenges encountered during the retrieval process and solutions implemented to ensure the waste was safely and efficiently over-packed and shipped for final disposal. The technical challenges detailed in this paper include: 1) how to best perform canister/lanyard pre-lift inspections since some canisters had not been moved in ∼10 years, so deterioration was a concern; 2) replacing or removing damaged canister lanyards; 3) correcting a mis-cut waste canister lanyard resulting in a shielded overpack lid not seating properly; 4) retrieving a stuck canister; and 5) developing a path forward after an overstrained lanyard failed causing a well shield plug to fall and come in contact with a waste canister. Several of these methods can serve as positive lessons learned for other projects encountering similar situations. (authors)

  13. Biomethanization of citrus waste: Effect of waste characteristics and of storage on treatability and evaluation of limonene degradation.

    Science.gov (United States)

    Lotito, Adriana Maria; De Sanctis, Marco; Pastore, Carlo; Di Iaconi, Claudio

    2018-06-01

    This study proposes the evaluation of the suitability of mesophilic anaerobic digestion as a simple technology for the treatment of the citrus waste produced by small-medium agro-industrial enterprises involved in the transformation of Citrus fruits. Two different stocks of citrus peel waste were used (i.e., fresh and stored citrus peel waste), to evaluate the influence of waste composition (variability in the type of processed Citrus fruits) and of storage (potentially necessary to operate the anaerobic digester continuously over the whole year due to the seasonality of the production) on anaerobic degradation treatability. A thorough characterization of the two waste types has been performed, showing that the fresh one has a higher solid and organic content, and that, in spite of the similar values of oil fraction amounts, the two stocks are significantly different in the composition of essential oils (43% of limonene and 34% of linalyl acetate in the fresh citrus waste and 20% of limonene and 74% of linalyl acetate in the stored citrus waste). Contrarily to what observed in previous studies, anaerobic digestion was successful and no reactor acidification occurred. No inhibition by limonene and linalyl acetate even at the maximum applied organic load value (i.e., 2.72 gCOD waste /gVS inoculum ) was observed in the treatment of the stored waste, with limonene and linalyl acetate concentrations of 104 mg/l and 385 mg/l, respectively. On the contrary, some inhibition was detected with fresh citrus peel waste when the organic load increased from 2.21 to 2.88 gCOD waste /gVS inoculum , ascribable to limonene at initial concentration higher than 150 mg/l. A good conversion into methane was observed with fresh peel waste, up to 0.33  [Formula: see text] at the highest organic load, very close to the maximum theoretical value of 0.35 [Formula: see text] , while a lower efficiency was achieved with stored peel waste, with a reduction down to 0.24  [Formula: see

  14. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps and human health hazards associated with uranium exploration and mining, Red, White, and Fry Canyons, southeastern Utah, 2007

    Science.gov (United States)

    Beisner, Kimberly R.; Marston, Thomas M.; Naftz, David L.; Snyder, Terry; Freeman, Michael L.

    2010-01-01

    During May, June, and July 2007, 58 solid-phase samples were collected from abandoned uranium mine waste dumps, background sites, and adjacent streambeds in Red, White, and Fry Canyons in southeastern Utah. The objectives of this sampling program were to (1) assess the nonpoint-source chemical loading potential to ephemeral and perennial drainage basins from uranium waste dumps and (2) assess potential effects on human health due to recreational activities on and around uranium waste dumps on Bureau of Land Management property. Uranium waste-dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for major and trace elements at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah. A subset of the solid-phase samples also were digested with strong acids and analyzed for major ions and trace elements at the U.S. Geological Survey Geologic Division Laboratory in Denver, Colorado. For the initial ranking of chemical loading potential for uranium waste dumps, results of leachate analyses were compared with existing aquatic-life and drinking-water-quality standards. To assess potential effects on human health, solid-phase digestion values for uranium were compared to soil screening levels (SSL) computed using the computer model RESRAD 6.5 for a probable concentration of radium. One or more chemical constituents exceeded aquatic life and drinking-water-quality standards in approximately 64 percent (29/45) of the leachate samples extracted from uranium waste dumps. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were located in Red Canyon. Approximately 69 percent (31/45) of the strong acid digestible soil concentration values were greater than a calculated

  15. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  16. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  17. Integrated application of river water quality modelling and cost-benefit analysis to optimize the environmental economical value based on various aquatic waste load reduction strategies

    Science.gov (United States)

    Wu, Chen-Yu; Fan, Chihhao

    2017-04-01

    To assure the river water quality, the Taiwan government establishes many pollution control strategies and expends huge monetary investment. Despite all these efforts, many rivers still suffer from severe pollution because of massive discharges of domestic and industrial wastewater without proper treatment. A comprehensive evaluation tool seems required to assess the suitability of water pollution control strategies. Therefore, the purpose of this study is to quantify the potential strategic benefits by applying the water quality modelling integrated with cost-benefit analysis to simulating scenarios based on regional development planning. The Erhjen Creek is selected as the study example because it is a major river in southern Taiwan, and its riverine environment impacts a great deal to the neighboring people. For strategy assessment, we established QUAL2k model of Erhjen Creek and conducted the cost-benefit analyses according the proposed strategies. In the water quality simulation, HEC-RAS was employed to calculate the hydraulic parameters and dilution impact of tidal effect in the downstream section. Daily pollution loadings were obtained from the Water Pollution Control Information System maintained by Taiwan EPA, and the wastewater delivery ratios were calculated by comparing the occurrence of pollution loadings with the monitoring data. In the cost-benefit analysis, we adopted the market valuation method, setting a period of 65 years for analysis and discount rate at 2.59%. Capital investments were the costs of design, construction, operation and maintenance for each project in Erhjen Creek catchment. In model calibration and model verification, the mean absolute percentage errors (MAPEs) were calculated to be 21.4% and 25.5%, respectively, which met the prescribed acceptable criteria of 50%. This model was applied to simulating water quality based on implementing various pollution control policies and engineering projects in the Erhjen Creek. The overall

  18. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  19. High level waste fixation in cermet form

    International Nuclear Information System (INIS)

    Kobisk, E.H.; Aaron, W.S.; Quinby, T.C.; Ramey, D.W.

    1981-01-01

    Commercial and defense high level waste fixation in cermet form is being studied by personnel of the Isotopes Research Materials Laboratory, Solid State Division (ORNL). As a corollary to earlier research and development in forming high density ceramic and cermet rods, disks, and other shapes using separated isotopes, similar chemical and physical processing methods have been applied to synthetic and real waste fixation. Generally, experimental products resulting from this approach have shown physical and chemical characteristics which are deemed suitable for long-term storage, shipping, corrosive environments, high temperature environments, high waste loading, decay heat dissipation, and radiation damage. Although leach tests are not conclusive, what little comparative data are available show cermet to withstand hydrothermal conditions in water and brine solutions. The Soxhlet leach test, using radioactive cesium as a tracer, showed that leaching of cermet was about X100 less than that of 78 to 68 glass. Using essentially uncooled, untreated waste, cermet fixation was found to accommodate up to 75% waste loading and yet, because of its high thermal conductivity, a monolith of 0.6 m diameter and 3.3 m-length would have only a maximum centerline temperature of 29 K above the ambient value

  20. Methane production from fermentation of winery waste

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A laboratory-scale reactor receiving a mixture of screened dairy manure and winery waste was studied at 35 degrees C and a hydraulic retention time of 4 days. The maximum methane production rate of 8.14 liter CH/sub 4//liter/day was achieved at a loading rate of 7.78 g VS/liter/day (VS = volatile solids). The corresponding methane yield was 1.048 liter CH/sub 4//g VS added. Using a mixture of winery wastes and screened dairy manure as the feed material to anaerobic reactor resulted in a significant increase in total methane production compared to that from screened dairy manure alone. The biodegradation efficiency increased with the addition of winery wastes to screened dairy manure. 18 references.

  1. Symmetric Rock Fall on Waste Package

    International Nuclear Information System (INIS)

    Sreten Mastilovic

    2001-01-01

    The objective of this calculation is to determine the structural response of the Naval SNF (spent nuclear fuel) Waste Package (WP) and the emplacement pallet (EP) subjected to the rock fall DBE (design basis event) dynamic loads. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities and residual stresses in the WP, and stress intensities and maximum permanent downward displacements of the EP-lifting surface. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP and EP considered in this calculation, and all obtained results are valid for those designs only. This calculation is associated with the waste package design and is performed by the Waste Package Design Section in accordance with Reference 24. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document

  2. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1988-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  3. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  4. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1989-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. The author reviews the need for such methods in data analysis and shows, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. He concludes with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  5. Functional Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg

    2005-01-01

    MAF outperforms the functional PCA in concentrating the interesting' spectra/shape variation in one end of the eigenvalue spectrum and allows for easier interpretation of effects. Conclusions. Functional MAF analysis is a useful methods for extracting low dimensional models of temporally or spatially......Purpose. We aim at data where samples of an underlying function are observed in a spatial or temporal layout. Examples of underlying functions are reflectance spectra and biological shapes. We apply functional models based on smoothing splines and generalize the functional PCA in......\\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

  6. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  7. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  8. Heat transfer analyses for grout disposal of radioactive double-shell slurry and customer wastes

    International Nuclear Information System (INIS)

    Robinson, S.M.; Gilliam, T.M.; McDaniel, E.W.

    1987-04-01

    Grout immobilization is being considered by Rockwell Hanford Operations (Rockwell Hanford) as a permanent disposal method for several radioactive waste streams. These include disposal of customer and double-shell slurry wastes in earthen trenches and in single-shell underground waste storage tanks. Heat transfer studies have previously been made to determine the maximum heat loading for grout disposal of various wastes under similar conditions, but a sensitivity analysis of temperature profiles to input parameters was needed. This document presents the results of heat transfer calculations for trenches containing grouted customer and double-shell slurry wastes and for in situ disposal of double-shell wastes in single-shell, domed concrete storage tanks. It discusses the conditions that lead to maximum grout temperatures of 250 0 F during the curing stage and 350 0 F thereafter and shows the dependence of these temperatures on input parameters such as soil and grout thermal conductivity, grout specific heat, waste loading, and disposal geometries. Transient heat transfer calculations were made using the HEATING6 computer code to predict temperature profiles in solidified low-level radioactive waste disposal scenarios at the Rockwell Hanford site. The calculations provide guidance for the development of safe, environmentally acceptable grout formulas for the Transportable Grout Facility. 11 refs

  9. Decree 149/013. It dictate norms standards for pollution prevention in the oil loading terminals, repairing ports and other ports where ships have hidrocarbon waste, to discharge in accordance with existing international agreements concluded with the international maritime organization ratification and ratified by our country

    International Nuclear Information System (INIS)

    2013-01-01

    This decree is about the standards concerning to the pollution prevention in the oil loading terminals.The countries involved in the agreement are committed to ensure that the oil loading terminals and ports have appropriate facilities for the reception of waste and oily mixtures.

  10. Criticality safety of transuranic storage arrays at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Boyd, W.A.; Fecteau, M.W.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) facility is designed to store transuranic waste that will consist mainly of surface contaminate articles and sludge. The fissile material in the waste is predominantly 239 Pu. The waste is grouped into two categories: contact-handled waste, which will be stored in 55-gal steel drums or in steel boxes, and remote-handled waste, which will be stored in specially designed cylindrical steel canisters. To show that criticality safety will be acceptable, criticality analyses were performed to demonstrate that a large number of containers with limiting loadings of fissile material could be stored at the site and meet a k eff limit of 0.95. Criticality analyses based on the classic worst-case moderated plutonium sphere approach would severely limit the capacity for storage of waste at the facility. Therefore, these analyses use realistic or credible worst-case assumptions to better represent the actual storage situation without compromising the margin of safety. Numerous sensitivity studies were performed to determine the importance of various parameters on the criticality of the configuration. It was determined that the plutonium loading has the dominant effect on the system reactivity. Nearly all other reactivity variations from the sensitivity studies were found to be relatively small. The analysis shows that criticality of the contact-handled waste storage drums and boxes and the remote-handled canisters is prevented by restrictions on maximum fissile loading per container and on the size of handling/storage areas

  11. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  12. Task 0715: Army Chesapeake Bay Total Maximum Daily Load Pilots

    Science.gov (United States)

    2011-05-01

    NDCEE/CTC The NDCEE is operated by: Office of the Assistant Sec etary of the Army for Installations, E ergy and Enviro ment Technology Transition...stockpiles of soils and sands; – Air emissions with deposition potential; – Construction projects; – Existence of septic systems/sewage holding tanks

  13. 30 CFR 77.1402-1 - Maximum load; posting.

    Science.gov (United States)

    2010-07-01

    ....1402-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... number of men permitted to ride on each hoist or elevator at one time; this limit shall be posted on each...

  14. Clean Water Act Approved Total Maximum Daily Load (TMDL) Documents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information from Approved and Established TMDL Documents as well as TMDLs that have been Withdrawn. This includes the pollutants identified in the TMDL Document, the...

  15. Optimization of waste management in the EG with the aid of systems analysis methods

    International Nuclear Information System (INIS)

    Braun, H.W.M.; Ditterich, K.; Schneider, J.

    1974-01-01

    The problems of waste management range from their production when they must be collected to transport, conditioning etc., and, finally, to safe disposal. Until recently, the subsystems in waste management had for the most part been treated empirically and separately. In this paper, all subsystems are considered and related to each other with systems analysis methods. In this way the complex problem including the initial and end values can be optimized with regard to a maximum of security and reliability and a minimum of cost and environmental load. The annex contains a simplified example for the treatment of waste mangement by methods of systems analysis. (orig./AK) [de

  16. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  17. Utilização do planejamento experimental em rede simplex no estudo de resíduo de rocha ornamental como filler para obtenção de máxima compacidade Use of simplex lattice experimental design in the study of ornamental rock waste as filler to obtain maximum compaction

    Directory of Open Access Journals (Sweden)

    A. Z. Destefani

    2011-12-01

    Full Text Available A utilização de agregados industrializados vem crescendo ao longo dos anos para atender a grande demanda da construção civil devido ao crescimento econômico do país. O objetivo deste trabalho foi utilizar o planejamento experimental em Rede Simplex para avaliar o efeito da adição do resíduo de rocha ornamental como filler na composição de misturas ternárias (brita 0, pó de pedra e resíduo, que levem a máxima compacidade (densidade seca aparente máxima. Foram tomados dezesseis pontos experimentais, cujos teores dos materiais utilizados variaram de 0 a 100%. O modelo em rede simplex cúbico completo apresentou melhor ajuste aos resultados experimentais, o qual resulta em respostas estatisticamente mais adequadas para as composições estudadas. A superfície de resposta gerada indicou que a densidade seca aparente máxima de 2,0 g/cm³ foi obtida para a composição ternária: 63% de brita 0/17% de pó de pedra/20% de resíduo de rocha ornamental. Portanto, o uso de resíduo de rocha ornamental como filler em agregados para a construção civil pode ser uma alternativa viável para deposição final deste abundante resíduo de forma ambientalmente correta.The use of industrial aggregates has grown over the years to meet the great demand of the civil construction due to the country's economical growth. The aim of this work was to use the experimental design in Simplex Lattice to evaluate the effect of the addition of ornamental rock waste as filler in the composition of ternary mixtures (crushed rock 0, stone powder, rock waste, leading to maximum compaction (maximum apparent dry density. Sixteen experimental points were taken, whose contents of the used materials ranged from 0 to 100%. The complete cubic simplex model showed to best fit to the experimental results, which results in more statistically appropriated responses to the studied compositions. The response surface generated indicated that the maximum apparent dry density (2

  18. Loading device for incinerator

    International Nuclear Information System (INIS)

    Hempelmann, W.

    1983-01-01

    An incinerator for radioactive waste is described. Heat radiation from the incinerator into the loading device is reduced by the design of the slider with a ceramic plate and the conical widening of the pot, and also by fixing a metal plate between the pot and the floor. (PW) [de

  19. Development and evaluation of polyethylene as solidification agent for low-level waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Colombo, P.

    1986-09-01

    A polyethylene solidification process, using an extrusion system, has been developed for the immobilization of dry wastes resulting from volume reduction technologies. Ease of processibility and high packing efficiencies were obtained through the use of low-density polyethylene (0.917 to 0.924 g/cm 3 ) with melt indices from 2.0 to 55.0 g/10 min. Maximum waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash and 65 wt % ion exchnge were obtained. A series of tsts were conducted to assess the acceptability of polyethylene waste forms to meet the requirements of 10 CFR 61. Based on test results and process control considerations, optimal waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash and 30 wt % ion exchange resins are recommended

  20. Performance of asphalt mixture incorporating recycled waste

    Science.gov (United States)

    Hamid, Nor Baizura; Abdullah, Mohd Ezree; Sanik, Mohd Erwan; Mokhtar, Mardiha; Kaamin, Masiri; Raduan, Rasyidah; Ramli, Mohd Zakwan

    2017-12-01

    Nowadays, the amount of premix waste was increased every year, especially at the batching plants. Normally, the waste materials will be discarded without doing any innovative and effective research about those materials. This situation has become one of the global concerns due to the increasing number of premix waste produced every year. Therefore, the aim of this study is to evaluate the performance of hot mix asphalt (HMA) using premix waste on improving asphalt mixture fatigue behaviour. The method used in this study was Superpave mix design method. The sample conducted in this study were 0%, 10%, 20%, 30%, and 100% of premix waste respectively. For a binder test, the laboratory test conducted were penetration test, softening test and thin film oven test while for the performance test were resilient modulus test and indirect tensile fatigue test. From the laboratory test, the resilient modulus test was conducted with two different temperature which was 25°C and 40°C. The result from that test was 20% of premix waste had higher resilient modulus at that two different temperatures compared to another samples. From that test also shown that the sample at the lower temperature which was 25°C has higher resilient modulus compared to the temperature of 40°C. Indirect tensile fatigue test showed that the 30% of premix waste sample was suitable for the modified asphalt mixture with referring to the maximum deformation and strain for comparison control, 10%,20%, and 100% of premix waste samples. So, it can be concluded that premix waste inhibits great potential as road construction material and suitable for repeated traffic loading.

  1. Monitoring of organic loads at waste water treatment plant with due consideration of factual necessity, technical feasibility and statutory requirements; Erfassung der organischen Belastung bei Abwasserreinigungsanlagen unter Beachtung der fachlichen Notwendigkeit, der technischen Moeglichkeiten und der gesetzlichen Auflagen

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, P. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft

    1999-07-01

    Between the statutory requirement and factual necessity for monitoring organic loads in waste water discharged to municipal and industrial waste water treatment plant and effluents from these there are substantial discrepancies. The paper points out the different approaches and gives recommendations on how to proceed in the future. At plant with stable nitrification, self and external monitoring for BOD{sub 5} can be distinctly reduced without fear of impaired process transparency or water quality. Monitoring organic loads online is little expedient technically, especially where effluent from municipal sewage treatment plants is concerned. But in the industrial sector there exist the most diverse applications with a view to carbon elimination. (orig.) [German] Zwischen den gesetzlichen Anforderungen und der fachlichen Notwendigkeit bei der Erfassung der organischen Belastung im Zu- und Ablauf von kommunalen und industriellen Klaeranlagen bestehen erhebliche Diskrepanzen. In diesem Beitrag werden die unterschiedlichen Ansaetze aufgezeigt und Empfehlungen fuer die zukuenftige Vorgehensweise gegeben. Bei Anlagen mit stabiler Nitrifikation ist die Selbst- wie Fremdueberwachung bezueglich BSB{sub 5} deutlich zu reduzieren, ohne dass Einbussen fuer Prozesstransparenz und Gewaesserqualitaet zu erwarten sind. Die online-Ueberwachung der organischen Belastung ist insbesondere bei Ablaeufen in kommunalen Klaeranlagen fachlich wenig sinnvoll, im Bereich der industriellen Abwasserreinigung ergeben sich dafuer bei dem Reinigungsziel der Kohlenstoffelimination dagegen verschiedenste Anwendungsmoeglichkeiten. (orig.)

  2. The role of frit in nuclear waste vitrification

    International Nuclear Information System (INIS)

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.; Hrma, P.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202) and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant

  3. Aplicação do método da carga máxima total diária (CMTD para a amônia no Rio Atibaia, região de Campinas/Paulínia - SP Application of ammonia total maximum daily load (TMDL to Atibaia River, Campinas/Paulínia region - São Paulo state

    Directory of Open Access Journals (Sweden)

    Gilberto Silvério da Silva

    2007-06-01

    Full Text Available Neste estudo foram avaliadas a capacidade de suporte e o estado de degradação do Rio Atibaia, considerando a ameaça para a vida aquática pela presença da Amônia, a qual representa um dos principais riscos às comunidades aquáticas no Rio Atibaia. Com este objetivo foi aplicado o método da Carga Máxima Total Diária (CMTD, da Agência de Proteção Ambiental dos Estados Unidos (EPA. Os resultados revelaram que as cargas de Amônia aumentavam progressivamente ao longo do Rio Atibaia, principalmente devido às fontes pontuais. As cargas de Amônia diárias assumiram valores de 30 a 5000 kg NH3. A capacidade de suporte das águas Rio Atibaia, para proteger a vida aquática contra os efeitos tóxicos da Amônia, tem sido violadas em trechos próximos à sua foz. A degradação dessas águas foi mais intensa na estação seca. Este trabalho mostrou que o esgoto doméstico não-tratado de uma população aproximada de 250 mil habitantes da cidade de Campinas, via Ribeirão Anhumas, é a principal fonte de Amônia na bacia do Rio Atibaia, apesar do grande número de indústrias ali presentes.This study evaluated the tolerance capacity and the impairment state of the Atibaia River, considering the threat to aquatic life by the presence of Ammonia, which represents one of the main risks to the aquatic communities in the Atibaia River. With this aim, the method Total Maximum Daily Load (TMDL, from the United States Environmental Protection Agency (EPA, was applied. The results revealed that the Ammonia loads increased progressively through the Atibaia River, especially due to the point sources. The daily Ammonia loads assumed values that ranged from 30 to 5000 kg NH3. The tolerance capacity of the waters of the Atibaia River, to protect aquatic life against the toxic effects of the Ammonia, has been violated in reaches near its mouth. The impairment of these waters was more intense during the dry season. This study showed that the domestic sewer

  4. Thermoelastic/plastic analysis of waste-container sleeve. II. Influence of large displacements on sleeve loading. Technical memorandum report RSI-0017

    International Nuclear Information System (INIS)

    Pariseau, W.G.

    1975-01-01

    Modification of the thermoelastic/plastic finite element program to account for large displacements possibly associated with the development of an extensive plastic zone about a radioactive waste container emplaced in a typical repository room (SALT-4/T model) has been completed. Comparisons of radial stresses acting on the waste container and borehole wall displacements computed by the modified and conventional analyses techniques reveal little difference between the two sets of results over a 10 year heating period for salt strengths 25 percent of original values. Because no significant differences in results arise even under these exaggerated conditions, the more costly large displacement option need be used only sparingly as an occasional control check on the conventional procedure. As a consequence, economy of computer run time can be maintained without sacrifice of accuracy

  5. Solidification of ion exchange resin wastes

    International Nuclear Information System (INIS)

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of 137 Cs, 85 Sr, and 60 Co from resins modified in portland type III and high alumina cements. The cumulative 137 Cs fraction release was at least an order of magnitude greater than that of either 85 Sr or 60 Co. Release rates of 137 Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. 137 Cs, 85 Sr, and 60 Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement

  6. Plastic limit loads for cylindrical shell intersections under combined loading

    International Nuclear Information System (INIS)

    Skopinsky, V.N.; Berkov, N.A.; Vogov, R.A.

    2015-01-01

    In this research, applied methods of nonlinear analysis and results of determining the plastic limit loads for shell intersection configurations under combined internal pressure, in-plane moment and out-plane moment loadings are presented. The numerical analysis of shell intersections is performed using the finite element method, geometrically nonlinear shell theory in quadratic approximation and plasticity theory. For determining the load parameter of proportional combined loading, the developed maximum criterion of rate of change of relative plastic work is employed. The graphical results for model of cylindrical shell intersection under different two-parameter combined loadings (as generalized plastic limit load curves) and three-parameter combined loading (as generalized plastic limit load surface) are presented on the assumption that the internal pressure, in-plane moment and out-plane moment loads were applied in a proportional manner. - Highlights: • This paper presents nonlinear two-dimensional FE analysis for shell intersections. • Determining the plastic limit loads under combined loading is considered. • Developed maximum criterion of rate of change of relative plastic work is employed. • Plastic deformation mechanism in shell intersections is discussed. • Results for generalized plastic limit load curves of branch intersection are presented

  7. Characterisation of cemented/bituminized LAW and MAW waste products

    International Nuclear Information System (INIS)

    Vejmelka, P.; Johnsen, P.; Kluger, W.; Koester, R.

    1987-01-01

    In the context of work for characterising low and medium activity waste products, investigations were carried out to determine the release of radioactivity from binding waste in given accidents, such as mechanical and thermal loading for the operating phase of a final store. The effects of mechanical loads on MAW cement products and the effects of thermal laods on MAW cement and MAW bitumen products were examined. The release of fine dust reaching the lungs, with a particle size of ≤10 μm from a 200 litre roller seam cement binder with a maximum mechanical load of 3x10 5 Nm covering the accident case is about 1.5 g and therefore corresponds to ≅ 10 -4 % of the total radio-activity inventory for homogeneous products. With thermal loading (60 minute oil fire, 800 0 C) ≅ 10 -3 % of the radioactivity inventory is released via the release of water from the waste binder. The activity release of MAW bitumen products containing NaNO 3 (175 litre drum) with thermal load is considerably higher, as due to the NaNO 3 content of the products, after an induction period of about 20 minutes there is an exothermal reaction between the bitumen and the NaNO 3 , which leads to burning of the bitumen with considerable aerosol formation. The Na losses are about 32% and the Pu losses, derived from the results of laboratory experiments with samples containing Eu and Pu and samples containing Eu on the original size, are only 15% maximum, even with complete burn up. It was shown for all the investigations with samples of the original size that the effects of the load cases considered can be reduced or completely avoided by additional packing (concrete shielding). (orig./RB) [de

  8. Treatment strategies for transuranic wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Swanson, J.L.; Allen, R.P.; Yasutake, K.M.

    1986-01-01

    This paper presents an analysis of treatment options or strategies for transuranic wastes expected to be generated at a commercial nuclear fuel reprocessing plant. Six potential options were analyzed, ranging from no treatment to maximum volume reduction and high quality waste forms. Economics for the total management of these wastes (treatment, transportation, disposal) indicate life-cycle savings for extensive treatment are as high as $1.7 billion for 70,000 MTU. Evaluations of the waste processing and waste forms support the selection of a number of the extensive waste treatments. It is concluded that there are significant incentives for extensive treatment of transuranic wastes

  9. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  10. Photocatalytic Desulfurization of Waste Tire Pyrolysis Oil

    Directory of Open Access Journals (Sweden)

    Napida Hinchiranan

    2011-11-01

    Full Text Available Waste tire pyrolysis oil has high potential to replace conventional fossil liquid fuels due to its high calorific heating value. However, the large amounts of sulfurous compounds in this oil hinders its application. Thus, the aim of this research was to investigate the possibility to apply the photo-assisted oxidation catalyzed by titanium dioxide (TiO2, Degussa P-25 to partially remove sulfurous compounds in the waste tire pyrolysis oil under milder reaction conditions without hydrogen consumption. A waste tire pyrolysis oil with 0.84% (w/w of sulfurous content containing suspended TiO2 was irradiated by using a high-pressure mercury lamp for 7 h. The oxidized sulfur compounds were then migrated into the solvent-extraction phase. A maximum % sulfur removal of 43.6% was achieved when 7 g/L of TiO2 was loaded into a 1/4 (v/v mixture of pyrolysis waste tire oil/acetonitrile at 50 °C in the presence of air. Chromatographic analysis confirmed that the photo-oxidized sulfurous compounds presented in the waste tire pyrolysis oil had higher polarity, which were readily dissolved and separated in distilled water. The properties of the photoxidized product were also reported and compared to those of crude oil.

  11. Carga máxima de fósforo admissível ao reservatório Piraquara II, uma aplicação do processo TMDL Maximum allowable phosphorus load in the Piraquara II reservoir, a TMDL process application

    Directory of Open Access Journals (Sweden)

    Simone Bittencourt

    2006-06-01

    Full Text Available Para implementação e operacionalização da política brasileira de recursos hídricos, é imprescindível o uso de ferramentas de planejamento que considerem o efeito de todas as atividades ou processos que causam ou contribuem para a degradação da qualidade de um corpo d'água. Neste sentido, aplicou-se o processo TMDL (total maximum daily load, desenvolvido pela Agência de Proteção Ambiental dos Estados Unidos (EPA, para o P, na área de drenagem de contribuição ao futuro reservatório Piraquara II, bacia hidrográfica do rio Piraquara, Paraná. O processo TMDL determina a quantidade máxima de cargas de um poluente que um corpo d'água pode receber sem violar os padrões estabelecidos de qualidade da água e aloca cargas deste poluente entre fontes de poluição pontuais e difusas. No presente estudo, utilizou-se o método TMDL, com o objetivo de demonstrar ser ele uma ferramenta útil no processo de gestão dos recursos hídricos. Simularam-se cenários de uso do solo, por meio de modelagem matemática, até obter-se uma concentração de P total no reservatório abaixo da faixa limite para ocorrência de eutrofização, de 0,025 a 0,10 mg L-1, estabelecida no estudo. Realizou-se uma simulação de uso atual do solo, visando prever a condição inicial de qualidade da água no corpo d'água, na qual a concentração de P total no reservatório resultante não atendeu ao padrão estabelecido. Procedeu-se a uma segunda simulação com adoção das medidas de controle, recomposição de mata ciliar e plantio direto, para reduzir a exportação de carga de P total da bacia. Obteve-se uma melhoria na qualidade da água do reservatório, indicando que as medidas adotadas foram suficientes para atingir o padrão estabelecido, o que demonstra a aplicabilidade do método.For the implementation and operation of the Brazilian Federal law on water resources of 1997 it is indispensable to use planning tools that take into account the effect of

  12. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  13. Load Balancing in Hypergraphs

    Science.gov (United States)

    Delgosha, Payam; Anantharam, Venkat

    2018-03-01

    Consider a simple locally finite hypergraph on a countable vertex set, where each edge represents one unit of load which should be distributed among the vertices defining the edge. An allocation of load is called balanced if load cannot be moved from a vertex to another that is carrying less load. We analyze the properties of balanced allocations of load. We extend the concept of balancedness from finite hypergraphs to their local weak limits in the sense of Benjamini and Schramm (Electron J Probab 6(23):13, 2001) and Aldous and Steele (in: Probability on discrete structures. Springer, Berlin, pp 1-72, 2004). To do this, we define a notion of unimodularity for hypergraphs which could be considered an extension of unimodularity in graphs. We give a variational formula for the balanced load distribution and, in particular, we characterize it in the special case of unimodular hypergraph Galton-Watson processes. Moreover, we prove the convergence of the maximum load under some conditions. Our work is an extension to hypergraphs of Anantharam and Salez (Ann Appl Probab 26(1):305-327, 2016), which considered load balancing in graphs, and is aimed at more comprehensively resolving conjectures of Hajek (IEEE Trans Inf Theory 36(6):1398-1414, 1990).

  14. Contribution to the study of maximum levels for liquid radioactive waste disposal into continental and sea water. Treatment of some typical samples; Contribution a l'etude des niveaux limites relatifs a des rejets d'effluents radioactifs liquides dans les eaux continentales et oceaniques. Traitement de quelques exemples types

    Energy Technology Data Exchange (ETDEWEB)

    Bittel, R; Mancel, J [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires, departement de la protection sanitaire

    1968-10-01

    The most important carriers of radioactive contamination of man are the whole of foodstuffs and not only ingested water or inhaled air. That is the reason why, in accordance with the spirit of the recent recommendations of the ICRP, it is proposed to substitute the idea of maximum levels of contamination of water to the MPC. In the case of aquatic food chains (aquatic organisms and irrigated foodstuffs), the knowledge of the ingested quantities and of the concentration factors food/water permit to determinate these maximum levels, or to find out a linear relation between the maximum levels in the case of two primary carriers of contamination (continental and sea waters). The notion of critical food-consumption, critical radioelements and formula of waste disposal are considered in the same way, taking care to attach the greatest possible importance to local situations. (authors) [French] Les vecteurs essentiels de la contamination radioactive de l'homme sont les aliments dans leur ensemble, et non seulement l'eau ingeree ou l'air inhale. C'est pourquoi, en accord avec l'esprit des recentes recommandations de la C.I.P.R., il est propose de substituer aux CMA la notion de niveaux limites de contamination des eaux. Dans le cas des chaines alimentaires aquatiques (organismes aquatiques et aliments irrigues), la connaissance des quantites ingerees et celle des facteurs de concentration aliments/eau permettent de determiner ces niveaux limites dans le cas de deux vecteurs primaires de contamination (eaux continentales et eaux oceaniques). Les notions de regime alimentaire critique, de radioelement critique et de formule de rejets sont envisagees, dans le meme esprit, avec le souci de tenir compte le plus possible des situations locales. (auteurs)

  15. Aqueous radioactive waste bituminization

    International Nuclear Information System (INIS)

    Williamson, A.S.

    1980-08-01

    The bituminzation of decontamination and ion exchange resin stripping wastes with four grades of asphalt was investigated to determine the effects of asphalt type on the properties of the final products. All waste forms deformed readily under light loads indicating they would flow if not restrained. It was observed in all cases that product leaching rates increased as the hardness of the asphalt used to treat the waste increased. If bituminization is adopted for any Ontario Hydro aqueous radioactive wastes they should be treated with soft asphalt to obtain optimum leaching resistance and mechanical stability during interim storage should be provided by a corrosion resistant container

  16. Toxicity measurement in a waste water treatment plants using active sludge aerobic biological treatment. Medida de la toxicidad en una estacion depuradora de aguas residuales con tratamiento biologico aerobio por fangos activos

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J.E. (Surcis, Guadalajara (Spain))

    1994-01-01

    The need for reliability in the operation of waste water treatment plants is discussed. In aerobic biological treatments of whatever kind using active sludge, the bio toxicity can be determined by measuring the oxygen consumed in endogenous breathing. The difficulty lies in carrying out the bio toxicity test without effecting the concentration of the organic substrate of the wastes water. This is overcome by operating at maximum organic material load, thereby inducing maximun breathing. (Author)

  17. Amendment of the administrative skeleton provision for minimum requirements to be met by waste water discharged into bodies of water. Administrative skeleton provision on waste water of 25 November, 1992

    International Nuclear Information System (INIS)

    1994-01-01

    This provision applies to waste water to be discharged into bodies of water and whose pollution load stems mainly from the sectors indicated in appendices. Without prejudice to stricter requirements governing the execution of the Water Resources Act, the requirements to be met by the discharge of waste water, as indicated in appendices, are defined in accordance with section 7a, subsection 1, number 3 of the Water Resources Act. - The maximum concentrations indicated in appendices, for instance for waste water from brown coal briquetting plant, black coal treatment plant, petroleum refineries and flue gas scrubbers at combustion plant, relate to waste water in the discharge pipe of the waste water treatment plant. Contrary to technical rules that may apply in each instance, these concentrations must not be attained by dilution or mixing. (orig.) [de

  18. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs

  19. Treatment strategies for transuranic wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Swanson, J.L.; Ross, W.A.; Allen, R.P.; Yasutake, K.M.

    1986-01-01

    This paper presents an analysis of treatment options or strategies for transuranic wastes expected to be generated at a commercial nuclear fuel reprocessing plant. Six potential options were analyzed, ranging from no treatment to maximum volume reduction and high quality waste forms. Economics for the total management of these (treatment, transportation, disposal) indicate life-cycle savings for extensive treatment are as high as $1.7 billion for 70,000 MTU. Evaluations of the waste processing and waste forms support the selection of a number of the extensive waste treatments. It is concluded that there are significant incentives for extensive treatment of transuranic wastes

  20. Temperature distributions in a salt formation used for the ultimate disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Ploumen, P.

    1980-01-01

    In the Federal Republic of Germany the works on waste disposal is focussed on the utilization of a salt formation for ultimate disposal of radioactive wastes. Heat released from the high-level waste will be dissipated in the salt and the surrounding geologic formations. The occuring temperature distributions will be calculated with computer codes. A survey of the developed computer codes will be shown; the results for a selected example, taking into account the loading sequence of the waste, the mine ventilation as well as an air gap between the waste and the salt, will be discussed. Furthermore it will be shown that by varying the disposal parameters, the maximum salt temperature can be below any described value. (Auth.)

  1. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  2. Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations

    International Nuclear Information System (INIS)

    Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J.

    1991-12-01

    This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 x 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990

  3. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  4. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    Science.gov (United States)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste

  5. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    Science.gov (United States)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  6. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  7. Synthesis of Spongy-Like Mesoporous Hydroxyapatite from Raw Waste Eggshells for Enhanced Dissolution of Ibuprofen Loaded via Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Abdul-Rauf Ibrahim

    2015-04-01

    Full Text Available The use of cheaper and recyclable biomaterials (like eggshells to synthesize high purity hydroxyapatite (HAp with better properties (small particle size, large surface area and pore volume for applications (in environmental remediation, bone augmentation and replacement, and drug delivery systems is vital since high-purity synthetic calcium sources are expensive. In this work, pure and mesoporous HAp nanopowder with large pore volume (1.4 cm3/g and surface area (284.1 m2/g was produced from raw eggshells at room temperature using a simple two-step procedure. The control of precursor droplets could stabilize the pH value of the reaction solution, because of the size of the needle (of the syringe pump used for precursor additions leading to production of HAp with high surface area and pore size. The as-produced HAp revealed high ibuprofen (as a model drug loading (1.38 g/g HAp, enhanced dissolution and controllable release of the drug via solute-saturated supercritical carbon dioxide.

  8. Synthesis of Spongy-Like Mesoporous Hydroxyapatite from Raw Waste Eggshells for Enhanced Dissolution of Ibuprofen Loaded via Supercritical CO2

    Science.gov (United States)

    Ibrahim, Abdul-Rauf; Li, Xiangyun; Zhou, Yulan; Huang, Yan; Chen, Wenwen; Wang, Hongtao; Li, Jun

    2015-01-01

    The use of cheaper and recyclable biomaterials (like eggshells) to synthesize high purity hydroxyapatite (HAp) with better properties (small particle size, large surface area and pore volume) for applications (in environmental remediation, bone augmentation and replacement, and drug delivery systems) is vital since high-purity synthetic calcium sources are expensive. In this work, pure and mesoporous HAp nanopowder with large pore volume (1.4 cm3/g) and surface area (284.1 m2/g) was produced from raw eggshells at room temperature using a simple two-step procedure. The control of precursor droplets could stabilize the pH value of the reaction solution, because of the size of the needle (of the syringe pump used for precursor additions) leading to production of HAp with high surface area and pore size. The as-produced HAp revealed high ibuprofen (as a model drug) loading (1.38 g/g HAp), enhanced dissolution and controllable release of the drug via solute-saturated supercritical carbon dioxide. PMID:25860950

  9. Thermally induced motion of marine sediments resulting from disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Chavez, P.F.; Dawson, P.R.

    1981-01-01

    Coupled creep and heat transfer calculations have been performed to assess the sensitivity of heat load, viscosity, and canister density on the motion of waste canisters buried in marine sediments. Results indicate that no upward movement is predicted for heat loads remaining within the metallurgical and geochemical constraints placed on the temperature of sediments near the canister for the times analyzed. Upward movement of the canister is again not observed in calculations involving reasonable variations of the sediment viscosity and canister density. Maximum effective deviatoric stress levels due to thermally induced differential body forces are significantly less than the sediment's short term peak strength

  10. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  11. Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water.

    Science.gov (United States)

    Paudel, Sachin; Kang, Youngjun; Yoo, Yeong-Seok; Seo, Gyu Tae

    2017-03-01

    Two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophillic conditions (37°C) were studied. The aim of this study is to determine optimum Hydraulic Retention Time (HRT) of the two-stage anaerobic digester system for hydrogen and methane production. This paper also discusses the effect of OLR with change in HRT on the system. Four different HRTs of 48, 24, 12, 8h were monitored for acidogenic reactor, which provided OLR of 17.7, 34.8, 70.8, 106gVS/L·d respectively. Two HRTs of 15days and 20days were studied with OLR of 1.24 and 1.76gVS/L·d respectively in methanogenic reactor. Hydrogen production at higher OLR and shorter HRT seemed favorable 106gVS/L·d (8h) in acidogenic reactor system. In methanogenic reactor system HRT of 20day with OLR of 1.24gVS/L·d was found optimum in terms of methane production and organic removal. The result of this study illustrated the optimum HRT of 8h and 20days in acidogenic stage and methanogenic stage for maximum hydrogen and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    Science.gov (United States)

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  13. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  14. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  15. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  16. A portable storage maximum thermometer

    International Nuclear Information System (INIS)

    Fayart, Gerard.

    1976-01-01

    A clinical thermometer storing the voltage corresponding to the maximum temperature in an analog memory is described. End of the measurement is shown by a lamp switch out. The measurement time is shortened by means of a low thermal inertia platinum probe. This portable thermometer is fitted with cell test and calibration system [fr

  17. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  18. DEVELOPMENT OF A CAST STONE FORMULATION FOR HANFORD TANK WASTES

    International Nuclear Information System (INIS)

    COOKE; ATTERIDGE; AVILA

    2005-01-01

    The U.S. Department of Energy (DOE) Hanford Site, the location of plutonium production for the US. nuclear weapons program, is the focal point of a broad range of waste remediation efforts. This presentation will describe a test program to develop a ''cast stoney'' formulation for the stabilization of certain Hanford tank wastes (Lockrem 2005). The program consisted of (1) a short series of tests with nonradioactive simulant to select preferred dry reagent formulations (DRF) and determine allowable liquid addition levels, (2) waste form performance testing on cast stone made from the DRF formulations using low-activity waste (LAW) simulant, (3) waste form performance testing on cast stone made from the preferred DRF using LAW, (4) waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant, and (5) technetium ''getter'' testing with cast stone made with LAW simulant and with LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of waste form performance testing. The nitrate leachability index results are presented along with data on other performance criteria The results of this study led to the selection of a specific DRF. The key attributes of the DRF/waste loading combination considered were presence of ''bleed'' (or free) water, volume change on curing, compressive strength, maximum curing temperature, toxicity characteristic leaching testing, ANSYANS-16.1 (Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure) leachability, and hydraulic conductivity. Important considerations included that the monoliths could be produced using readily available, low-cost reagents. The key results from each of these testing and evaluation activity categories will be summarized

  19. The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    Renjun Ruan

    2017-02-01

    Full Text Available In this study, micro-oxygen was integrated into a rusty scrap iron (RSI-loaded anaerobic digester. Under an optimal RSI dosage of 20 g/L, increasing O2 levels were added stepwise in seven stages in a semi-continuous experiment. Results showed the average methane yield was 306 mL/g COD (chemical oxygen demand, and the hydrogen sulphide (H2S concentration was 1933 ppmv with RSI addition. O2 addition induced the microbial oxidation of sulphide by stimulating sulfur-oxidizing bacteria and chemical corrosion of iron, which promoted the generation of FeS and Fe2S3. In the 6th phase of the semi-continuous test, deep desulfurization was achieved without negatively impacting system performance. Average methane yield was 301.1 mL/g COD, and H2S concentration was 75 ppmv. Sulfur mass balance was described, with 84.0%, 11.90% and 0.21% of sulfur present in solid, liquid and gaseous phases, respectively. The Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE analysis revealed that RSI addition could enrich the diversity of hydrogenotrophic methanogens and iron-reducing bacteria to benefit methanogenesis and organic mineralization, and impoverish the methanotroph (Methylocella silvestris to reduce the consumption of methane. Micro-oxygen supplementation could enhance the diversity of iron-oxidizing bacteria arising from the improvement of Fe(II release rate and enrich the sulphur-oxidising bacteria to achieved desulfurization. These results demonstrated that RSI addition in combination with micro-oxygenation represents a promising method for simultaneously controlling biogas H2S concentration and improving digestion performance.

  20. On Maximum Entropy and Inference

    Directory of Open Access Journals (Sweden)

    Luigi Gresele

    2017-11-01

    Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.

  1. Maximum Water Hammer Sensitivity Analysis

    OpenAIRE

    Jalil Emadi; Abbas Solemani

    2011-01-01

    Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of ...

  2. Maximum Gene-Support Tree

    Directory of Open Access Journals (Sweden)

    Yunfeng Shan

    2008-01-01

    Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the finding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reflects the phylogenetic relationship among species in comparison.

  3. LCLS Maximum Credible Beam Power

    International Nuclear Information System (INIS)

    Clendenin, J.

    2005-01-01

    The maximum credible beam power is defined as the highest credible average beam power that the accelerator can deliver to the point in question, given the laws of physics, the beam line design, and assuming all protection devices have failed. For a new accelerator project, the official maximum credible beam power is determined by project staff in consultation with the Radiation Physics Department, after examining the arguments and evidence presented by the appropriate accelerator physicist(s) and beam line engineers. The definitive parameter becomes part of the project's safety envelope. This technical note will first review the studies that were done for the Gun Test Facility (GTF) at SSRL, where a photoinjector similar to the one proposed for the LCLS is being tested. In Section 3 the maximum charge out of the gun for a single rf pulse is calculated. In Section 4, PARMELA simulations are used to track the beam from the gun to the end of the photoinjector. Finally in Section 5 the beam through the matching section and injected into Linac-1 is discussed

  4. Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.W. E-mail: cheol@umr.edu; Ray, C.S.; Zhu, D.; Day, D.E.; Gombert, D.; Aloy, A.; Mogus-Milankovic, A.; Karabulut, M

    2003-11-01

    A simulated sodium bearing waste (SBW) was successfully vitrified in iron phosphate glasses (IPG) at a maximum waste loading of 40 wt% using conventional and cold crucible induction melting (CCIM) techniques. No sulfate segregation or crystalline phases were detectable in the IPG when examined by SEM and XRD. The IPG wasteforms containing 40 wt% SBW satisfy current DOE requirements for aqueous chemical durability as evaluated from their bulk dissolution rate (D{sub R}), product consistency test, and vapor hydration test. The fluid IPG wasteforms can be melted at a relatively low temperature (1000 deg. C) and for short times (<6 h). These properties combined with a significantly higher waste loading, and the feasibility of CCIM melting offer considerable savings in time, energy, and cost for vitrifying the SBW stored at the Idaho National Engineering and Environmental Laboratory in iron phosphate glasses.

  5. Nuclear hazardous waste cost control management

    International Nuclear Information System (INIS)

    Selg, R.A.

    1991-01-01

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes

  6. Application of a DC–DC boost converter with maximum power point tracking for low power thermoelectric generators

    International Nuclear Information System (INIS)

    Mamur, Hayati; Ahiska, Rasit

    2015-01-01

    Highlights: • Charges with direct and MPPT conditions have been compared. • Perturb and observation method has been practically tested on a new TEG. • Matched load condition has been experimentally investigated. • To increase the efficiency of a TEG, the charge with MPPT should be used. • The charge with MPPT provides twice-fold increase in efficiency. - Abstract: Thermoelectric generators (TEGs) directly generate electrical power from the geothermal/waste heat as well as contribute to efficient usage of the energy. TEGs cannot be operated at full capacity without additional electronic equipments, since the internal resistances of TEGs are not equal to the device resistances connected across TEGs. For this reason, in this paper, the application of a DC–DC boost converter with maximum power point tracking (MPPT) based on microcontroller embedded in perturb and observe (P&O) algorithm has been proposed to obtain maximum power from a newly designed portable TEG (pTEG) in a real TEG system. The matched condition load for the pTEG has been experimentally investigated. Firstly, the pTEG has been directly charged to the battery pack, secondly it has been charged through the improved convertor with MPPT. In the first one, the pTEG operated with less efficiency than half of its full capacity, whereas, in the second, the pTEG operated efficiency near its full capacity

  7. Energetics of load carrying in Nepalese porters.

    Science.gov (United States)

    Bastien, Guillaume J; Schepens, Bénédicte; Willems, Patrick A; Heglund, Norman C

    2005-06-17

    Nepalese porters routinely carry head-supported loads equal to 100 to 200% of their body weight (Mb) for many days up and down steep mountain footpaths at high altitudes. Previous studies have shown that African women carry head-supported loads of up to 60% of their Mb far more economically than army recruits carrying equivalent loads in backpacks. Here we show that Nepalese porters carry heavier loads even more economically than African women. Female Nepalese porters, for example, carry on average loads that are 10% of their Mb heavier than the maximum loads carried by the African women, yet do so at a 25% smaller metabolic cost.

  8. Wastes options

    International Nuclear Information System (INIS)

    Maes, M.

    1992-01-01

    After a description of the EEC environmental policy, some wastes families are described: bio-contaminant wastes (municipal and industrial), hospitals wastes, toxic wastes in dispersed quantities, nuclear wastes (radioactive and thermal), plastics compounds wastes, volatiles organic compounds, hydrocarbons and used solvents. Sources, quantities and treatments are given. (A.B.). refs., figs., tabs

  9. Generic maximum likely scale selection

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2007-01-01

    in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based......The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...

  10. Beam loading

    OpenAIRE

    Boussard, Daniel

    1987-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superco...

  11. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  12. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  13. TRU waste transport economics: an overview

    International Nuclear Information System (INIS)

    Edling, D.A.; Hopkins, D.R.; Walls, H.C.

    1978-01-01

    There are currently three predominant methods used to transport transuranium contaminated waste. These are: (1) ATMX Railcars--500 and 600 series, (2) Super Tigers, and (3) Poly Panthers. Both the ATMX-500 and 600 series railcars are massive doubly walled steel railcars which provide the equivalent protection of a Type B package. In ATMX-600 the rapid loading and unloading of the 9 x 9 x 50 feet cargo space is achieved by prepackaging the TRU waste into standard 20-foot steel cargo containers. The ATMX-500 railcars are divided into three inside bays, having dimensions of 16 (l) x 9.25 (w) x 6.25 (h) feet. A typical load consists of 128 55-gallon drums (however, space can accommodate 192 drums), 12 fiberglass boxes (4 x 4 x 7), or a combination of palletized drums and boxes. A Super Tiger is an overpack authorized for Type A, Type B, and large quantities of radioactive materials having outside dimensions of 8 x 8 x 20 feet. Maximum payload is approximately 28,700 lb with a gross weight of 45,000 lb. The primary factors influencing transport costs are examined including freight rates of transport mode, effective cargo (weight and volume) management, effective utilization of available space (package design), transport mileage, and rental fees or initial capital outlay. Miscellaneous factors are also examined

  14. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  15. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Schweiger, M.J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-01-01

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at ∼1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at ∼1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  16. Solar maximum mission panel jettison analysis remote manipulator system

    Science.gov (United States)

    Bauer, R. B.

    1980-01-01

    A study is presented of the development of the Remote Manipulator System (RMS) configurations for jettison of the solar panels on the Solar Maximum Mission/Multimission Satellite. A valid RMS maneuver between jettison configurations was developed. Arm and longeron loads and effector excursions due to the solar panel jettison were determined to see if they were within acceptable limits. These loads and end effector excursions were analyzed under two RMS modes, servos active in position hold submode, and in the brakes on mode.

  17. Radiological and chemical source terms for Solid Waste Operations Complex

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1994-01-01

    The purpose of this document is to describe the radiological and chemical source terms for the major projects of the Solid Waste Operations Complex (SWOC), including Project W-112, Project W-133 and Project W-100 (WRAP 2A). For purposes of this document, the term ''source term'' means the design basis inventory. All of the SWOC source terms involve the estimation of the radiological and chemical contents of various waste packages from different waste streams, and the inventories of these packages within facilities or within a scope of operations. The composition of some of the waste is not known precisely; consequently, conservative assumptions were made to ensure that the source term represents a bounding case (i.e., it is expected that the source term would not be exceeded). As better information is obtained on the radiological and chemical contents of waste packages and more accurate facility specific models are developed, this document should be revised as appropriate. Radiological source terms are needed to perform shielding and external dose calculations, to estimate routine airborne releases, to perform release calculations and dose estimates for safety documentation, to calculate the maximum possible fire loss and specific source terms for individual fire areas, etc. Chemical source terms (i.e., inventories of combustible, flammable, explosive or hazardous chemicals) are used to determine combustible loading, fire protection requirements, personnel exposures to hazardous chemicals from routine and accident conditions, and a wide variety of other safety and environmental requirements

  18. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  19. Impact of advanced fuel cycle options on waste management policies

    International Nuclear Information System (INIS)

    Gordelier, Stan; Cavedon, Jean-Marc

    2006-01-01

    OECD/NEA has performed a study on the impact of advanced fuel cycle options on waste management policies with 33 experts from 12 member countries, 1 non-member country and 2 international organizations. The study extends a series of previous ones on partitioning and transmutation (P and T) issues, focusing on the performance assessments for repositories of high-level waste (HLW) arising from advanced fuel cycles. This study covers a broader spectrum than previous studies, from present industrial practice to fully closed cycles via partially closed cycles (in terms of transuranic elements); 9 fuel cycle schemes and 4 variants. Elements of fuel cycles are considered primarily as sources of waste, the internal mass flows of each scheme being kept for the sake of mass conservation. The compositions, activities and heat loads of all waste flows are also tracked. Their impact is finally assessed on the waste repository concepts. The study result confirms the findings from the previous NEA studies on P and T on maximal reduction of the waste source term and maximal use of uranium resources. In advanced fuel cycle schemes the activity of the waste is reduced by burning first plutonium and then minor actinides and also the uranium consumption is reduced, as the fraction of fast reactors in the park is increased to 100%. The result of the repository performance assessments, analysing the effect of different HLW isotopic composition on repository performance and on repository capacity, shows that the maximum dose released to biosphere at any time in normal conditions remains, for all schemes and for all the repository concepts examined, well below accepted radiation protection thresholds. The major impact is on the detailed concept of the repositories, through heat load and waste volume. Advanced fuel cycles could allow a repository to cover waste produced from 5 to 20 times more electricity generation than PWR once-through cycle. Given the flexibility of the advanced fuel

  20. System for memorizing maximum values

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1992-08-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  1. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  2. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  3. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  4. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  5. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  6. Multipurpose optimization models for high level waste vitrification

    International Nuclear Information System (INIS)

    Hoza, M.

    1994-08-01

    Optimal Waste Loading (OWL) models have been developed as multipurpose tools for high-level waste studies for the Tank Waste Remediation Program at Hanford. Using nonlinear programming techniques, these models maximize the waste loading of the vitrified waste and optimize the glass formers composition such that the glass produced has the appropriate properties within the melter, and the resultant vitrified waste form meets the requirements for disposal. The OWL model can be used for a single waste stream or for blended streams. The models can determine optimal continuous blends or optimal discrete blends of a number of different wastes. The OWL models have been used to identify the most restrictive constraints, to evaluate prospective waste pretreatment methods, to formulate and evaluate blending strategies, and to determine the impacts of variability in the wastes. The OWL models will be used to aid in the design of frits and the maximize the waste in the glass for High-Level Waste (HLW) vitrification

  7. Low-level waste management - suggested solutions for problem wastes

    International Nuclear Information System (INIS)

    Pechin, W.H.; Armstrong, K.M.; Colombo, P.

    1984-01-01

    Problem wastes are those wastes which are difficult or require unusual expense to place into a waste form acceptable under the requirements of 10 CFR 61 or the disposal site operators. Brookhaven National Laboratory has been investigating the use of various solidification agents as part of the DOE Low-Level Waste Management Program for several years. Two of the leading problem wastes are ion exchange resins and organic liquids. Ion exchange resins can be solidified in Portland cement up to about 25 wt % resin, but waste forms loaded to this degree exhibit significantly reduced compressive strength and may disintegrate when immersed in water. Ion exchange resins can also be incorporated into organic agents. Mound Laboratory has been investigating the use of a joule-heated glass melter as a means of disposing of ion exchange resins and organic liquids in addition to other combustible wastes

  8. 49 CFR 237.71 - Determination of bridge load capacities.

    Science.gov (United States)

    2010-10-01

    ... capacity shall be determined. (g) Bridge load capacity may be expressed in terms of numerical values related to a standard system of bridge loads, but shall in any case be stated in terms of weight and...) Bridge load capacity may be expressed in terms of both normal and maximum load conditions. Operation of...

  9. Load flow analysis using decoupled fuzzy load flow under critical ...

    African Journals Online (AJOL)

    user

    3.1 Maximum range selection of input and output variables: ..... Wong K. P., Li A., and Law M.Y., “ Advanced Constrained Genetic Algorithm Load Flow Method”, IEE Proc. ... Dr. Parimal Acharjee passed B.E.E. from North Bengal University ...

  10. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  11. Waste statistics 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-07

    The 2004 reporting to the ISAG comprises 394 plants owned by 256 enterprises. In 2003, reports covered 403 plants owned by 273 enterprises. Waste generation in 2004 is compared to targets for 2008 in the government's Waste Strategy 2005-2008. The following summarises waste generation in 2004: 1) In 2004, total reported waste arisings amounted to 13,359,000 tonnes, which is 745,000 tonnes, or 6 per cent, more than in 2003. 2) If amounts of residues from coal-fired power plants are excluded from statistics, waste arisings in 2004 were 12,179,000 tonnes, which is a 9 per cent increase from 2003. 3) If amounts of residues from coal-fired power plants and waste from the building and construction sector are excluded from statistics, total waste generation in 2004 amounted to 7,684,000 tonnes, which is 328,000 tonnes, or 4 per cent, more than in 2002. In other words, there has been an increase in total waste arisings, if residues and waste from building and construction are excluded. Waste from the building and construction sector is more sensitive to economic change than most other waste. 4) The total rate of recycling was 65 per cent. The 2008 target for recycling is 65 per cent. The rate of recycling in 2003 was also 65 per cent. 5) The total amount of waste led to incineration amounted to 26 per cent, plus an additional 1 per cent left in temporary storage to be incinerated at a later time. The 2008 target for incineration is 26 per cent. These are the same percentage figures as applied to incineration and storage in 2003. 6) The total amount of waste led to landfills amounted to 8 per cent, which is one percentage point better than the overall landfill target of a maximum of 9 per cent landfilling in 2008. Also in 2003, 8 per cent of the waste was landfilled. 7) The targets for treatment of waste from individual sectors are still not being met: too little waste from households and the service sector is being recycled, and too much waste from industry is being

  12. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  13. Beam loading

    International Nuclear Information System (INIS)

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed. (author)

  14. Heavy-Load Lifting

    DEFF Research Database (Denmark)

    Bloomquist, Kira; Oturai, Peter; Steele, Megan L

    2018-01-01

    of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal....... repetition maximum (RM), two sets of 15-20 repetitions) and heavy-load (85-90% 1RM, three sets of 5-8 repetition) upper-extremity resistance exercise separated by a one-week wash-out period. Swelling was determined by bioimpedance spectroscopy and dual energy x-ray absorptiometry, with breast cancer......-related lymphedema symptoms (heaviness, swelling, pain, tightness) reported using a numeric rating scale (0-10). Order of low- versus heavy-load was randomized. All outcomes were assessed pre-, immediately post-, and 24- and 72-hours post-exercise. Generalized estimating equations were used to evaluate changes over...

  15. Plutonium Immobilization Can Loading Concepts

    International Nuclear Information System (INIS)

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.; Rogers, L.; Fiscus, J.; Dyches, G.

    1998-05-01

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item

  16. Waste statistics 2001

    International Nuclear Information System (INIS)

    2004-01-01

    Reports to the ISAG (Information System for Waste and Recycling) for 2001 cover 402 Danish waste treatment plants owned by 295 enterprises. The total waste generation in 2001 amounted to 12,768,000 tonnes, which is 2% less than in 2000. Reductions are primarily due to the fact that sludge for mineralization is included with a dry matter content of 20% compared to 1,5% in previous statistics. This means that sludge amounts have been reduced by 808,886 tonnes. The overall rate of recycling amounted to 63%, which is 1% less than the overall recycling target of 64% for 2004. Since sludge has a high recycling rate, the reduction in sludge amounts of 808,886 tonnes has also caused the total recycling rate to fall. Waste amounts incinerated accounted for 25%, which is 1% more than the overall target of 24% for incineration in 2004. Waste going to landfill amounted to 10%, which is better than the overall landfill target for 2004 of a maximum of 12% for landfilling. Targets for treatment of waste from the different sectors, however, are still not complied with, since too little waste from households and the service sector is recycled, and too much waste from industry is led to landfill. (BA)

  17. Waste statistics 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Reports to the ISAG (Information System for Waste and Recycling) for 2001 cover 402 Danish waste treatment plants owned by 295 enterprises. The total waste generation in 2001 amounted to 12,768,000 tonnes, which is 2% less than in 2000. Reductions are primarily due to the fact that sludge for mineralization is included with a dry matter content of 20% compared to 1,5% in previous statistics. This means that sludge amounts have been reduced by 808,886 tonnes. The overall rate of recycling amounted to 63%, which is 1% less than the overall recycling target of 64% for 2004. Since sludge has a high recycling rate, the reduction in sludge amounts of 808,886 tonnes has also caused the total recycling rate to fall. Waste amounts incinerated accounted for 25%, which is 1% more than the overall target of 24% for incineration in 2004. Waste going to landfill amounted to 10%, which is better than the overall landfill target for 2004 of a maximum of 12% for landfilling. Targets for treatment of waste from the different sectors, however, are still not complied with, since too little waste from households and the service sector is recycled, and too much waste from industry is led to landfill. (BA)

  18. FOUNDRY WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Borut Kosec

    2008-06-01

    Full Text Available Waste management in foundries is gaining a higher ecological and economical importance. Waste is becoming an increasingly traded product, where excellent profits can be made. Due to the cost reduction and successful business operation in companies, waste has to be regenerated and used again as a material to the maximum possible extent. Such research is long lasting and expensive and is a great challenge for companies. In the frame of our research, a total waste management case study for the Slovenian foundry Feniks was carried out. From the sustainable development point of view, waste management is most suitable, since it ensures the material utilization of waste, reduces the consumption of natural renewable or non-renewable resources and makes efficient production capacity utilization possible. Properly treated ecologically safe waste with a suitable physical characteristic, long-term existence, is a substitute for natural materials. Sand, dust, slag and other mineral waste from foundries are increasingly being used as materials in other industries. The foundry Feniks was awarded with certification of the environmental management system according to the standard SIST EN ISO 14001 and confirmed its environmental credentials.

  19. The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Singhabhandhu, Ampaitepin; Tezuka, Tetsuo [Energy Economics Laboratory, Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2010-06-15

    Energy generation by wastes is considered one method of waste management that has the benefit of energy recovery. From the waste-to-energy point of view, waste cooking oil, waste lubricating oil, and waste plastics have been considered good candidates for feedstocks for energy conversion due to their high heating values. Compared to the independent management of these three wastes, the idea of co-processing them in integration is expected to gain more benefit. The economies of scale and the synergy of co-processing these wastes results in higher quality and higher yield of the end products. In this study, we use cost-benefit analysis to evaluate the integrated management scenario of collecting the three wastes and converting them to energy. We report the total heat of combustion of pyrolytic oil at the maximum and minimum conversion rates, and conduct a sensitivity analysis in which the parameters of an increase of the electricity cost for operating the process and increase of the feedstock transportation cost are tested. We evaluate the effects of economy of scale in the case of integrated waste management. We compare four cases of waste-to-energy conversion with the business as usual (BAU) scenario, and our results show that the integrated co-processing of waste cooking oil, waste lubricating oil, and waste plastics is the most profitable from the viewpoints of energy yield and economics. (author)

  20. Maximum entropy and Bayesian methods

    International Nuclear Information System (INIS)

    Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.

    1992-01-01

    Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come

  1. Analytical methods of heat transfer compared with numerical methods as related to nuclear waste repositories

    International Nuclear Information System (INIS)

    Estrada-Gasca, C.A.

    1986-01-01

    Analytical methods were applied to the prediction of the far-field thermal impact of a nuclear waste repository. Specifically, the transformation of coordinates and the Kirchhoff transformation were used to solve one-dimensional nonlinear heat conduction problems. Calculations for the HLW and TRU nuclear waste with initial areal thermal loadings of 12 kW/acre and 0.7 kW/acre, respectively, are carried out for various models. Also, finite difference and finite element methods are applied. The last method is used to solve two-dimensional linear and nonlinear heat conduction problems. Results of the analysis are temperature distributions and temperature histories. Explicit analytical expressions of the maximum temperature rise as a function of the system parameters are presented. The theoretical approaches predict maximum temperature increases in the overburden with an error of 10%. When the finite solid one-dimensional NWR thermal problem is solved with generic salt and HLW thermal load as parameters, the maximum temperature rises predicted by the finite difference and finite element methods had maximum errors of 2.6 and 6.7%, respectively. In all the other cases the finite difference method also gave a smaller error than the finite element method

  2. Formulation of Forming Load in V-Bending

    Directory of Open Access Journals (Sweden)

    Koumura Yuki

    2016-01-01

    Full Text Available A novel method is described to calculate the forming load in V-bending by a press brake. The data of forming load are collected by FEM analysis. With an increase of the punch stroke in V-bending, the forming load increases gradually after the elastic limit, and then decreases after showing the maximum value. The proposal formulation to trace the variations in the forming load curve includes the calculating method of the load of the elastic limit, the maximum load in air bending and the variations of the forming load before/after the bending stroke of the maximum load. The calculated precision is confirmed by comparing with the measured load-stroke curves in V-bending with a press brake.

  3. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder

  4. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  5. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)

    2010-05-15

    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  6. Development of Waste Acceptance Criteria at 221-U Building: Initial Flow and Transport Scoping Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Zhang, Z. F.; Keller, Jason M.; Chen, Yousu

    2007-05-30

    This report documents numerical flow and transport simulations performed that establish initial waste acceptance criteria for the potential waste streams that may be safely sequestered in the 221-U Building and similar canyon structures. Specifically, simulations were executed to identify the maximum loading of contaminant mass (without respect to volume) that can be emplaced within the 221-U Building with no more than 1 pCi/m2 of contaminant migrating outside the structure within a 1,000 year time period. The initial scoping simulations were executed in one dimension to assess important processes, and then two dimensions to establish waste acceptance criteria. Two monolithic conditions were assessed: (1) a grouted canyon monolith; and (2) a canyon monolith filled with sand, both assuming no cracks or fissures were present to cause preferential transport. A three-staged approach was taken to account for different processes that may impact the amount of contaminant that can be safely sequestered in canyon structure. In the first stage, flow and transport simulations established waste acceptance criteria based on a linear (Kd) isotherm approach. In the second stage, impacts on thermal loading were examined and the differences in waste acceptance criteria quantified. In the third stage of modeling, precipitation/dissolution reactions were considered on the release and transport of the contaminants, and the subsequent impact on the maximum contaminant loading. The reactive transport modeling is considered a demonstration of the reactive transport capability, and shows the importance of its use for future performance predictions once site-specific data have been obtained.

  7. Selective effects of weight and inertia on maximum lifting.

    Science.gov (United States)

    Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S

    2013-03-01

    A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Thermal analysis of a heat generating waste repository on the seabed

    International Nuclear Information System (INIS)

    Maynard, M.J.; Butler, T.P.; Firmin, G.H.

    1987-02-01

    The time dependent thermal behaviour of a repository containing heat generating waste has been investigated during loading, transport, and subsequent emplacement on the seabed. Variations of less than 1 0 C in the sealed repository water temperature were calculated to be sufficient to create adequate water circulation. Conservative 1-D analyses were used to estimate a maximum repository water temperature of 256 0 C, occuring about 3 years after emplacement. The temperature distributions within the heat generating waste canisters and grouted titanium tubes have been calculated using 2-D axisymmetric finite element models. Peak temperatures at the waste centre-line were found to be approx. 40 0 C above the repository water temperature. The sensitivity of the results to assumed thermal parameters and to the effect of sediment accumulation have been considered. The possibility and consequences of steam formation within a vented repository have been discussed. (author)

  9. High-level waste-form-product performance evaluation

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.; Allender, J.S.; Stone, J.A.; Gordon, D.E.; Gould, T.H. Jr.; Westberry, C.F. III.

    1982-01-01

    Seven candidate waste forms were evaluated for immobilization and geologic disposal of high-level radioactive wastes. The waste forms were compared on the basis of leach resistance, mechanical stability, and waste loading. All forms performed well at leaching temperatures of 40, 90, and 150 0 C. Ceramic forms ranked highest, followed by glasses, a metal matrix form, and concrete. 11 tables

  10. Study on preparing the absorbent of potassium nickel hexacyanoferrate (II) loaded zeolite for removal of cesium from radioactive waste solutions and followed method for stable solidification of spent composites

    International Nuclear Information System (INIS)

    Pham Quynh Luong; Nguyen Hoang Lan; Nguyen Van Chinh; Nguyen Thu Trang; Vuong Huu Anh; Le Xuan Huu; Nguyen Thi Xuan; Le Van Duong

    2017-01-01

    The selective adsorption and stable immobilization of radioactive cesium, K-Ni-hexacyanoferrate (II) loaded zeolite (FC-zeolite) prepared by impregnation / precipitation method were studied. The uptake equilibrium of Cs + for composites FC-zeolite was attained within 8 h and estimated to be above 97% in Cs + 100 mg/l solution at pH 4-10. Maximum ion exchange capacity of Cs + ions (Q max ) for FC-zeoliteX was 112.5 and 69.7 mg/g in pure water and sea water, respectively. Those values for FC-zeolite A was 85.7 and 42.7 mg/g. Decontamination factor (DF) of FC-zeolite X for 134 Cs was 149.7 and 107.5 in pure water and sea water respectively. Study on synthesized zeolites (A and X) made of HUST was also conducted in similar manner. The values of Q max were 98.6 and 39.9 mg/g for zeolite A, and 69.5 and 20.8 mg/g for zeolite X in pure water and sea water, respectively. Decontamination factor (DF) of zeolite A and X for 134 Cs showed lower values. The spent CsFC-zeolite was solidificated in optimal experimental conditions: 5% Na 2 B 4 O 7 additives; calcination temperature at 900 o C for 2 h in air. Solid form was determined some of parameters: immobilization of Cs, compressive strength, volume reduction after calcination (%) and leaching rate of Cs + ions in deionization water. (author)

  11. Maximum entropy principal for transportation

    International Nuclear Information System (INIS)

    Bilich, F.; Da Silva, R.

    2008-01-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  12. Synroc tailored waste forms for actinide immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Daniel J.; Vance, Eric R. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia). ANSTOsynroc, Inst. of Materials Engineering

    2017-07-01

    Since the end of the 1970s, Synroc at the Australian Nuclear Science and Technology Organisation (ANSTO) has evolved from a focus on titanate ceramics directed at PUREX waste to a platform waste treatment technology to fabricate tailored glass-ceramic and ceramic waste forms for different types of actinide, high- and intermediate level wastes. The particular emphasis for Synroc is on wastes which are problematic for glass matrices or existing vitrification process technologies. In particular, nuclear wastes containing actinides, notably plutonium, pose a unique set of requirements for a waste form, which Synroc ceramic and glass-ceramic waste forms can be tailored to meet. Key aspects to waste form design include maximising the waste loading, producing a chemically durable product, maintaining flexibility to accommodate waste variations, a proliferation resistance to prevent theft and diversion, and appropriate process technology to produce waste forms that meet requirements for actinide waste streams. Synroc waste forms incorporate the actinides within mineral phases, producing products which are much more durable in water than baseline borosilicate glasses. Further, Synroc waste forms can incorporate neutron absorbers and {sup 238}U which provide criticality control both during processing and whilst within the repository. Synroc waste forms offer proliferation resistance advantages over baseline borosilicate glasses as it is much more difficult to retrieve the actinide and they can reduce the radiation dose to workers compared to borosilicate glasses. Major research and development into Synroc at ANSTO over the past 40 years has included the development of waste forms for excess weapons plutonium immobilization in collaboration with the US and for impure plutonium residues in collaboration with the UK, as examples. With a waste loading of 40-50 wt.%, Synroc would also be considered a strong candidate as an engineered waste form for used nuclear fuel and highly

  13. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  14. Processes for production of alternative waste forms

    International Nuclear Information System (INIS)

    Ross, W.A.; Rusin, J.M.; McElroy, J.L.

    1979-01-01

    During the past 20 years, numerous waste forms and processes have been proposed for solidification of high-level radioactive wastes (HLW). The number has increased significantly during the past 3 to 4 years. At least five factors must be considered in selecting the waste form and process method: 1) processing flexibility, 2) waste loading, 3) canister size and stability, 4) waste form inertness and stability, and 5) processing complexity. This paper describes various waste form processes and operations, and a simple system is proposed for making comparisons. This system suggests that one goal for processes would be to reduce the number of process steps, thereby providing less complex processing systems

  15. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    International Nuclear Information System (INIS)

    Loomis, G.G.; Miller, C.M.; Giansiracusa, J.A.; Kimmel, R.; Prewett, S.V.

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test

  16. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  17. Maximum Parsimony on Phylogenetic networks

    Science.gov (United States)

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  18. Centralized collection of radioactive wastes

    International Nuclear Information System (INIS)

    1985-06-01

    The standard based upon TGL-190-921/02 applies to solid wastes of the category A1 and the radiation protection groups S1 and S2. The following items are specified: (1) requirements concerning the form and properties of the waste (permitted composition, unpermitted components, type of packaging, maximum weight per package/container), (2) technical conditions for connecting technical means of collection (lifting devices, traffic connections) with customer, and (3) tasks in handing/taking over the waste in relation to waste type (controls, operation of facilities, decontamination, transport documents)

  19. Centralized collection of radioactive wastes

    International Nuclear Information System (INIS)

    1985-06-01

    The standard based upon TGL-190-921/03 applies to solid wastes of the category A2 and the radiation protection groups S3, S4 and S5. The following items are specified: (1) requirements concerning the form and properties of the waste (permitted composition, unpermitted components, type of packaging, maximum weight per package/container), (2) technical conditions for connecting technical means of collection (lifting devices, traffic connections) with customer, and (3) tasks in handing/taking over the waste in relation to waste type (controls, operation of facilities, decontamination, transport documents)

  20. Immobilization of radioactive waste in glass matrices

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1978-01-01

    A promising process for long-term management of high-level radioactive waste is to immobilize the waste in a borosilicate glass matrix. Among the most important criteria characterizing the integrity of the large-scale glass-waste forms are that they possess good chemical stability (including low leachability), thermal stability, mechanical integrity, and high radiation stability. Fulfillment of these criteria ensures the maximum margin of safety of glass-waste products, following solidification, handling, transportation, and long-term storage

  1. Load sensor

    OpenAIRE

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder forming 30-60% by volume of the composite, and wherein the PZT powder forms 40-50% by volume of the composite.

  2. Overview of OWI waste/rock interaction studies

    International Nuclear Information System (INIS)

    Jenks, G.H.

    1977-01-01

    A review is presented of office of waste isolation (OWI) programs which fall within the waste/rock categories. Discussions are included on salt repository design, thermal powers and radiation intensities, maximum temperatures and gamma doses, salt temperatures around high level waste cannisters, projects concerned with radiation and thermal effects, projects concerned with long term interactions, and waste isolation safety assessment tasks

  3. Plutonium Immobilization Can Loading Conceptual Design

    International Nuclear Information System (INIS)

    Kriikku, E.

    1999-01-01

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  4. Plutonium Immobilization Can Loading Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  5. Impact of high soot-loaded and regenerated diesel particulate filters on the emissions of persistent organic pollutants from a diesel engine fueled with waste cooking oil-based biodiesel

    International Nuclear Information System (INIS)

    Chen, Chia-Yang; Lee, Wen-Jhy; Wang, Lin-Chi; Chang, Yu-Cheng; Yang, Hsi-Hsien; Young, Li-Hao; Lu, Jau-Huai; Tsai, Ying I.; Cheng, Man-Ting; Mwangi, John Kennedy

    2017-01-01

    Highlights: • WCO-based biodiesel blends cannot stimulate POPs formation in uncatalyzed DPF. • Formation mechanism of POPs in diesel engines is homogeneous gas-phase formation. • The gas-phase POPs are highly dominant in the raw exhausts of diesel engines. • The regeneration of the DPF can drastically reduce the formation potential of POPs in the DPFs. - Abstract: This study evaluated the impact on persistent organic pollutant (POP) emissions from a diesel engine when deploying a diesel oxidation catalyst (DOC) combined with an uncatalyzed diesel particulate filter (DPF), as well as fueling with conventional diesel (B2) and waste cooking oil-based (WCO-based) biodiesel blends (B10 and B20). When the engine was fueled with WCO-based biodiesel blends (B10 and B20) in combination with deploying DOC+A-DPF, their levels of the chlorine and potassium contents could not stimulate the formation of chlorinated POPs (PCDD/Fs and PCBs), although previous studies had warned that happened on diesel engines fueled with biodiesel and deployed with iron-catalyzed DPFs. In contrast, the WCO-based biodiesel with a lower aromatic content reduced the precursors for POP formation, and its higher oxygen content compared to diesel promoted more complete combustion, and thus using WCO-based biodiesel could reduce both PM_2_._5 and POP emissions from diesel engines. This study also evaluated the impact of DPF conditions on the POP emissions from a diesel engine; that is, the difference in POP emissions before and just after the regeneration of the DPF. In comparison to the high soot-loaded DPF scenario, the regeneration of the DPF can drastically reduce the formation potential of POPs in the DPFs. An approach was developed to correct the effects of sampling artifacts on the partitioning of gas- and particle-phase POPs in the exhaust. The gas-phase POPs are highly dominant (89.7–100%) in the raw exhausts of diesel engines, indicating that the formation mechanism of POPs in diesel

  6. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  7. Individual Module Maximum Power Point Tracking for a Thermoelectric Generator Systems

    DEFF Research Database (Denmark)

    Vadstrup, Casper; Chen, Min; Schaltz, Erik

    Thermo Electric Generator (TEG) modules are often connected in a series and/or parallel system in order to match the TEG system voltage with the load voltage. However, in order to be able to control the power production of the TEG system a DC/DC converter is inserted between the TEG system...... and the load. The DC/DC converter is under the control of a Maximum Power Point Tracker (MPPT) which insures that the TEG system produces the maximum possible power to the load. However, if the conditions, e.g. temperature, health, etc., of the TEG modules are different each TEG module will not produce its...

  8. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both

  9. Method for burning radioactive wastes

    International Nuclear Information System (INIS)

    Hattori, Akinori; Tejima, Takaya.

    1987-01-01

    Purpose: To completely process less combustible radioactive wastes with no excess loads on discharge gas processing systems and without causing corrosions to furnace walls. Method: Among combustible radioactive wastes, chlorine-containing less combustible wastes such as chlorine-containing rubbers and vinyl chlorides, and highly heat generating wastes not containing chloride such as polyethylene are selectively packed into packages. While on the other hand, packages of less combustible wastes are charged into a water-cooled jacket type incinerator intermittently while controlling the amount and the interval of charging so that the temperature in the furnace will be kept to lower than 850 deg C for burning treatment. Directly after the completion of the burning, the packed highly heat calorie producing wastes are charged and subjected to combustion treatment. (Yoshihara, H.)

  10. Two-dimensional maximum entropy image restoration

    International Nuclear Information System (INIS)

    Brolley, J.E.; Lazarus, R.B.; Suydam, B.R.; Trussell, H.J.

    1977-07-01

    An optical check problem was constructed to test P LOG P maximum entropy restoration of an extremely distorted image. Useful recovery of the original image was obtained. Comparison with maximum a posteriori restoration is made. 7 figures

  11. Nuclear Reactor RA Safety Report, Vol. 16, Maximum hypothetical accident

    International Nuclear Information System (INIS)

    1986-11-01

    Fault tree analysis of the maximum hypothetical accident covers the basic elements: accident initiation, phase development phases - scheme of possible accident flow. Cause of the accident initiation is the break of primary cooling pipe, heavy water system. Loss of primary coolant causes loss of pressure in the primary circuit at the coolant input in the reactor vessel. This initiates safety protection system which should automatically shutdown the reactor. Separate chapters are devoted to: after-heat removal, coolant and moderator loss; accident effects on the reactor core, effects in the reactor building, and release of radioactive wastes [sr

  12. Treatment of complex electroplating waste by 'zero discharge' technique

    International Nuclear Information System (INIS)

    Khattak, B.Q.; Ram Sankar, P.; Jain, A.K.

    2009-01-01

    Surface treatment processes generate lot of liquid waste, which contains toxic substances and are potentially harmful to the living beings. It is extremely difficult to treat the pollutants where processes and frequencies are not fixed. In Chemical Treatment Facility of RRCAT, surface treatment processes are user dependent and makes the electroplating waste very complicated. Initially the waste was treated by simple chemical transformation technique in which heavy metal ions are converted to hydroxide precipitates. Non metallic ions that contribute much to the plating waste could not be treated by this process. To remove maximum possible pollutants, many experiments were conducted on the laboratory scale. Based on those results, a pilot ion exchange plant of various resins was introduced in the process to achieve disposal quality effluent. Anionic load of Phosphate, Nitrate and fluoride caused frequent anionic bed exhaustions and polymeric network damaging. To avoid this phenomenon a new setup was designed. This pre treatment has the capacity to treat 500 litres per hour connected to a platter with clarifier followed by high pressure carbon and pebbles filters. Analysis of these ions was carried out on the advanced ion chromatography system and is found free of toxic metals, phosphate and fluoride. This effluent can be reused by adding a reverse osmosis system followed by ion exchange system to produce good quality de mineralized water needed for surface treatment activities. In this paper we describe the existing status of effluent treatment facility and future plans for achieving 'zero discharge'. (author)

  13. Waste statistics 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The 2003 reporting to the ISAG comprises 403 plants owned by 273 enterprises. In 2002, reports covered 407 plants owned by 296 enterprises. Waste generation in 2003 is compared to targets from 2008 in the government's Waste Strategy 2005-2008. The following can be said to summarise waste generation in 2003: 1) In 2003, total reported waste arisings amounted to 12,835,000 tonnes, which is 270,000 tonnes, or 2 per cent, less than in 2002. 2) If amounts of residues from coal-fired power plants are excluded from statistics, waste arisings in 2003 were 11,597,000 tonnes, which is a 2 per cent increase from 2002. 3) If amounts of residues from coal-fired power plants and waste from the building and construction sector are excluded from statistics, total waste generation in 2003 amounted to 7,814,000 tonnes, which is 19,000 tonnes, or 1 per cent, less than in 2002. In other words, there has been a fall in total waste arisings, if residues and waste from building and construction are excluded. 4) The overall rate of recycling amounted to 66 per cent, which is one percentage point above the overall recycling target of 65 per cent for 2008. In 2002 the total rate of recycling was 64 per cent. 5) The total amount of waste led to incineration amounted to 26 per cent, plus an additional 1 per cent left in temporary storage to be incinerated at a later time. The 2008 target for incineration is 26 per cent. These are the same percentage figures as applied to incineration and storage in 2002. 6) The total amount of waste led to landfills amounted to 8 per cent, which is one percentage point below the overall landfill target of a maximum of 9 per cent landfilling in 2008. In 2002, 9 per cent was led to landfill. 7) The targets for treatment of waste from individual sectors are still not being met: too little waste from households and the service sector is being recycled, and too much waste from industry is being led to landfill. (au)

  14. Environmental evaluation of municipal waste prevention

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Gallo, Daniele; Christensen, Thomas Højlund

    2011-01-01

    society, using life-cycle thinking. The partial prevention of unsolicited mail, beverage packaging and food waste is tested for a “High-tech” waste management system relying on high energy and material recovery and for a “Low-tech” waste management system with less recycling and relying on landfilling......Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider....... Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system...

  15. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    Science.gov (United States)

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  16. Comparative waste forms study

    International Nuclear Information System (INIS)

    Wald, J.W.; Lokken, R.O.; Shade, J.W.; Rusin, J.M.

    1980-12-01

    A number of alternative process and waste form options exist for the immobilization of nuclear wastes. Although data exists on the characterization of these alternative waste forms, a straightforward comparison of product properties is difficult, due to the lack of standardized testing procedures. The characterization study described in this report involved the application of the same volatility, mechanical strength and leach tests to ten alternative waste forms, to assess product durability. Bulk property, phase analysis and microstructural examination of the simulated products, whose waste loading varied from 5% to 100% was also conducted. The specific waste forms investigated were as follows: Cold Pressed and Sintered PW-9 Calcine; Hot Pressed PW-9 Calcine; Hot Isostatic Pressed PW-9 Calcine; Cold Pressed and Sintered SPC-5B Supercalcine; Hot Isostatic pressed SPC-5B Supercalcine; Sintered PW-9 and 50% Glass Frit; Glass 76-68; Celsian Glass Ceramic; Type II Portland Cement and 10% PW-9 Calcine; and Type II Portland Cement and 10% SPC-5B Supercalcine. Bulk property data were used to calculate and compare the relative quantities of waste form volume produced at a spent fuel processing rate of 5 metric ton uranium/day. This quantity ranged from 3173 L/day (5280 Kg/day) for 10% SPC-5B supercalcine in cement to 83 L/day (294 Kg/day) for 100% calcine. Mechanical strength, volatility, and leach resistance tests provide data related to waste form durability. Glass, glass-ceramic and supercalcine ranked high in waste form durability where as the 100% PW-9 calcine ranked low. All other materials ranked between these two groupings

  17. Baseline Glass Development for Combined Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-01-01

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.(1) Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.(2-5) Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  18. Radioactive wastes

    International Nuclear Information System (INIS)

    Grass, F.

    1982-01-01

    Following a definition of the term 'radioactive waste', including a discussion of possible criteria allowing a delimitation of low-level radioactive against inactive wastes, present techniques of handling high-level, intermediate-level and low-level wastes are described. The factors relevant for the establishment of definitive disposals for high-level wastes are discussed in some detail. Finally, the waste management organization currently operative in Austria is described. (G.G.)

  19. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  20. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  1. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  2. Mercury separation from aqueous wastes

    International Nuclear Information System (INIS)

    Taylor, P.A.; Klasson, K.T.; Corder, S.L.

    1995-07-01

    This project is providing an assessment of new sorbents for removing mercury from wastes at US Department of Energy sites. Four aqueous wastes were chosen for lab-scale testing; a high-salt, acidic waste currently stored at Idaho National Engineering Laboratory (INEL); a high-salt, alkaline waste stored at the Savannah River Site (SRS); a dilute lithium hydroxide solution stored at the Oak Ridge Y-12 Plant; and a low-salt, neutral groundwater generated at the Y-12 Plant. Eight adsorbents have been identified for testing, covering a wide range of cost and capability. Screening tests have been completed, which identified the most promising adsorbents for each waste stream. Batch isotherm tests have been completed using the most promising adsorbents, and column tests are in progress. Because of the wide range of waste compositions tested, no one adsorbent is effective in all of these waste streams. Based on loading capacity and compatibility with the waste solutions. the most effective adsorbents identified to date are SuperLig 618 for the INEL tank waste stimulant; Mersorb followed by lonac SR-3 for the SRS tank waste stimulant; Durasil 70 and Ionac SR-3) for the LIOH solution; and lonac SR-3 followed by lonac SR-4 and Mersorb for the Y-12 groundwater

  3. Description of a ceramic waste form and canister for Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Butler, J.L.; Allender, J.S.; Gould, T.H. Jr.

    1982-04-01

    A canistered ceramic waste form for possible immobilization of Savannah River Plant (SRP) high-level radioactive wastes is described. Characteristics reported for the form include waste loading, chemical composition, heat content, isotope inventory, mechanical and thermal properties, and leach rates. A conceptual design of a potential production process for making this canistered form are also described. The ceramic form was selected in November 1981 as the primary alternative to the reference waste form, borosilicate glass, for making a final waste form decision for SRP waste by FY-1983. 11 tables

  4. The Future: Innovative Technologies for Radioactive Waste Processing and Disposal

    International Nuclear Information System (INIS)

    Bychkov, Alexander V.

    2014-01-01

    Safe, proliferation resistant and economically efficient nuclear fuel cycles that minimize waste generation and environmental impacts are key to sustainable nuclear energy. Innovative approaches and technologies could significantly reduce the radiotoxicity, or the hazard posed by radioactive substances to humans, as well as the waste generated. Decreasing the waste volume, the heat load and the duration that the waste needs to be isolated from the biosphere will greatly simplify waste disposal concepts

  5. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source......, but such studies are very expensive if fair representation of both spatial and temporal variations should be obtained. In addition, onsite studies may affect the waste generation in the residence because of the increased focus on the issue. Residential waste is defined in different ways in different countries...

  6. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2009-07-20

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel

  7. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2008-03-03

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel

  8. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BELGOWASTE was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: Purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste; centralization assumes the making of adequate arrangements for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of resiudal material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste; deep clay formations are at present preferred; disposal of low-level treated waste into the Atlantic ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol [fr

  9. The used epoxy matrix in immobilization sludge process of alpha emitter radioactive waste

    International Nuclear Information System (INIS)

    Walman, E.; Salimin, Z.; Johan, B.

    1998-01-01

    Immobilization of alpha emitter radioactive waste containing of ion complex of uranyl carbonate on uranium concentration ≤ 50 mg/l has been carried out using epoxy matrix. The first step of process is the coagulation of uranium with 1.3 mole/l of Ca(OH) 2 coagulant concentration on pH 8 to precipitate the calcium uranyl carbonate on uranium concentration ≤ g/l. The immobilization of calcium uranyl carbonate with epoxy matrix was done on variation of the ratio of resin epoxy and hardener of 1 : 1 (giving the maximum value of density and compressive strength), the increasing of precipitate loading capacity give the decreasing of compressive strength of embedded waste. The test of compressive strength and leaching was done for the embedded waste after its curing time using Paul Weber equipment and 7 days immersion of samples in normal water. On the precipitate loading capacity of 70%, the quality of embedded waste still conform to the standard quality value i.e. density 1.2 g/cm 3 , compressive strength 10 kN/cm 2 and there is not any release of radionuclide during leaching test (undetectable).. (author)

  10. Automated data acquisition and analysis system used in the Basalt Waste Isolation Project's Near-Surface Test Facility

    International Nuclear Information System (INIS)

    Starr, J.L.

    1982-12-01

    A large minicomputer-based data acquisition and analysis system has been developed by the Basalt Waste Isolation project and is being applied to support research efforts on the response of rock (basalt) to thermal loads from simulated nuclear wastes. This system is believed to be the largest and most powerful system of its type in existence. It scans over 1000 different instruments, for three separate experiments, at a maximum frequency of once every 5 minutes. In addition to data acquisition, the system also performs the functions of data reduction, analog-to-digital conversion, computation of engineering units, data archiving, statistical analysis, and interactive graphics and reports. The system should be of general interest to those concerned with automated monitoring of instrumentation and computer graphics, as applied to large-scale engineering and scientific experimentation, especially in the fields of rock mechanics and nuclear waste disposal

  11. Design of a wind turbine rotor for maximum aerodynamic efficiency

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Aagaard Madsen, Helge; Gaunaa, Mac

    2009-01-01

    The design of a three-bladed wind turbine rotor is described, where the main focus has been highest possible mechanical power coefficient, CP, at a single operational condition. Structural, as well as off-design, issues are not considered, leading to a purely theoretical design for investigating...... maximum aerodynamic efficiency. The rotor is designed assuming constant induction for most of the blade span, but near the tip region, a constant load is assumed instead. The rotor design is obtained using an actuator disc model, and is subsequently verified using both a free-wake lifting line method...

  12. Mining wastes

    International Nuclear Information System (INIS)

    Pradel, J.

    1981-01-01

    In this article mining wastes means wastes obtained during extraction and processing of uranium ores including production of uraniferous concentrates. The hazards for the population are irradiation, ingestion, dust or radon inhalation. The different wastes produced are reviewed. Management of liquid effluents, water treatment, contamined materials, gaseous wastes and tailings are examined. Environmental impact of wastes during and after exploitation is discussed. Monitoring and measurements are made to verify that ICRP recommendations are met. Studies in progress to improve mining waste management are given [fr

  13. UASB Treatment of Methanolic Pulp Wastewater with Addition of Waste Starch and Incinerated Ash

    Science.gov (United States)

    Takahashi, Shintaro; Kobaysashi, Takuro; Li, Yu-You; Harada, Hideki

    The pulp wastewater consists mainly of methanol. It is expected to treat using upflow anaerobic sludge blanket (UASB) process. Paper manufactories also produce waste starch and incinerated ash. The integrated treating for these wastes is desirable. In this study, two UASB reactors were operated to treat pulp wastewater with addition of waste starch and with addition of incinerated ash, receptively. Continuous operations of a UASB reactor treating pulp wastewater with addition of waste starch (PS reactor) and a UASB reactor treating pulp wastewater with addition of incinerated ash (PA reactor) , were investigated at mesophilic conditions. The PS reactor performed well with an average 93.7% total CODCr and 97.3% soluble CODCr removal efficiency in average at a maximum volumetric loading rate (VLR) of 16.0 kgCOD/m3/d. The PA reactor was also successfully operated with an average 95.3% total CODCr and 97.5% soluble CODCr removal efficiency in average at a maximum VLR of 14.6 kgCOD/m3/d. Successfully developed granules were obtained after over 140 days of operation in both reactors, and the granules were 1 to 2 mm in mean diameter. Microbial analysis revealed the genus Methanomethylovorans was predominant in the granules of both reactors.

  14. Cermets for high level waste containment

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-01-01

    Cermet materials are currently under investigation as an alternate for the primary containment of high level wastes. The cermet in this study is an iron--nickel base metal matrix containing uniformly dispersed, micron-size fission product oxides, aluminosilicates, and titanates. Cermets possess high thermal conductivity, and typical waste loading of 70 wt % with volume reduction factors of 2 to 200 and low processing volatility losses have been realized. Preliminary leach studies indicate a leach resistance comparable to other candidate waste forms; however, more quantitative data are required. Actual waste studies have begun on NFS Acid Thorex, SRP dried sludge and fresh, unneutralized SRP process wastes

  15. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  16. The immobilization of High Level Waste Into Glass

    International Nuclear Information System (INIS)

    Aisyah; Martono, H.

    1998-01-01

    High level liquid waste is generated from the first step extraction in the nuclear fuel reprocessing. The waste is immobilized with boro-silicate glass. A certain composition of glass is needed for a certain type of waste, so that the properties of waste glass would meet the requirement either for further process or for disposal. The effect of waste loading on either density, thermal expansion, softening point and leaching rate has been studied. The composition of the high level liquid waste has been determined by ORIGEN 2 and the result has been used to prepare simulated high level waste. The waste loading in the waste glass has been set to be 19.48; 22.32; 25.27; and 26.59 weight percent. The result shows that increasing the waste loading has resulted in the higher density with no thermal expansion and softening point significant change. The increase in the waste loading increase that leaching rate. The properties of the waste glass in this research have not shown any deviation from the standard waste glass properties

  17. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  18. Preliminary assessment of blending Hanford tank wastes

    International Nuclear Information System (INIS)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications

  19. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  20. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  1. Waste forms for plutonium disposition

    International Nuclear Information System (INIS)

    Johnson, S.G.; O'Holleran, T.P.; Frank, S.M.; Meyer, M.K.; Hanson, M.; Staples, B.A.; Knecht, D.A.; Kong, P.C.

    1997-01-01

    The field of plutonium disposition is varied and of much importance, since the Department of Energy has decided on the hybrid option for disposing of the weapons materials. This consists of either placing the Pu into mixed oxide fuel for reactors or placing the material into a stable waste form such as glass. The waste form used for Pu disposition should exhibit certain qualities: (1) provide for a suitable deterrent to guard against proliferation; (2) be of minimal volume, i.e., maximize the loading; and (3) be reasonably durable under repository-like conditions. This paper will discuss several Pu waste forms that display promising characteristics

  2. Limit load assessment of centre cracked plates under biaxial loading

    International Nuclear Information System (INIS)

    Meek, C.; Ainsworth, R.A.

    2015-01-01

    Fitness-for-service of equipment and components containing defects is generally assessed using procedures such as BS 7910, API 579 and R6. There is currently little detailed advice in these procedures on the effects of biaxial and triaxial loading on fracture. This poster shows some theoretical bounding solutions of the plastic limit load for centre cracked plates under a variety of biaxial loading ratios and compares the estimates with those found by numerical methods using finite element (FE) analysis using Abacus CAE modelling software. The limit load of a structure is the maximum load that it can carry before plastic collapse occurs; this is often when the plastic zone has become large enough to spread from the crack tip to a remote boundary. For an elastic-perfectly plastic material, the irreversible deformation will continue at stresses no higher than the yield stress. The model for these limit load solutions is a bi-axially loaded plate of width 2W and height 2H, a centre crack of width 2a, acted on by remotely applied uniform stresses σ 2 perpendicular to the crack and Bσ 2 parallel to the crack, where B is the biaxial loading ratio, it means the ratio of the parallel to the perpendicular stress. A quarter plate of an elastic-perfectly plastic material has been modelled. The results show that an exact solution has been found for negative and low positive values of B. For B > 1, the lower bound solution is conservative for all values of a/W and B

  3. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  4. Vitrification of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na 2 O) - Lime (CaO) - Silica (SiO 2 ) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation

  5. Radioactive wastes

    International Nuclear Information System (INIS)

    Devarakonda, M.S.; Melvin, J.M.

    1994-01-01

    This paper is part of the Annual Literature Review issue of Water Environment Research. The review attempts to provide a concise summary of important water-related environmental science and engineering literature of the past year, of which 40 separate topics are discussed. On the topic of radioactive wastes, the present paper deals with the following aspects: national programs; waste repositories; mixed wastes; waste processing and decommissioning; environmental occurrence and transport of radionuclides; and remedial actions and treatment. 178 refs

  6. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  7. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  8. High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Pudelek, R. E.; Gilbert, W. C.

    2002-02-26

    This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste

  9. Peristaltic pumps for waste disposal

    International Nuclear Information System (INIS)

    Griffith, G.W.

    1992-09-01

    Laboratory robots are capable of generating large volumes of hazardous liquid wastes when they are used to perform chemical analyses of metal finishing solutions. A robot at Allied-Signal Inc., Kansas City Division, generates 30 gallons of acid waste each month. This waste contains mineral acids, heavy metals, metal fluorides, and other materials. The waste must be contained in special drums that are closed to the atmosphere. The initial disposal method was to have the robot pour the waste into a collecting funnel, which contained a liquid-sensing valve to admit the waste into the drum. Spills were inevitable, splashing occurred, and the special valve often didn't work well. The device also occupied a large amount of premium bench space. Peristaltic pumps are made to handle hazardous liquids quickly and efficiently. A variable-speed pump, equipped with a quick-loading pump head, was mounted below the robot bench near the waste barrel. The pump inlet tube was mounted above the bench within easy reach of the robot, while the outlet tube was connected directly to the barrel. During operation, the robot brings the waste liquid up to the pump inlet tube and activates the pump. When the waste has been removed, the pump stops. The procedure is quick, simple, inexpensive, safe, and reliable

  10. Combined Waste Form Cost Trade Study

    International Nuclear Information System (INIS)

    Gombert, Dirk; Piet, Steve; Trickel, Timothy; Carter, Joe; Vienna, John; Ebert, Bill; Matthern, Gretchen

    2008-01-01

    A new generation of aqueous nuclear fuel reprocessing, now in development under the auspices of the DOE Office of Nuclear Energy (NE), separates fuel into several fractions, thereby partitioning the wastes into groups of common chemistry. This technology advance enables development of waste management strategies that were not conceivable with simple PUREX reprocessing. Conventional wisdom suggests minimizing high level waste (HLW) volume is desirable, but logical extrapolation of this concept suggests that at some point the cost of reducing volume further will reach a point of diminishing return and may cease to be cost-effective. This report summarizes an evaluation considering three groupings of wastes in terms of cost-benefit for the reprocessing system. Internationally, the typical waste form for HLW from the PUREX process is borosilicate glass containing waste elements as oxides. Unfortunately several fission products (primarily Mo and the noble metals Ru, Rh, Pd) have limited solubility in glass, yielding relatively low waste loading, producing more glass, and greater disposal costs. Advanced separations allow matching the waste form to waste stream chemistry, allowing the disposal system to achieve more optimum waste loading with improved performance. Metals can be segregated from oxides and each can be stabilized in forms to minimize the HLW volume for repository disposal. Thus, a more efficient waste management system making the most effective use of advanced waste forms and disposal design for each waste is enabled by advanced separations and how the waste streams are combined. This trade-study was designed to juxtapose a combined waste form baseline waste treatment scheme with two options and to evaluate the cost-benefit using available data from the conceptual design studies supported by DOE-NE

  11. Radioactive Waste.

    Science.gov (United States)

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  12. Hazardous Waste

    Science.gov (United States)

    ... chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint thinner. U.S. residents ...

  13. Waste treatment

    International Nuclear Information System (INIS)

    Hutson, G.V.

    1996-01-01

    Numerous types of waste are produced by the nuclear industry ranging from high-level radioactive and heat-generating, HLW, to very low-level, LLW and usually very bulky wastes. These may be in solid, liquid or gaseous phases and require different treatments. Waste management practices have evolved within commercial and environmental constraints resulting in considerable reduction in discharges. (UK)

  14. Nuclear wastes

    International Nuclear Information System (INIS)

    2004-01-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  15. Radioactive wastes

    International Nuclear Information System (INIS)

    Teillac, J.

    1988-01-01

    This study of general interest is an evaluation of the safety of radioactive waste management and consequently the preservation of the environment for the protection of man against ionizing radiations. The following topics were developed: radiation effects on man; radioactive waste inventory; radioactive waste processing, disposal and storage; the present state and future prospects [fr

  16. Loads and loads and loads: The influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Directory of Open Access Journals (Sweden)

    Beat eMeier

    2015-06-01

    Full Text Available In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load can affect prospective memory performance. The existence of multiple target events increases prospective load and adding complexity to the to-be-remembered action increases retrospective load. In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of prospective load on costs in the ongoing task for categorical targets (Experiment 2, but not for specific targets (Experiment 1. Retrospective load and ongoing task load both affected remembering the retrospective component of the prospective memory task. We suggest that prospective load can enhance costs in the ongoing task due to additional monitoring requirements. Retrospective load and ongoing task load seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  17. Revealing the Maximum Strength in Nanotwinned Copper

    DEFF Research Database (Denmark)

    Lu, L.; Chen, X.; Huang, Xiaoxu

    2009-01-01

    boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  18. DYNAMIC TIME HISTORY ANALYSIS OF BLAST RESISTANT DOOR USING BLAST LOAD MODELED AS IMPACT LOAD

    Directory of Open Access Journals (Sweden)

    Y. A. Pranata

    2012-06-01

    Full Text Available A blast resistant single door was designed to withstand a 0.91 bar blast pressure and 44 ms blast duration. The analysis was done using Dynamic Time History Analysis using Blast Load modeled as Impact Load for given duration. The material properties used have been modified to accommodate dynamic effects. The analysis was done using dynamic finite element method (fem for time of the blast duration, and the maximum/minimum internal forces and displacement were taken from the time history output, in order to know the behavior under blast load and estimate the safety margin of the door. Results obtained from this research indicated that the maximum z-displacement is 1.709 mm, while in the term of serviceability, the permitted is 25 mm. The maximum reaction force is 73,960 N, while the maximum anchor capacity is 82,069 N. On blast condition, the maximum frame stress is 71.71 MPa, the maximum hinge shear stress is 45.28 MPa. While on rebound condition, the maximum frame stress is 172.11 MPa, the maximum hinge shear stress is 29.46 MPa. The maximum door edge rotation is 0.44 degree, which is not exceed the permitted boundary (1.2 degree. Keywords: Dynamic time history, blast resistant door, single door, finite element method.

  19. Polyhydroxyalkanoate (PHA) production from waste.

    Science.gov (United States)

    Rhu, D H; Lee, W H; Kim, J Y; Choi, E

    2003-01-01

    PHA (polyhydroxyalkanoate) production was attempted with SBRs from food waste. Seed microbes were collected from a sewage treatment plant with a biological nutrient removal process, and acclimated with synthetic substrate prior to the application of the fermented food waste. Laboratory SBRs were used to produce PHA with limited oxygen and nutrients. The maximum content of 51% PHA was obtained with an anaerobic/aerobic cycle with P limitation, and the yield was estimated to be about 0.05 gPHA(produced)/gCOD(applied) or 25 kg PHA/dry ton of food waste, assuming more than 40% of the PHA contents were recoverable. PHB/PHA ratios were 0.74 to 0.77 due to the higher acetate concentrations. Economical analysis seemed to suggest the PHA produced from the food waste could be an alternative material to produce the biodegradable plastic to be used for the collection bags for solid waste.

  20. Biodiesel production from waste cotton seed oil using low cost catalyst: Engine performance and emission characteristics

    Directory of Open Access Journals (Sweden)

    Duple Sinha

    2016-09-01

    Full Text Available Production of fatty acid methyl esters from waste cotton seed oil through transesterification was reported. The GC–MS analysis of WCCO oil was studied and the major fatty acids were found to be palmitic acid (27.76% and linoleic acid (42.84%. The molecular weight of the oil was 881.039 g/mol. A maximum yield of 92% biodiesel was reported when the reaction temperature, time, methanol/oil ratio and catalyst loading rate were 60 °C, 50 min, 12:1 and 3% (wt.%, respectively. The calcined egg shell catalyst was prepared and characterized. Partial purification of the fatty acid methyl esters was proposed for increasing the purity of the biodiesel and better engine performance. The flash point and the fire point of the biodiesel were found to be 128 °C and 136 °C, respectively. The Brake thermal efficiency of WCCO B10 biodiesel was 26.04% for maximum load, specific fuel consumption for diesel was 0.32 kg/kW h at maximum load. The use of biodiesel blends showed a reduction of carbon monoxide and hydrocarbon emissions and a marginal increase in nitrogen oxides (NOx emissions improved emission characteristics.

  1. UTILIZATION OF POULTRY, COW AND KITCHEN WASTES FOR BIOGAS PRODUCTION: A COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. Animasahun

    2007-09-01

    Full Text Available The amount of solid wastes generated in developing countries such as Nigeria has steadily increased over the last two decades as a result of population explosion and continuous growth of industries and agricultural practices. In agriculture, particularly cattle rearing, large quantities of cow wastes are generated, which could be used as biogas inputs to compliment the fuel usage alternative. In addition, a large number of families generate heavy wastes in the kitchen on a daily basis, which could be converted to economic benefits. In this work, a comparative study of biogas production from poultry droppings, cattle dung, and kitchen wastes was conducted under the same operating conditions. 3kg of each waste was mixed with 9L of water and loaded into the three waste reactors. Biogas production was measured for a period of 40 days and at an average temperature of 30.5oC. Biogas production started on the 7th day, and attained maximum value on the 14th days for reactor 1. Production reached its peak on the 14th day with 85´10-3dm3 of gas produced in reactor 2. For reactor 3, biogas production started on the 8th day and production reached a peak value on the 14th day. The average biogas production from poultry droppings, cow dung and kitchen waste was 0.0318dm3/day, 0.0230dm3/day and 0.0143dm3/day, respectively. It is concluded that the wastes can be managed through conversion into biogas, which is a source of income generation for the society.

  2. Electronic wastes

    Science.gov (United States)

    Regel-Rosocka, Magdalena

    2018-03-01

    E-waste amount is growing at about 4% annually, and has become the fastest growing waste stream in the industrialized world. Over 50 million tons of e-waste are produced globally each year, and some of them end up in landfills causing danger of toxic chemicals leakage over time. E-waste is also sent to developing countries where informal processing of waste electrical and electronic equipment (WEEE) causes serious health and pollution problems. A huge interest in recovery of valuable metals from WEEE is clearly visible in a great number of scientific, popular scientific publications or government and industrial reports.

  3. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  4. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  5. Prediction of temperature increases in a salt repository expected from the storage of spent fuel or high-level waste

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1978-04-01

    Comparisons in temperature increases incurred from hypothetical storage of 133 MW of 10-year-old spent fuel (SF) or high-level waste (HLW) in underground salt formations have been made using the HEATING5 computer code. The comparisons are based on far-field homogenized models that cover areas of 65 and 25 sq miles for SF and HLW, respectively, and near-field unit-cell models covering respective areas of 610 ft 2 and 400 ft 2 . Preliminary comparisons based on heat loads of 150 kW/acre and 3.5 kW/canister indicated near-field temperature increases about 20% higher for the storage of the spent fuel than for the high-level waste. In these comparisons, it was also found that the thermal energy deposited in the salt after 500 years is about twice the energy deposited by the high-level waste. The thermal load in a repository containing 10-year-old spent fuel was thus limited to 60 kW/acre to obtain comparable far-field thermal effects as obtained in a repository containing 10-year-old high-level waste loaded at 150 kW/acre. Detailed far-field and unit-cell comparisons of transient temperature increases have been made based on these loadings. Unit-cell comparisons were made between a canister containing high-level waste with an initial heat production rate of 2.1 kW and a canister containing a PWR spent fuel assembly producing 0.55 kW. Using a three-dimensional unit-cell model, a maximum salt temperature increase of 260 0 F was calculated for the high-level waste prior to back-filling (5 years after burial), whereas a maximum temperature increase of 110 0 F was calculated for the spent fuel prior to backfilling (25 years after burial). Comparisons were also made between various configurational models for the high-level waste showing the applicability of each model

  6. Results Of The Extraction-Scrub-Strip Testing Using An Improved Solvent Formulation And Salt Waste Processing Facility Simulated Waste

    International Nuclear Information System (INIS)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-01

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D Cs in an ESS test, using the baseline solvent formulation and the typical waste feed, is ∼15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under

  7. Removal of radioactive and other hazardous material from fluid waste

    Science.gov (United States)

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  8. Environmental evaluation of municipal waste prevention

    International Nuclear Information System (INIS)

    Gentil, Emmanuel C.; Gallo, Daniele; Christensen, Thomas H.

    2011-01-01

    Highlights: → Influence of prevention on waste management systems, excluding avoided production, is relatively minor. → Influence of prevention on overall supply chain, including avoided production is very significant. → Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail, beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.

  9. A maximum power point tracking algorithm for photovoltaic applications

    Science.gov (United States)

    Nelatury, Sudarshan R.; Gray, Robert

    2013-05-01

    The voltage and current characteristic of a photovoltaic (PV) cell is highly nonlinear and operating a PV cell for maximum power transfer has been a challenge for a long time. Several techniques have been proposed to estimate and track the maximum power point (MPP) in order to improve the overall efficiency of a PV panel. A strategic use of the mean value theorem permits obtaining an analytical expression for a point that lies in a close neighborhood of the true MPP. But hitherto, an exact solution in closed form for the MPP is not published. This problem can be formulated analytically as a constrained optimization, which can be solved using the Lagrange method. This method results in a system of simultaneous nonlinear equations. Solving them directly is quite difficult. However, we can employ a recursive algorithm to yield a reasonably good solution. In graphical terms, suppose the voltage current characteristic and the constant power contours are plotted on the same voltage current plane, the point of tangency between the device characteristic and the constant power contours is the sought for MPP. It is subject to change with the incident irradiation and temperature and hence the algorithm that attempts to maintain the MPP should be adaptive in nature and is supposed to have fast convergence and the least misadjustment. There are two parts in its implementation. First, one needs to estimate the MPP. The second task is to have a DC-DC converter to match the given load to the MPP thus obtained. Availability of power electronics circuits made it possible to design efficient converters. In this paper although we do not show the results from a real circuit, we use MATLAB to obtain the MPP and a buck-boost converter to match the load. Under varying conditions of load resistance and irradiance we demonstrate MPP tracking in case of a commercially available solar panel MSX-60. The power electronics circuit is simulated by PSIM software.

  10. Maximum Power Point Tracking Using Sliding Mode Control for Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    J. Ghazanfari

    2013-09-01

    Full Text Available In this paper, a robust Maximum Power Point Tracking (MPPT for PV array has been proposed using sliding mode control by defining a new formulation for sliding surface which is based on increment conductance (INC method. The stability and robustness of the proposed controller are investigated to load variations and environment changes. Three different types of DC-DC converter are used in Maximum Power Point (MPP system and the results obtained are given. The simulation results confirm the effectiveness of the proposed method in the presence of load variations and environment changes for different types of DC-DC converter topologies.

  11. MXLKID: a maximum likelihood parameter identifier

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1980-07-01

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables

  12. Probabilistic model of bridge vehicle loads in port area based on in-situ load testing

    Science.gov (United States)

    Deng, Ming; Wang, Lei; Zhang, Jianren; Wang, Rei; Yan, Yanhong

    2017-11-01

    Vehicle load is an important factor affecting the safety and usability of bridges. An statistical analysis is carried out in this paper to investigate the vehicle load data of Tianjin Haibin highway in Tianjin port of China, which are collected by the Weigh-in- Motion (WIM) system. Following this, the effect of the vehicle load on test bridge is calculated, and then compared with the calculation result according to HL-93(AASHTO LRFD). Results show that the overall vehicle load follows a distribution with a weighted sum of four normal distributions. The maximum vehicle load during the design reference period follows a type I extremum distribution. The vehicle load effect also follows a weighted sum of four normal distributions, and the standard value of the vehicle load is recommended as 1.8 times that of the calculated value according to HL-93.

  13. Waste gas combustion in a Hanford radioactive waste tank

    International Nuclear Information System (INIS)

    Travis, J.R.; Fujita, R.K.; Spore, J.W.

    1994-01-01

    It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion

  14. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture

    International Nuclear Information System (INIS)

    Can, Özer

    2014-01-01

    Highlights: • High quality biodiesel fuels can be produced by using different waste cooking oils. • Biodiesel fuel blends (in 5 and 10% vol) can be used without any negative effects. • Effects of biodiesel addition on the combustion and exhaust emissions were investigated. - Abstract: In this study, a mixture of biodiesel fuels produced from two different kinds of waste cooking oils was blended in 5% and 10% with No. 2 diesel fuel. The biodiesel/No. 2 diesel fuel blends were tested in a single-cylinder, direct injection, four-stroke, natural aspirated diesel engine under four different engine loads (BMEP 0.48–0.36–0.24–0.12 MPa) and 2200 rpm engine speed. Despite of the earlier start of injection, the detailed combustion and engine performance results showed that the ignition delay with the biodiesel addition was decreased for the all engine loads with the earlier combustion timings due to higher cetane number of biodiesel fuel. Meanwhile the maximum heat release rate and the in-cylinder pressure rise rate were slightly decreased and the combustion duration was generally increased with the biodiesel addition. However, significant changings were not observed on the maximum in-cylinder pressures. In addition, it was observed that the indicated mean effective pressure values were slightly varied depending on the start of combustion timing and the center of heat release location. It was found that 5% and 10% biodiesel fuel addition resulted in slightly increment on break specific fuel consumption (up to 4%) and reduction on break thermal efficiency (up to 2.8%). The biodiesel additions also increased NO x emissions up to 8.7% and decreased smoke and total hydrocarbon emissions for the all engine loads. Although there were no significant changes on CO emissions at the low and medium engine loads, some reductions were observed at the full engine load. Also, CO 2 emissions were slightly increased for the all engine loads

  15. Stochastic Extreme Load Predictions for Marine Structures

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    1999-01-01

    Development of rational design criteria for marine structures requires reliable estimates for the maximum wave-induced loads the structure may encounter during its operational lifetime. The paper discusses various methods for extreme value predictions taking into account the non-linearity of the ......Development of rational design criteria for marine structures requires reliable estimates for the maximum wave-induced loads the structure may encounter during its operational lifetime. The paper discusses various methods for extreme value predictions taking into account the non......-linearity of the waves and the response. As example the wave-induced bending moment in the ship hull girder is considered....

  16. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  17. Maximum phytoplankton concentrations in the sea

    DEFF Research Database (Denmark)

    Jackson, G.A.; Kiørboe, Thomas

    2008-01-01

    A simplification of plankton dynamics using coagulation theory provides predictions of the maximum algal concentration sustainable in aquatic systems. These predictions have previously been tested successfully against results from iron fertilization experiments. We extend the test to data collect...

  18. Maximum-Likelihood Detection Of Noncoherent CPM

    Science.gov (United States)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.

  19. Radioactive gaseous waste processing device

    International Nuclear Information System (INIS)

    Kishi, Tadao.

    1990-01-01

    The present invention concerns a radioactive gaseous waste processing device used in BWR power plants. A heater is disposed to the lower portion of a dryer for dehydrating radioactive off gases. Further, a thermometer is disposed to a coolant return pipeway on the exit side of the cooling portion of the dryer and signals sent from the thermometer are inputted to an automatic temperature controller. If the load on the dryer is reduced, the value of the thermometer is lowered than a set value, then an output signal corresponding to the change is supplied from the automatic temperature controller to the heater to forcively apply loads to the dryer. Therefore, defrosting can be conducted completely without operating a refrigerator, and the refrigerator can be maintained under a constant load by applying a dummy load when the load in the dryer is reduced. (I.N.)

  20. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  1. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.

    Science.gov (United States)

    Partovi, Maryam; Lotfabad, Tayebe Bagheri; Roostaazad, Reza; Bahmaei, Manochehr; Tayyebi, Shokoufe

    2013-06-01

    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % YP/S|(Soybean oil) = 0.31 g g(-1), respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) =/~ 0.5 g g(-1)), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max = 0.26 ± 0.02 h(-1)), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l(-1), during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products.

  2. Distribution load estimation (DLE)

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A; Lehtonen, M [VTT Energy, Espoo (Finland)

    1998-08-01

    The load research has produced customer class load models to convert the customers` annual energy consumption to hourly load values. The reliability of load models applied from a nation-wide sample is limited in any specific network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to find improvements to the load models or, in general, improvements to the load estimates. In Distribution Load Estimation (DLE) the measurements from the network are utilized to improve the customer class load models. The results of DLE will be new load models that better correspond to the loading of the distribution network but are still close to the original load models obtained by load research. The principal data flow of DLE is presented

  3. Waste form development for a DC arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Bloomer, P.E.; Chantaraprachoom, N.; Gong, M.; Lamar, D.A.

    1996-09-01

    A laboratory crucible study was conducted to develop waste forms to treat nonradioactive simulated {sup 238}Pu heterogeneous debris waste from Savannah River, metal waste from the Idaho National Engineering Laboratory (INEL), and nominal waste also from INEL using DC arc melting. The preliminary results showed that the different waste form compositions had vastly different responses for each processing effect. The reducing condition of DC arc melting had no significant effects on the durability of some waste forms while it decreased the waste form durability from 300 to 700% for other waste forms, which resulted in the failure of some TCLP tests. The right formulations of waste can benefit from devitrification and showed an increase in durability by 40%. Some formulations showed no devitrification effects while others decreased durability by 200%. Increased waste loading also affected waste form behavior, decreasing durability for one waste, increasing durability by 240% for another, and showing no effect for the third waste. All of these responses to the processing and composition variations were dictated by the fundamental glass chemistry and can be adjusted to achieve maximal waste loading, acceptable durability, and desired processing characteristics if each waste formulation is designed for the result according to the glass chemistry.

  4. Minimum Additive Waste Stabilization (MAWS)

    International Nuclear Information System (INIS)

    1994-02-01

    In the Minimum Additive Waste Stabilization(MAWS) concept, actual waste streams are utilized as additive resources for vitrification, which may contain the basic components (glass formers and fluxes) for making a suitable glass or glassy slag. If too much glass former is present, then the melt viscosity or temperature will be too high for processing; while if there is too much flux, then the durability may suffer. Therefore, there are optimum combinations of these two important classes of constituents depending on the criteria required. The challenge is to combine these resources in such a way that minimizes the use of non-waste additives yet yields a processable and durable final waste form for disposal. The benefit to this approach is that the volume of the final waste form is minimized (waste loading maximized) since little or no additives are used and vitrification itself results in volume reduction through evaporation of water, combustion of organics, and compaction of the solids into a non-porous glass. This implies a significant reduction in disposal costs due to volume reduction alone, and minimizes future risks/costs due to the long term durability and leach resistance of glass. This is accomplished by using integrated systems that are both cost-effective and produce an environmentally sound waste form for disposal. individual component technologies may include: vitrification; thermal destruction; soil washing; gas scrubbing/filtration; and, ion-exchange wastewater treatment. The particular combination of technologies will depend on the waste streams to be treated. At the heart of MAWS is vitrification technology, which incorporates all primary and secondary waste streams into a final, long-term, stabilized glass wasteform. The integrated technology approach, and view of waste streams as resources, is innovative yet practical to cost effectively treat a broad range of DOE mixed and low-level wastes

  5. Waste -92

    International Nuclear Information System (INIS)

    Ekwall, K.

    1992-11-01

    The report gives a review of waste incineration in Sweden today, including environmental and legal aspects. 21 incinerator plants are in use, producing heat to district heating network and, to a minor part, electric power. In 1991 1.31 Mton household waste and 0.35 Mton industrial waste were incinerated producing 4.4 Twh of energy. In a few cities 30-40 percent of the district heat comes from waste incineration. The theoretical and practical potentials for energy production in Sweden are estimated to 7 respective 5 TWh for household waste and 9 respective 5-6 TWh for industrial waste. Landfill gas is extracted at about 35 sites, with a yearly production of 0.3 TWh which corresponds to 3-5 percent of the potentially recoverable quantity. (8 refs., 2 figs., 13 tabs.)

  6. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part...... of the industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part...... of the system industry has to inform at the planning stage and afterwards in yearly reports on their waste arising and how the waste is managed. If available such information is very helpful in obtaining information about that specific industry. However, in many countries there is very little information...

  7. Nuclear waste

    International Nuclear Information System (INIS)

    1990-01-01

    Each year, nuclear power plants, businesses, hospitals, and universities generate more than 1 million cubic feet of hardware, rags, paper, liquid waste, and protective clothing that have been contaminated with radioactivity. While most of this waste has been disposed of in facilities in Nevada, South Carolina, and Washington state, recent legislation made the states responsible - either individually, or through groups of states called compacts - for developing new disposal facilities. This paper discusses the states' progress and problems in meeting facility development milestones in the law, federal and state efforts to resolve issues related to mixed waste (low-level waste that also contains hazardous chemicals) and waste with very low levels of radioactivity, and the Department of Energy's progress in discharging the federal government's responsibility under the law to manage the most hazardous low-level waste

  8. Distribution load estimation - DLE

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A. [VTT Energy, Espoo (Finland)

    1996-12-31

    The load research project has produced statistical information in the form of load models to convert the figures of annual energy consumption to hourly load values. The reliability of load models is limited to a certain network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to make improvements in the load models. Distribution load estimation (DLE) is the method developed here to improve load estimates from the load models. The method is also quite cheap to apply as it utilises information that is already available in SCADA systems

  9. Distribution load estimation - DLE

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A [VTT Energy, Espoo (Finland)

    1997-12-31

    The load research project has produced statistical information in the form of load models to convert the figures of annual energy consumption to hourly load values. The reliability of load models is limited to a certain network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to make improvements in the load models. Distribution load estimation (DLE) is the method developed here to improve load estimates from the load models. The method is also quite cheap to apply as it utilises information that is already available in SCADA systems

  10. Waste indicators

    Energy Technology Data Exchange (ETDEWEB)

    Dall, O.; Lassen, C.; Hansen, E. [Cowi A/S, Lyngby (Denmark)

    2003-07-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  11. Waste indicators

    International Nuclear Information System (INIS)

    Dall, O.; Lassen, C.; Hansen, E.

    2003-01-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  12. Wasting away

    International Nuclear Information System (INIS)

    Salzman, L.

    1978-01-01

    The problems of radioactive waste disposal are discussed, with particular reference to the following: radiation hazards from uranium mill tailings; disposal and storage of high-level wastes from spent fuel elements and reprocessing; low-level wastes; decommissioning of aged reactors; underground disposal, such as in salt formations; migration of radioactive isotopes, for example into ground water supplies or into the human food chain. (U.K.)

  13. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  14. Waste Management

    OpenAIRE

    Anonymous

    2006-01-01

    The Productivity Commission’s inquiry report into ‘Waste Management’ was tabled by Government in December 2006. The Australian Government asked the Commission to identify policies that would enable Australia to address market failures and externalities associated with the generation and disposal of waste, and recommend how resource efficiencies can be optimised to improve economic, environmental and social outcomes. In the final report, the Commission maintains that waste management policy sh...

  15. Sustainable waste management through end-of-waste criteria development.

    Science.gov (United States)

    Zorpas, Antonis A

    2016-04-01

    The Waste Framework Directive 2000/98 (WFD) contains specific requirements to define end-of-waste criteria (EWC). The main goal of EWC is to remove and eliminate the administrative loads of waste legislation for safe and high-quality waste materials, thereby facilitating and assisting recycling. The target is to produce effective with high quality of recyclables materials, promoting product standardization and quality and safety assurance, and improving harmonization and legal certainty in the recyclable material markets. At the same time, those objectives aim to develop a plan in order to improve the development and wider use of environmental technologies, which reduce pressure on environment and at the same time address the three dimensions of the Lisbon strategy: growth, jobs and environment. This paper presents the importance of EWC, and the approach of setting EWC as EWC affect several management systems as well as sustainable and clean technologies.

  16. The Influence of Pressure Distribution on the Maximum Values of Stress in FEM Analysis of Plain Bearings

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2016-12-01

    Full Text Available Several methods can be used in the FEM studies to apply the loads on a plain bearing. The paper presents a comparative analysis of maximum stress obtained for three loading scenarios: resultant force applied on the shaft – bearing assembly, variable pressure with sinusoidal distribution applied on the bearing surface, variable pressure with parabolic distribution applied on the bearing surface.

  17. Radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1977-01-01

    In 1975 the research association BelgoWaste was founded in order to prepare a technical and administrative plan for radioactive waste management in Belgium and to take the preliminary steps for establishing an organization which would be responsible for this activity. The association made a survey of all forecasts concerning radioactive waste production by power reactors and the fuel cycle industry based on various schemes of development of the nuclear industry. From the technical point of view, the reference plan for waste management envisages: purification at the production site of large volumes of low-level effluents; construction of a central facility for the treatment and intermediate storage of process concentrates (slurries, resins, etc.) and medium-level waste, centralization assuming that adequate arrangements are made for transporting waste before final treatment; maximum recovery of plutonium from waste and treatment of residual material by incineration at very high temperatures; treatment at the production site of high-level effluents from irradiated fuel reprocessing; construction of an underground long-term storage site for high-level treated waste and plutonium fuel fabrication waste (deep clay formations are at present preferred); and disposal of low-level treated waste into the Atlantic Ocean. It is intended to entrust the entire responsibility for treatment, disposal and storage of treated waste to a single body with participation by the State, the Nuclear Energy Research Centre (CEN/SCK), the electricity companies and Belgonucleaire. The partners intend to set up their facilities and services in the area of Mol. (author)

  18. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  19. Soaking assisted thermal pretreatment of cassava peels wastes for fermentable sugar production: Process modelling and optimization

    International Nuclear Information System (INIS)

    Aruwajoye, Gabriel S.; Faloye, Funmilayo D.; Kana, Evariste Gueguim

    2017-01-01

    Highlights: • Soaking Assisted Thermal Pretreatment (SATP) of Cassava Peels’ waste is reported. • Maximum fermentable sugar of 0.93 g/g and 90.90% sugar recovery was achieved. • This technique gave a 31% sugar yield improvement over enzymatic pretreatment. • SEM and FTIR analysis confirms the efficiency of SATP. - Abstract: This study reports a hybrid pretreatment strategy for optimum fermentable sugar (FS) release from cassava peels waste. The Response Surface design method was used to investigate the effect of soaking temperature, soaking duration, autoclave duration, acid concentration and solid loading on reducing sugar yield. The model gave a coefficient of determination (R 2 ) of 0.87. The optimum pretreatment conditions of 69.62 °C soaking temperature, 2.57 h soaking duration, 5 min autoclave duration, 3.68 v/v acid concentration and 9.65% w/v solid loading were obtained. Maximum reducing sugar of 89.80 ± 2.87 g/L corresponding to a fermentable sugar yield of 0.93 ± 0.03 g/g cassava peels was achieved upon model validation. A percentage sugar recovery of 90.79% was achieved with a 31% improvement in the FS yield from the enzyme pretreatment. The combined severity factor (CSF) of 0.77 and the low concentration of inhibitory compounds achieved further demonstrates the efficiency of this technique.

  20. Hulls and structural material waste conditioning by high pressure compaction

    International Nuclear Information System (INIS)

    Frotscher, H.

    1991-01-01

    Since 1986 KfK is developing a conditioning process. Main subjects of the investigations were the development of the production technique and the planning of the most important equipments of the process under remote conditions. The process is based on an extensive program of experiments. Inactive bulks of hulls and structural material components were compacted using maximum axial pressure load of about 300 MPa. The product density as function of press force was experimentally determinated. The mechanical loads of the press and tools were estimated for the design of these equipments. The hydraulic press consists a horizontal four-cylinder press. The maximum force of the press is 25 MN. The main advantage is the modular design of the press which is open on all sides. Especially the free accessibility from top is ensured. The report also represents relevant radiological data of the alternative product. Co-60 is the dominating activity of the product due to the effects of the heat production. An amount of 10 kg hull waste or 25 kg top and bottom pieces of the spent fuel assemblies per package is already beyond the Co-60 limit of the KONRAD regulations. The nuclear thermal power of a filled container is approximately sixty times lower compared with a vitrified HLW-container. Since the product shows thermal stability beyond 200 0 C, this it is suited for a combined disposal together with vitrified HLW-containers in salt bore holes of a geological disposal. The preliminary cost evaluation is based on a reprocessing throughput of 500 t HM per year and volume reduction factor of 5.3. Accordingly there are produced 300 waste packages with hulls only or 625 units with hulls and top and bottom pieces which require 1.6 or 2.3 millions DM respectively

  1. Anaerobic digestion of waste from an intensive pig unit. [NON

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, P N; Shaw, B G

    1973-03-01

    Use was made of heated (35/sup 0/C), stirred, and daily fed laboratory digesters. It was found that digestion of undiluted feces-urine was impossible, but balanced digestion could be obtained in digesters originally seeded from a working domestic anaerobic digester or in digesters filled with water into which small amounts of waste were regularly added. The results from running two digesters for over 80 weeks at loading rates of 0.5 to 3.2 g VS/l/day at detention times of 37.5 to 14 days are given. Above a loading rate of about 2.6 g VS/l/day, at a detention time of 14 days, performance in terms of percentage reduction in solids, BOD and COD began to fall. Maximum BOD reduction of 80 to 90% was found at that loading rate. Volatile acids and ammonia remained below inhibitory levels. It was postulated that there was an upper limit of total solids of about 4.5% above which satisfactory performance cannot be expected.

  2. Protective containment behaviour under exceeded design loads

    International Nuclear Information System (INIS)

    Holub, I.; Stepan, J.; Maly, J.; Schererova, K.

    2003-01-01

    The contribution describes the calculation results of the behaviour of containment structure if loaded in excess of its design load. The Temelin NPP comprises two WWER 1000 blocks and containment consists of a pre-stressed reinforced concrete structure with a system of unbonded cables. The objective of the calculations was to determine the level of load caused by the internal pressure and temperature at which the containment protective function would fail. In the first step, the maximum overpressure was determined, which may be transferred by the containment structure. In further steps analyses were made of various combinations of simultaneous pressure and temperature loads. The contribution presents relevant calculation results, including the evaluation of containment structure behaviour including liner under loads that exceed its design parameters. (author)

  3. Application of fuel cell for pyrite and heavy metal containing mining waste

    Science.gov (United States)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  4. FY 2000 report on the results of the technology development of energy use reduction of machine tools, etc. Technology development of environmental load reduction related to water soluble lubricating oil, etc. (R and D of low energy coolant degradation prevention technology and waste liquid processing technology); 2000 nendo energy shiyo gorika kosaku kikai nado gijutsu kaihatsu seika hokokusho. Suiyosei junkatsuyu ni kakawaru kankyo fuka teigen nado gijutsu kanri (tei energy coolant fuhai boshi gijutsu oyobi haieki shori gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The R and D were carried out on a system by which the long life of coolant of machine tools can be achieved and a system to process waste efficiently, economically and with less environmental loads, and the FY 2000 results were summed up. In the R and D of a system to prevent degradation of low energy coolant, measurement was made of effects of the degradation prevention system at a laboratory level, and it was found out that propagation of bacteria causing the degradation can be prevented with pH kept high. Further, it was admitted that the alkali effect on metal formability was not very much. As to the coolant processing, in the present situation, most of the coolant is taken back by industrial waste processing dealers. So, the development of the low energy waste liquid processing system is earnestly desired. In the R and D of the low energy waste liquid processing system, test on characteristics evaluation was conducted about each method of systems. Subjects to be improved/solved were extracted such as the point that volatile organic matters are included in condensed water after evaporation of waste liquid and there seems to be a possibility of needing the secondary processing. (NEDO)

  5. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    Science.gov (United States)

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Removal of phenol from radioactive waste solutions using activated granular Carbon and activated vermiculite

    International Nuclear Information System (INIS)

    Ezz El-Din, M.R.; Atta, E.R.

    2006-01-01

    The efficiency of both activated granular carbon (AGC) and activated vermiculite (AV) in removal of phenol from aqueous waste solutions is of great interest. The aim of the present study is to compare the absorbance capacities of both AGC and AV for the removal of phenol from radioactive waste solutions and to identify the factors affecting the sorption process. The experimental results were in the form of batch sorption measurements for the removal of phenol at ambient temperature (29 ± 1 degree C) and for times up to 40 min and 180 min for AGC and AV, respectively. The results indicated that activated carbon has good efficiency to adsorb phenol. Freundlich equation has been fitted to both AGC and AV for the contaminant removal. The adsorption capacities of both AGC and AV to phenol were 17.4 mg g-1 and 4.5 mg g-1, respectively. The maximum desorption percent of phenol from both loaded AGC and loaded AV were 9 % and 0 %, respectively, and it attained within about 200 min. accordingly, it is recommended that activated carbon is preferred in the applied field for removing phenol from radioactive aqueous wastes

  7. METHOD FOR DETERMINING THE MAXIMUM ARRANGEMENT FACTOR OF FOOTWEAR PARTS

    Directory of Open Access Journals (Sweden)

    DRIŞCU Mariana

    2014-05-01

    Full Text Available By classic methodology, designing footwear is a very complex and laborious activity. That is because classic methodology requires many graphic executions using manual means, which consume a lot of the producer’s time. Moreover, the results of this classical methodology may contain many inaccuracies with the most unpleasant consequences for the footwear producer. Thus, the costumer that buys a footwear product by taking into consideration the characteristics written on the product (size, width can notice after a period that the product has flaws because of the inadequate design. In order to avoid this kind of situations, the strictest scientific criteria must be followed when one designs a footwear product. The decisive step in this way has been made some time ago, when, as a result of powerful technical development and massive implementation of electronical calculus systems and informatics, This paper presents a product software for determining all possible arrangements of a footwear product’s reference points, in order to automatically acquire the maximum arrangement factor. The user multiplies the pattern in order to find the economic arrangement for the reference points. In this purpose, the user must probe few arrangement variants, in the translation and rotate-translation system. The same process is used in establishing the arrangement factor for the two points of reference of the designed footwear product. After probing several variants of arrangement in the translation and rotation and translation systems, the maximum arrangement factors are chosen. This allows the user to estimate the material wastes.

  8. Maximum gravitational redshift of white dwarfs

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Teukolsky, S.A.

    1976-01-01

    The stability of uniformly rotating, cold white dwarfs is examined in the framework of the Parametrized Post-Newtonian (PPN) formalism of Will and Nordtvedt. The maximum central density and gravitational redshift of a white dwarf are determined as functions of five of the nine PPN parameters (γ, β, zeta 2 , zeta 3 , and zeta 4 ), the total angular momentum J, and the composition of the star. General relativity predicts that the maximum redshifts is 571 km s -1 for nonrotating carbon and helium dwarfs, but is lower for stars composed of heavier nuclei. Uniform rotation can increase the maximum redshift to 647 km s -1 for carbon stars (the neutronization limit) and to 893 km s -1 for helium stars (the uniform rotation limit). The redshift distribution of a larger sample of white dwarfs may help determine the composition of their cores

  9. Macrophyte Community Response to Nitrogen Loading and ...

    Science.gov (United States)

    Empirical determination of nutrient loading thresholds that negatively impact seagrass communities have been elusive due to the multitude of factors involved. Using a mesocosm system that simulated Pacific Northwest estuaries, we evaluated macrophyte metrics across gradients of NO3 loading (0, 1.5, 3 and 6x ambient) and temperature (10 and 20 °C). Macroalgal growth, biomass, and C:N responded positively to increased NO3 load and floating algal mats developed at 20 ºC. Zostera japonica metrics, including C:N, responded more to temperature than to NO3 loading. Z. marina biomass exhibited a negative temperature effect and in some cases a negative NO3 effect, while growth rate increased with temperature. Shoot survival decreased at 20 ºC but was not influenced by NO3 loading. Wasting disease index exhibited a significant temperature by NO3 interaction consistent with increased disease susceptibility. Community shifts observed were consistent with the nutrient loading hypothesis at 20 ºC, but there was no evidence of other eutrophication symptoms due to the short residence time. The Nutrient Pollution Index tracked the NO3 gradient at 10 ºC but exhibited no response at 20 ºC. We suggest that systems characterized by cool temperatures, high NO3 loads, and short residence time may be resilient to many symptoms of eutrophication. Estuarine systems characterized by cool temperatures, high nutrient loads and rapid flushing may be resilient to some symptoms

  10. Nuclear waste vault sealing

    International Nuclear Information System (INIS)

    Gyenge, M.

    1980-01-01

    A nuclear waste vault must be designed and built to ensure adequate isolation of the nuclear wastes from human contact. Consequently, after a vault has been fully loaded, it must be adequately sealed off to prevent radionuclide migration which may be provided by circulating groundwater. Vault sealing entails four major aspects, i.e.: (a) vault grouting; (b) borehole sealing; (c) buffer packing; and (d) backfilling. Of particular concern in vault sealing are the physical and chemical properties of the sealing material, its long-term durability and stability, and the techniques used for its emplacement. Present sealing technology and sealing materials are reviewed in terms of the particular needs of vault sealing. Areas requiring research and development are indicated

  11. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions

    International Nuclear Information System (INIS)

    Yang, Fubin; Dong, Xiaorui; Zhang, Hongguang; Wang, Zhen; Yang, Kai; Zhang, Jian; Wang, Enhua; Liu, Hao; Zhao, Guangyao

    2014-01-01

    Highlights: • Dual loop ORC system is designed to recover waste heat from a diesel engine. • R245fa is used as working fluid for the dual loop ORC system. • Waste heat characteristic under engine various operating conditions is analyzed. • Performance of the combined system under various operating conditions is studied. • The waste heat from coolant and intake air has considerable potential for recovery. - Abstract: To take full advantage of the waste heat from a diesel engine, a set of dual loop organic Rankine cycle (ORC) system is designed to recover exhaust energy, waste heat from the coolant system, and released heat from turbocharged air in the intercooler of a six-cylinder diesel engine. The dual loop ORC system consists of a high temperature loop ORC system and a low temperature loop ORC system. R245fa is selected as the working fluid for both loops. Through the engine test, based on the first and second laws of thermodynamics, the performance of the dual loop ORC system for waste heat recovery is discussed based on the analysis of its waste heat characteristics under engine various operating conditions. Subsequently, the diesel engine-dual loop ORC combined system is presented, and the effective thermal efficiency and the brake specific fuel consumption (BSFC) are chosen to evaluate the operating performances of the diesel engine-dual loop ORC combined system. The results show that, the maximum waste heat recovery efficiency (WHRE) of the dual loop ORC system can reach 5.4% under engine various operating conditions. At the engine rated condition, the dual loop ORC system achieves the largest net power output at 27.85 kW. Compared with the diesel engine, the thermal efficiency of the combined system can be increased by 13%. When the diesel engine is operating at the high load region, the BSFC can be reduced by a maximum 4%

  12. Mixed low-level waste form evaluation

    International Nuclear Information System (INIS)

    Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

    1997-01-01

    A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance

  13. Fire propagation through arrays of solid-waste storage drums

    International Nuclear Information System (INIS)

    Smith, S.T.; Hinkle, A.W.

    1995-01-01

    The extent of propagation of a fire through drums of solid waste has been an unresolved issue that affects all solid-waste projects and existing solid-waste storage and handling facilities at the Hanford site. The issue involves the question of how many drums of solid waste within a given fire area will be consumed in a design-basis fire for given parameters such as drum loading, storage arrays, initiating events, and facility design. If the assumption that all drums of waste within a given fire area are consumed proves valid, then the construction costs of solid waste facilities may be significantly increased

  14. Equilibrium Temperature Profiles within Fission Product Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  15. Maximum entropy analysis of EGRET data

    DEFF Research Database (Denmark)

    Pohl, M.; Strong, A.W.

    1997-01-01

    EGRET data are usually analysed on the basis of the Maximum-Likelihood method \\cite{ma96} in a search for point sources in excess to a model for the background radiation (e.g. \\cite{hu97}). This method depends strongly on the quality of the background model, and thus may have high systematic unce...... uncertainties in region of strong and uncertain background like the Galactic Center region. Here we show images of such regions obtained by the quantified Maximum-Entropy method. We also discuss a possible further use of MEM in the analysis of problematic regions of the sky....

  16. The Maximum Resource Bin Packing Problem

    DEFF Research Database (Denmark)

    Boyar, J.; Epstein, L.; Favrholdt, L.M.

    2006-01-01

    Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...

  17. Shower maximum detector for SDC calorimetry

    International Nuclear Information System (INIS)

    Ernwein, J.

    1994-01-01

    A prototype for the SDC end-cap (EM) calorimeter complete with a pre-shower and a shower maximum detector was tested in beams of electrons and Π's at CERN by an SDC subsystem group. The prototype was manufactured from scintillator tiles and strips read out with 1 mm diameter wave-length shifting fibers. The design and construction of the shower maximum detector is described, and results of laboratory tests on light yield and performance of the scintillator-fiber system are given. Preliminary results on energy and position measurements with the shower max detector in the test beam are shown. (authors). 4 refs., 5 figs

  18. Topics in Bayesian statistics and maximum entropy

    International Nuclear Information System (INIS)

    Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.

    1998-12-01

    Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)

  19. Density estimation by maximum quantum entropy

    International Nuclear Information System (INIS)

    Silver, R.N.; Wallstrom, T.; Martz, H.F.

    1993-01-01

    A new Bayesian method for non-parametric density estimation is proposed, based on a mathematical analogy to quantum statistical physics. The mathematical procedure is related to maximum entropy methods for inverse problems and image reconstruction. The information divergence enforces global smoothing toward default models, convexity, positivity, extensivity and normalization. The novel feature is the replacement of classical entropy by quantum entropy, so that local smoothing is enforced by constraints on differential operators. The linear response of the estimate is proportional to the covariance. The hyperparameters are estimated by type-II maximum likelihood (evidence). The method is demonstrated on textbook data sets

  20. Waste design for households with respect to water, organics and nutrients

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    . The BOD and COD load to wastewater can be significantly reduced by separating toilet wastes and part of the kitchen wastes. The phosphate content of detergents influences the phosphorus load significantly. Kitchen wastes can be diverted to the solid waste system or the compostable fraction of solid wastes......Waste design couples handling and treatment of waste with the production and control of waste materials. This integrated approach will allow for a reduced use of non renewable resources in waste treatment The paper discusses the use of waste design for households and its impact on the composition...... of household wastewater. This will allow for the design of a wastewater with characteristics quite different from those normally found. The separation of toilet wastes or just urine can reduce the amount of nitrogen and phosphorus in the wastewater to a level where no further nutrient removal is needed...

  1. A maximum power point tracking scheme for a 1kw stand-alone ...

    African Journals Online (AJOL)

    A maximum power point tracking scheme for a 1kw stand-alone solar energy based power supply. ... Nigerian Journal of Technology ... A method for efficiently maximizing the output power of a solar panel supplying a load or battery bus under ...

  2. Recycling waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P I.S.

    1976-01-01

    It is being realized that if environmental quality is to be improved the amount of waste generated by man has to be substantially reduced. There are two ways this can be achieved. First, by conserving materials and energy, and sacrificing economic growth, a solution that is completely unacceptable because it would mean some form of rationing, mass unemployment, and collapse of society as it is known. The second way to reduce the volume of waste is by planned recycling, re-use, and recovery. Already the reclamation industry recovers, processes, and turns back for re-use many products used by industry and thereby reduces the UK's import bill for raw materials. In the book, the author sets out the various ways materials may be recovered from industrial and municipal wastes. The broad technology of waste management is covered and attention is focused on man's new resources lying buried in the mountains of industrial wastes, the emissions from stocks, the effluents and sludges that turn rivers into open sewers, and municipal dumps in seventeen chapters. The final chapter lists terms and concepts used in waste technology, organizations concerned with waste management, and sources of information about recycling waste. (MCW)

  3. Waste management

    International Nuclear Information System (INIS)

    Soule, H.F.

    1975-01-01

    Current planning for the management of radioactive wastes, with some emphasis on plutonium contaminated wastes, includes the provision of re-positories from which the waste can be safely removed to permanent disposal. A number of possibilities for permanent disposal are under investigation with the most favorable, at the present time, apparently disposal in a stable geological formation. However, final choice cannot be made until all studies are completed and a pilot phase demonstrates the adequacy of the chosen method. The radioactive wastes which result from all portions of the fuel cycle could comprise an important source of exposure to the public if permitted to do so. The objectives of the AEC waste management program are to provide methods of treating, handling and storing these wastes so that this exposure will not occur. This paper is intended to describe some of the problems and current progress of waste management programs, with emphasis on plutonium-contaminated wastes. Since the technology in this field is advancing at a rapid pace, the descriptions given can be regarded only as a snapshot at one point in time. (author)

  4. Sawmill "Waste"

    Science.gov (United States)

    Fred C. Simmons; Adna R. Bond

    1955-01-01

    Sawmills have the reputation of being very wasteful in converting logs and bolts into lumber and timbers. Almost everyone has seen the great heaps of sawdust and slabs that collect at sawmills. Frequently the question is asked, "Why doesn't somebody do something about this terrible waste of wood?"

  5. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  6. Shot loading platform analysis

    International Nuclear Information System (INIS)

    Norman, B.F.

    1994-01-01

    This document provides the wind/seismic analysis and evaluation for the shot loading platform. Hand calculations were used for the analysis. AISC and UBC load factors were used in this evaluation. The results show that the actual loads are under the allowable loads and all requirements are met

  7. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50......% of the maximum cooling load. It was concluded that all tested systems were able to provide an acceptable thermal environment even when the 50% of the maximum cooling load was used. From all the simulated systems the one that performed the best under both control principles was the ESCS ceiling system. Finally...... it was proved that ventilation systems should be sized based on the maximum cooling load....

  8. Small scale wind energy harvesting with maximum power tracking

    Directory of Open Access Journals (Sweden)

    Joaquim Azevedo

    2015-07-01

    Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.

  9. Nuclear waste

    International Nuclear Information System (INIS)

    1992-05-01

    The Nuclear Waste Policy Act of 1982, as amended in 1987, directed the Secretary of Energy to, among other things, investigate Yucca Mountain, Nevada, as a potential site for permanently disposing of highly radioactive wastes in an underground repository. In April 1991, the authors testified on Yucca Mountain project expenditures before your Subcommittee. Because of the significance of the authors findings regrading DOE's program management and expenditures, you asked the authors to continue reviewing program expenditures in depth. As agreed with your office, the authors reviewed the expenditures of project funds made available to the Department of Energy's (DOE) Lawrence Livermore National Laboratory, which is the lead project contractor for developing a nuclear waste package that wold be used for disposing of nuclear waste at Yucca Mountain. This report discusses the laboratory's use of nuclear waste funds to support independent research projects and to manage Yucca Mountain project activities. It also discusses the laboratory's project contracting practices

  10. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide timely and concise information on radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc)

  11. Nuclear waste

    International Nuclear Information System (INIS)

    Pligt, J. van der

    1989-01-01

    This chapter present a brief overview of the current situation of siting radioactive wastes. This is followed by an overview of various psychological approaches attempting to analyse public reactions to nuclear facilities. It will be argued that public reactions to nuclear waste factilities must be seen in the context of more general attitudes toward nuclear energy. The latter are not only based upon perceptions of the health and environmental risks but are built on values, and sets of attributes which need not be similar to the representations o the experts and policy-makers. The issue of siting nuclear waste facilities is also embedded in a wider moral and political domain. This is illustrated by the importance of equity issues in siting radioactive wastes. In the last section, the implications of the present line of argument for risk communication and public participation in decisions about siting radioactive wastes will be briefly discussed. (author). 49 refs

  12. Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, V.; Kim, D. S.; Vienna, J. D.; Kruger, A. A.

    2018-03-08

    Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.

  13. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  14. MODEL PREDICTIVE CONTROL FOR PHOTOVOLTAIC STATION MAXIMUM POWER POINT TRACKING SYSTEM

    Directory of Open Access Journals (Sweden)

    I. Elzein

    2015-01-01

    Full Text Available The purpose of this paper is to present an alternative maximum power point tracking, MPPT, algorithm for a photovoltaic module, PVM, to produce the maximum power, Pmax, using the optimal duty ratio, D, for different types of converters and load matching.We present a state-based approach to the design of the maximum power point tracker for a stand-alone photovoltaic power generation system. The system under consideration consists of a solar array with nonlinear time-varying characteristics, a step-up converter with appropriate filter.The proposed algorithm has the advantages of maximizing the efficiency of the power utilization, can be integrated to other MPPT algorithms without affecting the PVM performance, is excellent for Real-Time applications and is a robust analytical method, different from the traditional MPPT algorithms which are more based on trial and error, or comparisons between present and past states. The procedure to calculate the optimal duty ratio for a buck, boost and buck-boost converters, to transfer the maximum power from a PVM to a load, is presented in the paper. Additionally, the existence and uniqueness of optimal internal impedance, to transfer the maximum power from a photovoltaic module using load matching, is proved.

  15. Evaluation of the efficiency of a tubular digester in the reduction of organic load of biogas from swine wastes; Avaliacao da eficiencia de um biodigestor tubular na reducao da carga organica de biogas a partir de dejetos de suinos

    Energy Technology Data Exchange (ETDEWEB)

    Angonese, Andre Ricardo [Universidade Estadual do Oeste do Parana (UNIOESTE), PR (Brazil)], Email: aangonese@yahoo.com.br; Campos, Alessandro Torres [Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG (Brazil)], Email: atcampos3@yahoo.com.br; Moreno Palacio, Soraya [Universidade Estadual de Maringa (UEM), PR (Brazil); Szymanski, Nayara [Universidade Estadual do Oeste do Parana (UNIOESTE), PR (Brazil). Curso de Quimica

    2006-07-01

    The purpose of this study was to assess the efficiency of the anaerobic biological treatment systems in the reduction and stabilization of biodegradable organic matter of swine waste. The experiment was carried out at Vale dos Ipes Farm, located in the city of Ouro Verde do Oeste, in the Western of Parana State. One finishing phase swine unity containing 600 animals was monitored from January to June 2005. The system is composed by one steel digester with capacity for 50 m{sup 3}. The swine barn cleaning is performed by dry scratching on a daily basis. The generated residues flow by gravitation through ducts towards the digester. The duration of the hydraulic retention period was 12 days. The residues analysis was performed by means of sampling at the entrance and way out of the digester. The following parameters were analyzed: pH, DBO{sub 5}, DQO, total solids, total volatile solids, total fixed solids, total nitrogen e ammonia, potassium, total phosphate, average of biogas production. The results suggested that the anaerobic biological treatment system was efficient for reducing and stabilizing the organic matter resulted from the swine wastes. Expressive reductions of DBO, DQO, ST and SVT of 76, 77, 43 and 59% respectively, were obtained for the effluent originated by the digester. The average daily production of biogas during the analyzed period was 31, 5 m{sup 3}. (author)

  16. Nonsymmetric entropy and maximum nonsymmetric entropy principle

    International Nuclear Information System (INIS)

    Liu Chengshi

    2009-01-01

    Under the frame of a statistical model, the concept of nonsymmetric entropy which generalizes the concepts of Boltzmann's entropy and Shannon's entropy, is defined. Maximum nonsymmetric entropy principle is proved. Some important distribution laws such as power law, can be derived from this principle naturally. Especially, nonsymmetric entropy is more convenient than other entropy such as Tsallis's entropy in deriving power laws.

  17. Maximum speed of dewetting on a fiber

    NARCIS (Netherlands)

    Chan, Tak Shing; Gueudre, Thomas; Snoeijer, Jacobus Hendrikus

    2011-01-01

    A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched asymptotic expansion and derive the maximum speed

  18. Maximum potential preventive effect of hip protectors

    NARCIS (Netherlands)

    van Schoor, N.M.; Smit, J.H.; Bouter, L.M.; Veenings, B.; Asma, G.B.; Lips, P.T.A.M.

    2007-01-01

    OBJECTIVES: To estimate the maximum potential preventive effect of hip protectors in older persons living in the community or homes for the elderly. DESIGN: Observational cohort study. SETTING: Emergency departments in the Netherlands. PARTICIPANTS: Hip fracture patients aged 70 and older who

  19. correlation between maximum dry density and cohesion

    African Journals Online (AJOL)

    HOD

    represents maximum dry density, signifies plastic limit and is liquid limit. Researchers [6, 7] estimate compaction parameters. Aside from the correlation existing between compaction parameters and other physical quantities there are some other correlations that have been investigated by other researchers. The well-known.

  20. Weak scale from the maximum entropy principle

    Science.gov (United States)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2015-03-01

    The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.